Rex. Wrath

R. W. Woolham

BASe P. Eng.

Brinco Document No. P82004
N.T.S. 42 A/8

January 21, 1983
PAGE
INTRODUCTION 1
location and access 1
GEOLOGY 1
SURVEY PARAMETERS MAGNETOMETER 2
ELECTROMAGNETIC 3
SOUTH GRID RESULTS 3,4CONCLUSIONS5,6
RECOMMENDATIONS 6
NORTH GRID RESULTS 7
CONCLUSIONS 8
RECOMMENDATIONS 9

NO.
P82004-1
P82004-?
P82004-3
P82004-4
P82004-5
P32004-6
P82004-7
P82001-8
P82004-9
P82004-10
P82004-11

APPFNDIX I
APPENDIX II

IITLE
Magnetic Values North Grid
Magnetic Contours North Grid
Magnetic Values South Grid
Magnetic Contours South Grid
VLFEM Profiles North Grid, Seattle
VLFEM Profiles North Grid, Annapolis
VLFEM Fraser Filter Contours North Grid, Seattle
VLFEM Profiles South Grid, Seattle
VLFEM Profiles South Grid, Annapolis
VLFEM Fraser Filter Contours South Grid, Seattle Magnetic Interpretation Map South Grid

Technical Data Statement
Instrument Specifications

The survey area consists of two claim groups. The south claim group contains 12 claims while the north claim group covers a six claim area. The north claim group is approximately 1200 metres north of the south group. Geophysical surveys involved coverage with a magnetometer and VLF electromagnetic unit. Details and specifications of the surveys are contained in the technical data statement. Appendix I.

Location and Access

The claims lie in the northeast corner of Barnct Township Concession IV lots 1 and 2 and Concession V north half, lot 1 . Two claims on the east side of the north group lie in Thackeray Township. Barnet Township is 25 km north of Kirkland Lake.

Access to the claim groups is via highway 101 from Matheson. A logging road on the south side of the highway occurs approximately 19 km east of the Holtyre highway \$572 turnoff. From the highway it is approximately 15 km by gravel road to a point approximately 2 km east of the Barnet Thackeray Township boundary, Concession V. Trails lead in to the south claim group a distance of about $3,5 \mathrm{~km}$. A tieline has been cut north along the approximate township boundary to connect with the north claim group.

Geology

The geology of the area and claims is described in a separate assessment report, Brinco Document $\# / G 82004$ which should be referred to for detailed geological infornation. The claims are underlain by tholeiitic mafic volcanic flows which are intruded by syenitic rocks. Except for the eastern part of the south claim group rock exposure is very limited.

The last recorded ground exploration work on the property was performed by Dominion Gulf in 1950. This work consisted of trenching, magnetometer surveys, geological mapping and drilling of four holes totalling 615 metres in the south claim group and four holes totalling 618 metres in the vicinity of the north claim groups two of which fall within the survey area.

Survey Parameters

Magnetometer

Two proton magnetometers were used for the survey as a malfunction in one necessitated replacement by a second, half way through the survey. The second instrument was read on selected stations occupied by the first so that an accurate tie-in to the original work was possible. Base stations were established along the baselines of each grid as indicated on the base maps of the magnetometer surveys. Base station survey loops did not exceed two hours in duration. Line spacing was 100 metres and station spacing was 25 metres for the north grid and 12,5 metres for most of the south grid. The total number of stations established was 1591 and 401 for the south and north grids respectively. Specifications of the instruments are contained in Appendix II.

The corrected magnetic values are plotted on maps \#P82004-1,3 at a scale of 1:2500 and the magnetic contour maps are shown on maps P82004-2,4. The contour interval is 200 nanotesla.

Electromagnetic

The VLF electromagnetic survey was read at a 25 metre station interval using two transmitting sources at Seattle, Washington and Annapolis, Maryland. The dip angle of the field was read using a Crone RADEM Unit (see Appendix II for specifications) and values were plotted in profile form on maps P82004-5,8 for the Seattle transmitter and maps P82004-6,9 for the Annapolis transmitter. The results for the Seattle transmitter source were fraser filtered, plotted and contoured as shown on maps P82004-7,10. All maps are at a scale of $1: 2500$.

A total of 833 stations with two readings each were occupied in the south grid and 396 stations on the north grid.

South Grid

Results

Magnetic Survey (Maps P82004-3,4)

Magnetic amplitudes on the property varied between 58000 nanotesia (nT) and 66000 nT with a few values below and above these ranges. The south and eastern two-thirds of the grid is dominated by alternating negative and positive narrow linear trends. In the west half of this zone the strike is east west but changes more to an east northeast direction towards the eastern grid boundary. The northern boundary of this high sharp relief zone is marked by a sharp negative zone running from line 105E to 116 E . Surrounding these linear trends to the north, west, and southeast the contour pattern broadens becoming very smooth and regular. In the northwest corner of the grid two pseudo-circular features with very smooth broad contours and magnetic amplitudes of over 3000 nT are present. These two anomalies abruptly end on line 105 E and become a much narrower elongated anomaly trending eastward and eventually dissipating to background values on line 113E.

In the southwest corner, the high amplitude linear complex described previously, terminates at 104E and is replaced by a broad negative feature which is enclosed by a circular high amplitude belt to the west. This belt itself is surrounded to the north, west and south by background values. Parts of the negative feature on lines 102 E and 103 E between $101+50 \mathrm{~N}$ and $104+50 \mathrm{~N}$ appear to interfinger with the high amplitude linears zones to the east.

Electromagnetic Survey (Maps P82004-8,9,10)

Generally weak broad dip angle crossover responses were measured by both VLF surveys using Seattle and Annapol is stations. Where sharp gradients did occur, the response was asymetrical or totalling dipping in one direction as seen in the north central part of the Annapolis results and especially evident in the same region for the Seattle results on lines 105 E to 1085 at about 109 N . The relatively low smooth gradient of the Seattle dip angle responses produces weak Fraser filtered responses throughout the survey grid. Exceptions are the zone mentioned previously which trends from $105 E$ to $111 E$ and a partially detected horizon at the top end of lines 112E to 116 E . In spite of the poor coupling of the Annapolis transmitting field direction with features indicated by the Seattle station results, there is a reasonably good correlation between the two responses and their location.

The magnetic survey has defined a great deal of structural and geological information. The high amplitude magnetic linear zones no doubt reflect the high magnetite content of the tholeitic basalt flows which outcrop in this area. Broader contour patterns probably represent thicker overburden cover especially to the north. The negative amplitude zone boundary to the north may be a later stage mafic flow introduced when the magnetic poles were reversed or more likely the low may only represent non magnetic felsic volcanics or sediments. The broad high amplitude complex in the northwest corner of the grid may be a deep seated intrusive complex or deeply buried mafic flows related to another sequence of geological events.

The pseudo-circular low amplitude to negative zone to the south and west is suspected to be a syenite intrusion. Significant intersections of syenite were encountered in the Dominion Gulf drill holes to the east of this zone. From the noticeable anomaly terminations and interruptions there appears to be numerous cross cutting fold and fault structures with in the mafic flow complex. The most striking cross cutting feature occurs between lines 103 E and 104 E and appears to correlate with severe magnetic anomaly interruptions and amplitude changes. This major break is associated with:
(a) the boundary between the mafic volcanics and postulated syenite body between lines 103 E and 104 E from $101+50 \mathrm{~N}$ to $103+50 \mathrm{~N}$,
(b) a possible displacement of the magnetic expression of the syenite itself, and
(c) the abrupt change in amplitude and dual anomaly characteristics of the feature in the northwest corner of the grid. The structural interpretation of the magnetic survey is shown in map 982004-11.

The VLF surveys failed to specifically identify any conductive features that may be related to the geological structures as indicated by the magnetic interpretation map. The higher amplitude VLF responses generally appeared to be sub-parallel to the geological strike. The asymetrical nature of most of the stronger responses and the fact that these responses occurred for both transmitter directions at right angles to each other, suggests that conductive overburden or topography may be contributing to the VLF responses.

Recommendations

Known associations of gold occurrences with syenite intruded mafic volcanics coupled with assayable gold values in two of the holes drilled by Dominion Gulf, suggests that this grid area warrants further investigation. Based on the magnetic information, the prime target zone is in the region of $103+50 \mathrm{E}$ from $101+50 \mathrm{~N}$ to 104 N . Here, the magnetics suggest that the syenite complex to the west is intruding the mafic flow structures trending from the east. The relationship and significance of the interpreted fault, which is also present in this region, to potential ore emplacement is unknown. Detailed magnetic surveys are suggested in the region of the interpreted syenite complex as an aid to further geological investigations.

Results

Magnetic Survey (Maps P82004-1,2)

The magnetic amplitudes on this grid vary from about 58500 nT to 60500 $n T$. The north two-thirds of the grid is magnetically flat except for a weak linear magnetic dual complex trending north northwest from about $113+50 \mathrm{E}$ at 131 N to the top end of line 111 E at 136 N . This feature marks a change in background from about 58600 nT on the west side to 59200 nT on the east side of the feature.

The extreme southern portion of the grid contains a series of narrow linear high amplitude anomalies trending east northeast which are intersected by the north northwest feature described previously.

Electromagnetic Survey (Maps P82004-5,6,7)

The VLF survey results using both Seattle and Annapolis transmitters are much the same as encountered on the south grid characterized by broad slowly varying dip effects with asymetrical crossover responses. An exception occurs for some of the results of the Seattle station source as seen on the Fraser filter maps P82004-7. A very high amplitude maximum response of 74 is present on line $113 E$ at 130 N . The response weakens east and west of this line forming a semi arcuate shape. A weaker conductor axis is also present to the north and parallel to this zone running from line 119 E at $130+50 \mathrm{~N}$ to line 112 E at $132+50 \mathrm{~N}$. Other weak but significant anomalies occur on lines $118 \mathrm{E} / 119 \mathrm{E}$ at $133 \mathrm{~N}, 117 \mathrm{E}$ at $128+50 \mathrm{~N}$, 115 E at $135+50 \mathrm{~N}$ and 110 E at 131 N . In a general sense most of the conductive responses occur east of the north northwest magnetic lineament described previously and/or in association with th high amplitude magnetic zone to the south.

Conclusions

A major fault or contact zone trending north northwest appears to dominate the regional magnetics. Some narrow dykes may also be associated with this "contact". Most of the conductors as outlined by the VLF survey, occur east of this zone. The lower magnetic area to the west may reflect a felsic intrusive source. The higher narrow linear magnetic zones at the extreme south edge of the grid probably relate to more mafic volcanic flows. Some of the VLF responses are associated with drainage features and the highest amplitude anomaly is coincident with a beaver pond and wide meadow. Lack of similar associations with surface features in the west half of the grid however, suggests that most of the VLF features may relate to bedrock contacts or shear/fault sources. The relationships of the VLF conductor axes and the magnetic anomaly amplitude and shape characteristics further supports bedrock source effects.

Two drill holes by Dominion Gulf collared at approximately 113E at $129+25 \mathrm{~N}$ (hole \#2) and $112+50$ at $131+75 \mathrm{~N}$ (hole \#1) bearing grid north encountered mafic volcanics, syenite and felsic intrusives. Hole \#1 also encountered diabase. This latter intersection supports the suggestion of dyke sources causing part of the north northwest trend response in the vicinity of hole \#1. Hole \#2 intersects a local magnetic low area which may represent the syenite encountered in the hole. The borehole also tests the strong VLF anomaly on line 113E. Unfortunately detailed logs of the hole are not available to check if the EM anomaly is related to a major fault or shear zone.

Recommendations

The anomalous areas of possible interest have been tested by two boreholes. Unfortunately detailed information and assays from these holes are not presently available. Further investigation of this area is probably warranted if additional work recommended for the south grid is performed. Detailed magnetic surveys along the north northwest "contact" horizon is suggested especially in the vicinity of the previous boreholes.

CERTIFICATE

I, Roderick W. Woolham of the town of Pickering, Province of Ontario, do hereby certify;

1) That I am a geophysicjst and reside at 1463 Fieldlight Blyd., Pickering, Ontario, L1V 2S3.
2) That I graduated from the University of Toronto in 1961 with a degree of Bachelor of Applied Science, Engineering Physics, Geophysics Option.
3) That I am member of the Association of Professional Engineers of the Province of Ontario (Mining Branch).
4) That I have been practicing my profession for a period of more than 20 years.
5) That I am retained by Brinco Mining Limited.
6) That I personally was involved with the technical supervision of the survey and wrote the report.

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

Type of Survey (s) Magnetic and Electromagnetic
Township or Area_ Barnet, Thackeray
Claim Holder (s)__ Brinco Mining Ltd.

Survey Company _Hill, Goettler, De Laporte Ltd.
Author of Report B. W. Woolham P. Eng.
Address of Author 20 King St. West, Toronto, Ont. M5H 1C4
Covering Dates of Survey_- May 21, 1982 to June 16, 1982
Total Miles of Line Cut
32.7 Kilometres

AIRBORNL CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer__ Electromagnetic $\underset{\text { (enter days per claim) }}{\text { Radiometric }}$

Res. Geol. Qualifications
 Previous Surveys

MINING CLAIMS TRAVERSED
 List numerically

(prefix) (number)

636987
636938
636989
636990
636991
636992
636995
636996
636997
636998
636999
633000
637001
637004
637005
637006
637007
637024 \qquad

GEOPIYYSICAL TECHNICAL DATA

Instrument Total Field (See Appendix IT for Detalls)
Accuracy - Scale constant
Diurnal correction method . Base Station tie-ins
2 Base Station check-in interval (hours) 1.5
Base Station location and valuc _- On Baselines as shown on P82004-1 and P82004-3 value maps.

Instrument VLT (See Appendix II for Details)
Coil configuration \qquad
Coil separation \qquad
Accuracy \qquad
Method:
Fixed transmitter
\square Shoot back
\square In line
\square Parallel line
Frequency Annapolis, MD. and Seatle, Washington
Parameters measured
Dip angle of secondary field

Instrument
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument
Method \square Time Domain
Frequency Domain
Parameters - On time
Frequency \qquad

- Off time

Range

- Delay time \qquad
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing \qquad
\qquad

APPENDIX 2

INSTRUMENT SPECIFICATIONS

SCONTFREX

1 Gamma.
± 1 Gamma over full operating range.
20.000 to 100,000 gammas in 25 overlapping steps.

Single reading - 3.7 seconds. Recycling feature permits automatic repetitive readings at 3.7 seconds intervals.

External trigger input permits use of sampling intervals longer than 3.7 seconds.

5 digit LED (Light Emitting Diode) readout displaying total magnetic field in gammas or normalized battery voltage.

Multiplied precession frequency and gate time outputs for base-station recording using interfacing optionally available from Scintrex.

Up to 5000 gammas/metre.
8 alkaline "D" cells provide up to 25,000 readings at $25^{\circ} \mathrm{C}$ under reasonable signal/noise conditions (less at lower temperatures). Premium carbon-zinc cells provide about 40% of this number.

Omnidirectional, shielded, noise-cancelling dual coil, optimized for high gradient tolerance.

Complete for operation with staff or back pack sensor.
$-35^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Console, with batteries: $80 \times 160 \times 250 \mathrm{~mm}$.
Sensor: $80 \times 150 \mathrm{~mm}$.
Staff: $30 \times 1550 \mathrm{~mm}$. (extended)
$30 \times 600 \mathrm{~mm}$. (collapsed)
Console, with batteries: 1.8kg.
Sensor: 1.3 kg .
Staff: 0.6 kg .

Remote Sensing and Interpretation

PORTABLE PROTON MAGNETOMETER MODEL G-816

June 1974

The Model G-816 is a complete portable magnetometer for all man-carry field applications. As an accurate yet simple to operate instrument, it features an outstanding combination of one gamma sensitivity and repeatability, compact size and weight, operation on standard universally available flashlight batteries, ruggedized packaging and very low price.

The G-816 magnetometer allows precise mapping of very small or large amplitude anomalies for ground geophysical surveys, or for detail follow-up to aeromagnetic reconnaisance surveys. It is a rugged, lightweight, and versatile instrument, equally well suited for field studies in geophysics, research programs or other magnetic mapping application where low cost, dependable operation and accurate measurements àre required.

For marine, airborne or ground recording systems consider GeoMetrics Models G-801, G-803, and G-806.

Based upon the principle of nuclear precession (proton) the G-816 offers absolute drift-free measurements of the total field directly in gammas. (The Proton precession method is the official recognized standard for measurement of the earth's magnetic field.) Operation is worldwide with one gamma sensitivity and repeatability maintained throughout the range. There is no temperature drift, no set-up or leveling required, and no adjustment for orientation, field polarity, or arbitrary reference levels. Operation is very simple with no prior training required. Only 6 seconds are required to obtain a measurement which is always correct. to one gamma, regardless of operator experience. Only the Proton Magnetometer offers such repeatability-an imporant consideration even for 10 gamma survey resolution.

Complete Field Portable System

The Model G-816 comes complete, ready for portable field operation and consists of:

1. Electronics console with internally mounted and easily replaced "D" cell battery pack.
2. Proton sensor and signal cable for attachment to carrying strap or staff.
3. Adjustable carrying strap.
4. 8 foot collapsible staff.
5. Instruction manual, complete set of spare batteries, reusable shipping container.

All magnetometers and parts are covered by a one year warranty beginning with the date of receipt but not to exceed fifteen months from the shipping date.

SPECIFICATIONS

NOTE: Battery life decreases with temperature
Temperature
Range:
Console and sensor: -40° to $+85^{\circ} \mathrm{C}$

Accuracy

 (Total Field):Sensor:

Size:
± 1 gamma through 0° to $50^{\circ} \mathrm{C}$ temperature range

High signal, noise cancelling, interchangably mounted on separate staff or attached to carrying harness

Console: $3.5 \times 7 \times 10.5$ inches ($9 \times 18 \times 27 \mathrm{~cm}$)
Sensor: 4.5×6 inches ($11 \times 15 \mathrm{~cm}$)
Staff: 1 inch diameter $\times 8$ it length

Weight:

		Lbs.
Console (w/batteries):	5.5	2.4
Sensor \& signal cable:		4
Aluminum staff:		$\frac{2}{1.8}$
		$\frac{0.9}{11.5}$

PRICE: Complete Field System $\$ 2600.00 \ldots . . \$ 200 \times 08 \mathrm{X}$

$$
(3 \mathrm{~cm} \times 2.44 \mathrm{~m})
$$

Console (w/batteries):
Sensor \& signal cable:
to $-15^{\circ} \mathrm{C}$; lower tempera. lure operation-optional)

CRONE GEOPHYSICS LIMITED

979 LAKESHORE ROAD E. PORT CREDIT, ONTARIO CANADA

Phone: 274-3704

> An FW Rado Roceiver Utilizing The 12 to \% Whicovele Bnited Etates Naval Combramications Broadcast Stations

This is a rugged, simple to operate, ONE MAN EM unit. It can be used without line cutting and is thus ideally suited for GROUND LOCATION OF AIRBORNE CONDUCTORS and the CHECKING OUT OF MINERAL SHOWINGS. This instrument utilizes higher than normal EM frequencies and is capable of detecting DISSEMINATED SULPHIDE DEPOSITS and SMALL SULPHIDE BODIES. It accurately isolates BANDED CONDUCTORS and operates through areas of IIIGII HYDRO NOISE. The method is capable of deep penetration but due to the high frequency used it is affected by clay and conductive overburden. Anomalies detected in such areas should be checked with other methods before drilling.

SPECIFICATIONS

READOUT - Dip angle of resultant VLF magnetic field component from an inclinometer of $\pm 1 / 2$ degree sensitivity

NULL
INDICATOR - Both audio (loudspeaker) and visual by means of an averaging field strength meter

TUNING - Preset switch tuning

BATTERIES - 2 of 9 volt Evercady \# 216, independent test indicators

STATIONS - Standard 5 stations - Cutler, Maine 17.8; Seattle, Wash. 18.6; Ft. Collins, Colorado 20.0; Annapolis, Md. 21.4; Balboa, Panama 24.0 KCs.

- Optional - N.W. Cape, Australia 15.5; Lualualei, Hawaii 23.4; Rugby, England 16.0 KCs . Other stations as they become operational

WEIGHT - Receiver - 4 lb . Leather Case - 2 lb . Shipping Weight - 15 lb .

Geophysical

Hill, Goettler, De Laporte Ltd. Name and Address of Author (of Geo-Technical report)

Total Miles of line Cut 32.7 km

Credits Requested per Each Claim in Columns at right

Special Provisions	Geophysical	Days per Claim
For first survey: Enter 40 days. (This includes line cutting)	- Electromagnetic	40
	- Magnetometer	20
For each additional survey: using the same grid: Enter 20 days (for each)	- Radiometric	
	Geological	
	Geochemical	
Man Days Complete reverse side and enter total(s) here	Geophysica!	Days per Claim
	- Electromagnetic	
	- Magnetometer	
	- Radiometric	
*	- Other	
	Geological	
	Geochemical	
Airborne Credits		Days per Claim
Note: Special provisions credits do not apply to Airborne Surveys.	Electromagnetic	
	Magnetometer	
	Radiometric	

Expenditures (excludes power stripping)
Type of Work Performed

Performed on Claim(s)

Calculation of Expenditure Days Credits

Mining Claims Traversed (List in numerical sequence)

Certification Verifying Report of Work
I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.
Name and Postal Address of Person Certifying
R. W. Woolham, 20 K1ng St. W., Toronto, Ont. M5H 1 C 4

\square
Mr. Barlow Comments
"Need saw VLF data
\square Approved
Whish to see again with corrections

\square To: Geology - Expenditures Comments

To: Geochemistry
$\left.\begin{array}{\|l\|l\|l\|}\hline \text { Comments } \\ \hline & \\ \hline \\ \hline & \\ \hline\end{array}\right]$ Approved

\square To: Mining Lands Section, Room 6462, Whitney Block. (Tel: 5-1380)

Geotechnical Approval

Mining Lands Comments

To: Geophysics Barlow.

To: Geology - Expenditures

\square To: Geochemistry

\square To: Mining Lands Section, Room 6462, Whitney Block.
(Tel: 5-1380)

Recorded Holder

BRINCO MINING LIMITED

Township or Area
BARNET AND THACKERAY

Special credits under section 77 (16) for the following mining claims

20 DAYS ELECTROMAGNETIC AND 10 DAYS MAGNETOMETER

L 636990 to 92 inclusive

No credits have been allowed for the following mining claims
not sufficiently covered by the survey
Insufficient technical data filed

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geological - 40; Geochemical - 40; Section 77(19)-60:

Mining Recorder
Ministry of Natural Resources
4 Govermment Road East
P.O. Box 984

Kirkland Lake, Ontario
P2N 1 A2

Dear Sir:
RE: Geophysical (Electromagnetic \& Magnetometer) Survey on Mining Claims L 636987 et al in the Townships of Barnet and Thackeray

The Geophysical (Electromagnetic \& Magnetometer) Survey assessmant work credits as listed with my Motice of Intent dated October 20, 1983 have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours very truly,

E.F. Anderson

Director
Land Management Branch
Whitney Block, Room 6643
Queen's Park
Toranto, Ontario
M7A 1W3
Phone: 416/965-1380
cc:
Brinco Mining Limited
20 King Street West
Toronto, Ontario
M5H 1C4
cc!
Resident Geologist Kirkiand Lake, Ontario

cc: Brinco Mining Limited 20 King Street Wast Toronto, Ontario M5H 1 CS 4

D. Kinvig:sc

Ministry of
Natural
Resources

Your file: 417
Our file: 2.5372
19831020
Mr. George J. Koleszar Mining Recorder
Ministry of Natural Resources
4 Government Road East
P.0. Box 984

Kirkland Lake, Ontario
P2N 1 A2
Dear Sir:
Enclosed are two copies of a Notice of Intent with statements listing a reduced rate of assessment work credits to be allowed for a technical survey. Please forward one copy to the recorded holder of the claims and retain the other. In approximately fifteen days from the above date, a final letter of approval of these credits will be sent to you. On receipt of the approval letter, you may then change the work entries on the claim record sheets.

For further information, if required, please contact
Mr. F.W. Matthews at 416/965-1380.
Yours very truly,

Director
Land Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: 416/965-1316
D. Kinvig:mc

Encls:
cc: Brinco Mining Limited
20 King Street West
Toronto, Ontario M5H IC4
cc : Mr. G.H. Ferguson
Mining \& Lands Commissioner Toronto, Ontario

\author{

Notice of Intent

 for Technical Reports}

19831020
2.5372 / 417

An examination of your survey report indicates that the requirements of The Ontario Mining Act have not been fully met to warrant maximum assessment work credits. This notice is merely a warning that you will not be allowed the number of assessment work days credits that you expected and also that in approximately 15 days from the above date, the mining recorder will be authorized to change the entries on his record sheets to agree with the enclosed statement. Please note that until such time as the recorder actually changes the entry on the record sheet, the status of the claim remains unchanged.

If you are of the opinion that these changes by the mining recorder will jeopardize your claims, you may during the next fifteen days apply to the Mining and Lands Commissioner for an extension of time. Abstracts should be sent with your application.

If the reduced rate of credits does not jeopardize the status of the claims then you need not seek relief from the Mining and Lands Commissioner and this Notice of Intent may be disregarded.

If your survey was submitted and assessed under the "Special Provision-Performance and Coverage" method and you are of the opinion that a re-appraisal under the "Man-days" method would result in the approval of a greater number of days credit per claim, you may, within the said fifteen day period, submit assessment work breakdowns listing the employees names, addresses and the dates and hours they worked. The new work breakdowns should be submitted direct to the Lands Management Branch, Toronto. The report will be re-assessed and a new statement of credits based on actual days worked will be issued.

20 KING STREET WEST, TORONTO, ONTARIO M5H 1C4

August 18, 1983

Mr. E. F. Anderson
Director Land Management Branch Whitney Block, Room 6450 Queen's Park
Toronto, Ontario M7A lW3

Dear Sir:
Re: Your file 2.5372 and letter of August 8, 1983
Please find enclosed VLF EM maps with additional values as requested. All further correspondence should be directed to Mr. A. Burgoyne in Vancouver.

Yours truly,

RECEIVED

n 06191983
MINING LANDS SECTION

Brinco Mining Limited
20 King Street West
Toronto, Ontario
M5H 1C4
Attention: Mr. R. Woolham
Dear Sir:
RE: Geophysical (Electromagnetic and Magnetometer) Survey submitted on Mining Claims L. 636987 et al in the Townships of Barnet and Thackeray

Enclosed are the VLF Electromagnetic profile plans, in duplicate. Please show the actual readings at each station, and return all the maps to this office.

For further information, please contact Mr. F.W. Matthews at (416)965-1380.

Yours very truly,

E.F. Anderson
Director
Land Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A IW3
Phone: (016)965-1380
D. Kinvig:nc

Encl.
cc: Mining Recorder Kirkland Lake, Ontario

Mining REcorder
Ministry of Matural Resources
4 Government Road East
P.0. Box 984
Kirkland Lake, Ontario
P2N 1 A2

Dear Sir:
We have received reports and maps for a Geophysical (Electromagnetic \& Magnetometer) Survey submitted under Special Provisions (credit for Performance and Coverage) on Mining Claims L. 636987 et al in the Townships of Barnet and Thackeray.

This material will be examined and asseseed and a statement of assessment work credits will be issued.

Yours very truly.
E.F. Anderson

Director
Land Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A IW3
Phone: 416/965-1380
DW:Sc
cc: Brinco Mining Cimited 20 King Street West
Toronto, Ontario
M5H IC4
Attn: R. Woolham.

MINING LIMITED

Mr. Fred W. Matthews
Land Management Branch
Whitney Block, Room 6452
Queen's Park
Toronto, Ontario
MFA 1W3

Dear Mr. Matthews:
Enclosed are reports in duplicate on geophysical surveys in Barnet and Thadkerey Townships on claims listed on the attached copy of the report of work form as acknowledged December 6, 1982.

We wish to apply for 1,080 days credit on 18 claims under the special provision section of the Ontario Mining Act.

Yours truly,

RHENootha

R. W. Woolham

Project Geophysicist
RWW/m1
Enclosures
c.c. Mr. K. B. McHale

Annapolis, Maryland

TILLICUM PROJECT		
BARNET AND THACKERAY TOWNSHIPS NORTH GRID VLF EM PROFILES		
	MAP NuMBER: MP ReEERENCE:	

