
 1 142.41980
 mining lands section

> REPORT
> $O N$

GRID C
MAGNETOMETER AND ELECTROMAGNETIC SURVEYS
WALKER TOWNSHIP
DISTRICT OF COCHRANE
LARDER LAKE MINING DIVISION
ONTARIO

November 21, 1980

Mr. J. A. Harquail
President
Surveymin Limited
330 Bay Street
Suite 1107
Toronto, Ontario
M5H 2S8

Dear Mr. Harquail:
Submitted herewith is our report entitled:

GRID C
MAGNETOMETER AND ELECTROMAGNETIC SURVEYS
WALKER TOWNSHIP
DISTRICT OF COCHRANE
LARDER LAKE MINING DIVISION
ONTARIO

The ground geophysical surveys extended and further defined the regional geology as mapped by the Ontario Division of Mines.

Two magnetically inferred fault zones were identified during the course of the survey, both of which are believed to be related to the Pipestone Fault system and reflect two periods of structural deformation. Conductivity along the fault zone is unremarkable. Conductor $\mathrm{C}-2$, located in the south-central portion of the survey area exhibits a very weak conductivity response and is interpreted to be either a zone of finely disseminated sulfide mineralization or a region of highly conductive overburden.

In light of the structural significance of the Pipestone Fault system as a known channel way for gold bearing mineralizing solutions, it is recommended that additional ground geophysical investigations be carried out in the vicinity of the Pipestone Fault in order to further define the magnetically inferred location
of the Pipestone Fault. The ground geophysics would consist of several selected I.P. profiles carried out across the fault zone in an attempt to define possible disseminated sulfide zones ($<5 \%$ sulfides). The ground geophysics will be followed up by detailed section diamond drilling along the fault trace.

GENERAL

The following geophysical report details the results of the ground magnetometer and electromagnetic surveys undertaken by W. G. Wahl Limited on behalf of Surveymin Limited. The property lies in the southwest corner of Walker Township, District of Cochrane and is accessible by truck approximately 1 mile east from the village of Monteith on Highway 626, then west onto a Lot line which swings south along the eastern boundary of the property.

The West Railway property consists of the following four unpatented mining claims, all of which are duly recorded with Mr. G. J. Koleszar, Mining Recorder, Larder Lake Mining Division.

LINE CUTTING

The linecutting was conducted under the direct supervision of Mr. Gordon McIntosh of Timmins, Ontario during the period from October 18, 1979 to March 27, 1980. The survey grid consisted of 0.7 kilometres of baseline trending $E-W$ and 6.24 kilometres of grid line trending $N-S$, established at one hundred metre intervals along the entire baseline. Thirty

(2 inches to 1 mile)
metre stations were established on all lines.
The thirty metre station interval was apparently established by the line cutting crews using an imperial chain on the grid lines with the assumption that 100 feet was equal to 30 metres.

MAGNETOMETER SURVEY
The magnetometer survey was carried out by R. Harwood of W. G. Wahl Limited during the period from August 14 to August 16, 1980, employing a Scintrex MP-2 total field proton precession magnetometer in conjunction with a Scintrex MBS-2 total field magnetic base station attached to a Simpson M2750 strip chart recorder.

The magnetic data was observed at a 15 metre station interval on all lines of the established grid. The data was corrected for diurnal fluctuations, reduced to a local datum and presented as a contoured interpretation of these data.

MAXMIN II HORIZONTAL LOOP ELECTROMAGNETIC SURVEY

The horizontal loop electromagnetic survey was carried out by J. Palladini of W. G. Wahl Limited during the period drom August 14 to August 16, 1980, employing an Apex Parametrics MaxMin II horizontal loop survey unit in the maximum coupled mode. The inphase and quadrature response parameters were recorded at 444 Hz and 1777 Hz utilizing a 600 foot coil separation and a 30 metre station interval. These
data are presented in profile form.

DISCUSSION

The ground magnetometer survey extended and further defined the regional geology as mapped by the Ontario Division of Mines and presented on Map No. 2205.

Two magnetically inferred fault zones were identified during the course of the survey. These appear to be related to two distinct periods of structural deformation. In the south-central portion of the survey area, a fault zone, characterized by a trough of low magnetic relief of up to 250 nT within a region of high magnetic relief, was mapped on line $5 W$ at station $3+90$, trending east-northeasterly to a point 270 metres south of the baseline on line $1 W$. At this point the fault appears to be terminated by a north-northwesterly trending fault zone, characterized by moderately low, below background magnetic relief and the disruption of adjacent established magnetic trends.

A lenticular magnetic expression of up to 500 nT , was mapped on line 2 W at station 120 S trending north-northwesterly across the property to a point 390 metres north of the baseline on line $3 W$.

The electromagnetic survey identified two anomalous conductive zones lying within the survey area, both of which will be discussed in the following section of the report. The somewhat erratic response parametres recorded on line 0 are
attributable to cultural interference and related to the township road which lies parallel to and coincident with line 0.

Conductor $\mathrm{C}-1$:

Conductor $\mathrm{C}-1$ transects the northwest corner of the area trending $N E$ from $L 7 W$ to $L 5 W$ and is classified as a cultural anomaly, ie. caused by man-made bodies. Conductor $\mathrm{C}-1$ is the mappable expression of a power transmission line.

Conductor $\mathrm{C}-2$:

Conductor $\mathrm{C}-2$ is located in the east-central portion of the survey area and was mapped on line $1 W$ at station 455 trending southwesterly across the survey area to a point 100 metres south of the baseline on line 2 W . This anomalous conductive zone exhibits a very poor conductivity response and has been interpreted to be either a zone of finely disseminated sulfide mineralization or a region of highly conductive overburden.

CONCLUSIONS

The ENE trending fault zone is believed to be a portion of the Pipestone Fault zone which has been offset by the NNW fault zone. Conductivity along the fault appears unremarkable as far as the electromagnetic data can be extrapolated; however, since the data does not extend far enough to the south, it is inconclusive.

In light of the structural significance of the Pipestone Fault system as a known channel way for gold bearing mineralizing solutions, it is recommended that additional ground geophysical investigations be carried out in the vicinity of the Pipestone Fault in order to further define the magnetically inferred location of the Pipestone Fault. The ground geophysics would consist of several selected I.P. profiles carried out across the fault zone in an attempt to define possible disseminated sulfide zones ($<5 \%$ sulfides). The ground geophysics will be followed up by detailed section diamond drilling along the fault trace.

All of which is respectfully submitted.

Sincerely yours, W. G. WAHL LIMITED

D. G. Wahl, P.Eng. Consulting Engineer

DGW/pl

Ontario

Type of Survey (s) Geophysical
Township or Area WALEER Townsul
Claim Holders) Surveyund LImited 1107-330 BOy St, Toronto
Survey Company \qquad Author of Report \qquad DiG. WAHK, PEGs Address of Author \qquad 1000-350 Boy St., Tocedro

Total Miles of Line Cut \qquad 94 km

SPECIAL PROVISIONS
 CREDITS REQUESTED

ENTER 40 days (includes
line cutting) for first

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) Magnetometer \qquad Electromagnetic \qquad Radiometric

survey.
ENTER 20 days for each additional survey using same grid.

Geochemical

Res. Geol.
Qualifications

Previous Surveys

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey
Number of Stations MAG -434 MAxMin-208 Number of Readings MAG-434 Martin 1141/2-868 Station M1G - $1717112-868$ Profile scale $\quad / \mathrm{Cm}=10 \%$

Contour interval \qquad 100 a 7

Instrument
SCWTEEX MPG
Accuracy - Scale constant $\pm 1 n \backslash$
Diurnal correction method Relative time interpolation based on strip chart recording
Base Station check-in interval (hours) SCINTREX MBS - 2
Base Station location and value Baseline - grid line intercepts were Standardized to base station recording

Instrument AREX PARA METRICS MAXMIN II
Coil configuration Co planar, maximum coupled mode
Coil separation \qquad
Accuracy \qquad $\pm 1 \%$

Method:
Fixed transmitter
Shoot back
区 In line
Parallel line
Frequency 414 Hz and $\rightarrow \gg$ (specify V.L.F. station)
Parameters measured_ In phase and Dut-of pliase

Instrument \qquad
Scale constant
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy \qquad

Instrument \qquad
Method \square Time Domain
Frequency Domain
Parameters - On time Frequency \qquad

- Off time

Range \qquad

- Delay time \qquad
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing
Type of electrode

