
2.15060

GEOPHYSICAL REPORT
FOR
PENTLAND FIRTH
ON THE
CARR PROPERTY
CARR TOWNSHIP
LARDER LAKE MINING DIVISION NORTHEASTERN ONTARIO

Prepared by: John C. Grant CET FGAC

PAGE

INTRODUCTION 1
PROPERTY LOCATION AND ACCESS 1
CLAIM BLOCK 1
PERSONNEL 1
LINECUTTING PROGRAM 2
GEOPIFSICAL PROGRAM 2
MAGNETIC SURVEY 2
IP SURVEY 2
SURVEY RESULTS 3
IP SURVEY 3 3
MAGNETIC SURVEY RESULTS 3
IP SURVEY RESULTS 5
IP ZONE A 5 5
IP ZONE 5 5
IP ZONE C
IP ZONE C 5 5
IP ZONE D 6 6
IP ZONE 6 6
IP ZONE F 6
IP ZONE G 6
IP ZONE H 6
IP ZONE I 7 7
CONCLUSIONS AND RECOMMENDATIONS 7
IP ZONE A 7 7
IP ZONE B
IP ZONE 8 8
IP ZONE D 8 8
IP ZONE 8 8
IP ZONE F
IP ZONE F 3 3
IP ZONE G
IP ZONE G 8 8
IP ZONE H 8
IP ZONE I 8

CERTIFICATE

FIGURES 1-LOCATION MAP 2-PROPERTY LOCATION MAP 3-CLAIM SKETCH

```
APPENDIX A- EDA OMNI IV SYSTEM
        B- EDA IP-4 AND SCINTREX IPC-7 2.5 KW TRANSMITTER
    IP PSEUDO SECTIONS
MAPS- MAGNETIC SURVEY PLAN MAP
    - IP RESISTIVITY
```


INTRODUCTION

The services of Exsics Exploration Limited were retained by Pentland Firth Ventures Ltd. for the purpose of cutting a detailed grid on a block of claims located in Carr Township of the Larder Lake Mining Division of Northeastern Ontario. This cut grid was then to be read by a ground geophysical program.

The purpose of this program was to locate and outline favourable structure which could host economical gold horizons.

The linecutting program commenced on September 2, 1994 with the ground geophysical program completed by October 14, 1994.

PROPERTY LOCATION AND ACCESS
The Pentland Firth property is located in the central north section of Carr Township of the Larder Lake Mining Division of Northeastern Ontario. More specifically it is situated approximately 5 kilometers north of the Town of Matheson which is situated on Highway 101. Matheson is aproximately 60 Kilometers east of Timmins, Ontario. The entire block represents most of Concession V, Lots 5, 6, 7, 8, 910,11 as well as parts of Concession IV and V1 Lots 6, 7 and 8 of Carr Township. Refer to Figures 1 and 2.

Access to the property during the program was ideal. Highway 101 east travels through Matheson and continues east to the Quebec border. Following Highway 10l, east from Matheson will bring one to the junction of a good gravel road travelling north between lots 4 and 5 which provides two wheel access to the east boundary of the property. Two old ingress roads which represent the boundaries between Concessions III and IV and V and VI will provide ATV access to most parts of the survey grid. Refer to figures 2 and 3 .

CLAIM BLOCK
The claim units which make up the carr Property are outlined on Figure 3 of this report.

PERSONNEL

The field crew directly involved with collecting all of the raw data are as follows:

Richard Mathieu	Operator	Timmins, Ontario
Robin Mathie	Assistant	Timmins, Ontario
Frank Dimarco	Helper	Timmins, Ontario
Lance Tipler	Helper	Timmins, Ontario

All of the work was completed under the direct supervision of J. C. Grant. Drafting and computer compilation was handled by P. Gauthier.

LINECUTTING PROGRAM

The linecutting program consisted of a detail metric grid being cut across the property using a 100 meter line spacing and 25 meter station interval. A series of east-west baselines and tie lines were first established which would then control the positioning and accuracy of the cross lines.

All pickets on the grid have been marked with aluminum tags for future reference. In all, a total of 101.3 Km of grid lines were established.

GEOPIIYSICAL PRCGRAM

This program consisted of a detailed Total field Magnetic Survey which was completed over all of the newly cut grid. Sections of the grid were also followed up with an inducej Polarization, (IP) Survey.

MAGNETIC SURVEY

This survey was completed using the EDA OMNI IV system. Specifications for this unit can be found as Appendiz n of this report.

The following parameters were kept constant throughout the survey period.

Linespacing

- 100 meter

Station Reading Interval
-12.5 meter
Diurnal Correction Method
-Basestation Recorder Base Station Record Interval Reference Field
-30 seconds
Datum Substraction

- 58,050 gammas

Unit Accuracy
Contour Interval
-57,500 gammas

- +/- 0.5 gammas
-10 gammas
The collected data has been corrected for Duirnal variations and has then had a base level of 57,500 gammas subtracted for ease in plotting purposes only.

The data was then plotted into a base map and contoured. Colour contours of the magn: tic data have also been completed.

The contoured black and white magnetic map aas becn included in the back pocket of this report.

IF SURVEY

This survey was completed using the EDA IP-4 Receiver and the Scintrex IPC-7 2.5 KW Transmitter System. Specifir:ations for these units can be found as Apperdix B of this report.

The following parameters were keft corstant throughout the

The following parameters were kept constant throughout the survey period.

Method:
Electrode Array:

Receiver:
Transmitter:
Pulse Time: Delay Time: Integration Time:
-Time Domain
-Dipole - Dipole
-N=1-6
-a=50 meter
-BGRM IP4
-Scintrex IPC-7 2.5 KW
-2 seconds on; 2 seconds off
-500MS
-420MS
-Dipole - Dipole
$-\mathrm{N}=1-6$
-a=50 meter
-BGRM IP4
-Scintrex IPC-7 2.5 Kw
-2 seconds on; 2 seconds off
-500MS
-420MS

The IP data has been presented as single line psuedo sections in black and white and are included as pull outs in this report. These pseudo sections are contours of the apparent resistivity and chargeabilities recorded. Colour pseudo sections as well as a colour plan map have also been completed for each line read.

A typical signature for many gold showings would be a chargeability high, resistivity high and magnetic low. This would be characteristic of a mineralized, altered carbonatized and/or silicified zone. A chargeability high, resistivity low usually suggest a conductive mineralized zone. However, it could also suggest an intrusive of less resistant rock types.'

These are by no means the only geological setting for gold or conductive mineralization. Therefore, all IP targets should be correlated with all available geophysical and geological data before they are eliminated.

SURVEY RESULTS

IP Survey

The IP Survey results are presented in the form of contoured pseudo-sections, at 1:5000, of the measured apparent resistivities and chargeabilities for the various "N" levels. These pseudcsections will also show the interpretation of the IP anomolies.

The resistivity measurements at $N=4$ are also presented in the form of a contoured map at l:5000 which will also include the position of the IP anomalies.

The IP trends have been joined together which may constitute possible mineralized lithological units.

Magnetic Survey Results:

The results of the magnetic survey indicate that there are a number of structural trends across the survey area.

Certainly the most predominant structures are the north to northwest strike diabase dikes which probably represent the Matachewan series which are well documented to the south and north of the survey area as well as in several locations on the grid. These dikes are represented by a magnetic signature ranging from 150 to 200 gammas above the apparent background level. They appear as long tear drop contours with typical bullseyes where they may come closer to surface.

There are 7 of these dikes present on the property. West to east they parallel lines 1700 ME southend, 1900 ME to 2100 ME striking north-northwest. This dike shows minor slumping on its northern extension suggesting east-west cross structure.

The third dike location is situated between lines 3400ME and 4000ME. This dike appears to split into two seperate dikes south to north. Again both northern extensions especially in the vicinity of lines 3700 ME and 3800 ME and approximately 2900 MN to 3100MN, show evidence of east-west cross structure as the dikes slump to the east. Minor cross structure many also be evident in the vicinity of lines 3900 ME and 4000 ME , 1600 MN to 1700 MN as again these dikes slump to the east.

Another dike appears to have been offset by a northwest striking fault structure cross cutting line 4600 ME at llf0MN. The southern extension of this dike is evident on L4500ME south end. Slumping in the strike of the dike is also evident in the vicinity of line 4600 ME , 2600 MN to 2800 MN again suggesting an east-west cross structure.

The last two dikes are well documented parallelling lines 5200ME and 5600ME.

The magnetic survey was also successful in locating 3 possible fault zones which more or less parallel the Matachewan series of dikes. Again west to east the first Fault Zona may lie along line 1850ME and 1900ME between 2400 MN and l600MN. It appears as a moderate magnetic low of about 100 gammas below background. A minor deflection in the fault's strike may represent cross structure.

The second Fault Zone strike northwest-southeast from L3200ME/ 3200 MN to $4400 \mathrm{ME} / 800 \mathrm{MN}$. Again it relates to a magnetic 1 cw signature.

The third Fault Zone closely relates to the dike which parallels line 4600 ME . It shows the same characteristics as the dike including the east slumping in the vicinity of 2700 MN and 2850 MN .

The magnetic survey also noted several areas of east-mest slumping especially between lines 4000 ME and 4800 ME , l550MN and 2200MN. These may relate to the Keweenawan dikes which have beer documented on property to the south.

One of the more interesting structures outlined by the magnetic survey cuts across the majority of the grid.

Again from west to east it appears to strike northeast from Line 2100 ME .1600 MN to L3600ME/2850MN. It then appears to generally strike east across lines 4000 ME to $4500 \mathrm{ME} / 2900 \mathrm{MN}$, where it has been distorted by the afore mentioned fault Zone and dike. It then seems to strike east-southeast to line 5l00ME the slightly to the east-northeast across lines 5700 ME to $6700 \mathrm{ME} / 2800 \mathrm{MN}$. This may represent a major fault structure or a possible contact zone.

IP Survey Results:
The IP results discussed in this section will deal with the 1994 survey results as well as the IP surveys completed by Doug Londry and Remy Belanger.

The combined survey results located 9 possible units scatiered across the property. Several moderate to weaker units were also noted. Each of the nine zones will be discussed futher.
IP Zone A :
This feature was first noticed by Belanger's survey completed in July 1993. The Fall 1994 survey showed a possible extension of this zone. The feature was noted on L2400ME and may in fact extend as far as L 3600 ME . Lambert's interpretation suggest this zone is sulphide related and the 1994 follow-up program indicated a moderate chargeability high and associated resistivity jow on both L2400ME and 3600 ME which would indicate sulphides are present.

The western extension of the zone appears to stop next to the suspected northeast striking fault zone.

IP Zone B:
Again the 1993 coverage suggested a sulphide source is present in the area of this IP response. The 1994 program noted a weak western extension of this zone on L2400ME/2725MN. It is represented by a weak chargeability high with north flanking resistivity low. This feature may extend as far as L3600ME/2925MN where a moderate IP chargeability high was noted. In fact, this zone may extend as far as $14500 \mathrm{mE} / 3100 \mathrm{MN}$ and has been outlined by Londry's IP survey. The zone is represented by a chargeability high and moderate resistivity high suggesting that zone B may relate to a silicified alteration zone with disseminated sulphides.

IP Zone C:
This feature was noted by the 1994 program and lies between lines $4200 \mathrm{ME} / 1375 \mathrm{MN}$ and $4600 \mathrm{ME} / 1550 \mathrm{MN}$. It is represented by a moderate chargeabiltiy high and associated resistivity low suggesting a conductive zone or an intrusion of less resistive roch. types.

The spreading of the zone along lines 4500 ME and 460 ME may, in fact, be due to the presence of the interpreted fault zone.

IP Zone D:
This feature closely parallels the strike of Zone C and lies between lines 4300 ME and 4600 ME , 1250 MN to 1175 MN . It is represented by a moderate to strong chargeability high and associated moderate resistivity low on the eastern tip and south flanking resistivity low on the western extension. This may suggest it is a conductive zone possibly within a contact or shear zone trapped between the two interpreted fault zones.

IP Zone E:
This feature lies between lines $4000 \mathrm{ME} / 950 \mathrm{MN}$ and $4200 \mathrm{ME} / 1000 \mathrm{MN}$ but may extend to lines 4300 ME and 4400 ME , between 1100 MN and 1090MN.

The zone is represented by a moderate to weak chargeability high and associated moderate to high resistivity. This may suggest an a!teration zone with disseminate sulphides. However, it may also be indicative of the cross fault which may continin minor disseminated sulphides in fracture zones.

IP Zone F :

This feature lies between lines 5200ME/i300MN and $5600 \mathrm{ME} / 1225 \mathrm{MN}$. It is represented by a moderate to weak chargability high and moderate resistivity low. This may represert a narrow conductive zone.

IP zone G:
This feature is represented by a moderate to high resistivity lying between lines $6400 \mathrm{ME} / 2950 \mathrm{MN}$ and $5800 \mathrm{ME} / 2900 \mathrm{MN}$. It in fact may extend as far as line 5l00ME/2850MN. The feature has a good chargeability high associated with the resistivity high on L5400ME/2800-2900MN as well as L6400ME-2700-2925MN.

This reaponse on L 6400 ME may relate to culture as there is a good drivable road paralleling the line. Field inspection maj explain the zone.

IP Zone H:

This feature lies between lines 4000ME and 4200ME at 2000 to 2050N. It was noted by Londry's survey and is represented by a moderate to weak chargebiltiy high and moderate resistivity high. This may be indicative of a mineralized alteration zone.

IP Zone I:

This feature was also noted by Londry's survey and lies between lines $4500 \mathrm{ME} / 237 \mathrm{SMN}$ and $4000 \mathrm{ME} / 2400 \mathrm{ME}$. It is represented by a moderate chargeability high on the eastern extension and by a resistivity high on the western flank. This could suggest a possible weak alteration zone which becomes sulphide rich as it nears the location of the interpreted fault zone.

This feature may extend as far as $4600 \mathrm{ME} / 2350 \mathrm{MN}$ as there is a good chargeability high, resistivity low situated on the west flank of the interpreted dike. The IP response is quite large along this line with moderate to high chargeabilities and moderate central resistivity low correlation. This could suggest a fracture zoare, water filled or disseminate sulphide rich paralleiling the west flank of the dike.

The multiple IP responses on Line 3600 ME and Line 4800 ME would have to be followed up further with additional lines on strike to better define their characteristics.

CONCLUSIONS AND RECOMMENDATIONS
The magnetic survey was useful in outlining a series of northsouth dikes and several east-west dikes. It was alsc successful in locating and outlining a least 3 north to northwest fault zones which generally parallel the diabase dikes.

One of the more interesting cross structures noted in the property is what has been interpreted as a falt structure striking northeast to east from 2000ME to 6400 ME . This zone appears as moderate to strong slumpiny in the magnetic contours as well as distortion in the north-south dikes and associated fault zones.

Another explanation for this structure would be a fault sontrolled contact zone.

IP Zone A appears to have been cross by this fault structure. IF Zone B and G appear to relate to the zone or north flank it suggesting it may represent a lithological init whit: has been altered $a s$ it crosses the structure. It does appear to $k=$ conductive along its strike.

At this writing I would suggest that the following IP Zones be followed up further.

IP Zone A:
The structure should be tested by drilling az well as followed up further by extending lines 3300 ME to 3500 ME to the north.

IP Zone B:

This structure should also be tested by drilling and by further IP coverage on north extensions of lines 3300ME to 3500ME.

If Zone C:
This feature should be followed up by drilling possibly along L 4400 ME .

IP Zone D:

This feature should also be followed up by drilling also along L4400ME.

IP Zone E:
This feature should be tested by drilling should Zone D return encouraging results.

IP Zone F :
This feature is considered a low priority at this time but should be considered in any follow-up porgram.

IP Zone G:
This unit should be considered for follow-up work once the response or L6400ME is investigated. The strike of the zone is in close proximity to the suspected fault controlled contact zone.

IP Zone H:
This feature should be followed up further possibly by drilling.

IP Zone I:

This feature should be followed up by driliing.
Ip surveys should also be contemplated along mL3200MN and TLI600MN to better define the signatures of the north-south cross structures.

Should any of the zones return encouraging results and sulphides are present in the hole. Then a Mise-a-la- Mass Survey
may be contemplated for a better definition of the sources strike. Keep in mind, however, that the cross faulting may cause problems in structural continuity.

Respectfully Submitted,

John C. Grant.
CET FGAC

CERTIFICATE

I, John C. Grant, hereby certify that:

1) I am a graduate geophysicist (1975) of the three year program in Geological Technology at Cambrian College of Applied Arts and Technology, Sudbury, Campus. I have worked subsequentely as an Exploration Geophysicist for Teck Exploration Limited (5 years). North Bay office, and as Exploration Manager and Geophysicist for Exsics Exploration Limited from 1980 to present.
2) I am a Member of the Certified Engineering Technologist Association since 1984.
3) I am a member of the Geological Association of Canada.
4) I have been actively engaged in my profession for the last seveenteen (17) years, including all aspects of exploration studies, surveys and interpretations.
5) I have no specfic or special interest in the described property. I have been retained as a Consulting Geophysicist. for property appraisal.

John Charles Grant, CET, FGAC

Major Benefits

- Sir Dipoles Simultaneously Measured
- Ten Windows Available
- Choice of Arithmetic or Logarithmic Window Width
- Programmable Arithmetic Window Width
- High Input Voltage
- Weighs Only 8.5 kg .
- User Friendly

Specifications
Dipoles 4
imput voltage (Vp) Range
4. SE simultaneous input dipoles.

Standard: - 8 volt maximum for each dipole

- maximum sum of 12 volts from the second to the sixth dipole.
Additional Setting:
- attenuation of up to 40 volts on the first dipole.
Up to 1000 volts.
1 microvolt.
0.3\% typical; maximum 1\% over temperature range.

1 millivolttivolt for Vp greater than 10 millivolts.
0.1 millivolt/volt for Vp greater than 100 millivolts.
0.6% typical; maximum 2% for Vp greater than 10 millivolts over temperature range.
± 1 volt with linear drift correction up to 1 millivolt/second.
10 megohm.
10 milliseconds.
1 to 999 cycles.
Minimum primary voltage level of 40 microvolts. 50 and 60 Hz power line rejection greater than 100 dB .
0.1 to 128 kiloohms.

Any time domain waveform transmitter with a pulse duration of 1,2,4 or 8 seconds and a crystal timing stability of 100 ppm .
Ceometric parameters, time parameter, intensity of current, type of array, line and station number, dipole length, window width and delay time (mode 2).
Two-line, 40-character alphanumeric liquid crystal display protected by an internal heater for low temperature conditions.
1800 sets of readings.
300 to 19,200 baud rate: 7 or 8 data bits: 1 or 2 stop bits; odd, even, no parity.
Six - 1.5 V " D " cell alkaline batteries with auto power save feature: 20 hours of operation at $20^{\circ} \mathrm{C}$.
$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}: 0$ to 100% relative humidity: weatherproof.
8.5 kg . (with batteries), $300 \times 200 \times 240 \mathrm{~mm}$.
instrument console with carrying strap, batteries, data transfer cable and operations manual.
Primary voltage, partial and total decimalized chargeabilities, running and cumulative average of total chargeabilities in fixed modes), standard deviation of primary voltage and total chargeability. self potential, number of cycles, dipole being measured and contact resistance.
Stainless steel transmitting electrodes, copper sulphate receiving electrodes, alligator clips, bridge leads, multi dipole wire cable, wire spools and software programs.

EDA instruments inc. 4 Thorncliffe Park Orive Toronto. Ontario Canada MaH $\mathbf{1 H 1}$ Tetex: 0623222 EDA TOR Cable: EDANSTRMTS TOROFJTO Teleohone: 141614257800
Fax: $\mathbf{1 4 1 6)} \mathbf{4 2 5} 8135$
In USA
EDA instruments inc.
9200 E. Mineral Avervie
Suite 370
Englewood. Colorado, USA 80112
Telephone (303) 7902541
Fax: (1303) 7902902

Four Magnetometers in One

Self Correcting for Diurnal Variations

 Reduced Instrumentation Requirements25\% Weight Reduction
User Friendly Keypad Operation
Universal Computer Interface
Comprehensive Software Packages

EDA instruments me 4 Thomdiffe Park Drive Toronto. Ontario canada MaH 1H1
Telex: 0623222 EDA TOR Cable: instruments Toronto (416) 4257800
in U.S.A.
E D A instruments inc.
5151 Ward Road
Wheat Ridge. Colorado
U.S.A. 80033
(303) 4229112

IPC Tine Domaln Induced Polartzation/ Redativity Tranemintiere

The Scintrex IPC Series of Time Domain Transmitters was designed for operation with the IPR-8. IPR-10 and RDC-8 Receivers. Three models are available, rated at 250 W . 2.5 kW and 15 kW which are designated the IPC-8/250W. IPC-7/2.5kW and IPC-7/15kW respectively. While the IPC-8/250W is powered from internal. rechargeable batteries, the other, more powerful models use molor-generators as power sources.

Since the IPC-8/250W Transmitter is light enough (15.5 kg) to be moved from observation to observalion, it can provide a high speed of operation for dipole-dipole and Wenner arrays when a low power source would suffice It is also ideal for drillhole logging.

The IPC-7/2.5kW Modet is an all purpose. medium power system. It is the standard power transmitter used on most surveys under a wide variely of geophysical. topographical and climatic conditions.

The IPC-7/15kW Unit is ideal for use where high power is required to survey to greal depths using large electrode spacings. even in areas of low resislivily or high conlact resislance. Normally the motor-genetalor is installed on a single axle trailer to be lowed to each transmilting slation.

The two higher powered transmitters lealure overload and underload prolection circuits and other salety features.

Time domain wavelorm outpur by IPC Series transmitters. T normally equals 2.4 or 8 seconds athough other tmings are available optionally.

PC-8/250W

Typical IPC-7115 kW field set-up with motorgenerator sel, control unit and durnmy load.

PCC-7125 kW

menistivity

室
5
5
 mestititury

PENTLRND F[RTH VENTURES

CARR PROJECT
CARR TOWNSHIP

LATE : $11 / 11 / 94$ REF :
EXSICS EXPLORATION LTD.

LNDUCED POLRRIIRTION

LINE : 3800 E	Ny Cing. 	
INDUCED POLARIZATION SURVEY DIPDLE-GIPDLE ARRRY		
PENTLAND FIRTH VENTURES CARR PROJECT CARR TOWNSHIP	mentitury	
EXSICS EXPLORATION LTD		

 8uctury, Ontario, PSE CA6, telephone (POG) 870-72e4.

Inefructione:

- Please type or print and submit in duplicate
- Refer to the Mining Act and Regulations i Recorder.
- A separate copy of this form must be cor
- Technical reports and maps mu at accoma.
- A sketch, showing the claims the work is assigned to, must accompraig um. ...

PENTLAND FIRTH VENTURES LTD
PO BOX 1690 SOUTH PORCUPINE ONTARIO CARPER LAKE
LATEX CARR TWP
From: SEPTEMBER 2, 1994

Work Performed (Check One Work Group Only)

tall Assessment Work Claimed on the Attached Statement of Costs \$
59570
Note: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Surv Company Who Performed the Work (Give Name and Address of Author of Report)

(attach a schedule if necessary)
Certification of Beneficial Interest - See Note Mo. 1 on reverse side
 by the current recorded holder.
\square

Certification of Work Report

For Office Use Only

[^0]Mote 1: Examples of beneffctel interest are unrecorded transfers, option asoeemente, memorandum of agreamerfs, etc., with reapect to the mining clime.

Mire 2: U1 work has been performed on patented or leased land, please complete the following: $\mathrm{KD} \times \mathrm{h}$

[^1]Note 1: Examples of beneficial interest are unrecorded tranafers, option agreemente, memorandum of egreemente, etc., with reapect to the mining clodme.

Note 2: II work has been performed on patemted or loased land, please complete the following:
I certify that the recorded hotider hadd a beneficien hotereet in the petented
or leased tand at the time the work was performed.

[^2]

Ministry of
Northern Development and Mines

Ministere du

Defeloppement du Nord of des mines

Statement of Costs for Assessment Credit
 Etat des coots aux fins du crédit d'évaluation

Mining Acthoi sur les mines

Personal information collected on this form is oblained under the authority of the Minning Act. This information will be used to maintain a record and ongoing status of the mining ctaim(s). Questions about this collection should be directed to the Provincial Maneger, Minings Lands, Ministry of Northern Development and Mines, 4th Floor, 150 Cedar Street, Sudtury, Ontario PSE 6A5, telephone (705) 670-7204.

1. Direct Costa/Conts directs

Les renseignements personnels contenus dans ta preeente formule som recueilis en vertu de la Lol sur loe minve et serviront à torim a jour un registre recueilis en vertu de la Los ar ine nime ot servirom a tenir a jour un registre
des concessions minibres. Adreseer toute quesiton sur la colloce de ces renseignements au chef provinctal des terrains miniers, minletiere du Dfveloppement du Nord of des Mines, 150, nue Cedar, 40 etrages, Sudbury (Ontario) PSE 6A5, tethphone (705) 670-7284.

2. Indirect Costa/Conts Indirects

** Note: When claiming Rehabilitation work Indirect costs are not allowable as assesement work.
Pour to remboursement das travaux de rthebimbaion, les couts indirects ne sond pes adrimatios en tert que trivaux d'éraluation.

Type	Description	Amourt Montant	$\begin{gathered} \text { Totals } \\ \text { Totel global } \end{gathered}$
Tranaportation Traneport	Type		
Food and Lodging Nocrinture of noboryement			
Sub Total of Indirect Conts Total partiol des conts indirects			
Anount Allowatio (not grweter then 20\% of Direct Comes) 			
(Totel of Dract and Alomato driveration 			

Totel dee corar eroces

Note: Lel titulaire enregistré sera tenu de verifer les dépenses demandies dens le prisent état des couts dans les 30 jours suivant une demende al cet effer. Si la verification n'eet pas eflectuse, Io minietre peut rejeter tout ou une partie des travaux d'évaluation présentés.

Filing Discounts

1. Work filed within two years of completion is claimed at 100% of the above Total Value of Assessment Credit.
2. Work filed three, four or five years after completion is claimed at 50% of the above Total Value of Assessment Credit. See calculations below:

Total Value of Assessment Credit	Total Assessment Claimed	
	$\times 0.50=$	

Certification Verifying Statement of Costs

I hereby certity:
that the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the accompanying Report of Work form. that as $\frac{\text { Beocklegtepef }}{\text { (Pecorded Holdet, Agent. Position in Company) }} 1$ am authorized
to make this certification

Romises pour dbpot

1. Les travaux déposés dans les deux ans suivant leur achèvement sont remboursés à 100% de la valeur totale susmentionnée du crédit dévaluation.
2. Les travaux déposés trois, quatre ou cinq ans après leur achivement sont rembourses à 50% de la valeur totale du crédit d'évaluation susmentionne. Voir les calculs ci-dessous.

Valour tolale du credit d'évaluation
$\times 0,50=$

Attestation de l'état des coûts

J'atteste par la présente :
que les montants indiqués sont le plus exact possible et que ces dépenses ont été engagées pour effectuer les travaux d'évaluation sur les terrains indiqués dans la formule de rapport de travail ci-joint.

Ministry of
Northern Development
and Mines

July 11, 1995

Mining Recorder Ministry of Northern Development and Mines 4 Government Road East Kirkland lake, Ontario P2N 1A2

Ministère du Développement du Norad et des Mines

Dear Mr. Spooner:
SUBJECT: APPROVAL OF ABSESEMEATY WORE CREDITS OH MIMING CLAIMS 1114456 ET AL. IH CARR TOWNsHIP

The assessment work credits for this submission have been approved as of July 11, 1995. The credits have been approved under Section 14, Geophyics (MAG ,IP), of the Mining Act Regulations.

Note: The credits have been redistributed to better reflect the location of the work done.

The approval date is July 11, 1995. Please indicate this approval on the claim record sheets.

If you require any additional assistance please contact Bruce Gates at 670-5856.

Yours sincerely,
Ran CGokiad

Ron C. Gashinski
Senior Manager, Mining Lands Section Mining and Land Management Branch Mines and Minerals Division

BIG/jn
cc. Assessment Files office

Resident Geologist Sudbury, Ontario Kirkland Lake, Ontario

FILE MUMBER 2.16060
TRAR8ACYIOM 210. W9580.00424

CLATM MUMBER VALUE OF ASEEB8MEATY WORX DOMS OM FHIS CLATM

1114456	$\$ 2845$
1114457	3450
1114458	740

1114459
740
930
1116013930
1116014740
1116015740
1116016930
12014318370
1193794845
28194980
90 5120
99
15763
15745
1.7101 3300

14694 3490

14042 5175

14078 1162

14046 6285

14071 1955 1955

14272
560

8758
Total
\$59,570

|||||||||||||||||||||||||

[^0]: Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to priorize the deletion of credits. Please mark (σ) one of the following:

 1. \square Credits are to be cut back starting with the claim listed last, working backwards.
 2. Credits are to be cut back equally over all claims contained in this report of work.
 3. Credits are to be cut back as priorized on the attached appendix.

 In the event that you have not specified your choice of priority, option one will be implemented.

[^1]: Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to priorize the deletion of credits. Please mark (\sim) one of the following:

 1. Credits are to be cut back starting with the claim listed last, working backwards.
 2.Credits are to be cut back equally over all claims contained in this report of work.
 3.Credits are to be cut back as priorized on the attached appendix.
 In the event that you have not specified your choice of priority, option one will be implemented.
[^2]: \mid

