010

RECFOTD

Inソ 2. 41980
RE P ORT MINING LANUS SECTION
O N

GRID K

MAGNETOMETER AND ELECTROMAGNETIC SURVEYS
WILKIE TOWNSHIP
DISTRICT OF COCHRANE
LARDER LAKE MINING DIVISION
ONTARIO

November 21, 1980

Mr. J. A. Harquail
President
Surveymin Limited 330 Bay Street
Suite 1107
Toronto, Ontario
M5H 2S8

Dear Mr. Harquail:
Submitted herewith is our report entitled:

GRID K
MAGNETOMETER AND ELECTROMAGNETIC SURVEYS
WILKIE TOWNSHIP
DISTRICT OF COCHRANE
LARDER LAKE MINING DIVISION
ONTARIO

The ground geophysical surveys extended and further defined the regional geology as mapped by the Ontario Division of Mines.

A northwesterly trending fault zone was mapped in the western portion of the survey area, the relative position and sense of which adds supportive evidence to the right-hand displacement indicated along the Black River Fault zone mapped on Grid J, located in Walker Township.

The magnetometer survey also identified two diabase dikes and a large metamorphosed mafic intrusive body mapped along the southern property boundary. It is felt that this intrusive body either lies along the northern contact of or is synonymous with the Pipestone Fault zone.

The electromagnetic survey mapped a near surface bedrock conductor, $\mathrm{C}-1$, located in the southeast corner of the survey area exhibiting a conductivity thickness of 10 mhos. This conductor is believed to be the mappable expression of a finely disseminated
sulfide band associated with a tuffaceous horizon lying within the metavolcanics.

In light of the proven structural significance of the Pipestone Fault System as a known channel way for gold bearing mineralizing solutions, it is strongly recommended that the structural relationship between the metamorphosed mafic intrusive body and the Pipestone Fault zone be determined. It is also recommended that additional ground geophysics be carried out in the vicinity of Conductor C-1. This additional work would consist of several selected I.P. profiles carred out across the inferred axis of conductor $\mathrm{C}-1$.

GENERAL

The following geophysical report details the results of the ground magnetometer and electromagnetic surveys undertaken by W. G. Wahl Limited on behalf of Surveymin Limited.

The property is situated in the southwest corner of Wilkie Township, District of Cochrane, and is accessible by a four-wheel drive vehicle east from the village of Monteith on concession road II, then south along Lot road 5 to the first concession road, then east to the Black River, a total distance of 10.3 km . From this point the property is accessible by canoe, 1 km down the Black River and then east upstream 1 km on the Shallow River.

The Wilkie Township property consists of the following sixteen unpatented mining claims, all of which are duly recorded with Mr. G. J. Koleszar, Mining Recorder, Larder Lake Mining Division:

CLAIM MAP
(2 inches to 1 mile)

LINE CUTTING

The linecutting was conducted under the direct supervision of Mr. S. Wabananik of Timmins, Ontario, during the period from March 9, 1980 to April 1, 1980. The survey grid consisted of 3.2 kilometres of baseline trending $E-W$ and 25.74 kilometres of grid line trending $N-S$, established at one hundred metre intervals along the entire baseline. Thirty metre stations were established on all lines.

The thirty metre station interval was apparently established by the line cutting crews using an imperial chain on the grid lines with the assumption that 100 feet was equal to 30 metres.

MAGNETOMETER SURVEY

The magnetometer survey was carried out by R. Harwood of W. G. Wahl Limited during the period from September 8 to September 14, 1980, employing a Scintrex MP-2 total field proton precession magnetometer in conjunction with a Scintrex MBS-2 total field magnetic base station attached to a simpson M2750 strip chart recorder.

The magnetic data was observed at a 15 metre station interval on all lines of the established grid. The data was
corrected for diurnal fluctuations, reduced to a local datum and presented as a contoured interpretation of these data.

MAXMIN II HORIZONTAL LOOP ELECTROMAGNETIC SURVEY

The horizontal loop electromagnetic survey was carried out by J. Palladini of W. G. Wahl Limited during the period from September 8 to September 14, 1980, employing an Apex Parametrics MaxMin II horizontal loop survey unit in the maximum coupled mode. The inphase and quadrature response parameters were recorded at 444 Hz and 1777 Hz utilizing a 600 foot coil separation and a 30 metre station interval. These data are presented in profile form.

VLF ELECTROMAGNETIC SURVEY

The VLF electromagnetic survey was conducted by R. Harwood of W. G. Wahl Limited during the period from September 8 to September 14, 1980, employing a Crone Radem VLF EM survey unit. This unit measured the inclination or dip angle and the total field strength. The VLF station used was Cutler, Maine, having a frequency of 17.8 KHz . All observations were taken facing east at 30 metre stations on the lines of the grid which were interrupted by open water.

DISCUSSION
The magnetometer survey extended and further defined the regional geology as mapped by the Ontario Division of Mines
and presented on Map No. 2205.
A major lenticular magnetic expression of up to $2,000 \mathrm{nT}$ was mapped transecting the survey area trending northeasterly from a point 700 metres south of the baseline on line llw to the baseline on line 8 E at which point the magnetic anomaly appears to be open to the northeast. This anomaly is thought to be the mappable expression of a late precambrian diabase dike, the western-most end of which has been faulted and structurally offset by a northwesterly trending fault zone. Movement along this fault zone appears to be a right-hand displacement and is up to 200 metres.

A younger, early precambrian, diabase dike was also mapped trending $N-S$, lying parallel to and coincident with line 14E. This lenticular magnetic expression is characterized by a total magnetic field intensity of up to $793 n T$.

The large regional magnetic feature of up to $16,000 \mathrm{nT}$, located in the southeastern portion of the survey area, is thought to be the mappable expression of a metamorphosed mafic intrusive body.

The MaxMin II horizontal loop survey identified two anomalous conductive zones lying within the survey area, both of which will be discussed in the following section of the report.

Conductor C-1:

Conductor $\mathrm{C}-1$ is located in the southeast corner of the survey area and is characterized on lines 9 E through 12 E
inclusive, lying roughly parallel to and 600 metres south of the baseline. This anomaly is interpreted to be a vertical, near surface (<15 metres) conductor, up to 4 metres wide, exhibiting a conductivity thickness of 10 mhos at the low frequency (444 Hz) response.

Conductor C-2:
Conductor $\mathrm{C}-2$ is located in the west central portion of the survey area and is characterized on lines 3 and 4 W inclusive, lying roughly parallel to and 480 metres south of the baseline. This anomaly is interpreted to be a very poor conductor and is thought to be an overburden response related to the beaver pond.

CONCLUSIONS

The apparent right-hand displacement interpreted along the northwesterly trending fault zone mapped in the western portion of the survey area adds supportive evidence to the right-hand displacement indicated along the Black River Fault zone mapped on Grid J, located in Walker Township.

The metamorphosed mafic intrusive body mapped in the southeastern portion of the survey area is thought to be either associated with or lying immediately north of the Pipestone Fault.

The causative body of conductor C-1 is thought to be a finely disseminated sulfide band associated with a tuff
horizon lying within the mafic metavolcanics.

RECOMMENDATIONS

In light of the proven structural significance of the Pipestone Fault System as a known channel way for gold bearing mineralizing solutions, it is strongly recommended that the structural relationship between the metamorphosed mafic intrusive body and the Pipestone Fault zone be determined. It is also recommended that additional ground geophysics be carried out in the vicinity of conductor $C-1$. This additional work would consist of several selected I.P. profiles carried out across the inferred axis of Conductor C-l.

All of which is respectfully submitted.

Sincerely yours, W. G. WAHL LIMITED

D. G. Wahl, P.Eng. Consulting Engineer

DGW/pl

GEOPHYSICAL - GEOLOGI

 TECHNICAL DATA

42AIONEOO19 2.3575 WILKIE

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey (s) GEOPHysical Township or Area \qquad Claim Holder (s) \qquad Surveruid humiteo 1107-330 Boy Ez;, Teconso
Survey Company \qquad W. G. With hunter

Author of Report D. G. WAHK D. Eng Address of Author $1000-350$ Boy 57, Tenon
 Total Miles of Line Cut \qquad 28.94 tim

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

Res. Geol. Qualifications 63.1121

\qquad

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey
Number of Stations Mag -1780; MaxMin-676; VLF -12e Number of Readings Mag -1780 MarviN 444H2-1352
Station interval Mag. 15 m ; MAXMiN- 30 n ; VLF-30m Line spacing_ 100 m
Profile scale \quad MAXMIN $\sim 1 \mathrm{~cm}=20 \% ; V \angle F-1002=10^{\circ}$
Contour interval \qquad VLF - 10%

Instrument
SCNTREX
$M P-2$
Accuracy -- Scale constant _I $1 n T$
Diurnal correction method Relative time interpolation based on step chart recording
Base Station check-in interval (hours) SCINTPEX MBS-2, Base Station
Base Station location and value Baseline - arid line intercepts. Were Standardized to base station recordings
Y) Instrument APE Parameters Mormentit \longrightarrow PAVE PR E
\square
\qquad

\qquad , maxíncuon cacyaled mode
Coil separation \qquad 600 ft

 Parameters measured MAXMiN - In-jhare and Dat-of phase; VLF -dip angle

Instrument \qquad
Scale constant
Corrections made \qquad
\qquad
Base station value and location \qquad

Elevation accuracy

Instrument

Method\square Time Domain \square Frequency Domain Parameters - On time Frequency Off time Range Delay time \quad Integration time	

Power \qquad
Electrode array
Electrode spacing
Type of electrode

