

DIAMOND DRILLING

TOWNSHIP: BLACKSTOCK TWP.

REPORT NO: 16

WORK PERFORMED FOR: Placer Dome Inc.

RECORDED HOLDER: SAME AS ABOVE (xx)

: OTHER ()

CLAIM NO.	HOLE NO.	FOOTAGE	DATE	NOTE
P 783316 & P 783319	280A-28A	225.8m	Oct/88	(1)
P 783317 & P 783118	280A-29	300.2m	Oct/88	(1)
P 789909	280A-30	157.9m	Oct/88	(1)
P 789909 P 789918	280A-31	75.6m	Oct/88	(1)
1 709910	280A-31A	185.3m	Oct/88	(1)
P 789908	280A-32	200.6m	Oct/88	(1)
P 789908 P 789909	280A-33	188.4m	Oct/88	(1)
P 789917	280A-38	153.6m	Oct/88	(1)

NOTES: (1) # W8906.544, filed Dec/89

PLACER DOME INC.

REF CORD:

B529.0

9852.0 SURVEYED: NO

POST LOCATION: 216 m N and 124 m W to POST 4, CLAIM P783316

DIAMOND DRILL RECORD

HOLE NO:

LOCATION: L14+718 1+48W BRID: EAST-WEST

PROPERTY: PROJECT 280A

BLACKSTOCK TWP., ONTARIO

SECTION:

AZIMUTH:

270.0

LENGTH:

225.8

-37.5

ELEVATION:

.0

LOGSED BY: T. TENNENT

DIP: -45

-45.0

CORE SIZE: BQ

SYSTEM OF MEASURE: METRIC

DATE LOGGED: OCT. 16 TO 19, 1988

STARTED: OCTOBER 14, 1988

COMPLETED: OCTOBER 17. 1988

CLAIM NO: 0 - 170.0 P783316; 170.0 - 225.83 P.783319

PURPOSE: TO TEST A WEAK MAGNETIC HIGH UP ICE OF ORIGINAL FLOAT. N-S SHEAR

DIP TESTS (corrected)

DEPTH AZIMUTH DIP 45.72 -37.5

DEPTH AZIMUTH DIP

45.72 121.92 225.85

5 -35.0

FROM TO

-----DESCRIPTION-----

BAMPLE FROM

) LENGTH Au g/t RERUN REJECT AVERABE

.00 70.70 CASING IN DVERBURDEN

70.70 147.80 FOLIATED MAFIC FLOW WITH MINOR FELDSPAR PORPHYRITIC SYENODIORITE

Foliated basalt is dark green grey. Very fine grained. Hardness 4. Hell foliated at 45 degrees to the core axis. Finely laminated with minor intervals (8%) of more massive foliated basalt flow. Possible mafic tuff. Weakly to moderately sheared. Non magnetic with minor intervals of weakly to strongly magnetic rock.

Moderately chloritic. Hoderately carbonatized (calcite). Minor red potassium feldspar along foliation planes. From 93.50 to 99.10 the unit is weakly silicified and moderately sheared.

1% to 2%, i am calcite-ankerite stringers and filled fractures at 45 degrees to the core axis. Occasionally minor epidote and red feldspar in stringers.

2% to 3% very fine grained to fine grained anhedral to cubic pyrite. Disseminated and along foliation planes. Up to 1% pyrrhotite.

The feldspar porphyritic symmodiorite is medium to dark green grey and buff. Fine grained to medium grained. Hardness 4.5. Weakly to moderately foliated at 50 degrees to the core axis. 2% to 5%, 1 mm to 5 mm stretched feldspar phenocrysts. Non magnetic.

FROM	TO	DESCRIPTION	BAMPLE	FROM	TO	LENSTH	Au g/t	RERUN	REJECT	AVERAGE
		Very weakly carbonatized (calcite). Locally biotitic and/or hornblende rich.								
		1% 1 Hm calcite, minor red potassium feldspar stringers at 35 to 50 degrees to the core axis.								
		2% to 3% very fine grained to fine grained pyrite.								
		70.70 72.54 Core moderately broken. Moderate to strong Fe-carbonate alteration. Three 1 cm quartz-carbonate bands. Barren. 48 degrees to the core axis.								
		74.19 74.93 Syenodiorite Porphyry. 3% pyrite. 5% feldspar phenocrysts. Moderate biotite enrichment. Upper contact broken. Lower contact at 52								
	•	degrees to the core axis. 74.93 78.60 Foliated Basalt. Lower contact sharp at 48 degrees to the core axis.								
		74.93 75.30 Strongly magnetic.								
		At 75.18 metres a 1.3 cm quartz band. 3% blebs pyrite.								
		Minor potassium feldspar filled fractures at 22 degrees to								
		the core axis.								
		75.00 75.40 1.3 cm quartz band. 3% blebs pyrite. Minor potassium feldspar filled fractures.	E6201	75.00	75.40	.40	-	-	-	-
		76.42 76.52 Strongly magnetic.								
		78.60 78.97 Feldspar Porphyritic Symnodiorite. 2% disseminated pyrite. Lower contact sharp at 60 degrees to the core axis.								
		81.37 81.74 2% quartz-epidote-calcite laminae. 3%								
		disseminated pyrite.								
		81.37 81.74 2% quartz-epidote-calcite laminae. 3% disseminated pyrite.	E6202	81.37	81.74	.37	-	-	-	-
		B4.90 B5.40 Massive foliated basalt.								
		88.23 89.75 Massive foliated basalt.								
		93.09 94.15 Hassive foliated basalt.								
		93.50 99.10 Unit weakly silicified and moderately sheared.								
		94.60 99.10 Weakly to moderately magnetic.								
		94.70 95.10 3 to 4% pyrite in stringers along foliation planes and infilling fractures.								
		94.70 95.40 3 to 4% pyrite in stringers along foliation	E6203	04 70						
		planes and infilling fractures.	E0203	94.70	95.40	.70	•	-	•	•
		95.10 95.40 Moderately silicified laminae at 35 degrees to the core axis. Moderate network of calcite filled fractures. 3% pyrite.								
		At 96.90 metres a 1 cm band of pyrrhotite, pyrite at 65 degrees to the core axis.								
		97.85 98.10 Zone of silicified laminae. 2% pyrite.								
		99.18 99.97 5% wispy pyrite stringers. Hoderately to								
		strongly chloritic.								

FROM	TO	DEBCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
		At 102.37 metres a 5 cm calcite-quartz vein. 8% fine grained magnetite. 1% disseminated pyrite blebs.								
		99.18 99.97 5% wispy pyrite stringers. Moderately to strongly chloritic.	E6204	99.18	99.97	. 79	-	-	-	-
		102.30 102.60 5 cm calcite-quartz vein. 8% fine grained magnetite. 1% disseminated blebs pyrite.	E6205	102.30	102.60	.30	-	-	•	-
		102.63 103.25 Very broken core.								
		At 113.20 metres a 1.5 cm quartz vein at 58 degrees to the core axis. Barren.								
		114.00 139.90 1% calcite-ankerite-quartz-epidote quartz stringers and filled fractures. Minor								
		traces of red potassium feldspar. At 114.76 a 20 cm of moidote								
		(50%)-chlorite-biotite(30%)-quartz(30%) veining. Brecciated. 1% pyrite. 55 degrees to the core axis.								
		114.70 115.10 20 cm of epidote-chlorite-biotite-quartz	E6206	114.70	115.10	. 40	_	_	_	_
		veining. Brecciated. 1% pyrite. 55 degrees to the core axis 119.60 3.00 Cm white quartz vein. Barren. 80 degrees to				• • • •			_	_
		the core axis. 120.00 120.70 35% epidote-ankerite-quartz stringers. Up to								
		1% pyrite. Stringers fractured and infilled								
		with quartz. 45 degrees to the core axis. At 121.56 metres a 10 cm quartz-calcite-feldspar-chlorite								
		stringer. 3% disseminated pyrite. 30 degrees to the core axis.								
		120.00 120.70 35% epidote-ankerite-quartz stringers. Up to	E6207	120.00	120.70	.70	-	-	_	•
		1% pyrite. Stringers fractured and infilled with quartz. 45 degrees to the core axis.								
		121.50 122.50 10 cm quartz-calcite-k feldspar-chlorite	E6208	121.50	122.50	1.00	-	-	-	-
		stringer. 3% disseminated pyrite. 30 degrees to the core axis.								
		121.66 123.60 3 to 5% disseminated pyrite. Weakly magnetic.								
		122.50 123.60 3 to 5% disseminated pyrite. Meakly magnetic. 123.60 138.80 Non magnetic. Minor intervals of weakly magnetic rock. 2 to 3% pyrite.	E6209	122.50	123.60	1.10	-	-	-	-
		126.50 126.90 3% amygdules.								
		At 129.70 metres a i cm quartz veinlet. Barren. 10 degrees to the core axis.								
		At 131.00 metres 5 cas of 5% pyrite. 3% pyrrhotite. 5%								
		quartz stringers.								
		137.77 138.87 Weakly silicified.								
		137.77 138.87 Weakly silicified.	FA210	137.77	138.87	1 10	_			
		138.80 146.80 Moderately to strongly magnetic.	20414		130.07	1.10	_	-	-	-
		139.90 147.80 3% quartz veinlet. 1 to 2% pyrite. Up to 1% pyrrhotite. 30 to 50 degrees to the core axis								
		140.80 142.10 Weakly silicified. 3% disseminated ovrite.								
		At 141.73 metres a 3 cm quartz vein. Barren. 70 degrees to								
		the core axis. 140.80 142.10 Weakly silicified. 3% disseminated pyrite.	E6211	140.80	142.10	1.30	-	-		•

280A-286

GE ND: 4

FROM	70	DESCRIPTION	BAMPLE	FROM	TO	LENSTH	Au g/t Ri	ERUN	REJECT	AVERABE
		144.90 146.00 Meakly silicified. 2 to 3% pyrite.								
		144.90 146.00 Weakly silicified. 2 to 3% pyrite.	E6212	144.90	146.00	1.10	-	-	-	
147.80	158.00	INTERBANDED SILICIFIED AND FOLIATED MAFIC FLOW Light grey, medium grey, buff, dark green grey. Very fine grained to fine grained. Hardness 4 to 7. Finely laminated with.05 mm to 5 mm laminae at 60 degrees to the core axis. Alternating siliceous laminae and chlorite-epidote-calcite rich laminae. Possibly interbanded cherty sediment. Non magnetic to weakly magnetic.								
		3% Quartz filled hairline fractures.								
		1 to 2% anhedral to cubic pyrite, pyrrhotite. Disseminated and along foliation planes. Pyrrhotite replacing pyrite.								
159.00	164.40	At 157.36 metres a 11 cm band with 8% pyrrhotite, pyrite. 147.80 149.30 1 to 2% pyrrhotite, pyrite. 149.30 150.80 Up to 1% pyrite. 150.80 152.30 1 to 2% pyrite. 152.30 153.80 2% pyrite. 153.80 155.30 1 to 2% pyrite. 155.30 156.80 1% pyrite. 156.80 158.00 1% pyrite to 2% pyrrhotite. FOLIATED MAFIC FLOW Dark green grey. Fine grained. Hardness 4.5. Well foliated at 50 degrees to the core axis. Weakly magnetic.	E6214 E6215 E6216 E6217 E6219	150.80	150.80 152.30 153.80 155.30 156.80	1.50 1.50 1.50 1.50 1.50 1.50	-	-	-	-
		Up to 1% quartz-calcite-epidote stringers and filled fractures at 50 degrees to the core axis.								
		1% Disseminated pyrite.								
		157.70 160.90 Amygdaloidal foliated basalt with 15% biotite. Carbonatized (calcite). 158.00 Lower contact gradational.								
		158.00 159.50 Carbonatized calcite. Anygdeloidal foliated basalt with 15% biotite. 1% disseminated pyrite. 161.30 161.80 Brecciated. Weakly epidotized. 2% pyrrhotite, 1% pyrite.	E6220	158.00	159.50	1.50	-	•	•	-

164.40 176.80 INTERBANDED FOLIATED MAFIC FLOW AND CHERTY SEDIMENT Foliated mafic flow is dark green grey. Fine grained. Hardness 4. Well foliated at 30 to 50 degrees to the core axis. Non magnetic to moderately magnetic.

Weakly carbonatized. Locally silicified. Weakly epidotized. Foliation is locally disrupted and folded.

1% Calcite and quartz-calcite stringers.

1 to 2% disseminated blobs pyrite.

foliated

magnetic.

20% Cherty sediment is buff, white, brown and red. Aphanitic. Hardness 7. Banded with 1 cm to 15 cm bands at 15 to 50 degrees to the core axis. Bands are finely laminated. Contacts are sharp with FOLIATED MAFIC FLOW. Bands are occasionally brecciated and cross-cut by FOLIATED MAFIC FLOW.

1% 1 Mm to 1 cm quartz stringers at 33 to 50 degrees to the core axis. Barren,

To 176.80 8% brecciated cherty clasts in

basalt. Moderately to strongly

Up to 1% pyrite.

174.40

At 164.42 metres a 20 cm chert band. At 164.90 metres a 40 cm chert band. 164.40 165.40 60% cherty bands with 1% pyrite, pyrrhotite. E6221 164.40 165.40 1.00 40% foliated basalt with 1% pyrite. 165.40 166.90 90% foliated basalt with 2% pyrrhotite, E6222 165.40 166.90 pyrite. 10% cherty bands with 1% pyrrhotite. 166.90 168.40 Foliated basalt. 1% pyrite. E6223 166.90 168.40 1.50 168.40 169.90 Foliated basalt. 1% pyrrhotite, 1% pyrite. E6224 168.40 169.90 1.50 169.90 171.20 Similar to 168 to 169. E6225 169.90 171.20 1.30 171.20 177.20 1.00 medium chert band. At 172.37 metres a 30 cm chert band. At 173.37 metres a 32 cm chert band. 171.20 172.70 90% chert with 1% pyrrhotite. 10% foliated E6226 171.20 172.70 1.50 basalt with 1% pyrrhotite. 1% quartz stringers. Barren. 172.70 174.20 80% basalt with 2% pyrrhotite, pyrite. E6227 172.70 174.20 1.50 Brecciated. 174.20 175.70 Basalt with 8% cherty clasts. (1% to 3% E6228 174.20 175.70 1.50 pyrite, pyrrhotite.

280A-286

FROM	TO	DESCRIPTION	SAMPLE	FROM	70	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
		175.70 176.80 Basalt with BX cherty clasts with 2 to 3% pyrite, pyrrhotite.	E6229	175.70	176.80	1.10	-	-	•	-
176.80	225.83	FOLIATED MAFIC FLOW Medium to dark green grey. Fine grained. Hardness 4 to 4.5. Moderately foliated at 45 degrees to the core axis. Minor intervals of flow breccia. Moderately to strongly magnetic.								
		Unit is moderately epidotized, weakly to moderately carbonatized (calcite) and weakly chloritized.								
		1 to 2% calcite-quartz-epidote stringers and filled fractures at 45 degrees to the core axis.								
		1% Disseminated blebs and cubes of pyrite. 1% pyrrhotite.								
٠		177.70 178.43 4% pyrite. 25% brecciated pink calcite-quartz veins. Trace pyrite. 177.70 178.43 See description above. 182.13 184.41 Flow breccia. 2% pyrite. 1% pyrrhotite in blebs and stringers. Moderate carbonate and epidote alteration.	£6230	177.70	178.43	.73	-	-	-	-
		186.52 191.00 Flow breccia. 2% pyrite. 1% pyrrhotite in blebs and stringers. Noderate carbonate and epidote alteration. 191.00 213.00 Moderately magnetic. 191.96 192.50 Flow breccia with 3% pyrite. 197.28 197.59 31 cm of epidote-quartz veining. 2% pyrite.								
`		At 98.46 metres 10 cm of irregular epidote-quartz veining with 1% pyrite.								
		197.28 197.59 See description above. 199.30 200.00 2% pyrite. 1% pyrrhotite. 199.32 199.52 2% pyrite. 2% pyrrhotite.		197.28 199.30	197.59 200.00	.31 .70	-	-	-	-
		199.52 206.00 2% pyrite. 1% pyrrhotite. At 204.04 metres a 3 cm quartz-calcite veinlet. Barren. 40 degrees to the core axis.						T.		
		203.60 204.60 3% pyrite, pyrrhotite. 3 cm quartz-calcite veinlets at 40 degrees to the core axis. Barren. 206.00 225.83 1% pyrite, pyrrhotite. 210.60 3% quartz-epidote-calcite stringers. 2 mm to	E6233	203.60	204.60	1.00	~	-	-	-
		3 cm wide at 40 to 50 degrees to the core axis. Barren to 3% pyrite, pyrrhotite. 212.20 213.20 2% pyrite. 3% quartz-epidote-calcite	F4884							
		stringers. 213.00 225.83 Non magnetic to weakly magnetic. At 216.40 metres a 6 cm quartz vein. Irregular. Barren.	E0234	212.20	213.20	1.00	-	-		-
						•				

GE ND:

FROM TO

-----DESCRIPTION-----

SAMPLE FROM TO LENGTH AU g/t RERUN REJECT AVERAGE

221.50 222.00 29 cms of irregular epidote-calcite-quartz stringers. Trace pyrite.
221.60 221.89 29 cms of irregular epidote-calcite-quartz

E6235 221.50 222.00 .50 - - -

27 CBS of irregular epidote-calcite-quartz stringers. Trace pyrite.

225.83

END OF HOLE

BEDLOBY: From 147.80 to 158.00 meters a non-magnetic to weakly magnetic interbanded silicifed and foliated mafic flow with 1% to 2% disseminated pyrite and pyrrhotite was intersected. From 164.40 to 176.80 meters, a non-magnetic to moderately magnetic interbanded foliated mafic flow with 1 to 2% pyrite and 20% cherty sediment with up to 1% pyrite was intersected.

The entire hole is magnetic which accounts for the weak magnetic high. From 93.50 to 99.10 meters the rock is weakly silicifed and moderately sheared.

ECONOMIC GEOLOGY: No rock units similar to the original anomolous float were encountered. The cherty sediments with 1% pyrite show the most potential for anomolous gold.

CASING LEFT IN THE HOLE.

DRILLING BY NOREX DRILLING LTD., PORCUPINE, ONTARIO.

CORE CHECKED FOR RADIOACTIVITY AND FLUORESENCE - NOTHING OF INTEREST.

CORE STORED AT DOME MINES, SOUTH PORCUPINE, ONTARIO.

& needham

REF CORD: 9138.0 9925.0 SURVEYED: NO DIAMOND DRILL RECORD HOLE NO: LOCATION: L8+628 0+75W GRID: EAST-WEST PROPERTY: PROJECT 280A BLACKSTOCK TWP., ONTARIO POST LOCATION: 10m N and 184m W to POST 4, CLAIM P 783317 SECTION: AZIMUTH: 270.0 LENSTH: 300.2 **ELEVATION:** . 0 LOGSED BY: T. TENNENT DIP -45.0 CORE SIZE: 80 SYSTEM OF MEASURE: METRIC DATE LOSSED: OCTOBER 21-24, 1988 STARTED: OCTOBER 19, 1988 COMPLETED: OCTOBER 21, 1988 CLAIM NO: 0 - 271.5 P.783317; 271.5 - 300.23 P.783318 PURPOSE: To test strike extension of Au assays in 280A-3,5. Shearing DIP TESTS (corrected) DEPTH AZIMUTH DIP DEPTH AZIMUTH DIP -45.0 300.23 -42.0 FROM -----DESCRIPTION-----SAMPLE FROM LENGTH Au g/t RERUN REJECT AVERAGE 44.00 CASING IN OVERBURDEN .00 44.00 44.41 ALTERED MONZONITE Possible boulder. Pink, grey. Fine grained. Hardness 5. Non foliated. Moderately magnetic. Weakly K metasomatized. 5% fine grained disseminated pyrite. Lower contact sharp at 50 degrees to the core axis. 44.00 44.41 See description above. 44.41 49.87 CARBONATIZED ULTRAMAFIC KOMATIITE Medium grey, white, green. Fine grained. Hardness 3.5. Non foliated. Non magnetic. Moderately carbonatized (ankerite). 1% quartz carbonate veinlets and quartz carbonate filled fractures at 30 to 50 degrees to the core axis. Barren trace disseminated fine grained pyrite. 44.41 45.61 8% quartz carbonate veinlets. Barren. 44.41 45.61 See description above. E6237 44.41 45.61 1.20 <.03 44.41 45.11 Moderately broken core. 46.00 47.00 Moderately broken core. ASSESSMENT OFFICE At 49.87 metres lower contact sharp at 50 degrees to the J core axis. m DEC 0 m 7 7. 49.87 54.82 ALTERED MONZONITE Medium pink, light pink, white. Fine grained to medium < FILES m

FROM	10		D	ESCRIPTION			SAMPLE	FROM	10	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
		grained di metres the 54.82 metr and weakly	sseminated ble unit is modera es the unit is (silicified. 2%	os pyrite. stely K metas moderately al 1 mm to 1 c	on magnetic. 3% From 49.87 to 5 omatized. From 5 bitized, sericit m quartz veinlet with barren to t	53.00 53.00 tized ts_at								
		filled frac	tures. 5% fine (rained disse ultramafic	komatiite. 1%		E6238	49.87	50.36	. 49	- :	-	-	-
		50.36 51.86 50.60 53.00	See description Moderate K disseminated b	above. metasomatism lebs pyrite. ce pyrite al	. 3% fine gra 2% quartz veinl ong selvages. M	ained lets.	E6239	50.36	51.86	1.50	-	-	-	-
		51.86 53.00 53.00 54.82	See description Moderately a silicified. 33 veinlets, barra	lbitized, disseminat	sericitized. We ed pyrite. 2% qu yrite.	akly .	E6240	51.86	53.00	1.14	-	-	-	-
		53.00 53.91 53.91 54.8 2	See description See description	above.		_	E6241 E6242	53.00 53.91	53.91 54.82	. 91 . 91	-	-	-	-
54.82	55.96	foliated a Local weak	grey, buff. Me t 43 degrees K metasomatis	to the core	. Hardness 5. We axis. Non magne minated fine gra At 30 degrees to	tic.								
		54.82	Lower contact axis.	sharp at 72	degrees to the	core				•				
		54.82 55.96	See description	above.		E	6243	54.82	55.96 .00	1.14	-	-	-	-
55.96	65.45	INTRUSIVES 57% Altered altered mod	nzonite. The a	omatiite in ltered koma	CS AND ACID tercalated with tiite is pale gr eakly foliated a	een.								

FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
		degrees to the core axis. Non magnetic. Weakly to moderately fuchsitic and/or carbonatized (ankerite). Trace very fine grained disseminated pyrite.								
		The altered monzonite is medium to pale pink, white. Very fine grained to medium grained. Hardness 6. Non to weakly foliated at 40 degrees to the core axis. Non magnetic. Where alteration is intense the original fabric of the rock is destroyed. Weak to strong K metasomatism, locally albitized and sericitized. 1% to 3% fine grained, disseminated pyrite. Up to 1% disseminated molybdenite.								
		55.96 Lower contact gradational.								
		55.96 57.11 See description above. 55.96 57.55 Moderately carbonatized and weakly fuchsitic ultramafic komatiite. Barren.	E6244	55.96	57.11	1.15	-	· •	-	-
		57.11 58.26 See description above. 57.55 57.65 Altered monzonite. Weakly K metasomatized, moderately albitized and sericitized. 3% pyrite 57.65 58.26 Weakly fuchsitic and moderately carbonatized ultramafic komatiite. 3% pyrite.	E6245	57.11	58.26	1.15	-	-	-	- *
		58.26 59.20 Altered monzonite. Weakly K metasomatized and sericitized, moderately albitized. 1% disseminated pyrite. 1% fracture-filling molybdenite. 59.20 61.70 Altered monzonite. Strongly K metasomatized. 3% disseminated and fracture-filling pyrite.	E6246	58.26	59.20	. 94	-	-	•	-
		59.20 60.71 See description above. 60.71 62.22 See description above.	E6247	59.20	60.71	1.51	-	-		-
		61.70 61.88 Fuchsitic ultramafic komatiite. Weakly carbonatized. 1% very fine grained disseminated pyrite. 2% quartz stringers. 61.88 62.22 Altered monzonite. Strongly K metasomatized. 2% very fine grained disseminated pyrite.	E6248	60.71	62.22	1.51	-	-	-	-
		62.22 63.00 Fuchsitic ultramafic komatiite. 3% quartz veinlets, barren. <1% very fine grained disseminated pyrite 63.00 64.84 Moderately carbonatized and weakly fuchsitic ultramafic komatiite. Trace very fine grained disseminated pyrite.	E6249	62.22	63.00	.78	-	-	-	-
		63.00 64.50 See description above. 64.50 65.45 See description above. 64.84 65.00 Altered monzonite. Strong K metasomatism. 2% disseminated fine grained pyrite. 3% barren	E6250 E6251	63.00 64.50	64.50 65.45	1.50 .95	-	-	-	-

FROM TO

-----DESCRIPTION-----

SAMPLE FROM

TO LENGTH Au g/t RERUN REJECT AVERAGE

quartz veinlets.

65.00 65.45 Moderately carbonatized and weakly fuchsitic ultramafic komatiite. Trace very fine grained disseminated pyrite.

65.45 67.85 CARBONATIZED ULTRAMAFIC KOMATIITE

Medium brown grey. Fine grained. Hardness 4. Non foliated. Non magnetite. Barren. Moderately carbonatized (ankerite). 1% quartz carbonate veinlets at 42 degrees to the core axis. Barren.

At 67.85 metres lower contact at 47 degrees to the core axis. Sharp.

65.45 66.95 See description above.

E6252 65.45 66.95 1.50

obito obito see description above.

80.30 ULTRAMAFIC KOMATIITE WITH DISSEMINATED TALC CARBONATE
BLEBS
Dark grey, white. Fine grained. Hardness 2. Weakly
foliated at 42 degrees to the core axis. Weakly magnetic.
Relict spinifex texture visible. Lower contact at 20
degrees to the core axis. Moderately talcose. Trace fine
grained disseminated pyrite. 3% 2 mm to 3 mm quartz
carbonate veinlets at 40 to 80 degrees to the core axis.
Barren.

80.30 83.39 ALTERED SYENODIORITE

Medium grey brown. Fine grained. Hardness 4.5. Non foliated. Moderately magnetic. Moderate carbonatization (ankerite). 2% Fine grained disseminated pyrite. 2% quartz carbonate veinlets and filled fractures. Barren.

At 83.39 metres lower contact at 55 degrees to the core axis. Sharp.

80.30 81.80 See description above.

E6253 80.30 81.80 1.50

83.39 99.00 ULTRAMAFIC KOMATIITE WITH DISSEMINATED TALC CARBONATE
BLEBS
Dark grey. Fine grained. Hardness 2. Weakly magnetic.

FROM TO	BECCDIOTION		_						
,	Trace fine grained disseminated pyrite. From 83.39 to 88.00 metres 3% quartz carbonate veinlets. Barren. From 88.00 to 99.00 metres the unit is moderately sheared at 10 to 30 degrees to the core axis. 8% stretched and sheared quartz carbonate sweats.	SAMPL	E FROM	10	LENBTH	Aug/t	RERUN	REJECT	AVERAGE
	At 85.39 metres a 8 cm quartz carbonate veinlet. Barren. 80 degrees to the core axis. At 85.63 metres a 4 cm quartz carbonate veinlet. Barren. 30 degrees to the core axis.								
	B5.39 85.70 See description above. B5.44 99.00 Moderately calcareous.	E6254	85.39	85.70	.31	-	-	-	-
	93.44 93.88 A 36 cm quartz calcite vein. Barren.	E6255	93.44	93.88	. 44		-	-	-
99.00 117.90	INTERBANDED CARBONATIZED ULTRAMAFIC KOMATIITE AND CONTAMINATED ACID INTRUSIVE 57% Carbonatized ultramafic komatiite. Dark green grey. Fine grained. Hardness 2.5. Locally amygdaloidal. Meakly magnetic. Moderately carbonatized (calcite). 1% quartz carbonate stringers, barren. Up to 1% fine grained disseminated pyrite. 28% Contaminated monzonite. Dark green, grey, dark pink.								
	Fine grained. Hardness 5. Moderately foliated at 40 degrees to the core axis. Non magnetic to weakly magnetic. Weakly carbonatized and chloritic. Up to 1% fine grained disseminated pyrite. 2% quartz-ankerite stringers at 40 degrees to the core axis.								
	99.00 104.38 Carbonatized ultramafic komatiite. Up to 1% pyrite. 104.38 104.52 Contaminated monzonite. Barren.								
	104.52 108.45 Carbonatized ultramafic komatiite. Up to 1% pyrite. 108.45 109.05 Contaminated monzonite. Trace pyrite.								
	109.05 109.50 Carbonatized ultramafic komatiite. 1% pyrite. 109.50 112.80 Contaminated monzonite. 2% pyrite.								
	109.50 110.50 See description above. 110.50 111.50 See description above.		109.50 110.50		1.00	-	<u>.</u>	<u>.</u>	
•	111.50 112.80 See description above.		111.50		1.30	-	-	-	-

FROM TO	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
	112.80 114.07 Carbonatized ultramafic komatiite. Trace pyrite.	E6259	112.80	114.07	1.27	-		-	-
	114.07 115.07 Contaminated monzonite. Weakly silicified. 3% fine grained disseminated pyrite. 115.07 117.90 Mixed contaminated monzonite and carbonatized ultramafic komatiite. Trace pyrite.	E6260	114.07	115.07	1.00	-	•	-	-
	115.07 116.57 See description above. 116.57 117.90 See description above.	E6261 E6262	115.07 116.57	116.57 117.90	1.50 1.33	-	- -	-	-
117.90 161.25	INTERCALATED ALTERED ULTRAMAFIC VOLCANICS AND ACID INTRUSIVES 25% Altered ultramafic komatiite intercalated with 75% altered monzonite. The altered ultramafic komatiite is medium green to dark green grey. Very fine grained. Hardness 4. Well foliated at 35 to 40 degrees to the core. axis. Weakly magnetic. Moderately fuchsitic. Barren to 1% fine grained to very fine grained disseminated pyrite.								
	The albitized, silicified and sericitized monzonite is mottled white and pink. Medium grained. Hardness 6 to 7. Non foliated. Weakly magnetic. 1% to 3% fine grained disseminated blebs pyrite. Occasionally coarse grained blebs. 1% pyrite and molybdenite filled fractures. 2% to 5% quartz stringers trace pyrite.			•					
	The K metasomatized monzonite is a strong pinkish red. Fine grained to aphanitic. Hardness 6. Non magnetic to weakly magnetic. The original crystal boundaries are obliterated where K metasomatism is strong and diffuse where it is moderate. Weakly sericitized. 1% to 3% very fine grained to fine grained disseminated pyrite. <1% molybdenite, disseminated and fracture-filling.								
	117.90 Lower contact at 20 degrees to the core axis.								
	117.90 118.46 Altered monzonite. Moderately K metasomatism, moderate carbonatized (ankerite), weakly fuchsitic. 1% very fine grained disseminated pyrite. Weakly magnetic. 118.46 120.93 Altered monzonite. Strong K metasomatism, weakly sericitized. 3% quartz pyrite molybdenite filled fractures and stringers at 30 to 50 degrees to the core axis. Non magnetic.	E6263	117.90	118.46	.56	-	-	-	-

FROM	TO	*********	DESCRIPTION	SAMPLE	FROM	. TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
		119.70 120.93	See description above. See description above. Altered monzonite. Moderate K metasomatism, moderately fuchsitic, moderately carbonatized. 1% molybdenite filled fractures. Trace pyrite. Weakly magnetic.			119.70	1.24	-	-	-	:
		120.93 121.90 121.90 122.80	See description above. Fuchsitic ultramafic komatiite. Foliated 60 degrees to the core axis. Barren. Non magnetic.	E6266	120.93	121.90	. 97	-	-	•	-
		121.90 122.80 122.80 126.30	See description above. Altered monzonite. Moderate K metasomatism, moderately carbonatized, weakly sericitized. Weakly magnetic. 1% fine grained disseminated pyrite. <1% quartz stringers at 10 degrees to the core axis. Minor molybdenite filled fractures.	E6267	121.90	122.80	. 90	-	-	-	-
		124.30 125.80 125.80 126.30	See description above. See description above. See description above. See description above. Altered monzonite. Strong K metasomatism. 2% very fine grained disseminated pyrite. 1% quartz stringers at 40 degrees to the core axis. 1% molybdenite filled fractures.	E6269	122.80 124.30 125.80		1.50 1.50 .50	- - -	-	- - -	- - -
		127.50 128.73	See description above. See description above. Fuchsitic ultramafic komatiite with 8% 1 cm to 2 cm folded dikelets of strongly K metasomatized monzonite. Well foliated at 58 degrees to the core axis. Up to 1% pyrite, disseminated and fracture-filling. Minor molybdenite filled fractures.		126.30 127.50	127.50 128.73	1.20 1.23	:	-	- .	-
		128.73 130.00 130.00 130.70	See description above. Strongly K metasomatized monzonite with 10% lenses of fuchsitic rock. Locally magnetic. 2% pyrite, disseminated and fracture-filling. 3% quartz, pyrite and	E6273	128.73	130.00	1.27	-	-	-	-

FROM	TO	********	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT /	AVERAGE
			molybdenite filled fractures.								
		130.00 130.70 130.70 132.05	See description above. Fuchsitic ultramafic komatiite with 5%		130.00	130.70	.70	-	-	-	-
			strongly K metasomatized dikelets of monzonite. Well foliated at 48 degrees to the core axis. Weakly magnetic. Trace pyrite with 2% pyrite in monzonite dikelets.	÷ Å.							
		130.70 132.05 132.05 133.20	See description above. Strongly K metasomatized monzonite. 2% fine grained disseminated pyrite. 3% 1 mm to 1 cm quartz stringers at 25 degrees to the core axis, trace pyrite. 2% molybdenite quartz filled fractures.	E6275	130.70	132.05	1.35	-	•	-	-
		132.05 133.20 133.20 133.85	See description above. Moderately sheared and folded fuchsitic ultramafic komatiite. Well foliated at 47 degrees to the core axis. Barren.	E6276	132.05	133.20	1.15	-	-	-	-
		133.20 133.85 133.85 134.60	See description above. Moderately K metasomatized and carbonatized, weakly sericitized monzonite. 3% very fine grained disseminated and fracture-filling pyrite. 1% molybdenite and pyrite filled fractures. Weakly magnetic.	E6277	133.20	133.85	. 65	-		-	- .
		133.85 134.60 134.60 135.65	See description above. Moderately albitized, silicified and sericitized monzonite. Weak K metasomatism. 4% fine grained disseminated pyrite, 1% molybdenite. Weakly magnetic. 15% irregular quartz filled fractures and veins with pyrite along selvages.	E6278	133.85	134.60	.75	-	-	-	-
		134.60 135.65 135.65 136.00	See description above. Carbonatized komatiite ultramafic. 1% disseminated pyrite.	E6279	134.60	135.65	1.05	-	-	-	-
		135.65 136.00 136.00 136.40	See description above. Strongly K metasomatized, silicified	E6280	135.65	136.00	. 35	-	-	-	-

FROM	TO			DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
				monzonite. 3% fine grained disseminated and fracture-filling pyrite. 8% irregular folded quartz stringers with 1% pyrite.								
		136.00 ; 136.40 ;	136.40 137.30	See description above. Carbonatized fuchsitic ultramafic komatiite. Trace pyrite. 8% folded quartz ankerite sweats.	E6281	136.00	136.40	.40	-	-	-	~
		136.40 1 137.30 1	137.30 137.90	See description above. Silicified, moderately albitized, weakly K metasomatized monzonite. 3% fine grained to coarse grained blebs pyrite. 10% irregular quartz veinlets and patches with <1% pyrite.	E6282	136.40	137.30	.90	-	-	-	•
		137.30 1 137.90 1	37.90 38.30	See description above. Fuchsitic ultramafic komatiite with trace pyrite. 10% sheared quartz ankerite stringers	E6283	137.30	137.90	.60	-	-	-	-
		137.90 1 138.30 1	38.30 38.53	See description above. Silicified, moderately albitized, weakly sericitized monzonite. 2% fine grained	E6284	137.90	138.30	.40	-	-	-	-
		138.53 1	38.73 39.08	disseminated pyrite. 5% patchy quartz. See description above. Strongly sericitic and fuchsitic ultramafic komatiite. 2% disseminated pyrite. Moderately silicified, albitized, weakly sericitized and K metasomatized monzonite. 3% pyrite, <1% molybdenite.	E6285	138.30	139.08	.78	-	-	-	-
		139.08 1	39.87	Fuchsitic ultramafic komatiite. <1% pyrite.								
		139.0B 1 139.87 1	40.73	See description above. Moderately silicified, albitized, weakly K metasomatized and sericitized monzonite. 3% fine grained to coarse grained blebs and fracture-filling pyrite. 5% quartz stringers at 40 degrees to the core axis and quartz patches with trace pyrite.	E6286	139.08	139.87	.79	-	-	-	
		139.B7 1 140.73 1	40.73 43.16	See description above. Fuchsitic and chloritic ultramafic	E6287	139.87	140.73	. 86	-	-	-	-

FROM	TO			DESCRIPTION	SAMPLE	FROM	ŦO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE	Ē
				komatiite. 1% fine grained disseminated pyrite. 15% weakly carbonatized and chloritized monzonite dikelets with 2% pyrite.									
		142.23	143.16	See description above. See description above. Weakly carbonatized, chloritized and albitized monzonite with <1% pyrite. Moderately magnetic.			142.23 143.16	1.50 .93	-	-	:	:	
		143.16 144.00	144.00 145.69	See description above. Moderately chloritic, carbonatized calcite and fuchsitic ultramafic komatiite with 3% fine grained disseminated pyrite.	E6290	143.16	144.00	. 84	- ,	-	-	-	
		144.85	145.69	See description above. See description above. Moderately albitized and chloritized monzonite with 3% fine grained disseminated pyrite.		144.00 144.85	144.85 145.69	. 85 . 84	-	-	:	-	
		145.69 146.90	146.90 149.25	See description above. Moderately chloritized, carbonatized and fuchsitic ultramafic komatiite with 2% very fine grained disseminated pyrite. Minor altered monzonite dikelets.	E6293	145.69	146.90	1.21	-	-	-	-	
		148.08	149.25	See description above. See description above. Moderately albitized and sericitized, weakly K metasomatized monzonite. 3% fine grained disseminated pyrite. <1% analytemite and pyrite filled fractures. In several places the unit grades into more chloritic zones. Moderately magnetic.		146.90 14B.08		1.18 1.17	-	-	-	:	
		150.75 152.25	152.25 153.75 156.18	See description above. See description above. See description above. Contaminated monzonite. Moderately chloritized and carbonatized. Up to 1% pyrite. Moderately magnetic. From 153.20 to	E6297	149.25 150.75 152.25	152.25	1.50 1.50 1.50	- - -	-	-	. -	

280A-29

FROM	TO		DESCRIPTION	SAMPLI	E FROM	TO	LENSTH	Au g/t	RERUN	REJECT	AVERAGE
			154.00 metres unit is moderately albitized and K metasomatized.			. Liver					
		153.75 155.25 155.25 158.37	See description above. Contaminated monzonite with chloritic zenoliths. Dark reddish brown, grey. Fine	E6299	153.75	155.25	1.50	•	-	-	-
			grained matrix with 5% angular to subrounded zenoliths. Moderately foliated at 44 degrees to the core axis. Moderately magnetic. 3% fine grained disseminated pyrite. Moderately carbonatized, weakly silicified. Contacts at 40 degrees to the core axis.	•							
		At 158.29 met At 158.37 met	res a 4 cm quartz vein with trace pyrite. res lower contact irregular.								
		155.25 156.18 156.18 157.28	See description above. See description above.		155.25		. 93	-	-	-	_
		157.28 158.37	See description above. Contaminated monzonite. Weakly silicified, albitized. Moderately chloritic. Trace very fine grained disseminated pyrite. Moderately magnetic.		156.18 157.28		1.10	-	-	-	-
		158.37 158.90 158.90 161.25	See description above. Weakly silicified, carbonatized, chloritized ultramafic komatiite. IX fine grained disseminated pyrite.	£6303	158.37	158.90 "-%:	. 53	-	~	-	-
		158.90 160.40 160.40 161.25	See description above. See description above.		158.90 160.40		1.50 .85	-	-	-	-
1.25	185.00	ALTERED MONZON The monzonite	NITE grades back and fourth between moderately								

161

albitized and chloritized monzonite and moderately silicified, K metasomatized and albitized monzonite.

The moderately albitized and chloritized monzonite bands are pink and green. Hardness 4.5. Moderately magnetic. 1% to 2% fine grained disseminated pyrite. Weakly carbonatized and K metasomatized. 45% mafic minerals are chloritized. 55% felsic minerals are albitized.

The moderately silicified, K metasomatized and sericitized

FROM	TO	*********	DESCRIPTION	SAMPLI	E FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
		Moderately # pyrite. The	white and pink. Medium grained. Hardness 5.5. sagnetic. 3% to 4% fine grained disseminated bands are alteration selvages to 2% quartz trace to 1% pyrite at 25 to 35 degrees to the								
		161.25 162.20	Moderately albitized and chloritized monzonite. 1% disseminated pyrite.			٠					
`		162.20 162.70	See description above. Hoderately K metasomatized and albitized, weakly sericitized. 4% fine grained disseminated pyrite.	E6206	161.25	162.20	. 95	-	-	-	-
		the core axis	etres a 1 cm quartz veinlet at 30 degrees to , barren. See description above. Meakly to moderately K metasomatized, albitized, locally chloritic. 3% pyrite.	E6307	162.20	163.70	1.50	-	-	-	-
		163.70 166.00	Moderately K metasomatized, silicified and sericitized. Weakly silicified. 3% pyrite. At 169.00 metres a 4 cm quartz veinlet at 25 degrees to the core axis. 1% pyrite.								
		165.20 166.00	See description above. See description above. Moderately albitized and chloritized, weakly carbonatized and K metasomatized. 1% pyrite.		163.70 165.20		1.50	-	:	:	-
		166.00 167.20 167.20 169.73	See description above. Moderately K metasomatized, silicified and albitized monzonite. Weakly sericitized. 4% pyrite.	E6310	166.00	167.20	1.20	-	-	•	-
		168.70 169.73	See description above. See description above. Silicified, K metasomatized ultramafic komatiite with 3% very fine grained disseminated pyrite. Amygdaloidal.		167.20 168.70		1.50	-	-	:	
		169.73 170.30 170.30 174.90	See description above. Moderately K metasomatized, silicified and albitized monzonite. Weakly sericitized, 4%	E6313	169.73	170.30	. 57	-	-	-	•

FROM	ΤĐ	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERABE
		pyrite. At 171.08 metres a 1.5 cm quartz ankerite stringer at 20 degrees to the core axis. Barren with 5% disseminated molybdenite along selvages. At 171.35 metres a 4 cm quartz vein at 28 degrees to the core axis. B% coarse grained blebs pyrite. At 172.80 metres a 30 cm quartz vein at 55 degrees to the core axis. Trace pyrite.								
		170.30 171.80 See description above.	E6314	170.30	171.80	1.50	-	-	-	•
		171.80 172.80 See description above.		171.80		1.00	-	-	-	-
		172.80 173.10 30 cm quartz vein at 55 degrees to the core	E6316	172.80	173.10	.30	-	-	•	-
		axis. Trace pyrite. 173.10 174.90 See description above.	F1717	.==						
		174.90 175.60 Moderately albitized and chloritized, weakly	F921/	173.10	174.90	1.80	•	-	•	-
		K metasomatized monzonite. 2% disseminated pyrite.								
		174.90 176.17 See description above.	E631B	174.90	176.17	1.27	-	-	_	•
		175.60 176.17 Moderately K metasomatized, silicified and albitized monzonite. Weakly sericitized. 4% disseminated pyrite.				•				
		176.17 176.70 Moderately albitized and chloritized monzonite with 2% disseminated pyrite.								
		176.17 177.70 See description above.	F4710	474 49	177.70					
		176.70 177.35 Moderately K metasomatized, silicified and albitized monzonite. Meakly sericitized. 4% pyrite.		1/0.1/	1//./0	1.55	-	-	-	•
		177.35 177.70 Moderately albitized and chloritized, weakly K metasomatized monzonite. 1% pyrite. At 177.60 a 2 cm quartz vein with trace pyrite.								
		177.70 178.10 Moderately K metasomatized, silicified, albitized monzonite with 4% pyrite.								
		177.70 178.10 See description above.	C/700	177 70	170 16					
		178.10 179.10 Moderately albitized and chloritized, weakly K metasomatized monzonite. 1% pyrite.	20320	177.70	1/8.10	.40	-	-	•	••
		178.10 180.56 See description above.	E6321	178.10	180.54	2.46	_	_	_	_
		179.10 180.56 Moderately K metasomatized, silicified, albitized monzonite. Weakly sericitized. 4% pyrite. Trace molybdenite.		.,		2170		-	-	-
		At 179.39 metres a 3 cm quartz veinlet with pyrite along								
		selvages.								

FROM TO	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
	180.56 182.70 Moderately albitized and chlori K metasomatized monzonite. 2% py	tized, weakly rite.							
	180.56 181.63 See description above. 181.63 182.70 See description above. 182.70 183.70 Contaminated monzonite. carbonatized, weakly fuchsitic. From 183.30 to 183.70 metres 15% quartz vein pyrite.	E6323 Hoderately 4% pyrite.	180.56 181.63	181.63 182.70	1.07	- -	- -	-	Ī
	182.70 183.70 See description above. 183.70 185.00 Fuchsitic ultramafic komatii altered monzonite dikelets. Thas 3% pyrite and the monzonave 10% pyrite.	te with 20% he ultramafic	182.70	183.70	1.00	-	-	.	-
185.00 196.20	183.70 185.00 See description above. TALCOSE ULTRAMAFIC KOMATIITE Dark green grey. Very fine grained. Hardner foliated at 27 degrees to the core axis magnetic. Talcose. Trace pyrite.	ess 2.5. Well	183.70	185.00	1.30	-	-	-	-
	3% to 5% quartz carbonate sweats. 7% Albitized and weakly K metasomatized monzor with 4% disseminated pyrite. 185.00 186.00 Carbonatized ultramafic komatiite 191.20 191.50 Albitized and weakly K metasomatic m	ı .							

196.20 228.70 INTERCALATED ALTERED ULTRAMAFIC VOLCANICS AND ACID INTRUSIVES
Similar to 117.90 to 161.25 metres. 54% altered ultramafic komatiite intercalated with 46% altered monzonite.

with 4% pyrite.

core axis.

196.20 198.20 Contaminated monzonite. Moderately and chloritized. Local K metasomatism. 4% fine grained disseminated

At 196.20 metres lower contact sharp at 45 degrees to the

FROM	TO		DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
			pyrite: 2% quartz stringers at 30 degrees to the core axis.								
,		197.20 198.20	See description above. See description above.			197.20 198.20	1.00	-	-	-	_
		198.20 204.10	Talcose ultramafic komatiite. Barren. 2% altered monzonite dikelets with 3% pyrite.			,,,,,,				_	-
		204.10 204.90	Moderately silicified, K metasomatized and albitized monzonite. 5% fine grained to coarse grained blebs pyrite. 10% quartz stringers with trace pyrite at 22 degrees to								
			the core axis.								
		204.10 204.90 204.90 205.15	See description above. Carbonatized, silicified and fuchsitic ultramafic komatiite with trace pyrite.	E6328	204.10	204.90	.B0	· -	-	-	-
		204.90 205.90	See description above.	E6329	204.90	205.90	1.00	-	-	-	-
		205.15 207.08	Strongly K metasomatized monzonite with 5% pyrite.								
		205.90 207.08	See description above.	E6330	205.90	207.08	1.18	-	-	-	-
		207.08 209.40	Fuchsitic ultramafic komatiite with trace pyrite. Locally contaminated with altered monzonite.								
		207.08 208.08	See description above.	E6331	207.08	208.08	1.00	•	_		_
		208.08 209.40 209.40 210.00	See description above. Moderately silicified and albitized, weakly sericitized and K metasomatized monzonite. 3% disseminated pyrite.			209.40	1.32	-	-	•	-
		209.40 210.90	See description above. Moderately K metasomatized and silicified,	E6333	209.40	210.90	1.50	-	-	-	-
			weakly sericitized and albitized monzonite.				_				
		From 212.30	o 212.30 metres 3% pyritm, to 213.10 metres 5% disseminated pyrite at								
		213.10 metres.	•								
		210.90 212.40	See description above.	E6334	210.90	212.40	1.50		_		_
		212.40 213.10	See description above. Contaminated monzonite with chloritic zenoliths dark reddish brown, grey. Fine grained matrix 3% 1 cm subangular mafic to intermediate zenoliths. Hardness 4.5. Non magnetic. 10% altered monzonite dikelets		212.40		.70	-	-	-	-

FROM	TO	Der der der der der der der gen gen est we	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
			with 3% pyrite. Lower contact at 42 degrees to the core axis. Moderately carbonatized. Locally chloritic. 1% fine grained disseminated pyrite.								
		213.10 214.50 214.50 215.42	See description above. Moderately carbonatized, weakly silicified ultramafic komatiite with 3% very fine grained pyrite.	E6336	213.10	214.50	1.40	-	-	-	-
		215.42 215.62 215.62 216.70	See description above. Contaminated monzonite with 1% pyrite. Carbonatized ultramafic komatiite with 2% very fine grained disseminated pyrite.	E6337	214.50	216.00	1.50	-	-	-	-
		216.00 217.50 216.70 217.00	See description above. Moderately silicified, K metasomatized and albitized monzonite with 5% disseminated blebs pyrite.	E633B	216.00	217.50	1.50	-	- .	•	-
		217.00 219.70	Moderately carbonatized ultramafic komatiite. Up to 1% pyrite. Weakly magnetic.								
		219.00 219.70	See description above. See description above. Moderately K metasomatized and silicified, Heakly sericitized monzonite. Non magnetic. 5% fine grained disseminated pyrite. 5% White quartz veinlets at 25 to 35 degrees to the core axis, trace pyrite.		217.50 219.00		1.50 .70	:	-	:	-
			See description above. See description above. Carbonatized and silicified ultramafic komatiite. 5% disseminated pyrite.		219.70 220.70		1.00	-	-	-	-
			See description above. Contaminated and silicified monzonite. 3% disseminated pyrite.	E6343	221.75	223.10	1.35	-	-	; -	-
			disseminated fine grained pyrite. 5% altered monzonite dikelets with 5% pyrite.								
		At 225.60 metr	es 30 cm of calcite-dolomite veinlets, barren								
		225.60 226.70 226.70 227.95	See description above. Ultramafic komatiite is moderately sheared and chloritic.	E6344	225.60	226.70	1.10	-	-	-	-

FROM	TO	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
		226.70 227.95 See description above. 227.95 228.70 Strongly K metasomatized monzonite with 3% pyrite.	E6345	226.70	227.95	1.25	-	-	-	-
		227.95 228.70 See description above.	E6346	227.95	228.70	.75	-	-	-	_
228.70	248.80	ULTRAMAFIC KOMATIITE WITH DISSEMINATED TALC CARBONATE BLEBS Dark green grey. Very fine grained. Hardness 2.5. Moderately magnetic. Weakly foliated at 40 degrees to the core axis. Barren. Talcose 3% quartz carbonate stringers or sweats. 3% altered monzonite dikelets with 5% disseminated fine grained pyrite.								
		228.70 229.80 Sheared and very broken ultramafic komatiite. 233.50 234.00 20% quartz carbonate stringers. Barren. 237.47 237.85 Moderately K metasomatized monzonite. 5% fine grained disseminated pyrite.								<
		237.47 237.85 See description above. 244.00 244.26 Contaminated carbonatized monzonite with 5% pyrite.	E6347	237.47	237.85	. 38	•	-	-	-
248.80	251.06	CARBONATIZED ULTRAMAFIC KOMATIITE Medium green grey. Fine grained. Hardness 4. Moderately foliated at 35 degrees to the core axis. Weakly magnetic. Lower contact at 38 degrees to the core axis. 3% fine grained disseminated pyrite. 5% quartz carbonate sweats.		•						
		248.80 250.30 See description above. 250.30 251.06 See description above.		248.80 250.30	250.30 251.06	1.50 .76	-	···	-	-
251.06	267.42	INTERCALATED ALTERED ULTRAMAFIC VOLCANICS AND ACID INTRUSIVES Similar to 117.90 to 161.25 metres. 38% altered ultramafic komatiite intercalated with 62% altered monzonite. 251.06 252.37 Moderately K metasomatized and albitized monzonite. Pink, white. Medium grained. Hardness 6. Non foliated. Non magnetic.								
		man and the same and man man manderse.								

FROM	TO	*********	DESCRIPTION	SAMPLE	FROM	TO	LENSTH	Au g/t	RERUN	REJECT	AVERAGE
			Lower contact at 35 degrees to the core axis. 4% fine grained disseminated blebs pyrite.								
		5% White qu Barren to tra	Jartz stringers at 20 degrees to the rore avis.								
		251.06 252.37 252.37 255.80	Bee description above. Fuchsitic ultramafic komatiite with 1 to 3% fine grained disseminated pyrite. 3 to 5% quartz ankerite sweats. Weakly magnetic.	E6350	251.06	252.37	1.31	-	-	-	•
		252.37 253.37	See description above.		252.37		1.00		-	-	-
		200.0/ 204.0/	See description above.	E6352	253.37	254.37	1.00	-	-	-	-
		255.80 256.50	See description above. Weakly K metasomatized contaminated monzonite. 2% fine grained disseminated pyrite. 1% fracture-filling molybdenite.	E6353	254.37	255.80	1.43	-	-	-	•
		255.80 256.50 256.50 257.25	See description above. Moderately K metasomatized and silicified monzonite. 5% fine grained disseminated pyrite. 5% white quartz stringers at 40 degrees to the core axis, trace pyrite. At 256.50 metres a 23 cm quartz vein with 2% coarse grained blebs pyrite.	E6354	255.80	256.50	.70	-	-	-	-
		256.50 257.25 257.25 260.50	See description above. Mixed altered ultramafic komatiite and altered monzonite. 5% fine grained to coarse grained blebs pyrite. Silicified, locally K metasomatized, carbonatized.	E6355	256.50	257.25	.75	-	-	-	-
		257.25 258.25	See description above.	E6356	257.25	258.25	1.00	_		_	_
			See description above.		258.25		1.00	-	_	_	_
		259.25 260.50	See description above.		259.25		1.25	-	_	-	-
		260.50 261.27	Altered monzonite. Locally biotitic and K metasomatized. 4% disseminated pyrite. Moderately to strongly magnetic.								
		260.50 261.27 261.27 262.50	See description above. Carbonatized and locally fuchsitic ultramafic komatiite with 2% disseminated pyrite. Weakly magnetic.	E6359	260.50	261.27	.77	-	-	-	-

FROM	TODESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t RERUN	REJECT AVERAGE
	261.27 262.50 See description above. 262.50 262.90 Moderately K metasomatized monzonite with 5%	E6360	261.27	262.50	1.23		<u>.</u> .
	pyrite. 262.50 264.00 See description above. 262.90 263.50 Fuchsitic ultramafic komatiite mixed with altered monzonite. <1% pyrite.	E6361	262.50	264.00	1.50		
	263.50 264.00 Altered monzonite. Weakly K metasomatized. 15% biotite. 5% pyrite.						
	264.00 264.70 Fuchsitic ultramafic komatiite with trace pyrite.						
	264.00 264.70 See description above. 264.70 266.75 Strongly K metasomatized monzonite. 6% fine grained disseminated pyrite. 5% quartz stringers at 30 degrees to the core axis, trace pyrite.	E6362	264.00	264.70	.70		
	264.70 265.70 See description above. 265.70 266.75 See description above. 266.75 267.00 Fuchsitic ultramafic komatiite with 4% very fine grained disseminated pyrite.		264.70 265.70		1.00 1.05	: :	
	266.75 267.42 See description above. 267.00 267.42 Strongly K metasomatized monzonite with 6% fine grained disseminated pyrite.	E6365	266.75	267.42	. 67		
267.42 30	0.23 ULTRAMAFIC KOMATIITE WITH DISSEMINATED TALC CARBONATE BLEBS						
	Dark green grey. Fine grained. Hardness 2.5. Foliated 50 degrees to the core axis. Moderately to strongly magnetic. Locally spinifex textured Talcose. <1% to 3% fine grained disseminated pyrite.						
	267.42 268.50 Moderately carbonatized. 277.60 278.00 Contaminated monzonite. 5% fine grained disseminated pyrite. 15% biotite.						
	277.60 278.00 See description above. 285.05 285.55 Contaminated monzonite. 5% fine grained	E6366	277.60	278.00	. 40		

FROM TO

-----DESCRIPTION-----

SAMPLE FROM TO LENGTH AU g/t RERUN REJECT AVERAGE

disseminated pyrite, 15% biotite.

285.05 285.55 See description above.

E6367 285.05 285.55 .50

300.23

END OF HOLE

Hole 280A-29 is comprised of intercalated ultramafic komatiites and altered acid intrusives.

The ultramafic komatiites are talcose except when in proximity to the acid intrusives where they display fuchsitic and carbonate alteration.

The monzonite dikes display alternating bands of K metasomatism and silicification/albitization. From 49 metres to 168 metres there is average 2χ pyr/k in the monzonite. From 168.00 to 267.00 metres the pyrite content increases to 4χ to 5χ .

From 88.00 to 99.00 metres the talcose ultramafic komatiite is moderately sheared.

HOLE SANDED IN AND CASING LEFT IN HOLE.

DRILLING BY NOREX DRILLING LTD., PORCUPINE, ONTARIO.

CORE CHECKED FOR RADIOACTIVITY AND FLUORESENCE - NOTHING DF INTEREST.

CORE STORED AT DOME MINES, SOUTH PORCUPINE, ONTARIO.

B Reedlan

REF CORD:	9300.0 10050.0 SUR	VEYED: ND	PL/	CER DOME INC.		*					
LOCATION:		D: EAST-WEST	DIANC	OND DRILL RECOR	D		PR	OPERTY:		HOLE N	
POST LOCA	TIDN: 136m S AND 101m E	TO POST 2, CLAI	M P.789909				SE	CTION:	BLACK	STOCK T	NP., ONTARIO
AZIMUTH:	270.0	LENGTH:	157.9	ELEVATION	. ()	LO	GBED BY	1 B. N	IEEDHAM	
DIP:	-45.0	CORE SIZE:	BD	SYSTEM OF ME	ASURE: I	SETRIC	DA	TE LOBB	ED: 00	TOBER,	1988
STARTED:	DCTOBER 10, 1988	COMPLETED:	DCTOBER 14, 1988	CLAIM NOI P	.789909					·	
PURPOSE:	TEST DIP EXTENSION OF AN	DMALOUS ASSAYS	IN 280A-5								
			DIP TESTS (corrected)							
		DEPTH AZIMU' 50.00	TH DIP DEPTH -44.8 157.88	AZIMUTH DIP -40.0							
FROM	TO	DESCRIPTION	·	SAMPLI	E FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERABE
.00 4	9.07 CASING IN OVERBURDEN										
	developed spinifex Trace to 5% irregularies. Trace to	texture band lar carbonate locally 1% costrongly carb	coarse grained py onatized. effervesc	2.5. lled rite							
DE(\$2265 53.00 5% irr Arace coarse grained	egular carbona pyrite.	te infilled fractu	res. E7001	52.65	53.00	. 35	-	-	-	-
E 12	O 65 89 56.28 3 to 4 c	m carbonate-qua	2 to 3% coarse ora	ined	55.89	56.28	. 39	-	-		-
1989 1 € D	760.85 60.87 3 to 4 c		rtz impregnated band	i at E7003	60.35	60.87	.52	-	-	-	-
	₩65.02 67.53 Similar t	o 52 to 53.		E7004	67.02	67.53	. 51	_	_	_	
	71.10 71.90 5 t	o 10% irregul	ar carbonate infi	lled E7005	71.10	71.90	.80	-		-	-
The state of the s	73.05 73.59 10 to and stringers. Trace	15% carbonate-o	uartz imprepnated ha	ends E7006	73.05	73.59	.54	-	-	-	-
	80.53 81.09 1% dis carbonate-quartz vein	seminated pyri	te blebs. 2 to 3	S cm E7007	80.53	B1.09	. 56	•	-	-	· •
	B7.26 BB.27 Lightly blebs. 5 to 10% carbo BB.27 B9.B5 Moderatel	bleached. 1 to nate impregnate y to strong	2% disseminated nv	salt	87.26	88.27	1.01	-	•	-	•

FROM	TO	*******	D	ESCRIPTION		SAMPLI	E FROM	10	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
			55 degrees disseminated ; at 45 degrees.	respectively. pyrite blebs. Hoo	Trace to 1% Perately foliated								
		88.27 89.85 89.85 90.33	Strongly lamprophyric	hematitic and dyke. Strongl at 30 degrees.	carbonatized y effervescent. Strongly biotite	E7009	88.27	89.85	1.58	-	-	-	-
		89.85 90.33	Ar shave							•			
			Similar to 52 t	. 87		E7010	89.85	90.33	. 48	•	-	-	-
		96.38 96.93	2 5 to 107 ca	.u js. urhonata and/oc o	uartz stringers.	E7011	93.48	94.00	. 52	-	-	-	-
		Trace pyrite	P.	irvonace and/or q	uartz stringers.	E7012	96.38	96.92	. 54	-	-	-	•
96.92	98.72	grained to contacts. Findegrees. St disseminated	medium graine Fragmented up trongly carbona	ted biotite bleb d with chilled per contact. Low itized and effer ed pyrite. Str bs.	upper and lower er contact at 45 vescent. 3 to 42								
		96.92 98.72	As above.			E7013	96.92	98.72	1.80	-	-	-	-
98.72	108.10	Similar to with the disseminated	occasional c pyrite with u	E 10% carbonate in arbonate-quartz p to 3% pyrite a rs. Sharp lowe	veinlet. Trace								
		98.72 99. carbonate-qu blebs.		to 52 to 5 t 30 degrees wit	3. 3 to 4 cm h 1 to 2% pyrite	E7014	98.72	79.40	. 68	-	-	-	-
		with 1 to 2%	disseminated p	onate-quartz ble yrite selvages.	s and stringers	E7015	100.17	101.52	1.35	-	-	-	-
			8 Similar to 10				104.28		1.10	-	-	-	-
		impregnated	band. Foliation	strongly foliar at 60 degrees. I	inhtly blearhed	E7017	106.07	106.62	. 55	•	-	-	-
		106.62 10B. pyrite. 3	10 19 cm chill to 5% carbona	ed feldspar porpl te-quartz blebs	nyry dyke. Trace and stringers.	E7018	106.62	108.10	1.48	-	-	-	-

FROM	TO	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
		Strongly to intensely carbonatized.								
108.10	110.86	ALTERED SYENDDIORITE Medium pinkish grey. Fine grained with the occasional feldspar phenocryst. Lightly to moderately foliated at 45 degrees. Hardness 5. Moderately to strongly carbonatized. 3 to locally 10% white quartz carbonate stringers and veinlet commonly with chlorite selvages. Moderately bleached with the occasional sericitized band. Trace to 1% disseminated fine grained pyrite. Occasional thin chloritized basalt xenolith. Sharp irregular upper contact at approximately 35 degrees. Bradational lower contact.								
		108.10 109.34 As above. 109.34 110.50 As above. 110.50 110.86 As above. 12 cm strongly chloritized basalt xenolith.	E7020	108.10 109.34 110.50		1.24 1.16 .36	- - -	-	- - -	- - -
110.86	114.43	FELDSAPR PORPHYRITIC SYENODIDRITE Dark pinkish grey. Medium grained white anhedral feldspar phenocrysts in a fine grained matrix. Hardness. 4.5 to 5. Trace to 3% thin carbonate infilled fractures. Occasional pink quartz veinlets. Lightly carbonatized. Trace fine grained disseminated pyrite. Thin pyrite infilled fracture. Blocky core locally. Disseminated biotite in the matrix. Gradational lower contact.								
		110.86 112.40 Blocky core. 32 cm pyrite and chlorite infilled fracture at approximately 10 degrees. Occasional semi massive pyrite blebs. 112.40 113.47 As above.			112.40		-	-	-	-
		113.47 114.43 As above.		112.40 113.47		1.07 .96	-	-	-	-
114.43	118.85	ALTERED SYENODIORITE Light pinkish grey to green grey. Locally with numerous wispy, oxidized carbonate infilled fractures. Fine grained with occasional medium grained feldspar phenocrysts. Strongly carbonatized, non effervescent. Hardness 5. 3 to 5% irregular pink quartz feldspar blebs and infilled fractures. Occasional biotite infilled fractures and blebs in the matrix. Rare strongly chloritized mafic xenolith and/or quartz carbonate chlorite impregnated band. Trace to 1% fine grained disseminated pyrite with								

FROM	TO	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
		the occasional coarse grained pyrite bleb. Locally lightly sericitized.								
		114.43 115.62 12 cm medium pink quartz feldspar band. Locally lightly oxidized carbonate infilled fractures.	E7025	114.43	115.62	1.19	-	-	-	-
		115.62 116.32 14 cm oxidized quartz carbonate vein at 30 degrees. Strongly bleached with 3 to 4% disseminated pyrite. 3 to 5% pink quartz feldspar blebs and infilled fractures.	E7026	115.62	116.32	.70	-	•	-	-
		116.32 117.41 Less intensely altered with 15 to 20% wispy carbonate infilled fractures. Locally oxidized. Disseminated biotite in the matrix. Trace pyrite blebs.	E7027	116.32	117.41	1.09	-	-	-	-
		117.41 118.85 Moderately bleached, strongly carbonatized with 2 to 4% chloritized mafic xenoliths. 15 cm quartz carbonate chlorite impregnated band. Trace to 1% disseminated pyrite and blebs.	E7028	117.41	118.85	1.44	-	-	-	-
118.85	120.86	CHLORITIZED ULTRAMAFIC KOMATIITE Medium to dark green. Fine grained, lightly to locally strongly foliated at 35 degrees. Several thin altered syenodiorite lenses. Hardness 2 to 3. Foliated bands are carbonate-quartz impregnated and moderately to strongly carbonatized with trace fine grained pyrite. Brecciated lower contact.								
		ii8.85 i20.86 2, 16 cm strongly foliated bands at 35 to 45 degrees with carbonate-quartz impregnated stringers. Moderately bleached.	E7029	119.85	120.86	2.01	-	-	-	-
120.86		FELDSAFR PORPHYRITIC SYENODIORITE Dark grey with the occasional medium pinkish grey bleached, carbonatized band. Fine grained to very fine grained matrix with medium grained anhedral feldspar phenocrysts. Hardness 4.5 to 5. Feldspar porphyritic with the occasional bleached locally silicified band. Trace to 4% carbonate infilled fractures. Trace white quartz vein or dark pink quartz feldspar veinlet. Lightly to moderately magnetic. Poorly defined lower contact. Lightly to moderately blocky core.								
		120.86 121.73 40 to 50% moderately to strongly bleached and silicified bands. 2 cm white quartz vein at 35 degrees. Trace to 1% disseminated pyrite.	E7030	120.86	121.73	.87	-	-	•	-
		125.16 126.04 50 to 60% moderately bleached, moderately to strongly carbonatized bands. 2 cm glassy quartz vein at 60	E7031	125.16	126.04	. 88	-	-	-	-

FROM	70	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
		degrees. 2 to 3% carbonate-quartz and/or chlorite infilled fractures. 128.27 128.79 Similar to 125 to 126. 2 cm strongly silicified pinkish grey band at 25 degrees. 130.00 130.90 Similar to 125 to 126. 3 cm quartz vein at 65 degrees.			128.79 130.90	. 52 . 90	-	-	-	-
133.28	141.29	CONTAMINATED SYENDDIORITE Light to medium grey. Massive, mottled texture with disseminated biotite clots in the matrix. Several bands with coarse grained, pink and white irregular quartz feldspar blebs and clots. Hardness 4 to 5.5. Strongly to intensely carbonatized, non effervescent. Moderately magnetic. Trace to 3% pink quartz feldspar stringers and veinlets. Trace fine grained pyrite.								
		133.28 134.17 2, 1 and 3 cm pink quartz feldspar veinlets. 50% coarse grained mottled texture quartz feldspar impregnated bands.	E7034	133.28	134.17	. 89	-	-	-	-
		134.67 135.07 1 cm white quartz carbonate vein at 63 degrees with pyrite selvages.	E7035	134.67	135.07	.40	-	-	-	-
		136.27 137.77 5 cm pink, fine grained quartz feldspar impregnated band. Mottled texture zone with coarse grained quartz feldspar blebs. Trace fine grained pyrite. 137.77 138.83 Similar to 136 to 137.		136.27		1.50	-	•	-	-
141.29	144.04	FELDSAPR PORPHYRITIC SYENODIORITE Similar to 120 to 133.	E/03/	137.77	138.83	1.06	-	-	-	-
144.04	145.09	CONTAMINATED SYENODIORITE Similar to 133 to 141. 50 cm pink quartz feldspar and carbonate infilled fracture with chlorite selvages and 3 to 4% coarse grained cubic pyrite.								
145.09	157.88	144.04 145.09 As above. FELDSAFR PORPHYRITIC SYENDDIORITE Similar to 120 to 133 but with 20 to 30% fine grained contaminated syenodiorite lenses and 5 to 10% serpentinized ultramafic komatiite kenoliths. Trace to 3% carbonate infilled fractures. Lightly to moderately magnetic.	E7038	144.04	145.09	1.05	•	-	-	-

FROM	TO	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
		145.09 145.80 2, 1 cm pink quartz feldspar veinlets. 149.61 149.92 Serpentinized ultramafic komatiite xenolith. Contorted foliation.	E7039	145.09	145.80	. 71	-	-	-	-
		152.50 153.09 Moderately to strongly bleached and carbonatized band. Locally silicified. Trace to 1% fine grained disseminated pyrite. 3 to 5% carbonate infilled fractures. 153.35 153.82 Serpentinized ultramafic komatiite xenolith. Lightly bleached. Moderately to strongly carbonatized. 2 to 3% carbonate infilled fractures.	E7040	152,50	153.09	.59	-	-	-	-
		153.82 154.12 Contaminated symmodiorite with 20 to 30% pink carbonate infilled fractures with trace to 1% coarse grained pyrite blebs. 154.12 155.46 Serpentinized ultramafic komatiite xenolith. 3 to 5% carbonate infilled fractures and stringers.	E7041	153.82	154.12	.30	•	-	-	-
		155.46 155.98 Lightly bleached, porphyritic syenodiorite with 2, 3 and 1 cm quartz carbonate veinlets at 35 and 25 degrees respectively. Trace to 1% pyrite selvage.		155.46		.52	-	-	-	-
		157.38 157.79 3, thin pink quartz carbonate feldspar stringers. Trace pyrite.	£7043	157.38	157.79	. 41	-	-	-	-

157.88

END OF HOLE

DRILLING BY NOREX DRILLING LTD., PORCUPINE, ONTARIO.

All NW casing pulled. All BW casing left in the hole.

CORE STORED AT DOME MINES, SOUTH PORCUPINE, ONTARIO.

CORE CHECKED FOR RADIOACTIVITY AND FLUORESENCE - NOTHING OF INTEREST.

M Meedhom

REF CORD: 9382.0 9875.0 SURVEYED: NO

1+25W

DIAMOND DRILL RECORD

HOLE NO. PROPERTY: PROJECT 280A

BLACKSTOCK TWP., ONTARIO

POST LOCATION: 198m S AND 22m N TO POST 3, CLAIM P.789909

SECTION:

AZIMUTH: 270.0

LOCATION: 6+18S

LENSTH: 75.6 **ELEVATION:**

SAMPLE

LOGGED BY: B. NEEDHAM

DIP -45.0

FROM

.00

 \mathbb{C}^{3} 111

()

---80

6883

 \mathfrak{D}

m

0

m

<

m O CORE SIZE: BQ

GRID: EAST-WEST

SYSTEM OF MEASURE: METRIC

DATE LOGGED: OCTOBER, 1988

LENSTH Au g/t RERUN REJECT AVERAGE

STARTED: OCTOBER 15, 1988

COMPLETED: OCTOBER 16, 1988

CLAIM NO: 0 - 35.5 P.789909; 35.5 - 75.59 P.789918

TO

.0

FROM

PURPOSE: Test strike extension of anomalous Au assays in hole 280a-3

DIP TESTS (corrected)

DEPTH AZIMUTH DIP

-----DESCRIPTION-----

DEPTH AZIMUTH DIP

64.70 CASING IN OVERBURDEN

64.70 70.50 SYENODIORITE

Medium pink to grey with dark grey to black fine grained matrix. Medium grained to coarse grained granular texture. Hassive. Hardness >5. 1 to 3% irregular carbonate and/or thlorite infilled fractures. Locally lightly to moderately 🔀 metasomatized bands and/or selvages adjacent to quartz Eveinlets or fractures. Trace fine grained disseminated Grant of the seminated of the seminated

mm of the hole was abandonned after the casing and rods broke.

The hole was abandonned after the casing and rods broke.

The hole was abandonned after the casing and rods broke.

The hole was abandonned after the casing and rods broke. gasing were left in the hole.

68 07 69.07 5 to 10% glassy quartz veinlets at 30 degrae. Lightly bleached selvages with trace disseminated pyrite. 69.07 70.50 Lightly K metasomatized. 3 to 5% chlorite and carbonate infilled fractures. 18 cm moderately bleached and silicified band.

E7044 6B.07 69.07 1.00 <.03 <.03 E7045 69.07 70.50 1.43 .04 .04

70.50 75.59 LOST CORE

75.59 END OF HOLE FROM TO

-----DESCRIPTION-----

SAMPLE FROM TO LENGTH AU g/t RERUN REJECT AVERAGE

CORE STORED AT DOME MINES, SOUTH PORCUPINE, ONTARIO.

CASING LEFT IN THE HOLE.

CORE CHECKED FOR RADIOACTIVITY AND FLUORESENCE - NOTHING OF INTEREST.

DRILLING BY NOREX DRILLING LTD., PORCUPINE, ONTARIO.

B Needham

PLACER DOME INC. REF CORD: 9382.0 9876.0 SURVEYED: NO DIAMOND DRILL RECORD HOLE NO: LOCATION: 6+185 1+24W GRID: EAST-WEST PROPERTY: PROJECT 280A BLACKSTOCK TWP., ONTARIO POST LOCATION: 198m S AND 22m W TO POST 3, CLAIM P.789909 SECTION: **AZIMUTH:** 270.0 LENGTH: 185.3 **ELEVATION:** . 0 LOGGED BY: B. NEEDHAM DIP: -45.0 CORE SIZE: 80 SYSTEM OF MEASURE: METRIC DATE LOGGED: DCTOBER, 1988 STARTED: OCTOBER 16, 1988 COMPLETED: OCTOBER 18, 1988 CLAIM NO: 0 - 36 P.789909; 36 - 185.31 P.789918 PURPOSE: Test strike extension of anomalous Au assays in hole 280a-3 DIP TESTS (corrected) DEPTH AZIMUTH DIP DEPTH AZIMUTH DIP 50.00 -46.8 185.31 -49.0 FROM -----DESCRIPTION----SAMPLE FROM LENGTH Au q/t RERUN REJECT AVERAGE 62.79 CASING IN DVERBURDEN .00 62.79 63.72 PORPHYRITIC MONZONITE Dark pinkish grey. Very fine grained matrix with medium subhedral feldspar phenocrysts. Hardness >5. Lightly K metasomatized. 1 to 2% irregular chlorite infilled fractures. Lightly magnetic. Trace fine grained pyrite. Bradational lower contact. 62.79 63.72 As above. E7046 62.79 63.72 . 93 . 03 .03 63.72 67.65 MONZONITE Dark grey to black fine grained matrix with white to pink Spedium grained subhedral feldspar phenocrysts. Medium prained to coarse grained granular texture. Hardness >5. (6 5) Non to lightly magnetic. Locally lightly K metasomatized. \Box race very fine grained disseminated pyrite. Trace to 2% 77 ; OFFICE OFFICE OFFICE carbonate infilled fractures. Occasional thin $\mathcal{C}\mathcal{I}$ karbonate veinlet. 3 to 5% lightly bleached bands. 23 m → \$ \$4.58 65.59 1 cm quartz carbonate veinlet at 45 degree. E7047 64.58 65.59 1.01 <.03 <.03 Trace disseminated pyrite selvage.

E7048

66.00

67.65

1.65

. 07

.07

70.54 ALTERED MONZONITE 67.65

10 2 56.00 67.65 5 to 10% lightly to moderately bleached and

o grenicitized bands. 2 to 4% irregular carbonate and

thlorite infilled fractures. Trace pyrite.

D

TI:

0

m

<

m

U

FROM	TO	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
		Moderately to strongly K metasomatized envelope with a 48 cm strongly bleached sericitized, pyritized core. Alteration obliterates the feldspar phenocrysts resulting in a decrease in grain size.								
		Medium to dark orange pink to light green. Fine grained strongly altered zone with partially altered medium grained to coarse grained granular texture margins in which the boundaries of the feldspar phenocrysts are poorly defined. Hardness 4.5 to 5. Lightly to strongly K metasomatized. 3 to 5% irregular carbonate and chlorite infilled fractures. Trace to locally 3% disseminated fine grained pyrite. Moderately to strongly carbonatized. Locally moderately sericitized with strong carbonate alteration. Gradational contacts. Non magnetic.								
		67.65 68.17 Lightly to moderately K metasomatized with 10 to 15 cm fine grained strongly bleached, sericitized band.	E7049	67.65	68.17	.52	-	-	-	-
		68.17 68.87 Strongly K metasomatized, fine grained to medium grained band. 3 to 5% carbonate molybdenite infilled fractures. Lightly to moderately sericitized matrix. Trace to 1% disseminated pyrite.	E7050	68.17	68.87	.70	-	-	-	-
		68.87 69.35 Intensely bleached, sericitized and carbonatized band. 2 to 4% disseminated fine grained by its	E7051	68.87	69.35	. 48	-	-	-	-
		69.35 70.54 Similar to 68.1 to 68.8. Gradational decrease in alteration intensity downhole.	E7052	69.35	70.54	1.19	-	•	-	-
70.54	95.90	SYENDDIORITE Similar to 63 to 67 but with less K feldspar phenocrysts. 3 to 5% lightly to moderately bleached and/or K metasomatized bands. Lightly to moderately blocky core. Near the lower contact has several mafic dykes; Lightly magnetic. Trace disseminated pyrite. Occasional medium to dark grey porphyritic syenodiorite lens. Lower contact at 0 to 10 degrees.								
		73.30 74.30 50% light green, strongly bleached, carbonatized and sericitized bands with 1 to 2% disseminated pyrite. 1 cm quartz carbonate vein at 25 degrees.	£7053	73.30	74.30	1.00	-	-	-	*
		75.03 75.53 2 to 3% quartz carbonate stringer. 3 to 4% irregular carbonate infilled fractures with bleached selvages.	E7056	75.03	75.53	.50	-	-	-	-
		77.25 78.16 44 cm moderately K metasomatized band with 1 cm white quartz vein at 50 degrees. Blocky core. 1 to 2 cm glassy quartz vein at 35 degrees with pyrite selvages.	E7055	77.25	78.16	. 91	-	-	-	-

FROM TO	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
	78.63 79.69 15 to 25% moderately bleached and silicified bands with trace pyrite.	£7056	78.63	79.69	1.06	-		-	-
	82.80 83.83 4, 8, and 15 cm fine grained syenitic dykes. Sharp contacts at approximately 42 degrees. Locally oxidized. Lightly to locally strongly K metasomatized. 84.84 86.36 Fine grained, dark grey locally porphyritic syenodiorite.	E7057	82.80	83.83	1.03	-	-	-	-
	BB.29 B9.05 10 to 15% lightly to moderately K metasomatized selvages adjacent to irregular fractures and/or 1 cm smokey grey quartz veinlet with associated coarse grained pyrite.	E7058	88.29	B9.05	.76	-	-	-	-
	91.29 91.86 30 to 40% lightly to moderately K metasomatized band. 2 to 4% thin quartz carbonate stringers	E7059	91.29	91.86	.57	-	-	-	•
	93.14 94.09 Moderately to strongly K metasomatized band with 3 to 5% irregular quartz carbonate stringers. 3 cm smokey grey quartz vein at 32 degrees with disseminated pyrite selvages.	E7060	93.14	94.09	.95	-	-	•	-
95.90 117.4	TALCOSE ULTRAMAFIC KOMATIITE Dark grey. Fine grained, massive with bands of spinifex texture. Hardness 1.5 to 2. Moderately to strongly magnetic. 3 to 5% carbonate infilled fractures. Sharp upper contact at 35 degrees.								
	95.90 98.57 Fragmented core, locally with thin clay infilled fractures. Blocky. 20 to 30% hematitic irregular quartz carbonate and/or syenodioritic blebs and lenses. 1 to 4 irregular hematite infilled fractures. Moderately to strongly chloritized.								
	95.90 96.62 Strongly fragmented core. Hematitic. Chloritized.	E7061	95.90	96.62	. 72	-	-	•	-
	96.62 97.64 As above.	E7062	96.62	97.64	1.02	-	_		_
	97.64 98.57 As above.	E7063	97.64	98.57	. 93	-	-	-	-
	98.57 99.18 5 to 10% irregular carbonate infilled fractures and stringers.	E7064	98.57	99.18	.61	-	-	-	-
	107.01 107.76 1 to 2 cm pink carbonate-quartz veinlets at 25 degrees. 3 to 5% carbonate stringers and infilled fractures.	E7065	107.01	107.76	.75	-	•	-	•
	108.36 109.92 25 to 30% carbonate impregnated bands possible along polygonal jointing fractures. 114.14 115.07 Contaminated symmetrie. Strongly carbonatized. Fine grained to medium grained. Trace to 1% disseminated pyrite. 1	E7066	108.36	109.92	1.56	-	-	-	•

FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
		to 3% carbonate infilled fractures.								
		114.14 115.07 As above.	E7067	114.14	115.07	.93	-	-	-	-
117.46	120.53	FELDSARR PORPHYRITIC SYENDDIORITE Dark pinkish grey. Dominantly fine grained massive texture with the occasional feldspar phenocryst. Strongly carbonatized and effervescent. Moderately to strongly hematite altered. Slightly to lightly magnetic. Disseminated biotite and/or chlorite blebs in the matrix. Occasional chloritized xenolith. 43 cm serpentinized ultramafic komatiite xenolith in this unit. Trace to 1% pyrite. Sharp upper and lower contacts at 33 degrees.								
		117.46 118.20 As above. 118.20 118.63 Serpentinized ultramafic komatiite. Sharp contacts.	E7068	117.46	118.20	. 74	-	-	-	-
		118.63 119.63 As above. 119.63 120.53 As above.	E7069 E7070	118.63 119.63	119.63 120.53	1.00	-	-	-	-
120.53	125.15	TALCOSE ULTRAMAFIC KOMATIITE Similar to 95 to 117. Locally foliated at 48 degrees. Sharp serpentinized lower contact at 25 degrees.								
125.15	126.50	FELDSAPR PORPHYRITIC SYENODIORITE Similar to 117 to 120. Disseminated biotite laths. Moderately magnetic. Occasional anhedral pinkish white feldspar bleb.								
		125.15 126.50 As above. Trace to 1% pyrite.	E7071	125.15	126.50	1.35	-	-	-	-
126.50	149.12	TALCOSE ULTRAMAFIC KOMATIITE Similar to 95 to 117. Occasional feldspar porphyritic strongly carbonatized, hematitic symmodiorite dyke. Trace to 2% carbonate and serpentine stringer and/or thin veinlet								
		128.51 128.87 Syenodiorite dyke. Similar to 117 to 120. 143.58 144.28 Strongly carbonate altered, lightly bleached ultramafic komatiite band with disseminated	E7072	128.51	128.87	. 36	-		-	-

FROM	τo	DESCRIPTION	SAMPLI	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
		biotite. Thin contaminated symnodiorite lenses.								
149.12	152.40	CONTAMINATED SYENODIORITE Dark pinkish grey to black. Dominantly fine grained with medium grained syenodioritic bands. Disseminated biotite in the matrix is common. Hardness 4 to 5. Strongly carbonatized and effervescent. Lightly to moderately magnetic. Upper fine grained biotitic contact at 70 degrees. Lower contact at 45 degrees. 77 cm serpentinized, locally biotitic ultramafic komatiite xenolith. Trace disseminated fine grained pyrite.								
		149.12 149.74 Medium grained, contaminated syenodiorite with trace disseminated pyrite. Strongly carbonatized. Biotitic.	E7073	149.12	149.74	. 62	-	-	-	-
		149.74 150.74 Fine grained, carbonatized contaminated syenodiorite. Strongly biotitic lower contact with ultramafic komatiite. Trace disseminated pyrite.	E7074	149.74	150.74	1.00	-	-	-	-
		151.50 152.40 Strongly to intensely biotite altered. Trace to 1% disseminated fine grained pyrite. Strongly to intensely carbonatized.	E7075	151.50	152.40	.90	-	-	-	-
152.40	185.31	TALCOSE ULTRAMAFIC KOMATIITE Similar to 95 to 117. 16 cm biotitic upper contact. At 152.56 metres thin clay infilled fractures at 70 degrees. Several strongly biotitic contaminated symmodioritic dykes in the unit. Occasional spinifex texture band. 1 to 5% carbonate calcite infilled fractures. Lightly to moderately magnetic. Moderately carbonatized and effervescent.								
		154.34 154.83 1 cm quartz carbonate veinlet at 20 degrees. Trace pyrite. 2 to 3% carbonate infilled fractures. 155.32 156.67 Contaminated symmotorite. Strongly biotitic contacts. Trace to 1% disseminated pyrite. Irregular pink carbonate infilled fractures. Strongly effervescent. Locally lamprophyric appearing.	E7076	154.34	154.83	. 49	-	-	•	-
		155.32 156.67 As above. 160.93 161.29 Similar to 154.3 to 154.8. 162.38 163.62 Contaminated fine grained syenodiorite,		155.32 160.93		1.35	-	-	- -	-

FROM TO	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
	similar to 155 to 156. Upper and lower contacts at 65 and 50 degrees respectively.								
	162.38 163.62 As above. 164.12 164.67 Similar to 155 to 156. Sharp upper and lower contacts at 60 and 50 degrees respectively. 2 cm quartz carbonate vein at upper contact at 60 degrees.	E7079	162.38	163.62	1.24	-	-	•	-
	164.12 164.67 As above. 179.62 180.16 50% contaminated strongly effervescent syenodiorite. Trace to 1% disseminated pyrite in ultramafic komatiite unit. 181.59 182.98 Fine grained syenodiorite dyke. Upper and lower contacts at 50 degrees. Trace disseminated pyrite. 1% carbonate infilled fractures. 5.		164.12 179.62		.55	-	-	-	Ξ
	181.59 182.98 As above. 183.10 183.60 Similar to 179 to 180. 3 to 5 cm bleached silicified band. 184.02 185.12 Similar to 179 to 180. 5 to 10% quartz blebs associated with the syenodiorite lenses. Blocky, biotitic core. 3 to 5% carbonate infilled fractures.	E7083	181.59 183.10 184.02	183.60	1.39 .50	-	-	- -	-

185.31

END OF HOLE

DRILLING BY NOREX DRILLING LTD., PORCUPINE, ONTARIO.

CORE STORED AT DOME MINES, SOUTH PORCUPINE, ONTARIO.

CASING LEFT IN THE HOLE.

CORE CHECKED FOR RADIOACTIVITY AND FLUORESENCE - NOTHING OF INTEREST.

B Meedham

PLACER DOME INC. REF CORD: 9504.0 10350.0 SURVEYED: NO DIAMOND DRILL RECORD HOLE NO: LOCATION: 4+96S 3+50E GRID: EAST-WEST PROPERTY: PROJECT 280A BLACKSTOCK TWP. . ONTARIO POST LOCATION: 137m N AND 94m E TO POST #1, CLAIM P.789908 SECTIONS AZIMUTH: 270.0 LENGTH: 200.6 **ELEVATION:** . 0 LOGSED BY: B. NEEDHAM DIP -45.0 CORE SIZE: BO SYSTEM OF MEASURE: METRIC DATE LOGGED: OCTOBER, 1988 STARTED: OCTOBER 19, 1988 COMPLETED: OCTOBER 25, 1988 CLAIM NO: P.789908 PURPOSE: Test mag low- IP target and possible NE shear zone DIP TESTS (corrected) DEPTH AZIMUTH DIP DEPTH AZIMUTH DIP 50.00 -47.5 200.55 -44.8 FROM TD -----DESCRIPTION------SAMPLE FROM LENGTH Au g/t RERUN REJECT AVERAGE .00 70.86 CASING IN DVERBURDEN 70.86 74.45 MOTTLED TEXTURED MEDIUM GRAINED MAFIC FLOW Medium to dark grey green. Fine grained to medium grained lightly foliated texture. Hardness 4. Thin wispy carbonate and/or epidote infilled fractures parallel to foliation. Foliation at 30 to 40 degrees. Non magnetic. Blocky core. Occasional epidote silicified band. Moderately carbonatized and effervescent. 74.45 74.82 SYENUDIORITE Dark grey pink. Chilled, fine grained to very fine grained with 2 to 3% chloritized mafic xenoliths. Hardness 5. 1 cm quartz carbonate and chlorite veinlet at 40 degrees. parameter Trace to 1% very fine grained disseminated pyrite. Sharp upper and lower contacts at 60 and 35 degrees respectively. IJ \$ 74.45 74.82 As above. ៈរា \Box E7085 74.45 74.82 .37 TTi 74.82 98(35) FOUTATED MAFIC FLOW 117 Medium to dark grey green with the occasional strongly Ozbieached, epidote altered band. Locally lightly bleached < mindue to carbonatization. Lightly to locally strongly

Mifolliated at 40 to 45 degrees. Fine grained to very fine

mgPained matrix. Hardness 4.5 to 3.5 decreasing downhole.

increase in carbonatization downhole from

strongly carbonatized, moderately to

65

(OBrabational moderately

to

m

O

FROM	TO	DESCRIPTION	SAMPLE	FROM	TO	LENSTH	Au g/t	RERUN	REJECT	AVERAGE
		strongly effervescent. 2 to locally 10% carbonate infilled fractures—and stringers usually parallel to foliation. Trace to 2% quartz carbonate veinlet at various angles. Non magnetic. Irregular lower contact.								
		74.82 75.32 8 cm epidote altered band. 2 to 4% carbonate infilled fractures parallel to foliation.	E7086	74.82	75.32	.50	•	-	-	-
		78.40 78.94 2 cm quartz carbonate vein at 40 degrees with moderately bleached, silicified and pyritized selvages. 1 to 2% carbonate infilled fractures. 1% disseminated pyrite.	E7087	78.40	78.94	. 54	-	-	-	-
		81.94 82.39 23 cm silicified, epidote altered band with thin quartz carbonate veinlet at 45 degrees.	E7088	81.94	82.39	. 45	-	-	~	-
		83.13 83.57 Lightly bleached. 2 to 3% thin quartz carbonate veinlets with fine grained disseminated pyrite selvages.	E7089	83.13	83.57	.44	-	-	-	-
		86.32 87.08 3 to 4% carbonate infilled fractures parallel to foliation. 1 to 2% quartz carbonate veinlets. Trace pyrite.	E7090	86.32	87.08	.76	-	-	-	-
		89.14 93.87 Lightly to moderately bleached, moderately to strongly carbonatized strongly foliated zone with 5 to 10% carbonate infilled fractures and/or stringers parallel to foliation. Trace to 2% quartz carbonate veinlets and blebs. Trace to locally 1% pyrite blebs.		,						
		89.14 90.00 As above.	E7091	89.14	90.00	. 86	_		_	
		90.00 90.83 As above.	E7092	90.00	90.B3	. 83	-	_	-	_
		90.83 92.33 As above.	E7093	90.83	92.33	1.50	-	_		_
		92.33 93.87 As above. 1 cm quartz carbonate vein at 36 degrees.	E7094	92.33	93.87	1.54	-	-	-	-
		93.87 95.40 Moderately chloritized foliated basalt with 3 to 5% bleached silicified blobs. 5 to 10% carbonate and carbonate-quartz infilled fractures and stringers. Trace fine grained pyrite.	E7095	93.87	95.40	1.53	-	-	•	-
		95.64 96.07 1 cm quartz carbonate veinlet. 1% pyrite blebs. 2 to 3% carbonate infilled fractures.	E7096	95.64	96.07	. 43	-	-	-	-
		97.44 98.55 17 cm epidote altered band. 2 to 3% carbonate stringers. Trace to 1% pyrite blebs.	E7097	97.44	98.55	1.11	-	-	-	-

98.55 131.42 MOTTLED TEXTURED MEDIUM GRAINED MAFIC FLOW
Similar to 70.86 to 74.45. Non magnetic. Slightly to lightly foliated mottled texture. Locally moderately to strongly epidote altered. Disseminated medium grained chlorite blebs are common in the matrix.

FROM	TO	DESCRIPTION	SAMPLE	FRON	10	LENBTH	Au g/t	RERUN	REJECT	AVERAGE
		101.98 103.28 3 to 5% glassy quartz carbonate veinlets and stringers parallel to foliation and crosscutting foliation. Trace to 2% pyrite selvages locally also with epidote altered selvage.	E7098	101.98	103.28	1.30	-	•	-	-
		103.28 104.16 9 cm carbonate-quartz and hematite irregular impregnated band with 1% pyrite. 104.16 111.10 Moderately bleached, moderately to strongly epidote altered medium grained basalt flow. Lightly foliated. 2 to 4% carbonate infilled fractures. Trace to 1% siliceous epidote stringers. Moderately carbonatized.	E7099	103.28	104.16	.88	•	-	•	-
		106.14 107.17 3 to 5% quartz carbonate stringers and veinlets commonly at approximately 40 degrees, parallel to foliation. Veinlets have trace to 1% disseminated pyrite selvages.	E7100	106.14	107.17	1.03	-	-	-	-
		111.10 113.47 Fine grained, moderately foliated, moderately to strongly effervescent basalt. 3 to locally 10% carbonate infilled fractures parallel to foliation. Moderately chloritized.								
		111.10 111.86 5 to 10% carbonate infilled fractures. 7 cm pyritized quartz carbonate impregnated band.	E7101	111.10	111.86	.76	-	-	-	-
		112.16 112.85 5% carbonate infilled fractures parallel to foliation. 2, 1 cm glassy quartz carbonate veinlets at 80 and 60 degrees. 113.47 116.10 Similar to 104 to 111.	E7102	112.16	112.85	. 69	-	-	-	-
		113.87 114.59 5 to 10% carbonate infilled fractures. 1 cm quartz carbonate veinlet at 47 degrees.	E7103	113.87	114.59	.72	-	-	-	-
		114.73 115.75 2 to 3% carbonate infilled fractures. 1 cm pink pyritized and hematitic quartz carbonate veinlet with epidote selvages. 116.10 117.00 Similar to 111 to 113. Foliation at 40 to 45 degrees.	E7104	114.73	115.75	1.02	-	~	-	-
		116.10 117.00 As above. 117.00 Fine grained to medium grained slightly to lightly foliated basalt. Moderately chloritized, lightly epidote altered. 2 to 3% carbonate infilled fractures. Occasional thin, siliceous, epidote impregnated band. Mottled texture.	E7105	116.10	117.00	.90	-	-	-	-

FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
		119.76 120.60 2, 1 cm white quartz veinlets at 80 and 35 degrees.	E7106	119.76	120.60	.84	-	-	_	-
		125.45 126.20 3 to 5% siliceous, epidote altered bands and stringers. 1 cm glassy quartz veinlet at 45 degrees.	E7107	125.45	126.20	.75	-	-	-	-
		126.85 127.40 22 cm epidote altered, lightly to moderately brecciated band with 15 to 20% smokey gray quartz veinlets. 2 to 3% hematite blebs.	E7108	126.85	127.40	. 55	-	-	-	-
		128.80 130.10 3, 1 to 2 cm white quartz carbonate veins at 35 to 45 degrees. 2 to 3% carbonate infilled fractures.	E7109	128.80	130.10	1.30	-	-	-	-
		130.52 131.42 3 to 5% carbonate infilled fractures. 2 to 3% irregular siliceous epidote infilled fractures.	E7110	130.52	131.42	.90	-	-		-
131.42 155	5.82	FDLIATED MAFIC FLOW Similar to 74 to 98. Moderately to strongly carbonatized and effervescent. Non magnetic. Locally lightly bleached and silicified. 3 to 10% carbonate infilled fractures parallel to foliation at 45 degrees. Occasional glassy to smokey grey quartz vein.								
		131.87 133.13 10 cm white quartz carbonate and chlorite vein at 45 degrees with trace to 1% fine grained pyrite.	E7111	131.87	133.13	1.26	-	-	-	-
		133.50 134.58 2, 1 cm glassy quartz carbonate veinlet.	E7112	133.50	134.58	1.08	-	-		-
		135.69 136.43 32 cm moderately bleached, strongly carbonatized band with 3 to 5% white quartz carbonate and chloritized stringers. 1 cm smokey grey quartz stringer at 85 degrees.			136.43	,74	-	-		-
		139.59 140.69 5 to 10% carbonate-quartz veinlets and stringers with 1 to 2% fine grained disseminated pyrite. Veinlets dominantly parallel to foliation.	E7114	139.59	140.69	1.10	•	-	-	-
		141.48 142.25 Similar to 139 to 140.	E7115	141.48	142.25	.77	-	_	-	-
		142.64 143.88 4, 3 to 5 cm glassy to smokey grey quartz veinlet and/or impregnated bands with epidote altered selvages or blobs. Trace fine grained pyrite.	E7116	142.64	143.88	1.24	-	-	-	-
		149.23 150.00 3 to 5% carbonate infilled fractures parallel to foliation. 1 cm vuggy pyritized carbonate veinlets at 40 degrees.	E7117	149.23	150.00	.77	-	-	-	-
		150.00 150.62 Similar to 149 to 150. 1 to 2 cm irregular glassy quartz veinlet.	E7118	150.00	150.62	. 62	-	-	-	-
		150.86 151.79 3, 2 to 4 cm siliceous, epidote altered impregnated bands. 5 to 10% dark red cherty bands with lamination at 55 degrees. Trace to 1% pyrite blebs.	E7119	150.86	151.79	. 93	-	-	-	-
		154.42 155.82 5 to 10% carbonate infilled fractures. 2 to 3% thin dark red cherty bands. Locally strongly chloritized with pyrite blebs. Contorted foliation at 10 degrees.	E7120	154.42	155.82	1.40	-	-	-	-

FROM	TO	DESCRIPTION	SAMPLE	FRÒM	10	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
155.82	157.91	CONTAMINATED SYENODIORITE Dark pinkish green grey. Fine grained to medium grained, lightly foliated at 50 degrees. Anhedral pink feldspar clots. Hardness 4.5 to 5. Strongly chloritized matrix. Moderately to strongly carbonatized and effervescent. Chilled upper and lower contacts at 15 and 55 degrees respectively. Non to locally moderately magnetic. 1 to 3% carbonate infilled fractures. Occasional strongly foliated silicified mafic basalt xenolith. Locally lightly hematitic. 1 to 3% 1 to 2 cm quartz carbonate and chlorite vein commonly with disseminated pyrite selvages.								
		155.82 156.71 2, i cm quartz carbonate chlorite veins at 45 degrees. 1 to 3% carbonate infilled fractures.	E7121	155.82	156.71	. 89	-	-	-	-
		156.71 157.91 As above.	E7122	156.71	157.91	1.20	-	-	-	-
157.91	159.43	FOLIATED MAFIC FLOW Similar to 131 to 155. Foliation at approximately 35 degrees. Trace to 1% fine grained pyrite. Moderately to strongly chloritized. 2, thin crosscutting quartz carbonate veinlets at 60 degrees. Sharp lower contact at 30 degrees. Strongly effervescent.								
		157.91 159.43 As above.	E7123	157.91	159.43	1.52	-	-	-	•
159.43	162.87	CONTAMINATED SYENODIORITE Similar to 155 to 157. Strongly carbonatized and effervescent. Bleached, intensely carbonatized and locally K metasomatized lower contact at 50 degrees.								
		159.43 160.93 3 to 5% carbonate infilled fractures. 1 to 2% thin quartz carbonate veinlets. Trace fine grained pyrite.	E7124	159.43	160.93	1.50	-	-	-	-
		160.93 161.86 Intensely carbonatized, lightly to moderately K metasomatized. 4, 0.5 to 1 cm quartz carbonate veinlet with 1 to 2% disseminated pyrite selvages. 18 cm foliated basalt xenolith.	E7125	160.93	161.86	. 93	-	-	-	-
		161.86 162.87 Similar to 159 to 160. Hoderately to strongly bleached lower contact with numerous carbonate chlorite infilled fractures.	E7126	161.86	162.87	1.01	-	-	-	-

FROM	TO	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
162.87	165.15	CARBONATIZED MAFIC FLDW Light yellow green to pink. Fine grained, strongly foliated. Hardness 3.5 to 4.5. Foliation at 30 to 40 degrees. Strongly to intensely carbonatized and effervescent. Trace to 2% hematite stringers and blebs. Locally silicified and K metasomatized bands. Trace to 2% pyrite. 3 to 5% carbonate infilled fractures parallel to foliation and crosscutting. Bradational lower contact.							,	
		162.87 164.28 3, 1 to 2 cm quartz carbonate vein at 40 degrees crosscutting foliation. 13 cm strongly silicified, K metasomatized band with 2 to 3% pyrite blebs. 2 to 3% specular hematite. 164.28 165.15 As above. Less intensely altered. Trace to		162.87	164.28	1.41	-	-	-	•
165.15	176.90	1% pyrite. FOLIATED MAFIC FLOW Similar to 131 to 155. Strongly carbonatized with 3 to locally 10% thin carbonate infilled fractures and stringers. Gradational decrease in bleaching downhole. Strongly foliated at 30 to 40 degrees. Non magnetic.			163.13	• • • •		-	•	-
		165.15 166.40 Lightly to moderately bleached. 5 to 10% carbonate infilled fractures. 1 to 2% quartz carbonate stringers with pyrite selvages.	E7129	165.15	166.40	1.25	-	-	-	-
		168.57 169.62 5 to 10% carbonate infilled fractures parallel to foliation and crosscutting. Lightly bleached, 169.62 171.86 Moderately to strongly carbonatized, moderately bleached zone. Light to medium green grey to pinkish grey. Strongly foliated. Moderately hematitic. 3 to locally 10% carbonate infilled fractures parallel to foliation and crosscutting. Chlorite partings foliation at 40 to 45 degrees. Lightly to moderately silicified.	E7130	168.57	169.62	1.05	-	-	-	•
		169.62 170.67 As above. 170.67 171.86 As above. 171.86 176.90 Strongly chloritized, locally hematite altered foliated basalt. Local contorted foliation. Moderately to strongly carbonatized. At 172.2 metres, 14 cm intensely chloritized band with ground core and carbonate infilled fractures and blebs.		169.62 170.67		1.05	-	-	-	-

Ε.	ND:	280A-32
3E	NO:	7

FROM	TO	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE	
		171.86 172.82 14 cm shear zone with associated ground core. 5 to 10% carbonate infilled fractures.	E7133	171.86	172.82	. 96	-	-	-	-	
		172.82 174.25 3 to 5% carbonate infilled fractures. Lightly contorted foliation. Strongly chloritized. 1 to 2% pink carbonate blobs. Trace to 1% pyrite blebs.	E7134	172.82	174.25	1.43	-	-	-	-	
		174.25 175.33 Lightly to moderately bleached. Locally hematite altered. 22 cm quartz carbonate, epidote impregnated band. Trace to 1% disseminated pyrite.	E7135	174.25	175.33	1.08	-	•	-	-	
		175.89 176.90 3 to 5% carbonate infilled fractures.	E7136	175.89	176.90	1.01	-	-	-	-	
176.90		PORPHYRITIC MONZONITE Dark red with numerous irregular chlorite infilled fractures. Dominantly fine grained, chilled massive texture with poorly defined fine grained to medium grained anhedral feldspar phenocrysts. Btrongly to intensely K metasomatized. Hardness 5 to >5. Strongly carbonatized and effervescent. 1 to 2% carbonate and/or carbonate-quartz chlorite infilled fractures and stringers. Trace very fine grained disseminated pyrite. 2.1 metres foliated basalt lens. Sharp upper and lower contacts at 40 and 65 degrees respectively.									
		176.90 177.43 As above. 1 cm quartz carbonate vein at 35 degrees.	E7137	176.90	177.43	. 53	-	-	_	-	
		177.43 178.95 Similar to 176 to 177. Locally lightly bleached.	E7138	177.43	178.95	1.52	-	-	-	-	
		178.95 180.50 Similar to 176 to 177. Sharp lower contact with basalt at 26 degrees. Fragmented pyritized quartz veinlet at 179.22 metres.	E7139	178.95	180.50	1.55	-	-	*	-	
		180.50 181.78 Chloritized foliated basalt. 2 cm carbonate vein at 50 degrees. 2 to 4% carbonate infilled fractures. Trace to 1% pyrite blebs.	E7140	180.50	181.78	1.28	-	-	-	-	
		181.78 182.52 Similar to 180 to 181. Locally silicified and pyritized. 3, irregular 1 cm quartz veinlets. Sharp lower contact at 50 degrees.	E7141	181.78	182.52	.74	-	-	-	-	
		182.52 183.42 Similar to 176 to 177. 10 cm basalt xenolith. Feldspar porphyritic.	E7142	182.52	183.42	.90	-	-	-	-	
		183.42 184.60 Similar to 176 to 177. Feldspar porphyritic. Very fine grained matrix.		183.42		1.18	-	-	-	-	
		184.60 185.15 Similar to 176 to 177. 13 cm intensely carbonatized basalt xenolith.	E7144	184.60	185.15	. 55	-	-	-	-	

FRDM TO	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
	Similar to 98 to 131. Strongly to intensely carbonatized, moderately bleached upper contact. Non magnetic. Strongly carbonatized.								
	185.15 186.36 Intensely carbonatized, moderately bleached zone decreasing downhole. 5 to 10% carbonate-quartz stringers. Trace pyrite blebs.	E7145	185.15	186.36	1.21	-	-	-	-
187.27 200.55	MOTTLED TEXTURED MEDIUM BRAINED MAFIC FLOW Similar to 98 to 131. Mottled moderately epidote altered medium grained texture. Non magnetic. Moderately to strongly carbonatized and effervescent. Occasional hematite infilled fractures.								
	187.27 187.95 3 to 5% carbonate infilled fractures. Trace pyrite.	E7146	187.27	187.95	. 68	-	-	-	-
	188.93 190.04 3, 0.5 to 1 cm quartz carbonate veinlets with 1 to 2% disseminated pyrite selvages. 3 to 4% siliceous epidote stringers.	£7147	188.93	190.04	1.11	-	-	-	-
	193.61 194.18 Moderately to strongly carbonatized. 3 to 5% quartz carbonate infilled fractures and stringers occasionally with chlorite selvages. Trace to 1% pyrite.	E7148	193.61	194.18	. 57	-	-	•	•
	197.00 198.55 4, 3, 10 and 2 cm smokey grey quartz carbonate veins with pyrite selvages at 60, 48, 70 and 60 degrees respectively. 15 cm foliated, pyritized quartz carbonate impregnated band at 40 degrees.	E7149	197.00	198.55	1.55		-	-	-
200.55	END OF HOLE								

CORE CHECKED FOR RADIDACTIVITY AND FLUORESENCE - NOTHING OF INTEREST.

B. Meedham

CASING LEFT IN THE HOLE.

DRILLING BY NOREX DRILLING LTD., PORCUPINE, ONTARIO.

CORE STORED AT DOME MINES, SOUTH PORCUPINE, ONTARIO.

REF CORD: 9627.0 10050.0 SURVEYED: NO DIAMOND DRILL RECORD HOLE NO. LOCATION: 3+738 0+50E GRID: EAST-WEST PROPERTY: PROJECT 280A BLACKSTOCK TWP., ONTARIO POST LOCATION: 8m N AND 4m W TO POST 4, CLAIM P.789908 SECTION: AZIMUTH: 270.0 LENBTH: 188.4 **ELEVATION:** .0 LOGGED BY: B. NEEDHAM DIP: -45.0 CORE SIZE: BO SYSTEM OF MEASURE: METRIC DATE LOGGED: OCTOBER, 1988 STARTED: DCTOBER 25, 1988 COMPLETED: OCTOBER 27, 1988 CLAIM NO: 0 - 4.0 P.789908; 4.0 - 188.37 P.789909 PURPOSE: TEST LATERAL EXTENSION OF ANOMALOUS AU ASSAYS IN HOLE 280A-6 DIP TESTS (corrected) DEPTH AZIMUTH DIP DEPTH AZIMUTH DIP 73.00 -50.0 188.37 -47.8 FROM -----DESCRIPTION----BAMPLE FROM LENGTH Au o/t RERUN REJECT AVERAGE 74.06 CASING IN OVERBURDEN 74.06 188.37 MONZONITE Medium pink and white with black fine grained matrix. grained to coarse grained granular texture. Subhedral to anhedral K feldspar phenocrysts. Hardness >5. Lightly magnetic. Occasional light green to pink lightly to moderately altered bands associated with white to glassy quartz veins. Alteration results in a decrease in orain Size and/or the feldspar porphyritics grain > 5 boundaries becoming diffuse. Alteration includes moderate carbonatization and sericitization with strong \Box associated trace to 1% disseminated pyrite. Locally rri O 6 in lightly to moderately K metasomatized. Occasional Cthloritized mafic xenolith. Trace to locally 1% irregular tarbonate and/or chlorite infilled fractures. 23 OH NO 88 AE S 10 \$8.52 79.60 12 and 2 cm white quartz veins at 40 and 30 E7150 78.52 79.60 1.08 glegrees to the core axis respectively with bleached. tarbonatized selvages with 1% disseminated pyrite. 30 to 10 40% bleached bands associated with carbonate-quartz infilled fractures. 79.95 80.63 1 cm quartz vein at 40 degree with strongly E7151 79.95 80.63 . 68 sericitized carbonatized selvages. 9 cm lightly bleached band. 81.84 82.18 Similar to 79 to 80. 82.18 E7152 81.84 . 34 82.54 83.47 2, 2 and 1 cm quartz vein at 40 and 50 degree E7153 82.54 83.47 .93 respectively. 50% moderately bleached, carbonatized and lightly sericitized altered bands.

E7154

84.46

84.90

. 44

84.46 B4.90 2 cm quartz vein at 70 degree associated

 \mathbf{z}

m

0

m

<

m

O

FROM	TO	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERAGE
		moderately carbonatized and sericitized selvages. Trace to 1% disseminated pyrite.								
		88.25 88.87 1 cm quartz vein at 15 degrees with associated coarse grained pyrite blebs. Lightly carbonatized selvages.	E7155	88.25	88.87	.62	-	-	-	-
		93.26 94.37 40 cm lightly carbonatized band with shallow dipping quartz carbonate vein. Coarse grained pyrite and thin molybdenite ? infilled fractures associated with quartz vein. 1 cm quartz vein.	E7156	93.26	94.37	1.11	•	-	-	~
		95.45 95.97 3 cm quartz carbonate vein at 45 degrees with strongly carbonatized and moderately K metasomatized selvages. Chlorite infilled fractures immediately adjacent to quartz vein.	E7157	95.45	95.97	. 52	•	-	-	-
		96.55 97.19 2, thin carbonate-quartz infilled fractures with lightly to moderately bleached, carbonatized and sericitized selvages. Trace to 1% disseminated pyrite.	E7158	96.55	97.19	. 64	-	-	-	-
		98.03 99.08 Moderately bleached, strongly carbonatized, lightly sericitized band with trace disseminated pyrite. I cm quartz carbonate vein at 20 degrees.	E7159	98.03	99.08	1.05	-	-	-	-
		101.67 102.19 2, 1 to 2 cm white quartz carbonate veins at 40 and 55 degrees respectively. Carbonatized and sericitized selvages with trace disseminated pyrite.	E7160	101.67	102.19	.52	•	-	-	-
		104.92 106.4B Lightly to moderately carbonatized band with 3 to 4% thin carbonate-quartz veinlets. 1 cm glassy quartz vein at 10 degrees.	E7161	104.92	106.48	1.56	••	-	, -	-
		112.22 113.10 Similar to 104 to 106.	E7147	112.22	117 10	.88				
		114.26 114.80 Moderately carbonatized, lightly sericitized band with 1 cm quartz carbonate vein with 20% molybdenite and hematite infilled fractures at 20 degrees.		114.26		.54	-	-	-	-
		115.88 116.22 1 cm quartz carbonate vein at 10 degrees with trace to 1% coarse grained pyrite blebs and lightly carbonatized selvages.	E7164	115.88	116.22	.34	-	-	-	-
		122.17 123.45 32 and 1 cm glassy quartz veins at 17, 25 degrees respectively with 1 to 2% coarse grained pyrite blebs, 5 to 10% molybdenite infilled fractures at 15 to 20 degrees. Lightly carbonatized selvages.	E7165	122.17	123.45	1.28	-	-	-	-
		123.45 124.86 Lightly to moderately bleached, moderately carbonatized band. I cm quartz vein at 42 degrees with chlorite selvages.	E7166	123.45	124.86	1.41	-	-	-	•
		125.62 126.42 Similar to 123 to 124.	E7167	125.62	126.42	.80	_	_	_	_
		127.18 127.66 1 to 2 cm quartz carbonate vein at 30 degrees with trace to 1% coarse grained pyrite blebs.		127.18		, 48	-	•	-	-
		130.45 131.07 33 cm quartz carbonate vein at 25 degrees with 3 to 4% coarse grained pyrite blebs and 3 to 5% molybdenite infilled fractures. Similar to 122 to 123.	E7169	130.45	131.07	. 62	-	-	-	-

131.07 133.22 Moderately K metasomatized band with 3 to 5% irregular chlorite infilled fractures. Trace disseminated pyrite. 1 to 2% thin quartz

carbonate stringers.

FROM	TO	DESCRIPTION	SAMPLE	FROM	70	LENSTH	Au g/t	RERUN	REJECT	AVERAGE
		131.07 132.43 As above. 132.43 133.22 As above.			132.43	1.36	-	-	-	-
					133.22	. 79	-	-	-	-
		134.00 134.68 27 cm quartz carbonate vein at 23 degrees with 3 to 5% chlorite blebs and 1 to 2% pyrite blebs. Moderately bleached, carbonatized selvages.			134.68	. 68	-	-	•	-
		135.00 135.64 3 cm glassy quartz vein at 18 degrees. 1 cm crosscutting quartz veinlet at 70 degrees. Lightly carbonatized. Chlorite and disseminated pyrite selvages.	E7173	135.00	135.64	. 64	-	-	-	-
		140.23 140.66 Lightly K metasomatized. 1 to 2 cm quartz carbonate vein at 25 degrees with trace to 1% coarse grained pyrite. Strongly chloritized upper selvage. Trace to 1% fine grained disseminated pyrite.	E7174	140.23	140.66	. 43		-	-	-
		140.77 142.05 2 cm quartz carbonate vein at 25 degrees. Lightly carbonatized with trace fine grained dissominated pyrite. 1 to 2% irregular carbonate infilled fractures.	E7175	140.77	142.05	1.28		•	-	-
		145.40 145.90 2 to 3% irregular carbonate and/or chlorite infilled fractures. Lightly bleached with trace disseminated pyrite. Irregular quartz stringer.	E7176	145.40	145.90	.50	-	-	-	-
		147.22 147.63 Similar to 140 to 142.	E7177	147.22	147.63	.41		_	-	_
		148.18 149.18 Similar to 140 to 142.		148.18		1.00	_	_	_	_
		149.60 150.03 2, 1 to 2 cm quartz carbonate vein at 65 and			150.03	. 43	_	_	_	_
		50 degrees. Moderately bleached, albitized selvages.				. 10				-
		150.93 151.23 Similar to 140 to 142. Coarse grained pyrite blobs.	E7180	150.93	151.23	.30	-	-	-	-
		158.62 158.99 Similar to 140 to 142.	E7181	158.62	158.99	.37	-	-	_	-
		162.85 163.73 Similar to 140 to 142.	E7182	162.85	163.73	.88	-	-	-	•
		164.53 164.86 Moderately bleached and carbonatized band associated with thin carbonate pyrite infilled fractures. 169.17 185.37 Lightly to moderately K metasomatized zone. 1 to 3% quartz veins with chlorite carbonate and disseminated pyrite selvages. Trace to 2% irregular wispy carbonate infilled fractures.	E7183	164.53	164.86	.33	-	-	-	-
		169.17 169.64 As above.	E7184	169.17	169.64	. 47	_	_	-	
		171.03 172.64 As above. Blocky core. 2, 1 to 2 cm quartz carbonate veins.	E7185	171.03	172.64	1.61	-	-	-	-
		174.10 175.08 As above. 5 to 10% smokey grey to glassy quartz veins at 30 dominantly at degrees.		174.10		.98	•	-	-	-
		178.99 179.30 As above. 3 cm quartz carbonate vein at 40 degrees. 183.29 184.56 As above. Moderately K metasomatized. 1 to 2		178.99		.31	-	-	-	-
		cm smokey grey quartz carbonate vein at 35 degrees. 186.12 186.59 Similar to 140 to 142.		183.29		1.27	-	-	-	-
		POSTIT TOOLO, SIMILEL FO TAO FO TAT'	£7189	186.12	186.59	. 47	-	-	-	-

FROM TO

-----DESCRIPTION----

SAMPLE FROM TO

TO LENGTH Au g/t RERUN REJECT AVERAGE

188.37

END OF HOLE

DRILLING BY NOREX DRILLING LTD., PORCUPINE, ONTARIO.

66 Feet of BW casing pulled and 100 feet of NW casing was pulled, leaving the.
Remainder of the casing in the hole.

CORE STORED AT DOME MINES, SOUTH PORCUPINE, ONTARIO.

CORE CHECKED FOR RADIOACTIVITY AND FLUORESENCE - NOTHING OF INTEREST.

6EOLDBY: The entire hole intersected predominantly barren medium to coarse grained monzonitic to locally syenodioritic acid intrusive. No significant shearing was observed. Light to moderate alteration was commonly associated with glassy to smokey grey quartz and or quartz carbonate veins or chlorite and carbonate infilled fractures.

ECONOMIC GEOLOGY: Some of the quartz and quartz carbonate veins had coarse grained pyrite blebs and occasionally molybdenum infilled fractures. These veins may be anomalous in gold. It is presumed that the alteration zone intersected in hole 280a-6 pinches out to the north and this is why the zone was not intersected in this hole.

B Redham

PLACER DOME INC.

REF CORD: 9770.0 9500.0 SURVEYED: NO

5+00W

POST LOCATION: 98m S and 100m W to POST 3, CLAIM P.789917

DIAMOND DRILL RECORD

HOLE NO: 250A-3

DIHUDUD DETER

PROPERTY: PROJECT 280A

BLACKSTOCK TWP., ONTARIO

SECTION:

AZIMUTH:

LOCATION: L2+30S

35.0

LENGTH:

BRID: EAST-WEST

153.6

ELEVATION:

.0

LOSGED BY: T. TENNENT

DIP

-45.0

CORE SIZE:

SYSTEM OF MEASURE: METRIC

DATE LOSSED: OCTOBER 27, 1988

STARTED: OCTOBER 24, 1988

COMPLETED: OCTOBER 26, 1988

BD

CLAIM NO: P.789917

PURPOSE: To test magnetic low, IP target and possible N-S shear

DIP TESTS (corrected)

DEPTH AZIMUTH DIP 50.00 -45.0 DEPTH AZIMUTH DIP 150.00 -44.0

FROM TO

----DESCRIPTION-----

BAMPLE FROM

TO LENGTH Au g/t RERUN REJECT AVERABE

.00 45.70 CASING IN DVERBURDEN

45.70 90.50 MONZONITE

Pink, black, dark green, white. Medium grained. Hardness 6. Non foliated to weakly foliated at 55 degrees to the core axis. Moderately magnetic.

Trace pyrite.

45.70 Weakly to moderately broken core.

Sthe core axis. Trace pyrite.

 $\hat{A}^{\dagger}t$ 55.05 metres a 3 cm quartz veinlet at 50 degrees to the core axis. Barren.

O(N) Cat 58.24 metres a 5 cm quartz veinlet at 45 degrees to the O(N) Cat 58.24 metres a 5 cm quartz veinlet at 45 degrees to the O(N) Cat O(N) and O(N) and O(N) are axis. 1% blebs pyrite.

 $\bigcap_{i \in A} \bigcap_{j \in A} A_j$ 64.43 metres a 3 cm quartz veinlet at 63 degrees to the $\bigcap_{i \in A} \bigcap_{j \in A} A_j$ core axis. Trace pyrite.

At 75.60 metres a 5 cm quartz veinlet at 40 degrees to the core axis. 10 cm silicified selvages with 3% fine grained disseminated pyrite.

At 77.30 metres a 1 cm quartz stringer at 55 degrees to the core axis. 2% disseminated pyrite.

ASSESSMENT R CFRICE DEOTX (9)

30

m

O

280A-38

FROM TO	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Au g/t	RERUN	REJECT	AVERABE
	At 83.00 metres a 2 cm quartz stringer at 55 degrees to								
	the core axis. 2% disseminated pyrite.								
	At 84.15 metres a 2 cm quartz stringer at 70 degrees to								
	the core axis. 2% disseminated pyrite.								
	At 04 74 maters a 37 on supple unit at 78 decrees to the								
	At 84.74 metres a 23 cm quartz vein at 35 degrees to the								
	core axis. Trace disseminated pyrite. 20 cm silicified and K metasomatized selvages with 1% disseminated pyrite.								
	warmsommerizan sarvages with it disseminated pyrite,								
	54.90 55.20 3 cm quartz veinlet at 50 degrees to the core	E4348	54.90	55.20	.30	_	_	_	
	axis. Barren,	10000	34.10	33.20	. 30	_	_	_	_
	58.20 58.60 5 cm quartz veinlet at 45 degrees to the core	E6369	58.20	58.60	.40	-	_	_	_
	axis. 1% blebs pyrite.	2000,	20120	30.00	. 70		_	_	-
	64.30 64.60 3 cm quartz veinlet at 63 degrees to the core	E6370	64.30	64.60	.30	_	_	_	_
	axis. Trace pyrite,	20370	04100	07.00	. 30	-	_	-	_
	69.60 69.70 Three 6 mm quartz stringers at 53 degrees to	E6371	69.60	69.70	.10		_	_	_
	the core axis. 1% pyrite.	20071	07. OV	B71/V		-	_	_	_
	75.50 76.00 See description above.	E6372	75.50	76.00	.50	-	_	_	_
	84.70 85.20 See description above.	E6373	84.70	85.20	.50	-	_	_	_
	89.25 B9.60 Bilicified and K metasomatized monzonite with	20070	94170	55120	. 50	-	-	_	_
	1% pyrite. Three 3 mm quartz stringers at 62								
	degrees to the core axis, 1% pyrite.								
	At 90.50 metres lower contact sharp at 52 degrees to the								
	core axis.								
	89.25 89.60 See description above.	E6374	89.25	89.60	.35	-	-	-	-
90.50 101.50	ALTERED MONZONITE								
	Pink, black, white. Hedium grained. Hardness 6. Moderately								
	magnetic. Non foliated.								
	,								
	75% Moderately silicified and K metasomatized, weakly								
	sericitized monzonite with 2% fine grained disseminated	E							
	pyrite and 5% quartz veinlets. The monzonite has been								
	hydrothermally altered around the quartz veinlets. The								
	crystal boundaries are diffuse. There are 25% short bands								
	of weakly altered monzonite.								
	90.50 92.00 1% to 2% pyrite. Five 5 mm to 1 cm quartz	E6375	90.50	92.00	1.50	-	_	_	_
	stringers at 53 degrees to the core axis, 1% pyrite.			,,,,,,					
	92.00 93.50 2% pyrite. Five 5 mm to 1 cm quartz stringers	E6376	92.00	93.50	1.50	_	_	_	-
	at 35 degrees to the core axis, 1% pyrite,			, , , , ,				_	•
	93.50 95.00 1% pyrite. Three 1 to 2 cm quartz stringers at	E6377	93.50	95.00	1.50	-	-	_	-
	35 degrees to the core axis. Barren to trace pyrite.								
	95.00 96.50 1% pyrite. Eight 4 am to 8 cm quartz stringers	E6378	95.00	96.50	1.50	_	_	_	_
	at 13 to 40 degrees to the core axis, barren to 1% pyrite.							-	
	96.50 98.00 1 to 2% pyrite. Six 2 am to 1 cm quartz	E6379	96.50	98.00	1.50	_	-	-	-
	A STATE OF THE OWN OF THE MENT OF								

•	

FROM TO	DESCRIPTION	SAMPLE	FROM	TO	LENBTH	Au g/t	RERUN	REJECT	AVERAGE
	stringers at 20 to 35 degrees to the core axis, trace pyrite.								
	98.00 99.50 1% pyrite. Two 1 cm quartz stringers at 25 degrees to the core axis, 1% pyrite.	£63B0	98.00	99.50	1.50	-	-	-	
	99.50 101.00 <1% pyrite. Four 2 am to 9 cm quartz stringers at 25 to 35 degrees to the core axis, trace pyrite.	E6381	99.50	101.00	1.50	-	-	-	-
	101.00 101.50 <1% pyrite. Two 1 cm quartz stringers at 25 degrees to the core axis, trace pyrite.	E6382	101.00	101.50	.50	-	-	-	-
101.50 134.50	SYENDDIORITE Dark green, white, pink. Fine grained to medium grained. Hardness 6. Non foliated. Moderately magnetic. Contact between monzonite and syenodiorite is gradual.								
	Weakly chloritic. Very weakly calcareous.								
	Barren to trace very fine grained disseminated pyrite.								
	101.50 Lower contact gradual.								
	116.55 116.85 5 cm quartz veinlet at 50 degrees to the core axis, barren. 2% pyritic selvages.	£6383	116.55	116.85	.30	-	-	-	-
	120.20 120.40 1 cm quartz veinlet at 50 degrees to the core axis, barren. 2% pyritic selvages. 133.20 133.67 Unit becomes strongly biotitic and calcareous towards the contact.	E63B4	120.20	120.40	.20	-	-	-	-
	133.67 134.50 Moderately silicified and carbonatized (calcite).								
	133.67 134.50 2% pyrite. Four 5 mm quartz stringers at 50 degrees to the core axis, barren. Moderately silicified and carbonatized.	£6885	133.67	134.50	. 83	-	-	-	-
134.50 153.62	INTERBANDED CARBONATIZED ULTRAMAFIC KOMATIITE AND CONTAMINATED ACID INTRUSIVE 66% Contaminated symmetric interbanded with 34% carbonatized ultramafic komatiite. The symmetric is dark grey. Fine grained. Hardness 4 to 5 Original fabric of rock destroyed. 5% relict feldspar phenocrysts. Minor zenoliths of ultramafic komatiite. Moderately to strongly carbonatized (calcite) and moderately biotitic. Meakly magnetic. Trace disseminated pyrite.	·							

_	
•	

FROM TO	~~~~~~~~	DESCRIPTION	SAMPLE	FRON	TO	LENSTH	Au g/t	RERUN	REJECT	AVERA
	grained. Har axis. Mode	ic komatiite is dark green grey. Very fine dness 2.5. Foliated at 45 degrees to the core rately magnetic. Strongly carbonatized talcose. Barren.								
	134.50	Lower contact sharp at 40 degrees to the core axis.								
	134.50 135.20	See description above. Carbonatized ultramafic komatiite.	E6386	134.50	136.00	1.50	-	-	-	-
	133.20 13/.10	Contaminated symmodiorite. 1% pyrite.								
	136.00 137.10	See description above. Carbonatized ultrahafic komatiite.	E6387	136.00	137.10	1.10	-	-	_	-
	139.20 141.75	Contaminated symmotionite. Trace pyrite.								
	141.75 142.00	Carbonatized ultramafic komatiite.								
	142.00 142.75	Contaminated sympodiorite. Trace pyrite.								
	142.75 143.00	Carbonatized ultramafic komatiite.								
	143.00 143.36	Contaminated symnodiorite. Trace pyrite.								
	143.36 147.30	Carbonatized ultramafic komatiite. Lower								
	147,30 153.62	contact at 35 degrees to the core exis. Contaminated symmotionite. Up to 1% pyrite.								
	149.30 150.30 at 50 degree with 2% pyrite	Five 3 am quartz stringers with trace pyrite so to the core axis. K metasomatized selvages	E9288	149.30	150.30	1.00	-	-	-	•
	150.30 151.40	Six 3 mm quartz stringers with trace pyrite to the core axis. K metasomatized selvages	E6389	150.30	151.40	1.10	-	-	-	-
62	END OF HOLE									

GEDLOGY: Hole 280A-38 intersected monzonite, altered monzonite, symmodicrite and intercalated carbonatized komatiites and contaminated symmodicrite. From 90.50 to 101.50 meters, an eleven meter zone of weakly magnetic, moderately K metasomatized and silicified monzonite with 2% pyrite was encountered. The unit has 5% quartz veinlets with up to 1% pyrite. This zone would account for the weak IP anomoly and the magnetic low. No shearing was encountered.

ECONOMIC GEOLOGY: The quartz veinlets with 2% disseminated

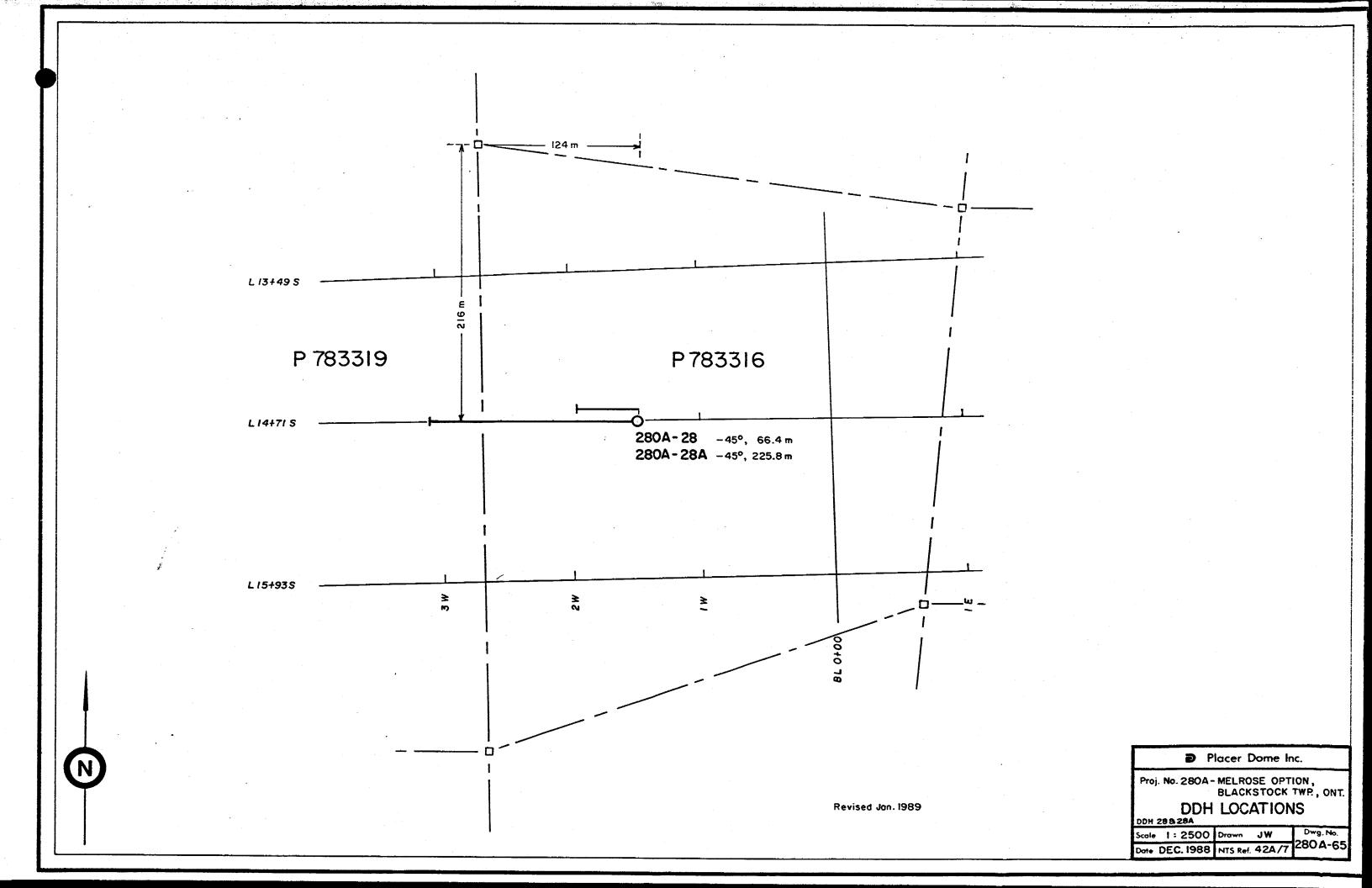
FROM TO

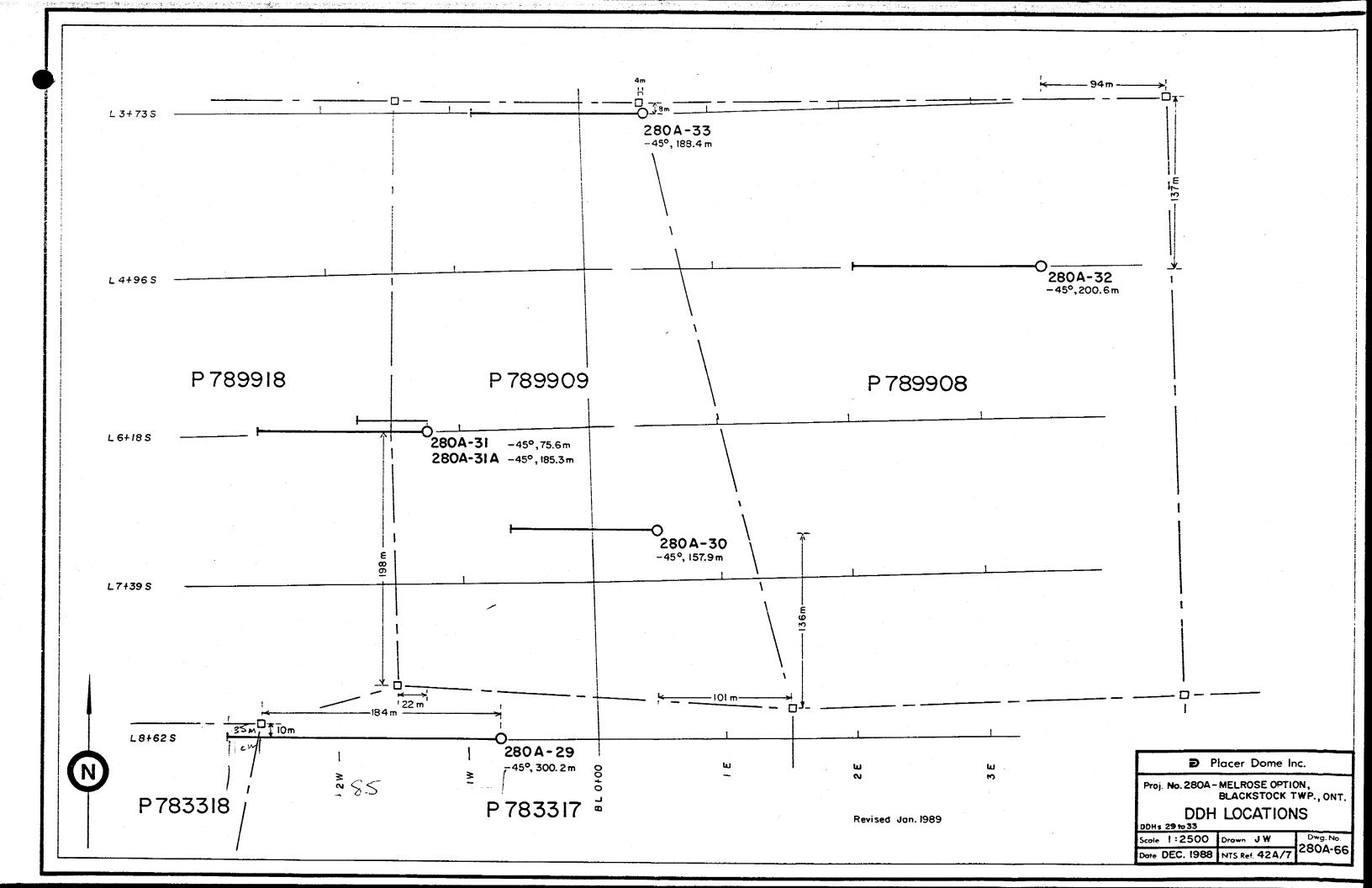
-----DESCRIPTION-----

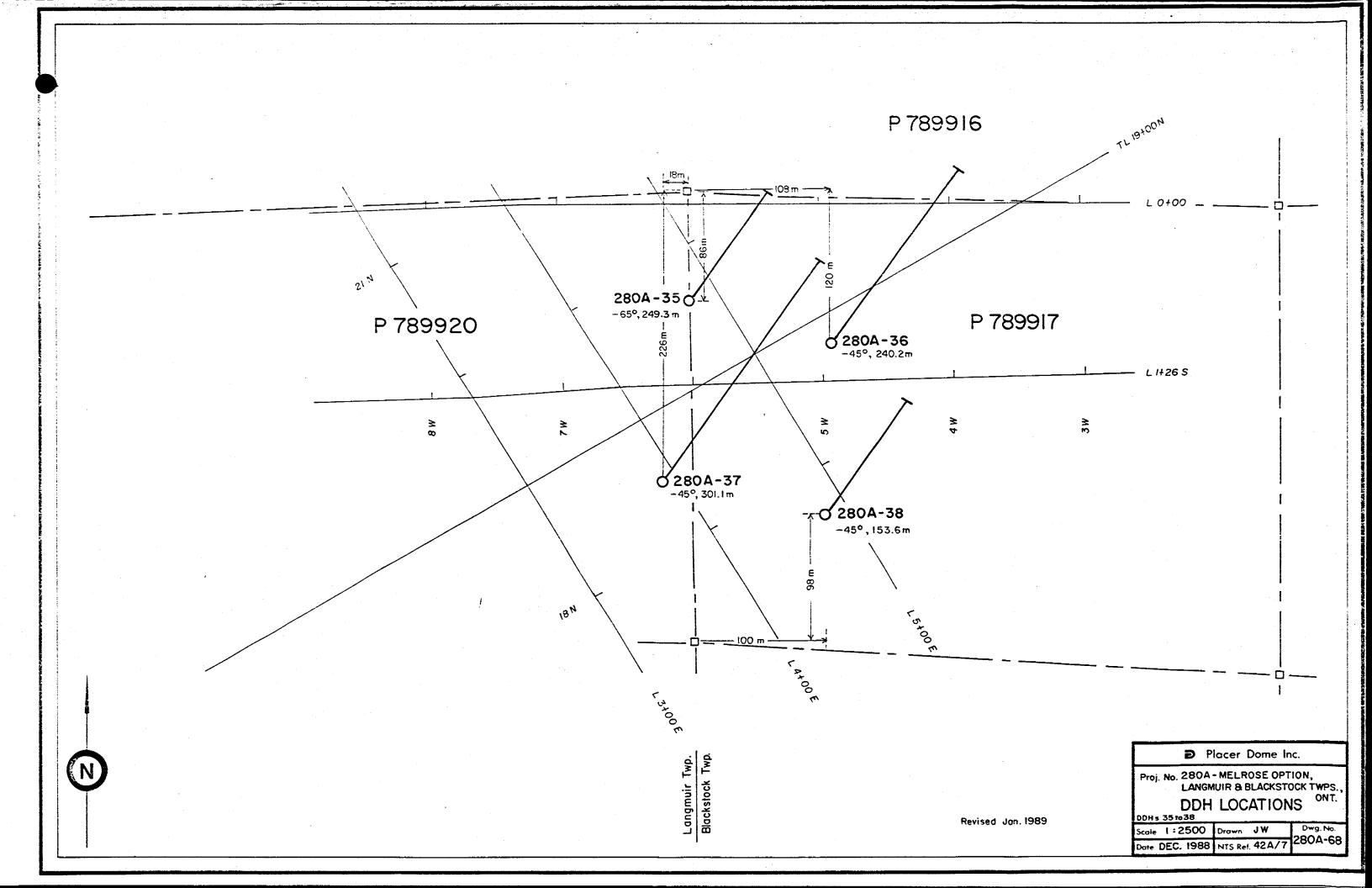
SAMPLE FROM TO LENGTH Au g/t RERUN REJECT AVERAGE,

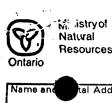
pyrite found in the zones of altered monzonite may be anomolous in gold.

CASING LEFT IN HOLE.


DRILLING BY NOREX DRILLING LTD., PORCUPINE, ONTARIO.


CORE CHECKED FOR RADIOACTIVITY AND FLUORESENCE - NOTHING OF INTEREST.


CORE STORED AT DOME MINES, SOUTH PORCUPINE, ONTARIO.


5 needhan

ASKEN

Power Stripping

Report of Work e Mining Act

Instructions - Supply required data on a separate form for each

	type of work to be recorded (seal table below)
-	For Geo-technical work used forming 1362,"Report of Work (Geologica) Geophysical Geophysical and Expenditures)".
	of Work (Geologica) Geophysical Geophysical and
	Expenditures)". The II of IV . X LV LV

Prospector's Licence No

Intario	Resource	s of Work	1//83055
			Th
Vame and	tal Ad	dress of Recorded	Holder

Placer Dome Inc.

P.O. Box 35	0, Su	ite 350	O, IBM	Tower	TD C	entro					
Toronto, Or	ntario	M5K	1N3		, 15 0	Chere					
Summary of Work Performand	e and Di	stribution	of Credits	·	***			·			·
Total Work Days Cr. claimed		Mining Clair		Work	М	ining Claim	Wor	k A	Aining Claim	l v	Work
4, 638	Prefix	Num	ber D	ays Cr.	Prefix	Number	Days		Number		ys Cr.
for Performance of the following work. (Check one only)	P	_75530	4 et 41	S€	e. Sche	dule "A"					
Manual Work	ya Parije Liva				THE KANAGE		l	147.65			
Shaft Sinking Drifting or other Lateral Work.					§ III						
Compressed Air, other Power driven or mechanical equip.											
Power Stripping					42.	407SW0017 16	BLACKSTOCK			900	Ø
Diamond or other Core driffing											
Land Survey											· · · · · · · ·
All the work was performed on Mi	ining Clain	n(s): P78	33316, 7	8331	77 783	318, 7833	19, 789	908, 789	909 7899	17/ 7	9001
Required Information eg: typ											099.
toquire information eg. typ	c or equi	pinent, IV	airies, Audi	esses, e	10. (See	Table Below	/ राज्याः च्याप्ताः				
DDH 280A-028A	2	25.8m	(740.8	11 V	İ	11)) 2	Na				
280A-029		00.2m	(984.9		1	1861		-14/# 1			
280A-030		57.9m		•		H_{i}		•			
280A-031			(518.0	•	1	JAN	23 1989	1			
		75.6m	(248.0		1			1			
280A-031A		35.5m	(608.6	')~	- [(h as a	The same of the sa	1			
280A-032	20	00.6m	(658.1	1)/	<u>.</u>	10 10 1 1 W	Company on a same acres.	الهام تحميدا الدواد والاستال			
280A-033].8	38.4m	(618.1								
280A-038		53.6m	(503.9						e de la caración de la calenda de la cal	-1	
		, o . o	(303.9	1.				110/18	\$1.5502.3	1	
							1	* * 97 - 2 W	18 7 9 4 B		
										1	
			(4,880.4	1') 🗸	242	Credit					
							į.	JAN 23	1989	1	
Drilling by	Norex	Dring	ing btd.	***	· Name of the latest of the la		1	• • • • • • • • • • • • • • • • • • • •	1000		
	Porci	pine.	BAEST 150 ASSESS	ROUN.	SURVE	v I	- 1			l	
		1	assess,	VENT	FILES	``	1			ļ	
0		11	O	FICE		1	L			l	
Core Size:	BQ					1					İ
		il	DEC	1 7 1	uan	1					
		- 1	DLU	L to 1							
		Ĭ.			Ic	ale of Report	′00		Holder or Agen		ure)
		ļ	BECE			ec. 21/	88	1/1	Sal Pro	1	
ertification Verifying Report	of Work	L	and the second second	- 1 V	□ 0 ' -	1	·		***	/	
I hereby certify that I have a per or witnessed same during and/or	sonal and after its c	intimate kn	owledge of t	he facts	set forth i	n the Report o	of Work anne	xed hereto, h	aving performe	the wor	rk
Name and Postal Address of Person											
John Morganti, 1	Manage	r Foni	oratio-	n i	.	_]
P.O. ROV 350 C	itea >	r' nybı	oracton	, PI							
P.O. Box 350, Si	urce 3.	ono' TB			[c	ate Certified		Certified b	y (Signature)	,	
TD Centre, Toron			M5K 1N			Dec. 21/	88	1 1//	Mr Men	7	
able of Information/Attachmo	ents Regi	ired by the	he Minina F	Record				1	· · · · · · · · · · · · · · · · · · ·	·	

Type of Work Specific information per type Other information (Common to 2 or more types) Attachments Manual Work Nil Shaft Sinking, Drifting or Names and addresses of men who performed Work Sketch: these other Lateral Work manual work/operated equipment, together ere required to show with dates and hours of employment. the location and Compressed air, other power Type of equipment extent of work in driven or mechanical equip. relation to the nearest claim post. Type of equipment and amount expended.

Names and addresses of owner or operator

Note: Proof of actual cost must be submitted

within 30 days of recording.

SCHEDULE A

Claim No.	Days of Work	Claim No.	Days of Work		
n 755204	40	P 783338	40		
P 755304	40	783339	40		
781350	40	783340	40		
781351	40	783341	40		
781352	20	783342	40		
781353	20	783343	40		
781354	20	783344	40		
783302	20	783349·	40		
783303	20	783350	40		
783304	20	783351	40		
783305	20	789695	40		
783306	20	789696	40		
783307	20	831720	60		
783308	20	836654	20		
783311	20	836655	20		
783312	20	836656	20		
783313	20	836657	20		
783314	20	836658	20		
783315	20	836659	20		
783316		836660	20		
783319	20	836664	20		
783320	20	836665	20		
783321	20	836666	40		
783322	20	836667	40		
783323	20	836668	20		
783324	20		20		
783327	20	836669	20		
783328	20	> 836980	40		
783329	40	848689	40		
783330	40	848690	40		
783331	40	848691	10		
783336	40	848692	40		
783337	40	848697	,,,		

· · ·	Davis of Homb	Claim No.	Days of Work
Claim No.	Days of Work	P 852658	40
P 848698	40	852659	40
848699	40	852660	40
848700	40	852661	40
849138	60	852662	40
849139	60	852663	40
852335	40	852664	40
852336	40	852665	40
852337	40	852666	40
852338	60		40
852339	60	852667	40
852340	40	852668	40
852341	40	852669	40
852342	40	852700	40
852343	40 .	852701	40
852438	33	852702	40
852640	40	852703	40
852641	40	852704	40
852642	40	852705	40
852643	40	852706	
852644	40	852707	40
852645	40	852708	40
852646	40	852709	40
852647	40	852843	40
852648	40	852844	40
852649	40	852845	40
852650	40	852846	35
852651	40	852847	60
852652	40	852848	60
852653	40	852849	60
852654	40	852850	60
852655	40	852851	60
852656	40	852852	60
852657	40		

LEGEND

CANCELLED PATENTED LAND

LANGMUIR

6

The Carrier

9M

VIAIVIAU LANGMUIR 3M. A.B. McLENNAN O.L.S. |\$.1189 |1236\/2 W3422 1088885 Nighthowk Loke 79,000 78999 ₽°¢ 79293 79289 9003 79002 1075032 79291 79288 075033 947502 70808 P 70814 C.L.M. 142 P 962 62 P 70818 P.70568 > 2 140 P. 7867 77 3,0022 P. 64 8 52324 852325 1852326 947508 P.70823 ROAD 852182 852183 P 70 831 P. 70090 141 C.L.M. AL BOT 143 P.70586 P. 70567 P. 70568 1947513 19475/4 R 70597 P.70591 P.70595 413327 85 P 413328 947553 85620 P 94753 P 947530 85620 P 65642 Ø 856k5 ⊗ 087 8 5848 _8<u>5624</u> | 246 789923 83 Ø (65€5) Ø P® 2M. P.50888 215772 947561 1947560 1947544 1947543 1947525 1947524 826412 1026403 P B26407 826403 826404 826405 826406 947583 1826405 | 826406 7534401753439 !779943 792562 852648 852649 1852650 1852651 RSC.218 852655 857654 780002 780003 790502 257 1074258 035043 656 779590 779597 779596 FALLON