REPORT ON THE
MAGNETIC AND HORIZONTAL
LOOP-ELECTROMAGNETIC SURVEYS
ON THE PROPERTY OF
775741 ONTARIO LTD.
COOK TOWNSHIP, ONTARIO

BY
H. FERDERBER GEOPHYSICS LTD.

August, 1988
Val d'Or, Quebec
D.M. Thai, B.Sc. Geophysicist
R.A. Campbell, B.Sc. Geologist

REPORT ON THE
 MAGNETIC AND HORIZONTAL LOOP-ELECTROMAGNETIC SURVEYS
 ON THE PROPERTY OF
 775741 ONTARIO LTD.
 COOK TOWNSHIP, ONTARIO

INTRODUCTION

In July and August, 1988 a grid was cut and magnetic and horizontal loop-electromagnetic surveys were carried out on the property of 775741 Ontario Ltd., in Cook Township, Ontario. The magnetic survey was conducted to define the limits of airborne magnetic anomalies to obtain information which helps outline underlying geological structures and contacts and to identify any potential economic concentrations which may contain variations in accessory magnetic minerals. The purpose of the electromagnetic survey was to outline and classify the location of airborne electromagnetic anomalies representing conductive zones on the property which may be related to gold or base metal mineralization.

PROPERTY DESCRIPTION, LOCATION AND ACCESS

The property is comprised of 15 claims, covering 240 hectares in the central part of Cook Township, Larder Lake Mining Division, Ontario. The claims are registered with the office of the Mining Recorder in Kirkland Lake and are listed in the Appendix.

The property is located 32 km north-northwest of Kirkland Lake, 20 km southeast of Matheson and 7.7 km east of the village of Ramore. Provincial Highway ll, from Kirkland Lake to Matheson passes within 8 km of the eastern boundary of the property. A road east from Ramore ends 1.3 km east of the property. Air photos indicate that a bush road, from the southeast, crosses the northeastern corner of the claim block.

The property is forested and a swamp is situated in the central part of the claim group. The Pike River flows across the northern boundary of the surveyed area.

Supplies, services and qualified manpower and services are available in the Kirkland Lake-Matheson area.

GEOLOGY

The property is located in the western portion of the Abitibi Volcanic Belt of the Superior Province of the Canadian Shield. The Abitibi Volcanic Belts extends for nearly 350 miles in a west-east direction from Timmins to Chibougamau. It is host to a variety of precious and base metal deposits including the Timmins, Kirkland Lake, Noranda, Val d'Or and Chibougamau mining camps.

The Abitibi Volcanic Belt is comprised of a complex assemblage of interbeded volcanic and sedimentary rocks intruded by a variety of intrusives, from ultrabasic to granitic in composition. The rocks are Archean in age and have been metamorphosed to a greenschist facies. Numerous late Precambrian diabase dykes cut formations of the belt. The rocks generally strike east-west, have a vertical dip and are highly folded and faulted.

The Ontario Division of Mines, Map 2205 - Geological Compilation Series, Timmins-Kirkland Lake Area, outlines the geology underlying the property. The map indicates that the claims are underlain by mafic metavolcanic flows and pyroclastic rocks.

The Destor-Porcupine Fault, the most predominent structural feature in the area, strikes southeast and east through Guibord Township, approximately 5 km north of the claim group. Splays strike south-southeast into the northern part of Cook Township.

Gold exploration and production has increased in recent years in the Kirkland Lake and Harker-Holloway areas. An increase in production is planned at Lac Minerals Macassa Mine (projected production of 75,000 ounces of gold for 1988), Inco gold and Queenston Gold Mines joint ventrues (Anoki Deposit, estimated tonnage of 600,000 tons at $0.16 \mathrm{oz} /$ ton) and Eastmaque Gold Mines tailings reclamation project have led other undertakings in the Kirkland Lake Area.

In the townships of Harker-Holloway, 35 km east-northeast of the property American Barrick Resources Holt-McDermott Mine is to start production soon with reserves of 610,000 ounces of gold. Just east of the Holt-McDermott Mine, Canamax Resources has driven a ramp into its east zone which has drill-indicated reserves of 576,000 tons at $0.216 \mathrm{oz} /$ ton. To the west of the Holt-McDermott Mine, Lenora Exploration's - American Barrick's worvest property has indicated reserves of 1.5 million tons at0.134 oz/ton gold.

Numerous gold propects and occurrences have been found in the surrounding townships, the closest is Guibord Township, 4 km to the north.

SURVEY METHODS AND INSTRUMENT DATA

A grid was established by cutting an east-west base line and three tie lines, approximately one half a mile apart. Cross lines were cut at 400 and 200 foot intervals along the base line. All lines were chained and picketted at 100 foot stations.

The ground horizontal loop-electromagnetic survey was performed on the cross lines. An Apex Max Min II unit was used with a transmitter receiver coil separation of 500 feet was used. The frequencies of the transmitter were set at 1777 and 3555 Hz . Readings were taken at 100 foot stations with increased data density over anomalous areas.

The horizontal loop survey measures the in-phase and out-ofphase (quadrature) components of the secondary field. By comparing the ratio of the in-phase and out-of-phase the conductivity can be measured. A good conductor such as a massive sulphide or graphite horizons will produce a curve going from positive through zero to negative and back again to positive. Both the in-phase and out-of-phase will show the same shaped curve over a good conductor. A poor conductor will show greater deviation in the out-of-phase component while a body exhibiting better conductivity will have a greater deviation in the in-phase component. The results of the HLEM survey are plotted as profile on the accompanying maps, $\mathrm{HL}-1$ $(1777 \mathrm{~Hz})$ and $\mathrm{HL}-2(3555 \mathrm{~Hz})$. The axis of the inferred conductors are labelled A, B, C etc. This label is applied for identification purposes only and no priority is implied in the use of a particular label.

The magnetic survey was conducted using a GEM GSM-8 proton precession magnetometer. The magnetometer measures the total field intensity of the earth's total field in gammas. It has a sensitivity and repeatability of one gamma or better. Magnetic readings were taken at 100 foot intervals along the tie lines except in areas of high magnetic relief where the sample density was increased to one reading per 50 feet. Base stations for determining the magnetic diurnal variations were established along the base line. The total field readings, corrected for the diurnal variations, were plotted on map, MG1. All readings are 58,000 gammas plus plotted values. The data was contoured 100 gamma intervals.

SURVEY RESULTS AND INTERPRETATION:

Magnetic survey Map MG-1

The ground magnetic survey outlined 3 anomalous magnetic bands striking west-northwest across the claim group. There also exist several isolated zones of magnetic high above a background of 58,000 gammas.

These bands of magnetic high represent underlying mafic to ultramafic volcanic with some possisble exceptions on the most northerly and central bands where the high magnetic readings are typical of the iron formations in the area. However, the magnetic data indicates that the general geology is not a simple banding but has been affected by several definite "fingering" of non-magnetic materials. Areas of low magnetic readings are probably underlain by felsic to intermediate metavolcanic and/or metasedimentary rocks which are intercalated with the mafic volcanic rocks. Geological boundaries among these units can be readily recognized by the distinctive contrast in magnetic readings.

Isolated zones of extremely high magnetic readings may represent underlying lenses of volcanic rocks being metamorphosed to amphibolitic facies. Other magnetic depressions located near to the high magnetic zones may be caused by the dipolar effect of magnetism where components of the magnetic readings shift directions abruptly.

Horizontal loop-EM Survey Maps HL-1 and HL-2

The horizontal loop-electromagnetic survey in both frequencies $(3555 \mathrm{~Hz}$ and 1777 Hz) outlined several promising conductive bodies on the property. Most of these conductors are coincidental ones.

The most prominent conductor (conductor A) is the one on the northern part of lines LO, L2W, $L 4 W$ and $L 8 W$ and in the vicinity of BLO+00. The conductor is about 300 feet wide and more than a thousand feet long and strikes approximately east-west. The conductor appears to continue further to the west and split into two long and narrow zones.

Another conductive zone (conductor B) measured about 800 feet is west of conductive zone A. The zone is much smaller and appears to be on strike with conductor A.

Both A and B overlie areas of low magnetic and between two high magnetic bands. These zones may represent underlying conductive graphitic horizons with possible sulphide concentration within the interpreted felsic to intermediate metavolcanic and/or metasedimentary rocks. These zones may represent shears or alteration zones. Readings of these electromagnetic in-phase as well as the ratios with the out-ofphase indicate that the conductive zone is close to suface and exhibits very high conductivity.

The survey also delineated several discontinuous, narrow conductive zones on the property. Some conductors are coincidental in both frequencies while others are rather closely matched. These zones overlie high magnetic as well as low magnetic areas and appear to be caused by conductive overburden or topographic variations.

Conductive zone C, located at the southern portion of the property, overlie a moderately high magnetic zone and may represent bedrock conductivity in association with magnetic materials in the area. Even though there are two axes drawn on map, zone C may be caused by a single wide zone with relatively low conductivity.

Evidents indicating major structural changes are limited from the magnetic and horizontal loop-electromagnetic survey.
However, faulting or fracturing could be associated with some conductive zones striking approximately parallel to the underlying rocks.

CONCLUSION AND RECOMMENDATION

The recent ground geophysical surveys were successful in delineating and defining horizontal loop-electromagnetic conductors and linear patterns of magnetic highs and lows on the property of 775741 Ontario Ltd. in Cook Township, Ontario. Rocks of high magnetic susceptability underlying the property occur as continuous west-northwest trending bands and lenses. The bands and lenses may contain concentrations of magnetite in probable iron formations or host pyrrhotite mineralization. The rocks of low magnetic susceptability have an inhomogenous magnetite mineral distribution and probably are of felsic to intermediate metavolcanic and/or metasedimentary in composition.

Several conductors having east-west, west-northwest strike directions were outlined by the HLEM surveys. Conductive zones A, B, and C appear to be bedrock related. Zone A exhibits the strongest electromagnetic response among the conductors. It appears being close to surface and wide in area coverage. Zone B, being not as wide as A, appears to be on strike with A and also exhibits strong response. zone C is a long, continuous zone exhibiting moderate electromagnetic response. It is considered as a weak bedrock conductor due to small in-phase out-of-phase ratios as well as the inconsistency of the profile patterns. Other conductors drawn on $\mathrm{HL}-1$ and HL-2 are believed being caused by conductive overburden or variations in topography.

Further work is warranted on the property especially in the areas of the above mentioned conductors. An exploration program of geological mapping and sampling and several test lines of induced polarization over selected electromagnetic conductors should be performed. Geophysical anomalies with corresponding geology should then be tested by diamond drilling.

Respectfully submitted,
H. FERDERBER GEOPHYSICS LTD.

R.A. Campbell, B. Sc Geologist

D.M. Thai, B. Sc.

Geophysicist

2

Further work is warranted on the property especially in the areas of the above mentioned conductors. An exploration program of geological mapping and sampling and several test lines of induced polarization over selected electromagnetic conductors should be performed. Geophysical anomalies with corresponding geology should then be tested by diamond drilling.

Respectfully submitted,
H. FERDERBER GEOPHYSICS LTD.

R.A. Campbell, B. Sc

Geologist
D.M. Thai, B. Sc.

Geophysicist

L 843114
843115
843116
843117
843118
843119
843121
843122
843123
843856
971279
971280
971281
971282
971283

 Geochemical and Expendumes Horizontal Loop-ElectromGínelic 1 . Claim Holder (s) Charlie Marshall

Prospector's Licence No. $\mathrm{K}-15629$

Address

25 Carlton St. Apt \# 3, St Catherines, ontario L2R 1P5
Survey company
H. Ferderber Geophysics Ltd.

Date or Survey (rom \& 101
Of 1 Rif. $188 . \mid$ Of 1 QR. 188.
Total Miles of line cut
H. Ferderber Geophysics Ltd.
H. Ferderber Geophysics Ltd. 169 Perrault Ave., Val d'Or, Quebec

Expenditures (excludes power stripping l

Mining Claims Traversed (List in numerical sequence)

Ontario

Ministry of Northern Development and Mines

Geophysical-Geological-Geochemical Technical Data Statement

File \qquad

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT facts Shown here need not be repeated in report TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer \qquad Electromagnetic \qquad Radiometric (enter days per claim)

DATE:_August 12,88 SIGNATURE:
Autkgr of Report or Agent

MINING CLAIMS TRAVERSED List numerically
843115
788843116.n.........................
............843117....:
843118.
$843119 . . .$
............843121..............
843122
843123
...............3856......
97127.9.....
.................................
971281
971282
971283
.................
TOTAL CIAIMS $\quad 15$

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS -- If more than one survey, specify data for each type of survey

Number of Stations .- 856	Number of Readings _ 856
Station interval - 100 feet	Line spacing _ 400 feet and 200 feet
Profile scale $\quad 1 \prime=20 \%$	
Contour interval $\quad 100$ gammas	

$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	Accuracy - Scale constant \qquad 1 gamma (absolute)
	Diurnal correction method Base station
	Base Station check-in interval (hours) 2 hours
	Base Station location and value middle of grid

Instrument
Scale constant
Corrections made \qquad

Base station value and location

Elevation accuracy

Instrument \qquad
Method \square Time Domain

Frequency Domain

Parameters - On time Frequency

- Off time \qquad - Range
- Delay time \qquad
- Integration time

Power
Electrode array
Electrode spacing
Type of electrode

$=20 \%)$
$r=20 \%)$
REQ. 1777 Hz

Nefor work	HONRIZONTAL LOOPELECTROMAGNETIC SURVEY		
cuear	775741 ONTARIO LTD.		
moner		Comak twe ontario	
H. Fendenticr coophydice Led.			
		D.f.	

2. 11094

