010

GEOPHYSICAL REPORT (Assessment)

Ground HLEM and Ground Magnetometer Surveys Mining Claim P 1201371

Property LD 13
Township of Little
District of Cochrane
Porcupine Mining Division

2.16350

Sue Gamble Dave Gamble
70 First Street
Kirkland Lake, Ontario P2N 1N3

October, 1995

TABLE OF CONTENTS

Page Number

INTRODUCTION 3
PROPERTY OWNERSHIP 3
PROPERTY LOCATION 3
ACCESS 3
GEOLOGY 4
TARGETS FOR EXPLORATION 5
PROPERTY HISTORY AND CURRENT ACTIVITY 5
LINECUTTING 5
HLEM GEOPHYSICAL SURVEY 6
DISCUSSION OF HLEM SURVEY RESULTS 6
MAG SURVEY 7
DISCUSSION OF MAG SURVEY RESULTS 7
CONCLUSIONS AND RECOMMENDATIONS 7
APPENDICESAPPENDIX A. GEOMETRICS PORTABLE PROTON MAGNETOMETERAPPENDIX B. APEX MAX-MIN II HLEM UNIT
MAPS
KEY PLAN: LOCATION AND ACCESS RESULTS OF MAG AND HLEM SURVEYS - BACK POCKET

INTRODUCTION:

During June, July, and August, 1995, an exploration program consisting of line cutting, horizontal loop EM, and Mag surveys was carried out over the LD 13 property in Little Township. The purpose of the geophysical surveys was to develop new geophysical targets, and to locate airborne geophysical targets on the ground. This report contains the results of the HLEM and Mag surveys carried out over the LD 13 property. One anomalous HLEM conductor of moderate strength was recovered in the survey.

PROPERTY OWNERSHIP:

The mining claim P 1201371 which make up the LD 13 property, are jointly held by Sue Gamble (50\%) and Dave Gamble (50\%) of 70 First Street, Kirkland Lake, Ontario. P2N 1N3.

PROPERTY LOCATION:

Porcupine Mining Division
Little Township
Property Name: LD 13
Claim Number: P 1201371
(12 units)
Little Township
S1/2 of Lot 5, Con II
S1/2 of Lot 4, Con II
N1/2 of N1/2 of Lot 5, Con I
N1/2 of N1/2 of Lot 4, Con I
Claim Map Sheet: G-3241 Little Township
NTS Map Sheet 42A N/E
Latitude and Longitude: (northeast corner of property) UTM Coordinates: 501800 m E
5397600 m N

ACCESS:

The LD 13 claim group is located approximately 25 miles northeast of downtown Timmins, Ontario in Little Township. The LD 13 property is located in the

southeast quadrant of Little Township. Road access is gained by proceeding east from Timmins, Ontario along Hwy. 101 to Hwy. 610 east of Falconbridge's Hoyle metallurgical site. Proceed northeast on Hwy. 610 to the Ice Chisel Lake road. Proceed north on the Ice Chisel Lake road for approximately 12 miles past Ice Chisel Lake turnoff to where a well traveled forest management (FM) road leads east towards the northwest side of Frederick House Lake. Follow this well traveled FM road for approximately 3 miles through a well marked clear cut/tree plantation test area. Stay on the road as it proceeds north from Evelyn Township into Little Township. Follow the forest access road through the clear cut area for approximately 2.5 miles northwesterly to where another bush sandy road leads westerly and then northerly through jackpine and spruce forested area. Stay on the less well traveled road for a 1.25 mile to where a road leading east through heavy brush provides access the property.

GEOLOGY:

The regional geological setting of the LD 13 property is within the Western portion of the Archean Abitibi Greenstone Belt. A major calc-alkaline belt of felsic volcanics lying to the north of the Porcupine-Destor fault are known as the Kidd-Munro and Duff-Coulson-Rand rhyolite assemblages. These felsic volcanic assemblages have been complexly folded into regional syn and anticlinal structures. In addition several regional north-northwest trending faults transect the area. Mineralization within or proximal to the Kidd Creek rhyolite assemblage, and along regional north - northwest rending fault structures, is well known at the Kidd Creek Mine some 15 miles to the west. Flanking these felsic assemblages to the north and south are mafic and ultramafic rocks. Sediments are also found to the south. Deep overburden has presented a challenge to exploration in the region as a whole.
O.G.S. maps 2484 and 2205 are the best available compilations of regional geology

Bedrock exposures in the immediate area of the property are unknown. Overburden cover appears to be substantial. Geological interpretation relies on drill hole and geophysical information. This property has no known recorded drill hole information. Based on this sparse knowledge the property is likely to be underlain by mafic and/or felsic volcanics, and sediments. The LD 13 property is situate near or straddling the presumed contact between the felsic volcanic assemblages and the mafic to ultramafic rocks to the south. A narrow sedimentary belt is assumed to trend southeasterly along the southern boundary of the property.

TARGETS FOR EXPLORATION:

The commodities and type of deposits sought on the LD 13 property are volcanogenic polymetallic massive sulphides ($\mathrm{Cu}-\mathrm{Zn}-\mathrm{Au}-\mathrm{Ag}$) and; structurally related gold mineralization.

The lack of bedrock exposure due to the heavy overburden in this entire belt, has provided the potential for deposit hideability. It therefore requires the use of deep penetrating geophysical techniques to make deposit discoveries.

PROPERTY HISTORY AND CURRENT EXPLORATION ACTIVITY:
A search of the Porcupine Mining Division assessment files shows work on the LD 13 property has been limited. The Little Township preliminary Map P 2308 confirms that prior to the compilation date of the Map in 1979, although HLEM conductors were located near and/or on the property, no follow up drilling was reported. Work was carried out on or near the property by the following:

$$
\begin{array}{ll}
\text { McKinnon Prospecting File T- } 3205 \text { (1988) } & \text { Amag, AVLF } \\
\text { B P Resources T- } 2925 \text { (1980's) } & \text { Mag, HLEM }
\end{array}
$$

Reference to the Timmins Data Series township maps assessment compilations and the Porcupine Mining Division assessment files can be made for greater detail on the above.

The current property holders acquired the LD 13 ground in November 1993. The property hosts AEM conductors which are the subject of the current exploration program.

LINECUTTING:

Linecutting on the LD 13 property consisted of one grid. On the grid 1.4 km of baseline was cut, and 7.7 km of grid lines were established. A total of 9.1 km of linecutting was carried out. The lines were cut, chained, and picketed with stations established every 25 meters. Spacing and orientation of the grid lines were determined to fit the interpreted geological/ geophysical setting in order to recover the known airborne targets. The work was carried out under contract to Native Exploration Services of Ouje Bougamau, P. Q.

See the plans accompanying this report for grid layout.

HLEM GEOPHYSICAL SURVEY:

An Apex Max-Min II electromagnetic horizontal loop unit, with a coil separation of 200 meters was used to survey the grid. (See appendix for instrument specifications.) Survey data was recorded as the in-phase and out-of-phase (quadrature) percentage of primary field and plotted as profiles at a scale of 1 $\mathrm{cm}=10 \%$. The HLEM readings were taken at 25 meter station intervals on lines spaced 200 meters apart. A total of 308 stations were utilized in the HLEM survey. Three frequencies were read during the survey: $888 \mathrm{~Hz}, 1777 \mathrm{~Hz}$, and 3555 Hz . A separate plan was produced for each frequency using a scale of $1: 2500$ (3 HLEM plans per grid). A total of 7.7 km of HLEM surveying was completed.

The field surveys were carried out under contract to Native Exploration Services. The receiver operator was Mr. Robbie McCormick of 503 First Street, Chibougamau,P. Q. G8P 1K8, and the transmitter operator was Mr. Claude Grenier of 346, 2nd Street, Chibougamau, P. Q. G8P 1M3.

The results of linecutting and geophysical surveys are plotted on the accompanying plans at a scale of 1:2500.

DISCUSSION OF HLEM SURVEY RESULTS:

The HLEM survey of the property resulted in the recovery of one moderate strength conductor.

A well defined conductor axis occurs south of the base line and extends across the entire grid from L $2+00 \mathrm{mE} / 3+75 \mathrm{~m}$ S to $\mathrm{L} 14+00 \mathrm{mE} / 1+25 \mathrm{~m} \mathrm{~S}$. This conductor is well defined on all three frequencies $888 \mathrm{~Hz}, 1777 \mathrm{~Hz}$, and on 3555 Hz . The conductor axis trends on an azimuth of 115 degrees and from the in-phase profiles appears to be steeply north dipping to near vertical in orientation. The conductor is characterized by high negative out-of phase readings on the 3555 Hz survey resulting in poor in-phase to out-of-phase ratios, suggesting in part, that conductive overburden overlies a possible bedrock conductor at depth. The in-phase to out-of-phase ratios on the 1777 Hz and 888 Hz frequencies show moderate to good results directly over the conductor axis suggesting a bedrock source. This HLEM conductor is located in an area along the south flank of a weak magnetic trend when correlated to the accompanying Mag survey

MAG SURVEY:

A Geometrics G-816 total field proton precession magnetometer was used to survey each grid line. (See appendix for specifications.) Check in stations were established along the baseline, and the grid line data was reduced when necessary for diurnal variations. Magnetometer readings were taken at 12.5 meter intervals on the grid lines which were spaced 200 meters apart. A total of 672 survey readings were recorded over 9.1 km of completed mag survey.

The data was plotted at 1:2500 and contoured to show anomalous features at a contour interval of $25 n T$.

The mag field surveys were carried out under contract to Native Exploration Services. The mag operator was Mr. Robbie McCormick, 503 First Street, Chibougamau, P. Q. G8P 1K8, with assistant, Mr. Claude Grenier, 346 2nd Street, Chibougamau, P. Q. G8P 1M3.

DISCUSSION OF MAG SURVEY RESULTS:

The magnetometer survey of this property was carried out during the summer of 1995. The mag survey resulted in magnetic signature variations from a low of 58144 nT to a high of 58237 nT . Over all, the property shows relatively flat variation in the magnetic field. The 58175 nT contour encloses an area near the base line that indicates a weak positive magnetic high. The HLEM conductor axis parallels the south flank of this weak magnetic trend.

CONCLUSIONS AND RECOMMENDATIONS:

A moderate strength 1.2 km long HLEM conductor was recovered on LD 13 and found to flank the south side of a weak positive magnetic feature. It is recommended that several grid lines over the conductor be check surveyed by Pulse EM, or Time Domaine EM or I.P. to better define this possible HLEM bedrock source.

Drill testing of this conductor is recommended.

CERTIFICATE OF THE AUTHOR

I, Dave Gamble, of 70 First Street, Kirkland Lake, Ontario, P2N 1N3, hereby certify that:

1. I am a geologist residing at the above address.
2. I am a graduate of the University of Ottawa with an Honours B.SC. degree in geology (1973), and have completed two years leading towards an M.Sc. degree (geology) at Laurentian University (19741976).
3. I have practiced my profession for more than 20 years.
4. I have, in conjunction with Sue Gamble, planned, and directed, the geophysical surveys represented in this report; and have, compiled and interpreted the results of this survey.
5. I hold a 50% interest in this property.

Respectfully submitted,

Dave Gamble, B. Sc. (Hon. Geol.)
October 20, 1995

CERTIFICATE OF THE AUTHOR

I, Sue Gamble, of 70 First Street, Kirkland Lake, Ontario, P2N 1N3, certify that:

1. I am a prospector residing at the above address and have held an Ontario Prospector's License since 1979.
2. I am a graduate of the University of Ottawa and Simon Fraser University, and have studied earth science for two years at the University of Ottawa, and for one year at Laurentian University.
3. I have more than 15 years relevant practical experience relating to prospecting and mineral exploration.
4. I have, in conjunction with Dave Gamble, planned, and directed the geophysical surveys represented in this report; and have compiled and interpreted the results of this survey.
5. I hold a 50% interest in this property.

Respectfully Submitted,

Sue Gamble, B. A., October 20, 1995

APPENDIX A - Geometrics Portable Proton Magnetometer

```
A=ミこ.!:IK A. ( Page i of 3)
```

Operating Manual
Model G- 816
Portable Proton Magnetometer

1.0 GENERAL INFORMATION

1.1 INTRODUCTION

The Model G-816 Portable Proton Magnetometer is a complete system designed for all man-carry field applications requiring simple operation and stable measurements of the total intensity of the earth's magnetic field. The G-816 is accurate and stable to within ± 1 gamma over a range from 20,000 to 90,000 gammas. Since the instrument measures total field intensity, the accuracy of each measurement is independent of sensor leveling. Furthermore, the measurement is based upon on atomic constant * and is independent of temperature, humidity, and sensor orientation. The inherent simplicity of the G-816 proton magnetometer allous rapid, accurate measurements to be obtained from a rugged, compact field inst rument. This is a precision instrument and reasonable attention must be given to handling, battery condition, and magnetic environment.

1.2 MAGNETIC ENVIRONMENT

It is important that the earth's magnetic fleld is not obscured by allowing unuanted magnetic objects to come close to the sensor, Such objects include rings, keys, watches, belt buckles, pocket knives, metal pencils. zippers, some hats, etc. When the sensor is used on the staff, 1 gamma surveys are easily performed provided the sensor is kept at a distance of 3 feet from the operator. When the sensor is used in the bachpack, certain articles of clothing and some types of batteries within the console will cause a 5 to 10 gamma shift in readings. The G-816, however, still provides 1 gamma sensitivity and repeatability despite the presence of such a base line shift. The backpack feature is recommended for use in difficult terrain where "hands free" operation is required.

Prior to survey use, objects that are suspected to be magnetic may be chected in the tollouing manner.

1. Attach sensor to staff and connect coiled signal cable to innsole. sensor should not be moved or tumed during the test, ate the suspected article should be far away initially.
*Proton Gyromagnetic Ratio: $(2.67513 \pm 0.00002) \times 10^{4}$ Radians/Gauss second.

1
Operating Manual
Model G-816
Portable Proton Magnetometer
2. Cycle the magnetometer a few times by depressing the READ button--releasing--and waiting for a reading each cycle.
3. Observe measurement readings. Each reading should repeat to ± 1 gamma. (A slow shift may occur over several minutes due to ${ }^{3}$ diurnal change in the earth's field.)
4. Place the suspected article at the distance from the sensor expected during actual survey operation.
5. Cycle magnetometer several times and note the readings.
6. Remove the article and repeat steps 2 and 3 to check for diurnal shifts in the earth's field. If a diurnal shift is present. repeat entire test.
7. If the readings obtained in step 5 differ by more than $=1$ gamma (=one count) from those obrained in steps 3 and 6 . then the article is magnetic
If The article is highly magnetic. or if the sensor is niside or near a blilddig or vehicle. the proton preCESSION SIGNAL WILL BE LOST. GIVENG COMPLETELY ERRA TIC READLVGS AND LOSS OF $=1$ COLNT REPEATABILITY.

The magnetometer should not be operated in areas that are known sources of radio frequency energy. power line noise (transformers). in buildings or near highly magnetic objects. The sensor should always be placed on the staff above the ground, or in the "bachpack". The sensor will NOT ope rate properly when placed directly on the ground.

1.3 SPECIFICATIONS

Sensitivity:
Range:
Tuning:

Gradient Tolerance:
Sampling Rate:
$=1$ gamma throughout range
20.000: : 30.060 gammas (worldwide)

Multi-position switch with signal amplitude indicator light on display

Exceeds 800 gammas/ft
Manual pushbutton, one reading each 5 seconds

Oulput :	5 digit numeric display with readout directly in gammas
Pouer Requirements:	Twelve self-contained 1.5 volt " D " cell universally available flashlight-type batteries. Charge state or replacement signified by flashing indicator light on display.
Temperature Range:	Console and sensor: -40° to $+85^{\circ} \mathrm{C}$
	Battery pack: ρ^{ρ} to $+50^{\circ} \mathrm{C}$ (limited use to $-15^{\circ} \mathrm{C}$; lower temperature battery belt operation optional)
Accuracy (Total Field) :	± 1 gamma through 0° to $+50^{\circ} \mathrm{C}$ temperature range
Sensor:	High signal, noise cancelling, interchangeably mounted on separate staff or attached to back pack
Size:	Console: $3.5 \times 7 \times 11$ inches ($9 \times 15 \times 2 \mathrm{~cm}$) Sensor: 3.5×5 inches ($9 \times 13 \mathrm{~cm}$) Staff: 1 inch diameter $\times 5 \mathrm{ft}$. length $(3 \mathrm{~cm} \times 2.5 \mathrm{~m})$
lleight	$\begin{array}{lll} & \text { Lbs. } & \text { Liss. } \\ \text { Console (} w \text { /batieries }: ~ & 5.5 & 2.5\end{array}$
	Sensor and signal cable: 4 1.8
	Aluminum staff: $\underline{\underline{2}}$
	11.55

CONTROLS AND DRDICATORS

APEX MAXMIN II

ciches osom, $50 \mathrm{~m}, 12$ sm, 100 m, som, siom,
© Five frequencies: 2e2, 444, 898, 1777 and 3555 Hz .

- Maximum coupled (horizontal-loop) operation with reference cable.
■ Minimum coupled operation with reference cable.
- Vertical-loop operation withgut reference cable. QUADRLSO $\pm 4 \pi$
 (with cable) or 100,200,300,400,600 and 800 ft.
- Reliable data from depths of up to 180 m (GOOft.

E Built-in voice communication circuitry with cable.
(Tilt meters to control coil orientation.

SPECIFICATIONS：

Frequernere：

Modes of Op：rition MAX：TransmitEer sor Dare and re－ cever coil slarie romizontal （Max－coupled Horizonsal－loop model．Used with ：efer cable ．

MIN：Transmitter colibiane homzon－ tal and receveri com piane ver－ tral（Mri－isi．ped mode） Used with refersmce cable．

V．L．：Transmitieer colipane verti－ cal and recelver colslane hom－ zontal（Ve－tica！－lcos mode）． Used wishout reference cable．：n saraliei lines．

Coil Separations
25．50，100，150，200 \＆250m（MMII） or 100．200． 300.400 .600 and BOO ft．（MMIF）
Coil separations in Vi mode not re－ stricted to fixed values

Parameters Read：－In－Phase and Quadrature compo－ nents of the secondary field in MAX and MIN modes．
－Tilt－angle of the total field in V．L． mode

Deadouts：

Scale Ranges
NOW ALSC ：： QUADRATURE full scale．

Teadability．．
－Automatic．direct readout on 90 mm （ 3.5% ）edgewise meters in MAX and MiN modes．No null－ ing or compensation necessary．
Tilt angle and nuil in 90 mm edge－ wise meters in V．L．mode

In－Phase：$=20 \%$ ．$=100 \%$ by push－ button switch
Wuadrature：$\pm 20 \% .=100 \%$ by push buteon switch
Tilt
Null（V．L．）：Sensitivity adjustable by separation switch．
n－Phase and Quadrature：h． 25% to 0.5% ：Tilt： 1%

Reprataッ・・ング
0.25% 上 $5: 1 \%$ mormally．depending on condivirns．frequencies and coll separation used

Receiver 3 itceries： 9 V irans．radio jype batceries（4） Life：aporox 35 hr s．contimuous du－ ty（aikalire． 0.5 A ）．less in cold weatner

Transmitter Batteries

Reference Cabie：

Vaice Link：

Indicator Lights：
in sighal ing lights to indicate erroneous eadings

Temperature Range： H0 $^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$（ $-40^{\circ} \mathrm{F}$ to＋ $140^{\circ} \mathrm{F}$ ）
Receiver Weight： 6 kg （．13 lbs．J
Transmitter Weight： 13 kg （ 29 伍．）
Shipping Weight：Typically BOkg（135 lbs．）．depend－ ing on quantities of reference cable and batteries included． Shipped in two field／shipping cases．

Specifications subject to cnange without notification

COST STATEMENT SUMMARY

PROPERTY LD 13 MINING CLAIM P 1201371 (12 units):
DIRECT COSTS:
CONTRACT FIELD WORK:
LINECUTTING 9.1 km @ 225.00/km July 195 2047.50
MAG SURVEY 9.1 km @ 85.00/km Aug 18, 19 / 95 773.50
HLEM SURVEYS 7.7 km @ 150.00/km Aug 20, 21 / $95 \frac{1155.00}{3976.00}$
7\% GST 278.32
4254.32
4254.32 4254.32
FIELD SUPERVISION:
DAVE GAMBLE, Geologist - Project Manager On siteSupervision of contract crews for linecutting andgeophysical surveys, grid layout, etc.6.25 days @ 325.00 / day 2031.25
OFFICE WORK:SUE GAMBLE, 6.0 days drafting, 2 days collating reports,prints, wordprocessing, corrections, 8.0 days @200.00/day1600.00DAVE GAMBLE, 2 days, report writing, 1 day, magcontouring and HLEM interpretation 3 days @ 325.00$\frac{975.00}{4606.25}$4606.25
SUPPLIES:
FIELD: - geophysical equipment batteries and minor 89.67
repairs, fire extinguishers prorated from 9 properties,
OFFICE:- mylar, prints, report copies, report covers 99.00188.67188.67
INDIRECT COSTS:
Freight for supplies 23.23
Transportation 1913 km @.31/km 593.03 616.26616.26
TOTAL AMOUNT TO BE APPLIED 9665.50

NATIVES EXPLORATION SERVICES

CLAIMSTAKING - LINE CUTTING
GEOPHYSICAL SURVEYS
Sam. R. Bosum
207 Opemiska St., Ouje-Bougoumou, Québec G0W 3C0 Tél.: (418) 745-3228 - Fax: (418) 745-2510

December 12, 1994

S. GAMBLE	Invoice 95-03
70 First Street	GSTH 124194119
Kirkland Lake (Ontario)	
P2N IN3	
AITENTION S. GAMBLE:	

Project: Little $/$ Duff Geophysical Surveys. Iimíins (Ontario)
Grid \# $12 / 20-18 / 101.11$.

CLAIMSTAKING - LINE CUTTING
GEOPHYBIEAL SUAVEYS
Sem. R. Bosum
207. Opemiska Sireet. Ouje-Bougoumou. Quebec GOW 3C0 Tel. (418) 745-3228 Fax (418) 745-2510

$$
\text { July } 18,1995
$$

```
5. Gamble
70 First Street
Kırklanc Lake (Ontario)
P2N \(1 N 3\)
ATTENTION: S. Gamble
PROEET: Little/Duff Linecutting, Timmins Ontario Grids LD4-LD13-LD17-LD24-LD23
```

Invoice
\#95-25
36.75 Km C 225%

Sãi R. Bosum
Na:lves Exploration Services

Ministry of Norther Dowelopmem and Mines

Report of Work Conducted After Recording Claim

Minding Act

Personal information collected on this form is obtained under the athorly of the Mining Act. This information will be wed for correspondence. Ouectione about
 Sudbury. Ontario. PSE 6A5, telephone (705) 670-7284.
instructions: - Please type or print and submit in duplicate.

- Refer to the Mining Act and Regulations for re Recorder.
- A separate copy of this form must be compleat
- Technical reports and maps must accompany
- A sketch, showing the claims the work is assign

Work Performed (Check One Work Group Only)

Total Assessment Work Claimed on the Attached Statement of Costs

Note: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

(attach a schrodute in necessary)
Certification of Bencilicial Interest - See Note No. 1 on reverse aldo
I cering that at the time the work mes performed, the chime covered in this work report were record in the current holder's name or held under a beneticid inherent by the current recorded holder.

Cortincation of Work Report

For Office Use Only
Greeverue Cr. Recorded

Credits you are claiming in this report may be cut beck. In order to minimize the adverse efloctes of such detetione, please modicete from which claims you wish to priorize the deletion of credits. Please mark (r) one of the following:

1. PCredits are to be cut back starting with the claim listed last, working backwards.
2. \square Credits are to be cut back equally over all claims contained in this report of work.
3.Credits are to be cut back as priorized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial Intereet are unrecorded tranafers, option agreements, memorandum of agreements, etc., with reapect to the mining claims.

Note 2: If work has been performed on patented or leased land, please complete the following:

Minietry of
Northern Dovelopment and Mines

Ministere du
Developpernent du Nord
ot des mines

Statement of Costs for Assessment Credit
 État des coûts aux fins du crédit d'évaluation

Mining Aclloi sur les mines

Tremeection No N^{+}de transaction 19560.00481

Personal information collected on this form is oblained under the authority of the mining Act. This information will be used to maintain a record and ongoing status of the mining ctaim(s). Ouestions about this collection should be directed to the Provincial Manager, Minings Lands, Ministry of Northern Development and Mines, 4th Floor, 159 Cedar Street. Sudbury, Ontario P3E 6A5, telephone (705) 670-7264.

Les renseignements personnels contenus dens la presente formule sont recueillis en vertu de la Lol eur tee minese ed eerviront it tenir 1 jour un reoistre des concessions minidres. Adresser toute quesition sur ta collece de ces renseignerments au chof provincial des serrains miniers, ministere du Developpement du Nord a des Minee, 150, rue Cedar, 4° Cuege. Sudbury (Ontario) P3E 6A5, teibphone (705) 670-7264.

1. Direct Costs/Couts directs

Note: The recorded holder will be required to verity expenditures claimed in this statement of costs within 30 days of a request for verification. If verification is nol made, the Minister may reject for assessment work all or part of the assessment work submitted.

2. Indirect Costs/Coûts indirects

* Note: When claiming Rehabilitation work Indirect costs are not allowable as assessment work.
Pour to remboursement des trevaux de rethabilitation, lese coûts indirects ne sont pas admissibles en tant que travaux d'évaluation.

Type	Description	Amount Montant	Totals Total giobal
Tranaportation Tranaport	Type	$593{ }^{\circ}$	
	TRE/GMT	23.23	
	-OEN	D	$6 / 6.26$
Food and Lodglng Hourfture ot hbbergement			
Mobembetion and Demobmeation Mobritation or dobmobmation			
	Sub Totel of inc Total pertiol dea coct	ect Coets Indirects	26.26
Amoum Alowatie (not greeter then 20\% of Druet Comta) Montant edmiseibio (n 'oxeddent pee 20% des cocts drecte)			
Total Vatie of Assesament Crect (Totel of Drect and Mowitip indirect coestis) Velour rexito du cricim drumemen Tred tre crin encte			

Tred tese cate erxate
of infirecte efinionetios

Note : Le tinulaire enregistré sera tenu de vifilier les dépensees demendees dans le présent diat des courts dans les 30 jours suivant une demande à cet effet. Si la verrification n'est pes eflectube, ie ministre peut rejeter tout ou une partie des travaux d'évaluation presentes.

Filing Discounts

1. Work filed within two years of completion is claimed at 100% of the above Total Value of Assessment Credit.
2. Work filed three, four or five years after completion is claimed at 50\% of the above Total Value of Assessment Credit. See calculations below.

Totai Vatue of Assessment Credit	Totel Assesement Clained
	$\times 0.50=$

Certification Verifying Statement of Costs

I hereby certity.

that the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the accompanying, Repont of Work form.
that as
 I am authorized

Remlses pour dippot

Attestation de lretut des coots

J'atteste par la présente:
que les montants indiques sont le plus exact possible a que ces dépenses ont ote engagbes pouir effectuer les travaux d'evaluation sur les terrains indiques dans la formule de rapport de travail ci-join.

Et qu'à titre de

(8) Ontario


```
A Notice of Deficiency was not issued on this Report of Work prior
to the 90 day deemed approval date and as outlined in subsection
6(5) of the Mining Act Regulations this Report of Work is deemed
approved as of JNNOARY 25, 1996.
If you require further information please contact Lucille Jerome at
(705) 670-5858.
Yours sincerely,
ORIGINAL SIGNED BY:
```

lencrathil.

Ron C. Gashinski
Senior Manager, Mining Lands Section Mining and Land Management Branch Mines and Minerals Division

LJ/j1
Enclosure:

```
cc: Resident Geologist
    Timmins, Ontario
```


20

