

TIMMING

42A07SW2005 2.19562

010

DIAMOND DRILL REPORT

INTERNATIONAL CANALASKA RESOURCES LTD.

TIMMINS PROPERTY

NTS 42A/SE

2.19562

Andrew Tims NORTHERN MINERAL EXPLORATION SERVICES April 30, 1999 Timmins, Ontario

- ----

TIMMINS

42A07SW2005 2.19562

010C

INTRODUCTION 1 LOCATION AND ACCESS 1 CLAIMS AND OWNERSHIP 1 **PREVIOUS WORK** 2 DRILL PROGRAM SUMMARY 3 **REGIONAL GEOLOGY** 4 **PROPERTY GEOLOGY** 4 Lithology 4 Drill log Summary 5 **Alteration and Mineralization** 7 CONCLUSION AND RECOMMENDATIONS 7 REFERENCES 8 STATEMENT OF QUALIFICATIONS 9 **APPENDIX 1 – DIAMOND DRILL LOGS & LEGEND** 10 **APPENDIX 2 - GOLD ASSAY AND ICP ANALYSIS CERTIFICATES** 11 **APPENDIX 3 – NAMES AND ADDRESSES OF CLAIM HOLDERS** 12 **APPENDIX 4 – DRILL HOLE LOCATION MAP AND SECTIONS** 13

TABLE OF CONTENTS

FIGURES

Figure 1 Figure 2	Timmins Property Location Map Timmins Property Claim Map
	TABLES
Table 1 Table 2	Timmins Property Claims List Diamond Drill Program Details
	MAPS
Map 1	DDH Locations (1:5 000)
Map 2	Section 400W, TT99-01 (1:200)
Map 3	Section 200W, TT99-02 (1:200)
Map 4	Section 700E, TT99-03 (1:200)
Map 5	Section 200W, TT99-04 (1:200)

INTRODUCTION

This report presents and summarizes the results of a 4 hole, 624 metre NQ diamond drill program carried out for International CanAlaska Resources (ICA) on their Timmins Township property located southeast of the city of Timmins. (Figure 1).

The drill program was conducted between March 22nd and 29th, 1998. All four holes were drilled on the existing grid about Dougherty Lake with a baseline oriented at N45°W. Drill targets were developed from a combination of IP, magnetic and VLF surveys.

Bill Howell of International CanAlaska Resources Ltd. managed the program with field supervision by Andrew Tims.

LOCATION AND ACCESS

The Timmins property is located in Timmins and Michie Townships of the Porcupine Mining Division. The property is approximately 47 kilometres southeast of the city of Timmins on NTS sheet 42A/SE.

Access to the property is gained via the Gibson Lake Road approximately 50 kilometres east of Timmins along Highway 101. The Gibson Lake Road traverses the northeastern portion of the property, crossing the properties northern boundary 24 kilometres south of Highway 101. A series of logging roads off of the Gibson Lake Road access the southern portion of the property. (Figures 1& 2)

CLAIMS AND OWNERSHIP

The Timmins property consists of 48 contiguous unpatented claims, comprising approximately 9 472 hectares, in 577 claim units (Figure 2). International CanAlaska Resources has an option to earn a 50% interest in the property from East-West Resource Corp., Canadian Dragon Resource Ltd. and Cross Lake Minerals Ltd. A list of the claims is found in Table 1 with the names and addresses of the registered owners in Appendix 3.

Claim Number	Units	Due Date	Township	Registered Owner
1193700	16	June 14, 2000	Timmins	
1193701	8	June 14, 1999	Timmins	
1193702	1	June 14, 1999	Timmins	
1193703	16	June 14, 1999	Timmins	
1193706	12	June 14, 1999	Timmins	
1193745	16	September9, 2000	Timmins	50% East-West Resource Corp.
1193746	16	September 8, 2000	Timmins	50% Canadian Golden Dragon
1193747	16	September 8, 2000	Timmins	
1193748	3	September 8, 2000	Timmins	
1193749	2	September 8, 2000	Timmins	
1193750	9	September 8, 1999	Timmins	
1207303	16	October 11, 2000	Timmins	
1193533	16	September 8, 2000	Michie	

 Table 1

 Timmins Property Claims List

1193534	16	September 8, 2000	Michie	
1193535	16	September 8, 2000	Michie	
1200259	16	August 24, 2000	Timmins	
1200262	12	August 24, 1999	Timmins	
1200267	16	August 24, 1999	Timmins	
1200268	16	August 24, 1999	Timmins	
1206912	16	February 19, 2000	Timmins	
1206913	16	February 19, 2000	Timmins	100% East-West Resource Corp.
1200272	16	August 24, 2000	Timmins	
1200280	12	September 8, 2000	Timmins	
1200284	8	September 8, 2000	Timmins	
1200285	16	September 8, 2000	Timmins	
1200290	16	September 8, 2000	Timmins	
1200291	8	September 8, 2000	Timmins	
1207301	16	October 11, 2000	Timmins	
1212699	16	January 30, 2000	Timmins	
1212700	4	January 30, 2000	Timmins	
1207056	5	May 16, 1999	Timmins	
1212634	12	November 6, 2000	Michie	which is the second second
1212635	16	November 6, 2000	Michie	
1212636	16	November 6, 2000	Michie	50% East-West Resource Corp
1212637	16	March 9, 2000	Michie	50% Canadian Golden Dragon
1212638	16	November 6, 2000	Michie	
1212639	8	November 6, 2000	Michie	
1212640	8	November 6, 2000	Michie	
1212641	8	November 6, 2000	Michie	
1219347	8	July 2, 1999	Michie	
1219500	12	July 2, 1999	Michie	
1219496	16	July 2, 1999	Michie	
1219497	16	July 2, 1999	Michie	
1223685	4	July 2, 1999	Michie	
1223686	16	July 2, 1999	Michie	100% International CanAlaska
1223687	16	July 2, 1999	Michie	
1223688	4	July 2, 1999	Michie	
1224292	12	July 2, 1999	Michie	

PREVIOUS WORK

A lack of outcrop has hampered exploration in the area until recently:

- 1937 the Steven-la Casse claims, partly covering the present day claim group were staked;
- 1940 L.G. Berry of the Ontario Department of Mines mapped the Langmuir-Sheraton area sampling a quartz-sericite schist with pyrite mineralization in Timmins Township;
- 1972 Cominco completed a magnetic and VLF survey along the Sheraton-Timmins Township boundary;
- 1972 The Geological Survey of Canada covered the area with a reconnaissance scale Lake sediment survey;

- 1980 The Ontario Geological Survey mapped a 6 township area including Timmins and Michie;
- 1983 P. Guenther staked a four-claim block west of Doughtery Lake and drilled a 53 metre hole intersecting interbedded rhyolite tuffs and flows and chloritic tuffs;
- 1988 P. Guenther completed a small trenching program over the claims using a portable drill and explosives;
- 1992 East West Resources Corp. staked the current claim block.
- 1993 280 kilometres of grid line, magnetic and IP surveys were carried out by East-West Resources and joint venture partner Canadian Golden Dragon Resources;
- 1995 Royal Oak Mines optioned the claim block and completed a total of 54.5 kilometres of IP and three DDH (TT95-1, 3,& 11) totalling 887 metres;
- 1996 A 'B' horizon soil sampling program of 336 soil was completed on the western half of the property with a four hole DDH program (TT96-4, 14, 25, & 6) totalling 1,198 m;
- 1997 An additional 135.8 kilometres of line cutting, magnetic, VLF, and Max-Min surveys were completed with a single 210 metre DDH finished on claim P1193700.
- 1998 A detailed mapping program was carried out over an area of limited outcrop West of Dougherty Lake during September to evaluate the mineralization and alteration associated with the Sulphide and Sericite Showings. A follow-up drill program totalling 937 metres was completed during the month of November on the Dougherty Lake grid and a newly established grid in the northern half of Timmins Township.

DRILL PROGRAM SUMMARY

Drilling commenced on March 22nd and was completed on March 29th, 1999. NDS Drilling Ltd. of Timmins, Ontario was contracted to perform the diamond drilling using a Boyles 37 drill rig. The drill program consisted of 4 NQ holes, numbered TT99-01 to TT99-04, totaling 624 metres.

The drilling was carried out solely on claim P1193700. All holes were collared at a dip of - 45°. Diamond drill logs are included in Appendix 1 while assay certificates for gold and 34 element ICP are listed in Appendix 2. Drill plans and sections are located in Appendix 4.

A total of 80 samples were taken for Au by fire assay with AA finish and 34-element ICP scan. Samples returning values greater than 1,000 ppm zinc by ICP analysis were reassayed using a concentrated nitric and hydrochloric acid digestion and an AA finish. Five samples were also analyzed for whole rock oxides plus an extended package for rare earth elements. Chemex Labs in North Vancouver carried out all assaying. Sample lengths averaged 2.0 metres.

Samples were logged and split in the Echo Bay Mines core facility at the Aquarius Mine property and shipped by the author to the Chemex Labs prep facility in Timmins on a daily basis. All drill cores are stored outdoors at the Aquarius Mine property.

Hole	Easting	Northing	Azimuth	Dip	Length
TT99-01	4+00E	4+85N	RYO GRD 180°	-50°	152.0
TT99-02	2+00E	0+50N	RYO GRD 180°	-50°	155.0
TT99-03	7+00E	2+50S	RYO GRD 180°	-50°	146.0
TT99-04	2+00W	4+95N	RYO GRD 180°	-50°	170.0

	Ta	ble 3	
Diamond	Drill	Program	Details

REGIONAL GEOLOGY

The Timmins property is underlain by Archean aged rocks of the northeast trending Abitibi greenstone belt, cut by minor Proterozoic diabase dykes. The supracrustal rocks within the immediate area of the property have previously been included within the Watabeag Assemblage of Jackson and Fyon, 1991. New tectonic revisions by Ayer et al. 1999 have recognized that the Abitibi greenstone belt is composed of nine distinctive stratigraphic units (assemblages) based on geochronology, lithology and temporal relationships. Economic base mineral deposits are restricted to specific assemblages identifiable by chemically distinctive felsic volcanics over specific stratigraphic intervals.

The Timmins property straddles about 15 kilometres of strike length of the conformable contact between the Tisdale and Kinojevis assemblages (Ayer et al. 1999). The Tisdale assemblage is subdivided into two suites: 1) a tholeiitic to komatiitic suite (lower) and; 2) a calc-alkaline suite (upper) predominately consisting of intermediate to felsic pyroclastic rocks. The Kinojevis assemblage is a thick sequence of tholeiitic mafic volcanics. Geological mapping and diamond drilling by ICA in the Dougherty Lake area of Timmins Township has encountered a predominately calc-alkaline volcano-sedimentary succession consisting of mafic tuffs and flows grading to felsic/intermediate tuffs in the western portion of the property. Hence, work to date by the government survey and ICA has determined that the Timmins property covers a portion of the Upper Tisdale assemblage.

The Upper Tisdale assemblage hosts the 6.6 Mt Kamiskotia Cu+Zn deposit northwest of Timmins and the base metal deposits of the Val d'Or formation in Quebec. Calc-Alkaline pyroclastics of the Upper Tisdale assemblage in Sheraton Township, to the north, are host to significant base metal mineralization that is currently under investigation by Cross Lake Minerals.

PROPERTY GEOLOGY

Lithology

The ICA drill program intersected: tuffaceous sediments, mafic tuffs and lapilli tuffs, intermediate tuffs and crystal tuffs plus mafic, feldspar porphyry and diabase dykes. A classification criterion for each lithology is described in the following section.

Sediments

Tuffaceous Sediment (coded 5t) is mottled light to dark grey in colour, fine grained with 1-3% mafic volcanic lapilli, locally 3-4% medium grained subhedral feldspar averaging 2-3 millimetre in diameter. Pale grey irregular blebs of aluminosilicates occur throughout averaging 1-5%. The blebs consist of a very fine-grained fibrous mineral radiating out from the middle of the bleb possible indicating the presence of sillimanite. The unit is generally weakly fractured throughout with carbonate infilling of fractures and is cut by millimetre scale light grey quartz veinlets at 45° to the core axis containing trace pyrrhotite.

Volcanics

Mafic Tuff/Lapilli Tuff (coded 3t, 3lt) is dark green-dark grey in colour. Tuffs consist of 30-40% fine-grained chloritic ash size fragments and 5-8% mafic lapilli. The matrix is weak to moderately biotitic with trace subhedral feldspar 1-2 mm in size. Lapilli tuff and Lapilli-stone

have a similar matrix but also contains up to a maximum of 40% lapilli. Some lapilli (<5%) are partially sericitized. This unit typically plots out as a calc-alkaline basalt to an andesitic basalt on the SiO₂ vs. Zr/TiO_2 plot of Winchester & Floyd, 1977 (See Appendix 2).

Intermediate Tuff/Flows (coded 3t,3a) is a light grey to green, moderately to strongly foliated as indicated by 5:1 stretch ratios of fragments and the presence of ptymaticly folded quartz veinlets. A hard, competent unit typically contains 5-8% white euhedral feldspar (albite?). Tuff contains 2-3% angular pale grey lapilli and 1-2% spherical quartz filled amygdules. The amygdules? typically possess pressure shadows. Trace carbonate along fractures. Trace-1/2% disseminated pyrite. This unit typically plots out on the SiO₂ vs. Zr/TiO_2 plot of Winchester & Floyd as an andesite.

Felsic to Intermediate Crystal Tuff (coded 2xt) is similar in colour and lapilli content to the Intermediate Tuff described above but contains up 35-40% medium grained euhedral to subhedral white feldspar. The phenocrysts occur in bands consisting of 50-60% crystals ranging in size from 5 to 15 centimetres. Individual crystals are typically fractured, with minor sericite or epidote alteration along their outer margins and show evidence or rotation and weakly developed pressure shadows. This unit typically plots out well into the dacite compositional field on the SiO₂ vs. Zr/TiO₂ plot of Winchester & Floyd, 1977 (See Appendix 2).

Intrusives

Mafic Dyke (coded 7g) is grey-green in colour composed of medium to coarse-grained amphibole and feldspar. The unit exhibits a weak foliation and is moderately fractured with minor brecciation and weak pervasive carbonate alteration.

Feldspar Porphyry Dykes (coded 8fp) are medium grained, medium grey with 30-40% subhedral to euhedral beige to pink feldspar within variably silicified groundmass. One centimetre wide quartz veinlets containing trace pyrite locally cut the dykes. Typically trace-1/2% very fine-grained pyrite occurs throughout the groundmass.

Granite Dyklets (8g) were originally identified as subrounded felsic lapilli and blocks within a mafic tuff in hole TT99-04. The swarm of 2-8 centimetre wide granitic dykes have been folded and boudinaged by the moderate foliation that is ubiquitous throughout the immediate area of the drill hole. Moderate to strong sericite alteration has replaced the original feldspar rich matrix leaving only 2-3% medium grained quartz and 5-8% fine grained biotite.

Diabase (coded 9) dykes (Matachewan) are dark grey to black, medium to coarse grained and are weak to moderately magnetic. Topographic highs in the map area are dominated by outcropping diabase.

Drill log Summary

TT99-01 was spotted to test a zone of moderate chargeability coincident with a resistivity low 200 metres east along strike of a base metal intersection encountered in hole TT96-16 by Royal Oak Mines Ltd. Fine-grained, garnetiferous and poorly sorted tuffaceous sediment was collared into at 16.4 metres to depth of 21.7 metres. The mafic tuff, which followed to the end of the hole at 152 metres, was weakly fractured and variably altered by sericite. An interval of moderate to intense sericite alteration occurred from 33.9 to 77.5 metres with the sericite alteration initially being introduced as centimetre scale alteration haloes about quartz veinlets. The core of the 43 metre altered interval consisted of strong to intense sericite alteration. No dominant structural feature was noted. The IP anomaly was explained by ½ to1% disseminated pyrite within the intensely altered interval.

TT99-02 was spotted to test a wide zone of moderate chargeability 125 m east of the sericite showing and 100 m west of hole TT96-15. The hole collared into massive andesitic flows and flow top breccias from 6.3 to 79.2 m. The volcanics were amygduloidal, variably fractured, weakly chloritized and were cut by numerous tight slip faces and fault gouges. A mottled grey to green coloured andesite ash tuff followed to 106.5 m with centimetre scale feldspar crystal tuff interbeds. The tuff unit becomes finer in a down hole direction with 1-2% possible volcanic bombs disrupting the weakly developed bedding. A 10-cm wide hematite stained feldspar porphyry dyklet, within the tuff, occurs at 102.5 m with a guartz/carbonate veinlet containing massive very fine-grained tourmaline along the wallrock interface. A massive, weakly fractured, hematite stained feldspar porphyry dyke was encountered from 106.5 to 110.1 m carrying 1-2% fine-grained disseminated pyrite. The andesite tuff following the dyke is moderately silicified with minor sericite and hematite staining about fractures to 126.5 m. A dacite tuff to lapilli tuff followed to 132.2 m with verv sharp leading and trailing contacts. The moderate foliation within the dacite tuff showed minor deflections about fractures and ptygmatic folding of late quartz veinlets. A dacite feldspar crystal tuff consisting of 8-10% euhedral to subhedral albite feldspar and trace lapilli was encountered to a depth of 146.6 m. A fine-grained, massive, amyoduloidal dacite flow finished the hole at 155 m. The chargeability is interpreted to be 1-2% pyrite associated with the 4.4 m hematite stained feldspar porphyry dyke with 1-2 disseminated pyrite.

TT99-03 was spotted to test a moderate IP chargeability anomaly coincident with a weak Cu in soil anomaly. A dacite feldspar crystal tuff with patchy weak to moderate sericite/epidote alteration was collared into from 16.5 to 111.8 m. A 1.8 m interval at 32.45 m possessed dark brown sphalerite within fractures and as part of a subrounded quartz clast (replacement?). The tuff was repeatedly intruded by 2-3 m. fine to medium grained hematite stained zenolith bearing feldspar porphyry dykes averaging trace to ½% disseminated pyrite. A dacite lapilli tuff followed to 120.5 m. The Lapilli tuff was strongly silicified and some of the sericitized lapilli may be the result of selective alteration of the matrix. Quartz lapilli were also noted showing a sense of dextral rotation as evident by the well developed pressure shadows. A dacite tuff, similar to the top of the hole, completed the hole to a depth of 146 m. The source of the IP chargeability is considered to be the numerous fine to medium grained disseminated pyrite within the feldspar porphyry dykes.

TT99-04 was drilled to test a strong IP chargeability anomaly 300 m west along strike of the Sulphide Showing on line 1+00E. A feldspar porphyry dyke was collared into from 6.3 to 9.5 m followed by a dark green moderately foliated calc-alkaline basalt with minor sub meter tuffaceous interbeds to 53.9 m. A fine grained ash tuff with the rare centimetre scale lapilli beds followed to 133 m. The ash tuff was intruded by lapilli to block size, rounded, fluidal looking felsic dyklets. The dyklets were composed of sericite and quartz with minor biotite. The felsic intrusives are foliated, boudinaged and were original mistaken for felsic fragments within a mafic tuff. After 133.0 m the mafic tuff becomes light grey in colour due to the introduction of albite and sericite along fractures. Albite alteration intensifies down hole obliterating all original textures to 137.0 m. Very fine grained, weakly fractured, unaltered

tuffaceous sediment follows to 138.1 m with well-developed aluminosilicate blebs. An intense albite and silica mineralogy hosting 15-20% semi-massive and banded pyrite follows to 139.2 m. A weakly albitized andesite tuff and a massive, amygduloidal andesite flow with weak pervasive albite alteration finishes the hole at 170.0 m. The IP anomaly is due to the 1.1 metre interval of semi-massive pyrite at 138.1 m that yielded only trace amounts of Cu and Zn.

Alteration and Mineralization

The sulphide mineralization encountered in hole TT99-04 is hosted within an intense albite/silica matrix and contains weakly elevated copper and zinc values. The absence of any substantial wallrock alteration, the banded (bedded) nature of the pyrite, an impervious capping sedimentary unit and a depleted europium signature (Gale et al. 1997) within the sulphides indicates the mineralization is syngenetic and distal to any vent facies.

All of the volcanic units encountered have seen substantial mass changes with regards to the mobile elements CaO, K_2O and MgO. Verifying the original host rocks geochemical signature involved the use of trace element data plotted on Winchester & Floyd 1977 (See Appendix 2).

CONCLUSION AND RECOMMENDATIONS

Diamond drill holes TT99-01, 02 & 03 intersected non auriferous disseminated pyrite mineralization either in moderate to strong sericite alteration or within narrow feldspar porphyry dykes. Drill hole TT99-04 extended the Sulphide Showing an additional 300 m to the west for a total strike length of 400 m. The mineralization is syngenetic, is hosted within andesite tuffs, contains only trace amounts of base metals and is distal to any vent facies.

Overall the volcanic succession west of Dougherty Lake is a westward grading sequence of calc-alkalic basalts and andesite to dacite flows and tuffs. It is unclear whether the felsic volcanics encountered in drilling are the same or an altogether different felsic pile as on the Cross Lake Minerals property to the north in Sheraton Township. Mapping by the Ontario Geological Survey in Sheraton Township in 1998 indicates that the felsic volcanics are trending to the southeast toward Lipsett Lake away from the Dougherty Lake area. The possibility of a second and separate felsic pile to the west-northwest of Dougherty Lake substantially increases the potential the discovery of a base metal deposit.

Further work on the Timmins property should include:

- Completion of the IP coverage over the North grid in Timmins Township to cover the indicated strike extension of the felsic volcanics as shown on the map by Vaillancourt, 1999;
- 2) A re-evaluation of the geophysical data, plus follow up IP or geochemistry (soils) over lines 3W to 26 W on the Doughterty grid and;
- 3) Drill testing of any anomalies developed from the recommended work mentioned in 1) or 2);

REFERENCES

- Ayer, J.A., 1999; The Abitibi Greenstone Belt: a Program Overview; *in* Summary of Fieldwork and Other Activities 1998, Ontario Geological Survey, Miscellaneous Paper, p.14-24.
- Berry, L.G., 1940: Geology of the Langmuir-Sheraton Area. Ontario Department of Mines. Vol. 49 part 4.
- East-West Resources Corp. 1995; A report on geophysical surveys on the property East-West Resources Corporation. T-3727
- Fouquet, N.M., Von Stackelberg, U., Charlou, J.L., Erzinger, J., Herzig, P.M., Muhe & Wiedicke, M., 1993; Metallogenesis in back-arc environments: The Lau Basin example. Economic Geology, 88, p.2154-2181
- Gale, G.H., Dabek, L.B., Fedikow, M.A.F., 1997; The Application of Rare Earth Element Analyses in the Exploration for Volcanogenic Massive Sulphide Type Deposits. *in* Exploration and Mining Geology, Vol.6, No.3, pp.233-252.

Guenther, P., 1983; Diamond Drill Hole Log, Timmins Township. T-2615

- Guenther, P., 1988: Trenching Plans, Timmins Township.
- Harvey, P., 1996: May & November Diamond Drill Reports plus Soil Sampling Report. Royal Oak Mines Inc., MNDM Assessment Report T-3776.
- Hornbrook, E.H.W., Gleeson, C.S., 1972; Regional lake bottom sediment till sampling, Timmins to Val d'Or Region, Ontario and Quebec. Geological Survey of Canada, Open File Report 127
- Jackson, S.L. and Fyon, A.J. 1991; The western Abitibi Subprovince in Ontario; in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p.405-482.
- Pyke, D.R., 1980; Geology of the Watabeg Lake area, District of Cochrane and Timiskaming; Ontario Geological Survey. Open File Report 5290. 125p.
- Tims, A.A.B., 1998a: Geological Report on the Timmins Property for International CanAlaska Resources Limited. MNDM Assessment Report, 13p.

Vaillancourt, C., 1999: Project Unit 98-013. Geology of Sheraton Township, District of Cochrane; *in* Summary of Fieldwork and Other Activities 1998, Ontario Geological Survey, Miscellaneous Paper, p. 59-64.

STATEMENT OF QUALIFICATIONS

I, Andrew A. B. Tims, of 309 – 1214 Riverside Drive, Timmins, Ontario hereby certify that:

- 1.) I am the author of this report.
- 2.) I graduated from Carleton University, in Ottawa, with a Bachelor of Science Degree in Geology (1989).
- 3.) I possess a valid prospector's license and have been practising my profession for the past 10 years and have been actively involved in mineral exploration for the past 12 years.
- 4.) I am a member of the Canadian Institute of Mining and Metallurgy, Prospectors and Developer Association of Canada and a Fellow of the Geological Association of Canada.
- 5.) I do not hold or expect to receive any interest in the property described in this report.
- 6.) I consent to the use of this report by International CanAlaska Resources Ltd.

Timmins, Ontario April 30, 1999

Andrew Tims Geologist Northern Mineral Exploration Services

APPENDIX 1 – Diamond Drill Logs & Legend

the most of the spectrum operation operat

DIAMOND DRILL LOG

Date: April 29, 1999

	PROPERT	Y: Timm	ins										
	HOLE NO	.: TT99	-01	Collar Inclin	ation: -45°	Logged by: And	rew Tims		D	OWN-HOLE SU	JRVEY	DATA	
	Collar	Easting	is: 400.0	Grid Bearing:	180.00	Date Started:	March 23,	1999	DEPTH	INCLINAT	. ION	BEAR1	[N
	Collar	Northin	ngs: 485.00	Final Depth:	152.00 metres	Date Finished:	March 24,	1999	62.00	-42.00)	180.0	00
	Collar	Elevati	.on: 100.00	Drilled By:	NDS Drilling	Down-hole Surv	ey: Acid		113.00	-41.00)	181.0	00
	Grid: I		0 ×	Claim No: 119	3700	Core Size: NO	-		143.00	-40.00	נ	182.0	00
		the	da ins	Core Storage:	Aquarius Mine	Site	•		152.00	-39.00	J	182.0	
	FROM		Т.ТТНО	LOGICAL DESCRIP	TTON		SAMPLE	FROM	то	WTDTH Au	Cu	Pb	Zn
	(mete	rs)	21110	Booloim Dibonii	11011			11.011	10	(meters)			
	16.39	21.68	TUFFACEOUS SEDI	MENT (517)						(
	10.05	21.00	Dark grey in c	olour, fine grain	ed. poorly sorte	d. trace mudstone							
			clasts, 1-2%	pale pink irregu]	ar garnet locally	3-4% medium							
			grained subhed	ral feldspar ave	eraging 2-3 mm in	diameter,							
			weakly fracture	ed throughout wit	h carbonate infil	ling.							
			16.90m. 10 cm	fine finr grained	l syenite dyklet.								
			trace pyrite.										
	01 60	22 25											
	21.68	33.85	MAFIC VOLCANIC	ruff(3T) k in selecce ki									
			10-15% fine and	ACK IN COLOUR, DI	otite/chiorite ri	ch matrix,							
			3-4 subangular	linea lensola blou	fractured with mi	gnout,							
			irregular centi	metre scale quart	7 veinlets.	nor							
			trace dissemination	ated pyrite, trac	e pyrite in veinl	ets.							
			The foliation i	s at 50 TCA.		,							
	33.85	43.80	MAFIC VOLCANIC	TUFF(3T, WK SER,	MIN EP)								
			Similar unit as	above but modera	tely fractured wi	th by sericite							
			alteration as m	illimetre scale a	alteration haloes	about fractures							
			and patches, tr	ace epidote accom	mpanies sericite a	lteration,							
			locally moderate	ely silicífied ma	itrix.								
			trace to 1/2% d	isseminated pyrit	ce de la companya de								
	43 80	68 0	MAFTE VOLCANTE	דיודד אחר מדים	L STL)		27133	5 43 80	45 00	1 20	5 1	38 2	48
	-3.00	00.0	Moderate-strong	patchy and centi	metre scale seric	ite haloes.	27433	6 45.00	47.00	2.00	5	83 2	34
			weak-moderate p	ervasive silicifi	cation of matrixv	producing	27433	7 47.00	49.00	2.00	5	70 2	90
			a medium grev n	ear aphanitic te	ture.	r	27433	8 49.00	51.00	2.00	5 1	05 16	102
			1/2 to 1% disse	minsted pyrite th	roughout,		27433	9 51.00	53.00) 2.00	5 1	16 10	78
			trace red brown	spalerite withir	n quartz/carbonate	veinlet,	27434	0 53.00	55.00	2.00	56	4 6	90
HOL	E No: T9	9-01											

١

DIAMOND DRILL LOG

PRO	PERTY: Ti	mmins							•	6.0
HOL	E No.: <u>T9</u>	<u>9-01</u>					<u> </u>	Page	2 0	DI 3
FRC	M TO	LITHOLOGICAL DESCRIPTION	SAMPLE	FROM	ТО	WIDTH	Au	Cu	Pb	Zn
(meters)					(mete	rs)			
		trace to 1/2% medium grained bleby pyrite within millimeter	274341	L 55.00	57.00	0 2.00	5	50	2	80
		scale quartz veinlets.	274342	2 57.00	59.00	0 2.00	5	7	2	76
			274343	3 59.00	61.00	0 2.00	5	54	2	96
			274344	61.00	63.00	2.00	5	50	2	52
			274345	63.00	65.00	0 2.00	5	57	2	86
			274346	5 65.00	67.00	2.00	5	65	2	90
68.0) 77.5	MAFIC VOLCANIC TUFF(3T, MOD SER, TR EP)	27434	67.00	69.00	2.00	5	57	2	96
		Moderately fractured with by sericite alteration as	274348	69.00	71.00	0 2.00	5	55	2	118
		millimetre scale alteration haloes about fractures and patches,	274349	9 71.00	73.00	0 2.00	5	67	6	96
		trace epidote accompanies sericite alteration, locally	274350	73.00	75.00	0 2.00	5	64	6	106
		moderately silicified matrix. trace to 1/2% disseminated pyrite	274353	1 75.00	77.00	0 2.00	5	56	6	60
77.5	5 85.09	MAFIC VOLCANIC TUFF(3T) Weak to moderately fractured with by sericite alteration as millimetre scale alteration halos about fractures and patches, trace epidote accompanies sericite alteration, moderately silicified matrix. The foliation is at 65 TCA trace to 1/2% disseminated pyrite	274352	2 77.00	79.00	0 2.00	5	46	2	60
85.0	09 152.0	MAFIC VOLCANIC CRYSTAL TUFF(3XT)	274353	3 86.00	88.0	0 2.00	5	51	4	56
		Dark green to black in colour, weakly foliated, 15-20% fine	274354	4 93.00	95.00	0 2.00	5	43	2	64
		grained to medium grained white subhedral to euhedral	27435	5 110.00	112.00	0 2.00	5	67	2	74
		feldspar phenocrysts, weak millimetre scale sericite banding	274350	5 125.00	127.0	0 2.00	5	74	10	74
		throughout, locally centimetre scale intervals of moderate	27435	7 136.50	138.5	0 2.00	5	49	6	98
		sericite alteration with up to 1/2% dissiminated pyrite which	274358	9 141.00	143.0	0 2.00	5	76	2	80
		masks the original porphyrytic texture.	274359	9 147.00	149.00	0 2.00	5	48	4	94
		The foliation is at 60 TCA	274360	0 149.00	151.0	0 2.00	5	89	2	70
		94.50 95.20 Weakly silicified, moderate sericite, trace to 1/2% pyrite	27436	1 151.00	152.0	0 1.00	5	46	2	44
		about a vugyy gz-ep-py vermet								

HOLE No: T99-01

DIAMOND DRILL LOG

HOLE No.: T9	9-01						Page	3	of
FROM TO (meters)	LITHOLOGICAL DESCRIPTION	SAMPLE	FROM	ТО	WIDTH (meter	Au (s)	Cu	Pb	
	102.50 m. 3x5 cm angular mudstone clast.								
	112.50 m. 1x3 cm angular mudstone clast								
	104.00 110.00								
	Moderately fractured, moderate pervasive sericite, weakly								
	silicified, trace pyrite.								
	110.00 117.40								
	Matrix becomes moderately chloritic with millimetre scale								
	sericte halo's, about quarz carbonate veins at 60° to the								
	core axis, 1/2 to 1% pyrite.								
	125.00 126.50								
	Pale medium grey due to moderate pervasive sericite								
	alteration of the matrtix with $\sim 1/2$ % pyrite.								
	136.50 138.50								
	Pale medium grey due to moderate sericite/epidote								
	alteration of matrix and about fractures.								
	1/2-1% disseminated pyrite.								
	138.30 m. A subparallel quartz-carbonate-epidote veinlet								
	with 1/2-1% pyrite in centimetre scale sericite								
	altreation halo.								
	140.00 147.00								
	Brown grey matrix with moderate chlorite alteration								
	with up to 2% disseminated, bleby and stringer pyrite.								
	147.00 152.00								
	Pale medium grey in colour due to medium sericite alteration								
	throughout masking feldspar phenocrysts. Numerous patches								
	of bull white Qtz and millimetre scale Ser halo's. Trace								
	epidote & kspar along quartz vein wallrock contacts.								
	1/2-1% disseminated pyrite.								
.52.00 EOH									

HOLE No: T99-01

Δ.

DIAMOND DRILL LOG

Date: April 29, 1999

l	PROPERTY: Timmins												
	HOLE No.: TT99-02	Collar Inclina	tion: -44°	Logged by: And	rew Tims			DOWN-HOI	LE SUI	RVEY I	DATA		
l	Collar Eastings: 20	00.0 Grid Bearing:	180.00	Date Started:	March 24,	1999	DEPTH	INCI	LINAT	ION	BEAR	IN	
	Collar Northings: 5	50.00 Final Depth:	155.00 metres	Date Finished:	March 25,	1999	9.00	-4	42.00		180.	00	
	Collar Elevation: 10	00.00 Drilled By:	NDS Drilling	Down-hole Surv	ey: Acid		55.00	-4	42.00		181.0	00	
	Grid: ICA () /.	Claim No: 1193	700	Core Size: NQ			110.00	-4	41.00		182.	00	
	Man (m	Core Storage:	Aquarius Mine S	ite			155.00	-3	39.00		182.	00	
2	FROM TO	LITHOLOGICAL DESCRIPT	TION		SAMPLE	FROM	то	WIDTH	Au	Cu	Pb	Zn	
	(meters)							(mete	ers)				
į	6.3 79.24 ANDESITE	FLOW(3a, 3b, 3pb)			274362	28.00	29.00	1.00	5.	45	5	115	
	Dark gree	en to grey in colour;	fine grained; mo	derately	274363	39.50	41.50	2.00	10	55.	2	52	
	foliated	; groundmass is composed	d of 80% very fine		274364	47.50	49.50	2.00	5	42	2	28	
	grained l	biotite/chlorite, 5-8%	fine grained felds	par, 5-8%	274365	56.00	58.00	2.00	5	52	2	56	
	medium gi	rained lensoid shaped b.	lotite porphyrybla	sts									
	and 1-5%	spherical amygoules II.	iieu with quartz a	na allu woll									
	davelope	e averaging 3-4 millime d chloritic flow top bro	eccia and pillow b	arry werr									
	trace py:	rite:	eccia and print b	recora									
	6.3 1(0.11											
	Flow top	breccia.											
	10.46	12.00											
	Fault zon	ne - brittle - blocky co	ore with hematite	stained									
	quartz ve	einlets											
	10.11	22.05											
	Amygdulo	idal flow.											
	22.05	23.0											
	Flow top	p breccia											
	3/.0	4/.5	for a structure of the last structure of the										
	rault zoi	ne - prittle - strongly	iractured, blocky	core, tight									
	weak to t	moderate pervasie carbo	a iight grey Colo nato	ur due co									
	37 5 m	a tight slip at 53° to	the core axis				•						
	40_5 m. 2	a 1 centimetre fault go	uge at 15° to the	core axis.									
	47.0 m. a	a tight slip at 15° to	the core axis,										
	47.5	56.0											
	Massive	flow with trace amygdul	es, groundmass gra	in size									
)	varies be	etween fine and very fin	ne, minor millime	tre scale									
	quartz ve	eining - 2-3 per m.											

HOLE No.: T9	9-02						Page	2 0	of 4
FROM TO (meters)	LITHOLOGICAL DESCRIPTION	SAMPLE	FROM	ТО	WIDTH (mete	Au rs)	Cu	Pb	Zn
(1100010)	56.0 59.0 Fine grained flow, weakly silicified, with tr-1/2% very fine grained disseminated pyrite - 2-3 millimetre scale quartz veins per metre 66.2 m. a 25 cm strongly chloritic interflow breccia?? with 1/2-1% disseminated pyrite.				(
9.24 106.52	ANDESITE TUFF(3t) Mottled grey green in colour, fine grained, moderately foliated with minor centimetre scale feldspar rich bands, weakly chloritic, foliation is 65° to the core axis. Trace pyrite. Unit fines down hole. 79.24 80.5 Centimetre scale quartz+hematite+ epidote veins Possible volcanic bomb??at 95 m. 102.5 m a 10 cm hematitic 8c dyklet with the leading contact at 65° to the core axis, dyklet is cut by a 2 centimetre quartz/carbonate veinlet possessing a 2-3 millimetre wallrock selvage of very fine grained black tourmaline 103.95 m. unit becomes weakly silicified throughout. 104.0 105.52 Moderately fractured with millimetre scale sericite halo's averaging 1/2% very fine grained disseminated pyrite and medium grained pyrite within quartz/carbonate veinlets	274366 274367	103.50 104.50	104.50 106.52	1.00 2.02	5	31 67	22	78 72
106.52 110.1) FELDSPAR PORPHYRY DYKE(8s, hem) Pale red to mauve, fine grained, massive with 4-5% medium grained feldspar phenocryst, weakly fractured, 1-2% very fine grained to fine grained disseminated pyrite. Leading contact is sharp at 45° to the core axis. Trailing contact is sharp at 75° to the core axis.	274368 274369	106.52 108.50	108.50 110.10	1.98 1.60	5 5	9 13	2 4	40 42

DIAMOND DRILL LOG

	DIAMOND DRILL DOG										
PROPERTY: Tim	mins						_				
HOLE No.: T99	-02						Page	3	of 4		
FROM TO	LITHOLOGICAL DESCRIPTION	SAMPLE	FROM	TO	WIDTH	Au	Cu	Pb	Zn		
(meters)	NUDECIME WIRE (2t and cil)	274270	110 10	112.00	1 00		4.0	2	110		
110.10 126.48	ANDESITE TUFF (SC, Mod SIT) Mottled grow groon in colour fine grained moderately foliated	274370	112 00	112.00	2 00	ງ 5	40 50	2	80		
	with minor continetro colo foldence rich hands	274371	112.00	114.00	2.00	5	143	Δ	79		
	moderate silicification throughout with minor sericite	274372	121 00	123 00	2.00	5	101	2	98		
	patches and hematite/epidote filled fractures	2/40/0	121.00	120.00	2.00	5	101	L	20		
	Trace pyrite.										
	123.30 m. 1.5 centimetre quartz cemented fault at										
	45° to the core axis										
126 48 132 23	DACIME LAPILLT THEF (4d)+)		274374	128 00	130.00		2.00	5	42	10	80
120.10 102.20	Mottled light grev to green colour, moderate to strongly foliated,		2,15,1	120.00	200100		2.00	Ŭ		10	00
	foliation is locally contorted about fractures,										
	Late guartz/chlorite veinlets cutting across the foliation are										
	asymmetrically folded - ptygmatic folding?										
	moderately silicified matrix - hard.										
	trace to 1/2% disseminated pyrite										
	Foliation @ 60° TCA										
	Leading contact is sharp @ 60° TCA										
	Trailing contact is distinct 0 65° TCA										
85.09 152.0	DACITE CRYSTAL TUFF(4XT)	274375	130.00	132.25	5 2.25	5	47	36	294		
	Dark green to black in colour, weakly foliated, 15-20% fine	274376	132.25	134.00) 1.75	5	49	54	240		
	grained to medium grained white subhedral to euhedral	274377	134.00	136.00	2.00	5	36	14	98		
	feldspar phenocrysts, weak millimetre scale sericite banding	274378	136.00	138.00	2.00	5	43	2	162		
	throughout, locally centimetre scale intervals of moderate	274379	146.00	148.00	2.00	5	44	2	106		
	sericite alteration with up to 1/2% dissiminated pyrite which	2/4380	148.00	150.00	2.00	C	102	2	54		
	The foliation is at 60° TCD										
	94 50 95 20										
	Weakly silicified, moderate sericite, trace to 1/2% pyrite										
	about a vugqy gz-ep-py veinlet										
	102.50 m. 3x5 cm angular mudstone clast.										
	112.50 m. 1x3 cm angular mudstone clast										
	104.00 110.00										

DTAMOND DRILL LOG

į

ł

.

PROPERTY: Timm	nins			<u> </u>			_		
HOLE No.: T99 -	- <u>02</u>						Page	<u> </u>	of 4
FROM TO (meters)	LITHOLOGICAL DESCRIPTION	SAMPLE	FROM	TO	WIDTH (met	Au ers)	Cu	Pb	Zn
	Moderately fractured, moderate pervasive sericite, weakly silicified, trace pyrite.								
	110.00 117.40 Matrix becomes moderately chloritic with millimetre scale sericte halo's, about quarz carbonate veins at 60° to the core axis 1/2 to 1% purite								
	125.00 126.50 Pale medium grey due to moderate pervasive sericite alteration of the matrtix with ~1/2% pyrite.								
	<pre>136.50 138.50 Pale medium grey due to moderate sericite/epidote alteration of matrix and about fractures. 1/2-1% disseminated pyrite.</pre>								
	138.30 m. A subparallel quartz-carbonate-epidote veinlet with 1/2-1% pyrite in centimetre scale sericite altreation halo.								
	140.00 147.00 Brown grey matrix with moderate chlorite alteration with up to 2% disseminated, bleby and stringer pyrite.								
	147.00 152.00 Pale medium grey in colour due to medium sericite alteration throughout masking feldspar phenocrysts. Numerous patches of bull white Qtz and millimetre scale Ser halo's. Trace epidote & kspar along quartz vein wallrock contacts. 1/2-1% disseminated pyrite.								
152.00 EOH									

•

DIAMOND DRILL LOG

HOLE No: **T99-02**

ì

DIAMOND DRILL LOG

Date: April 29, 1999

PROPER	RTY: Tim	mins											
HOLE N	10.: TT9	9-03	Collar Inclin	ation: -45°	Logged by: And:	rew Tims			DOWN-HOI	E SUR	VEY DA	ATA	
Collar	: Eastin	gs: 700.0	Grid Bearing:	180.00	Date Started:	March 26,	1999	DEPTH	INCI	INATI	ON E	BEARIN	ſ
Collar	Northi	ngs: -250.00	Final Depth:	147.00 metres	Date Finished:	March 27,	1999	17.00	-4	5.00	1	80.00	
Collar	Elevat	ion: 1/00.00	Drilled By:	NDS Drilling	Down-hole Surv	ey: Acid		68.00	-4	2.50	1	81.00	1
Grid:	ICA		Claim No: 119	3700	Core Size: NQ			118.00	- 4	1.00	1	82.00	
	Γ I Λ	Mac mg	Core Storage:	Aquarius Mine S	lite			147.00	-4	1.00	1	82.00	
 FROM	TO	LITHOI	LOGICAL DESCRIP	TION		SAMPLE	FROM	TO	WIDTH	Au	Cu	Pb	Zn
(met	ers)								(mete	ers)			
16.50	34.29	DACITE TUFF(4d)				274381	31.00	33.00	2.00	5	49	2	46
		Medium to dark g	rey, fine graine	ed matrix, moderate	ly	274382	33.00	34.29	1.29	5	35	2	68
		foliated at 65	to the core axis	s, 10-15% medium gr	ained								
		subhedral to euh	edral feldspar a	veraging 1-3 milli	metres								
		producing a porp	hyrytic appearar	nce - may be second	ary?								
		Moderately bande	d in appearance	due to millimetre	scale								
		<pre>sericite+/- epid</pre>	lote alteration a	bout fractures and	quartz								
		veins.											
		Weak to moderate	ly fractured,										
		1 Trace pyrite	instrus side Ofe										
		22.5m A 10 Cent	imetre wide orp	dykiet.									
		$\frac{20.73 - 30.04}{\text{Blocky co}}$	re very fine or	ained diabase mod	erate								
		carbonate	along fractures	ained diababe, mod									
		30.50 - 31.2	arony reactures										
		Pale oliv	ve green verv fin	ne grained dyklet.									
		32.45 - 34.29	,	J									
		Trace sph	alerite within f	fractures, subround	ed quartz								
		clast wit	h spaherite with	in groundmass at 3	4.22 metres.								
34.29	37.39	FELDSPAR PORPHYR	Y DYKLET(8fp)			274383	34.29	36.59	2.30	5	12	2	48
		Fine grained to	medium grained,	pale red due hemat	ite staining	• ·							
		of groundmass, t	race amounts of	black angular volc	anic								
		zenoliths, trace	to 1/2% fine gr	ained pyrite throu	ghout.								
		Leading contact	is snarp at ou	to the core axis.									
		ifalling contact	. is snarp at 85	to the core axis.									
37.39	64.23	DACITE TUFF(4d)				274384	36.59	38,00	1.41	5	N.A.	NTI.	N.A.
		Medium to dark d	rev, fine graine	d matrix, moderate	lv	<u></u>	50105	00.00		÷			
		· · · · · ·		· · · · · · · · · · · · · · · · · · ·	-								

DIAMOND DRILL LOG

PROPERTY: Ti	mmins		· —						
HOLE No.: T9	99-03					Page	e 2 c	of 5	i
FROM TO	LITHOLOGICAL DESCRIPTION	SAMPLE	FROM	TO	WIDTH Au	Cu	Pb	Zn	
(meters)					(meters)				
(meters)	<pre>foliated at 65 to the core axis, 10-15% medium grained subhedral to euhedral feldspar averaging 1-3 millimetres producing a porphyrytic appearance - may be secondary? Moderately banded in appearance due to millimetre scale sericite+/- epidote alteration about fractures and quartz veins. Weak to moderately fractured, Trace pyrite. 49.30 - 60.50 Feldspar content locally reaches 25% and coarsens to medium grained subhedral to euhedral crystals with some exhibiting zoning, minor epidote and hematite along boudinaged quartz veinlets. 60.50 - 61.95 Fine grained, biotite and feldspar rich groundmass,</pre>				(meters)				
	weakly follated, minor quartz veins - Dyke? - non								
	magnetic								
43.80 68.0	<pre>DACITE TUFF(4d) Medium to dark grey, fine grained matrix, moderately foliated at 65 to the core axis, 4-5% medium grained subhedral to euhedral feldspar averaging 1-3 millimetres producing a porphyrytic appearance - may be secondary? Moderately banded in appearance due to millimetre scale sericite+/- epidote alteration about fractures and quartz veins. Weak to moderately fractured, Trace pyrite 74.75 - 79.75 Fine grained version of tuff unit with well defined leading and trailing contacts.</pre>								

HOLE No: T99-03

DIAMOND DRILL LOG

PROPERTY: Tim	mins									
HOLE No.: T99	-03						Page	<u> 3 of</u>	5	
FROM TO	LITHOLOGICAL DESCRIPTION	SAMPLE	FROM	ТО	WIDTH	Au	Cu	Pb	Zn	
(meters)					(mete	rs)				
	86.80 - 91.22									
	Moderate to strong sericite alteration as centimetre									
	scale bands and along fractures, minor epidote and									
	hematite about quartz veinlets, trace disseminated									
	pyrite.									
91.22 94.22	FELDSPAR PORPHYRY DYKLET (8fp)	274385	85.00	86.65	1.65	5	N.A.	N.A.	N.A.	
	Fine grained to medium grained, pale red due hematite staining	274386	86.65	89.00	2.35	5	N.A.	N.A.	N.A.	
	of groundmass, trace amounts of black angular volcanic	274387	89.00	91.22	2.22	5	N.A.	N.A.	N.A.	
	zenoliths, trace to 1/2% fine grained pyrite throughout.	274388	91.22	92.70	1.48	5	N.A.	N.A.	N.A.	
		274389	92.70	94.22	1.52	5	N.A.	N.A.	N.A.	
		074000				-				
94.22 111.84	DACITE TUFF(4d) Medium to deale and fine annined metain, mediantely	274390	94.22	96.22	2.00	5	N.A.	N.A.	N.A.	
	Medium to dark grey, line grained matrix, moderately	274391	106.20	108.00	1.80	5	N.A.	N.A.	N.A.	
	subhedral to euhedral feldenar averaging 1-3 millimetres									
	producing a porphyrytic appearance - may be secondary?									
	Moderately banded in appearance due to millimetre scale									
	sericite +/- epidote alteration about fractures and guartz									
	veins.									
	Weak to moderately fractured,									
	Trace pyrite									
	94.22 - 97.00									
	Silicified with weak pervasive hematite/epidote									
	alteration.									
	97.0 - 100.65									
	SILICILIED, BLOCKY CORE WITH A WELL DEVELOPED DIECCIA									
	103 16 - 104 03									
	Appanitic, mat green mafic dyklet with carbonate									
	filled fractures.									
	104.03 - 111.0									
	FAULT ZONE - blocky core, moderately fractured, unit									
	exhibiting a brecciated texture throughout with									

PROPERTY: Tim HOLE No.: T99	mins 9-03						Page	4 of 5	
FROM TO (meters)	LITHOLOGICAL DESCRIPTION irregular quartz veins and moderate to strong sericite/epidote/hematite alteration. A tight slip face at 40 to the core axis. 111.00 - 111.84 Pale red 8fp with 1-2 centimetre mafic zenoths. Leading and trailing contacts are sharp at 80 and 75 respectivley.	SAMPLE	FROM	TO	NIDTH (mete	Au rs)	Cu 1	2b Zn	
111.84 120.50	DACITE LAPILLI TUFF(4dlt) Dark green to black, fine-grained matrix with 10-15% lapilli, lapilli consists of angular very fine-grained sericitized and silicified felsic volcanic fragments, minor hematite. Some fragments may be pseudoclasts due to selective alteration about fracture/quartz veins. Trace quartz lapilli, typically rotated and exhibiting pressure shadows. Trailing contact is sharp with lower tuff unit at 85 to the core axis. 112.0 - 113.5 Matrix contains 10-15% euhedral feldspar crystals in centimetre scale banding - Crystal Tuff?? OR a product of thermal metamorphism????? due to the close proximity of the 8fp dyke								
120.50 147.0	DACITE TUFF(3t) Medium to dark grey, fine grained matrix, trace felsic lapilli, moderately foliated at 65 to the core axis, 1-2% medium grained subhedral to euhedral feldspar averaging 1-3 millimetres throughout. Moderately banded in appearance due to millimetre scale sericite+/- epidote alteration about fractures and quartz veins.	274392 274393	126.00 128.00	128.00 130.00	2.00 2.00	5 5	N.A. N.A.	N.A. N.A.	N.A. N.A.

-

DIAMOND DRILL LOG

HOLE No: T99-03

юле No.: <u>Т</u> 9	99-03						Page	2 5 (DI 5
FROM TO	LITHOLOGICAL DESCRIPTION	SAMPLE	FROM	ТО	WIDTH	Au	Cu	Pb	Zn
(meters)					(met	ers)			
	Weak to moderately fractured,								
	Trace pyrite								
	136.0 - 137.27								
	A fine grained, grey to pale red 8fp.								
	Hematite staining about fractures, 1-2% medium grained								
	feldspar phenocrysts exhibiting hematite rims								
	Trace mafic volcanic zenoliths								
	Leading contact at 80 to the core axis								
	Trailing contact at 75 to the core axis.								
	138.20 - 139.65								
	A fine grained, grey to pale red 8fp.								
	Initial 30 centimetres is strongly fractured and								
	chlotitic.								
	Trace mafic volcanic zenoliths								
	Leading contact is faulted at 40 to the core axis								
	Trailing contact is sharp at 75 to the core axis.								

DIAMOND DRILL LOG

.

HOLE No: T99-03

;

DIAMOND DRILL LOG

Date: April 29, 1999

HOLE No.: TT99-04Collar Inclination: -43°Logged by: Andrew TimsDOWN-HOLE SURVEY DATACollar Eastings: -200.00Grid Bearing: 180.00Date Started: March 27, 1999DEPTHINCLINATIONBEARINCollar Northings: 495.00Final Depth: 170.00 metresDate Finished: March 28, 199911.00-42.50180.00	
Collar Eastings: -200.00 Grid Bearing: 180.00 Date Started: March 27, 1999 DEPTH INCLINATION BEARIN Collar Northings: 495.00 Final Depth: 170.00 metres Date Finished: March 28, 1999 11.00 -42.50 180.00	
Collar Northings: 495.00 Final Depth: 170.00 metres Date Finished: March 28, 1999 11.00 -42.50 180.00	
Collar Elevation: 100.00 Drilled By: NDS Drilling Down-hole Survey: Acid 62.00 -39.00 181.00	
Grid: ICA / / / Claim No: 1193700 Core Size: NQ 112.00 -38.00 182.00	
DAUNE (MAN) Core Storage: Aquarius Mine Site 170.00 -36.00 182.00	
FROM TO LITHOLOGICAL DESCRIPTION SAMPLE FROM TO WIDTH AU CU PD Z	1
(meters) (meters)	
6.25 9.54 FELDSPAR PORPHYRY DYKE(8fp) 274394 7.00 9.00 2.00 5 10 2	18
Medium grained, medium grey to pale red in colour	
due hematite staining of groundmass, 2-3% medium	
to coarse-grained feldspar phenocrysts averaging	
3 millimetres in diameter, trace black angular	
volcanic zenoliths,	
Trace to 1/2% fine-grained pyrite throughout.	
Trailing contact is sharp at 50 to the core axis.	
9.54 53.90 CALC-ALKALINE BASALTIC TUFF(3t) 274395 22.00 24.00 2.00 5 26 2	38
Dark grey to green, fine grained, moderately fractured, 274396 34.00 36.00 2.00 5 21 616	78
Moderately foliated, 1-2% light grey subangular	
lapilli/blocks.	
Numerous (3-4/m) irregular carbonate/epidote bands and	
stringers cut the unit about fractures and	
quartz/carbonate veinlets.	
Trace Pyrite.	
Foliation is 50 to the core axis. 0.54 - 21.50	
9.94 - 21.90 Weakly silicified due to close provimity to 8fp	
Moderate to strongly fractured blocky core and	
Modelate to Sciongly Hactured, blocky core and	
vuggy fracture surfaces.	
vuggy fracture surfaces. 36.50 - 39.5	
vuggy fracture surfaces. 36.50 - 39.5 2-3% folded and boudinaged felsic dyklets.	
vuggy fracture surfaces. 36.50 - 39.5 2-3% folded and boudinaged felsic dyklets. The majority of dyklets are beige, quartz phyric	
vuggy fracture surfaces. 36.50 - 39.5 2-3% folded and boudinaged felsic dyklets. The majority of dyklets are beige, quartz phyric and strongly sericitized.	

ļ

ļ

ł

DIAMOND	DRILL	LOG
---------	-------	-----

PROPERTY: Ti	mmins									
HOLE No.: TS	9-04						Page	2 c	f 4	
FROM TO	LITHOLOGICAL DESCRIPTION	SAMPLE	FROM	TO	WIDTH	Au	Cu	Pb	Zn	
(meters)					(mete	rs)				
	Minor hematite occurs along carbonate veinlets and									
	fractures.									
	44.40 - 47.40									
	Interval of fine grained tuff with few lapilli.									
53.90 92.00	MAFIC VOLCANIC LAPILLI TUFF/TUFF BRECCIA(3lt/3tb)	274397	53.00	55.00	2.00	5	29	2	74	
	Dark grey to green, fine grained, moderately fractured,	274398	68.00	70.00	2.00	5	23	2	48	
	Moderately foliated, 15-20% beige to dirty white subangular felsic dyklets.	274399	81.00	83.00	2.00	5	22	2	60	
	The tuff matrix can be seen wrapping around the weakly									
	fractured dyklets with carbonate infilling the fractures									
	and pressure shadows.									
	Trace pyrite.									
	62.82 - 70.80									
	Similar tuff unit but with only 1-2% dyke material,									
	Possible tuffaceous sedimentary interval due to									
	development of medium grained irregular, wispy									
	aluminosilicate clots in the matrix.									
	Similar turi unit as 53.90 metres.									
	70.00 = 05.75									
	Possible tuffaceous sedimentary interval due to									
	development of medium grained irregular wispy									
	aluminosilicate clots in the matrix.									
	85.75 - 92.00									
	Similar tuff unit as 53.90 metres cut by 10 and									
	25 centimetre wide diabase dyklets at 87.5 and 89.0									
	metres respectively									
92.0 133.0	MAFIC VOLCANIC TUFF(3t/31t/3tb)	274400	112.00	114.00	2.00	5	29	2	64	
	Similar tuff unit at 9.54 metres but with only 2-3% of the	274401	126.00	128.00	2.00	5	20	6	74	
	unit composed of felsic dyklets	274402	131.00	133.00	2.00	5	25	2	60	
	Minor bleaching of matrix - albite??,									

		DIAMOND DRILL LOG									
PROPERT	Y: Tim	nins									
HOLE NO	.: <u>T99</u>	-04						Page	3 о	f 4	
FROM	ТО	LITHOLOGICAL DESCRIPTION	SAMPLE	FROM	TO	WIDTH F	lu	Cu	Pb	Zn	
(mete	ers)					(meter:	5)				
		Trace pyrite									
		95.40 - 97.00									
		Blocky core									
		102.80m Qz/cb/hm filled fractures									
		124.20 - 133.00									
		Irregular centimetre scale patches of albite alteration									
		of the matrix increasing the hardness of the unit.									
		Centimeter scale lapilli tuff and tuff breccia interbeds									
		are preferentially altered.									
		Minor millimetre scale quartz veiniets with pyrite.									
		due to homotite									
		Trace to 1/2% disseminated nurite									
		flace to 1/20 disseminated pyrite.									
133.00	144.22	MAFIC LAPILLI TUFF/TUFF BRECCIA(31t/3tb)	274403	133.00	135.00	2.00	5	33	2	74	ł
		Mottled light grey to dark grey, chaotic brecciated	274404	135.00	136.00) 1.00	5	24	2	60)
		texture as defined by moderate to intense albite	274405	136.00	137.40) 1.40	5	33	2	38	3
		and sericite alteration about fractures lapilli.	274406	137.40	138.12	2 0.72	5	27	2	80)
		Nominally 3-4% lapilli in a moderately albitized matrix.	274407	138.12	139.00	0.88	5	159	2	108	}
		1-2% fracture controlled pyrite.	274408	139.00	141.00	2.00	5	25	2	174	ł
		137.40 - 138.12	274409	141.00	143.00) 2.00	5	20	5	76	5
		Very fine grained weakly fractured tuffaceous sediment	274410	143.00	144.22	2. 1.22	5	28	2	118	3
		with well developed aluminosilicate clots.									
		138.12 - 139.10									
		Composition dominated by albite and silica masking									
		any original texture.									
		Interval contains 15-20% semi-massive to disseminated									
		Trace carbonate along fractures									
		139 10 - 144 22									
		Fine grained, dark grey with 1-2% angular lanilli									
		weakly fractured with quartz/carbonate/purite									
		Hard, weakly albitized, with centimetre scale intervals									

HOLE No: T99-04

DIAMOND DRILL LOG

PROPERTY: Tim	mins								
HOLE No.: <u>T99</u>	0-04	·····					Page	4 0	f 4
FROM TO	LITHOLOGICAL DESCRIPTION	SAMPLE	FROM	TO	WIDTH	Au	Cu	Pb	Zn
(meters)					(mete	rs)			
	of intense albite alterationin last 50 centimetres of								
	the interval								
	Trace to 1/2% pyrite overall.								
144.22 164.44	MASSIVE ANDESITE FLOW(3m)	274411	144.22	146.00	1.78	5	2	10	118
	Fine grained, weakly fractured, dark grey to green groundmass	274412	146.00	148.00	2.00	5	14	2	54
	with trace euhedral feldspar 1-2 mm in diametre,	274413	160.00	162.00	2.00	5	17	2	60
	weak pervasive albite alteration throughout,	274414	162.00	163.00	1.00	5	45	2	105
	1-2% spherical quartz filled amygdules.								
	Trace lapilli size fragments within first 4 metres of unit.								
	Trace pyrite								
	161.0 - 161.6								
	Vuggy Qz/Cb veinlet sub-parallel to core axis with								
	1-2% pyrite								
164.44 170.0	ANDESITIC TUFF(3t)								
	Dark grey-green fine-grained matrix composed of biotite,								
	chlorite and very fine grained feldspar.								
	1-2% lapilli,								
	Leading contact is distinct within a 20 centimetre								
	interval of moderate pervasive albite alteration.								
170.00. EOH									

HOLE No: T99-04

NAM (Rock Name)

OVB	Overburden	CAS	Casing
L/C or LC	Lost Core	MC	Missing Core

1 KOMATIITIC VOLCANICS

1 Unsubdivided

- 1s Serpentinized, massive, polysutured, peridotitic komatiite
- lox Olivine-spinifex textured peridotitic komatiitic flows
- 1px Pyroxene-spinifex textured basaltic komatiitic flows
- 1mb Massive basaltic komatiite
- 1m Massive
- 1p Pillowed
- 1cb Carbonatized peridotitic komatiite or carbonate rock

- E . . .

- It Talcose
- 1b Basaltic komatiite
- 1bcb Carbonatized basaltic komatiite
- 1tcb Talc carbonated komatiite
- Ifu Fuchsitic carbonate rock

2 THOLEIITIC VOLCANICS

2	Unsubdivided
2m	Massive
2р	Pillowed <
2a	Amygdaloidal
2apl	Amygdaloidal pillow lava
2v	Variolitic
21	Tuff, lapilli-tuff
2b	Breccia
2cb	Carbonatized
2pb	Pillow Breccia
2h	Hyaloclastite
2ag	Agglomerate
2am	Amphibolitized
2scf	Spherulitic, chicken-feed
2sch	Schistose
2sh	Shear
2F -	Dominantly Fe-tholeiite
2M	Dominantly Mg-tholeiite
2AL	Dominantly AL-tholeiite
21	Dominantly Icelandite

3 CALC-ALKALIC MAFIC VOLCANICS (MAFIC-INTERMEDIATE VOLCANICS)

Unsubdivided 3 3a Andesite 3m Massive Pillowed 3p Tuff, lapilli-tuff 31, 31t Breccia 3b Carbonatized 3cb Amphibolitized 3am Pillow brx 3pb 3sh Shear

)

 \bigcirc

4 INTERMEDIATE-FELSIC VOLCANICS

4d	Dacite
4rd	Rhyodacite flows
4dt	Dacite tuffs
4dp	Dacite pyroclastics
4da	Agglomerate-breccia, conglomerate
4dlt	Dacite lapilli tuff
4dm	Dacite massive flow
4p	Intermediate-felsic pyroclastics
4r	Rhyolite-undifferentiated
4sch	Intermediate-felsic schist
4sh	Shear
4rm	Massive rhyolite
4rt	Rhyolite tuff
4rlt	Rhyolite lapilli tuff
4ra	Rhyolite agglomerate
qp	(quartz-eye porphyritic)
рр	(plagioclase-porphyritic)
4phyl	Phyllite
Р	denotes Primitive
E	denotes Evolved

denotes Evolved

5 SEDIMENTS

)

5	Unsubdivided		
5a	Argillite		
5c	Conglomerate		
5g	Greywacke		
5sl	Slate		
5p	Porphyritic, qp (quartz-eye porphyri	tic), pp (p	lagioclase-porphyritic)
5d	Debris flow		-
5q	Quartzite		
5qw	Quartz wacke		
5gr	Graphite		
5ch	Chert		
5ag	Agglomerate		
(50)	Tuffaceous-sediment		
<u>5</u> s	Siltstone		
5ss	Sandstone		
5sch	Schist		
5sh	Shear		
5ex	Exhalite		
5tqp	Quartz porphyritic tuff		
5phyl	Phyllite	K	denotes Keewatin
GFZ	Graphitic Fault Zone	Т	denotes Timiskaming

•7

6 ULTRAMAFIC INTRUSIVE ROCKS

6	Unsubdivided
6s	Serpentinized diorite-peridotite
6ph	Pyroxene-hornblende
6c	Carbonatized

6tm Talc-magnesite

7 MAFIC INTRUSIVE ROCKS

- 7 Unsubdivided
- 7a Anorthosite
- 7d Diorite

()

- 7g Gabbro
- 7qg Quartz gabbro
- 7pg Pegmatoidal gabbro
- 71 Lamprophyre
- 7ib Intrusive breccia
- 7n Nipissing Diabase-type sills

- giorna core 1 5 C

8 FELSIC INTRUSIVE ROCKS

- 8 Unsubdivided
- 8qp Quartz porphyry

(8fp) Feldspar porphyry

- 8qfp Quartz feldspar porphyry
- 8f Felsite, p (porphyritic), qp (quartz-eye porphyritic), pp (plagioclaseporphyritic)

iΥ

- 8hbt Hornblende-biotite trondhjemite
- 8pm Porphyritic monzonite
- 8gd Granodiorite
- 8pg Porphyritic granodiorite
- 8lg Leucocratic granodiorite
- 8hd Hornblende diorite
- 8qd Quartz diorite
- 8p Porphyry
- 8a Aplite
- (8s) Syenite
- 8g Granite or quartz-rich syenite
- 8t Trachyte
- J)

9 MATACHEWAN DIABASE

10 HURONIAN SEDIMENTS

10a	Arkose
10w	Wacke
10arg	Argillite
10c	Conglomerate

11 QUARTZ DIABASE

12 OLIVINE DIABASE

13 IRON FORMATION

IFoOxideIFsSulphide (py-po)IFcCarbonateIFjJasperBIFBanded iron formationIFchlChlorite-richIFgrGraphitic

{``)}

These abbreviations are used after a lithology name, if desired ("Nam" column must be limited to 5 characters). Allows alteration to be shown with name when drill hole is plotted.

3m,s	Would denote a massive calc-alkalic mafic volcanic which is sericitized
chl	Chloritic
chty	Cherty
s or ser*	Sericitic
sil	Silicified
ank	Ankerite
cc	Calcite
с	Carbon
cb	Carbonate
h	Hematite
alb	Albitized
fu	Fuchsitic
mt	Magnetite
sh	Sheared
tcb	Talc carbonate schist
tcs	Talc chlorite schist
gr	Graphitic
arg	Argillaceous
sch	Schist
gt	Garnet
oxd	Oxidized
Ы	Bleached
epd	Epidote
sern	Serpentinized

- * where computer space permits, use ser
- Note: In addition to the percentage of quartz veins being indicated, one should indicate in the Comments column whether the veining is tensional (i.e. cutting foliation) or of the strike variety (i.e. parallel to foliation) or both. For example "10% qtz (t)" or "15% qtz (t + s)".

SULPHIDES

- DS Disseminated sulphides
- SS Stringer sulphides
- MS Massive sulphides
- SMS Semi-massive sulphides

OXIDES

Mt	Magnetite (80-100%)
QAV	Quariz ankerite veining

NAM2

This column has been added to accommodate future changes in geology names.

FORM

A formation column has been added to accommodate extensive geological naming practices. FORM will be used to plot geology, and must be limited to a maximum of eight names or numbers (for the 8 plotter pens).

STRUCTURE

<u>B/S</u>	S	Schistosity	С	Contact
-	F	Foliation	V	Vein (primary if more
	В	Bedding		than one occurs)
J/F	J	Joint Plane		
	v	Vein (secondary if r	Vein (secondary if more than one occurs)	
	F	Fault Plane/Fractur	e	

<u>A1/A2</u>

Measurement of above with respect to core axis (C.A.)

MINERALS

GANGUE

())

ACT	Actinolite	GAR	Garnet
ANH	Anhydrite	HBL	Hornblende
ANK	Ankerite	LEU	Leucoxene
BIO	Biotite	MUS	Muscovite
CC	Calcite	PYR	Ругохепе
CAR	Carbonate	QC	Qtz Carbonate
CHL	Chlorite	QTZ	Quartz
DOL	Dolomite	SER	Sericite
EPD	Epidote	SPR	Serpentine
FSP	Feldspar	TOU	Tourmaline
FUC -	Fuchsite		· = ·
METALLIC

 $\overline{\mathbf{i}}$

ASP	Arsenopyrite	РО	Pyrrhotite
CPY	Chalcopyrite	PY	Pyrite
GN/GA	Galena	SID	Siderite
GRA	Graphite	SPH	Sphalerite
HEM	Hematite	STB	Stibnite
		VC	Visible Gold

MINERAL %

0.01	Trace
0.05	Minor Occurrence
2.0	2%

<u>SPL #</u>

÷

5)

()

Sample number

WDTH (Width)

<u>T</u> (Sample Type)

С	Core
G	Grab
Η	Chip
L	Channel
S	Sludge

COMMENTS

Standard abbreviations should be used where possible so that anyone can refer to this "dictionary" and clearly read the logs. If abbreviations are being used that are not included on this list, please add them.

ť. . .

ANH	Anhedral	NOD	Nodules
BLB	Blebs	OCC	Occasional
BL-QTZ	Blue Quartz	OC	Out Contact
CA	Core Axis	OVC	Out Vein Contact
CV	Carbonate Vein	PLL	Parallel
DEFMD	Deformed	QCV	Qtz-Carb Vein
DIS	Disseminated	QV	Quartz Vein
EUH	Euhedral	RXN	Reaction
EXT	Extensive	STR	Strong
FOL	Foliation	STK	Stockwork
FUCH	Fuchsite	STG	Stringer
GRND	Ground (core)	SUB	Subhedral
>	Greater Than	TR	Trace
IC	In Contact	TW	True Width
IVC	In Vein Contact	VNS/VN/V	Veins
IRR	Irregular	VLETS	Veinlets
<	Less Than	W	With
MAG	Magnetic	WO	Without
MNR	Minor	WK(LY)	Weak(ly)
MÓD	Moderate(ly)		

<u>ASSAY</u>

(n)

Suggested usage for assay columns

AU1 PPB

AU2 Fire Assay (use FA1 column if available)

ASSAY3, etc To be used if there is a need to show a relationship with gold, otherwise geochemical analysis is available on other systems

APPENDIX 2 – Gold Assay and ICP Analysis Certificates & Trace Element Discrimination Plots

Т

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: INTERNATIONAL CANALASKA RESOURCES LTD.

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9

Page Number : 1-A Total Pages : 1 Certificate Date: 06-APR-1999 Invoice No. : 19914575 P.O. Number : Account OEY

Project : TIMMINS Comments: ATTN: BILL HOWELL

CC: ANDREW TIMS

CERTIFICATE OF ANALYSIS A9914575

SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
274335 274336 274337 274338 274338 274339	205 226 205 294 205 294 205 294 205 294	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5<</pre>	< 0.2 < 0.2 < 0.2 0.4 0.2	1.82 1.88 1.49 1.67 2.20	< 2 2 6 12 8	30 10 30 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.61 0.82 0.58 1.41 1.97	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	21 16 20 28 20	161 99 62 64 68	138 83 70 105 116	2.73 2.78 3.22 3.26 2.39	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.08 0.11 0.17 0.12 0.06	30 10 10 10	1.38 1.09 0.85 1.27 1.11	380 430 315 390 400
274340 274341 274342 274343 274343 274344	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.66 1.70 1.92 1.90 1.62	< 2 4 14 2 4	20 30 50 30 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.47 1.11 1.27 1.07 1.32	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	29 22 27 28 29	77 85 89 81 82	64 50 71 54 50	3.65 2.40 2.48 2.88 2.31	10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 1	0.14 0.24 0.27 0.16 0.20	10 10 10 10 < 10	1.79 1.27 1.20 1.39 0.82	490 330 310 365 235
274345 274346 274347 274348 274349	205 294 205 294 205 294 205 294 205 294 205 226	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.34 1.53 1.39 1.59 1,83	2 8 2 12 < 2	70 100 60 50 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.97 0.75 0.80 1.36 1.68	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	26 27 24 21 24	85 94 74 78 67	57 65 57 55 67	2.21 2.39 1.94 1.83 2.28	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.32 0.44 0.27 0.26 0.13	< 10 10 10 10 10	0.82 1.10 1.02 1.10 1.21	240 270 265 275 370
274350 274351 274352 274353 274353 274354	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.85 1.25 1.31 1.34 1.53	10 2 < 2 2 6	30 40 100 50 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.77 1.01 0.72 0.85 1.38	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	24 27 20 18 19	71 76 80 60 67	64 56 46 51 43	2.42 2.03 1.78 1.88 2.26	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.17 0.16 0.45 0.22 0.24	10 10 10 10 10	1.22 0.87 0.93 0.95 1.02	360 215 230 255 385
274355 274356 274357 274358 274358 274359	205 294 205 294 205 294 205 294 205 294 205 294	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.82 1.91 1.63 1.80 1.93	< 2 6 6 < 2 < 2	90 40 30 140 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.25 2.05 1.31 0.79 1.26	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	24 26 27 30 23	74 73 79 76 74	67 74 49 76 48	3.32 3.46 2.71 3.74 2.92	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.49 0.15 0.13 0.65 0.17	< 10 10 10 10 10	1.03 1.11 0.85 1.01 1.12	590 650 475 610 440
274360 274361	205 294 205 226	< 5 < 5	< 0.2 < 0.2	2.30 2.01	< 2 2	10 20	< 0.5 < 0.5	< 2 < 2	1.11	< 0.5	20 17	88 89	89 46	3.74 3.06	< 10 < 10	1 < 1	0.06 0.08	10 10	1.57 1.39	560 480
													c	ERTIFIC	CATION:	ha		(Ľ

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: INTERNATIONAL CANALASKA RESOURCES LTD.

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9

Pag .mber :1-A Total Pages :1 Certificate Date: 08-APR-1999 Invoice No. :19914744 P.O. Number OEY Account

TIMMINS Project : Comments: ATTN: BILL HOWELL CC: ANDREW TIMS

CERTIFICATE OF ANALYSIS A9914744

SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
274362 274363 274364 274365 274365 274366	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 10 < 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.74 1.60 2.31 2.30	< 2 4 6 < 2	120 80 250 30	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.87 0.94 0.96 2.16	< 0.5 < 0.5 < 0.5 < 0.5	21 15 23 21	120 139 207 199	55 42 52 31	3.02 1.51 3.10 3.05	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.48 0.24 0.62 0.21	< 10 10 10 10	1.06 1.13 1.62 2.25	505 140 305 530
274367 274368 274369 274370 274370 274371	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2	2.02 1.11 1.14 2.23	2 < 2 < 2 	40 100 130 70	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 	2.58 1.28 1.46 	< 0.5 < 0.5 < 0.5 < 0.5	22 7 7 27	197 52 55 	67 9 13 50	2.79 1.81 1.78 2.90	< 10 < 10 < 10 < 10 	< 1 < 1 < 1 < 1	0.22 0.15 0.21	10 60 70 	1.57 0.87 0.85 	545 205 210 355
274372 274373 274374 274375 274375 274376	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 0.2 0.2	2.45 3.15 1.49 1.33 1.15	2 2 4 < 2 2	50 10 40 60 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.00 1.53 0.81 0.77 0.66	< 0.5 < 0.5 < 0.5 < 0.5 0.5	24 33 86 86 32	195 276 152 155 120	143 101 42 47 49	2.83 4.41 2.55 2.05 1.88	< 10 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.25 0.06 0.16 0.34 0.28	10 50 20 20	2.19 3.77 0.90 0.67 0.59	345 610 300 260 260
274377 274378 274379 274380 274381	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5</pre>	1.0 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.07 1.16 1.14 1.07 1.54	4 < 2 2 < 2 2	80 50 60 40 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 < 2 < 2 < 2 < 2 < 2	0.57 0.71 0.86 1.05 1.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	· 31 41 29 21 11	131 117 85 95 63	36 43 44 102 49	1.61 1.68 2.00 1.30 2.03	<pre>< 10 < 10</pre>	< 1 < 1 < 1 < 1 < 1 < 1	0.45 0.28 0.25 0.17 0.24	20 20 10 10	0.55 0.67 0.41 0.36 0.48	210 240 285 185 270
274382 274383 274384 274385 274385 274386	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5 < 5 < < 5 < < 5 < < 5 </pre>	< 0.2 < 0.2	1.98 1.25	4 2 	50 50	< 0.5 < 0.5	< 2 < 2	0.81 0.69	< 0.5 < 0.5	13 7 	70 57	35 12	3.01 2.01	< 10 < 10	< 1 < 1	0.21 0.12	20 50	1.20 1.02	350 240
274387 274388 274389 274390 274391	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5<</pre>																		
274392 274393	205 294 205 294	< 5 < 5															 			
											,						2			

CERTIFICATION

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: INTERNATIONAL CANALASKA RESOURCES LTD.

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9

Pag mber : 1-A Total ⊬ages : 1 Certificate Date: 08-APR-1999 Invoice No. P.O. Number 19914744 OEY Account

Project : TIMMINS Comments: ATTN: BILL HOWELL CC: ANDREW TIMS

A9914744 **CERTIFICATE OF ANALYSIS**

SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	. Hg ppm	K %	La ppm	Mg %	Mn ppm
274362 274363 274364 274365 274365 274366	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 10 < 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.74 1.60 2.31 2.30	< 2 4 6 < 2	120 80 250 30	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.87 0.94 0.96 2.16	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	21 15 23 21	120 139 207 199	55 42 52 31	3.02 1.51 3.10 3.05	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.48 0.24 0.62 0.21	< 10 10 10 10	1.06 1.13 1.62 2.25	505 140 305 530
274367 274368 274369 274370 274371	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2	2.02 1.11 1.14 	2 < 2 < 2 < 2 < 2	40 100 130 	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	2.58 1.28 1.46	< 0.5 < 0.5 < 0.5	22 7 7 2 27	197 52 55 	67 9 13 	2.79 1.81 1.78 	< 10 < 10 < 10 < 10 	< 1 < 1 < 1 	0.22 0.15 0.21	10 60 70 	1.57 0.87 0.85 	545 205 210 355
274372 274373 274374 274374 274375 274376	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 0.2 0.2	2.45 3.15 1.49 1.33 1.15	2 2 4 < 2 2 2	50 10 40 60 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.00 1.53 0.81 0.77 0.66	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	24 33 86 86 32	195 276 152 155 120	143 101 42 47 49	2.83 4.41 2.55 2.05 1.88	< 10 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.25 0.06 0.16 0.34 0.28	10 50 20 20	2.19 3.77 0.90 0.67 0.59	345 610 300 260 260
274377 274378 274379 274380 274380 274381	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5</pre>	1.0 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.07 1.16 1.14 1.07 1.54	4 < 2 2 < 2 2 2	80 50 60 40 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 < 2 < 2 < 2 < 2 < 2 < 2	0.57 0.71 0.86 1.05 1.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	31 41 29 21 11	131 117 85 95 63	36 43 44 102 49	1.61 1.68 2.00 1.30 2.03	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.45 0.28 0.25 0.17 0.24	20 20 10 10	0.55 0.67 0.41 0.36 0.48	210 240 285 185 270
274382 274383 274384 274385 274385 274386	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5</pre>	< 0.2 < 0.2	1.98 1.25	4 2 	50 50	< 0.5 < 0.5	< 2 < 2	0.81 0.69	< 0.5 < 0.5	13 7 	70 57 	35 12 	3.01 2.01	< 10 < 10	< 1 < 1	0.21 0.12	20 50	1.20 1.02	350 240
274387 274388 274389 274390 274391	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>																		
274392 274393	205 294 205 294	< 5 < 5																		
																1	7		•	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: INTERNATIONAL CANALASKA RESOURCES LTD.

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9

Page Number : 1-B Total Pages : 1 Certificate Date: 08-APR-1999 Invoice No. : 19914744 P.O. Number OEY Account

Project : TIMMINS Comments: ATTN: BILL HOWELL CC: ANDREW TIMS

> CERTIFICATE OF ANALYSIS A9914744

											•			- • ·						
SAMPLE	PR	EP DE	M	o N m	a N % DD		Ph n ph	Sb I DI	SC	SI DDI	Ti 1 4	T1	. U 1. DII	ע ז בעמים ו	W maga	Zn maga				
274362	205	294																		
274363	205	5 294	< :	1 0.0	6 8	0 570) 2	4	7	49	0.22	< 10	< 10	67	< 10	52				
74364	205	294	< :	1 0.1	0 9	0 660) 2	2	3	24	0.13	< 10) < 10	35	< 10	28				
274365	205	294		1 0.0	9 12	4 740) 2	< 2	6	33	0.20	< 10	< 10	59	< 10	56				
74366	205	294		2 0.0	7 12	2 66C) < 2	2	4	81	0.25	< 10	< 10	62	< 10	78				
74367	205	294		9 0 0	9 12	7 620) 2	< 2	5	127	0.24	< 10	< 10	61	< 10	72				
74368	205	294		1 0.0	7	1090) < 2	< 2	2	146	0.17	< 10	< 10	31	< 10	40				
74369	205	294	l k	1 0.0	8 '	7 1140) 4	< 2	3	141	0.19	< 10	< 10	32	< 10	42				
74370	205	294																		
74371	205	294	< :	1 0.0	6 12	1 580) < 2	6	6	18	0.20	< 10	< 10	74	< 10	80				
74372	205	294	<	1 0.0	5 9	9 580) 4	< 2	6	31	0.20	< 10	< 10	65	< 10	78				
74373	205	294		1 0.0	5 14-	1390) < 2	< 2	9	72	0.21	< 10	< 10	85	< 10	98				
74374	205	294	:	1 0.1	3 32	5 650) 10	< 2	11	43	0.25	< 10	< 10	84	< 10	80				
74375	205	294		3 0.0	7 33	600) 36	< 2	10	28	0.24	< 10	< 10	71	< 10	294				
74376	205	294		3 0.0	7 11	5 530) 54	< 2	6	20	0.17	< 10	< 10	47	< 10	240				
74377	205	294	< :	1 0.0	7 9	540	14	< 2	8	18	0.18	< 10	< 10	66	< 10	98				
74378	205	294		1 0.0	5 12	7 540) < 2	2	6	22	0.18	< 10	< 10	51	< 10	162				
74379	205	294		1 0.0	7 8:	9 670) < 2	< 2	5	24	0.16	< 10	< 10	55	< 10	106				
74380	205	294	:	1 0.0	6 6	5 640) 2	< 2	4	30	0.16	< 10	< 10	41	< 10	54				
74381	205	294		3 0.0	7 1:	690) < 2	< 2	4	114	0.17	< 10	< 10	40	< 10	46				
74382	205	294		2 0.1	4 1	7 730) 2	< 2	6	68	0.21	< 10	< 10	64	< 10	68				
74383	205	294	<	1 0.0	7 10	900) 2	< 2	3	81	0.15	< 10	< 10	31	< 10	48				
74384	205	294																		
74385	205	294																		
74386	205	294																		
74387	205	294																		
74388	205	294																		
74389	205	294																		
74390	205	294																		
74391	205	294																		
74392	205	294																		
74393	205	294																		
		1																		
	1																			
		1 1																		
																	ΔI			
• ••••••••••••••••••••••••••••••••••••		<u> </u>																		.
																	10	(11	1
															CERTIF	ICATION:	123-	· · · · · · · · · · · · · · · · · · ·	115	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: INTERNATIONAL CANALASKA RESOURCES LTD.

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9 Pa__umber :1-A Totai Pages :1 Certificate Date: 13-APR-1999 Invoice No. :19914898 P.O. Number : Account :OEY

				· ·						CE	RTIF	CATE	OF A	NAL	YSIS	/	A9914	898		
SAMPLE	PREP CODE	Ац ррб FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
274394 274395 274396 274397 274398	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.46 2.00 1.83 2.72 1.65	2 2 8 8 < 2	50 150 130 730 260	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.71 0.65 1.12 2.75 2.31	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 26 21 29 23	74 268 166 262 188	16 59 64 44 46	2.32 3.52 3.36 3.93 2.51	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.84 0.29 1.23 0.64	70 10 10 < 10 < 10	1.48 1.50 1.85 2.18 1.47	225 510 415 625 360
274399 274400 274401 274402 274403	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.32 3.42 2.75 2.69 3.24	2 4 < 2 6 < 2	380 470 240 100 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.42 1.34 2.06 2.16 1.93	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	22 29 20 25 33	223 271 181 203 271	47 84 35 57 51	3.34 4.46 3.09 4.35 5.43	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.19 0.81 0.66 0.39 0.41	< 10 10 10 10 < 10	2.51 1.85 1.52 1.61 1.69	380 385 475 715 935
274404 274405 274406 274407 274408	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 0.4 < 0.2	2.24 1.32 1.81 1.49 2.72	2 4 2 28 < 2	20 10 < 10 < 10 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 6 < 2	2.42 1.75 1.87 2.12 1.09	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	24 33 27 159 25	167 96 50 52 71	47 78 33 103 39	3.41 3.84 8.53 5.00 4.18	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.08 0.13 0.07 0.41	< 10 < 10 < 10 < 10 < 10 10	1.16 0.78 0.67 0.67 1.74	860 830 1460 695 545
274409 274410 274411 274412 274413	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5<</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.66 2.18 2.35 1.61 2.54	< 2 6 2 4 6	110 110 220 60 150	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.36 1.27 1.06 0.87 1.65	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	, 20 28 20 14 17	85 79 83 63 75	46 110 45 44 38	3.48 3.35 3.69 2.59 2.92	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.54 0.44 0.75 0.41 0.68	10 10 10 10 10	1.42 1.22 1.48 1.11 1.42	445 410 480 260 315
					<u></u>				· <u> </u>	<u></u>	· <u>·····</u> ······························					1	? 			10
													(ERTIFIC	CATION:	lang-	~	Er.		- de la companya de l

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: INTERNATIONAL CANALASKA RESOURCES LTD.

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9 Pay mber :1-B Tota, ages :1 Certificate Date: 13-APR-1999 Invoice No. :19914898 P.O. Number : Account :OEY

												RTIF	CATE	OF A	NALY	'SIS	A9914898
SAMPLE	PR CO	EP DE	Mo ppm	Na %	Ni ppm	P P P D M	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W ppm	Zn ppm	
274394 274395 274396 274397 274398	205 205 205 205 205	294 294 294 294 294 294	3 3 3 3 4	0.06 0.06 0.06 0.06 0.09	9 91 71 139 134	1230 680 820 970 800	< 2 < 2 616 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 10 3 7 4	116 19 19 31 23	0.16 0.28 0.29 0.31 0.19	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	33 86 74 85 54	< 10 < 10 < 10 < 10 < 10 < 10	48 88 78 74 48	
274399 274400 274401 274402 274403	205 205 205 205 205	294 294 294 294 294 294	4 2 1 5 3	0.06 0.18 0.09 0.06 0.06	116 141 103 161 204	940 1020 820 870 920	< 2 < 2 6 < 2 < 2 < 2	< 2 2 < 2 < 2 < 2 < 2 < 2	3 7 5 5 6	19 80 74 48 36	0.23 0.21 0.25 0.26 0.32	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	61 97 62 59 80	< 10 < 10 < 10 < 10 < 10 < 10	60 64 74 60 74	
274404 274405 274406 274407 274408	205 205 205 205 205	294 294 294 294 294 294	6 4 4 14 3	0.06 0.06 0.16 0.01 0.07	167 180 146 200 79	900 780 690 250 590	< 2 < 2 < 2 < 2 < 2 50	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	5 3 4 6 7	55 28 20 36 22	0.27 0.15 0.09 0.05 0.24	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	47 29 39 34 83	< 10 < 10 < 10 < 10 < 10 < 10	60 38 80 108 174	
274409 274410 274411 274412 274413	205 205 205 205 205	294 294 294 294 294 294	5 2 1 1 3	0.12 0.11 0.08 0.11 0.17	42 42 40 30 35	580 640 610 620 580	< 2 10 < 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	6 6 7 5 5	31 29 23 16 34	0.26 0.24 0.27 0.13 0.15	, < 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	75 66 86 60 66	< 10 < 10 < 10 < 10 < 10 < 10	76 118 118 54 60	
																	57

CERTIFICATION

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: INTERNATIONAL CANALASKA RESOURCES LTD. *

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9 Page Number : 1-A Total Pages : 1 Certificate Date: 23-APR-99 Invoice No. : 19915780 P.O. Number : Account : OEY

- - - - -----

Project : TIMMINS Comments: ATTN: BILL HOWELL CC: ANDREW TIMS

		_						CERTI	FICATE	OF AN	ALYSIS	5 /	4991570	50	
SAMPLE	PREP CODE	A1 203 %	CaO 8	Cr2O3	Fe2O3	К20 ¥	NgO ¥	MnO %	Na20 8	P205	\$102 \$	TiO2 %	LOI	TOTAL \$	
274379	244 200	14.57	4.15	0.01	4.54	1.13	0.68	0.08	4.15	0.14	67.15	0.91	1.33	98.84	
															L
								;							
						j									
										-					
					ļ										
		1	1	L	I	L	l		1	1	L	L		L	

.

To: INTERNATIONAL CANALASKA RESOURCES LTD.

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9 Page Number : 1-A Total Pages : 1 Certificate Date: 30-APR-99 Invoice No. : 19915782 P.O. Number : Account : OEY

*

Project : TIMMINS Comments: ATTN: BILL HOWELL CC: ANDREW TIMS

											CE	RTIFI	CATE	OF A	NAL	1919		A9915	782		
SAMPLE	PREI		Ba ppm	Ce ppm	Cs ppm	Co Ppm	Cu ppm	D7 PP n	Er PPm	Eu ppn	Gđ ppm	Ga ppm	Ef ppm	Ho ppm	La ppn	Pb PPm	Lu ppn	NC PPB	N1 PPM	ND ppm	Pr ppm
274379	299	197	612	50.5	1.3	32.0	55	3.6	2.1	1.2	5.0	23	5	0.7	23.0	< 5	0.3	24.0	105	6	5.7
																					i
L																				<u> </u>	

PAGE

002

Page Number	:1 -B
Total Pages	:1
Certificate Date	: 30-APR-99
Invoice No.	:19915782
P.O. Number	:
Account	:OEY
Account	:OEY

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9

Project : TIMMINS Comments: ATTN: BILL HOWELL CC: ANDREW TIMS

								·		CE	RTIFI	CATE	OF A	NAL	/818		\9915	5782	
SANPLE	PREP CODE	RD ppm	Sm PPm	Ag p pm	8r PPm	Ta ppm	Tb ppm	T1 PPm	Th PPm	Tm ppm	Sn ppn	w Ppm	U P PR	V ppm	YD ppm	ү ррш	Zn ppa	Zr ppm	
274379	299 297	45.6	4.4	< 1	293	0.5	0.7	< 0.5	4	0.2	1	5	0.5	140	1.8	19.0	125	200	

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

04/30/99 11:31PM CHEMEX LABS VAX-FAX2

RERUNS from A9914744

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: INTERNATIONAL CANALASKA RESOURCES LTD.

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9 Page .umber :1 Total Pages :1 Certificate Date: 19-APR-1999 Invoice No. :19915271 P.O. Number : Account :OEY

								CERTI	FICATE	OF AN	ALYSIS	<u> </u>	A99152	71	
SAMPLE	PREP CODE	A1203 %	Ca0 %	Cr203	Fe2O3 . %	K20 %	MgO %	MnO %	Na20 %	P205 %	sio2 %	TiO2 %	LOI %	TOTAL %	
274404 274407	244 200 244 200	13.40 7.11	14.30 4.59	0.06 0.01	12.70 25.52	0.89	5.70	0.41 0.15	0.54 0.65	0.24 0.04	48.50 41.95	1.24 0.34	1.80	99.78 97.63	
													2		

To: INTERNATIONAL CANALASKA RESOURCES LTD. *

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9 Page Number : 1-A Total Pages : 1 Certificate Date: 19-APR-99 Invoice No. : 19915272 P.O. Number : Account : OEY

* REVISED FA	X	•								CE	RTIFI	CATE	OF A	NAL)	/SIS		49915	272		
SAMPLE	PREP CODE	Ba PPm	Ce ppm	Cs ppm	Co PPM	Cu P9m	Dy PPM	Er ppm	Eu ppm	6d PPm	Ga PPM	Hf PPn	Ho P PH	La ppm	Pb P ph	La P PII	Nd ppm	N1 PPm	ND PPM	Pr ppm
SAMPLE 274404 274407	CODE 299 297 299 297	9999 385 327	рра 38.5 15.0	ppw 0.4 0.7	PP1 42.5 173.0	2000 40 100	<u>ppm</u> 3.7 2.0	ppn 2.2 1.3	ppm 1.5 0.5	2.2	99900 17 9	<u>ppn</u> 3 < 1	PPa 0.8 0.5	PP0 16.5 6.5	2000 < 5 5	ppm 0.3 0.1	22.0 8.5	9900 305 245	<u>ppm</u> 7 ∢ 1	ppn 5.6 2.1

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: INTERNATIONAL CANALASKA RESOURCES LTD. *

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9

Page Number	: 1-B
Total Pages	:1
Certificate Dat	e: 19-APR-99
Invoice No.	: I 9915272
P.O. Number	:
Account	:OEY

* REVISED FA	x								_		CE	RTIFI	CATE	OF A	NAL	/SIS		19915	272	
SAMPLE	P RI COI	BP De	Rb PP m	Sm ppm	Ag PPm	Sr ppm	Та ррш	Tb PPM	Tl PPM	Th ppm	Tm PPm	Sn ppn	M P r m	D. D	V ppn	Yb PPM	Y pp n	Zn P P M	2r P PN	
274404 274407	299 299	297 297	18.8 30.6	5.2 1.8	< 1 < 1	232 106.0	0.5 < 0.5	0.9	< 0.5 < 0.5	42	0.3	< 1 < 1	< 1 < 1	< 0.5 < 0.5	145 ?0	2.1 1.2	20.0 10.5	120 120	85.5 21.0	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave. North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: INTERNATIONAL CANALASKA RESOURCES LTD.

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9

Page nber : 1 Total Pages : 1 Certificate Date: 12-APR-1999 Invoice No. : 19914745 P.O. Number : Account : OEY

٠

Project : TIMMINS Comments: ATTN: BILL HOWELL CC: ANDREW TIMS

CERTIFICATE OF ANALYSIS A9914745 PREP A1203 CaO Cr203 Fe203 K20 MgO MnO Na20 P205 sio2 TiO2 LOI TOTAL SAMPLE CODE % % 2 % % % % % % % % % % 274362 299 200 13.44 7.38 0.05 6.77 1.18 7.79 0.11 3.42 0.40 55.27 0.85 1.38 98.04 274370 299 200 15.50 4.40 0.04 6.44 1.75 6.43 0.10 3.48 0.16 57.48 0.91 2.35 99.04

CERTIFICATION:

in

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: INTERNATIONAL CANALASKA RESOURCES LTD.

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9 Pa lumber : 1-A Tota: Pages : 1 Certificate Date: 19-APR-199 Invoice No. : 19914746 P.O. Number : Account : OEY

										CE	RTIFI	CATE	OF A	NAL	(SIS		49914	746		
SAMPLE	PREP CODE	Ba ppm	Ce ppm	Cs ppm	Co ppm	Cu ppm	Dy ppm	Er ppm	Eu ppm	Gđ ppm	Ga ppm	Hf ppm	Ho ppm	La ppm	Pb mqq	Lu ppm	Nd ppm	Ni ppm	Nb ppm	Pr ppm
274362 274370	299 297 299 297	ppm 1055 381	ppm 193.0 38.5	ppm 2.4 3.3	ppm 32.0 35.0	ppm 45 40	ppm 4.9 3.1	ppm 1.7 1.9	ppm 3.5 1.1	ppm 11.1 4.1	ppm 19 19	ppm 4 3	ppm 0.7 0.6	ppm 92.5 17.0	ppm 5 < 5	ppm 0.1 0.3	ppm 92.0 19.5	ppm 225 200	<u>ppm</u> 6 5	23.3 4.9
																N	7	العدير		

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: INTERNATIONAL CANALASKA RESOURCES LTD.

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9 Pa Umber :1-B Tota: Pages :1 Certificate Date: 19-APR-199€ Invoice No. : 19914746 P.O. Number : Account :OEY

										CE	RTIF	CATE	OF A	NAL	/SIS	/	49914	746	
SAMPLE	PREP CODE	Rb ppm	Sm ppm	Ag ppm	Sr ppm	Ta ppm	Tb ppm	Tl ppm	Th ppm	Tm ppm	Sn ppm	W ppm	U ppm	V ppm	Yb ppm	Y ppm	Zn ppm	Zr ppm	
274362		7 38.4 7 59.0	14.8 4.6	<pre></pre>	989 291	< 0.5 < 0.5	1.1 0.6	○ 0.5 < 0.5	11 3	0.2 0.2	<pre>>ppm < 1 < 1</pre>	<pre>>ppm < 1 < 1</pre>	23.5 0.5	105 125	1.3 1.8	17.5 16.0	115 120	130.5 112.5	
																\mathcal{A}			

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd. Mississauga

5175 Timberlea Blvd.,MississaugaOntario, CanadaL4W 2S3PHONE: 905-624-2806FAX: 905-624-6163

To: INTERNATIONAL CANALASKA RESOURCES LTD.

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9 Pε lumber :1 Tota: Pages :1 Certificate Date: 19-APR-199 Invoice No. :19914899 P.O. Number : Account :ΟΕΥ

Project : TIMMINS Comments: ATTN: BILL HOWELL CC: ANDREW TIMS

CERTIFICATE OF ANALYSIS A9914899 A1203 sio2 TiO2 LOI TOTAL PREP CaO Cr203 Fe203 K20 MgO MnO Na20 P205 SAMPLE % % CODE % % % 8 % % % % % % % 274414 205 226 0.85 1.16 100.65 62.10 15.54 6.60 0.01 7.11 1.28 3.28 0.10 2.51 0.12 .

CERTIFICATION:

PREP

Ba

Ce

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd. Mississauga

5175 Timberlea Blvd.MississaugaOntario, CanadaL4W 2S3PHONE: 905-624-2806FAX: 905-624-6163

C s

Co

Cu

Dν

Er

To: INTERNATIONAL CANALASKA RESOURCES LTD.

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9 Pac imber :1-A Totai rages :1 Certificate Date: 19-APR-1999 Invoice No. : [9914900 P.O. Number : Account :OEY

Project : TIMMINS Comments: ATTN: BILL HOWELL CC: ANDREW TIMS

 CERTIFICATE OF ANALYSIS
 A9914900

 Eu
 Gd
 Ga
 Ef
 Eo
 La
 Pb
 Lu
 Nd
 Ni
 Nb
 Pr

 ppm
 ppm
 ppm
 ppm
 ppm
 ppm
 ppm
 ppm

SAMPLE	со	DE	ppm	ppm	ррш	ppm	ppm	ppm	ppm	ррш	ррш	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
274414	299	297	378	36.0	1.9	25.0	45	3.5	2.2	1.1	4.2	19	3	0.7	16.5	< 5	0.3	18.5	65	5	4.5
																					:
																	1	7			
		1	<u></u>		·				··								-//		1000		

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: INTERNATIONAL CANALASKA RESOURCES LTD.

MEZZANINE FLOOR, 626 W. PENDER ST. VANCOUVER, BC V6B 1V9 Page Jumber : 1-B Total Pages : 1 Certificate Date: 19-APR-1996 Invoice No. : 19914900 P.O. Number : Account : OEY

.

			_								CE	RTIFI	CATE	OF A	NALY	SIS	<i>F</i>	19914	900	
SAMPLE	PR CO	EP DE	Rb ppm	Sm ppm	Ag ppm	Sr ppm	Ta ppm	Tb ppm	T1 ppm	Th ppm	Tm ppm	Sn ppm	W ppm	D mđđ	V mqq	Yb ppm	Y ppm	Zn ppm	Zr ppm	
274414	299	297	36.6	3.9	< 1	196.5	< 0.5	0.7	< 0.5	2	0.3	< 1	< 1	0.5	125	2.0	17.5	105	103.5	
	l											,								
																	1	7		
				,,							v.		··							

Jensen plot of selected samples

Tectonic setting based on trace element discrimination plots.

APPENDIX 3 – Names and Addresses of Claim Holders

. .

.

CLAIM AND CLAIM OWNERSHIP LIST

- CLAIMS HELD BY EAST WEST RESOURCE CORPORATION
- INTERNATIONAL CANALASKA RESOURCES LTD. CAN EARN 50%
- TIMMINS/MICHIE TOWNSHIPS PORCUPINE MINING DISTRICT

P1193748
P1193749
P1193750
P1193533
P1193534
P1193535
P1207303
P1200280
P1200284
P1200285
P1200290
P1200272
P1206913
P1212638
P1212639
P1212640
P1212641

- CLAIMS HELD BY INTERNATIONAL CANALASKA RESOURCES LTD.
- TIMMINS/MICHIE TOWNSHIPS PORCUPINE MINING DISTRICT
- NORDICA TOWNSHIP/LARDER LAKE MINING DISTRICT

P1212699	P1212700
P1207056	P1219347
P1219496	P1219497
P1219500	P1223685
P1223686	P1223687
91223688	P1224292
1778660	

ADDRESSES OF CLAIM HOLDERS

INTERNATIONAL CANALASKA RESOURCES LTD.- CLIENT #303686

Mezzanine Level - 626 West Pender Street Vancouver, B.C. V6B 189 PH:604-688-0041 FAX:604-688-2582

EAST WEST RESOURCE CORPORATION - CLIENT #128645 203-960 Richards Street

Vancouver, B.C. V6B 3C1 PH: not listed FAX:604-689-5930

APPENDIX 4 - Drill Hole Location Map and Sections

.

Declaration of Assessment Work Performed on Mining Land

Mining Ant Subsection 65(2) and 66(3), R.S.O. 1990

ction 65(2) and 66(3) of the Mining Act. Under section 8 of the Mining Act, this work and correspond with the mining land holder. Questions about this collection t and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 685.

Transaction Number (office use)

Assessment Files Research Imaging

00268

<u>9960</u>

Instructions: - For work performed on Crown Lands before **recording** a claim, use form 0240. - Please type or print in ink.

1. Recorded holder(s) (Attach a list if necessary)

Name PLEASE SEE ATTACHED	Client Number 303686
Address "CLAIM OWNERSHIP LIST"	Telephone Number
	Fax Number
Name	Client Number 128 645
Address	Telephone Number
	Fax Number

2. Type of work performed: Check (\checkmark) and report on only ONE of the following groups for this declaration.

Geotechnical: prospecting, s assays and work under section	urveys, on 18 (regs)	Physical: drilling stri trenching and associ	pping, Rehabilitation ated assays
Work Type			Office Use
Diamaria	DRILLIC		Commodity
DIATIOND	DRILLING		Total \$ Value of # 50, 032
Dates Work From Performed Day Month	To Year Day	Month Year	NTS Reference
Global Positioning System Data (if available)	Township/Area TIMM	1715	Mining Division procupice
	M or G-Plan Number 42	a Isa	Resident Geologist

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required;

- provide proper notice to surface rights holders before starting work;

- complete and attach a Statement of Costs, form 0212;

- provide a map showing contiguous mining lands that are linked for assigning work;

- include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a list if necessary)

Name	ANDREW TIMS	Telephone Number 1 - 703 - 268 - 8063
Address	1214 - 309 RIVERSIDE DRIVE, TIMBINS ONT.	Fax Number /- 705 - 268 - 8063
Name		Telephone Number
Address		Fax Number
Name		Telephone Number
Address		Fax Number

4. Certification by Recorded Holder or Agent

DOWNING TARYN 1.

_____, do hereby certify that I have personal knowledge of the facts set forth in

(Print Name) this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Holder or Agent		Date
		Aline 2/99
Agent's Address 626 W. PENDER ST VANCHURR BC	Telephone Number	Fax Number
0241 (03/07) V68·/89		
Deemed	RECEIV	(FD)
Sontomber 9,1911		
sepure 112 : 13 :	SPECIAL SPECIA	same same

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

					W9960	00268
Mining work w mining column indica	g Claim Number. Or if res done on other eligible g land, show in this n the location number led on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date
eg	TB 7827	16 ha	\$26,825	N/A	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	0
eg	1234568	2	\$ 8,892	\$ 4,000	0	\$4,892
1	119 3700	16	50 032	6400	43632	
2	119 3701	8		3200		
3	119 37 02	1		400		
4	119 37 03	16		6400		
5	119 37 06	12		4800		
6						
7	1200 259	16		6400		
8	1200 \$62	12		4800		
9	1200267	16		6400		
10	1200268	16		6400		
11	1200272	16		48 32		
12						
13						
14						
15						
	Column Totals	129	50,032	50,032	43632	Ð

I, <u>TRRYN</u> Downing. (Print Full Name)

subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

where the work was done.

Signature of Recorded Holder or Agent Authorized in Writing	Date	1
	flene	2/98
		-/./

6. Instruction for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\checkmark) in the boxes below to show how you wish to prioritize the deletion of credits:

- 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
- 2. Credits are to be cut back starting with the claims listed last, working backwards; or
- 3. Credits are to be cut back equally over all claims listed in this declaration; or
- 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

BANK FIRST, THAN 1193706, Cur FROM LAST. WORKING BACKWARDS . THEN CLAIMS LISTED

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use Only		
Received Slamp	Deemed Approved Date	Date Notification Sent
	Date Approved	Total Value of Credit Approved
0241 (03/97)	Approved for Recording by Mining Record	l der (Signature)

2.19565

CLAIM AND CLAIM OWNERSHIP LIST

129960 00268

- CLAIMS HELD BY EAST WEST RESOURCE CORPORATION
- INTERNATIONAL CANALASKA RESOURCES LTD. CAN EARN 50%
- TIMMINS/MICHIE TOWNSHIPS PORCUPINE MINING DISTRICT

P1193748
P1193749
P1193750
P1193533
P1193534
P1193535
P1207303
P1200280
P1200284
P1200285
P1200290
P1200272
P1206913
P1212638
P1212639
P1212640
P1212641

- CLAIMS HELD BY INTERNATIONAL CANALASKA RESOURCES LTD.
- TIMMINS/MICHIE TOWNSHIPS PORCUPINE MINING DISTRICT
- NORDICA TOWNSHIP/LARDER LAKE MINING DISTRICT

P1212699	P1212700
P1207058	P1219347
P1219496	P1219497
P1219500	P1223685
P1223686	P1223687
P1223688	P1224292
L1228669	

ADDRESSES OF CLAIM HOLDERS

RECEIVED

1 j

OF TOFFLORE NO

INTERNATIONAL CANALASKA RESOURCES LTD.- CLIENT #303686 Mezzanine Level - 626 West Pender Street Vancouver, B.C. V6B 1B9 PH:604-688-0041 FAX:604-688-2582

EAST WEST RESOURCE CORPORATION - CLIENT #128645 203-960 Richards Street

Vancouver, B.C. V6B 3C1 PH: not-listed FAX:604-689-5930

Statement of Costs for Assessment Credit

Transaction Numb	er (office use)	
1.19960	(268	,

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 685.

Work Type	Units of work Depending on the type of work, list the number of hours/day worked, metres of drilling, kilometres of grid line, number of samples, etc.	Cost Per Unit of work	Total Cost
DIAMOND DRILLING	623.6 m	40.** /m	24944.**
455 A Y 5	91 SAMPLES	17.50 / SAMPLE	1599. 72
DRILL HOLE TOST/SURVEY	4	240.**	960. **
CORE CUTTING	40 HRS	15. " /HA	600. **
CORE MOVING	1	40.**	40.**
GEOL. SITE SUPPAN. & REPORT	15 DAYS	275 1044	4125 **
PROJ. SUPERVISION	2 0445	400. ** /	800.**
Associated Costs (e.g. supplie	s, mobilization and demobilization).		
MOB DEMOS DRILL MOU	5,		4167.21
CONSUMABLE FIELD SUPPL	1AS - GEOLOGICAL		1195,03
	- DRILLING		2068. **
CORE STORAGE			720.**
Transpo	ortation Costs		
FUEL (GASOLINE)		1 16), (1	213.71
SUPERVISOR / TRANSP.			400.**
Food and	Lodging Costs		
BO M.D.		100 /	8000
SUPERVISOR / FOOD & LODG	ana 2 M.D.	100."/	200.00

Total Value of Assessment Work 50,032.6/

Calculations of Filing Discounts:

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.

2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT VORK TOTAL VALUE OF ASSESSMENT VORK	TOTAL VALUE OF ASSESSMENT WORK	x 0.50 =	Total \$ value of worked claimed.
---	--------------------------------	----------	-----------------------------------

Note:

- Work older than 5 years is not eligible for credit.

A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a
request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the
Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

1. TARYN DOWNING	, do hereby certify, that the amounts shown are as accurate as may reasonably
(please print full name)	

be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying

Declaration of Wor	k form as <u>CORFORATE</u> SECRETA (recorded holder, agent, or state company por	-CY I am auti sition with signing authority)	horized to make this certification.
		Signature	Date
0212 (03/97)	RECEIVED	Downg	- 2/98
	JUN 15 1990		
	CODEN NOR MORENENT		

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

July 12, 1999

Taryn Downing INTERNATIONAL CANALASKA RESOURCES LTD. 626 WEST PENDER STREET MEZZANINE FLOOR VANCOUVER, B.C. V6B-1B9 🐨 Ontario

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9846 Fax: (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm

Dear Sir or Madam:

Subject: Transaction Number(s):

Submission Number: 2.19562

Status W9960.00268 Deemed Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact Steve Beneteau by e-mail at steve.beneteau@ndm.gov.on.ca or by telephone at (705) 670-5855.

Yours sincerely,

110

ORIGINAL SIGNED BY Blair Kite Supervisor, Geoscience Assessment Office Mining Lands Section

Correspondence ID: 13989 Copy for: Assessment Library

Work Report Assessment Results

Submission Number: 2.19562								
Date Correspondence Sent: July 12, 1999		Assessor:Steve Beneteau						
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date				
W9960.00268	1193700	TIMMINS	Deemed Approval	July 12, 1999				
Section: 16 Drilling PDRILL								
Correspondence to:		Recorded Holder(s) and/or Agent(s):						
Resident Geologist		Taryn Downing						
South Porcupine, ON		INTERNATIONAL CANALASKA RESOURCES LTD. VANCOUVER B.C.						
Assessment Files Lit	brary							
Sudbury, ON		EAST WEST RESOURCE CORPORATION VANCOUVER, BC						

200

