Introduction:

The following report describes the programs carried out by Canadion Johns-lianville Co. Lisited under Dxploration Assistance fex ment Contract lil-38. These programs include line cutting and chainis followed by both R. L. M. and lis-1000 vertical loop eloctromagnetic surveys on a group of claims located in the southeast part of Beatty Township. ifis work is a continuation of programs conducted during 1971-72 under previous Exploration Assistance Agreements.

Claims covered by the surveys are numbered and described as

follows;

372095 - NE1/4 of the N1/2 of Lot 4, Concession I. 372094 - SLi/4 of the $\mathrm{H} 1 / \mathrm{C}$ of Lot 4, voncession I.

367320 - N 1/2 of the s1/2 or Lot 2. Concession I.
Those six olaims comprise approximately 240 acres and the locsw tion of the Group 18 shown on the accompanying Property phan on a acale of one inch equalı 4 miles.

All work, both field and office, was completed by Conpany personnel based at Mathebun, Ontario.
A. Grid:
base Line lio. 1 was cut and chained to the oast of the original 0 point for a length of 1320 feot. dight-angled offzet lines wore established at 200 loot intervals along thia base line and were cut to the north und south to cover claims $372094-95$. Phckot lines were later estaulished at $1+100,3+00$ and $5+00$ west and cut and chaine 400 feet to both the morth and south of buse line ilo. 1 for a
detailed Mis-1000 survey.
Picket lines previously cut from base line lio. 1, at 200 foot intervals, were extended south to cover claims 367318-19. Similarly picket lines previously established on base line No. 2 were extended to the south to cover clairas 367320 -21.

During the course of thie work 0.25 miles of base and 7.1 miles of picket lines were cut and chained. Note that pickets were fixed at 100 foot intervals along all lines by chainage.

Details re man days worked, wages paid and other costs are attach ed with Cost Statement Data. B. Electromarnotic Survoy 1:
bectromagnetic surveying was carried out on part of the grid by R. Haley and A. Brooks, geophysical operator and geologist, reapectively with Canadian Johns-Manville Co. Limited.

A McPhar Reconnaissance Llectromagnetio (R.E.M.) Vertical Loop unit was used exclusively during this survey. Distanoe between transmitter and receiver was maintained at 200 foet with the transmitte always on the north side of the receiver.

Walki-talki units were used for communicating readings whioh were recorded at 25 foot intervals along the offset lines. A total of 3.3 miles wore traversed and 719 readings recorded during the course of this survey.

Kesults are shown on the accompanying IR. E. M. Frorile Plan on a acale of one inch equals 200 feet. frofiles have beon plottod on scalo of one inch equals 20°. No conducting zones were delineated by this survey.

Details re man days worked, wages paid and other costs are attack ed with Cost Statement Data.

ن. Electromanetic Survey 2:

A detailed vertical loop deep penetration electromagnotic surve was conducted by P. brown, geologist with this Company, over quartz vein systems on the Beatty Block of claims.

The MO-1000 is a single frequency vertical loop LM systom designated to get the meximum range possible within the requirements of practical weight and portability. The equipment consists of a transmitter operating at a frequency of 1000 cycles and a receiver that can be tuned to the transuitted frequency. The receivor is employed to measure the dip anglo of the resultant field pattern generated by the transmitter and any conductor in the vicinity of tho get-up.

The maximum separation range betreon transmitter and receiver is of the order of 4,000 feet. The exploration depth is given as roufhly half the separation distance. Other effects nave to be takes into account, however, such as the concluctivity of the overburden, the size and conductivity of the conductor, etc.

Principle of the Dip inglo Method:
A vertical transmitter coil is energized by an alternatiag curi generator which creates an alternating magnetic iield. This primary field links with the receiver coil which is located at some given station. If the plane of the transmitter coil is oriented to be in line with the receiver then the field at the receiver station is horizontul regardlass of diffarence in altitude between transmitter and receiver. The receiver rousurement consists of defining the dip angle of the field by rotating the receiver coil until a null is heard in the earphones. The dip angle is then read from the clinomet face of the receiver. In this instance the null or dip angle would
be zero degrees if no conductor were present.
The primary field from the transmitter also links with any condue or in its vicinity and this gives rise to a secondany field. At the receiving atation the direction and magnitude of the primary field is altered by the presence of the secondary field. The null position will be also altered and the angle of null is indicated on the recoive ciinumeter.

The method of burvey is the same as for any vertical loop set-up sethod. The transmitter is normally set up on a baso line and recelve stations aro taken along traverse lines perpendicular to the base lint. Because of the high receiver sensitivity and transmitter field, the nearest useful traverse line is deternined by the extreme sharpness of the null and miny be of the order of five hundred foot. Field Recordinf drocedures:

Iractical experience has shown that angles are beat recorded as the operator receiver them. For example 1) his location on the gri ine is recordod, 2) whether the angle is left or right, moaning the diroction the top of the receiver unit is tilted in order to obtain a null. Inis is later interpolated as being a north or south angie. 3) the value in degrees, 4) whether the null is hand to obtain and it: width, and 5) salient topographic features.

Interpretation of Results:
Dip angles are converted into nortl and south angles for plottine purposes and each is always plotted on the same side of the line for profiling - north on the west, south on the east. The MiPhar system for plotting is used and north angles ase assumed positive, south assumed negative. Usiag this procedure, a conductor is identified us being at a point where negative angles change to positive whilst
traversing a line from south to north.
If the reverse occurs - i.e. a positive to negative change this is terwed a "reverse crossover" and this happens at a point usually between two conductors.

Depth of penetration has been assumed as one half of the separation between transmitter and receiver. The conductor lies between thi. dopth and aurface.

Response with different depths of penetration varies consideraid. und the values of dip angles are at maximum when the tranamitter is set up on the conductor. Hence the need for detailing each conductor.

The results of the olectromagnetic survey are shown on the acco. panying MS-1000 Profile Plans, Sheets 1 and 2, on a scale of one inch equals 20°. Stations were recorded at 50 foot intervals along the offset linos.

During the course of the MG-1000 surveys, 10 transmitter set-upe were usod, 673 roudings recorded and 6.1 miles of line traversed. Conductors have been marked on the plans with dashed purple line The following table gives transmitter locations, arer covered, depth of ponetration, locution and dip angles of the conductors.

Transmitter Location \& Station Line TX 14: 15 S

IX 2
Line 10E; 153

TX 3
Line 8w; aN

TX 7
Line 2E; $0+\infty$

Line $0_{0}^{\cos 8}: 0+\infty$

Line $\begin{gathered}\text { TX } 9 \\ 2 W ;\end{gathered} 0+\infty$
2X 10
Line $5 \mathrm{~W} ; 0+00$

Lines/Footage
Penetration of
Conductors Crossovers

L10	
12E	
16:	"
181:	"

L 61:10-20S
8E 16-20S
12 E 10-20S
L $2 \mathrm{~W} ; 4 \mathrm{lim}-7 \mathrm{~S}$
4 V
$5 \mathrm{~N}-7 \mathrm{~S}$
6 W GN-3S
$10 \mathrm{~W} 7 \mathrm{~N}-2 \mathrm{~S}$
12 W 8 Nm 2 S
$\mathrm{~L} 10 \mathrm{~W} ; 2+50 \mathrm{~N}-2 \mathrm{~S}$
$12 \mathrm{~W} ; \mathrm{W}-4 \mathrm{~S}$
L $2 \mathrm{E} ; 2+75 \mathrm{~N}-3+25 \mathrm{~S}$
$0 \mathrm{~N} ; 3 \mathrm{H}$
$4 \mathrm{~N} ; 3+75 \mathrm{~N}-4+25 S$
$6 \mathrm{~N} ; 3+75 \mathrm{~N}-0+25 \mathrm{~S}$
$8 \mathrm{~N} ; 3+75 \mathrm{~N}-0+25 \mathrm{~S}$

10	$4 \mathrm{~N}-4 \mathrm{~S}$
1 W	11
2 W	1

L 3W: 3N-2S 3W; 4N-48 $4 \mathrm{~W} ; 8 \mathrm{~N}=4 \mathrm{~S}$ 5N: 4N-2S

23W;2N-3+50S
4N; 6NJ-4S
$5 \mathrm{~W} / 4 \mathrm{JJ}=4 \mathrm{~S}$
6W:4N-4S
L5W: 4N-3S
$6 \mathrm{~W}: 411-4 \mathrm{~S}$
8W: 2li-4S
L $0 ; 3 \mathrm{~N}-3 \mathrm{~S}$
1W; 4iv-4s
2W:4N-4G
3W;2H-4S
$8 \mathrm{~W} ; 3+50 \mathrm{~N}-3 \mathrm{~S}$
10W; $4 \mathrm{~N}-2 \mathrm{~s}$
None
""
"

None
"
$0+75 N$
None
\#
$0 \& 1+50 N$
$50 \& 1+50 N$
None
None
"
"
None
"1
"
None $0+258$ dione $0+50 \mathrm{~N}$
None
$0+25 \mathrm{~S}$
$0+25 \mathrm{~N}$
None

None
"
$=-\infty$

300^{\prime}	$1 / 85$ to
-0	-
120°	ys to
200^{\prime}	y/s to

$\infty \quad-\infty$

\cdots	\cdots
-	--
-	-
-	--
\cdots	--
-*	-
\cdots	--
--	\cdots
-	-
250°	\%6 to \%
- 301	15 -
$350{ }^{\prime}$	$\begin{gathered} 18 \text { to } 12 \\ 18-0-12 N \end{gathered}$

$200{ }^{\circ}$	YSm0-0-1
$250{ }^{\circ}$	18
-	-*
-	--
∞	--
-	-*
-	-
230°	1430-321
-	--
180'	140 - 44
180^{\prime}	3/8-328
250	125-12

The series of weak conducting zones delineated by the survey appear to occur within or along the contacts of a northwesterly trending dioritic flow ? and may be indicative of disseminated sulphide mineralization. In this respect it is planned to conduct a magnetometer. survey over the claims to accurately outline the moderately magnetic band of diorite. This would be followed by diamond drilling to test the conducting zones and the northeasterly trending quartz vein.. systems.

Submitted: February 264, 1974
by: P. A. R. Brown Geologist.

