RECEIVED
 JUL 51976

PROJECTS UNIT

GEOPHYSICAL SURVEYS on the HISLOP \#l GROUP
of
Hollinger Mines Limited
Hislop Township, Ontario

Timmins, Ontario June 28, 1976

Two geophysical surveys employing different electromagnetic methods were conducted over a group of three mining claims owned by Hollinger Mines Limited, in Hislop Township, Ontario.

One V.L.F. (20 KHz E.M.) anomaly is associated with the south limb of a magnetic anomaly mapped by an earlier survey, The horizontal loop survey revealed a very weak coincident response on one profile.

The property and the surrounding area were intensively explored for gold over the past fifty years.

PROPERTY, LOCATION and ACCESS

Hislop \#l Group contains three contiguous mining claims numbered L-372632 to L-372634 inclusive that occupy the middle third of lot l, concession 3, in the township of Hislop, Larder Lake Mining Division. The claims are bounded by the Ross Mine property to the south and the New Kelore ground to the north.

The east boundary of the property adjoining Guibord Township is occupied by highway 572 which provides excellent access either from the town of Holtyre $1 \frac{1}{2}$ miles to the south or highway $1013 \frac{1}{2}$ miles to the north.

HISTORY and GEOLOGY

Summaries of the history and geology are contained in two assessment reports previously filed by Hollinger Mines with the Ministry of Natural Resources.

They are: a) GEOLOGY, HISLOP GROUP \#1 P.J. Bateman, February 1975
b) GEOPHYSICAL SURVEY (MAGNETICS) on the HISLOP \#l GROUP H. Z. Tittley, July 1974

SURVEY METHODS
V.L.F. (20 KHz E.M.) Survey

On an existing grid of picket lines, the V.L.F. electromagnetic survey was conducted mainly along lines 400 feet apart. Readings were taken at 100 ft . intervals with an EM-16 receiver manufactured by Geonics Limited of Toronto.

A modification in the circuitry of this unit
causes the out-of-phase component to have the same sign as the clinometer (calibrated in \%) when traversing over a buried non-magnetic conductive source.

A total of 3.9 miles of survey was thus read.

H.E.M. Survey

As in the above survey, the H.E.M. survey was conducted along most of the same grid lines with an EM-17 unit manufactured by the same firm. Readings were taken at 100 foot intervals or less with coils 200 feet and 300 feet apart in the horizontal co-planar mode.

A total of 4.6 miles of lines was thus read.

RESULTS
V.L.F. (20 KHz E.M.) Survey

The results of the survey are plotted as profiles on the accompanying plan entitled V.L.F. (20 KHz E.M.) Survey at a scale of 200 feet to 1 inch.

Most of the interpreted conductors shown on the accompanying plan are believed due to variations in the thickness of the conductive clay overburden as evidenced by outcroppings of the bedrock in the north part of the claims and the drilling further south.

Anomaly 'A', however, displays much better characteristics, and its association with the south contact of an east-west magnetic feature suggests that it may well reflect a bedrock conductor. Also, none of the early drill holes appear to have intersected either the magnetic unit or the conductive zone.

H.E.M. Survey

These results are also plotted as profiles on a separate accompanying plan entitled 'H.E.M. Survey'at the same linear and angular scales.

No recognizable anomaly attributable to a bedrock conductor has been detected.

Anomaly 'A' is represented only by sets of positive shoulders that may be accentuated by using a greater coil separation.

Anomaly 'B' is due to a change of only 3% I-P but its coincidence with the V.L.F. anomaly along line 28 W at $28+50$'s makes it worthy of further consideration.

CONCLUSIONS
A weakly conductive zone, possibly due to a bedrock source, has been mapped near the south limb of a magnetic feature which eluded testing in earlier drilling.

In view of recent successes along similar stratigraphic horizons further west in Currie and Thomas Townships, it appears recommendable that a minimum of deeper penetrating electromagnetics be conducted to test the validity of the situation.

The known auriferous potential of the area should not be overlooked.

Ontario

Ministry of Nat

GEOPHYSICAL - GEOLO(

 TECHNICAL DAT

42A08NW0073 2.2144 HISLOP

Res. Geol \qquad Qualifications 63,2513

Previous Surveys

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS If more than one survey, specify data for each type of survey

Number of Stations 361 Number of Readings V.L.F. 218, H.E.M. 227
Station interval 100 Feet Line spacing 200 and 400 feet
Profile scale \qquad
Contour interval \qquad

Instrument \qquad
Accuracy - Scale constant \qquad
Diurnal correction method
Base Station check-in interval (hours)
Base Station location and value \qquad

Instrument \qquad
Scale constant
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument
Method \square Time Domain
Parameters - On time
-- Off time \qquad Range \qquad

- Delay time \qquad
-- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing
Type of electrode \qquad

