HORIZONTAL LOOP EEGECTROMAGNETIC SOU ON THE
WALKER TOWNSHIP CLAIMS
2.162^{72}
2
MERLE S. COSBY
\qquad

OCT 1995 ST. CATHARINE ONTARIO
1.0. INTRODUCTION
2.0... LOCATION AND ACCESS
3.0. SORVEY DESCRIPTION
3.1 PERSONNEL
3.2 SUMMARY OF FIELD WORK
3.3 LINECUTTING
3.4.. HORIZONTAL LOOP ELECTROMAGNETIC. SURVEY
to Geolaby

LIST OF FIGURES
FIGURE 7 PROPERTY- LOCATION MAP
APPENDIX A EqUIPMENT SpECIFICATIONS
LIST OF MAP SHEEETS

MAP	HEM	222	888	3555
MAP 2 HEM	222	888	3555	

－1．0－INTROOUCTION

DURING THL PLRIOD MAY 7 TO 14 1995 A HORIZONTAL LOOP ELL゙CTROMAGNATIC HLEM SURVEY WAS OARRIED OUT ON COT LINES OF THE WALKER TOWNSHIP CLAIMS（1200338，\＃1200339． 1140850 ， 1140851 ， 1140854 AND स 1140855 BELLONging TO MERLE：S．CoSby IN NCRTHLASTERN ONTARIC．APPROXIMATELLY 8400 LINEEMETRES 24.000 LINE FEEFT）HLEM SURVFYING KNOWN FNPUT CONDUCTOR DE゙JECT THE POSSIBLE PRESENCE OF CONDUUTIVE VOL CANOGENIL MASEIVE SKPHIOL MINARLIZATION IN THEL BLD ROCK ONDEELLYING THE eLAIMS

THIS REPORT DESCRIBES THK HLEM SURVEY AND SPECIIFICATION，ETHOOS ANO PROCFIUULES USED IN THL゙ COLECTION OF DATA？ANO PRESLENTS A DISCUSSION AND IMTE゙RPRE゙TATION OF THEREEUUTS －OFTHE SURVEV
... 2.0 LOCATION AND ACESS
THE PROJECT AREA IS LOCATED NEAR THE NORTHERN BOUNDARY OF WALKER TOWNSHIP APPROXIMATELY 10 KM SOUTHEAST OFIROGUD FALLS OR 16 kM NORTH-NORTHWLST OFPATI IN NORTHEASTERN ONTARIO
ACCESS TO THE $G R I D$ IS VIA AN ALL WEATHER RO NORTH FROM MATHESON

Figure 1: Location of the Merle Cosby Walker Township Claims
3.6 SURVEY DESCRIPTION
3.1 PERSONNEL

THE FOLLOWING PERSONNEL WERE INVOLVED INTHE LINE CUTTING AND GEOPHYSICAL SURVEY PROGRAM
\qquad M.C. Cos 6
\square
TECHNICIAN \qquad
R. Cosby

FiELD ASSISTANT
R • BASEMENT FIE゙LD ASSISTANT.
3.2 THE CREW ARRIVED AT MATHESON IN THE EVENING OF MAY T/IG95. THE FOLOWING MORNING. THEY COMMENCED LINECOTTING AND CHANTING ON THE PROPERTY. FOL OWING COMPLETION OF LINE CUTTING ON, MAY II THE CREW PROCEOED TO COLLECT THE HLEM DATA UNTIL MAY 13 WHEN THECREN DEMOBILIZED BACK TO ST. CATHARINE ONT MAY IL

THE FIELD WORK MAY BE SUMMARIZED AS FOLlOWS

MAY 7 : CREW MOBS TOMATHEESON ESTABLISHES BASE IN MATHESON

MAY 7-II CREWS AND CHAINS SURVELINES
MAY 12 CREW COLLECTS HLEM DATA ON SURVEY LINE 13 CREW COLLECTS HEM DATA TILL FOO MM MAY If CREFW LEAVESS MATHESSON FOR ST.CATHARN
3.3

LINECUTTING
A GRID WAS WAS REESTABLISHE USING. ORIGINAL BASELINE AND SEVEN CROSSLINES. N. PREVIOUSLY CUT (1994) BOT REGUIRING COMPLETE RECCUTTING AND CHANNING BASELI 12+00N ME゙TRESSWAS REFESTABLISNED FROM O+00 TO 26+00E ALONG WITH THE SEVEN CROSSLINE'S 120 METRES INTERVALS CO+OOT 24FOOE GACH FROM NORTH BOUNDRY OF CLAINS QROUP. ALL LINETS WEREF EHAINELD AN PICKETED AT INTERVALS OF 25 METRES
\qquad
4.0 Geology

THE COSBY WALKER TOWNSHIP CLAIMS ARE LOCATED IN THE MATHESON - BLACK RIVER AREA OF THE ARCHEAN ABITIBI GREENSTONE BELT.
THEIR IS NO OUT CROP ON THE PROP ERT, BUT PRESUMABLY IT LIES NEAR THE CONTACT BETWEEN THE FE RICH METAVOL CONICS OF THE KIDD-MUNRO ASSEMBLAGE AND CALC-ALKALIC MEETAVOLCANICÉS OI F DUFFy COULSON-RANDASSEMBLAGK. THE BACKGROUND AEROMAGNETIC LEVEL (GUPTA Iq! IN THELVIQNITY OF THEPROPERTY IS RELLATIVELY HIgH WHICH SUggESTS THAT THE SURVEY BLOCK LIES JUSTWITHIN THE KIDO-M UNTO ASSEMBLAGE. A LARGEAMPLITUDE EAST-TRENDING MAGNETIC FEAT TYPICAL OF GABBROS AND ULTRAMAFIC $\angle A V A$ OF THEKIDD-MUNRO ASSEMBLAgELIES S CST OF H THE SOUTHEROGE OF THE PROPERTY SUPPORTS THIS INTERPRETATION

A BREAK IN THE EAST-TRENDING MAGNETIC FEATURE $\triangle E S C R I B E D$ ABOVE SUGGESTS A possible NORTH-SOUTH FAULT CROSS ING THROUGH THE EASTERN PART OF THE PROPERTY.

APPENDix A EQUIPMENT

SPECVIFICNTION \qquad

BPECIFICATIONE:

Fraquencies:
Modes of Operation: MAX: Trenemitter coil plene and recaiver coil plane horizontal ©Max-coupled; Horizortel-Hocp model. Leed with refer.catle.
MIN: Trenemituer coiplane horizartel and receiver coil plane vartical (Min-coupled mode). Leed with refersence cable.
V.L. : Trenermitter coilplane verticel end receiver coll plane horizonted (Vertical-hoop mode). Leed without reference cable, in perallel lines.

Coll Beparatione:

Raadoute:

Beale Fanges:

NOW ALSO \pm AY QUADRATURE
FULL scalE

25,50,100,250,200 E 250m (nMis or 100, 200, 300, 400, 000 and EDO ft. (MMIIF).
Coil eeperetione in V.L.mode not reetricted to fixed values.

Paremeters Read: - InFhees and Quedrature componentes of the eecondary field In MAX and MIN modes.

- Titr-angle of tha total fiald in V.L. mode.
- Automatic, direct reedout on COmm [3.5") edgewiee meters in MAX and MIN modea. No nulling on compensation neceseary.
- Tit engle and rull in eomm edaswire meters in VL.mode.
 button ewitch. Titt: \quad : 75% slope.
Null (V.): Eensitivity edinatable by eeparation avitch.

Readability:

InPrame and Quadrature : OES \% to 0.5\%: Tilt: 1%.

Repeatability:

Trenamitter Output:

Recelver Batteries:

Transmittar
Betterien:

Meference Cable :

Voioe Link:

Indicator Lights:

Tempereture Pange: $-40^{\circ} \mathrm{C}$ to +EO"C (-40F teoth
Receiver Weight: Bkg (13 lbe.)
Tranamitter Whight: takg (E9ibe.)
Ehipping Weight: Typically EOkg (tcestme). de ing on quentities of refer cable and batteries inc Eripped in two ficto/ahipping

Epecifications eubject to enenge without notifit

- 2cehz : 2eaAtm²
- 444Hz : 2nOAtme
- Eeehz : 120Atm?
- 1777 Hz : EOAtri?
- SESSHz: BDAtm²
40.25\% to 11% normally, depenk on conditione, frequancies and aeparation ueed.

EV trena. radio type betteries Life: approx. Sishre, continuou ty (alkaline, 0.5 An). lees in weather.

TEV BAh Gel-type recherge battery. CCharger auppl

Light weioht e -conductor te ceble for mirimum friction. Una ed. All reference cablea opt at extre cont. Please epe

Euit-in intercom systern volee cormrurrioetion betwee ceiver and trensmitcer opere In MAX and MIN modes, vie farence cable.

Euik-in eignal and reference ing lights to indicate erron readinge.
（1）Five frequencies：ERP，444，EBE， 1777 and ceses Hz．
d Maximum coupled（horizontal－loop）operation with reference cable．
］Minimum coupled operation with reference cable．
λ Vertical－loop operation without reference cable．

：－．．
．．．3：i三
Coil separations：ES，50，100， 150,200 and 250 m （with cable）or $100,200,300,400, \mathrm{EOO}$ and EOO ft．
1 Reliable data from depths of up to 180 m CEOOft．
y Built－in voice communication circuitry with cable．
3 Tilt meters to control coil orientation．

APEX MAXMIN COMPUTER MMC

- The MMC interfaces with MaxMin EM System receivers for digital data processing, display, storage and transfer, enhancing survey productivity and data accuracy.
\square Digital display and logging of in-phase (real) and quadrature (imaginary) readings with standard deviations, the corresponding apparent ground conductivity values, line, station, terrain slope and coil tilt information.
- Easy fingertip operation by read and store switches on MaxMin receiver front panel, with digital averaging for improved signal to noise ratio.
- R Rough terrain surveys are simplified with the use of built-in tik meter, slope entry and computed coil orientation and separation information:
\square Data transfer, formatting, correction and viewing programs are supplied for personal computers. Program for computing multi-frequency best-fit apparent conductivities and fit errors is provided.
- Data interpretation and presentation programs are available for multi-layer parametric or geometric soundings and discrete conductor surveys done with MaxMin EM.

MAXMIN COMPUTER MMC SPECIFICATIONS:

OPERATING SYSTEM:

DISPLAY:

KEYBOARD:

BEEPER:

CLOCK CALENDAR:
COIL TILT:

IN-PHASE \& QUADRATURE:

APPARENT CONDUCTIVITY:

PROCESSOR:
MEMORY:

PHYSICAL SIZE:

WEIGHT:
BATTERIES:

CONNECTIONS:

TEMPERATURE RANGE:

Menu driven user-friendly hierarchial operating syatem, interfacing with Maxililin EM Syetem recelver and with personal computers.

Liquld Cryetal Display, with two lines of 24 alphanumeric characters each.

18 tactile pushbution lays
To provide audible operator guidance and to speed up operations, especially in very cold weather.

Date and Time (yemr, month, day, hour and minute)
Titt display, with built in silt sensor and circultry, with $0 \pm 99 \%$ grade range and with 1% resolution
$0 \pm 199.9 \%$ autoranging programmable guin system with 0.1% resolution for displayed date and 0.01% recolution for etored data
0.1 to 3276 millisiemans (millimho) per metre avaliable conductivity range, with conductivity arrived at using the quadrature, in-phase, frequency and coil separation data

16 bit low power CMOS CPU and bus at 6 MHz clock reto
ROM: 16 Kb , expandable to $\mathbf{C 4} \mathbf{K b}$
RAM: 258 Kb, static CMOS
$24.2 \times 17.3 \times 4.3 \mathrm{~cm}$, to fit inside Maxilin recolver lanther case notebook pocket.

1.0 KIlogram

Two 9 Volt- 0.57 Ampere-hour alcaline betteries. Buttery life 28 hours continuous duty, less in cold waether. Optional 1.2 Ah lithium batteries recomanended for very cold woather operation. One 貯hum 3 Volt back-up batiery, type 2032.

19 pin bayonct connector receptecie to connect to Maxilin rectiver with the supplied Auminum tube connectors.

One each of DB25s and DB98 datin tranefor cords aupplied for downloading deta to pereonal computer serial port.

Minus 30 to plus $\mathbf{6 0}$ degree Celcius. Temperature sensor and temperature display builtin.

Specifications enbiect to chenges without noticalion

Telephone: (1) 9058525875
Facsimile: (1) 9058529688
APEX PARAMETRICS LIMITED
P. O. Box 818, Uxbridge, Ontario, Canada L9P 1N2
Airport: Toronto International

REFERENCE゙

GUPTA，VK， 1991 SHADEED IMAgE OF TOTAL MAGNATIC FILLO OF ONTARIO KAST－CENTRAL SHLEFT．ONTARIO GEOLOGICAL S URVE゙Y，MAP 2586 SCALEII：1，0000000

Q．G．S 1984 AIRBORNE ELLECTROMAGNETIC AND TOTAL MASNE゙TIC INTUNSITY MAGNETIC SURVLY MATHESSON
－BLACK RIVER WALKER TOWNSHIP DISTRICT OF COCHRANE：BY Q UESTOR SURVE゙YS LTD FON THE ONTARIO GEOLOGICAL SURVUY MAP80GT3 QuOpHySICALIGEOCHEMICALSERIE゙S SEALE゙：I：200a SURVEY ANO COMPILATION MARCH TO JULY 1983
\qquad
\qquad
\qquad ．．．．．．．－．．．－ \qquad
\qquad
\qquad
\qquad
\qquad

LOGISTICS AND INTERPRETATION REPORT

ON A HIE SURVEY

CONDUCTED BY MR. MERLE COSBY

ON THE

MATER TWP. PROPERTY

RECEIVE T:

Submitted by:
 2.3° Be 6 (fry mayan Exploration Ltd.

INIPRODUCTION

The following is a brief logistics and interpretation report for the work conducted on the Walker Township property, as requested by M. Cosby. It will deal with the HLBM survey carried out by Mr. Cosby, and will be included within the scope of a complete assessment report to be submitted by him at a later date.

WORK PROGRAM

The work program carried out on the Walker Township Property by Mr. Cosby took the form of a HLEM survey. A brief description of the instrument and the parameters used can be found below.

HORIZONTAL LOOP EM SURVEY

The Horizontal Loop EM survey was carried out with an Apex Max-Min II instrument. These surveys are commonly called nMaxMin" surveys in recent times.

The Max-Min II instrument can operate at five frequencies (3555HZ, $1777 \mathrm{HZ}, 888 \mathrm{HZ}, 444 \mathrm{HZ}, 222 \mathrm{HZ}$)., and is capable of coil separations from 25 meters to 200 meters. Although it can be used in the vertical loop mode as well as minimum coupled, it is most often used in the Maximum Coupled, Co-Planer mode which is in effect a Horizontal Loop Electromagnetic Survey.

The instrument records the "In-Phase" and "Out-of-Phase" components of the anomalous resultant field from a conductor as a percentage of the primary field strength. Both components are used in the interpretation of the results. Generally, the larger the ratio of peak negative responses between In-Phase and Out-ofPhase, the higher the conductivity of the anomaly. A ratio of 1:1 is considered a mediun conductor.

The purpose of reading more than one frequency is to obtain more information about the conductor itself as well as the conductivity of the overburden etc. The higher frequencies will respond to weaker conductive features such as faults, conductive overburden etc. As a result the signal from these frequencies can attenuate very quickly, possibly not penetrating to the bedrock at all. The lower frequencies having a longer wavelength tend to penetrate deeper and generally only respond to anomalies with a higher order of conductance, Thus as with most geophysical techniques it is a trade off as to depth of penetration vs. conductance threshold detectable. The use of multi frequency surveys helps to alleviate this problem at a minimal extra cost.

The Max-Min survey was carried out using an Apex Max-Min II instrument reading $3555 \mathrm{~Hz}, 888 \mathrm{~Hz}$, and 222 Hz with a constant coil spacing of 150 meters. The Maximum Coupled mode was employed with the coils co-planer. A reading interval of 25 meters was used. An inclinometer was used to determine differences in elevation and recorded in a data logger as well the data. The in-phase readings were corrected for topographic effects using the data logger.

Rayan Exploration Ltd. was provided with the data on diskette and processed and plotted from same.

HLHE SURVEY RESULTS

The HLEM Survey results appear to be relatively noisy, especially on the higher frequencies. This is probably due to conductive clay known to underlay much of the grid and or topographic effects influencing the in-phase component.

Many of the readings appear to be abnormally high and do not fit in with the rest of the survey. There may have been some problem with the data logger or the way in which the data was recorded and corrected.

While there are several infections in the data, there does appear to be a legitimate conductive response on Low/400s and L400w/575s. They are labelled 'A' and 'B' but may be the same conductor.

If after the results of this survey are correlated with all other information available on the property, the client feels that these two conductive responses warrant further work, they could be drill tested and or surveyed with a Time Domain EM system which should provide better resolution in the above mentioned conductive clay overburden.

CERTIFICATION

I, Raymond Joseph Meikle of Timmins, Ontario hereby certify that:

1. I hold a three year Technologist Diploma from the Haileybury School of Mines, Haileybury, Ontario, obtained in May 1975.
2. I have been practising my profession since 1973 in Ontario, Quebec, Nova Scotia, New Brunswick, Newfoundland, NWT, Manitoba, Germany and Chile.
3. I have been employed directly with Peck Corporation, Metallgessellschaft Canada Ltd. Sabina Industries, .S. Middleton Exploration Services Ltd., self employed 1979-1985 (Ra yam Exploration Ltd.) and currently with Ryan Exploration Ltd.
4. I have based conclusions and recommendations contained in this report on knowledge of the area, my previous experience and on the results of the field work conducted on the property by Mr. Cosby, during 1995.
5. I hold no interest, directly or indirectly in this property, nor do I expect to receive any interest or considerations from the property other than professional fees for services rendered.

Dated this 19th day of Oct., 1995 at Timmins, Ontario.

R.J. Meikle

Ministry of Northern Development and Mines

Report of Work Conducted After Recording Claim

Mining Act
 this collection should be directed to the Provincial Manager, Mining Lends, Ministry of Northern Development and Mines, Fourth Floor, 150 Ceder Street. Sudbury. Ontario, PSE ARS, telephone (705) 670-72e4.

Instructions: - Please type or print and submit in duplicate.

- Refer to the Mining Act and Regulations for requi Recorder.
- A separate copy of this form must be completed
- Technical reports and maps must accompany thin
- A sketch, showing the claims the work is assigns

Work Performed (Check One Work Group Only)

Total Assessment Work Claimed on the Attached Statement of Costs
\$ \qquad 4 48tig mC

Mote: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

(attach a schedrite II necessary)
Certification of Bonefliciel Interest - See Note No. 1 on reverse side

Certincation of Wort Report

For Once Use Only

x
8

Credins you are ctaiming in this report may be cut back In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to priorize the defetion of credits. Pleese merk (\sim) one of the followingr

1. D Crecies are to be cut beck starting with the claim listed last, working beckwerce.

2 Crecites are to be cut beck equally over all claims contained in tits report of work.
3. Crecils are to be cut beck as priorized on the attacted appendix.

In the event that you have not specified your choice of priorty, option one will be implemented.
Note 1: Examplos of benclicial intereet are unreconded tranefors, oppion agreemente, memorandum of egreaniente, etc., whith reepect to the mining clalme.

Note 2: If work has been performed on petemted or leased land, plemee complete the following:
I certity that the recorded holder had a beneficial intereet in the petented or loesed land at the time the work was pertormed.

Minietry of
Northem Devalopaneot
and Mines
Minimatre du
Dfveloppennent du Nord
A dee minge

Statement of Costs

 for Assessment Credit Etat des coots aux finsdu crédit d'evaluation

Mining Act/ol sur les mines

Les renteignemente pereonnde contents dans it porsente formuie sont
 des concessione minitres. Adreseer boves quemtion sur it colbece de ces
 Doveloppement du Nord to deo Nimeo, 15e, rue Cader, to unop, Suctury (Ontaio) PSE EA5, tuphone (7 Na) $670-7284$.

Porsonal information collected on this form is obtained under the authority of the rarlyy Act. This information will be used to maintain a record and ongoing status of the mining ctaim(s). Questions about this collection ahould be directed to the Provincied Manager, Minings Lande, Miniefry of Northern Development and Wines, th Ftoor, 159 Ceder Street, Sudbury, Ontario PSE 6A5, telophone (705) 670-726A.

2. Inclirect Coeta/Coots indirects

Type	Doecription	Amount Montient	Toters Totad globel
Tranaportetion Tramaport	Typo		
	\cdots		
	ECEM		
Sub Totel of Indireet Couts Total partiol des coits indiracte			
Amount Alowrete (inot gremeor than 20% of Direct Coplay			
Totel Value of Acopemment Crocim (Toter of Dioct ond Ablometio indivet comat frubretem 			sen

1. Drect Coota/Conts directs

Ministry of
Northern Development and Mines

Ministère du
Développement du Norad et des Mines

April 03, 1996

Geoscience Approvals Office 933 Ramsey Lake Road
6th Floor
Sudbury, Ontario P3E 6B5

Telephone: (705) 670-5853
Fax: (705) 670-5863
Our File: 2.16272
Transaction F: W9580.00747

Mining Recorder Ministry of Northern Development \& Mines 4 Government Road East Kirkland Lake, Ontario P2N 1A2

Dear sir:
subject: APPROVAL OF ABSEBSMEITY WORX CREDITS OH MTMIMG CLAIMS L. 1200338 ET AL IN WALKER TOWNSHIP

The 45 days specified in the Notice of Credit Reduction have passed.
Assessment work credits have been approved as outlined on the attached credit form. The credits have been approved under section 14, Geophysics (EM), Mining Act Regulations.

The approval date is April 2, 1996.
If you have any questions regarding this correspondence, please contact Lucille Jerome at (705) 670-5858.

Yours Sincerely, ORIGINAL SIGNED BY:

Ron C. Gashinski
Senior Manager, Mining Lands Section Mining and Land Management Branch Mines and Minerals Division

LJ/jl
Enclosure:
cc: Resident Geologist Kirkland Lake, Ontario

Assessment Files Library Sudbury, Ontario

AB8EB8MEHTY WORK PERFORABD OA CHAIMS

```
APRII 03, 1996
PITE IULBER: 2.16272
TRNMBACFIOS LUMBERE W9580.00747
```

```
CHNIM
```


VALOE OF WORE DORE OH THIS CHRIA

L. 1200338	694
1200339	694
1140850	694
1140851	694
1140854	694
1140855	693
$-\infty-\infty-\infty$	4163

LEGEND	
highway and routf no OTHER RTADS TRAILS SURVEYED LINES OWNSHIPS BASF LINES ETC LOTS MINING CLAIMS PARCEL.S UNSUHVEYED LINFS UT LINES PARCEL BOUNDARY MINING CLAIMS ETC RAII WAY AND RIGHT OF WAY UTILITY LINES NON PERENNIAL STREAM FLOODING OR FI OODING RIGHTS SUBDIVISION OR COMPOSITE PLAN RESERVATIONS ORIGINAL SHORELINF MARSH OK MUSKEG MINES TRAVERSE MONUMENT	
DISPOSITION OF CROWN LANDS	
TYPE OF DOCUMENT Patent surface \& mining rights SURFACE RIGHIS UNir mining Rights only Lease surface \& mining rights subface rikhts onlr mining hights onir licence of occupation order in council reservation cancelled sandagravel	SYMBOL
(8)	
	35

