


|          | MATACHE WAN PROTEROZOIC                                                                                                                                                                                                                             |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | Quartz Diabose                                                                                                                                                                                                                                      |
|          | ALGOMAN                                                                                                                                                                                                                                             |
| N        | Acid Intrusive Rocks: Granite(1); Syenite(2); Manzonite(3); Granodionite(4); Felsite(6); Aplite(6); Pegmatite(7); Porphyry(8); Quartz Monzonite(9); Granophyre(10); Quartz-Carbonate Schist(II); Nordmarkite(12); Alaskite(13); Granite Gneiss(14). |
| L        | Intermediate Intrusive Rocks: Diorite(I); Quartz Diorite(Tanalite)(2); Quartz Gabbro(3).                                                                                                                                                            |
| M        | Basic Intrusive Rocks: Gabbro(1); Diabase (2); Norite(3); Anorthositic Gabbro(4); Anorthosite(5); Hornblende Gabbro(6); Troctolite(7); Essexite(8).                                                                                                 |
| К        | Ultrabasic Intrusive Rocks: Hornblendite(I); Pyroxenite(2); Peridotite(3); Serpentinite(4); Dunite(5);  Lomprophyre(6); Tolc-Carbonate Schist (7); Kimberlite(8).  (Add 'f' if these rocks are thought to be extrusive.)                            |
|          | HIGHLY METAMORPHOSED ROCKS of UNCERTAIN ORIGIN                                                                                                                                                                                                      |
| J        | Carbonate Zone(I); Carbonatite(2); Fenite(3); Nepheline and Alkalic Syenite(4); Calc-Silicate Rocks(5); Skarn(6),                                                                                                                                   |
| IN       | Kapuskasing Granulite Comptex: Granulite Facies Metasediments(1); Metavolcanics(2); Granite(3).                                                                                                                                                     |
|          | Hornblende Schist(I); Biotite Schist(2); Chlorite Schist(3); Sericite Schist(4); Talc Schist(5); Amphibolite(6); Gneisses(7); Hornfels(8); Tremolite-Actinolite Schist(9).                                                                          |
|          | ARCHEAN                                                                                                                                                                                                                                             |
|          | TIMISKAMING                                                                                                                                                                                                                                         |
| Н        | Greywacke(I); Slate(2); Arkose(3) Quartzite(4); Siltstone(5); Argillite(6); and derived metamorphic varieties.                                                                                                                                      |
| G        | Conglomerate (1); Iron Formation (2)                                                                                                                                                                                                                |
| _        | KEE WATIN                                                                                                                                                                                                                                           |
| (=)      | Sedimentory Rocks                                                                                                                                                                                                                                   |
| F        | Greywake(I);Slate(2);Arkose(3);Quartzite(4);Siltstone(5);Argillite(6);Conglomerate(7); and derived metamorphic varieties.                                                                                                                           |
| Ε        | Banded Siliceous fron Formation                                                                                                                                                                                                                     |
|          | Volcanic Rocks •                                                                                                                                                                                                                                    |
| D        | Acidic Flows and Pyroclastics: Rhyolite and Rhyodacite(1); Trachyte(2); Quartz-Sericite Schist (3); Sericite or Sericite—  Chlorite Schist(4); Rhyolite Intrusive P(5); Quartz-Sericite-Carbonate Schist(6).                                        |
| С        | Intermediate Flows and Pyroclastics: Dacite(t); Sericite-Chlorite Schist(2); Talc Schist(3); Dacite Intrusive? (4); Latite(5)                                                                                                                       |
| В        | Massive Bosic Flow Rocks which may in part be sill-like basic intrusives.                                                                                                                                                                           |
| Α        | Basic Volconics: Basalt (1); Andesite (2); Chlorite Schist (3); Talc Schist (4); Horn blende Schist (5); Saussurite Schist (6); Actinolite Schist (7); Komatiite (8); Biotite Schist (9).                                                           |
| $\Box$ . | Lokes; Rivers                                                                                                                                                                                                                                       |
|          | ADDDSWATIONS (fel) Felsic                                                                                                                                                                                                                           |

| (ark) Arkosic<br>(bl) bleached     | (cp) Chalcopyrite (cg) Conglomerate                                | (gf) Graphitic                        | (maf) Matic<br>(mr) Marine | (p |
|------------------------------------|--------------------------------------------------------------------|---------------------------------------|----------------------------|----|
| (bx) Breccio                       | (con)Continential<br>(dis) Distal<br>(dot) Dolomite                | (GRT)Graphitic Tuf<br>(gwk) Greywacke | • • •                      |    |
| (qp)Quartz Parphyry                | (s) Sulphide                                                       | (f) Tuff                              | (xbd) Crossbedded          |    |
| (qv) Quartz Vein                   | (serp) Serpentinize                                                | d                                     | (ssti)Crystot              |    |
| (qzt) Quortzite<br>(R) Radioactive | (sit) Silicified                                                   | (v) Varioliti                         | E                          |    |
| (rb) Red-bed                       | {sp}Spherulitic                                                    |                                       |                            |    |
| (rgh) Regolith                     | (sph)Sphalerite                                                    | (w) Welded                            |                            |    |
| •                                  | (spx)Spinifex (sl)S<br>(ss)Sandstone (sh)!<br>(sl1)Siltstone (sk)! |                                       |                            |    |

(fm) Formation

 $(\Delta)$  Fragmental

(g) Gneissic

(gf) Graphitic

(if) Iron Formation

(Imst) Limestone

(Ix) Leucoxene (II.) Lapilli Tuff

(p) Pillowed

(py) Pyrite

(prx) Proximal

(po)Pyrrhotite

(por) Porphyritic

(cc) Corbonatized

(ch) Cherty

(chl) Chloritic

(cp) Chalcopyrite

ABBREVIATIONS:

(a) Agglomerate

(alt) Highly Altered

(amg)Amygdaloidal

(org) Argillite

|                    | PROPERTY         | Lot 11, Conc II; Taylor Twp. Ont. (Timmins PAGE 1                                                                                                                                                                                                                                                                                                                                                       |
|--------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCATION_L         | Lne 6 + 00W      | Area), ; 6 + 10N BEARING 360 deg HOLE NO. QS-79                                                                                                                                                                                                                                                                                                                                                         |
| 1                  |                  | ky ELEVATION Surface DIP -52deg FINAL DEPTH 851.0'                                                                                                                                                                                                                                                                                                                                                      |
| STARTED            | July 15, 19      | 83 TESTS (CORRECTED) 125.0': -53deg                                                                                                                                                                                                                                                                                                                                                                     |
| FINISHED           | July 22, 19      | 83 rests (CORRECTED) 125.0': -53deg  hole abandoned due to 321.0': -51deg  83: rods seizing in the hole 525.0": -50deg                                                                                                                                                                                                                                                                                  |
|                    |                  | ulled out; 15' of casing lost at 725.0': -50deg                                                                                                                                                                                                                                                                                                                                                         |
| CORE SIZE          | BQ: Dominik      | 6 + 00N<br>Diamond Drilling Ltd. from Timmins                                                                                                                                                                                                                                                                                                                                                           |
| FROM               | то               | DESCRIPTION .                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0                | 120.0'           | Overburden: 0 - 70' sand & clay<br>70 - 85 Boulders<br>85 -114 Sand & clay<br>114 -120 Boulders                                                                                                                                                                                                                                                                                                         |
| 120.0<br>126.0'    | 126.0'<br>146.5' | Lost Core: ground in casing complacement Greywacke: light grey, f. gr., hard to medium, brecciated yet indurate, local siliceous lapilli frags., vague relief slump structures & bedding, 10-15% pervasive silicification, 10% intermittent qtz - carb. veinlets at generally high to moderate angles to CA., tr. fine. py.                                                                             |
| 146.5'             | 166.0'           | Chloritized & Carbonatized Ultramatic: black, messy in appearence due to white carbonate veinlets & crystal clusters, 25% carbonatization, 15% qtz - carbonate veinlets at high to moderate angles to CA, soft, slightly talcose, minor intermittent coarse py, aggregrates, minor fuchsite locally assoc'd with qtz - carb. veinlets, brecciatal but indurate, slightly magnetic locally, fine grained |
| 166.0              | 186.3'           | Diorite Dyke: 10% white qtz - carb. beinlets at high angles to CA, dark grey, med. gr., somewhat fresh-looking, contacts appear to be at high angles to CA, 5% finely diss'd, magnetite, fine specks of py, fuchsite locally.                                                                                                                                                                           |
| 167.0              | 179.5            | 2 - 4% scattered py aggregates                                                                                                                                                                                                                                                                                                                                                                          |
| 179.5              | 182.0'           | 7% scattered py aggregates                                                                                                                                                                                                                                                                                                                                                                              |
|                    | ·                |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                  | NO Q                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    |                  | QS-79                                                                                                                                                                                                                                                                                                                                                                                                   |
| DOCKET NO.<br>8608 |                  | 0M83-6-C-47                                                                                                                                                                                                                                                                                                                                                                                             |

OM83-6-C-47

是一个是一个人,只是这个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人, 一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人

## **PROPERTY**

| LOCATION    |           | BEARING           | HOLE NO. OS-79 |
|-------------|-----------|-------------------|----------------|
|             |           |                   | ~              |
| LOGGED BY   | ELEVATION | DIPFINAL DEPTH    |                |
|             |           |                   |                |
| STARTED     |           | TESTS (CORRECTED) |                |
| EINICHED    |           |                   |                |
| I IIVIONED. |           | -                 |                |
| CASING      |           |                   |                |

CORE SIZE \_\_\_

| 258.8' | Fault Zone,: Ultramafic essentially the same rock type as above but with more chlorite talc & serpentine, core is brecciated and broken up with numerous gougy intervals, shearing generally at moderate angles, 10 - 15% qtz-curb veinlets at low to moderate angles to CA, specks py, intense chlorization on lower contact  214.0 - 216.0 : ground core 235.0 - 237.0 : " " 254.0 - 257.0 : " " overall core recovery is approximately 95% |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 200 41 | 235.0 - 237.0 : " "<br>254.0 - 257.0 : " "                                                                                                                                                                                                                                                                                                                                                                                                    |
| 200 41 | overall core recovery is approximately 95%                                                                                                                                                                                                                                                                                                                                                                                                    |
| 200 41 |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 200.4  | Quartz - Feldspar Dyke: pink, med. gr., very hard, 1 - 2% magnetic specks py, 3 - 5% hematite, sharp upper contact at 60° to CA,                                                                                                                                                                                                                                                                                                              |
|        | 277.0 - 280.4 : containing 15 - 20% mafic inclusions, 5 - 10% hematite, 3% fine pyrite.                                                                                                                                                                                                                                                                                                                                                       |
| 313.6' | Diorite Dyke: Grey to dark grey, fine to medium grained, brecciated but indurate, hard, pervasive silicification, 25% white carbveining at low angles to CA, veins are locally brecciated, 3-7% fine and coarse disseminated py, 5-10% disseminated magnetite                                                                                                                                                                                 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                               |

HOLE NO. OS-

|           | PROPERTY |                                                                         |                                                                                                                       | PAGE 3                          |
|-----------|----------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------|
| LOCATION  |          |                                                                         | BEARING                                                                                                               | HOLE NO. QS-79                  |
|           |          |                                                                         | DIPFINAL DEPTH                                                                                                        |                                 |
| STARTED   |          |                                                                         | TESTS (CORRECTED)                                                                                                     |                                 |
| FINISHED  |          |                                                                         |                                                                                                                       |                                 |
| CASING    |          |                                                                         |                                                                                                                       |                                 |
| CORE SIZE |          |                                                                         |                                                                                                                       |                                 |
| FROM      | то       |                                                                         | DESCRIPTION                                                                                                           |                                 |
| 313.6     | 347.0'   | as above at 1 326.0 - 337.0 :                                           |                                                                                                                       |                                 |
| 347.0     | 415.0'   | as above at 146.5 veinlets and patc joints & shearing CA, very minor py | bonatized Ultramafice 20% white carbonal hes, few intermitter at low to moderate, slightly magnetic veining generally | te in<br>ht, gougy<br>angles to |
| 415.0     | 451.1    | greenish-grey, fi<br>at 60 - 70 to CA                                   | oritized Tuff (Anderne-grained, soft, we are brecciated and sy, minor py.                                             | ell laminated<br>te along       |
| 451.1     | 514.6'   | pale greenish buf<br>laminae and inter                                  | bonatized Felsic Turf, fine grained, med mittent chloritized CA, 5 - 10% white o                                      | d. hard scratch, interbeds      |
|           |          |                                                                         | rphyry Vein: buff, leyes, qtz. veining                                                                                |                                 |
|           |          |                                                                         | 0% green fuchsite a                                                                                                   | lteration                       |
|           |          |                                                                         |                                                                                                                       | HOLE                            |

10LE NO. 05-70

HOLE NO. OF

|           | PROPERTY |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                       | PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                         |
|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| LOCATION  |          |                                                                                                                                                                                                                                                                                                                                                                                             | BEARING                                                                                                                                                                | •                                                                                                                                     | HOLE NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QS-79                                     |
|           |          | ELEVATION                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                        |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| STARTED   |          |                                                                                                                                                                                                                                                                                                                                                                                             | TESTS (CORR                                                                                                                                                            | ECTED)                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| FINISHED  |          |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| CASING    | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| CORE SIZE |          |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| FROM      | то       |                                                                                                                                                                                                                                                                                                                                                                                             | DESCRIPT                                                                                                                                                               | ION                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| 595.0     | 725.1'   | Fault Zone in Chlomafic sequence: colour varies from f,gr., soft, local carbonate crystal at low angles to gougg broken up in are predominantly  595.0 - 597.0: 599.0 - 601.0: 604.0 - 605.0: 595.0 - 605.0: 605.0 - 681.0: lower contact is  Diabase Chill Mar dark grey, massiv intermittent gtz. at various angles  684.6 - 685.9: C Ultramafic as to CA  686.5 - 689.5: b core recovery | n dark gree lly speckle s, 5% qtz CA, numerou ntervals, j low to CA Ground Core "" approximate broken up gin: e, fine to -carb; fill to CA, mad hloritized above, core | enish-grey ed by up to carb vein es intermi goint & sl (0 - 30°) ely 40% co 90 - 95%  med. gr., led hairli gnetic & Carbona ntacts at | to blace of 20% whether the strength in angle or recording the strength in the | ek,<br>nite<br>es<br>very<br>few<br>tures |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H                                         |

HOLE NO. OS-7

| SAMPLE | 50014 |       | . 5110711 | Α     | SSAYS |                                        | 5500                 | 0.07.000              |                 | ~                                      |
|--------|-------|-------|-----------|-------|-------|----------------------------------------|----------------------|-----------------------|-----------------|----------------------------------------|
| NO.    | FROM  | TO    | LENGTH    | Au    |       |                                        | DESC                 | RIPTIONS              | 4               | ,                                      |
| 8101   | 130.0 | 135.0 | 5.0       | Tr.   |       | Dacite Tuf<br>specks py,               |                      |                       | nlets           | rare                                   |
| 8102   | 167.0 | 172.0 | 5.0       | 0.024 |       | Diorite: 1                             | •                    | py aggre              | gates           | <u> </u>                               |
| 8103   | 172.0 | 177.0 | 5.0       | 0.119 |       | 11                                     | ti .                 |                       | scat<br>py      | tere                                   |
| 8104   | 177.0 | 179.5 | 2.5       | 0.014 |       | ti                                     | 11                   |                       | 1               | 97                                     |
| 83.05  | 179.5 | 182.0 | 2.5       | 0.056 |       | *1                                     | ":                   | 7% coars              | se py<br>ites   |                                        |
| 8106   | 182.0 | 187.0 | 5.0       | 0.004 |       | . 11                                   | H :                  | Test sam              | ple<br>py       |                                        |
| 8107   | 250.0 | 258.8 | 8.8       | 0.002 |       | Fault Zone<br>Test sampl<br>254.0 - 25 | e Chlori<br>Le on po | tized Ul<br>orphyry o | trama<br>contac |                                        |
| 8108   | 258.8 | 263.8 | 5.0       | 0.004 |       | Qtz. Feld.                             | Dyke:                | est samp              | ole on          | cont                                   |
| 8109   | 277.0 | 280.4 | 3.4       | 0.002 |       | FF                                     | ":3                  | % fine p              | У               |                                        |
| 8110   | 280.4 | 285.0 | 4.6       | 0.002 |       | Diorite Dy                             | /ke: 25%             | gtz-cark<br>diss py   | vlts            | •                                      |
| 8111   | 285.0 | 290.0 | 5.0       | 0.010 |       | tf                                     | n : n                | 11                    | 31              | <del></del>                            |
| 8112   | 290.0 | 295.0 | 5.0       | 0.650 |       | 11                                     | P1 12                | 11                    | 11              |                                        |
| 8113   | 295.0 | 300.0 | 5.0       | 0.020 |       | 31                                     | 11 11                | 11                    | ħ               |                                        |
| 8114   | 300.0 | 305.0 | 5.0       | 0.010 |       | 11                                     | 99 EF                | 11                    | 11              | ······································ |
| 8115   | 305.0 | 310.0 | 5.0       | 0.004 |       | 11                                     | 11 1t                | ti                    | 1,              |                                        |
| 8116   | 310.0 | 313.6 | 3.6       | 0.002 |       | 41                                     | B1 57                | 91                    | lí .            |                                        |
| 8117   | 313.6 | 321.0 | 7.4       | Tr.   |       | Fault Zone                             |                      |                       |                 | afic                                   |

-HOLE NO.

| SAMPLE | LE FROM TO LENGTH |       | IPLE FROM TO LENGTH |              |  | ASSAYS                                            | 0.000.000.000 |
|--------|-------------------|-------|---------------------|--------------|--|---------------------------------------------------|---------------|
| NO.    | FRUM              | ,,,   | LENGTH              | Au<br>(oz/t) |  | DESCRIPTIONS                                      |               |
| 8119   | 439               | 444   | 5.0                 | 0.002        |  | Ser'd & Chl'd Tuff: 25% qtz-carb vlts<br>tr. py   |               |
| 8121   | 469               | 470   | 1.0                 | 0.066        |  | Ser'd Tuff: chlorite interbed with 3-5% fine py   |               |
| 8120   | 489               | 494   | 5.0                 | 0.004        |  | 5-10% qtz. v1ts<br>" " : tr. py                   |               |
| 8127   | 505.0             | 509.6 | 4.6                 | 0.010        |  | " ": tr. py                                       |               |
| 8122   | 509.6             | 514.6 | 5.0                 | 0.002        |  | 15-20% gtz. vlts<br>" : tr. py                    |               |
| 8123   | 514.6             | 519.6 | 5.0                 | 0.004        |  | Grey Porphyry: 1-3% diss. py.                     |               |
| 8124   | 519.6             | 533.0 | 13.4                | 0.004        |  | 1-3% diss. py " : approx. 33% recovery            |               |
| 8125   | 533.0             | 542.0 | 9.0                 | 0.002        |  | 10 11 11 10                                       |               |
| 8126   | 542.0             | 547.0 | 5.0                 | Tr.          |  | Chl'd & Carbon'd Tuff: tr. py                     |               |
| 8128   | 574.3             | 579.3 | 5.0                 | 0.002        |  | Grey Porphyry: 10-15% gtz veinlets                |               |
| 8129   | 588.5             | 591.0 | 2.5                 | 0.002        |  | ti 11 tt 11 11                                    |               |
| 8130   | 597.0             | 603.0 | 6.0                 | Tr.          |  | Fault Zone 40% core recovery 20% qtz-carb Veining |               |
| 8131   | 632.0             | 637.0 | 5.0                 | 0.002        |  | Carbon'd Ultramafic:                              |               |
| 8132   | 676.0             | 681.0 | 5.0                 | Tr.          |  | Chl'd Ultramafic: 5-10% gtz. Veining              |               |
| 8133   | 701.0             | 706.0 | 5.0                 | Tr.          |  | Chill Margin: 3% gcz-carb. fracture filling       |               |
| 8134   | 742.0             | 745.0 | 5.0                 | 0.002        |  | Diabase: 3% qtz-carb. veinlets                    |               |
| 8135   | 806.7             | 808.8 | 2.1                 | 0.002        |  | " : 40% qtz. veining                              |               |
| 8136   | 822.0             | 824.5 | 2.5                 | Tr.          |  | " : 25% qtz. veining                              |               |
| 8137   | 846.7             | 851.0 | 4.3                 | 0.002        |  | 5% qtz. veining approx. 80% core recovery         |               |

| 9 –PAGE                                        | · · · · · · · · · · · · · · · · · · · | *     |       |        |       | Ţ       | PERTY-        |
|------------------------------------------------|---------------------------------------|-------|-------|--------|-------|---------|---------------|
| DESCRIPTIONS                                   | s<br>                                 | ASSAY | Au 0z | LENGTH | то    | FROM    | SAMPLE<br>NO. |
|                                                |                                       |       | II I  |        |       | AL FILI | OLLICOR       |
| Dac. Tuff: 10% qtz. vlts.<br>Tr. fine py & cpy |                                       |       | 0.004 | 4.0    | 130   | 126     | 8161          |
| 91 to 11 to pr                                 |                                       |       | 0.002 | 5.0    | 140   | 135     | 8162          |
| 11 11 11 11 11                                 |                                       |       | 0.002 | 5.0    | 145   | 140     | 8163          |
| 11 11 1 11 11 11                               |                                       |       | 0.002 | 1.5    | 146.5 | 145     | 8164          |
| Qtz-Feld. Dyke: 1% py                          |                                       |       | 0.004 | 5.0    | 268.8 | 263.8   | 8165          |
| 11 11 11 11 11 11                              |                                       |       | 0.004 | 5.0    | 273.8 | 268.8   | 8166          |
| 11 11 11 21 21                                 |                                       |       | 0.002 | 3.2    | 277.0 | 273.8   | 8167          |
| Ser'd Felsic Tuff: 1% py                       |                                       |       | 0.002 | 1.0    | 455.5 | 454.5   | 8168          |
| " ": Tr. py., por ban                          |                                       |       | 0.002 | 5.0    | 479.0 | 474.0   | 8269          |
| Ultramafic: 1-2% py.                           |                                       |       |       |        |       | 668.0   | 8270          |
|                                                |                                       |       |       |        |       |         |               |
|                                                |                                       |       |       |        |       |         |               |
|                                                |                                       |       |       |        |       |         |               |
|                                                |                                       |       |       |        |       |         |               |
|                                                |                                       |       |       |        |       |         |               |
|                                                |                                       |       |       |        |       |         |               |
|                                                |                                       |       |       |        |       |         |               |
| FORM                                           |                                       |       |       |        |       |         |               |

|                    |             | ot 11, Conc. II; Taylor Twp. Ont. (Timmins PAGE 1 Area)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCATION <u>ne</u> | 6 + 00 W,   | +50 south BEARING 360 deg HOLE NO.QS-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LOGGED BY O        | . Zavesickk | Y ELEVATION Surface DIP -55 degNAL DEPTH 843.0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |             | 1983 TESTS (CORRECTED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| FINISHED           | August 4, 1 | 983: hole couldn't be 140': 57 deg continued due to fault 340':-56 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    |             | 540':-56 " 740':-55 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CORE SIZE          | BQ: Dominik | Diamond Drilling Ltd., from Timmins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FROM               | то          | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0'               | 136.0'      | Overburden:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 136.0              | 141.0'      | Ground Core: in casing emplacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 141.0              | 267.5       | White Porphyry:     generally cream-grey in colour, aphanitic to f.gr.,     very hard; banding/bedding at low angles     (0-30 deg) to CA, intermittent narrow carbonate &     fuchsite altered intervals & also limonitic     intervals; microfractured but annealed with qtz     carb. filling; fuchsite, limonite and qtzcarb.     alteration in apparent shearing at generally     moderate angles to CA; numerous intermittent     broken up intervals with slight limonitic     gouge on core fragments, fractures & slips at     generally low angles to CA; minor py locally in     microfractures, altered intervals may be altered     andesite?  161.6-171.0': 33% green fuchsite banding at |
|                    |             | 40-60 deg. to CA & also disseminated, 5% limonite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |             | 193.0-198.0': Ground Core:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |             | 206.5-216.5': 33% limonitic banding at 30 deg to CA 10% fuchsite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    |             | HOLE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|            | ,      |                                                                                                                          |                                                                                                |                                                                                                     |
|------------|--------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| LOCATION   |        |                                                                                                                          | BEARING                                                                                        | HOLE NO. QS-80                                                                                      |
| LOGGED BY_ |        | ELEVATION                                                                                                                | DIPFINAL                                                                                       | DEPTH                                                                                               |
| STARTED    |        |                                                                                                                          | TESTS (CORRECTED)                                                                              |                                                                                                     |
| FINISHED   |        |                                                                                                                          |                                                                                                |                                                                                                     |
| CASING     |        |                                                                                                                          |                                                                                                |                                                                                                     |
| CORE SIZE  |        |                                                                                                                          |                                                                                                |                                                                                                     |
| FROM       | то     |                                                                                                                          | DESCRIPTION                                                                                    |                                                                                                     |
| 267.5      | 277.5' | 263.0-267.5: "  Sheared Limonit: rusty grey, lo strongly folia hematite, limo microfracture jointing at lo upper contact | d with qtzcarbo<br>0-30 deg. to CA,<br>at 30 deg. to CA                                        | " one: ared, f. gr., to CA, Fuchsite, r planes, med-hard, onate filling, well carbonated,           |
| 277.5      | 415.6  | veining at variable fabric & white locally fragme and siliceous 33% fuchsite                                             | with 33% white querious angles to community of the grand veining are rounded, original rock to | czcarbonate CA, both rock ng is brecciated, to subrounded type is masked, monitic zones at CA, also |
|            |        |                                                                                                                          |                                                                                                |                                                                                                     |

PAGE 3 **PROPERTY** QS-80 BEARING \_\_\_\_\_\_HOLE NO.\_\_\_ LOGGED BY\_\_\_\_\_\_\_ELEVATION\_\_\_\_\_\_DIP\_\_\_\_FINAL DEPTH\_\_\_\_\_ TESTS (CORRECTED) CORE SIZE .... DESCRIPTION TΩ FROM 329.0 - 333.0 : lost core 410.0 - 145.6 : lithologically the same as the conglomerate below yet has green fuchsite alteration. Quartz-Breccia: (Quartz-Conglomerate?) 471.1' 415.6 ovoid to rectangular, rounded to subrounded white siliceous clasts ranging up to 2" across, set in a dark grey chloritized & sericitized schistose matrix, locally there are green fuchsite bearing intervals, foliation at moderate angles to CA, upper contact is broken up however there is a sharp colour change from green to grey-white, Tr. py some frags. appear to be fuchsitic. 444.0 - 471.1: taking on a pale greenish-yellow vellow cast due, to fuchsite and sericite alteration. Greywacke or Dacite Tuff: 491.0 471.1 grev, f. gr., med. hard to hard, conglomeratic locally, sharp upper contact at 55 deg. to CA, intermittent jointing at low to mod. angles to CN Tr. py., locally somewhat amygdular,

HOLE NO. 05-80

| LOCATION  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BEARING                                                                                                                       | HOLE NO. QS-80                                                                            |              |
|-----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------|
| LOGGED BY |       | ELEVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DIP                                                                                                                           | FINAL DEPTH                                                                               |              |
| STARTED   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TESTS (CORRI                                                                                                                  | ECTED)                                                                                    | raint modern |
| FINISHED  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                                           |              |
| CASING    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                                           |              |
| CORE SIZE |       | administration substitute describes several and a second several and a second s |                                                                                                                               |                                                                                           |              |
| FROM      | то    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DESCRIPT                                                                                                                      | ION                                                                                       |              |
| 491.0     | 509.0 | contorted sl strong shear original roc are conglome argillaceous combined chi is approxima gougy interv moderate and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50% white qtz. nearing & in bo ring at 50 deg. ck type is mask erate fragments s interbedding; loritization & ately 50%; inte | to CA, ted however there clocally with sericitization ermittent slightly turing at low to |              |
| 509.0     | 551.1 | very similar<br>but much mor<br>degree of ch<br>black-white,<br>carbonate ve<br>low to moder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | re mafic as ind                                                                                                               | mmediately above icated by high serpentinigation, ontorted qtz , jointing at CA, strong   |              |
|           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                                           | FE NO.       |

## **PROPERTY**

••

| LOCATION  |       |                | BEARING_   | HOLE NO. OS-80 |
|-----------|-------|----------------|------------|----------------|
|           |       |                |            | FINAL DEPTH    |
| STARTED   |       |                | TESTS (COF | RRECTED)       |
| FINISHED  |       |                |            |                |
| CASING    |       |                |            |                |
| CORE SIZE |       |                |            |                |
| FROM      | то    |                | DESCRI     | PTION          |
| 551.1     | 556.6 | Grey Porphyry: |            |                |

| 556.6 | Grey Porphyry: light grey, fine grain, tuff frags are rounded to subrounded in siliegous matrix, vary hard, microfractured but annealed, hairline-fractures are gtzcarb. filled, fracturing at low to moderate-angles to CA upper contact at 50 deg.to CA, lower contact is broken up, 5-7% fine diss'd py. |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 569.8 | Chloritized & Carbonatized Ultramafic: as above at 509.0'.                                                                                                                                                                                                                                                  |
| 655.4 | Chloritized Ultramafic: black with slight bluish cast, med. hard to soft, f. gr., 10-15% white qtzcarb. in veins & amygdules, foliation at mod. angles to CA, veining at low to mod. angles, occasional cubic py aggregates, slightly talcose, very schistose.                                              |
|       | 611.7 - 612.1': Fault Gouge at 80-90 deg.<br>to CA.                                                                                                                                                                                                                                                         |
|       | 569.8                                                                                                                                                                                                                                                                                                       |

| Ρ | R | 0 | P | E | R | TY | • |
|---|---|---|---|---|---|----|---|
|---|---|---|---|---|---|----|---|

|           | PROPERTY | -                                       |                                                                                          | PAGE 0                       |
|-----------|----------|-----------------------------------------|------------------------------------------------------------------------------------------|------------------------------|
| LOCATION  |          |                                         | BEARING                                                                                  | HOLE NO. QS-80               |
|           |          |                                         |                                                                                          | EPTH                         |
|           |          |                                         |                                                                                          |                              |
| FINISHED  |          |                                         |                                                                                          |                              |
| CASING    |          |                                         |                                                                                          |                              |
| CORE SIZE |          |                                         |                                                                                          |                              |
| FROM      | то       |                                         | DESCRIPTION                                                                              |                              |
| 655.4     | 714.0'   | intermittent l<br>slips & joint:        | ultramafic): ic as above but wi broken up and goue ing at low to mode ecovery is approxi | y intervals,<br>erate angles |
|           |          | light pinkish<br>3% included ma         | Quartz-Feldspar<br>grey, med. gr., l<br>afic country rock,<br>at 60 deg. to CA           | % fine py,                   |
| 714.0'    | 770.4'   | • • • • • • • • • • • • • • • • • • • • | arbonatized Ultram<br>roken up joints at<br>es to CA                                     |                              |
| 770.4'    | 772.7'   | contacts shar                           | e:<br>3 by 10% black mic<br>p at 65 deg. to CA<br>25 deg. to CA.                         |                              |
|           |          |                                         |                                                                                          |                              |
|           |          |                                         |                                                                                          | HOLE                         |

PAGE 7 **PROPERTY** LOCATION\_\_\_\_\_\_BEARING\_\_\_\_\_HOLE NO. OS-80 LOGGED BY\_\_\_\_\_\_ELEVATION\_\_\_\_\_\_DIP\_\_\_\_FINAL DEPTH\_\_\_\_ TESTS (CORRECTED) STARTED\_\_\_ FINISHED\_\_\_\_\_ CORE SIZE \_\_\_ DESCRIPTION то FROM 827.01 Chloritized & Carbonatized Ultramafic: 772.7 as above but with very few joints. Fault Zone (in ultramafic): 827.0 843.0 cove extremely broken up & gougy, slips are subparallel to CA, gouge seams are at low to moderate angles to CA core recovery is approximately 80 - 90 % End of Hole 843.0' HOLE NO.

FORM 8609

| PERTY-        |       |       |        |             | OANN EE NEGOND GNEET | QS-80 —HOLE NO.<br>8 —PAGE                         |
|---------------|-------|-------|--------|-------------|----------------------|----------------------------------------------------|
| SAMPLE<br>NO. | FROM  | то    | LENGTH | Au<br>on /4 | ASSAYS               | DESCRIPTIONS                                       |
| 8138          | 156.0 | 160.0 | 4.0    | 0.008       |                      | 1% py along<br>White Porphyry:micro-fractures      |
| 8139          | 165.7 | 170.7 | 5.0    | 0.004       |                      | 33% fuchsite, " :specks py.                        |
| 8140          | 206.5 | 211.5 | 5.0    | 0.002       |                      | " : 33% limonite                                   |
| 8141          | 234.0 | 239.0 | 5.0    | 0.002       |                      | 33% fuchsite, " : specks py.                       |
| 8142          | 266.5 | 271.5 | 5.0    | 0.002       |                      | Sheared Limonite Zone                              |
| 8143          | 315.0 | 320.0 | 5.0    | 0.004       |                      | 33% qtz. Veining<br>Green Carbonate Zone: tr. py.  |
| 8144          | 377.0 | 382.0 | 5.0    | 0.002       |                      | 11 11 11 11                                        |
| 8145          | 415.6 | 420.6 | 5.0    | 0.002       |                      | QtzBreccia Contact Zone                            |
| 8146          | 457.0 | 462.0 | 5.0    | 0.004       |                      | Fuchsite & Sericitic Brescia                       |
| 8147          | 472.0 | 477.0 | 5.0    | 0.010       |                      | Greywacke                                          |
| 8148          | 504.0 | 509.0 | 5.0    | 0.002       |                      | Altered Shear Zone: 40% carbonate 10% qtz. veining |
| 8149          | 546.1 | 551.1 | 5.0    | 0.002       |                      | Chl'd & Carbon'd Ultrama£ic: 50% qtz               |
| 8150          | 551.1 | 556.6 | 5.5    | 0.012       |                      | Grey Porphyry: 5-7% diss'd py                      |
| 8151          | 556.6 | 561.6 | 5.0    | 0.002       |                      | Chl'd & Carbon'd Ultramafic: 10-15% Ot vlts.       |
| 8152          | 597.8 | 602.8 | 5.0    | 0.002       |                      | 2% scattered cubic Chl'd Ultramafic: py aggregates |
| 8153          | 670.0 | 674.0 | 4.0    | 0.002       |                      | U U 11 11                                          |
| 8154          | 677.4 | 679.1 | 1.7    | Tr.         |                      | Qtz. Feld. Por. : 1% diss'd py.                    |
| 8155          | 693.7 | 698.0 | 4.3    | Tr.         |                      | 25% qtz. veining Chl'd Ultramafic:                 |
| 8156          | 698.0 | 703.0 | 5.0    | 0.002       |                      | " : 2% scattered py in 15% qtzcarb. vein           |

QS-80 -HOLE NO.

| FROM        | то                                                                                                                              |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DESCRIPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           |
|-------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| <del></del> |                                                                                                                                 | LENGTH                                                                                                                                                                                                                                                                                                                           | Au<br>oz/t                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DESCRIPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           |
| 239.0       | 244                                                                                                                             | 5.0                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Porphy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vry: 1% fine py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |
| 244.0       | 249.0                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |
| 249.0       | 254                                                                                                                             | 5.0                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | " " % Limoni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tic                                                       |
| 254         | 259                                                                                                                             | 5.0                                                                                                                                                                                                                                                                                                                              | 0.004                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | It It 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           |
| 259         | 264                                                                                                                             | 5.0                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                   | nate a natural place of the control |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : 1% fine py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           |
| 264.0       | 266.5                                                                                                                           | 2.5                                                                                                                                                                                                                                                                                                                              | Tr.                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Porphy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ry: Fuchsitic & Limonit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ic                                                        |
| 303.5       | 308.5                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                              | Tr.                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Carb: Siliceous interva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,                                                        |
| 308.5       | 315.0                                                                                                                           | 6.5                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ": siliceous & Qtz-v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eined                                                     |
| 320.0       | 325.0                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | itic,                                                     |
| 325.0       | 329.0                                                                                                                           | 4.0                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |
| 333.0       | 338.0                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |
| 338.0       | 343                                                                                                                             | 5.0                                                                                                                                                                                                                                                                                                                              | Tr.                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 11 tr 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           |
| 343.0       | 348                                                                                                                             | 5.0                                                                                                                                                                                                                                                                                                                              | Tr.                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |
| 348.0       | 353.                                                                                                                            | 5.0                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ": 15% gtz-veining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           |
| 420.8       | 425.6                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qtz-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Breccia: specks py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           |
| 425.6       | 430.6                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                              | 0.004                                                                                                                                                                                                                                                                                                                                                                                   | an egistek kingdi kan kingdi digan diga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t) 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |
| 430.6       | 435.6                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                              | Tr.                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |
| 435.6       | 440.6                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                              | 0.002                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |
|             | 244.0<br>249.0<br>254<br>259<br>264.0<br>303.5<br>308.5<br>320.0<br>325.0<br>333.0<br>338.0<br>348.0<br>420.8<br>425.6<br>430.6 | 244.0       249.0         249.0       254         259       264         264.0       266.5         303.5       308.5         308.5       315.0         320.0       325.0         325.0       329.0         333.0       338.0         343.0       348         348.0       353.         420.8       425.6         430.6       435.6 | 244.0       249.0       5.0         249.0       254       5.0         254       259       5.0         259       264       5.0         264.0       266.5       2.5         303.5       308.5       5.0         308.5       315.0       6.5         320.0       325.0       5.0         325.0       329.0       4.0         333.0       338.0       5.0         343.0       348       5.0 | 244.0       249.0       5.0       0.002       .         249.0       254       5.0       0.002       .         254       259       5.0       0.004       .         259       264       5.0       0.002       .         264.0       266.5       2.5       Tr.       .         303.5       308.5       5.0       Tr.       .         308.5       315.0       6.5       0.002       .         320.0       325.0       5.0       0.002       .         325.0       329.0       4.0       0.002       .         333.0       338.0       5.0       0.002       .         343.0       343       5.0       Tr.       .         348.0       353.       5.0       0.002       .         420.8       425.6       5.0       0.002       .         425.6       430.6       5.0       0.004       .         430.6       435.6       5.0       Tr.       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 244.0       249.0       5.0       0.002          249.0       254       5.0       0.002          254       259       5.0       0.004          259       264       5.0       0.002          264.0       266.5       2.5       Tr.          303.5       308.5       5.0       Tr.          308.5       315.0       6.5       0.002          320.0       325.0       5.0       0.002          325.0       329.0       4.0       0.002          333.0       338.0       5.0       0.002          343.0       348       5.0       Tr.          348.0       353.       5.0       0.002          420.8       425.6       5.0       0.002          425.6       430.6       5.0       0.004          430.6       435.6       5.0       Tr. | 244.0       249.0       5.0       0.002          249.0       254       5.0       0.002          254       259       5.0       0.004          259       264       5.0       0.002          264.0       266.5       2.5       Tr.          303.5       308.5       5.0       Tr.          308.5       315.0       6.5       0.002          320.0       325.0       5.0       0.002          325.0       329.0       4.0       0.002          338.0       343       5.0       Tr.          343.0       348       5.0       Tr.          348.0       353.       5.0       0.002          420.8       425.6       5.0       0.002          425.6       430.6       5.0       0.004          430.6       435.6       5.0       Tr. | 244.0       249.0       5.0       0.002       "         249.0       254       5.0       0.002       "         254       259       5.0       0.004       "       "         259       264       5.0       0.002       "       Porphy         303.5       308.5       5.0       Tr.       Green         308.5       315.0       6.5       0.002       "         320.0       325.0       5.0       0.002       "         325.0       329.0       4.0       0.002       "         333.0       338.0       5.0       0.002       "         343.0       348       5.0       Tr.       "         348.0       353.       5.0       0.002       "         420.8       425.6       5.0       0.002       "         425.6       430.6       5.0       0.004       "         430.6       435.6       5.0       Tr.       " | 244.0 249.0 5.0 0.002 " " " " " " " " " " " " " " " " " " |

QS-80 -HOLE NO.

| SAMPLE  | SAMPLE FROM TO LENG |       | LENCTH |          |             | ASSAYS | DESCRIPTIONS                                  |  |  |
|---------|---------------------|-------|--------|----------|-------------|--------|-----------------------------------------------|--|--|
| NO.     | FROM                | 10    | LENGTH | oz/t     |             |        |                                               |  |  |
| 8157    | 762                 | 767   | 5.0    | Tr.      |             |        | 10% qtz.<br>Chl'd & Carb'd Ultramafic:veining |  |  |
| 8158    | 770.4               | 772.7 | 2.3    | Tr.      |             |        | Lamprophyre Dyke                              |  |  |
| 8159    | 775.8               | 776.8 | 1.0    | 0.002    |             |        | Chl'd & Carb'd Ultramafic: qtz. veini 2% py.  |  |  |
| 8160    | 839.0               | 843.0 | 4.0    | Tr.      | <b>8</b> 1. |        | <br>intensely sheared & Fault Zone: gougy     |  |  |
| ADDITIO | NAL FILI            | -IN S | AMPLIN | <b>6</b> |             |        |                                               |  |  |
| 8169    | 1.41.0              | 146   | 5.0    | 0.002    |             |        | Porphyry: 1% fine py.                         |  |  |
| 8170    | 146.0               | 156   | 10.0   | 0.004    | *           |        | \$1 k3 I/                                     |  |  |
| 8171    | 160.0               | 165.7 | 5.7    | 0.004    | •           |        | tı 11 tt                                      |  |  |
| 8172    | 170.7               | 175.7 | 5.0    | 0.002    | •           |        | 11 11                                         |  |  |
| 8173    | 175.7               | 180.7 | 5.0    | 0.032    | -           |        | 11 11 11                                      |  |  |
| 8174    | 180.7               | 185.7 | 5.0    | 0.004    | •           |        | D II II                                       |  |  |
| 8175    | 185.7               | 193.0 | 7.3    | 0.002    | •           |        | " : 60% core recovery                         |  |  |
| 8176    | 198.0               | 203.0 | 5.0    | 0.002    | •           |        | Carb & Fuch interval                          |  |  |
| 8177    | 203.0               | 206.5 | 3.5    | Tr.      |             |        | 11 11 11                                      |  |  |
| 8178    | 211.5               | 216.5 | 5.0    | 0.002    |             |        | 71 11 11 ·                                    |  |  |
| 8179    | 216.5               | 221.5 | 5.0    | 0.002    | *           | 4      | n n n                                         |  |  |
| 8180    | 221.5               | 226.5 | 5.0    | 0.002    |             |        | H 11 %                                        |  |  |
| 81.81   | 226.5               | 321.5 | 5.0    | 0.016    |             |        | Porphyry: 1% py, tr. epy                      |  |  |
| 8182    | 321.5               | 234.0 | 2.5    | 0.002    |             |        | " " limonitic, 1% py                          |  |  |

## SAMPLE RECORD SHEET

| SAMPLE | 50011 |       |        |            | ASSAYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 |       |                   |          |          |        |
|--------|-------|-------|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------|-------------------|----------|----------|--------|
| NO.    | FROM  | то    | LENGTH | Au<br>oz/t |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       |                   | DESCRIPT |          | ····   |
| 3201   | 440.6 | 445.6 | 5.0    | Tr.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Qtz-1 | Breccia:          | specks   | ру       |        |
| 3202   | 445.6 | 450.6 | 5.0    | 0.002      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 11    | . 11              | 1t       | 11       |        |
| 3203   | 450.6 | 457.0 | 6.4    | Tr.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 11    | 11                | 11       | 11       |        |
| 3204   | 462.0 | 467.0 | 5.0    | Tr.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 11    | ) (               | 11       | 11,      |        |
| 3205   | 467.0 | 472.0 | 5.0    | 0.002      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | ••    | 11                | 11       | tı       |        |
| 3206   | 477.0 | 482.0 | 5.0    | 0.002      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Grey  | Porphyry          | specks   | py.      |        |
| 3207   | 482.0 | 487.0 | 5.0    | 0.016      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 11    | 71                | Įt .     |          |        |
| 3208   | 487.0 | 491.0 | 4.0    | 0.004      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | ı,    | Ħ                 | 91       | <b>n</b> |        |
| 3209   | 491.0 | 496.0 | 5.0    | 0.004      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Al'd  | Shear Zo          | ne:      |          | · Pro- |
| 3210   | 497.0 | 501.0 | 5.0    | 0.002      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 91    | 11 (1             |          |          |        |
| 3211   | 501.0 | 504.0 | 3.0    | 0.002      | Man and an annual section of the sec |   | 11    | )1 1 <sub>1</sub> |          |          |        |
|        |       |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       |                   |          |          |        |
|        |       |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       |                   |          |          |        |
|        |       |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       |                   |          |          |        |
|        |       |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       |                   |          |          |        |
|        |       |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       |                   |          |          |        |
|        |       |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       |                   |          |          |        |
|        |       |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       |                   |          |          |        |
|        |       |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       |                   |          |          |        |

PROPERTY Lot 11, Conc. II; Taylor Twp. Ont. (Timmins PAGE 1 Area) LOCATION Line 2 + OOW, 6 + OON BEARING 360 deg. HOLENO. OS-81 LOGGED BY O. Zavesiczky ELEVATION Surface DIP -55 degNAL DEPTH 869.01 STARTED August 15, 1983 \_\_ TESTS (CORRECTED) \_ Hole abandoned 133': -54 deg FINISHED August 20, 1983 due to caving 330': -53 deg 540': -53 deg CASING All casing pulled CORE SIZE BQ: Dominik Diamond Drilling Ltd. (from Timmins) то DESCRIPTION FROM 0.0 130.0' Overburden: 0-65' : Sand & Clay 65-130': boulders; making water at 70' to 100' 130.0 134.7' Lost Core: (casing emplacement) 134.7 322.51 Limonitic Green Carbonate Zone: emerald green with frequent rusty limonitic intervals, brecciated but indurate, 50% white qtz.-carb filling trending at low angles to core axis, 5% hematite, limonite banding at low to 40 deg to CA, 33% fuchsite, rare specks of py, original rock type is completely masked by alteration, 135.0 -137.8 : cement, bedrock interface had to be cemented, 137.8 - 193.0 : intermittent low-angle gougy & rusty joints, approx. 95% core recovery, 224.0 - 234.0 : as above 304.0 - 307.0 : "

OLE NO. OS.

|           | PROPERTY        |                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PAGE 2                                                                                                                                                                                                |
|-----------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCATION  |                 |                                                                                                                                                | BEARING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HOLE NO. QS-81                                                                                                                                                                                        |
|           |                 | ELEVATION                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                       |
| STARTED   |                 |                                                                                                                                                | TESTS (CORRECTED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                       |
| FINISHED  |                 |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                       |
| CASING    |                 |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                       |
| CORE SIZE |                 |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                       |
| FROM      | то              |                                                                                                                                                | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       |
| 341.0     | 341.0<br>417.2' | bedding is at at brecciated & boud possibly slightly angle fractures, veinlets parallel bre-ciated & boud minor fine gr. py locally, lower con | soft to medicate of the second | ium hard, banding/ A & is histose, equent low carbonate kewise is f. gr., histocity cional, locally gs. up to 1" across wellowish cast ard, numerous res at low tic, fine py smears hards, white qtz. |
|           |                 |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                       |

HOLE NO. OS-81

|           | PROPERTY |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       | PAGE                                                             | 3        |
|-----------|----------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------|
| LOCATION  |          |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BEARING                                                                                                                                                                               | HOLE NO.                                                         | QS-81    |
|           |          |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DIPFINA                                                                                                                                                                               |                                                                  |          |
| STARTED   |          |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TESTS (CORRECTED                                                                                                                                                                      | ))                                                               |          |
| FINISHED  |          |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       |                                                                  |          |
| CASING    |          |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                                                                                                     |                                                                  |          |
| CORE SIZE |          |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       |                                                                  | ,        |
| FROM      | то       |                                                                                                                                          | Access to the second se | DESCRIPTION                                                                                                                                                                           |                                                                  |          |
| 417.2     | 443.0'   | 365.0<br>373.0<br>378.0<br>382.0 -<br>397.0 -<br>angle<br>Brecciat<br>pale y<br>pale y<br>low to<br>low-an<br>serici<br>437.0 -<br>above | - 367.0: - 377.0: - 379.0: 383.0: gr 405.6: br jointing, red Quartz- vellowish-correct fuchs moderate gled joint tized.  440.0: es but matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | core recovery  Ground Core """  round core roken up by low approximately  Carbonate Zone cream coloured site, hard, bre angles to CA, ting, specks py  sentially the c is strongly of | 10% core reconst.  with 10% ecciation at intermittent, matrix is | overy    |
|           |          |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       |                                                                  | HOLE NO. |

**PROPERTY** PAGE BEARING HOLE NO. QS-81 LOCATION. LOGGED BY\_\_\_\_\_\_FINAL DEPTH\_\_\_\_\_ TESTS (CORRECTED) STARTED\_\_\_\_ CASING \_\_\_\_ CORE SIZE FROM TO DESCRIPTION 443.0 501.8 Diabase Apophysis: black, f. gr., schistose, numerous low angle joints, upper contact is well qtz.-veined at 50 deg. to CA, equivalent to Diabase Chill Margin in hole QS-79, magnetitic, well altered by chloritization & shearing specks py, 453.0 - slicken slided joint surface parallel to CA, with minor hematite staining. 477.0 - 487.0 : intensely broken up by gougy low angle jointing, approximately 80-90% core recovery, 501.8 716.6' Chloritized & Carbonatized Ultramafic: bluish-black, with 15% white qtz-carb. veinlets at 0-40 deg to CA, soft, both serpentinized and steatitized locally, magnetitic, upper contact is broken up by a gougy joint or minor fault at apparently 30 deg. to CA, ultramafic is brecciated on contact area, intermittent low angle gougy joints, brecciated locally.

|           | DDODEDTV |                                                                                                                                                                                                                                                                      | <del>v </del>                                                                                                                      | PAGE 5                                 |
|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|           | PROPERTY |                                                                                                                                                                                                                                                                      |                                                                                                                                    |                                        |
| LOCATION  |          |                                                                                                                                                                                                                                                                      | BEARING                                                                                                                            | HOLE NOQS-81                           |
| LOGGED BY |          | ELEVATION                                                                                                                                                                                                                                                            | DIPFINAL DEPTH_                                                                                                                    |                                        |
| STARTED   |          |                                                                                                                                                                                                                                                                      | TESTS (CORRECTED)                                                                                                                  |                                        |
| FINISHED  |          |                                                                                                                                                                                                                                                                      | ·                                                                                                                                  |                                        |
| CASING    |          | ······································                                                                                                                                                                                                                               |                                                                                                                                    |                                        |
| CORE SIZE |          |                                                                                                                                                                                                                                                                      |                                                                                                                                    |                                        |
| FROM      | то       |                                                                                                                                                                                                                                                                      | DESCRIPTION                                                                                                                        |                                        |
|           |          | cloudy, glassy, visible, low ang.  515.5 - 517.0 : gro 523.0 - 527.0 : 546.6 - 548.6 : 562.0 - 593.0 : far.  562.0 - 567.5 : 50 both low and mod.  567.5 - 593.0 : in low angle jointi: 80% core recover:  644.0 - 672.0 : Far.  644.0 - 655.0 : in at low angles to | ound core """ ult zone % gouge, shearing & eratedangles. tensely broken up by ng & faulting, appro y. ult %one tensely sheared and | gouge at y gougy oximately chloritized |
|           |          | angles to CA,                                                                                                                                                                                                                                                        | e gouge, laulting a                                                                                                                | c low                                  |

|           | PROPERTY |                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PAGE 6                                                                                                          |               |
|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|
| LOCATION  |          |                                                                                                                                                                                            | BEARING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HOLE NO. QS-81                                                                                                  | ·             |
|           |          | ELEVATION                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |               |
| STARTED   |          |                                                                                                                                                                                            | _ TESTS (CORRECTED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |               |
| FINISHED  |          |                                                                                                                                                                                            | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |               |
| CASING    |          |                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |               |
| CORE SIZE | -44:     |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |               |
| FROM      | то       |                                                                                                                                                                                            | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |               |
| 716.6     | 784.3    | at 30 - 40 deg to of py, occasional low angles to CA, jointing at low as Sericitized & Carbon pale greenish buffive inlets at modernhard, upper containing, but to CA,  737.0 -775.0: 33 - | te qtz vein at 20 ization.  icified & Carbonat qtzcarb. veinlet CA, occasional sparren white qtz. intermittent low ngles to CA,  natized Felsic Tuff, 20 - 33% white at angles to CA, ct is gradational ermittent low to medding? at moderate of the color | zized Ultramafic<br>secks<br>veins at<br>angle  f: qtzcarb F. gr., occasional noderate e angles  at grey angles | HOLE NO. OS-S |

|           | PROPERTY              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                   | PAGE 8                                                                                                                                |         |
|-----------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------|
| LOCATION. |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BEARING                                                                                                                                                                                                                                                                                                           | HOLE NO. QS-8                                                                                                                         | 1       |
|           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DIPFINAL DEP                                                                                                                                                                                                                                                                                                      |                                                                                                                                       |         |
| STARTED   | AMBRIDA OF THE STREET |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TESTS (CORRECTED)                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |         |
| FINISHED  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                       |         |
| CASING    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                       |         |
| CORE SIZE |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                       |         |
| FROM      | то                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DESCRIPTION                                                                                                                                                                                                                                                                                                       |                                                                                                                                       |         |
| 828.2     | 869.0'                | veining, bedd  806.5 - 806.8 :     (porphyry) at py, & 3% qtz  824.2 - 824.7 :     at 55 deg to 1% py along b  Chloritized & Chl | finely bedded with ling at 40 - 45 deg  buff coloured silit 45 deg to CA with eyes, f. gr., very grey siliceous tuf CA very hard, f. groedding, Carbonatized Andesit with 25% white qtz-ceg. to CA, med. hard hanitic, rare specks dark grey siliceous anitic, finely bedd with light brown ceg, 1-3% diss'd py., | to CA,  ceous tuff 1% diss'd hard.  f (porphyry) . to aphanitic,  e Tuff: arb. veinlets to soft, of py,  s tuff, ed at 40 - arbonate? |         |
|           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                       | HOLE NO |

OLE NO. QS-81

| PAGE 7                     |
|----------------------------|
| HOLE NO. <u>QS-81</u>      |
|                            |
|                            |
|                            |
|                            |
|                            |
| ied                        |
|                            |
|                            |
| vein                       |
| m., <i>6.6</i>             |
| Tuff:<br>carb.<br>bedding/ |
| are<br>inage               |
| pilli<br>w<br>green        |
|                            |
| d py.                      |
| ?                          |
|                            |
|                            |
| , and a                    |

**PROPERTY** LOCATION\_\_\_\_\_\_BEARING\_\_\_\_\_\_F LOGGED BY\_\_\_\_\_\_ELEVATION\_\_\_\_\_\_DIP\_\_\_\_FINAL DEPTH\_\_\_ TESTS (CORRECTED) CORE SIZE \_\_\_ FROM TO DESCRIPTION veins at low angles to CA, well silicif. generally just specks of py. 743.0 - 750.0 : low angle jointing 745.0 - 750.0 : ground core 783.3 - 784.6 : barren white gtz.-carb. at 40 deg. to CA, 780.0 - 785.0 : Ground Core. 784.3 828.2 Seritized and Chloritized Intermediate pale yellowish green with white gtz.veinlets at 40 deg. to CA parallel to shearing?, both veinlets and bedding crenulated, fine gr., med. hard, boud: structured with possible siliceous lap frags, locally, rare specks of py, fee intermittent bands/beds of pale olive epidote & sericite. 797.0 - 804.0 : 20% fuchsite alteration, pale emerald green interval, 1% diss'd locally. 797.7 & 801.3 : light brown, alteration: associated with qtz. veinlets

|           | PROPERTY |                                         |                                                        |             | PAGE 9                   |
|-----------|----------|-----------------------------------------|--------------------------------------------------------|-------------|--------------------------|
| OCATION   |          |                                         | BEARING _                                              |             | ноге ио <mark>ОЗ8</mark> |
| OGGED BY  |          | ELEVATION                               | DIP                                                    | FINAL DEPTH |                          |
| TARTED    |          |                                         | TESTS (CO                                              | RRECTED)    |                          |
| INISHED   |          |                                         |                                                        |             |                          |
| ASING     |          |                                         |                                                        |             |                          |
| CORE SIZE |          |                                         |                                                        |             |                          |
| FROM      | то       |                                         | DESCR                                                  | IPTION      |                          |
|           | 869.0'   | 824.2 but<br>py.<br>854.3 - 854.<br>py. | 7: similar to contains more 7: as above a 0: broken up | carbonate : | l% diss'd.               |

QS-81 -HOLE NO. 10 -PAGE

| TO LENGTH ASSAYS  | 0.5.0.0.10.7.10.110                                      |
|-------------------|----------------------------------------------------------|
| oz/tor            | DESCRIPTIONS                                             |
| 0 248.0 5.0 0.002 | Limonitic Green Carbonate                                |
| 0 337.0 5.0 0.002 | Chl'd. Volcanoclastic: minor py.                         |
| 0 354.0 5.0 0.002 | Greywacke: fine diss. py specks 15% qtz. veinlets        |
| 0 411.0 5.0 0.004 | Tr 91 35 47 99                                           |
| 0 428.0 5.0 0.002 | Brec'd Qtz-Carb.: minor py.                              |
| 0 448.0 5.0 0.014 | Diabase:                                                 |
| 0 504.0 5.0 0.002 | Diabase/Ultramafic contact 15% qtz.                      |
| 4 507.4 2.0 0.008 | Silicified interval                                      |
| 0 642.0 5.0 0.002 | Ultramafic: up to 1% py. locally                         |
| 0 674.0 2.0 0.002 | white qtz. vein                                          |
| 6 715.6 5.0 0.002 | Sil'd & Carb'd. ultramafic: 33-50% qtz. vlts. specks py. |
| 6 717.6 2.0 0.004 | Contact of Sev'd Tuff: 1% py.                            |
| 6 722.6 5.0 0.002 | Ser'd Felsic Tuff: Specks py.                            |
| 7 737.0 4.3 0.002 | " " 33-50% gtz-veine specks py.                          |
| 0 742.0 5.0 0.002 | <b>Q</b> 11 bi 11 51                                     |
| 0 745.0 3.0 Tr.   | 11 13 11 11                                              |
| 0 753.0 3.0 .004  | 71 91 11 11                                              |
| 0 758.0 5.0 Tr.   | 21 19 91 27 21                                           |

| SAMPLE  | FROM     | то    | LENGTH | ASSAYS | DESCRIPTIONS                                      |  |  |  |  |
|---------|----------|-------|--------|--------|---------------------------------------------------|--|--|--|--|
| NO.     | FROM     | 10    | LENGIA | Au OZ  |                                                   |  |  |  |  |
| 3230    | 758.0    | 763.0 | 5.01   | Tr.    | 33-50%<br>Scr'd. Falsic Tuff:qtz. veined mine     |  |  |  |  |
| 3231    | 763.0    | 768.0 | 5.0'   | Tr.    | , 11 H H H H                                      |  |  |  |  |
| 3232    | 768.0    | 773.0 | 5.0'   | Tr.    | F                                                 |  |  |  |  |
| 8233    | 773.0    | 778.3 | 5.3    | .002   | 1 11 11 11                                        |  |  |  |  |
| 8234    | 778.3    | 780.0 | 1.7'   | Tr.    | White gtz. carb. vein: barren                     |  |  |  |  |
| 8235    | 797.0    | 802.0 | 5.0'   | .002   | Fuchsitic interval: Tr. py.                       |  |  |  |  |
| 8236    | 806.0    | 807.0 | 1.0'   | .002   | .25' siliceous banding: 1% py                     |  |  |  |  |
| 8237    | 824.0    | 825.  | 1.0'   | .018   | .4' siliceous Tuff: 1% py                         |  |  |  |  |
| 8238    | 832.0    | 833.4 | 1.4'   | .014   | " : 1-3% py                                       |  |  |  |  |
| 8239    | 835.0    | 836.0 | 1.0'   | .004   | .5' " " : 1% py                                   |  |  |  |  |
| 8240    | 854.0    | 855.0 | 1.0'   | .002   | .25' " " : 3% py                                  |  |  |  |  |
| 8241    | 864.0    | 869.0 | 5.01   | .002   | Chloritized & Carb'd Tuff.                        |  |  |  |  |
| Additio | nal Fill | in Sa | mplin  |        |                                                   |  |  |  |  |
| 8242    | 139.0    | 150.  | 5.0'   | Tr.    | Limonitic core Gr. Carbonate:Tr. py; 50% recovery |  |  |  |  |
| 8243    | 176.0    | 181.  | 5.0'   | er.    | 16 11 11 11 11                                    |  |  |  |  |
| 8244    | 193.0    | 198.  | 5.0'   | Φr.    | " : " ; 20% Otz-carb vs.                          |  |  |  |  |
| 8245    | 213.0    | 218.  | 5.0'   | Tr.    | D 11 H H H                                        |  |  |  |  |
| 8246    | 233.0    | 238.  | 5.0'   | .002   | tt 17 17 17 19 10                                 |  |  |  |  |
| 8247    | 274 0    | 279   | 5.0    | .002   | " : 1% py: " "                                    |  |  |  |  |

## SAMPLE RECORD SHEET

|       |      |       |        |         |       |     | <br>       |        |        |       | QS-81   |                                        | -HOL<br>PAG               |     |
|-------|------|-------|--------|---------|-------|-----|------------|--------|--------|-------|---------|----------------------------------------|---------------------------|-----|
| FROM  | ОМ   | то    | LENGTH | λu OZ T | ASSAY | Y S |            |        | DE     | SCRIP | TIONS   |                                        |                           | -   |
| 283   | 3    | 288   | 5.0'   | Tr      |       |     | Gr.        | Carb.: | tr.    | ру:   | 10% gtz | r-cai                                  | rb vs                     | •   |
| 307.  | 7.   | 312   | 5.0'   | .002    |       |     | , <b>i</b> | ·      |        |       |         | . 1                                    |                           |     |
| 317.  | 7.5  | 322.5 | 5.0    | Tr      |       |     | 1:         | ":     | CO     | ntact |         |                                        |                           |     |
| 322.  | 2.5  | 327.5 | 5.0    | .002    |       |     | Ch1:       | d Dac. | Vol    | canoe | lastic  | tr                                     | ру,                       | С   |
| 327.  | 7.5  | 332.0 | 4.51   | .002    |       |     | 11         | , H    |        | B     |         | ŧş                                     | ti                        |     |
| 337.  | 7.0  | 342.0 | 5.0    | .002    |       |     | 11         | ŧī     | - A-FF | 11    |         | 1)                                     | 11                        |     |
| 342.  | 2.0  | 349.0 | 7.0'   | .002    |       |     | Grey       | wacke: | 15%    | qtz.  | vlts.   | tr.                                    | ру.                       |     |
| 354.  | 4.0  | 359.0 | 5.0    | .002    |       |     | 96         |        | 11     | Ħ     | 11      | 11                                     | **                        |     |
| 359.  | 9.0  | 364.0 | 5.0    | .002    |       |     | 11         |        | 17     | H     |         | 11                                     | *1                        |     |
| 364.  | 4.0  | 369.0 | 5.0    | .002    |       |     | •1         |        | H      | 11    | H       | 11                                     | n                         | ,   |
| 369.  | 9.0  | 377.0 | 8.0    | Tr.     |       |     | 71         |        | 17     | 11    | lt      | 11                                     | **                        |     |
| 377.  | 7.0  | 382.0 | 5.0    | .002    |       |     | 17         |        | W      | Ħ     | Ħ       | **                                     | #1                        |     |
| 382.  | 32.0 | 387.0 | 5.0    | .002    |       |     | 11         |        | 91     | *1    | ri      | †1                                     | 71                        |     |
| 387.  | 37.0 | 392.0 | 5.0    | .004    |       |     | <b>*</b> 1 |        | 1*     | 11    | II      | 13                                     | 71                        |     |
| 392.  | 2.0  | 397.0 | 5.0    | .002    |       |     | 11         |        | 11     | 11    | 11      | 11                                     | 1)                        |     |
| 397.  | 7.0  | 406.0 | 9.0    | .004    |       |     | ŧJ         |        | 1)     | ţı    | 11      | 11                                     | 11                        |     |
| 411.  | 1.0  | 416.0 | 5.0    | .002    |       |     | 91         |        | 11     | ţ:    | 17      | 1†                                     | 1f                        |     |
| 41.6. | .6.0 | 423.0 | 7.0    | .012    |       |     | Brec       | 'd Qtz | Ca:    | rb.:  | tr. py  | 7                                      |                           |     |
| 428.  | 8.0  | 433.0 | 5.0    | .002    |       |     | *1         | 71     |        | 11    | 11 11   | er kalana merikesi ili rama tila da ke | te to chaffe and a second |     |
|       |      |       |        |         |       |     |            |        |        |       |         |                                        | FOR                       | A 8 |

# SAMPLE RECORD SHEET

|                                 |   | ASSAY |            |        | ļ     | SAMPLE FROM TO |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|---|-------|------------|--------|-------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTIONS                    |   |       | OZ<br>Au t | LENGTH | то    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ree'd Otz-Carb: tr. py          |   |       | .002       | 7.0    | 440.  | 433.0          | 8267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ltramafic: tr. cpy, 2% py cubes |   |       | .002       | 1.5    | 709.0 | 707.5          | 8268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |   |       |            |        |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |   |       |            |        |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |   |       |            |        |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |   |       |            |        |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |   |       |            |        |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |   |       |            |        |       |                | Hillian to the second of the s |
|                                 |   |       |            |        |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |   | <br>  |            |        |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |   |       | ,          |        |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |   |       |            |        |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |   |       |            |        |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |   |       |            |        |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |   |       |            |        |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |   |       |            |        |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |   |       |            |        |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | , |       |            |        |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F                               |   |       |            |        |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

÷ Lot 11, Conc. II; Taylor Twp., Ont. PAGE 1 PROPERTY (Timmins Ares) LOCATION Line 2+00 W, 3+00 North QS-82 BEARING 360 deg HOLE NO. LOGGED BY O. Zavesiczky ELEVATION Surface DIP -55 degNal DEPTH 695.0' August 29/83 TESTS (CORRECTED) 160 : -57 deg STARTED\_ September 6/83 360': -54 deg FINISHED\_ 560': -52 deg casing blasted & pulled out 690': -52 deg CASING \_ BQ: Dominik Diamond Drilling Ltd. (Timmins) CORE SIZE FROM то DESCRIPTION

| 1110111 |       |                                                                                                                                                                                                                                                       |
|---------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0     |       | 0.0 - 57.0': Sand & Clay<br>57.0 - 100.0' boulders & making water<br>100.0 - 160.0': sand & clay                                                                                                                                                      |
| 160.0   | 163.0 | Lost Core: casing emplacement                                                                                                                                                                                                                         |
| 163.0   | 226.0 | Coarse Andesite: (Diorite) greenish-grey, fresh-looking, fine to medium grained, medium, hard, non-magnetic, massive intermittent hematité & limonite stained low angle joints, minor qtzcarb. fracture-filling at low angles to CA,                  |
|         |       | 163.0 - 174.0 : medium grained phase                                                                                                                                                                                                                  |
|         |       | 226.0 - 229.0 : ground core.                                                                                                                                                                                                                          |
| 226.0   | 346.0 | Andesite:    greyish-green, f-gr. to aphanitic, med.    hard, 10-15% white gtzcarb. veinlets & stockwork    at predominantly low angles to CA, intermittent    low to moderate angled gougy joints, alteration    or flow banding at 30-40 deg to CA, |
|         |       | 226.0 - 274.0 : bleached in appearence                                                                                                                                                                                                                |
|         |       | 226.0 - 231.0 : low-angle jointing & drppped core,                                                                                                                                                                                                    |
|         |       | 254.0 - 255.5 : minor faulting showing up to 1/2" displacement on qtz. veinlet.                                                                                                                                                                       |
|         |       |                                                                                                                                                                                                                                                       |
|         |       |                                                                                                                                                                                                                                                       |

|           | PROPERTY |                                                                 |                                                                       | PAGE               | 2               |
|-----------|----------|-----------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|-----------------|
| LOCATION  |          |                                                                 | _BEARING                                                              | _HOLE NO.          | QS-82           |
| LOGGED BY |          | ELEVATION                                                       | _ DIPFINAL DEPTH                                                      |                    |                 |
| STARTED   |          | ·                                                               | _ TESTS (CORRECTED)                                                   |                    | ·               |
| FINISHED  |          |                                                                 |                                                                       |                    |                 |
| CASING    |          |                                                                 |                                                                       |                    |                 |
| CORE SIZE |          |                                                                 |                                                                       |                    |                 |
| FROM      | то       |                                                                 | DESCRIPTION                                                           |                    |                 |
|           |          |                                                                 | ntermittent purple<br>ts at 20-40 deg. to<br>d. hematite, py & c      | CA,                | ed              |
|           |          | 276.0 - 345.0 : becomporphyry.                                  | oming more bleached                                                   | toward             | ls              |
|           |          | 308.0 - 345.0 : inte                                            | ermittent low to mo                                                   | d. angl            | le              |
|           |          | 308.7 - 310.7 : 20% subparallel to CA.                          | pinkish & limoniti                                                    | c qtz.             | veining         |
|           |          | 335.8 - 346.0 : 5% pmoderate angles.                            | oink qtz. veining a                                                   | t low t            | <b>:0</b> ,     |
| 346.0     | 352.0    | Lost Core: ground co                                            | ore contact obliter                                                   | ated.              |                 |
| 352.0     | 432.0    | greyish-cream cold                                              | nert)<br>oured, brecciated w<br>rofractures, very h<br>s. py locally, | ith Qtz<br>ard, f. | carb.<br>gr. to |
|           |          | 353.6 - 375.2 : Faul<br>gougy joints                            | lt Zone: Shattered                                                    | core, 1            | ow angle        |
|           |          | 356.0 - 358.0 : Grou                                            | and Core                                                              |                    |                 |
|           |          | 360.0 - 365.0 : short possible zenoliths                        | et fuchsitic & alte<br>s or interbeds.                                | red int            | ervals          |
|           |          | 379.0 - 389.5 : pale<br>interval, f. gr.,<br>siliceous possibly | e green-grey & carb<br>generally hard,<br>an andesite xenol           |                    | [-              |

HOLE NO. QS-82

**PROPERTY** PAGE 4 BEARING HOLE NO. QS-82 LOGGED BY\_\_\_\_\_\_ELEVATION\_\_\_\_\_\_DIP\_\_\_\_FINAL DEPTH\_\_\_\_ STARTED\_\_\_\_\_\_TESTS (CORRECTED)\_\_\_\_\_ CASING \_\_\_\_\_ CORE SIZE \_\_\_\_ TO FROM DESCRIPTION 512.6 573.0 Quartz-Breccia: 66% rounded to subrounded qtz. frags., ranging up to 2" in size, set in a greenish-brown interstitial matrix green colour similar to green carbonate zone but paler, upper contact is broken up but colour change is sharp, fabric angles are subparallel to low to CA, rare specks py, rock appears to be due drecciation formed as opposed to volcanic. 512.8 - 514.0 : argillite interbed: black, aphanitic, medium hard contacts at apparently 30 deg. to CA, shattered by low angle jointing 512.8 - 529.8 : frequent low angle gougy joints.

DS-

| PR | OP | <b>ER</b> | TY |  |
|----|----|-----------|----|--|
|----|----|-----------|----|--|

| LOCATION  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BEARING                                                                                                                                                                                              | HOLE NO                                                             | QS-82   |
|-----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------|
|           |          | ELEVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                      |                                                                     |         |
| STARTED   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TESTS (CORRECTED)                                                                                                                                                                                    |                                                                     |         |
| FINISHED  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                      |                                                                     |         |
| CASING    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                      |                                                                     |         |
| CORE SIZE | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                      |                                                                     |         |
| FROM      | то       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DESCRIPTION                                                                                                                                                                                          |                                                                     |         |
| 432.0     | 512.6    | approx. 90%;  427.0 - 428.0 : Green Carbonate Zonemerald green, wingtzcarb. veining low angles to CA of pyrite, 33-500 type is masked,  432.0 - 483.0 : journal jour | ound Core  ne: ith 33- 50% white ng locally at pred brecciated, rare fuchsite, origin inting as above at ound Core. ght grey to yellow ated interval, ound core tensely shattered % low angle qtz. v | specks al rock  432.0  ish green,  and  eining  me qtz., arbonate t |         |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                      |                                                                     | HOLE NO |

|           | PROPERTY |           |                                                                                                                                                                                           | PAGE 6                                                                                                                                                                         |
|-----------|----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCATION  |          |           | BEARING                                                                                                                                                                                   | HOLE NO. <u>OS-82</u>                                                                                                                                                          |
| LOGGED BY |          | ELEVATION | DIPFINA                                                                                                                                                                                   | L DEPTH                                                                                                                                                                        |
| STARTED   |          |           | TESTS (CORRECTED                                                                                                                                                                          | )                                                                                                                                                                              |
| FINISHED  |          |           |                                                                                                                                                                                           |                                                                                                                                                                                |
| CASING    |          |           |                                                                                                                                                                                           |                                                                                                                                                                                |
|           |          |           |                                                                                                                                                                                           |                                                                                                                                                                                |
| FROM      | то       |           | DESCRIPTION                                                                                                                                                                               |                                                                                                                                                                                |
| 623.9     | 644.5'   |           | ith 33-50% qtz. es to CA, matri ally, veinlets cally, original er, contact is t possibly at 3 requent intermies, approx. 80% rey porphyry, s rd, banding at ch 25% white qt CA, med. Hard | -carb veinlets x is intensely are contorted rock type obscured by 5 deg. to CA.  ttent jointing core recovery,  iliceous, 35 to 40 to CA.  icified Ultramafic: zcarb. vlts, at |
|           |          |           |                                                                                                                                                                                           | HOLE NO.                                                                                                                                                                       |

| 5   |    |     |     |   |
|-----|----|-----|-----|---|
| )S: | -8 | 2   |     | _ |
|     |    |     |     |   |
|     |    |     |     |   |
|     |    |     |     |   |
|     | ,  |     |     |   |
|     |    |     |     |   |
| en  | t  |     | _   |   |
| 0   | ve | re  | 11  |   |
| 0   | ve | re  | 11  |   |
| 0   | ve | ere | 11  |   |
| 0   | ve | ere | 11  |   |
| 0   | ve | ere | 11  |   |
| 0   | ve | ere | 11  |   |
| 0   | ve | re  | 11  |   |
| ,   | ve | ere | 11: |   |
| •   | ve | re  | 11: |   |

|           | PROPERTY |                                                     |                                                                                                       | PAGE                                            | 5                 |
|-----------|----------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------|
| LOCATION  |          |                                                     | BEARING                                                                                               | HOLE NO.                                        | QS-82             |
|           |          | ELEVATION                                           |                                                                                                       | •                                               |                   |
| STARTED   |          |                                                     | TESTS (CORRECTED) _                                                                                   |                                                 |                   |
| FINISHED  |          |                                                     | ·                                                                                                     |                                                 |                   |
| CASING    |          |                                                     |                                                                                                       |                                                 |                   |
| CORE SIZE |          |                                                     |                                                                                                       |                                                 |                   |
| FROM      | то       |                                                     | DESCRIPTION                                                                                           |                                                 |                   |
|           |          | 529.8 - 563.0 : F<br>gougy & jointed<br>low angles. | ault Zone, numero<br>intervals, 66%                                                                   | us intermit<br>core recover                     | tent<br>y overall |
| ÷         |          | 552.0 - 557.0 : g                                   | round core                                                                                            |                                                 |                   |
| 573.0     | 604.2    | Green Carbonate:<br>as above at 432<br>broken up.   | .0, upper contac                                                                                      | t <b>is</b>                                     |                   |
| 604.2     | 623.9    | contact is qtz.                                     | .6 to 573.0', up<br>-veined & brecci<br>t approx. 25 deg                                              | ated but                                        |                   |
|           |          | qtz. veins & ve<br>angles to CA, k<br>locally qtzbr | reywacke, light od, 20% blue & wheinlets at low an edding at 30 to reccia as above, roken up and vagu | ite<br>d moderate<br>40 deg. to C<br>specks py, |                   |
|           |          |                                                     |                                                                                                       |                                                 |                   |
|           |          |                                                     |                                                                                                       |                                                 | <b>-</b>          |
|           |          |                                                     |                                                                                                       |                                                 | HOLE              |

|           | PROPERTY |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | PAGE 7         |
|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------|
| LOCATION  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BEARING                                         | HOLE NO. QS-82 |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DIPFINAL DEPT                                   |                |
| STARTED   |          | April 100 and | TESTS (CORRECTED)                               |                |
| FINISHED  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                |
| CASING    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                |
| CORE SIZE |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                |
| FROM      | то       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DESCRIPTION                                     |                |
|           |          | 646.5 - 695.0<br>very frequen<br>intervals at<br>approx 67% c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t gougy joints and bro<br>various angles to CA, | <b>ken u</b> p |
|           |          | 671.0 - 677.0 away core.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : Ground & washed                               |                |
|           | 695.0'   | End of Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                |
|           |          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | HO LE NO       |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | NO.            |

E NO. QS=82

OS-82 -HOLE NO. -PAGE

| SAMPLE | FROM  | то     | LENGTH | ASSAYS | DESCRIPTIONS                              |
|--------|-------|--------|--------|--------|-------------------------------------------|
| NO.    | NO.   |        | Au t   |        |                                           |
| 8271   | 194.  | 199.   | 5.0'   | Tr.    | Diabase: 2% gtz. veinlets                 |
| 8272   | 262.4 | 265.5  | 3.1'   | Tr.    | Andesite: 5% purple qtz. veining wi       |
| 8273   | 273.0 | 278.0  | 5.01   | Tr.    | qtz. vlts. Andesite: 15% white qtz. vlts. |
| 8274   | 308.7 | 310.7  | 2.0'   | .002   | " : 20% pink & lim. qtz. v.               |
| 8275   | 335.8 | 340.8  | 5.0'   | Tr.    | " : 5% " qtz. vlts.                       |
| 8276   | 340.8 | 346.0  | 5.2*   | Tr.    | [t 11 t) 31 33                            |
| 8277   | 352.0 | 356.0  | 4.0'   | .004   | Porphyry: 1% diss py, 50% core reco       |
| 8278   | 358.0 | 363.0  | 5.0'   | .002   | 11 ; 11 H 808 H                           |
| 8279   | 363.0 | 368.0  | 5.0'   | .002   | " ; " " 66% " "                           |
| 8280   | 375.0 | 380.0  | 5.0'   | .002   | " : Specks py.                            |
| 8281   | 412.0 | 417.0  | 5.0'   | .008   |                                           |
| 8282   | 477.0 | 182.0  | 5.0'   | .004   | Green Carb.: 50% qtz. specks py.          |
| 8283   | 482.0 | 487.0  | 5.0'   | .006   | F7 E1 11 16 15 41                         |
| 8284   | 487.0 | 1492.0 | 5.01   | .002   | ES DE 13 DS 41 S1                         |
| 8285   | 507.6 | 512.6  | 5.01   | .002   | " : qtzbreccia                            |
| 8286   | 512.6 | 514.0  | 1.4'   | .016   | " " : argillite interbed                  |
| 8287   | 514.0 | 519.0  | 5.0'   | .056   | Qtz. Breccia : 1% py & cpy.               |
| 8288   | 568.0 | 573.0  | 5.0'   | .002   | l u n                                     |

# SAMPLE RECORD SHEET

| RTY~         |              | 1            | +            | <u> </u> |      | gPAC                                          |
|--------------|--------------|--------------|--------------|----------|------|-----------------------------------------------|
| SAMPLE       | FROM         | то           | LENGTH       |          | SAYS | DESCRIPTIONS                                  |
| NO.          |              |              | LLITOIT      | Au t     |      | DE CONTITUTORO                                |
| 8289         | 573.0        | 578.0        | 5.0'         | .002     |      | Green Carbonate: 33-50% qtz. vein             |
| 8290         | 578.         | 583.         | 5.0'         | Tr.      |      | 11 11 11 11 11                                |
| 8291         | 583.         | 588.         | 5.0'         | .002     |      | " " " " " " " " " " " " " " " " " " " "       |
| 8292         | 588.         | 593.         | 5.0'         | Tr.      |      | ": 20% ""                                     |
| 8293         | 593.         | 599.         | 6.0'         | Tr.      |      | " : 66% " "                                   |
| 8294<br>8295 | 599.<br>604. | 604.<br>609. | 5.0'<br>5.0' |          |      | " : " " " " " Greywacke: 20% qtz. vlts. 1% py |
| 8296         | 609.0        | 613.1        | 4.1          | .006     |      | 9                                             |
| 8297         | 624          | 629.0        | 5.0          | .002     |      | Sil'd & Carb'd Shr. Znne: 33 - 509<br>Otzcarb |
| 8298         | 640.0        | 461.0        | 1.0'         | .024     |      | .5' Grey Porphyry,                            |
| 8299         | 690.0        | 695.0        | 5.0          | .002     |      | Ultramafic : End of Hole                      |
| Additio      | onal Fil     | il in S      | amplir       | ıġ       |      |                                               |
| 9101         | 519.0        | 524.0        | 5.0'         | .018     |      | Qtz. Brec: specks py & cpy                    |
| 9102         | 524.0        | 529.0        | 5.0'         | .006     |      | " ": Fault Zone                               |
| 9103         | 529.0        | 534.0        | 5.01         | .002     | - A  | " " : " "                                     |
| 9104         | 534.0        | 539.0        | 5.0'         | Tr.      |      | . " " " "                                     |
| 9105         | 539.0        | 544.0        | 5.0'         | .002     |      | n . n n                                       |
| 9106         | 544.0        | 549.0        | 5.0'         | .002     |      | tt 11 tt 11                                   |
| 9107         | 549.0        | 552.0        | 3.0'         | .002     |      | 11 11 <b>1</b> 1 11                           |
| 9108         | 557.0        | 562.0        | 5.0'         | Tr.      |      | n n                                           |

-

### SAMPLE RECORD SHEET

QS-82 -HOLE NO. 10 -PAGE PROPERTY-ASSAYS SAMPLE TO LENGTH DESCRIPTIONS FROM OZ Au t NO. Qtz. Brec : specks py & cpy 9109 562.0 568.0 6.0' .004 613.1 618.1 9110 5.0' .006 618.1 624.0 5.91 9111 .002 FORM 8609

|             | PROPERTY    | Lot 11, Conc. II; Taylor Twp., Ont. PAGE 1 (Timmins Area)                                                                                                                                                                  |
|-------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCATION_Li | ine 2 + 00  | W, 10 + 00 Notth BEARING 360 deg. HOLE NO. QS-83                                                                                                                                                                           |
| LOGGED BY O | . Zavesiczk | SY ELEVATION Surface DIP 55 degnal DEPTH 567.0'                                                                                                                                                                            |
| STARTED SE  | eptember 10 | hole collapsed 114': -55.5 deg                                                                                                                                                                                             |
| FINISHED SE | eptember 16 | <u>, 1983:in ultramafic</u> 314': -56.0 deg                                                                                                                                                                                |
| CASING C    | asing blast | 514': -57.0 deg                                                                                                                                                                                                            |
|             |             | Diamond Drilling Ltd., (Timmins)                                                                                                                                                                                           |
| FROM        | 10          | DESCRIPTION                                                                                                                                                                                                                |
| - THOM      | 10          |                                                                                                                                                                                                                            |
| 0.0         | 126.0'      | Overburden                                                                                                                                                                                                                 |
|             |             | 0.0' - 62.0': Sand & clay 62.0' - 109.0': boulders & sand (making water) 109.0' - 126.0': ledge area; cored granite, gabbro & volcanic boulders. (hole cemented from 114.0 to 135.0')                                      |
| 126.0'      | 138.0'      | Massive Greywacke: grey, f. gr., med. hard to hard, 5% minute white qtzcarb. filled tension cracks at low to mod. angles to CA, broken up by frequent low & mod. angle jointing,                                           |
|             |             | 136.0' - 137.0': hematite in gtzcarb vlts.<br>at mod. angles.                                                                                                                                                              |
| 138.0'      | 264.1'      | Sheared Diabase: black, fine to med. gr., magnetic, med. hard, vvery broken up by gougy faults & joints at predominantly low angles, upper contact is broken up but appears to be on a fault subparallel to CA, specks py. |
|             |             | 142.0' - 220.0': Fault Zone approximately 25-<br>33% core recovery                                                                                                                                                         |
|             |             |                                                                                                                                                                                                                            |
|             |             | HOLE NO. QS                                                                                                                                                                                                                |

DOCKET NO. 8608 NO. QS-83

|           | PROPERTY |                                                              | page 2                                                                                                                     |      |
|-----------|----------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------|
| LOCATION  |          |                                                              | BEARING HOLE NO. 05-83                                                                                                     |      |
|           |          |                                                              | DIPFINAL DEPTH                                                                                                             |      |
| STARTED   |          |                                                              | TESTS (CORRECTED)                                                                                                          |      |
| FINISHED  |          |                                                              |                                                                                                                            |      |
| CASING    |          | ·                                                            |                                                                                                                            |      |
| CORE SIZE |          |                                                              |                                                                                                                            |      |
| FROM      | то       |                                                              | DESCRIPTION                                                                                                                |      |
|           |          | 148.0' - 157.0':<br>157.0' - 167.0':                         | shattered core 10% core recovery " 33% " " with slickensliding on subparallel slip planes shattered core 33% core recovery |      |
|           |          | -178.0" : 1                                                  | nematite stain on low angle slip.                                                                                          |      |
|           |          | 179.0' - 183.0':                                             | ground core                                                                                                                |      |
|           |          | 185.5' - 191.0':                                             | shattered & gougy core                                                                                                     |      |
|           |          | 187.0'=189.0<br>190.0'-195.0<br>198.0' - 220.0' :            |                                                                                                                            |      |
|           |          | 198.0'-201.0<br>203.0'-207.0<br>208.0'-211.0<br>217.5'-220.0 | ': Ground Core ': " " ': " " ltramafic inclusion essentially w at 264.1', well serpentinized                               |      |
|           |          |                                                              |                                                                                                                            | ноге |

OLE NO. OS-83

|           | PROPERTY | PAGE 3                                                                                                                                                                                                                                                                                                                               |
|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCATION  |          | BEARING HOLE NO. QS-83                                                                                                                                                                                                                                                                                                               |
|           |          | ELEVATIONDIPFINAL DEPTH                                                                                                                                                                                                                                                                                                              |
| STARTED   |          | TESTS (CORRECTED)                                                                                                                                                                                                                                                                                                                    |
| FINISHED  |          |                                                                                                                                                                                                                                                                                                                                      |
| CASING    |          | ·                                                                                                                                                                                                                                                                                                                                    |
| CORE SIZE |          |                                                                                                                                                                                                                                                                                                                                      |
| FROM      | то       | DESCRIPTION                                                                                                                                                                                                                                                                                                                          |
|           |          | 227.5' - 264.1': intermittent slightly gougy, low-<br>angled joints,<br>diabase not pronouncedly sheared.                                                                                                                                                                                                                            |
|           |          | 258.0' - 264.1': f. gr. to aphanitic chill margin.                                                                                                                                                                                                                                                                                   |
| 264.1'    | 336.3'   | Chloritized & Carbonatized Ultramafic:  black , messy in appearence, 15-20% white  gtzcarb. vlts. at predominantly low angles  to CA, very schistose, soft, well  chloritized, moderately talcose, frequent  jointed & gouge intervals at low angles to  CA, upper contact is a gouge fault at apparently 5  deg, rare specks of py. |
|           |          | 287.0'-291.0': 10% pink qtzcarb. vlts. at 30-40 deg.                                                                                                                                                                                                                                                                                 |
|           |          | 297.0'-302.0': gouge, contacts at apparently mod. angles.                                                                                                                                                                                                                                                                            |
|           |          | 327.9'=330.8': gouge, contacts at apparently low angles.                                                                                                                                                                                                                                                                             |
|           |          |                                                                                                                                                                                                                                                                                                                                      |
|           |          | <b>-</b>                                                                                                                                                                                                                                                                                                                             |
|           |          |                                                                                                                                                                                                                                                                                                                                      |

|          | PROPERTY |                                                                                                               |                |                                                                                                                                                   | PAGE                                                                  | 4       |
|----------|----------|---------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------|
| LOCATION |          |                                                                                                               | BEARING_       |                                                                                                                                                   | HOLENO                                                                | 05~83   |
|          |          | ELEVATION                                                                                                     |                |                                                                                                                                                   |                                                                       |         |
|          |          |                                                                                                               |                |                                                                                                                                                   |                                                                       |         |
|          |          |                                                                                                               |                |                                                                                                                                                   |                                                                       | ***     |
|          |          |                                                                                                               |                |                                                                                                                                                   |                                                                       |         |
|          |          |                                                                                                               |                |                                                                                                                                                   |                                                                       |         |
| FROM     | то       |                                                                                                               | DESCRIP        | TION                                                                                                                                              | ***                                                                   |         |
| 336.3'   | 442.0'   | grey, slight fine-medium minute magne 20 deg.  352.0' - 357.3  364.0'-364.5':  370.0'-371.3':  403.7'-408.7': | mod. angle sli | appearence m hard, 159 e schistoside core le jointing porphyry or n at 40 deg deg. with line e stain teration, e tz. & tourmet, low & lps, 66% co | e,<br>%<br>ty at<br>g<br>g<br>g,,<br>n<br>epidote?<br>a <b>line</b> f | racture |

HOLE NO. QS-83

5

### PROPERTY

:

|           | PROFERIT |                                                                                                                                                                                                                                                                                                       |
|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCATION  |          | BEARINGHOLE NO. QS-83                                                                                                                                                                                                                                                                                 |
| LOGGED BY |          | ELEVATION DIP FINAL DEPTH                                                                                                                                                                                                                                                                             |
| STARTED   |          | TESTS (CORRECTED)                                                                                                                                                                                                                                                                                     |
| FINISHED  |          |                                                                                                                                                                                                                                                                                                       |
| CASING    |          |                                                                                                                                                                                                                                                                                                       |
| CORE SIZE |          |                                                                                                                                                                                                                                                                                                       |
| FROM      | то       | DESCRIPTION                                                                                                                                                                                                                                                                                           |
| 442.0'    | 444.0'   | Ground Core                                                                                                                                                                                                                                                                                           |
| 444.0'    | 463.0'   | Grey Porphyry: (Welded Tuff?) light grey, f. gr. to aphanitic, siliceous, hard microfractured with gtzfilling, appears to be qtz. fragmental under the hard lens, siliceous matrix, core is shattered with slips at both low and moderate angles, rare specks of py, approximately 66% core recovery, |
|           |          | 445.0'-447.0': Ground Core<br>450.0'-451.0': " "                                                                                                                                                                                                                                                      |
| 461.0'    | 463.0'   | Ground Core                                                                                                                                                                                                                                                                                           |
| 463.0'    | 484.0'   | Chloritized & Carbonatized Ultramafic: as above at 264.1',                                                                                                                                                                                                                                            |
|           |          | 478.0'-484.0': shattered core, approx. 50% core recovery.                                                                                                                                                                                                                                             |
| 484.0'    | 495.0'   | Ouartz Veined and Silicified Zone: 80% pale whitish grey-green gtz. veining at predominantly low angles                                                                                                                                                                                               |
|           |          | O FE NO.                                                                                                                                                                                                                                                                                              |
|           |          | OS I 83                                                                                                                                                                                                                                                                                               |

| •         | PROPERTY |                                                                                       |                                     | PAGE 6                                             |          |
|-----------|----------|---------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------|----------|
| LOCATION  |          |                                                                                       | BEARING                             | HOLE NO. QS-83                                     |          |
|           |          | FLEVATION                                                                             |                                     |                                                    |          |
|           |          |                                                                                       |                                     |                                                    |          |
| FINISHED  |          |                                                                                       |                                     |                                                    |          |
| CASING    |          |                                                                                       |                                     |                                                    |          |
| CORE SIZE |          |                                                                                       |                                     |                                                    |          |
| FROM      | то       |                                                                                       | DESCRIPTION                         |                                                    |          |
|           |          | host rock xenoliths<br>shattered core, 50%<br>specks of fine pyrit                    | core recovery,                      |                                                    |          |
| 495.0'    | 497.0'   | Ground Core:                                                                          |                                     |                                                    |          |
| 497.0'    | 509.5'   | Silicified Felsic To<br>Pale yellowish gre<br>banding at 35 deg<br>along bedding/foli | ey, fine gr., be., $33-50\%$ gtz-ca | rb. vlts.                                          |          |
|           |          | qtz.                                                                                  | k, aphanitic, fa                    | e Interbed:<br>int bedding, 10%<br>contact at 35 d |          |
|           |          | 509.0'-509.5': shatt                                                                  | tered gougy core                    |                                                    |          |
| 509.5'    | 530.0'   | White Quartz Vein:<br>subparallel to CA,<br>py, shattered core                        |                                     |                                                    |          |
|           |          | 514.0'-517.0': Felsi                                                                  | ic Tuff as above                    |                                                    |          |
|           |          |                                                                                       |                                     |                                                    |          |
|           |          |                                                                                       |                                     |                                                    |          |
|           |          | :                                                                                     |                                     |                                                    |          |
|           |          |                                                                                       |                                     |                                                    | <u> </u> |
|           |          |                                                                                       |                                     |                                                    | HOLE NO. |
|           |          |                                                                                       |                                     |                                                    | QS-83    |

3

7 **PROPERTY** PAGE BEARING HOLE NO. OS-83 LOGGED BY ELEVATION \_\_\_\_\_\_DIP\_\_\_\_FINAL DEPTH\_\_\_\_\_ STARTED\_\_\_\_\_\_TESTS (CORRECTED) \_\_\_\_\_\_ FINISHED\_ CASING \_\_\_\_ CORE SIZE DESCRIPTION FROM то 518.0'=523.0': Ground Core 530.0' 545.51 Chloritized & Carbonatized Ultramafic: as above 545.51 559.51 Porphyritic Trap Dyke: (Peculiar phase of Diabase Dyke?) 545.5'-549.5': chill margin, greenish-black f. gr. to aphanitic, slightly magnetic, trace py, 50 deg. upper contact, 546.7'-547.4': low angle jointing 548.5'-559.5': 10% white rhombic & square glassy feldspar phenocrysts 1/8\* set in a black f. gr. to aphanitic matrix, magnetic, medium hard, trace pyrite, lower contact area is bleached, contact is shattered. 559.51 567.0' Chloritized & Carbonatized Ultramafic: as above but contaminated by trap intrusion 567.0' End of Hole: hole collapsed in ultramafic seizing rods.

| SAMPLE | ]     |       | '      | ASSAYS | 8                                          |
|--------|-------|-------|--------|--------|--------------------------------------------|
| NO.    | FROM  | то    | LENGTH | Au t   | DESCRIPTIONS                               |
| 8300   | 126.0 | 132.0 | 6.0'   | .004   | massive gwke: core broken up 5% gtz. vlts. |
| 8301   | 132.0 | 138.0 | 6.0'   | .002   | tr 11 11 11                                |
| 8302   | 138.0 | 142.0 | 4.0'   | Tr.    | Shr'd diabase                              |
| 8303   | 287.0 | 292.0 | 5.0'   | Tr.    | Ultramafic: 10% pink qtzcarb vlts          |
| 8304   | 370.0 | 371.3 | 1.3    | Tr.    | grey porphyry                              |
| 8305   | 371.3 | 376.3 | 3 5.0' | Tr.    | Diabase:                                   |
| 8306   | 395.0 | 396.0 | 0 1.0' | Tr.    | " : qtz. vlt. & tourmaline                 |
| 8307   | 403.7 | 408.7 | 7 5.0' | Tr.    | Diabase: 5-10% hematite                    |
| 8308   | 421.5 | 423.5 | 5 2.0' | Tr.    | " : 5% qtz. vlt. & epidote                 |
| 8309   | 444.0 | 450.0 | 6.01   | .002   | Grey Porphyry: tr. py, 5% ptz. vlts        |
| 8310   | 450.0 | 455.0 | 5.0'   | .006   | " ": 450.0-451.0 ground co                 |
| 8311   | 455.0 | 463.0 | 8.0'   | .004   | " : 461.0-463.0 "                          |
| 8312   | 471.0 | 476.0 | 5.01   | .002   | Ultramafic                                 |
| 8313   | 484.0 | 489.0 | 5.0'   | Tr.    | OtzVeined: 80% qtz. vs.                    |
| 8314   | 489.0 | 495.0 | 6.0'   | Tr.    | 71 11 to 16                                |
| 8315   | 497.0 | 498.5 | 1.5'   | .002   | Sil'd Felsic Tuff: 33-50% gtz. vlts        |
| 8316   | 498.5 | 501.0 | 2.5'   | Tr.    | argillite : 3% py                          |
| 8317   | 501.0 | 506.0 | 5.01   | .004   | Sil'd Felsic Tuff: 33-50% qtz. vlts        |
| 8318   | 506.0 | 509.5 | 3.5'   | .002   | pt 21 \$9 \$1 \$1 \$1                      |

.

# SAMPLE RECORD SHEET

| ERTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       |        |            | SAMPLE F | ECORD | SHEET | OS-83 -HOLE<br>9 -PAGE                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|------------|----------|-------|-------|---------------------------------------|
| SAMPLE<br>NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FROM  | то    | LENGTH | OZ<br>Au t | ASSAYS   |       |       | DESCRIPTIONS                          |
| 8319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 509.5 | 514.0 | 4.5    | Tr.        |          |       |       | Qtz. Vein: tr. py.                    |
| 8320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 514.0 | 523.0 | 8.0    | Tr.        |          |       |       | " ": & Felsic Tuff: 50% core recovery |
| 8321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 523.0 | 530.0 | 7.0    | .002       |          |       |       | QTZ. Vein : tr. py                    |
| 8322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 541.0 | 544.5 | 3.5    | Tr.        |          |       |       | Ultramafic : 5% gtz carb.             |
| 8323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 544.5 | 548.5 | 3 4.0  | Tr.        |          |       |       | Trap chill margin                     |
| 8324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 548.5 | 553.5 | 5 5.0  | .002       |          |       |       | Por. Trap Dyke                        |
| 8325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 562.0 | 567.0 | 5.0    | Tr.        |          |       |       | Ultramafic                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |            |          |       |       |                                       |
| Married Control of Con |       |       |        |            |          |       |       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |            |          |       |       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |            |          |       |       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |            |          |       |       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |            |          |       |       |                                       |
| April and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |       |        |            |          |       |       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |            |          |       |       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |            |          |       |       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |            |          |       |       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |            |          |       |       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ļ     |        |            |          |       |       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |        |            |          |       |       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1     |        |            |          |       |       | FORM                                  |

|            | PROPERTY    | Lot 11, Conc. II; Taylor Twp. Ont. PAG (Timmins Area)                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ie : 1                                  |
|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| LOCATIONI  | 6 + 10 W,   | , 6 + 00 North BEARING 360 deg. HOLEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o. QS-84                                |
| LOGGED BY_ | ). Zavesicz | zky ELEVATION Surface DIP -70 definal DEPTH 527                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .01                                     |
|            | September 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
|            | September 2 | 86.0': - 70 deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| casing     | oulled      | 290.0': - 69.5 deg.<br>490.0': -69.5 deg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| CORE SIZE  | 3Q: Dominik | k Diamond Drilling Ltd. From Timmins                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | `.                                      |
| FROM       | то          | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
| 0.0'       | 86.0'       | Overburden:  0 - 60.0': clay & sand  60.0- 86.0': boulder layer & making wat                                                                                                                                                                                                                                                                                                                                                                                                                                       | er                                      |
| 86.0       | 103.0'      | Greywacke:  grey, f. gr., med. hard to hard, somewailiceous, brecciated locally with qts fracture-filling, massive in appearence 5-10% minor brecciated white qtscark stringers at mod. to high angles to Cafew slightly graphitic argillaceous in locally, intermittent low angle jointing very fine diss. py.  99.1 - 103.0: interbedded with slightly graphitic argillite which is aphanitic black and well chloritixed, the greywainterbeds are brecciated and slumped, bedding angles at predominantly to deg | ce locally  tervals  ng,  cke  moderate |
|            |             | specks of py,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
|            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HOLEN                                   |

# PROPERTY

|           |        |                                                                                                                   | 00-0                                                                                                                             | 1           |
|-----------|--------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------|
| LOCATION  |        |                                                                                                                   | BEARING HOLE NO. QS-8                                                                                                            | <del></del> |
| LOGGED BY |        | ELEVATION                                                                                                         | DIPFINAL DEPTH                                                                                                                   |             |
| STARTED   |        |                                                                                                                   | TESTS (CORRECTED)                                                                                                                |             |
| FINISHED  |        |                                                                                                                   |                                                                                                                                  |             |
| CASING    |        |                                                                                                                   | ••••••••••••••••••••••••••••••••••••••                                                                                           |             |
| CORE SIZE |        |                                                                                                                   |                                                                                                                                  |             |
| FROM      | то     |                                                                                                                   | DESCRIPTION                                                                                                                      |             |
| 103.0'    | 127.0' | to 1/2" in diblack matrix mcderate to lontacts are  107.3 - 108.6': pervasive sillos.6 - 111.0': coloured, weight | 90% qtz. veining & assoc'd licification, tr. py.  Felsic Tuff: pale straw ll laminated at 45 det, ctized, soft to med. hard, 33% |             |
|           |        | tr. py.  113.0 - 119.8':  114.0 - 117.0  119.8 - 127.0':                                                          | Its. parallel to bedding,  Greywacke interval as above  O': Ground Core  shattered core by low to mod. ng, 66% core recovery.    |             |
|           |        |                                                                                                                   |                                                                                                                                  |             |

HOLE NO. QS-84

**PROPERTY** PAGE BEARING \_\_\_\_\_\_\_HOLE NO. QS-84 LOGGED BY\_\_\_\_\_ELEVATION\_\_\_\_\_DIP\_\_\_FINAL DEPTH\_\_\_\_ STARTED\_\_\_\_\_\_TESTS (CORRECTED) \_\_\_\_\_ FROM то DESCRIPTION 168.3 170.5' Chloritized & Carbonatized Ultramafic: bluish green-black, f. gr., soft to med. hard, well-sheared at 40-50 deg., locally serpentinized, 5% gtz.-carb. vlts. along shearing, upper contact sharp at 80 deg. tr scattered py cubes up to 1/8" across. 246.0' 170.5 Fine Grained Carbonatized Diorite? greyish-green, fine-grained, medium-hard, somewhat mottled in appearence due to clusters of spherical to lenticular shaped amygdules or phenocrysts up to 1/4" in size, content as high as 33% locally, these features are buff-coloured vary in hardness from hard to medium and appear to be made up of different combinations of gtz.-carb.; intermittent brecciated and qtz.-carb. veined intervals suggestive of flow-top brecciation and/or pillow rims?; non-magnetic, rock quality is excellent,

HOLE NO.

QS-84

PROPERTY PAGE 3

| LOCATION  |                                           |                                                    | BEARING                                                                                                          | HOLE NO. <u>OS-84</u>                             |
|-----------|-------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| LOGGED BY |                                           | ELEVATION                                          | DIPFINAL                                                                                                         | DEPTH                                             |
| STARTED   |                                           |                                                    | TESTS (CORRECTED)                                                                                                |                                                   |
| FINISHED  | W 11 V 10 - V 10 V 10 V 10 V 10 V 10 V 10 |                                                    |                                                                                                                  |                                                   |
| CASING    |                                           |                                                    |                                                                                                                  |                                                   |
| CORE SIZE |                                           |                                                    |                                                                                                                  |                                                   |
| FROM      | то                                        |                                                    | DESCRIPTION                                                                                                      |                                                   |
| 127.0     | 131.0'                                    |                                                    | , aphanitic, hard,<br>contacts are shatte                                                                        |                                                   |
|           |                                           | 129.5 - 13<br>above                                | 0.5 : greywacke in                                                                                               | terval as                                         |
| 131.0     | 159.0'                                    | 5-10% comb<br>vlts. at v<br>shattered<br>jointing, | y the same as abovined blue and white ariable angles, in core due to low to occasional small flow-angle slips, u | e qtz.<br>termittent<br>mod. angle<br>ine gr. py. |
|           |                                           | 131.0 - 14                                         | 5.0 : 80% core rec                                                                                               | overy                                             |
|           |                                           |                                                    | 1/8" py stringer with qtz. vlts.                                                                                 | at 35 deg.                                        |
|           |                                           | slightl                                            | 8.0 : vague chlori<br>y graphitic argill<br>p structures.                                                        | tized and possibly aceous interbeds               |
| 159.0     | 168.2'                                    |                                                    | a: as above but 8 act is shattered                                                                               | 0% fragmental                                     |
|           |                                           |                                                    |                                                                                                                  |                                                   |
|           |                                           |                                                    |                                                                                                                  | Ī                                                 |
|           |                                           |                                                    |                                                                                                                  | HOLE NO.                                          |
|           |                                           |                                                    |                                                                                                                  | o. QS-                                            |
|           |                                           |                                                    |                                                                                                                  | 6-84<br>84                                        |

|           | PROPERTY                                |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAGE 5                                                                                          |
|-----------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| LOCATION  |                                         |                                                                                                                                                                                           | BEARING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QS-84                                                                                           |
| LOGGED BY |                                         | ELEVATION                                                                                                                                                                                 | DIPFINAL DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                 |
| STARTED   |                                         |                                                                                                                                                                                           | TESTS (CORRECTED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 |
| FINISHED  | *************************************** |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
| CASING    |                                         |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
| CORE SIZE |                                         |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
| FROM      | то                                      |                                                                                                                                                                                           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 |
| 246.0     | 319.7'                                  | shattered/ few lot last scattered coard reventhough this very well the did to be related to intrusive & strate py contant.  240.8 - 241.8 : 50% 5% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% | rock type does not orite in QS-79 it do it because of its tigraphic aspects a low angle atz. versoarse py.  white qtz. veining angles.  conatized Ultramafift, well-foliated a contorted, tr. find the desired points and the contorted of the conto | t resemble does appear and its coarse ining with g at ic: at low to vlts. ine at low angles. at |

DOCKET NO. 8608

HOLE NO.

QS-84

|           | PROPERTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                          |                                                                                                                                                                                                                                                       | PAGE                                                                 | 6               |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------|
| LOCATION  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          | BEARING                                                                                                                                                                                                                                               | HOLE NO                                                              | QS-84           |
| LOGGED BY |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ELEVATION                                                                                                                | DIPFINAL DEPTH_                                                                                                                                                                                                                                       |                                                                      |                 |
| STARTED   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          | TESTS (CORRECTED)                                                                                                                                                                                                                                     |                                                                      |                 |
| FINISHED  | and the second s |                                                                                                                          |                                                                                                                                                                                                                                                       |                                                                      |                 |
| CASING    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          | ·····                                                                                                                                                                                                                                                 |                                                                      |                 |
| CORE SIZE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                                                                                                                                                                                                                                       |                                                                      |                 |
| FROM      | то                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                          | DESCRIPTION                                                                                                                                                                                                                                           |                                                                      |                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | by 33% which also qtz                                                                                                    | ': more carbonatized<br>te carbonate plenocrys<br>carb. vlts increased to<br>mod. angles to CA.                                                                                                                                                       | ts,                                                                  | ed              |
| 319.7     | 368.2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | grey to day gtzfelds hard to verwith magne contact at fine gr. py hematite, -this unit Quartz-Feld 350.0 - 368.2 filling | rk grey, 50% white to par veins and pervasive ry hard, f. gr., 15% matter bands locally shared approximately generally pink color finely diss. fuchsite appears to be related dspar and Diorite sequence: brecciated with qtz.  joint at high angles. | e silicification agnetite, rp upper y 5% dissur due to the ence in Q | ication . S-79. |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                                                                                                                                                                                                                                       |                                                                      | HOLE NO         |

# PROPERTY

| LOCATION  |        |                               | BEARING                                                                  | HOLENO. QS-84    |
|-----------|--------|-------------------------------|--------------------------------------------------------------------------|------------------|
|           |        | ELEVATION                     |                                                                          |                  |
|           |        | TECVATION                     |                                                                          |                  |
| FINISHED  |        |                               |                                                                          |                  |
| CASING    |        |                               |                                                                          |                  |
| CORE SIZE |        |                               |                                                                          |                  |
| FROM      | то     |                               | DESCRIPTION                                                              | 1.7              |
| 422.0     | 436.8' | numerous qtz.                 | grey, f. gr., me-carb. veinlets 3-5% fine diss. p. 11y,                  | at predominantly |
|           |        | appearence du                 | contact zone: mes<br>le to 40% carbona<br>moderate angles,<br>is broken. |                  |
| 436.8     | 505.61 | essentially tupper contact    | Carbonatized Ult. he same as above area appears to tzcarb. vlts.         | ,<br>be chilled, |
|           |        | 459.0 - 461.0 :<br>to CA, bar | white qtzcarb.                                                           | vein parallel    |
|           |        | 485.4 - 488.0 :               | as above                                                                 |                  |
|           |        | 488.0 - 489.0 :               | fault gouge at le                                                        | ow angles.       |
|           |        |                               |                                                                          |                  |
|           |        |                               |                                                                          |                  |
|           |        |                               |                                                                          |                  |

| LOCATION  |        |                                                                        | BEARING                                                       | HOLE NO. QS-84 |
|-----------|--------|------------------------------------------------------------------------|---------------------------------------------------------------|----------------|
|           |        | ELEVATION                                                              |                                                               |                |
| STARTED   |        |                                                                        | TESTS (CORRECTED)                                             |                |
| FINISHED  |        |                                                                        | <del></del>                                                   |                |
| CASING    |        |                                                                        |                                                               |                |
| CORE SIZE |        |                                                                        |                                                               |                |
| FROM      | то     |                                                                        | DESCRIPTION                                                   |                |
| 368.2     | 422.0' |                                                                        | oonatized Ultramaf<br>e same as above at<br>atact at 75 deg.  |                |
|           |        |                                                                        | % pinkish light g<br>s at moderate angle<br>py, from unit abo | es             |
|           |        | 380.0 - 400.0 : Fa<br>8' ground core,<br>recovered core<br>low angles. |                                                               | nantly         |
|           |        | 412.0 - 413.2 : 20<br>banding at 40 d                                  | % f. gr. py cubes<br>leg. assoc'd with                        |                |
|           |        | 417.0 - 419.7 : 40<br>low angles.                                      | % white gtz. vlts                                             | at             |
|           |        | 419.7 - 421.5 : gc<br>talcose                                          | ougy low angle join                                           | nting,         |
|           |        |                                                                        |                                                               |                |
|           |        |                                                                        |                                                               |                |
|           |        |                                                                        |                                                               |                |
|           |        |                                                                        |                                                               |                |
|           |        |                                                                        |                                                               |                |
|           |        |                                                                        |                                                               |                |

| PROPERTY | PERT | E | P | 0 | R | P |
|----------|------|---|---|---|---|---|
|----------|------|---|---|---|---|---|

| LOCATION  |        | BEARINGHOLE NO. QS-84                                                                                                                                                                                                                     |
|-----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |        | ELEVATION DIPFINAL DEPTH                                                                                                                                                                                                                  |
|           |        | TESTS (CORRECTED)                                                                                                                                                                                                                         |
| FINISHED  |        |                                                                                                                                                                                                                                           |
| CASING    |        |                                                                                                                                                                                                                                           |
| CORE SIZE |        |                                                                                                                                                                                                                                           |
| FROM      | то     | DESCRIPTION                                                                                                                                                                                                                               |
|           |        | 503.0 - 505.6 : 50% white gtz. veining at low to moderate angles                                                                                                                                                                          |
| 505.6     | 512.0  | Silicified Zone - Porphyry: light buff-coloured, very hard, f. gr., 80% pervasive silicification, 20% white gtz. veinlets. 2% diss. py., vague hedding and/or foliation at 60 deg. locally,                                               |
| 512.0     | 521.0' | Carbonatized and Chloritized Tuff: green, f. gr., medium hard, bedding/foliation at 45 deg., 33% white gtz. vlts. parallel to bedding and at low angles, specks py & cpy, upper contact is shattered becoming pale towards lower contact, |
| 521.0     | 527.0' | Sericitized Felsic Tuff:  pale yellowish gray, fine-grained hard, bedding/foliation at 45 deg., 3-5% diss. py, 15% white qtz. vlts. at mod. angles,                                                                                       |
|           | 527.0' | END OF HOLE                                                                                                                                                                                                                               |
|           |        | HOLE NO. OS-84                                                                                                                                                                                                                            |

# SAMPLE RECORD SHEET

| PROPERTY-                              |                  |                 | QS-84 -HOLE NO.                         |
|----------------------------------------|------------------|-----------------|-----------------------------------------|
| SAMPLE                                 | TO LENG          |                 |                                         |
| NO.                                    |                  | Au t            | C                                       |
| 8326                                   | 86.0 91.0 5.0    | Ţ               | Greywacke: 5-10% gtz. vlts: 1% diss. py |
| 8327                                   | 91.0 96.0 5.0    | .002            |                                         |
| 8328                                   | 96.0 99.1 3.1    | .002            |                                         |
| 8329                                   | .1 103.0 3.      |                 | Greywacke & Graphitic Argillite: py     |
| 8330                                   | 103.0 107.3 4.3  | Tr.             | Otz. Breccia: tr. py.                   |
| 8331                                   | 107.3 108.6 1.3  | بَتِ <b>ت</b> . | 90% qtz. veining & silicification       |
| 8332                                   | 108.6 111.0 2.4  | .002            | Felsic Tuff: 33% qtz.carb vlts.         |
| 8333                                   | 111.0 118.0 7.0  | .002            | Qtz. Breccia & Gwke: 50% core recovery  |
| 833 <u>4</u>                           | 118.0 127.0 9.0' | .002            | " : 66% core recovery;                  |
| 8335                                   | 127.0 131.0 4.0  | .002            | Chert: specks py.                       |
| 8338                                   | 131.0 136.0 5.0  | .002            | Gwke: 5-10% gtz. vlts. tr. py           |
| 8337                                   | 136.0 141.0 5.0  | .002            | 21 11 44 15 M                           |
| 8338                                   | 141.0 147.5 6.5  | .002            | и и и и и                               |
| 8339                                   | 147.5 149.0 1.5  | Tr.             | Gwke: 2% py stringers with qtz. vlts.   |
| 8340                                   | 149.0 154.0 5.0  | .002            | Gwke: 5-10% qtz.vlts. 1% py on slips    |
| 8341                                   | 154.0 159.0 5.0  | .002            | " " aargillite tr. py                   |
| 8342                                   | 159.0 164.0 5.0  | îr.             | Otz. Breccia: tr. py, 80% core recov.   |
| 8343                                   | 164.0 168.5 4.5  | .002            |                                         |
| ************************************** |                  |                 |                                         |

FORM 8609

| SAMPLE | FROM  | то    | LENGTH | ASSAYS | DESCRIPTIONS                       |
|--------|-------|-------|--------|--------|------------------------------------|
| NO.    | THOM  | , , , | LENGIN | Au F   | DESCRIPTIONS                       |
| 8344   | 168.5 | 170.5 | 2.0'   | .002   | Ultramafic: 5% gtzcarb, tr. py.    |
| 8345   | 170.5 | 175.5 | 5.01   | .014   | Diorite: 5% qtz. vs: tr. py.       |
| 8346   | 175.5 | 180.5 | 5.0'   | .002   | 14 14 91 11 11                     |
| 8347   | 180.5 | 185.5 | 5.0'   | .002   | " : " ": 1% coarse py.             |
| 8348   | 185.5 | 190.5 | 5.0'   | .002   | . 11 11 11 11 11 11                |
| 8349   | 190.5 | 193.0 | 3.0'   | .004   | 01 31 11 11                        |
| 8350   | 193.0 | 196.0 | 3.0'   | .004   | " : 33% qtz. vs: 2-3% coarse p     |
| 8351   | 196.0 | 201.0 | 5.0'   | .002   | " : 5% qtz. vs.: 1% " "            |
| 8352   | 201.0 | 206.0 | 5.0'   | .004   | " " " : 2-3% " "                   |
| 8353   | 206.0 | 211.0 | 5.0'   | .006   | ":1%":2%""                         |
| 8354   | 211.0 | 217.0 | 6.0'   | .002   | 1: 11 11 11 11 11                  |
| 8355   | 217.0 | 220.0 | 3.01   | .004   | " : 20% qtz. vs.: 2-3% " "         |
| 8356   | 220.0 | 225.0 | 5.0'   | .002   | " : 5-10% " " : 1% fine py         |
| 8357   | 225.0 | 230.0 | 5.01   | .002   | " : 2% " " : Tr. py.               |
| 8358   | 230.0 | 232.6 | 2.6'   | Tr.    | R ; H H ; D H                      |
| 8359   | 232.6 | 237.6 | 5.01   | .002   | Diorite: finer gr.: 2-3% coarse py |
| 8360   | 237.6 | 240.8 | 3.21   | Tr.    | " : tr. py. cubes                  |
| 8361   | 240.8 | 241.8 | 1.0'   | .002   | 50% qtz. v: 5% coarse py.          |
|        |       |       |        |        |                                    |

| SAMPLE | 52014 |               | ''     | ASSAYS |   |                                     |
|--------|-------|---------------|--------|--------|---|-------------------------------------|
| NO.    | FROM  | ТО            | LENGTH | Aut    |   | DESCRIPTIONS                        |
| 362    | 241.8 | <b>3</b> 45.0 | 3.2'   | Tr.    | 1 | Diorite: 1% coarse py               |
| 363    | 245.0 | 246.0         | 1.0'   | .002   |   | 80% gtz. v.                         |
| 364    | 246.0 | 253.5         | 7.51   | Tr.    | Ţ | Ultramafic: 5% qtz-carb.; tr. py.   |
| 365    | 253.5 | 254.5         | , 1.0' | .002   |   | ":50% hematitic gtz. v.             |
| 366    | 272.0 | 273.0         | 1.0.   | .002   |   | " : 3% fine py cubes                |
| 367    | 282.0 | 285.0         | 3.0'   | .004   |   | ": 1% " " "                         |
| 368    | 314.7 | 319.7         | 5.01   | Tr.    |   | " :20% qtz-carb. vlts.,tr.p         |
| 369    | 319.7 | 324.7         | 5.0    | "r.    | 5 | Sil'd Diorite: 2% f.gr. py;10% gtz. |
| 370    | 324.7 | 329.7         | 5.01   | Tr.    |   | " : 5% " " ;20% "                   |
| 371    | 329.7 | 330.7         | 1.0'   | .002   |   | " :15% " " ;50% "                   |
| 372    | 330.7 | 335.7         | 5.01   | .002   |   | " :5% " " ;33% "                    |
| 373    | 335.7 | 340.7         | 5.0'   | .002   |   | H + H + H H H + H + H               |
| 374    | 340.7 | 345.7         | 5.0'   | .002   |   | " :1-2%"" ";50% sil'                |
| 375    | 345.7 | 350.7         | 5.01   | .002   |   | n n;5% nn n; n nn                   |
| 376    | 350.7 | 355.7         | 5.0'   | .002   |   | и и типи и ји ни                    |
| 1377   | 355.7 | 360.7         | 5.0    | .002   |   | и и в пи п д и пи                   |
| 378    | 360.7 | 365.7         | 5.0'   | .012   |   |                                     |
| 379    | 365.7 | 368.2         | 2.5    | .002   |   | H 41 H 11 H H 11 H 11 H             |

# SAMPLE RECORD SHEET

| NO. |
|-----|
|     |
| 80  |
| 881 |
| 882 |
| 383 |
| 384 |
| 385 |
| 386 |
| 387 |
| 388 |
| 389 |
| 390 |
| 39] |
| 392 |
| 393 |
| 394 |
|     |
|     |
|     |
|     |
| 3   |

Location: XL 6W @ 6+10N

AIMILIONA AIGITE HELOIGI

HOLE No.

Core Size:

BQ

PROPERTY: QUEBEC STURGEON RIVER MINES LTD. - ASHBY PROPERTY

Azimuth:

00

Township:

Taylor Township

Elevation: Surface

Location of Collar from # Post of

Dip: Collar @ -52°; @ 125'-53°; @ 321'-51°; @ 525'-50°; @ 725'-50°

Commenced: July 15, 1983
Finished: July Amount, 1983

Contractor:

Dominik Drilling Inc.

Trumins, Outanio

(i)

| ٦           | J21 . | -51"; @ 525"-50"; @ 725 -50"                           |          |     |       |      |      |     |          | The britis, Carri             |
|-------------|-------|--------------------------------------------------------|----------|-----|-------|------|------|-----|----------|-------------------------------|
| From        | To    | DESCRIPTION                                            | From     | То  | Width |      |      |     | Au<br>oz | Description of Sample         |
|             |       | SUMMARY LOG                                            |          |     |       |      |      |     |          |                               |
| 0           | 126'  | Casing. (Casing pulled) ovb. to 120'.                  | ļ        |     |       |      |      |     |          |                               |
| 126         | 147   | Sediments - moderate to strongly brecciated            | <u> </u> |     |       |      | <br> |     |          |                               |
|             |       | siltstone and arkose.                                  |          |     |       |      |      |     |          |                               |
| 147         | 454.7 | Ultramafic Sequence with:                              | 167      | 182 | 15    |      |      | • • | .059     | Dioritic unit w. coarse py;   |
|             | []    | 167.8-181.5, 183.9-186.3 - 'dioritic sections'         |          |     |       |      |      |     |          | best assay .119/5' 172-177.   |
|             |       | with coarse pyrite.                                    |          |     |       |      |      |     |          |                               |
|             |       | 258.8-313.6 - feldspar porphyry.                       |          |     |       |      |      |     |          |                               |
|             |       | 415.2-545.7 - streaky/layered carbonated mafic         |          |     |       |      |      |     |          |                               |
|             |       | and ultramafic rocks.                                  | 285      | 300 | 15    |      |      |     | .027     | Fsp.por w. access. sulphides. |
|             |       | Broken, gouged and/or lost core at: 214-216,           |          |     |       |      |      |     |          |                               |
|             |       | 248.6-250, 254-257, 313.6-337, 408-409.                |          |     |       |      |      |     |          |                               |
| 454.7       | 595   | Carbonated Volcanics with:                             |          |     |       |      |      |     |          |                               |
|             |       | 454.7-500: felsic to intermediate.                     | 469      | 470 | 1     |      |      |     | .066     | Zoned por alt. pyritic.       |
| <del></del> |       | 500-548: intermediate to mafic with sections of        |          |     |       |      |      |     |          |                               |
| <del></del> |       | porphyry from 514.4-541.5, xns of lost core.           |          |     |       |      |      |     |          |                               |
| <del></del> |       | 548-595: mafic to ultramafic, with porphyry            |          |     |       |      |      |     |          |                               |
| <del></del> |       | from 567.1-595.                                        |          |     |       |      |      |     |          |                               |
| 595         | 680.8 | 8 Carbonated Mafic and Ultramafic Volcanics            | ā        |     |       |      |      |     |          |                               |
|             |       | - gradation from mafic to ultramafic rocks around 626. | /-       |     |       |      |      |     |          |                               |
|             |       | Broken, lost and/or gouged core 595-618, 651-676.      |          |     |       |      |      |     |          |                               |
| 680.8       | 851   | Diabase - Matachewan style, with carbonated            | 1        |     |       | <br> |      |     |          |                               |
|             | 1     | ultramafic at 684.6-685.7 and around 847-849.          |          |     |       |      |      |     |          |                               |
|             | 851'  |                                                        |          |     |       |      | i    |     |          |                               |

Tocarion: YP on 6 0+100

Core Size: BQ

PROPERTY: QUEBEC STURGEON RIVER MINES LID, - ASHBY PROPERTY

00 Azimuth:

Township:

Taylor Township

Commenced: Finished:

August, 1983

Elevation: Surface

Location of Collar from # Post of

Contractor:

Dominik Drilling Inc.

Dip: Collar @ -52°; @ 125'-53°; @ 321'-51°; @ 525'-50°; @ 725'-50°

| From     | То           | DESCRIPTION                                    | From | То | Width | Birty o'Management |     |      | <b>F</b> | Description of Sample |
|----------|--------------|------------------------------------------------|------|----|-------|--------------------|-----|------|----------|-----------------------|
| 0        | 126'         | Casing. (Casing pulled) - depth of             |      |    |       |                    |     |      |          |                       |
| ļ        |              | overburden 120' - casing driven to 126'.       |      |    |       |                    |     |      |          |                       |
| ·        | <u> </u>     | 0-70 sand and clay; 70-85 boulders; 85-114     |      |    |       |                    |     |      |          |                       |
|          | ·            | sand and clay; 114-120 boulders.               |      |    |       |                    |     |      |          |                       |
| <u> </u> | ا ـــــــــا |                                                |      | -  |       |                    |     |      |          |                       |
| 126      | 147.0        | Sediments - a sequence of moderate to          |      |    |       |                    |     | -    | <br>     |                       |
|          | <b> </b>     | strongly brecciated siltstone and arkose.      |      |    |       |                    |     | <br> |          |                       |
|          | ļ,           | The sediments vary from dull, earthy           |      |    |       |                    |     |      |          |                       |
| -        | <u></u>      | grey brown to dark grey, pale grey green and   |      |    |       |                    |     |      |          |                       |
|          |              | pale grey in colour. The rocks are weakly      |      |    |       |                    |     |      |          |                       |
|          | <u> </u>     | to unlayered - an apparent function of         |      |    |       |                    |     |      |          |                       |
|          | '<br>'       | brecciation, although there is a general       |      |    |       |                    |     |      |          |                       |
| -        |              | lineation at 60-80° to the core axis.          |      |    |       |                    |     |      |          |                       |
|          | <u> </u>     | The paler grey green to grey units are         |      |    |       |                    |     |      |          |                       |
|          |              | arkosic, and are finely granular with quartz,  | ,    |    |       |                    |     |      |          |                       |
|          | <u> </u>     | feldspar, sericite and muscovite ± scattered   |      |    |       |                    |     |      |          |                       |
|          |              | black specks of graphite(?). The darker        |      |    |       |                    | _   |      |          |                       |
|          |              | silty units are very fine grained to massive.  | ,    |    |       |                    |     |      |          |                       |
|          |              | The core is moderately altered, fractured,     | ,    |    |       |                    |     |      |          |                       |
|          |              | rather poorly veined and sparsely mineralized. |      |    |       |                    |     |      |          |                       |
|          |              | Brecciation in the sediments is largely        |      |    |       |                    |     |      |          |                       |
|          |              | defined by a moderate to strong fracture       |      |    |       |                    | . ^ |      |          |                       |
|          |              | system with chlorite, carbonate ± serpentine.  | •    |    |       |                    |     |      |          |                       |
|          |              |                                                |      |    |       |                    |     |      |          |                       |

| From                                  | To | DESCRIPTION                                     | From | То | Width |   |   |             |  |  | Description of Sample |
|---------------------------------------|----|-------------------------------------------------|------|----|-------|---|---|-------------|--|--|-----------------------|
|                                       |    | The sediments are moderately altered with       |      |    |       |   |   |             |  |  |                       |
|                                       |    | chlorite, sericite and carbonate - alteration   |      |    |       |   |   |             |  |  |                       |
|                                       |    | increasing with depth towards the ultramafic    |      |    |       |   |   |             |  |  |                       |
|                                       |    | contact.                                        |      |    |       |   |   |             |  |  |                       |
|                                       |    | The core is cut by erratic cherty to            |      |    |       |   |   |             |  |  |                       |
|                                       |    | glassy veins which range from a few centimeters | 3    |    |       |   |   |             |  |  |                       |
|                                       |    | to greater than 30 cm in thickness - much       |      |    |       |   |   |             |  |  |                       |
| <del></del>                           |    | wider than veins normally found within the      |      |    |       |   |   |             |  |  |                       |
|                                       |    | sedimentary sequence. It is remotely possible   |      |    |       |   |   | Authorities |  |  |                       |
| · · · · · · · · · · · · · · · · · · · |    | that these cherty units are porphyries. The     |      |    |       |   |   |             |  |  |                       |
|                                       |    | units are dull white to cream coloured, fine    |      |    |       |   |   |             |  |  |                       |
|                                       |    | grained, cherty to glassy and are etched with   |      |    |       |   |   | 4.          |  |  |                       |
|                                       |    | carbonate. The veins are almost totally         |      |    |       |   |   |             |  |  |                       |
|                                       |    | quartz, which is finely fractured with car-     |      |    |       |   |   |             |  |  |                       |
|                                       |    | bonate and locally streaked with sericite.      |      |    |       |   |   |             |  |  |                       |
|                                       |    | Contacts vary from 60-80° to the core axis.     |      |    |       |   |   |             |  |  |                       |
| -                                     |    | Cherty units are found at: 128.7-129.1,         |      |    |       |   |   |             |  |  |                       |
|                                       |    | 133.3-134.2, 136.6-136.9, 137.5-138.4,          |      |    |       |   |   |             |  |  |                       |
|                                       |    | 139.2-139.4, 140.6-140.8, 144.6-145.3,          |      |    |       |   |   |             |  |  |                       |
|                                       |    | 145.6-145.8.                                    |      |    |       |   |   |             |  |  |                       |
|                                       |    | The basal part of the sedimentary sequence      | ,    |    |       |   |   |             |  |  |                       |
|                                       |    | after 143, is streaky in appearance with dull   |      |    |       |   |   |             |  |  |                       |
|                                       |    | yellow to yellow-lime and brownish sericite-    |      |    |       |   |   |             |  |  |                       |
|                                       |    | chlorite-carbonate alteration.                  |      |    |       |   |   |             |  |  |                       |
|                                       |    | The lower contact zone of the sediments,        |      |    |       |   |   |             |  |  |                       |
|                                       |    | from 146.2-147, is along a unit of breccia at   |      |    |       | - | - | -           |  |  |                       |

| rom | To    | DESCRIPTION                                   | From | То | Width |                 |   |   | Description of Sample |
|-----|-------|-----------------------------------------------|------|----|-------|-----------------|---|---|-----------------------|
|     |       | 700/800. The breccia consists of numerous     |      |    |       |                 |   |   |                       |
|     |       | fragments of quartz within dull olive to dark |      |    |       |                 |   |   |                       |
|     |       | green and black sericite-chlorite-carbonate   |      |    |       |                 |   |   |                       |
|     |       | t serpentine alteration. The breccia is       |      |    |       |                 | - |   |                       |
|     |       | sparsely mineralized with pyrite and traces   |      |    |       |                 |   |   |                       |
|     |       | of chalcopyrite.                              |      |    |       |                 |   |   |                       |
|     |       | The lower contact is partly broken at 80°     |      |    |       |                 |   |   |                       |
|     |       |                                               |      | _  |       |                 |   |   |                       |
| 147 | 454.7 | Ultramafic Sequence - a relatively thick      |      |    |       |                 |   |   |                       |
|     |       | zone of dark carbonate, carbonated ultramafic |      |    |       |                 |   |   |                       |
|     |       | rocks with sections of broken, lost and badly |      |    |       |                 |   |   |                       |
|     |       | gouged core. The ultramafic sequence may form |      |    |       |                 |   |   |                       |
|     |       | part of the Porcupine Destor System, although |      |    |       | -               |   |   |                       |
|     |       | the basal rocks are problematical at this     |      |    |       |                 |   |   |                       |
| _   |       | stage.                                        |      |    |       |                 |   |   |                       |
|     |       | The ultramafic sequence ranges from very      |      |    |       |                 |   |   |                       |
|     |       | dark green to black and blue black in colour. |      |    |       |                 |   |   |                       |
|     |       | The core is fine grained with local, well     |      |    |       |                 |   |   |                       |
|     |       | developed coarse rosettes of ankerite.        |      |    |       |                 |   |   |                       |
|     |       | Essentially, the ultramafic is composed of    |      |    |       |                 |   |   |                       |
|     |       | carbonate, chlorite and serpentine, and is    |      |    |       |                 |   |   |                       |
| •   |       | weakly speckled with dull ochre, earthy       |      |    |       |                 |   | 1 |                       |
|     |       | leucoxene(?). The ultramafic is variably      |      |    |       |                 |   |   |                       |
|     |       | brecciated with fragments and discontinuous   |      |    |       |                 |   | - | •                     |
|     |       | lenses of stringer material. The rocks range  |      |    |       |                 |   | - |                       |
|     |       | from weakly to strongly magnetic and are      | -    |    |       | <br><del></del> |   |   | <br>                  |

| rom          | To | DESCRIPTION                                    | From           | То    | Width |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       | Au<br>oz        | Descri      | ption of S                             | ample       |
|--------------|----|------------------------------------------------|----------------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------|---|---------------------------------------|-----------------|-------------|----------------------------------------|-------------|
|              |    | moderate to strongly schistose at 60-80° to    |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 |             |                                        |             |
|              |    | the core axis.                                 |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 | ·           |                                        |             |
|              |    | 167.8-181.5: contact with veining into a       |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 |             |                                        |             |
|              |    | coarsely granular, sugary textured unit with   |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 |             |                                        |             |
|              |    | scattered coarse pyrite (in cubes and pyrito-  |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | ,          |   |                                       |                 |             |                                        |             |
|              |    | hedrons) up to 1 cm in size - QSR's "dioritic  |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 |             |                                        |             |
|              |    | unit". The rock is composed of carbonate,      | 167            | 172   | 5     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |   |                                       | .024            | Dioritic. w | . veining, $\alpha$                    | parse py    |
|              |    | chlorite, serpentine ± erratic bladed crystals | 172            | 177   | 5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       | .119            | 11          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 11          |
|              |    | of tremolite-actinolite, and has a somewhat    | 177            | 179.5 | 2.5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       | .014            | 11          | 11                                     | 11          |
|              |    | mottled appearance from coarsely granular      | 179.5          | 182   | 2.5   | The same of the sa |   |            |   |                                       | .056            | 11          | 17                                     | 71          |
| ·            |    | carbonate - the matrix component normally has  |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 |             |                                        |             |
|              |    | a finely felted texture.                       |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 |             |                                        |             |
|              |    | Some of the carbonate grains/blebs appear      |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 |             |                                        |             |
|              |    | to have a central zone with plagioclase, which |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 |             |                                        |             |
|              |    | locally exhibits granophyric textures. The     |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 |             |                                        |             |
|              |    | diorite/dioritic zone is moderately veined     |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 |             | ·                                      |             |
|              |    | with stringers of quartz-ankerite - most of    |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 |             |                                        |             |
|              |    | the coarse pyrite being found near or around   | \_ <del></del> |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 |             |                                        |             |
|              |    | the veining.                                   |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 |             | · · · · · · · · · · · · · · · · · · ·  | ·           |
|              |    | From 180-181.5 there is a fragment/            |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 |             | <del>/_ ``</del>                       |             |
|              |    | remnant of chertier porphyry in the system.    |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 |             |                                        | <del></del> |
|              |    | The porphyry is pale greyish, fine grained     |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |   |                                       |                 |             | <u> </u>                               |             |
| 1            |    | and cherty with some reddish hematite staining |                |       | -     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            | - | · · · · · · · · · · · · · · · · · · · |                 |             |                                        |             |
| <del>-</del> |    | From 181.5-183.9 the rock is a dark green      |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | \ <u>\</u> | - |                                       |                 |             |                                        |             |
|              |    | to black, partly broken, carbonated ultramafic |                |       |       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 |            |   | <del></del>                           |                 |             |                                        |             |
|              |    | which is followed by a granular, carbonated    |                | -     | -     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - | -          | - |                                       | \ <del></del> - | ·           |                                        |             |

| From          | To | DESCRIPTION                                      | From        | To          | Width |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  | Description of Sample |
|---------------|----|--------------------------------------------------|-------------|-------------|-------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|-----------------------|
|               |    | remnant of porphyry or diorite from 183.9-       |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
|               |    | 186.3. The unit is very similar to the just      |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
| <b>-</b>      |    | previous dioritic unit (i.e. 167.8-181.5) but    |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ |  |  |                       |
|               |    | with more obvious relict plagioclase and         |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
|               |    | quartz. The remnant is medium grey in colour,    |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
|               |    | and is unveined, although there are trace        |             |             |       | 197         | The second secon |   |  |  |                       |
| •             |    | amounts of coarse pyrite. The diorite/           |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
|               |    | porphyry is strongly altered but not as altered  |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
|               |    | as the previous unit. Contacts are nearly        |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
|               |    | normal to the core axis.                         |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
|               |    | Below 186.3, and up to 258.8 the rock is         |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
| <del></del>   |    | a dark grey to blue grey, black and dark green   |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
|               |    | carbonated ultramafic which is locally           |             | <del></del> |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  | ·                     |
|               |    | granulated and gouged. The ultramafic is         |             |             | 1     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
|               |    | largely composed of carbonate, chlorite and      |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
|               |    | serpentine with broken and discontinuous         |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
| •             |    | stringers of quartz-ankerite and local coarse    |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
|               |    | rosettes of carbonate. The ultramafic is         |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
| -             |    | moderate to strongly schistose - the predominate |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
|               |    | lineation being at 50° to the core axis.         |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
|               |    | From 248.6-250 the ultramafic is gouged          |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
|               |    | and broken, plus there is some lost core at      |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - |  |  |                       |
|               |    | 214-216 and 254-257. The lower contact of the    | <del></del> |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |                       |
| •             |    | ultramafic sequence from 257-258.8 is very fin   | e           |             |       |             | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - |  |  |                       |
|               |    | grained and strongly altered with chlorite,      |             |             |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - |  |  |                       |
| , <del></del> |    | serpentine adjacent to a thick unit of           |             | -           |       | <del></del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - |  |  |                       |

| com | To | DESCRIPTION                                     | From        | To  | Width |   |   |   |   |   | Au<br>oz | Description of Samp       |
|-----|----|-------------------------------------------------|-------------|-----|-------|---|---|---|---|---|----------|---------------------------|
|     |    | feldspar porphyry.                              |             |     |       |   |   |   |   |   |          |                           |
|     |    | The feldspar porphyry dyke extends from         |             |     |       |   |   |   |   |   | <u>'</u> |                           |
|     |    | 258.8-313.6 and is pale pinkish to off-white    |             | (   |       |   |   |   |   |   |          |                           |
|     |    | at first, becoming greyer and more altered      |             | 1   |       |   |   |   |   |   |          |                           |
|     |    | with chlorite-carbonate below 273.4. The        |             | 1   |       |   |   |   |   |   |          |                           |
|     |    | porphyry is medium to coarse grained and is     |             |     |       |   |   |   |   |   |          |                           |
|     |    | speckled with magnetite throughout which        |             |     |       |   |   |   |   |   |          |                           |
|     |    | produces a common brick coloured staining.      |             |     |       |   |   |   |   |   |          |                           |
|     |    | The core is moderately veined with milky to     |             |     |       |   |   |   |   |   |          |                           |
|     |    | porcelainous stringers of quartz-ankerite       |             | i   |       |   |   |   |   |   |          |                           |
|     |    | and is locally well mineralized with pyrite -   |             | !   | +     |   | · | 1 |   | - |          |                           |
|     |    | both as erratic coarse cubes and as a very      |             |     |       |   |   |   |   |   |          |                           |
|     |    | fine grained brownish sulphide dust. Sulphides  | 285         | 290 | 5     |   |   |   |   |   | .01      | Fsp.por altered - pyritic |
|     |    | are most common in the greyer feldspar porphyry | 290         | 295 | 5     |   |   |   |   |   | .05      | 11 11 11                  |
|     |    | in a zone between 285 and 300.                  | 295         | 300 | 5     |   |   |   |   |   | .02      | 11 11 11                  |
|     |    | The lower contact of the porphyry is            |             |     |       |   |   |   |   |   | -        |                           |
|     |    | broken with veining; the upper contact is at    |             | 1   | -     |   |   |   |   |   |          |                           |
|     |    | 70°.                                            |             |     |       |   |   |   |   |   | 1        |                           |
|     |    | Below the unit of feldspar porphyry, the        | ).          |     |       |   |   |   |   |   |          |                           |
|     |    | carbonated ultramafic is broken and badly       | <del></del> |     |       |   |   |   |   |   |          |                           |
|     |    | gouged with only 3.7' of core recovered from    |             |     |       |   |   |   |   | + | -        |                           |
|     |    | 321-337. The ultramafic rocks become more       | ,           |     |       |   |   |   |   |   |          |                           |
|     |    | competent below 347, although there is some     |             |     |       | - | 1 |   | - |   |          |                           |
|     |    | gouged and broken core from 408-409.            |             |     |       |   |   |   |   | - |          |                           |
|     |    | The ultramafic is dark green to black in        |             |     |       |   |   |   |   | - | -        |                           |
|     |    | colour, fine grained, well altered with         |             |     |       |   | - |   | _ |   | -        |                           |

PROPERTY QUIBEC STURGEON RIVER MINES 1/1D. - ASHBY PROPERTY TOWNShip Taylor Township Description of Sample From To Width DESCRIPTION To From carbonate, chlorite and serpentine, and contains broken veins and discontinuous lenses of quartz-ankerite up to 415.2, below which the rocks are layered in appearance. From 415.2 to the base of the zone at 454.7, the sequence consists of intercalated mafic and ultramafic rocks which are streaky/ layered at  $70-80^{\circ}$  to the core axis. The core varies from medium to dark grey, grey green and black in colour - the ultramafic portions being darker in colour and more serpentine-rich. The layering in the sequence is defined by carbonate-rich and chlorite ± serpentinerich layers/lenses. Essentially the rock is composed of carbonate-chlorite t sericiteserpentine. The core is rather poorly veined and unmineralized, although the rock is well fractured with dark alteration. The sequence grades progressively lighter in colour towards the base. 454.7 595 Carbonate Zone - a mixed sequence of carbonate - presumed carbonated volcanic rocks, which grade from carbonated felsic and intermediate volcanics at the upper part of the

DIMITORD DRILL REPORT

| rom                                   | To | DESCRIPTION                                      | From | TO | Width     | 1 '               |   |     |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description of Sample |
|---------------------------------------|----|--------------------------------------------------|------|----|-----------|-------------------|---|-----|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                       |    | sequence, through intermediate and mafic         |      |    |           |                   |   |     |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                       | 1  | volcanics from 500-548, to mafic and ultra-      | 1    |    | <u> </u>  | <u> </u>          |   |     |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                     |
|                                       |    | mafic volcanics at the end of the zone. The      | 1    |    |           | 1                 |   |     |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                       |    | gradations are, in part, framed by two sequences |      |    | 1         |                   |   |     |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                       |    | of porphyry from 514.4-541.5 and 561.7-595.      |      |    |           | 1                 |   |     | , |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                       |    | The upper contact of the overall sequence        |      |    | -         |                   |   |     |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                       |    | is along a narrow unit of either chert or        | ,    |    |           |                   |   |     |   |   | THE STATE OF THE S |                       |
| <u> </u>                              |    | veining from 454.7-455.6. The carbonate is       |      |    | ,         |                   |   |     |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                       |    | much lighter in colour than the adjacent mafic-  | ,-   |    | 1         |                   |   |     |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                       |    | ultramafic zone, although the rocks are          |      |    | ,         |                   |   |     |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                       |    | similarly streaky/layered at 70-80° to the       |      |    |           |                   |   |     |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| ,                                     |    | core axis. The carbonate varies from medium      |      |    | , , , , , |                   |   |     |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                       |    | to pale grey, grey green, yellowish grey and     |      |    | ,         |                   |   |     |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                       |    | putty coloured with very local darker grey       |      |    |           | To see the second |   |     |   | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| · · · · · · · · · · · · · · · · · · · |    | sections. The layering is defined by variations  | 3    |    | -         |                   |   |     |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                       |    | in the amount and type of carbonate-chlorite-    |      |    |           |                   |   |     |   | + | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                                       |    | sericite alteration.                             |      |    |           |                   | • | · . |   | 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                     |
|                                       |    | The rocks are weakly to moderately               |      |    | 1         |                   |   |     |   | - | j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                                       |    | fractured/brecciated with darker carbonate-      |      |    |           |                   |   |     |   |   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                                       |    | chlorite ± serpentine and are moderately         |      |    |           |                   |   |     |   |   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                                       |    | veined and sparsely mineralized.                 |      |    |           |                   |   |     |   |   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                                       |    | Near the upper contact of the carbonate          |      | 1  |           |                   |   |     |   |   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                                       |    | zone there is an interesting, zoned porphyry/    |      |    |           |                   |   | -   | 1 |   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                                       |    | felsic volcanic sequence from 467.1-471.6.       |      |    |           |                   | † |     |   | - | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                                       |    | This narrow sequence includes a very fine        | -    | -  |           |                   |   |     | - |   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                                       | ,  | grained, greyish cherty section at either        | -    | -  | _         | -                 | - | -   | - | - | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |

| com | To | DESCRIPTION                                      | From | То  | Width |   |   |   |   | Au<br>oz | Description of Sample       |
|-----|----|--------------------------------------------------|------|-----|-------|---|---|---|---|----------|-----------------------------|
|     |    | contact (467.1-467.6 and 471.1-471.6), followed  |      |     |       |   |   |   |   |          |                             |
|     |    | by a fine grained, sericitic quartz-'eye'        |      |     |       |   | , |   |   |          |                             |
|     |    | porphyry or rhyolite (467.6-469 and 470.2-       | 469  | 470 | 1     |   |   |   |   | .066     | Zoned por altered - pyritic |
|     |    | 471.1), surrounding a darker grey, very well     |      |     | 1     |   |   |   |   |          |                             |
|     |    | mineralized central section from 469-470.2.      |      |     |       |   |   |   |   |          |                             |
|     |    | The overall contacts of the sequence are at:     |      |     |       |   |   |   |   |          |                             |
|     |    | 70°/60°. Aside from the chlorite-carbonate-      |      |     |       | , |   |   |   |          |                             |
| -   |    | pyrite central section, the sequence is          |      |     |       |   |   |   |   |          |                             |
|     |    | rather poorly veined and sparsely mineralized.   |      |     |       |   |   |   |   |          |                             |
|     |    | The zoned phenomenon of the sequence             |      |     |       |   |   |   |   |          |                             |
| ·   |    | tends to suggest that the genesis is intrusive   |      |     |       |   |   |   |   |          |                             |
|     |    | thus porphyry, although there is little to       |      |     |       |   |   |   |   |          |                             |
|     |    | distinguish the section from a felsic volcanic.  |      |     |       |   |   |   |   |          | ·                           |
|     |    | There is also a narrow cherty section from       |      |     |       |   |   |   |   |          |                             |
|     |    | 466.9-467, and there is some accessory           |      |     |       |   |   |   |   |          |                             |
|     |    | chlorite alteration (472.8-475.1) around a       |      |     |       |   |   |   |   |          |                             |
|     |    | cherty section from 474.1-474.5 and a brecciated |      |     |       |   |   |   |   |          |                             |
|     |    | cherty section from 474.7-474.9.                 |      |     |       |   |   |   |   |          |                             |
|     |    | After 475.1, return to light coloured            |      |     |       |   |   |   |   |          |                             |
|     |    | (felsic to intermediate) carbonate rocks with    |      |     |       |   |   |   |   |          |                             |
|     |    | erratic, narrow dark carbonate/carbonated        |      |     |       |   |   |   |   |          |                             |
|     |    | ultramafic portions as: 479.0-479.2, 491.4-      |      |     |       |   |   |   |   |          |                             |
|     |    | 491.5 and 493.1-493.6.                           |      |     |       |   |   |   |   |          |                             |
|     |    | From 487.4-489.5 there is a trace of             |      |     |       |   |   |   |   |          |                             |
|     |    | fuchsite in the carbonate.                       |      |     |       |   |   |   |   |          |                             |
|     | _  | At 498-500, broken core with strong              |      | -   |       | _ | - | - | - |          |                             |

| From      | To | DESCRIPTION                                    | From | To | Width |   |   |   |   |  | Description of Sample |
|-----------|----|------------------------------------------------|------|----|-------|---|---|---|---|--|-----------------------|
|           |    | veining.                                       |      |    |       |   |   |   |   |  |                       |
|           |    | After 500, the rocks begin to grade            |      |    |       |   |   |   |   |  |                       |
| <b>C.</b> |    | slightly darker in colour with a higher        |      |    |       |   |   |   |   |  |                       |
|           |    | percentage of darker carbonate, potential      |      |    |       |   |   |   |   |  |                       |
|           |    | carbonated ultramafic (very minor amount).     |      |    |       |   |   |   | . |  |                       |
|           |    | There are also a few bluish-tinged almost      |      |    |       |   |   |   |   |  |                       |
|           |    | opalescent quartz-carbonate veins between 505  |      |    |       |   |   |   |   |  |                       |
|           |    | and 511.                                       |      |    |       |   |   |   | - |  |                       |
|           |    | At 514.4, contact into a sequence of           |      |    |       |   |   |   |   |  |                       |
|           | -  | porphyry and carbonate with much broken and    |      |    |       |   |   |   |   |  |                       |
|           |    | lost core. The main part of the sequence       |      |    |       |   |   |   |   |  |                       |
|           |    | extends to 548.9, with porphyry sections at    |      |    | -     |   |   |   |   |  |                       |
|           |    | 514.4-516, 516.4-530.0 and 537-541.5. Zones    |      |    |       |   |   |   |   |  |                       |
|           |    | of lost core are found at 525-527, 528-529,    |      |    |       |   |   |   |   |  |                       |
|           |    | 531-533, 535-537, and 540-541, plus one foot   |      |    |       |   |   |   |   |  |                       |
|           |    | lost earlier in the drill hole at 504-505.     |      |    |       |   |   |   |   |  |                       |
| •         |    | The porphyry sections are dark grey green      | 1 .  |    |       |   |   |   |   |  |                       |
|           |    | to dark green in colour with scattered         |      |    |       |   |   |   |   |  |                       |
|           |    | recognizable feldspars. In the two upper       |      |    |       |   |   |   |   |  |                       |
|           |    | units (i.e. 514.4-516, 516.4-530) portions of  |      |    |       |   |   |   |   |  |                       |
|           |    | the core are bleached buff in colour adjacent  | _    |    |       |   |   |   |   |  |                       |
|           |    | to veining and are clearly porphyries, while   |      |    |       |   | 1 | , |   |  |                       |
|           |    | the lower unit contains fairly numerous brick  |      |    |       | - |   |   |   |  |                       |
|           |    | red feldspars. The rocks are, in general,      |      |    |       |   | 1 |   |   |  |                       |
| _         |    | well altered with chlorite-carbonate, moderate | е    |    |       |   |   |   |   |  |                       |
|           |    | to poorly veined with quartz t ankerite, and   |      |    |       |   | 1 |   |   |  |                       |

| rom                                     | To | DESCRIPTION                                      | From | To | Width |   |   |    |  |                                       |  | Description of Sample |
|-----------------------------------------|----|--------------------------------------------------|------|----|-------|---|---|----|--|---------------------------------------|--|-----------------------|
|                                         |    | sparsely mineralized with pyrite ± traces of     |      |    |       |   |   |    |  |                                       |  |                       |
|                                         |    | chalcopyrite. Some of the pyrite occurs in       |      |    |       |   |   |    |  |                                       |  |                       |
|                                         |    | coarser cubes to 2 mm in size.                   |      |    |       |   |   |    |  |                                       |  |                       |
|                                         |    | The intervening carbonate rocks are              |      |    |       |   |   |    |  |                                       |  |                       |
|                                         |    | medium grey to grey green, locally dull yellow   |      |    |       |   |   |    |  |                                       |  |                       |
| · · · · · · · · · · · · · · · · · · ·   |    | grey and yellowish grey green in colour -        |      |    |       |   |   |    |  | -                                     |  |                       |
| *************************************** |    | somewhat darker than at the top of the sequence. |      |    |       |   | , |    |  |                                       |  |                       |
|                                         |    | The gouged and lost core sections most likely    |      |    |       |   |   |    |  |                                       |  |                       |
|                                         |    | represent carbonate units. The carbonate is      |      |    |       |   |   |    |  |                                       |  |                       |
| -                                       |    | moderate to poorly veined and sparsely           |      |    |       |   |   | 17 |  |                                       |  |                       |
| •                                       |    | mineralized.                                     |      |    |       |   |   |    |  |                                       |  |                       |
| <del></del>                             |    | At 548, 4 cm of gouge previous to the            |      |    |       |   |   |    |  |                                       |  |                       |
|                                         |    | basal section of carbonated intermediate and     |      |    | -     |   |   |    |  |                                       |  |                       |
|                                         |    | mafic volcanics (to 548.9). This basal section   |      |    |       |   |   |    |  | -                                     |  |                       |
|                                         |    | is darker green to grey green carbonate which    |      |    |       |   |   |    |  |                                       |  |                       |
|                                         |    | is strongly laminated at 60-70° to the core      |      |    |       |   |   |    |  | -                                     |  |                       |
| •                                       |    | axis. The lower contact is broken at 70°,        |      |    |       |   |   |    |  |                                       |  |                       |
|                                         |    | at 548.9.                                        |      |    |       |   |   |    |  |                                       |  |                       |
|                                         |    | At 548.9-551, contact to a narrow section        |      |    |       |   |   |    |  |                                       |  |                       |
|                                         |    | of very fine grained dark green to black         |      |    |       |   |   |    |  |                                       |  |                       |
|                                         |    | carbonated ultramafic previous to a zone of      |      |    |       |   | - |    |  |                                       |  |                       |
|                                         |    | dark carbonate/carbonated mafic-ultramafic       |      |    |       |   |   |    |  | · · · · · · · · · · · · · · · · · · · |  |                       |
|                                         |    | volcanics from 551-561.7. The carbonated         |      |    |       |   |   |    |  | <del></del>                           |  |                       |
|                                         |    | serpentinite section is badly broken, well       |      |    |       | - |   |    |  | <del></del>                           |  |                       |
|                                         |    | altered, poorly veined and sparsely mineralized. |      |    |       |   |   | -  |  |                                       |  |                       |
|                                         |    | The dark carbonate, carbonated mafic-            |      |    |       | - | - | _  |  |                                       |  |                       |

PROPERTY QUEBEC STURGEON RIVER MINES LID. - ASHBY PROPERTY Township Taylor Township Description of Sample Width To From DESCRIPTION To From ultramafic volcanics from 551-561.7 are much more uniform in appearance than previous. The rocks are fine grained and vary from dark green to dark grey green. The zone is well altered with carbonate, chlorite ± serpentine, is moderately veined and unmineralized. Locally, the carbonate is weakly brecciated, although in general, the rock is fairly massive with a local development of carbonate rosettes. At 561.7, broken contact into a second sequence of porphyry. The porphyry varies from medium to pale grey, grey green and brownish grey in colour, with local buff coloured bleaching and brick red staining. The porphyry varies from cherty to moderately ankeritic, and is moderately altered with chlorite-ankerite. Ghost phenocrysts of feldspar are normally visible. The porphyry is moderately veined with milky to porcelainous stringers of quartz ± ankerite but is very sparsely mineralized with pyrite. The core is weakly fractured with chlorite-ankerite and there are fairly numerous blebs of chlorite t ankerite across the zone. The lower contact is ill-defined at 595,

| Low         | To    | DESCRIPTION                                                                      | From | To | Width |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      | Description of Sample |
|-------------|-------|----------------------------------------------------------------------------------|------|----|-------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|-----------------------|
|             |       | or 595.6 due to lost core from 595-597. There                                    |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
|             |       | is also lost core in the upper part of the                                       |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | <br> |                       |
|             |       | dyke from 563-565.                                                               |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
| 595         | 680.8 | Carbonated Mafic and Ultramafic Volcanics                                        |      |    |       |          | Appropriate to the state of the | The state of the s |              |      |                       |
| 393         | 000.0 | - a sequence of dark coloured carbonate rocks                                    |      |    |       | <u> </u> | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
|             |       | which grade towards carbonated ultramafic                                        |      |    | -     |          | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
|             |       | below 626.                                                                       |      |    | -     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del> | -    |                       |
|             |       | The upper contact of the sequence is along                                       |      |    | -     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
|             |       | a zone of lost core from 595-597, with                                           |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
| <u> </u>    |       | additional lost core from 599-601 - the car-                                     |      |    |       |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
|             |       | bonate sequence is badly broken to 618.                                          |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
| <del></del> |       | Although the core is moderately gouged and                                       |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      | ٠                     |
|             |       | granulated, the carbonate is fairly uniform                                      |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
|             |       | in appearance, varying from medium to dark                                       |      |    | 1     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
| <del></del> |       | grey green and green in colour with a local                                      |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
| •           |       | development of ankerite metacrysts. The                                          |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
|             |       | carbonate is moderate to poorly veined and                                       |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
|             |       | sparsely mineralized. At 597, there is a                                         |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      | •                     |
|             | -     | trace of fuchsite alteration.                                                    |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
|             |       | With the appearance of more ultramafic                                           |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
|             |       | type material around 626 the carbonate zone                                      |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
|             |       | grades darker in colour to dark green, dark                                      |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
|             |       | grey green and black with a pervasive develop-                                   |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |
|             |       | ment of ankerite metacrysts. The core is gather uniform in appearance with minor |      |    |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                       |

| om          | To           | DESCRIPTION                                    | From | ТО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Width |               |   |   |   |               |   | Description of Samp |
|-------------|--------------|------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|---|---|---|---------------|---|---------------------|
|             |              | granulation up to approximately 651, below     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   |   |               |   |                     |
|             | -            | which the core is more badly broken.           |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   |   | -             |   |                     |
|             |              | At 665.1-667.2 and 669-669.3, there are        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   | - |               |   |                     |
|             |              | two zones of gouge separated by a narrow       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   |   |               |   |                     |
|             |              | section of strongly veined, contorted, dark    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   | · |               |   |                     |
|             |              | green carbonate (667.2-669). From 669.3-676,   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   | - |               |   |                     |
|             |              | the core is a rather strongly granulated, dark |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               | , | 3 |   |               |   |                     |
|             |              | carbonated ultramafic.                         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   |   |               |   |                     |
|             |              | The base of the ultramafic sequence, from      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   |   |               |   | •                   |
|             | -            | 676.0-680.8, is 'cooked' and bleached adjacent |      | and the state of t |       |               |   |   |   |               |   |                     |
|             |              | to the dyke of diabase which occurs below      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   |   |               |   |                     |
|             |              | 680.8. The ultramafic is more competent than   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   |   |               |   |                     |
|             | <del> </del> | the gouged/granulated rocks and is streaky,    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   |   |               |   |                     |
|             |              | layered and blotchy in appearance from the     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   |   |               |   |                     |
| <del></del> |              | segregation of dark mafic minerals and greener |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   |   | -             |   |                     |
|             | _            | plagioclase-rich portions. The ultramafic is   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   |   |               |   |                     |
|             |              | also strongly magnetic with streaks and        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   |   |               |   |                     |
|             |              | irregular stringers of magnetite.              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   |   |               |   |                     |
|             | -            | From 676-676.8, the ultramafic is              |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |               |   |   |   |               |   |                     |
|             | -            | strongly veined with quartz-ankerite, and from | i    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |               |   |   |   |               |   |                     |
|             |              | 676.8-677, there is a narrow fragment/remnant  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   |   |               |   |                     |
|             |              | of serpentinized diabase in the ultramafic.    |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |               |   |   |   |               | - |                     |
|             |              | The lower contact is at 30° to the core        | -    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |               |   |   |   |               |   |                     |
|             |              | axis.                                          | _    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |   |   |   |               |   |                     |
|             |              |                                                | _    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |               | 1 |   | - |               |   |                     |
| 680         | .8 85        | Diabase - a unit of dark green to black,       | -    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | \ <del></del> | - | - | - | \ <del></del> | - |                     |

PROPERTY OUTSIEC STURGEON RIVER MINES 18D. - ASIBY PROPERTY TOWNShip Taylor Township Description of Sample From To DESCRIPTION From To Width Matachewan style diabase that is locally gouged and broken. The first part of the sequence, to 684.6, is a possible dykelet of diabase which is followed by a narrow unit of black, streaky/ layered carbonated ultramafic from 684.6-685.7. The ultramafic is similar to the section 676-680.8 just previous to the diabase contact. Contacts of the ultramafic unit are at:  $0^{\circ}/30^{\circ}$  - the diabase on either side of the unit being very fine grained and bleached dark purple grey to wine coloured. The diabase grades from fine to medium grained around 718', and coarser grained after 741'. The unit is typically ophitic textured with greenish plagioclase and dark mafic minerals plus minor magnetite. The core is weakly altered with chlorite ± ankerite, and is weakly to moderately fractured with dark chlorite ± carbonate, serpentine. The dyke is poorly to unveined with stringers of calcite ± quartz, and is sparsely to unmineralized. From 746-748.3, and 781-784, the diabase is blocky and partly broken from fracturing at shallow angles to the core axis. From

PROPERTY QUEBEC STURGEON RIVER MINES LID. - ASHBY PROPERTY Township Taylor Township To Width Description of Sample DESCRIPTION From To . From 826.5-834, the diabase is blocky and broken around a zone of gouge from 830.4-831.0. The end of the hole is also blocky and broken from 844-851 with some broken pieces of carbonated serpentinite and serpentinized diabase between 847 and 849. There are fragments of diabase below 849 - fine grained and blocky diabase at the end of the hole. At 851, the drill hole was lost when the rods seized in blocky and broken ground. 851' END OF HOLE

Location: XL 6+00W @ 0+50S DIAMOND DRILL REPORT

HOLE No. QS-80 (i)

Core Size:

BQ

PROPERTY: QUEBEC STURGEON RIVER MINES LTD, - ASHBY PROPERTY

Azimuth:

360°

Township:

Taylor Township

Elevation:

Surface

Location of Collar from # Post of

Commenced: 274 July 1983 Finished: 4th August, 1983

Contractor:

Dominik Drilling Inc.

Dip: Collar @ -55°; @ 140'-57°; @ 340'-56°; @ 540'-56°; @ 740'-55°

| From        | То          | DESCRIPTION                                 | From         | То    | Width        |  | Au       | Description of Sample            |
|-------------|-------------|---------------------------------------------|--------------|-------|--------------|--|----------|----------------------------------|
|             |             |                                             |              | 1     |              |  | 02       | Description of Sample            |
|             | <del></del> | SUMMARY LOG                                 |              | 1     |              |  |          |                                  |
| 0           | 141'        |                                             |              | -     | 1            |  |          |                                  |
| 141         | 263         | Porphyry Zone - cherty, moderate and        |              | -     |              |  |          |                                  |
|             | ļ           | highly altered units with some intercalated | 175.7        | 180.7 | 5'           |  | <br>.032 | Porphyry - cherty.               |
| ļ           | 1           | emerald green carbonate.                    | 226.5        | 231.5 | 5            |  | .016     | Porphyry - cherty to highly alt. |
| 263         | 307.2       | Carbonate Zone with remnants of porphyry.   | '            |       |              |  |          |                                  |
|             |             | Emerald green and darker coloured carbonate |              |       |              |  |          |                                  |
|             |             | rocks.                                      | 7            |       |              |  |          |                                  |
| 307.2       | 416.0       | Emerald Green Carbonate Zone - rusted       |              |       |              |  |          |                                  |
|             |             | to 366, brecciated, siliceous 366-416.0.    |              |       |              |  |          |                                  |
| 416.0       | 491.0       | Breccia Zone/Brecciated Dacite              | 472          | 477   | 5            |  | .01      | Dacite - weakly bx.              |
|             |             | with 416-426.1 quartz breccia, dacitic.     | 482          | 487   | 5            |  | .016     | Dacite - " "                     |
|             |             | 426.1-471.1 carbonate breccia, dacitic      |              |       |              |  |          |                                  |
|             |             | remnants.                                   | ,            |       |              |  |          |                                  |
|             |             | 471.1-491.0 weakly brecciated, amyg-        |              |       | <del> </del> |  |          |                                  |
|             |             | dular dacite.                               |              |       |              |  |          |                                  |
| 491.0       | 556.8       | 8 Carbonate Zone - preliminary to           |              |       |              |  |          |                                  |
| <del></del> |             | ultramafic - fault sequence.                | 551.1        | 556.6 | 5.5          |  | .012     | Porphyry - mod.veining - 3% py.  |
| 556.8       | 843         | Carbonated Ultramafics with the majority    | 1            |       |              |  |          |                                  |
|             |             | of gouged and granulated rocks below 655.5. | <del>-</del> |       |              |  |          |                                  |
|             | <u> </u>    |                                             |              |       |              |  |          |                                  |
|             |             |                                             | <u> </u>     | _     |              |  |          |                                  |
|             | 843'        | END OF HOLE - HOLE LOST.                    |              |       |              |  |          |                                  |
|             |             |                                             |              |       |              |  |          |                                  |
|             |             |                                             |              |       |              |  |          |                                  |

Location of Collar from # Post of

XL 6+00W @ 0+50S Location: Core Sizor

BQ

PROPERTY: QUEBEC STURGEON RIVER MINES 17D, - ASHBY PROPERTY

Azimuth:

360°

Township:

Taylor Township

Commenced:

Finished:

August, 1983

Contractor:

Dominik Drilling Inc.

Dip: Collar @ -55°; @ 140'-57°;

Elevation: Surface

| From        | То   | DESCRIPTION                                     | From | To                  | Width |   |   | į    |  |   | Description of Sampl |
|-------------|------|-------------------------------------------------|------|---------------------|-------|---|---|------|--|---|----------------------|
| . 0         | 141' | Casing. (Casing pulled) - bedrock at            |      |                     |       |   |   |      |  |   |                      |
|             |      | 136', casing driven to 141'.                    |      | ,                   |       |   |   |      |  |   |                      |
|             |      |                                                 |      |                     |       |   |   | <br> |  |   |                      |
| 141         | 263  | Porphyry Zone - a complex sequence of           | -    | *** <u>********</u> |       |   | - | <br> |  | - |                      |
|             |      | variably altered porphyry with a moderate       |      |                     |       |   |   | <br> |  |   |                      |
|             |      | amount of intercalated emerald green carbonate. |      |                     |       |   |   |      |  |   |                      |
|             |      | The porphyries include three basic types        |      |                     |       |   |   |      |  |   |                      |
|             |      | of units - variations being largely a function  |      |                     |       |   |   |      |  |   |                      |
|             |      | of alteration as:                               |      |                     |       |   |   |      |  |   |                      |
|             |      | : white to pale grey and off white              |      |                     |       |   |   |      |  |   |                      |
|             |      | cherty, brittle units with locally developed    |      |                     |       |   |   |      |  |   |                      |
|             |      | phenocrysts of albite.                          |      |                     |       |   |   |      |  |   |                      |
|             |      | : grey to yellowish grey, cherty,               |      |                     |       |   |   |      |  |   |                      |
|             |      | moderately ankeritic units with 'ghost'         |      |                     |       |   |   |      |  |   |                      |
|             |      | cherty patches and occasional phenocrysts of    |      |                     |       |   |   |      |  |   |                      |
|             |      | feldspar with diffuse margins, and              |      |                     |       |   |   |      |  |   |                      |
|             |      | : dark yellow grey, yellow grey green           |      |                     |       |   |   |      |  |   |                      |
|             |      | and ochre coloured highly altered porphyries.   |      |                     |       |   |   |      |  |   |                      |
|             |      | Alteration of the porphyries includes           |      |                     |       |   |   |      |  |   |                      |
|             |      | sericite and carbonate ± fuchsite, chlorite.    |      |                     |       |   |   |      |  |   |                      |
|             |      | In the highly altered porphyries, specks of     |      |                     |       |   |   |      |  |   |                      |
|             |      | fuchsite are common and the bright yellow,      |      |                     |       | _ |   |      |  |   |                      |
| <del></del> |      | tuchsite are common and the bright yellow,      |      |                     |       | _ | _ |      |  |   |                      |

Ζ.

PROPERTY QUEBEC STURGEON RIVER MINES LTD.-ASHBY PROPERTY Township Taylor Township Description of Sample Width From To DESCRIPTION From To often lath-shaped sericite appears to be in part replacing albite. Throughout the sequence there are erratic units of normal to greyish emerald green carbonate with scattered darker grey to black and olive coloured carbonate patches. Locally in the emerald green carbonate sections there are brick red streaks and lenses with hematite stain. The overall sequence is somewhat pervasively rusted from ankerite - rusting is common near the collar of the hole, but becomes more locally confined along unit contacts below 156'. The core is moderate to poorly veined with quartz ± ankerite, is sparsely mineralized with pyrite, and is weakly to moderately fractured with dark chlorite, carbonate. The breakdown of units within the sequence includes: 141-161.6: Cherty porphyry - in part stained and locally yellowish from rusting with ankerite. The main part of the white, cherty porphyry without staining occurs at the base of the unit, below 155. 161.6-163.8: Emerald green carbonate,

Hole No.

| From        | To           | DESCRIPTION                                     | From | То   | Width |      |      | Au<br>oz | Description of Sample |
|-------------|--------------|-------------------------------------------------|------|------|-------|------|------|----------|-----------------------|
|             |              | becoming darker greyish at base; schistose      |      |      |       | <br> |      |          |                       |
|             |              | at 45-50°.                                      |      |      |       | <br> | <br> | <br>     |                       |
|             |              | 163.8-166: Highly altered porphyry(?) -         |      |      |       |      | <br> |          |                       |
|             |              | finely granular, strong carbonate, wisps and    |      |      |       | <br> | <br> |          |                       |
|             |              | threads of sericite, specks of fuchsite.        |      |      |       |      |      | <br>     |                       |
|             |              | Locally the matrix appears cherty.              |      |      |       |      |      |          |                       |
|             |              | 166.0-167.2: Emerald green carbonate.           |      |      |       |      |      |          |                       |
|             | <del> </del> | 167.2-169.7: Highly altered porphyry(?)-        |      |      |       |      |      |          |                       |
|             | -            | (possible dacite?) - very fine grained to       |      |      |       |      |      |          |                       |
|             |              | locally finely granular, yellow grey green      |      |      |       |      |      | <br>     |                       |
|             |              | to putty coloured, specks of fuchsite, chlorite |      |      |       |      |      |          |                       |
|             |              | 169.7-170.9: Emerald green carbonate.           |      |      |       |      |      |          |                       |
|             |              | 170.9-171.5: Broken core - highly altered       |      |      |       |      |      |          |                       |
| -           |              | carbonate, carbonated porphyry with narrow      |      |      |       |      |      |          |                       |
| <del></del> |              | sections of emerald green carbonate.            |      |      |       |      |      |          |                       |
|             |              | 171.5-193: Cherty porphyry - white to           | 175. | 180. | 7 5'  |      |      | <br>.032 | Porphyry              |
|             |              | pale grey, weakly rusted at upper contact.      |      |      |       |      |      |          |                       |
|             |              | There are inclusions(?) within the system       |      |      |       |      |      |          |                       |
|             |              | at: 174.7-175.0 - dark grey granular carbonate  |      |      |       |      |      |          |                       |
|             |              | carbonated mafic volcanic; 175.5-175.8 -        |      |      |       |      |      |          |                       |
|             |              | yellowish, highly altered porphyry (or dacite?  | ')   |      |       |      |      |          |                       |
|             |              | with ghost cherty patches, specks of fuchsite   |      |      |       |      |      |          |                       |
|             |              | and strong sericite alteration; 176.1-176.2     | -    |      |       |      |      |          |                       |
|             |              | grey, cherty, moderately ankeritic porphyry;    |      |      |       |      |      |          |                       |
|             |              | 177.3-177.7 - grey to pale brownish grey,       |      |      |       |      |      |          |                       |
|             |              | cherty, moderately ankeritic porphyry with      | _    | _    |       |      |      |          | _                     |

| From | To | DESCRIPTION                                   | From                                             | To | Width |   |   |   |   |   | Description of Sample |
|------|----|-----------------------------------------------|--------------------------------------------------|----|-------|---|---|---|---|---|-----------------------|
|      |    | diffuse phenocrysts and traces of fuchsite;   |                                                  |    |       |   |   |   |   |   |                       |
|      |    | 178-178.6 - moderately ankeritic porphyry,    |                                                  |    |       |   |   |   |   |   |                       |
|      |    | with moderate pyrite, and 184.5-184.7 - dark, |                                                  |    |       |   |   |   |   |   |                       |
|      |    | granular carbonate.                           |                                                  |    |       |   |   |   |   |   |                       |
|      |    | 193-205.6: Dark, chloritized, highly          |                                                  |    |       |   |   |   |   |   |                       |
|      |    | altered porphyry which grades to lighter      |                                                  |    |       |   |   |   |   |   |                       |
|      |    | coloured, highly altered, finely granular     |                                                  |    |       |   |   |   |   |   |                       |
|      |    | porphyry below 199.6, with sericite, fuchsite |                                                  |    |       |   |   |   |   |   |                       |
|      | 1  | and ghost cherty patches. Lost core 193-198;  |                                                  |    |       |   |   |   |   |   |                       |
|      |    | cherty, weakly rusted porphyry 200.5-200.8.   |                                                  |    |       |   |   |   |   |   |                       |
|      | -  | 205.6-207.3: Emerald green carbonate -        |                                                  |    |       |   |   |   |   |   |                       |
|      |    | strongly rusted, plus there are blebs and     |                                                  |    |       |   | • | 2 |   |   | •                     |
|      |    | patches of darker coloured carbonate.         |                                                  |    |       |   |   |   | · |   |                       |
|      |    | 207.3-208.0: Highly altered porphyry          |                                                  |    |       |   |   |   |   |   |                       |
|      |    | with sericite pseudomorphic after albite(?).  |                                                  |    |       |   |   |   |   |   |                       |
|      |    | 208.0-209.8: Emerald green carbonate,         | <del>                                     </del> |    |       | - |   |   |   |   |                       |
|      |    | rusty, with darker carbonate blebs and        |                                                  |    |       |   |   |   |   |   |                       |
|      |    | patches plus minor hematite stain.            | -                                                |    | _     |   |   |   |   |   |                       |
|      |    | 209.8-213.4: Grey, cherty, moderately         |                                                  |    | -     |   |   |   |   |   |                       |
|      |    | ankeritic porphyry with strong ankerite to    |                                                  | -  |       |   |   |   |   |   |                       |
|      | _  | 211, followed by a chertier zone 211-212.2,   |                                                  |    |       |   |   |   |   |   |                       |
|      | _  | previous to darker, more strongly chloritize  | d                                                |    |       |   |   |   |   |   |                       |
|      |    | highly altered porphyry at the base (212.2-   | _                                                |    |       |   |   |   |   | · |                       |
|      |    | 213.4).                                       |                                                  |    |       |   |   |   |   |   |                       |
|      | _  | 213.4-216.5: Emerald green carbonate          |                                                  |    |       |   |   |   |   |   |                       |
| -    | _  | with reddish blebs and streaks from hematite  | •                                                |    |       |   |   |   |   |   |                       |

PROPERTY QUEBEC STURGEON RIVER MINES LTD.-ASHBY PROPERTY Township Taylor Township Au Description of Sample Width To From DESCRIPTION To From The core is broken, with ground core from 216-216.5. In a section 214.5-215.1, there are fragments of darker, chloritized, highly altered porphyry. 216.5-217.3: Grey, cherty, moderately ankeritic porphyry. 217.3-225.6: Highly altered porphyry with some darker grey sections as: 219-221, 224.8-225.6 plus some emerald green carbonate at: 221-221.5 and 224.1-224.7. .016 Porphyry. 225.6-228.6: Grey and cherty to cherty, 226.5 231.5 moderately ankeritic porphyry with some rusting from ankerite at: 226.5-227. 228.6-234.7: Highly altered porphyry, some ghost cherty patches - broken core. 234.7-238.6: Emerald green carbonate dull to normal. 238.6-263: Highly altered porphyry with narrow intercalated sections of emerald green carbonate around the upper (238.6-240.8) and lower (262.2-263) portions. The porphyry is well altered with sericite and contains some ghost cherty patches. The core is blocky and broken with ground core from 262.5-263.

5.

PROPERTY QUEDEC STURGEON RIVER MINES LTD.-ASHBY PROPERTY Township Taylor Township Description of Sample To Width From DESCRIPTION From To 263 | 307.2 Carbonate Zone with remnants of porphyry - a sequence of emerald green and darker coloured carbonate rocks which probably form part of the overlying sequence, although the dominant rock type in this section is carbonate At the start of the zone, from 263-266.6, the rock is emerald green carbonate which becomes much darker grey to black carbonate from 266.6-278.8. Both carbonate units are coarsely granular - the lower, darker unit also being pervasively rusted with ankerite. The core is partly blocky and broken. Traces of fuchsite are found throughout the darker carbonate rocks, plus there are fairly numerous brick coloured blebs and patches related to hematite staining. At 278.8, return to emerald green fuchsitic carbonate rocks with blebs and patches of hematite plus scattered sections of grey to brownish olive carbonate and erratic units of porphyry. Locally, the core is moderate to strongly rusted with ankerite. From 280.2-280.8, there is a 3 cm cream coloured dyke running almost along the core axis - a weakly rusted cherty porphyry(?). At 282.9-283.7 - pale grey green to

| From        | To | DESCRIPTION                                     | From | То | Width |   |   |              |                                                  | Description of Sample |
|-------------|----|-------------------------------------------------|------|----|-------|---|---|--------------|--------------------------------------------------|-----------------------|
|             |    | grey olive, highly altered porphyry(??) -       |      |    |       |   |   |              |                                                  |                       |
|             |    | the rock has a weakly siliceous groundmass      |      |    |       |   |   |              |                                                  |                       |
|             | _  | which is speckled with sericite (after feld-    |      |    |       |   |   |              |                                                  |                       |
|             |    | spar?). The contacts of the unit are            |      |    |       |   |   |              |                                                  |                       |
|             |    | irregular at: 50°/30°.                          |      | -  |       |   |   |              |                                                  |                       |
|             |    | From 284.9-285.3 and 296-296.6 there are        |      |    |       |   | • |              |                                                  |                       |
|             |    | two narrow units similar to the section of      |      |    |       | • | • |              |                                                  |                       |
|             |    | highly altered porphyry from 282.9-283.7        |      |    |       |   |   |              |                                                  | ·                     |
|             |    | except that the rocks are brecciated.           |      |    |       |   |   |              |                                                  |                       |
|             |    | Contacts of the upper unit are at: 60°/40°,     |      |    |       |   |   |              |                                                  |                       |
|             |    | while the lower unit is along the core axis.    |      |    |       |   |   |              |                                                  |                       |
| <del></del> |    | From 298.0-302.0, there is a narrow,            |      |    |       |   |   |              |                                                  |                       |
|             |    | granular unit of grey brown to buff olive       |      |    |       |   |   |              |                                                  |                       |
|             |    | and dark grey carbonate. Texturally the         |      |    |       |   |   |              |                                                  |                       |
|             |    | carbonate is similar to the previous porphyry   |      |    |       |   |   |              |                                                  |                       |
|             |    | sections although the mineralogy appears to     |      |    |       |   |   |              |                                                  |                       |
|             |    | be entirely carbonate-chlorite with a per-      |      |    |       |   |   |              |                                                  |                       |
| <del></del> |    | vasive development of carbonate rosettes.       |      |    |       |   |   |              |                                                  |                       |
|             |    | Contacts of the unit are at: 30°/35°.           |      |    |       |   |   |              |                                                  |                       |
|             |    | The base of the carbonate zone is along         |      |    |       |   |   |              | <del>                                     </del> |                       |
|             |    | a brecciated, altered unit of probable cherty   | 7    |    |       |   |   |              |                                                  |                       |
|             |    | porphyry, from 303.1-307.2. The upper part      |      |    |       |   |   |              |                                                  |                       |
|             |    | of the porphyry, to 304.0, is brecciated and    |      |    | 1     |   |   | 1            | <del>                                     </del> |                       |
|             |    | greyish in colour, which is followed by white   | ≥,   |    |       |   |   |              | 1                                                |                       |
|             | 1  | well fractured porphyry to 304.8, with a        |      |    |       |   |   | 1            | 1                                                |                       |
|             |    | moderately fractured, weakly rusted, ankerition |      | 1  |       |   | 1 | <del> </del> |                                                  |                       |

Hole No.

| basal zone from 304.8-307.2. Both contacts  of the unit are broken.  307.2 416.0 Carbonate Zone - a sequence of emerald green fuchsitic carbonate rocks that are distinguished from the overlying unit by the relative lack of porphysy.  The overall carbonate zone can be sub- divided into an upper portion, from 307.2- 366, of variably altered and rusted carbonate with a lower portion from 366-416.0 of more siliceous, brecciated carbonate rocks.  The upper carbonate portion varies from dull, normal to dark, rich emerald green in colour and contains erratic narrow streaky sections with accessory sericite alteration near the top of the sequence as: 326-327.3 and 333-336.4. At the upper contact, from 307.2-313, and later in the sequence from 327-334, the carbonate rocks are blocky, broken and rusted with lost core from 329-333 - the upper broken section is also well veined with stringers of quartz-ankerite. Near the base of the upper, moderately | of Sample |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| of the unit are broken.  307.2 416.0 Carbonate Zone - a sequence of emerald green fuchsitic carbonate rocks that are distinguished from the overlying unit by the relative lack of porphyry.  The overall carbonate zone can be subdivided into an upper portion, from 307.2-366, of variably altered and rusted carbonate with a lower portion from 366-416.0 of more siliceous, brecciated carbonate rocks.  The upper carbonate portion varies from dull, normal to dark, rich emerald green in colour and contains erratic narrow streaky sections with accessory sericite alteration near the top of the sequence as: 326-327.3 and and 333-336.4. At the upper contact, from 307.2-313, and later in the sequence from 327-334, the carbonate rocks are blocky, broken and rusted with lost core from 329-333 - the upper broken section is also well veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                           |           |
| green fuchsitic carbonate rocks that are  distinguished from the overlying unit by the  relative lack of porphyry.  The overall carbonate zone can be sub- divided into an upper portion, from 307.2-  366, of variably altered and rusted carbonate with a lower portion from 366-416.0 of more siliceous, brecciated carbonate rocks.  The upper carbonate portion varies from dull, normal to dark, rich emerald green in colour and contains erratic narrow streaky sections with accessory sericite alteration near the top of the sequence as: 326-327.3 and 333-336.4. At the upper contact, from 307.2-313, and later in the sequence from 327-334, the carbonate rocks are blocky, broken and rusted with lost core from 329-333 - the upper broken section is also well veined with stringers of quartz-ankerite.  Near the base of the upper, moderately.                                                                                                                    |           |
| green fuchsitic carbonate rocks that are  distinguished from the overlying unit by the  relative lack of porphyry.  The overall carbonate zone can be sub- divided into an upper portion, from 307.2- 366, of variably altered and rusted carbonate with a lower portion from 366-416.0 of more siliceous, brecciated carbonate rocks.  The upper carbonate portion varies from dull, normal to dark, rich emerald green in colour and contains erratic narrow streaky sections with accessory sericite alteration near the top of the sequence as: 326-327.3 and 333-336.4. At the upper contact, from 307.2-313, and later in the sequence from 327-334, the carbonate rocks are blocky, broken and rusted with lost core from 329-333 - the upper broken section is also well veined with stringers of quartz-ankerite.  Near the base of the upper, moderately.                                                                                                                     |           |
| green fuchsitic carbonate rocks that are  distinguished from the overlying unit by the  relative lack of porphyry.  The overall carbonate zone can be sub- divided into an upper portion, from 307.2- 366, of variably altered and rusted carbonate with a lower portion from 366-416.0 of more siliceous, brecciated carbonate rocks.  The upper carbonate portion varies from dull, normal to dark, rich emerald green in colour and contains erratic narrow streaky sections with accessory sericite alteration near the top of the sequence as: 326-327.3 and 333-336.4. At the upper contact, from 307.2-313, and later in the sequence from 327-334, the carbonate rocks are blocky, broken and rusted with lost core from 329-333 - the upper broken section is also well veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                      |           |
| distinguished from the overlying unit by the relative lack of porphyry.  The overall carbonate zone can be sub- divided into an upper portion, from 307.2- 366, of variably altered and rusted carbonate with a lower portion from 366-416.0 of more siliceous, brecciated carbonate rocks.  The upper carbonate portion varies from dull, normal to dark, rich emerald green in colour and contains erratic narrow streaky sections with accessory sericite alteration near the top of the sequence as: 326-327.3 and 333-336.4. At the upper contact, from 307.2-313, and later in the sequence from 327-334, the carbonate rocks are blocky, broken and rusted with lost core from 329-333 - the upper broken section is also well veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                                                                 |           |
| relative lack of porphyry.  The overall carbonate zone can be subdivided into an upper portion, from 307.2- 366, of variably altered and rusted carbonate with a lower portion from 366-416.0 of more siliceous, brecciated carbonate rocks.  The upper carbonate portion varies from dull, normal to dark, rich emerald green in colour and contains erratic narrow streaky sections with accessory sericite alteration near the top of the sequence as: 326-327.3 and 333-336.4. At the upper contact, from 307.2-313, and later in the sequence from 327-334, the carbonate rocks are blocky, broken and rusted with lost core from 329-333 - the upper broken section is also well veined with stringers of quartz-ankerite.  Near the base of the upper, moderately.                                                                                                                                                                                                               |           |
| divided into an upper portion, from 307.2-  366, of variably altered and rusted carbonate with a lower portion from 366-416.0 of more siliceous, brecciated carbonate rocks.  The upper carbonate portion varies from dull, normal to dark, rich emerald green in colour and contains erratic narrow streaky sections with accessory sericite alteration near the top of the sequence as: 326-327.3 and 333-336.4. At the upper contact, from 307.2-313, and later in the sequence from 327-334, the carbonate rocks are blocky, broken and rusted with lost core from 329-333 - the upper broken section is also well veined with stringers of quartz-ankerite.  Near the base of the upper, moderately.                                                                                                                                                                                                                                                                               |           |
| 366, of variably altered and rusted carbonate  with a lower portion from 366-416.0 of more  siliceous, brecciated carbonate rocks.  The upper carbonate portion varies from  dull, normal to dark, rich emerald green in  colour and contains erratic narrow streaky  sections with accessory sericite alteration  near the top of the sequence as: 326-327.3  and 333-336.4. At the upper contact, from  307.2-313, and later in the sequence from  327-334, the carbonate rocks are blocky,  broken and rusted with lost core from 329-333  - the upper broken section is also well  veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                                                                                                                                                                                                                |           |
| 366, of variably altered and rusted carbonate  with a lower portion from 366-416.0 of more  siliceous, brecciated carbonate rocks.  The upper carbonate portion varies from dull, normal to dark, rich emerald green in colour and contains erratic narrow streaky sections with accessory sericite alteration near the top of the sequence as: 326-327.3 and 333-336.4. At the upper contact, from 307.2-313, and later in the sequence from 327-334, the carbonate rocks are blocky, broken and rusted with lost core from 329-333 - the upper broken section is also well veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                                                                                                                                                                                                                          |           |
| with a lower portion from 366-416.0 of more  siliceous, brecciated carbonate rocks.  The upper carbonate portion varies from dull, normal to dark, rich emerald green in colour and contains erratic narrow streaky sections with accessory sericite alteration near the top of the sequence as: 326-327.3 and 333-336.4. At the upper contact, from 307.2-313, and later in the sequence from 327-334, the carbonate rocks are blocky, broken and rusted with lost core from 329-333 - the upper broken section is also well veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                                                                                                                                                                                                                                                                         |           |
| The upper carbonate portion varies from  dull, normal to dark, rich emerald green in  colour and contains erratic narrow streaky  sections with accessory sericite alteration  near the top of the sequence as: 326-327.3  and 333-336.4. At the upper contact, from  307.2-313, and later in the sequence from  327-334, the carbonate rocks are blocky,  broken and rusted with lost core from 329-333  - the upper broken section is also well  veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| The upper carbonate portion varies from  dull, normal to dark, rich emerald green in  colour and contains erratic narrow streaky  sections with accessory sericite alteration  near the top of the sequence as: 326-327.3  and 333-336.4. At the upper contact, from  307.2-313, and later in the sequence from  327-334, the carbonate rocks are blocky,  broken and rusted with lost core from 329-333  - the upper broken section is also well  veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| dull, normal to dark, rich emerald green in  colour and contains erratic narrow streaky  sections with accessory sericite alteration  near the top of the sequence as: 326-327.3  and 333-336.4. At the upper contact, from  307.2-313, and later in the sequence from  327-334, the carbonate rocks are blocky,  broken and rusted with lost core from 329-333  - the upper broken section is also well  veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| colour and contains erratic narrow streaky sections with accessory sericite alteration near the top of the sequence as: 326-327.3  and 333-336.4. At the upper contact, from 307.2-313, and later in the sequence from 327-334, the carbonate rocks are blocky, broken and rusted with lost core from 329-333 - the upper broken section is also well veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| near the top of the sequence as: 326-327.3  and 333-336.4. At the upper contact, from  307.2-313, and later in the sequence from  327-334, the carbonate rocks are blocky,  broken and rusted with lost core from 329-333  - the upper broken section is also well  veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| and 333-336.4. At the upper contact, from  307.2-313, and later in the sequence from  327-334, the carbonate rocks are blocky,  broken and rusted with lost core from 329-333  - the upper broken section is also well  veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| and 333-336.4. At the upper contact, from  307.2-313, and later in the sequence from  327-334, the carbonate rocks are blocky,  broken and rusted with lost core from 329-333  - the upper broken section is also well  veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 307.2-313, and later in the sequence from  327-334, the carbonate rocks are blocky,  broken and rusted with lost core from 329-333  - the upper broken section is also well  veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| 327-334, the carbonate rocks are blocky, broken and rusted with lost core from 329-333  - the upper broken section is also well veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| broken and rusted with lost core from 329-333  - the upper broken section is also well  veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| - the upper broken section is also well  veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| veined with stringers of quartz-ankerite.  Near the base of the upper, moderately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| rusted carbonate portion and continuing into                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |

DIAMOND DRILL REPORT OS-80 Hole No. Taylor Township PROPERTY QUEBEC STURGEON RIVER MINES LTD.-ASHBY PROPERTY Township Description of Sample Width DESCRIPTION From To From To rocks there are irregular grevish coloured siliceous patches/lenses which could be remnants of either porphyry or dacite - see fine grained sections at 355.7, 373.3. Below the zone of lost core from 329-333, there is a small fragment of brecciated, sericitic core from 333-333.5. With the start of the brecciated, more siliceous carbonate rocks around 366, there is a parallel increase in the amount of veining. The fuchsitic carbonate grades to dull and greyish emerald green in colour with normal to dark rich portions. The carbonate is moderately speckled with dark green to black chlorite ± ankerite, and contains scattered fragments/patches of variously altered and carbonated material. From 407-411 blocky and broken core with accessory rusting from ankerite followed by more strongly brecciated emerald green carbonate with scattered siliceous fragments and a narrow remnant of porphyry from 413.2-



this basal contact zone (i.e. 411-416.0) appear to have been originally porphyry.

413.5. Some of the siliceous fragments in

appear to have been originally porphyry. The lower contact of the sequence is sharp at 55°.

| rom          | To    | DESCRIPTION                                     | From         | To           | Width          |              |                                                  |              |   |   |              | Description of Sample |
|--------------|-------|-------------------------------------------------|--------------|--------------|----------------|--------------|--------------------------------------------------|--------------|---|---|--------------|-----------------------|
| 416.0        | 491.0 | Breccia Zone/Brecciated Dacite(?) - a           |              |              |                |              |                                                  |              |   |   |              |                       |
| 12000        |       | sequence of variably altered and brecciated     |              |              |                |              |                                                  |              |   |   |              |                       |
|              |       | dacite and carbonate rocks of probable          |              |              |                |              |                                                  |              |   |   |              |                       |
|              |       | dacitic affinity. The sequence is readily       |              |              |                |              |                                                  |              |   |   |              |                       |
|              |       | divisible into three main sections as: 416.0-   |              |              |                |              |                                                  |              |   |   |              |                       |
|              |       | 426.1, 426.1-471.1 and 471.1-491.0.             |              |              |                |              |                                                  |              |   |   |              |                       |
|              |       | The upper zone, from 416.0-426.1, is            |              |              |                |              | •                                                |              |   |   |              |                       |
|              |       | predominately a quartz breccia with numerous    |              |              |                |              |                                                  |              |   |   |              |                       |
|              |       | ovoid to subrounded fragments of quartz up to   |              |              |                |              |                                                  |              |   |   |              |                       |
|              | -     | 1 cm in size in a very fine grained, dark grey  | T            |              |                |              |                                                  |              |   |   |              |                       |
| <del></del>  |       | to grey olive, carbonate-chlorite-rich matrix   |              |              |                |              |                                                  |              |   |   |              |                       |
|              | I     | Erratic fragments in this section appear to     |              |              |                |              |                                                  |              |   |   |              |                       |
|              |       | have been originally porphyry - finely granular | ********     |              |                |              |                                                  |              |   |   |              |                       |
|              |       | grey, cherty and moderately ankeritic. Rare     |              |              |                |              |                                                  |              |   |   |              |                       |
|              |       | fragments of carbonate are noted.               |              |              |                |              |                                                  |              |   |   |              |                       |
|              |       | The matrix component of the breccia is          | -            |              |                |              |                                                  |              |   |   |              |                       |
|              |       | very similar to the basal part of the sequence  | € .          |              |                |              |                                                  |              |   |   |              |                       |
|              |       | (i.e. 471.1-491.0), which is more definitely    | <del> </del> |              |                |              | <del>                                     </del> | -            | - |   |              |                       |
|              |       | dacitic. Aside from fragments of quartz         | 1            |              |                | <del> </del> |                                                  |              | - |   |              |                       |
|              |       | (stringer material?) this upper section is      |              | 1            | ~ <del> </del> |              |                                                  | <del> </del> | - | - | <del> </del> |                       |
|              |       | effectively unveined and unmineralized.         | -            | <del> </del> |                |              |                                                  |              | - |   |              |                       |
|              |       | From 420.7-422, the core is a pale grey         |              | -            |                |              |                                                  |              |   |   |              |                       |
|              |       | olive to greyish ochre coloured carbonate/      | 1            | -            | 1              | 1            | -                                                |              |   |   |              |                       |
| _            | P     | carbonated dacite.                              |              |              |                |              |                                                  |              |   |   |              |                       |
|              |       | Below 426.1 the breccia zone becomes            | <del> </del> |              |                |              |                                                  |              |   |   |              |                       |
| <del>-</del> |       | strongly carbonated, resulting in grey olive    |              | -            |                | -            |                                                  | 1            | _ | 1 |              |                       |

Taylor Township

PROPERTY QUEBEC STURGEON RIVER MINES LTD.-ASHBY PROPERTY Township Description of Sample Width From To DESCRIPTION From To to yellow olive and yellowish grey carbonate rocks with patches/fragments of broken stringer material. The fragment component is more angular with depth, particularly after 458, where there are fragments of emerald green carbonate, quartz, porphyry(?) and dacite in a strongly carbonated matrix. Fragments/patches range up to 2 cm in size with average fragments in the range of 5 mm · 1 cm. Most of the buff to yellowish coloured fragments noted appear to be dacitic in that the rocks are considerably finer grained and unlike most of the porphyry units noted. The most obvious section of fine grained, yellow grey to grey buff, brecciated dacite occurs between 463.3 and 465.5. There are traces of fuchsite throughout the breccia section. At 471.1, contact to a sequence of much more massive, weakly brecciated, grey to 472 477 Dacite - mass., mod.veining. grey brown and grey olive dacite - in most respects nearly identical to the matrix component of the upper breccia zone (i.e. 416.0-426.1). As a colour reference, both of these 487 5 -016 Dacite. units (416-426.1 and 471.1-491) are similar to units of sediment seen elsewhere in Taylor

Hole No.

MILL KLI OKI

| rom          | To             | DESCRIPTION                                  | From | To | Width |     |          |   |          |   | Description of Sample |
|--------------|----------------|----------------------------------------------|------|----|-------|-----|----------|---|----------|---|-----------------------|
|              |                | Township, although texturally the rocks are  |      |    |       |     |          |   |          |   |                       |
|              |                | much finer grained and non detrital in       |      |    |       |     |          |   | <br>     |   |                       |
|              |                | appearance. This lower unit also contains    |      |    |       |     |          |   |          |   |                       |
|              |                | distinctive quartz-filled amygdules ± quartz |      |    | ·     |     |          |   |          |   |                       |
|              |                | 'eyes'. The dacite is effectively unveined   |      |    |       |     | <u> </u> |   | <br>     |   |                       |
| <del> </del> |                | and is very sparsely mineralized with pyrite |      |    |       |     |          |   |          |   |                       |
|              |                | ± chalcopyrite.                              |      |    |       |     |          | ļ |          |   |                       |
|              |                | The lower contact of the sequence is         |      |    |       |     |          |   |          |   | •                     |
|              |                | blocky and broken.                           |      |    |       |     |          |   |          |   |                       |
|              |                |                                              |      |    |       |     |          |   |          |   |                       |
| 491.1        | 556.8          | Carbonate Zone - a sequence of well          |      |    |       |     |          |   |          |   |                       |
| 401.         | 33000          | veined, schistose and contorted carbonate    |      |    |       |     | ļ        |   | <br>     |   |                       |
|              | <del>-  </del> | rocks preliminary to a fault zone at 556.8.  |      |    |       |     |          |   |          |   |                       |
|              |                | The lower contact is arbitrarily placed at   |      |    |       |     |          |   |          |   |                       |
|              |                | 556.8 along a unit of porphyry, below which  |      |    |       |     |          |   |          |   |                       |
|              |                | the rock is a carbonated ultramafic.         |      |    |       |     |          |   | <u> </u> |   |                       |
|              |                | The carbonate varies from olive to           |      |    |       |     |          |   |          |   |                       |
|              |                | yellow olive and grey olive in colour at the |      |    |       |     |          |   |          |   |                       |
|              |                | top of the zone to darker green, dark grey   |      |    |       |     |          |   |          |   |                       |
|              | _              | green, dark grey and olive coloured carbonat | .ė   |    |       |     |          |   |          |   |                       |
|              |                | rocks below 545. The change in colour of th  | e    |    |       |     |          |   |          |   |                       |
| <del></del>  | _              | carbonate is also marked by a change from    |      |    |       |     |          |   |          |   |                       |
|              |                | schistose to highly contorted and schistose  |      |    |       |     |          |   |          | _ |                       |
|              |                | rocks around 545 - the upper section is      |      |    |       |     |          |   |          |   |                       |
|              |                | sheared/schistose at 50-550, while the lower |      |    |       |     |          |   |          |   |                       |
|              | <del>-  </del> | zone varies from 30-60° (average schistosity |      |    |       |     |          |   |          |   |                       |
|              |                | 550).                                        |      |    |       | _ , |          |   | <br>•    | • |                       |

| PROPERTY QUEBEC STURGEON | RIVER MINES LTDASHBY | PROPERTY Township | Taylor Township |
|--------------------------|----------------------|-------------------|-----------------|
|                          |                      |                   |                 |

| From        | To       | DESCRIPTION                                    | From  | То   | Width |   |               |  |              | · I           | Au<br>oz | Description of Sample           |
|-------------|----------|------------------------------------------------|-------|------|-------|---|---------------|--|--------------|---------------|----------|---------------------------------|
|             | <u> </u> | Dark carbonate/carbonated ultramafic           |       |      |       |   |               |  |              |               |          |                                 |
|             |          | rocks first appear in the system at 509.3 -    |       |      |       |   |               |  |              |               |          |                                 |
|             |          | the ultramafic component steadily increasing   |       |      |       |   |               |  |              |               |          |                                 |
|             |          | with depth. Most of the core in the section    | -     |      |       |   |               |  |              |               |          |                                 |
|             |          | above the ultramafic (i.e. above 509) is       |       |      |       |   |               |  |              |               |          |                                 |
|             |          | blocky and broken.                             |       |      |       |   |               |  |              |               |          |                                 |
|             |          | Also in the upper portion of the sequence      |       |      |       | · |               |  |              |               |          |                                 |
|             |          | there are a few, narrow, cherty, more sili-    |       |      |       |   |               |  |              |               |          |                                 |
|             |          | ceous sections that may represent remnants of  |       |      |       |   |               |  |              |               |          |                                 |
|             |          | porphyry. These sections are very fine         |       |      |       |   |               |  |              |               |          |                                 |
|             |          | grained, siliceous and brittle with few        |       |      |       |   |               |  |              |               |          |                                 |
|             |          | characteristics diagnostic of porphyry,        |       |      |       |   |               |  |              |               |          |                                 |
| <del></del> |          | although the units are generally wider and     |       |      |       |   |               |  |              |               |          |                                 |
|             |          | harder than most of the surrounding veining    |       |      |       |   |               |  |              |               |          |                                 |
|             |          | which contains a strong ankerite component.    |       |      |       |   |               |  |              |               |          |                                 |
|             |          | Units of potential porphyry include: 501.3-    |       |      |       |   |               |  |              |               |          |                                 |
|             |          | 505.6, 506.6-507.1 and 507.3-507.7.            |       |      |       |   |               |  |              |               |          |                                 |
|             |          | The base of the preliminary carbonate          |       |      |       |   | ,             |  |              |               |          |                                 |
|             |          | sequence is defined by a unit of grey to       |       |      | 1     |   | •             |  |              |               |          | 1                               |
| ,           |          | pinkish grey and brownish grey, cherty,        |       |      |       |   |               |  |              |               |          | <u> </u>                        |
|             |          | moderately ankeritic porphyry from 551.0-556.8 | 3     |      |       |   | <del></del>   |  |              |               |          | 1                               |
|             |          | The dyke is fine grained, cherty and brittle.  |       |      |       |   |               |  |              |               |          |                                 |
|             |          | The core is moderately veined with quartz ±    | -     |      | 1     |   | <del></del> - |  | <del> </del> | <del>  </del> |          |                                 |
|             |          | ankerite and is moderately mineralized with    |       |      |       |   |               |  |              |               |          |                                 |
|             |          | 2-5% finely disseminated pyrite. Both          | 551.1 | 556. | 6 5.5 |   |               |  |              |               | .012     | Porphyry - mod.veining - 3% Py. |
|             |          | contacts are broken with veining.              |       |      | 7     |   |               |  | 1            |               | ••       |                                 |

DIAMOND DRILL REPORT

| rom        | To                                               | DESCRIPTION                                    | From         | To | Width        |             |   |   |   |   | Description of Sample |
|------------|--------------------------------------------------|------------------------------------------------|--------------|----|--------------|-------------|---|---|---|---|-----------------------|
| 56.8       | 843                                              | Carbonated Ultramafics - a sequence of         |              |    |              |             | • |   |   |   | ·                     |
|            |                                                  | variably altered and schistose carbonated      |              |    | An obel on a |             |   |   |   |   |                       |
|            |                                                  | ultramafics with sections of gouge and granu-  |              |    |              |             |   |   |   |   |                       |
|            |                                                  | lation below 600'.                             |              |    |              |             |   |   |   |   |                       |
|            |                                                  | At the start of the sequence, the rock         |              |    |              |             |   |   |   |   |                       |
|            |                                                  | is a dark, sheared/schistose, well veined,     |              |    |              |             |   |   |   |   |                       |
| <u>-</u> . |                                                  | contorted, carbonated ultramafic which grades  |              |    |              |             |   |   |   |   |                       |
|            |                                                  | to more definite black and blue black          |              |    |              |             |   |   |   |   |                       |
|            |                                                  | carbonated serpentinite below 573. The upper   |              |    |              |             |   |   |   |   |                       |
|            |                                                  | carbonated section contains 50-60% quartz-     | ,            |    |              |             |   |   |   |   |                       |
|            |                                                  | ankerite in streaks and veins while after      |              |    |              |             |   |   |   |   |                       |
|            |                                                  | 573, the carbonated serpentinite averages      |              |    |              |             |   |   |   |   |                       |
|            |                                                  | 10-20% quartz-ankerite in veining and dis-     |              |    |              |             |   |   |   |   |                       |
|            |                                                  | continuous lenses/fragments of stringer        |              |    |              |             |   |   |   |   |                       |
|            |                                                  | material.                                      |              |    |              |             |   |   |   |   |                       |
|            |                                                  | Also in the upper part of the sequence         |              |    |              |             |   |   |   |   |                       |
|            |                                                  | (to 573), there are two narrow units of        | <del> </del> |    |              |             |   |   |   |   | _                     |
|            |                                                  | pinkish grey to grey brown, cherty, moderatel  | у            |    |              |             |   |   |   |   |                       |
|            |                                                  | ankeritic porphyry at: 558.3-558.8 and @ 559.5 |              |    |              |             |   |   |   |   |                       |
| -          |                                                  | - 2 cm. The porphyry units are identical to    |              |    |              |             |   |   | - |   |                       |
|            |                                                  | the porphyry at the base of the previous       |              | 1  |              |             |   |   |   |   |                       |
|            |                                                  | carbonate sequence, along which the contact    | -            |    |              |             |   |   | 1 |   |                       |
|            |                                                  | was defined.                                   |              | -  |              | -           |   |   |   |   |                       |
|            | <del>                                     </del> | The carbonated serpentinite below 573 .        |              |    |              |             |   |   |   | 1 |                       |
|            | _                                                | is much more uniform in appearance than the    |              |    |              |             |   |   |   |   |                       |
|            |                                                  | upper part of the section. The rock is fine    | <del></del>  |    |              | <del></del> |   | 1 |   | 1 |                       |

| rom.    | To           | DESCRIPTION                                     | From          | То | Width |   |   |      | Description of Sample |
|---------|--------------|-------------------------------------------------|---------------|----|-------|---|---|------|-----------------------|
|         |              | grained, dark green to black and blue black     |               |    |       |   |   |      |                       |
|         |              | with a local fine development of carbonate      |               |    |       |   |   |      |                       |
|         |              | rosettes. Only locally is the core layered/     |               |    |       |   |   | <br> |                       |
|         |              | streaky from interlaminated carbonate-chlorite  | -             |    |       |   |   |      |                       |
|         |              | serpentine similar to the preliminary car-      |               |    |       |   |   | <br> |                       |
|         |              | bonate sections as at 598 - 2 cm, and 605-      |               |    |       |   |   |      |                       |
|         |              | 605.7.                                          |               |    |       |   |   |      |                       |
|         | -            | From 608-615.9 and 616.3-617.1 there are        |               |    |       |   |   |      |                       |
|         |              | two narrow units of lighter coloured, bluish    |               |    |       | - |   |      |                       |
|         |              | grey, carbonated serpentinite with a central    |               |    |       |   |   |      |                       |
|         | -            | zone of mud gouge from 616-616.3. The ultra-    |               |    |       |   |   |      |                       |
|         | -            | mafic contains scattered aggregates of fine     |               |    |       |   |   |      |                       |
|         | <del> </del> | grained pyrite in addition to some coarser      |               |    |       |   | · |      |                       |
|         |              | crystals of pyrite to 5 mm in size in the       |               |    |       |   |   |      |                       |
|         |              | blue grey serpentinite and in the nearby        |               |    |       |   |   |      |                       |
|         | _            | laminated zone from 605-605.7.                  |               |    |       |   |   |      |                       |
|         |              | From 632.6-633.5, there is a grey,              |               |    |       |   |   |      |                       |
|         | -            | coarse grained, granular, carbonated section    |               |    |       |   |   |      |                       |
|         |              | in the ultramafic which contains quartz 'eyes   | ,             |    |       |   |   |      |                       |
|         | _            | relict feldspars, and biotite - a potential     | -             |    |       |   |   |      |                       |
| <u></u> |              | carbonated porphyry(?). Contacts of the         |               |    |       |   |   |      |                       |
|         |              | section are at: 30°/55°.                        |               |    |       |   |   |      |                       |
|         |              | Around 652.6 the ultramafic becomes bred        | <del>- </del> |    |       |   |   |      |                       |
|         |              | ciated previous to a zone of strong granulation |               |    |       |   |   |      |                       |
|         | _            | gouge, and broken core from 655.5-661.0.        |               |    |       |   |   |      |                       |
|         |              | Below 661 the ultramafic alternates from        |               |    |       |   |   |      |                       |

Hole No.

| From        | To             | DESCRIPTION                                    | From         | To       | Width |  |   | Description of Sample |
|-------------|----------------|------------------------------------------------|--------------|----------|-------|--|---|-----------------------|
|             |                | moderately brecciated to more competent, fine  |              |          |       |  |   |                       |
|             |                | grained and uniform as previously seen. There  |              |          |       |  |   |                       |
| <del></del> |                | are sections of strongly granulated, gouged    |              |          |       |  |   |                       |
|             |                | and broken core throughout this portion        |              |          |       |  |   |                       |
| <del></del> |                | (to 713) as: 679.5-681 broken; 682.6-683       |              |          |       |  |   |                       |
|             |                | gouged, broken; 686-687.3 broken; 703.6-705.6  |              |          |       |  |   |                       |
|             |                | broken, and 706.6-713 broken, gouged and       |              |          |       |  | - |                       |
|             |                | granulated.                                    |              |          |       |  |   |                       |
|             |                | At 677.4-679.2, 693.8-696, 696.6-696.8,        |              |          |       |  |   |                       |
|             |                | @ 696.9 and 697-697.4, there are units of      |              | <u> </u> |       |  |   |                       |
|             |                | pinkish to white, fine grained porphyry/       |              |          |       |  |   |                       |
| <del></del> |                | albitite. Contacts of the units are normally   |              |          |       |  |   |                       |
|             |                | diffused and absorbed with the adjacent ultra- | -            |          |       |  |   |                       |
|             |                | mafic rocks.                                   |              |          |       |  |   |                       |
|             |                | After the broken, gouged and granulated        | <del> </del> |          |       |  |   |                       |
| <del></del> | <del>-  </del> | core from 706.6-713, there is a short section  |              |          |       |  |   |                       |
|             |                | of uniform, more competent ultramafic which    |              |          |       |  |   |                       |
|             |                | becomes notably brecciated below 728.          |              |          |       |  |   |                       |
|             |                | The ultramafic varies from weakly to           |              |          |       |  |   |                       |
|             |                | moderately brecciated to the end of the hole   | -            | -        |       |  |   |                       |
|             |                | with sections of strong granulation at 751.8-  | -            | 1        |       |  |   |                       |
| <u> </u>    |                | 754.0, 767.5-768.5 and 826.4-843 - this lower  |              |          |       |  |   |                       |
|             |                | section being both strongly granulated and     |              |          |       |  |   |                       |
|             |                | gouged.                                        |              |          |       |  |   |                       |
| <del></del> |                | From 770-772.7, there is a narrow grey,        |              |          |       |  |   |                       |
|             |                | altered, coarse grained, felsic intrusive at:  |              |          |       |  |   |                       |

PROPERTY QUEBEC STURGEON RIVER MINES LTD.-ASHBY PROPERTY Township

Hole No.

Taylor Township From DESCRIPTION From To Width Description of Sample 700/700. The intrusive is composed of quartz, albite and biotite, with accessory carbonate and scattered grains of exsolved magnetite. The contacts, as well as the upper portion of the dyke, are altered with chlorite, carbonate and serpentine. Due to the faulting with gouge from 826.4-843, the diamond drill was unable to proceed further. 843' END OF HOLE - HOLE LOST.

Location: XL 2+00W @ 6+00N

DIMINORU DRILL REPORT

QS-81 HOLE No.

(i)

Core Size:

ВQ

PROPERTY: QUEBEC STURGEON RIVER MINES LID. - ASHBY PROPERTY

Township:

Taylor Township

Azimuth: Elevation: Surface

Location of Collar from # Post of

Dip: Collar @ -55°; @ 133'-54°;

Commenced: 15th August, 1983
Finished: 20th August, 1983 Contractor:

Dominik Drilling Inc.

| From  | To    | DESCRIPTION                                                         | From | To           | Width |    |              |     |  | Description of Sampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|-------|---------------------------------------------------------------------|------|--------------|-------|----|--------------|-----|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |       | SUMMARY LOG                                                         |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0     | 134.7 | Casing. (Casing pulled).                                            |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 134.7 | 322.6 | Emerald Green Carbonate Zone -                                      |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       | with scattered darker carbonate patches.                            |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       | 134.7-194 strong rusting and strong veining (30-50%).               |      |              |       |    |              | • . |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 322.6 | 420.7 | Sediments - argillite, silt and arkose/greywacke                    | •    |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ·     |       | 322.6-341: strong brecciation.                                      |      |              |       |    | <del> </del> |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       | 341-383: blocky, granulated, gouged.                                |      |              |       |    |              |     |  | the second control of |
|       |       | 383-420.7: blocky but more uniform.                                 |      |              |       |    | -            |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 120.7 | 437   | Carbonate Breccia - light coloured.                                 |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 437   | 443   | Porphyry and Brecciated Porphyry -                                  |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       | brecciated with dark carbonated ultramafic.                         |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       | 440-443 lost core.                                                  |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 443   | 501.8 | Diabase - Matachewan Style -                                        |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       | fractured, altered and blocky.                                      |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 501.8 | 678   | Ultramafics, Carbonated Ultramafics                                 |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       | with gouged and broken sections.                                    |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       | 501.8-593.8: gouged, granulated.                                    |      | <del> </del> |       |    |              | •   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       | 593.8-644.4: more competent serpentinite, pyroxenite(?)             |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       | 644.4-678: gouged, granulated.                                      |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 678   | 715.3 | Carbonated Mafic to Ultramafic Volcanics.                           |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15.3  | 869   | Carbonate Zone/Carbonated Volcanics                                 |      |              |       | .• |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       | 715.3-777: felsic to intermediate. 777-869: carbonated mafic tuffs. |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 869'  |                                                                     |      |              |       |    |              |     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

אוואים שאטויאוע נאטויאוע ואויאוע אווער

QS-81 HOLE No.

Location: XL 2+00W @ 6+00N

PROPERTY: QUEBEC STURGEON RIVER MINES LTD. - ASHBY PROPERTY

Azimuth:

Core Size:

00

BQ

Township:

Taylor Township

Elevation: Surface

Location of Collar from # Post of

Dip: Collar @ -55°; @ 133'-54°; @ 330'-53°; @ 540'-53°

Commenced:

Finished:

August, 1983

Contractor:

Dominik Drilling Inc.

|             | د ی   | 30'-53°; @ 540'-53°                                 | ,,       |    | 1     | · · · · · · · · · · · · · · · · · · | <br> | <br> | <del></del> | and the second s |
|-------------|-------|-----------------------------------------------------|----------|----|-------|-------------------------------------|------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From        | To    | DESCRIPTION                                         | From     | To | Width |                                     |      |      |             | Description of Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0           | 134.7 | Casing. (Casing pulled) - the casing                |          |    |       |                                     |      |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | was cemented from 130-134.7 and contains 3          |          |    |       |                                     |      |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | boulders of diabase, 1 boulder of granite.          |          |    |       |                                     |      |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       |                                                     |          |    | ļ     |                                     | <br> |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 134.7       | 322.6 | Emerald Green Carbonate Zone - a                    |          |    |       |                                     | <br> | • .  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | sequence of bright green, fuchsitic carbonate rocks |          |    |       |                                     | _    |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | with scattered, darker coloured carbonate           |          |    |       |                                     | <br> |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | patches.                                            |          |    |       |                                     |      |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | The carbonate, predominately ankerite,              |          |    |       |                                     |      |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | varies from normal to dark rich emerald green       | <u> </u> |    |       |                                     |      |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | in colour with greyish to olive coloured            |          |    |       |                                     |      | _    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | patches. The carbonate is moderate to               |          |    |       |                                     |      | <br> |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | strongly rusted from ankerite, particularly         |          |    |       |                                     |      |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | in the upper part of the sequence (to 194),         |          |    |       |                                     |      |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | with more localized rusted zones from 194-          |          |    |       |                                     |      |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | 278 and weakly rusted sections between 278          |          |    |       |                                     |      |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | and the base.                                       |          |    |       |                                     |      |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <del></del> | 1     | In a short section from 278-285, the                |          |    |       |                                     |      |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | carbonate grades to a more normal emerald           |          |    |       |                                     | <br> | <br> |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | green colour without darker patches, and            |          |    |       |                                     |      | <br> |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |       | there is a decrease in the amount of quartz         |          |    |       |                                     |      | <br> |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | •     | and quartz-ankerite veining - the previous          |          |    | _     |                                     |      |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       | part of the sequence (from 134.7-278) carrie        | s        |    | _     |                                     | <br> | <br> |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |       |                                                     |          |    |       |                                     |      |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

3.

| From         | To                                               | DESCRIPTION                                                                             | From | To           | Width         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   | Description of Sample |
|--------------|--------------------------------------------------|-----------------------------------------------------------------------------------------|------|--------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----------------------|
|              |                                                  | sequence in DDH QS-80, the sediments are                                                |      | <del> </del> |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
|              |                                                  | generally distinguished by the presence of                                              |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
|              |                                                  | bedding, granular, detrital material and                                                |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
|              |                                                  | graphite, in the absence of well defined                                                |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
|              |                                                  | sedimentary structures.                                                                 |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
|              |                                                  | The sedimentary sequence is divisible into                                              |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
|              |                                                  | three parts - an upper, moderate to strongly                                            |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | - |                       |
|              |                                                  | brecciated zone to 341', followed by a zone of                                          |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
|              | 1                                                | blocky ground with scattered sections of                                                |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
| <del></del>  |                                                  | granulation, gouge and lost core from 341-383,                                          |      |              |               | see the second s |   |   |                       |
|              |                                                  | previous to more uniform, although still blocky,                                        |      |              | A Laboratoria | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |                       |
|              |                                                  | sediments at the base of the sequence from                                              |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
|              |                                                  | 383-420.7.                                                                              |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | • | ·                     |
|              |                                                  | In the upper section, 322.6-341, brecciation                                            |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   | •                     |
|              |                                                  | interrupts the bedding of dark graphitic slates                                         |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
|              | <del>                                     </del> | argillites, brownish to brownish olive silts                                            |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
| <del>.</del> |                                                  | and medium to pale grey and grey green grey-                                            |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
|              |                                                  | wacke(?). The greywacke sections are nearly                                             |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · |   |                       |
|              |                                                  | featureless with few identifiable parameters,                                           |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
|              |                                                  | although elements of the greywacke are similar                                          |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
|              |                                                  | to the arkosic units in DDH QS-79 - i.e. the                                            |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
|              |                                                  | rocks are finely granular with traces of                                                |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
|              |                                                  | sericite, muscovite and scattered black specks                                          |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
|              |                                                  | of graphite.                                                                            |      |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                       |
|              |                                                  | Veining in the brecciated sediments is variable, with 5-15% quartz and quartz-carbonate | P    | -            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - |   |                       |

PROPERTY QUEBEC STURGEON RIVER MINES LTD.-ASHBY PROPERTY Township

Taylor Township

| From | ТО | DESCRIPTION                                      | From | To | Width |              |   |                       |   |  | Description of Sample |
|------|----|--------------------------------------------------|------|----|-------|--------------|---|-----------------------|---|--|-----------------------|
|      |    | stringers. The most strongly brecciated portion  |      |    |       |              |   |                       |   |  |                       |
|      |    | from 322.6-341, however, contains numerous       |      |    |       | and a second |   |                       |   |  |                       |
|      |    | fragments of stringer material occupying up to   |      |    |       |              |   |                       |   |  |                       |
|      |    | 50% of the rock volume.                          |      |    |       |              |   |                       |   |  |                       |
|      |    | The lower contact of the brecciated              |      |    |       |              |   |                       |   |  |                       |
|      |    | portion is fairly well defined at 150 to the     |      |    |       |              |   |                       |   |  |                       |
|      |    | core axis, at 341'.                              |      |    |       |              |   |                       |   |  |                       |
|      |    | Below 341, the sediments are not as strongly     | ¥    |    |       |              |   |                       |   |  |                       |
|      |    | brecciated although the core is, in general,     |      |    |       |              |   |                       |   |  |                       |
|      |    | badly broken with scattered sections of gouge    |      |    |       |              |   |                       |   |  |                       |
|      |    | and granulation at shallow angles to the core    |      |    |       |              |   | and of the control of |   |  |                       |
|      |    | axis and zones of lost core at: 365-367, 373-    |      |    |       |              |   |                       |   |  |                       |
|      |    | 377, 378-379 and 382-383.                        |      |    |       |              |   |                       | • |  |                       |
|      |    | The ground continues to be blocky below          |      |    |       |              |   |                       |   |  |                       |
|      |    | 383, although the amount of brecciation has      |      |    |       |              |   |                       |   |  |                       |
| -    |    | decreased and individual beds are more readily   |      |    |       |              |   |                       |   |  |                       |
|      |    | distinguished. The bedding throughout most of    |      |    |       |              |   |                       |   |  |                       |
|      |    | the zone, except for the upper breccia horizon,  | ,    | -  |       |              | · |                       |   |  |                       |
|      |    | is characterized by relatively thick units of    |      |    |       |              |   |                       |   |  |                       |
|      |    | arkose/greywacke from 1-3m in thickness (average | 2    |    |       |              |   |                       |   |  |                       |
|      |    | thickness 1-1.5m) separated by thin horizons     |      |    |       |              |   |                       |   |  |                       |
|      |    | of argillite/slate from a few millimeters to     |      |    |       |              |   |                       |   |  |                       |
|      |    | 50 cm. in thickness (average thickness <1 cm).   |      |    |       |              |   |                       |   |  |                       |
|      |    | Thus on an average 5 ft. of drill core, only     |      |    |       |              |   |                       |   |  |                       |
|      |    | 1-2 cm (less than 2%) would be argillite.        |      |    |       |              |   |                       |   |  |                       |
|      |    |                                                  |      |    |       |              |   |                       |   |  |                       |

| From        | To                                               | DESCRIPTION                                                                             | From | To | Width |             |   |   |   |  | Description of Sampl |
|-------------|--------------------------------------------------|-----------------------------------------------------------------------------------------|------|----|-------|-------------|---|---|---|--|----------------------|
|             |                                                  | The lower section of sediments (i.e. below                                              |      |    |       |             |   |   |   |  |                      |
|             |                                                  | 383') exhibits much better defined, granular,                                           |      |    |       |             |   |   |   |  |                      |
| _           |                                                  | arkosic units but due to the blocky nature of                                           |      |    |       |             |   |   |   |  |                      |
|             |                                                  | most of the core, bedding contacts are normally                                         |      |    |       | 3           |   |   |   |  |                      |
|             |                                                  | broken.                                                                                 |      |    |       |             |   |   |   |  |                      |
| <u>"</u>    |                                                  | The sediments are moderately veined with                                                |      |    |       | <del></del> |   |   | ! |  |                      |
|             |                                                  | milky to porcelainous stringers of quartz and                                           |      |    |       |             |   |   |   |  |                      |
|             |                                                  | quartz-ankerite, and are variably mineralized                                           |      |    |       |             |   |   |   |  |                      |
| <del></del> | <del>                                     </del> | with very fine grained pyrite ± traces of                                               |      |    |       |             |   |   |   |  | <br>                 |
| ;           | i                                                | chalcopyrite - the overall sulphide content is                                          |      |    |       |             |   |   |   |  |                      |
| <del></del> |                                                  | less than 2%.                                                                           |      |    |       |             |   |   |   |  |                      |
|             |                                                  | The lower contact zone, from 417.3-420.7,                                               |      |    |       |             |   |   |   |  |                      |
|             |                                                  | is along a greyish coloured breccia horizon                                             |      |    |       |             |   |   |   |  | •                    |
|             |                                                  | that could either be part of the overlying                                              |      |    |       |             |   |   |   |  |                      |
|             |                                                  | (physically) sediments or the adjacent carbonate                                        |      |    |       |             |   |   |   |  |                      |
|             |                                                  | breccia (sediments preferred). Effectively                                              |      |    |       |             | - |   |   |  |                      |
| •           |                                                  | all of the fragments appear to be stringer                                              |      |    |       |             |   |   |   |  |                      |
|             | 1                                                | material.                                                                               | -    |    |       |             | , |   |   |  |                      |
|             |                                                  | • .                                                                                     |      |    |       |             |   |   |   |  |                      |
| 420.7       | 437                                              | Carbonate Zone - a sequence of light                                                    |      |    |       |             |   | - |   |  |                      |
|             |                                                  | coloured carbonate breccia, potential carbonated,                                       |      |    |       |             |   |   |   |  |                      |
|             |                                                  | brecciated felsic to intermediate volcanics -                                           |      |    |       |             |   |   |   |  |                      |
|             |                                                  | this genesis, however, is very uncertain.                                               |      |    |       |             |   |   |   |  |                      |
|             |                                                  | The carbonate breccia varies from yellowish                                             |      |    |       |             |   |   |   |  |                      |
|             |                                                  | grey green to yellowish grey and dull yellow ochre in colour and contains fragments and |      |    |       |             |   |   |   |  |                      |

PROPERTY QUEBEC STURGEON RIVER MINES LTD.-ASHBY PROPERTY Township Taylor Township To From DESCRIPTION From To Width Description of Sample discontinuous lenses of stringer material both quartz and quartz-ankerite. The carbonate is very well altered with chlorite, carbonate, sericite and fuchsite, and is fractured/ brecciated with fine stringers and threads of chlorite, carbonate, sericite, at variable angles to the core axis. The lower contact is broken. Porphyry Unit - broken contact into a dyke 443 of fine grained feldspar(?) porphyry which becomes well fractured and brecciated below 438.6. The porphyry is fine grained, grey and cherty, and is increasingly fractured with dark carbonate/carbonated ultramafic approaching the contact with diabase at 443. The lower contact zone is along a section of lost core from 440-443 - the fragments of core available over the 439-440 interval containing fragments of porphyry and carbonated ultramafic. Diabase - a very well fractured and 501.8 altered dyke of apparent Matachewan style. The diabase is fine to medium grained and

| rop | ERTY                                             | OUEBEC STURGEON RIVER MINES LITDASHBY PROPERTY Township | .ip       | Ta' | ylor To | ownsh: | ip . | - | -    | J•                  |
|-----|--------------------------------------------------|---------------------------------------------------------|-----------|-----|---------|--------|------|---|------|---------------------|
| om  | To                                               | DESCRIPTION                                             | From      | To  | Width   |        |      |   |      | Description of Samp |
|     |                                                  | The upper part of this zone, most particularly          |           |     | -       |        |      |   |      |                     |
|     |                                                  | from 599.7-624.2, is a black, weakly brecciated         |           |     |         |        |      |   |      |                     |
|     | <del>                                     </del> | streaky, carbonated ultramafic with numerous            | i         |     |         |        |      |   |      |                     |
|     |                                                  | lenses, streaks and stringers of magnetite -            | WHITE CO. |     |         |        |      |   |      |                     |
|     | 1                                                | the rock is strongly magnetic.                          |           |     |         |        |      | · |      |                     |
|     | -                                                | Below 624.2, the ultramafic becomes more                |           |     |         |        |      |   |      |                     |
|     | +                                                | uniform in appearance and is fine grained, dark         | K         |     |         |        |      |   |      |                     |
|     | +                                                | blue grey to blue black and dark green in               |           |     |         |        |      |   |      |                     |
|     | +                                                | colour, and contains numerous spots of exsolved         |           |     |         |        |      |   |      |                     |
|     | <del>                                     </del> | magnetite. The base of the 'spotted' sequence           |           |     |         |        |      |   | <br> |                     |
|     | 1                                                | grades increasingly brecciated with moderate to         | 3         |     |         |        |      |   |      |                     |
|     |                                                  | strong granulation after 644.4.                         |           |     |         |        |      |   |      |                     |
|     |                                                  | The lower zone of the ultramafic sequence               | ,         |     |         |        |      | • |      |                     |
|     |                                                  | from 644.4-678 is dark green to black and blue          |           |     |         |        |      |   |      |                     |
|     | -                                                | black carbonated ultramafic with strong granu-          |           |     |         |        |      |   |      |                     |
| —   |                                                  | lation from 644.4-659.6, followed by strong             |           |     |         |        |      |   |      |                     |
| •   | -                                                | gouge from 659.6-662. Below 662, gouge and              |           | ,   |         |        |      |   |      | ·                   |

granulated sections are more scattered as: 668.5-668.8, 676.8-677.3 and 677.8-678. The presence of exsolved magnetite as noted in the basal 'spotted' section of the central zone continues into the granulated lower zone to 648, below which little or no magnetite is megascopically visible. The lower contact zone is granulated, gouged and broken at 50° to the core axis.

PROPERTY QUEBEC STURGEON RIVER MINES LTD.-ASHBY PROPERTY Township Taylor Township From To DESCRIPTION Width From To Description of Sample 678 715.3 Carbonate Zone, Dark Carbonate Rocks - a sequence of dark coloured carbonate rocks/ carbonated mafic volcanics with an initial high proportion of carbonated ultramafic material. The carbonate zone is streaky/layered and brecciated in appearance with layers/stringers and lenses of ankerite ± quartz set in dark chlorite, carbonate, serpentine alteration. The rather false layering is locally contorted but has an average inclination of 50-600 to the core axis. The carbonate varies from medium to dark grey green, green and black in colour, the colour index becoming lighter with depth as the proportion of ultramafic material decreases. Ultramafics are present to the end of the sequence. The rocks are highly altered, well veined and sparsely mineralized. The core is moderate to well fractured with dark, streaky, chlorite, carbonate, serpentine alteration normally subparallel to the prevailing schistosity. At 687.4-687.8 - gouge zone. From 708.1-708.3, there is a thicker than average quartz vein with several splashes of chalcopyrite. Below the vein there is some

| From        | To       | DESCRIPTION                                                                                    | From     | To | Width |               |  |   |   |  | Description of Sample |
|-------------|----------|------------------------------------------------------------------------------------------------|----------|----|-------|---------------|--|---|---|--|-----------------------|
|             |          | accessory pyrite in the dark carbonated mafic/                                                 |          |    |       |               |  |   |   |  |                       |
|             |          | ultramafic to 709.0.                                                                           |          |    |       |               |  |   |   |  |                       |
|             |          | The lower contact of the sequence is                                                           |          |    |       |               |  |   |   |  |                       |
|             | -        | tentatively placed at 715.3 with the disappearance                                             |          |    |       |               |  |   |   |  |                       |
| ,           |          | of ultramafic material - the contact sequences                                                 |          |    |       |               |  |   | • |  |                       |
|             |          | are gradational.                                                                               |          |    |       |               |  |   |   |  |                       |
|             |          |                                                                                                |          |    |       |               |  |   |   |  |                       |
| 715.3       | 960      | Carbonate Zone - a gradational seguence of                                                     |          |    |       |               |  |   |   |  |                       |
| 713.3       | 1 803    | light to dark coloured carbonate rocks - the                                                   |          |    |       |               |  |   |   |  |                       |
|             |          | light coloured rocks probably representing                                                     |          |    |       |               |  |   |   |  |                       |
| ·····       |          | carbonated intermediate to felsic volcanics                                                    |          |    |       |               |  |   |   |  |                       |
| <del></del> |          | with the darker portions being indicative of                                                   |          | -  |       |               |  |   |   |  |                       |
|             |          | intermediate to mafic rocks.                                                                   | <u> </u> | -  | _     |               |  |   |   |  |                       |
| <del></del> |          | The sequence can be split into an upper                                                        | _        | -  |       |               |  |   |   |  |                       |
|             |          | more felsic portion from 715.3-777, and a                                                      |          | -  |       | +             |  |   |   |  |                       |
|             | _        | lower more mafic portion from 777-869 - the                                                    |          | -  | _     | <del>- </del> |  |   | _ |  |                       |
|             |          | gradational change being related perhaps to a                                                  |          |    |       |               |  |   |   |  |                       |
|             |          | zone of lost core from 780-785.                                                                | -        |    |       |               |  |   | _ |  |                       |
|             |          | The carbonate rocks in the upper half of                                                       | _        | _  |       | _             |  |   |   |  |                       |
|             |          | the sequence (i.e. 715.3-777), vary from grey                                                  | -        | -  |       | -             |  | _ |   |  | •                     |
| <del></del> | -        | olive to yellow olive and yellow grey in colour                                                |          | _  |       | -             |  | _ | - |  |                       |
|             |          | and are highly altered, moderately to well                                                     | -        | -  |       |               |  | _ | - |  |                       |
|             | <b>9</b> | veined, weakly to moderately brecciated,                                                       | _        | _  | _     | -             |  | _ |   |  |                       |
|             | _        | variably schistose (at 50-60°) and sparsely                                                    | _        | _  |       | -             |  |   | _ |  |                       |
|             | _        |                                                                                                |          |    |       | _             |  |   | - |  |                       |
|             | -        | mineralized. The rock appears to be a carbonate intermediate volcanic - probably dacite - base | ă        | -  |       | _             |  | - | - |  |                       |

PROPERTY QUEBEC STURGEON RIVER MINES LTD.-ASHBY PROPERTY Township Taylor Township

| From | То | DESCRIPTION                                       | From | To          | width |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |                                                  |   | Description of Sample |
|------|----|---------------------------------------------------|------|-------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------------------------------------------------|---|-----------------------|
|      |    | largely upon the light colour of the rocks and    |      |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |                                                  |   |                       |
|      |    | the presence of sericite.                         |      |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |                                                  |   |                       |
|      |    | The carbonated 'dacite' grades toward a           |      |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |                                                  |   |                       |
|      |    | carbonated mafic volcanic in the range of         |      |             |       | and the state of t |          |          |                                                  |   |                       |
|      |    | andesite to basalt after a narrow unit of         |      |             |       | Longwish affect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |                                                  |   |                       |
|      |    | altered porphyry from 774.6-777. A similar,       |      |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |                                                  |   |                       |
|      |    | narrow unit of altered porphyry is found at       |      |             |       | .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |                                                  |   |                       |
|      |    | 762.9-763.5.                                      |      |             |       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | <u> </u> |                                                  |   |                       |
|      |    | The porphyries vary from medium to pale           |      |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          | <del>                                     </del> |   |                       |
|      |    | grey, brownish grey and dark grey green in        |      |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |                                                  |   |                       |
|      |    | colour and contain scattered 'ghost' pheno-       |      |             |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u> |          |                                                  |   |                       |
|      |    | crysts of feldspar. Both units are cherty and     |      | <del></del> |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |                                                  |   |                       |
|      |    | moderately ankeritic. The core is moderately      |      |             |       | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |                                                  |   |                       |
|      |    | veined with milky stringers of quartz ± ankerite  |      |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          | -                                                |   |                       |
|      |    | and is moderately mineralized with finely         |      |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |                                                  |   |                       |
|      |    | disseminated pyrite.                              |      |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |                                                  |   |                       |
| •    |    | Below 777, the carbonate rocks grade              |      | <del></del> |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | _        | -                                                |   |                       |
|      |    | darker in colour and are close to reaching an     |      | <del></del> |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          | ·                                                |   |                       |
|      |    | ultramafic composition at the end of the hole     |      |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          | -                                                |   |                       |
|      |    | when the drill hole was lost due to caving and    |      |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | —        |                                                  |   |                       |
|      |    | sanding from the earlier ultramafic/fault         |      | *******     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | _        | -                                                |   |                       |
|      |    | sequence (i.e. 501.8-678). Overall, the lower     |      |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          | -                                                | - |                       |
|      |    | zone is somewhat fresher in appearance although   |      |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          | -                                                | - |                       |
|      |    | the rocks are streaky/layered from lenses,        | ·    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          | -                                                | - |                       |
|      |    | stringers and fragments of quartz-ankerite        |      |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          | -                                                | - |                       |
|      |    | stringer material plus alteration-filled fracture | s    |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | _        | -                                                | - |                       |

Taylor Township

PROPERTY QUEBEC STURGEON RIVER MINES LTD.-ASHBY PROPERTY Township Description of Sample To Width DESCRIPTION From From To at  $40-60^{\circ}$  to the core axis. The matrix component of the lower sequence, however, is also layered and appears to be tuffaceous, with 'ghost' lapilli-sized fragments, blebs and lenses stretched subparallel to the schistosity Within the lower sequence there are also several interesting units as: 797.1-799.0: A streaky, layered carbonate that is much brighter green in colour from fuchsite alteration. 806.4-806.7: Brownish buff to grey, partly streaky, cherty zone that is moderately mineralized with fine pyrite and contains quartz 'eyes'. The unit is probably part of the tuff sequence rather than a porphyry since the zone is both conformable and, in part, layered. 813.5-827.5: A more siliceous zone with local accessory sericite alteration and somewhat better defined lapilli-sized fragments. even though most of the fragments are stringer material. Within this zone there is a grey, cherty, streaky/layered section from 824.1-824.6 which, due to its streakiness, suggests a cherty tuff or interflow unit. 832.1-833.4: Dacite Tuff(?) - an interlayered

| T | 0.   | DESCRIPTION                                      | From | To                                      | Width         |              |             |          |             | Description of Sam |
|---|------|--------------------------------------------------|------|-----------------------------------------|---------------|--------------|-------------|----------|-------------|--------------------|
|   |      | succession of dark brown to ochre and yellow     | -    |                                         |               |              |             |          |             |                    |
|   |      | sericite-chlorite alteration and greyish         |      |                                         |               |              |             |          |             |                    |
|   |      | carbonate-silica-rich lenses/layers. The unit    |      |                                         |               |              |             |          |             |                    |
|   |      | is fine grained, conformable and is well         |      |                                         |               |              |             |          |             |                    |
|   |      | mineralized with fine pyrite.                    |      |                                         |               |              | į           |          |             |                    |
|   |      | 835.3-835.9: Brownish grey to grey,              |      |                                         |               |              |             | an order |             |                    |
|   |      | granular, silica-rich section that appears to    |      |                                         |               |              |             |          |             |                    |
|   |      | be a more carbonated version of the just         |      | <del></del>                             | <del>  </del> |              |             |          |             |                    |
|   |      | previous dacite tuff.                            |      |                                         | -             | <del> </del> | •           |          |             |                    |
|   |      | 854.3-854.6: Dark grey to dark brownish          |      |                                         |               |              | <del></del> |          |             |                    |
|   |      | grey, granular/sugary, weakly layered chert or   |      |                                         |               |              |             | -        |             |                    |
|   |      | cherty tuff unit, that is moderately mineralized | ·    | <del></del>                             |               |              |             |          | <del></del> |                    |
|   |      | with fine pyrite.                                |      |                                         |               |              |             |          |             |                    |
|   |      | Below the cherty unit from 835.3-835.9,          |      |                                         |               |              |             |          |             |                    |
|   |      | the carbonated mafic tuffs grade rapidly darker  |      |                                         |               |              |             |          |             |                    |
|   |      | in colour and there is an element of dark        |      |                                         |               |              |             |          |             |                    |
|   |      | carbonate-chlorite-serpentine alteration in      |      | *************************************** |               |              |             |          |             |                    |
|   |      | the sequence after 856 - no distinct carbonated  |      |                                         |               |              | •           |          |             |                    |
|   |      | ultramafics are noted by the end of the hole,    |      | ******                                  |               |              |             |          |             |                    |
|   |      | however.                                         |      | ···                                     |               |              | -           |          |             |                    |
|   |      |                                                  |      |                                         |               |              |             |          |             |                    |
|   |      | ·                                                |      |                                         |               |              |             |          |             |                    |
| 9 | 869' | END OF HOLE - HOLE LOST.                         |      |                                         |               |              |             | -        |             |                    |
|   |      |                                                  |      |                                         |               |              |             |          |             |                    |
|   |      |                                                  |      |                                         |               |              |             | -        |             |                    |

Location: XL 2+00W @ 3+00N

Core Size: ВQ

PROPERTY: QUEBEC STURGEON RIVER MINES LTD. - ASHBY PROPERTY

360° Azimuth:

Township:

Taylor Township

Elevation:

surface

Finished:

HOLE NO.

August 29, 1983 September 6, 1983

QS-82

Location of Collar from # Post of

Contractor:

Commenced:

Dominik Drilling Inc.

(I)

Dip: Collar @ -55°; @ 160'-57°; @ 360'-54°; @ 560'-52°; @ 690'-52°

| rom   | То    | DESCRIPTION                                       | From  | То    | Width |   |   |  |     | Au   | Description of Sample |
|-------|-------|---------------------------------------------------|-------|-------|-------|---|---|--|-----|------|-----------------------|
|       |       | SUMMARY LOG                                       |       |       |       |   |   |  |     |      |                       |
| 0     | 163'  | Casing. (Casing pulled) - ovb. to 160'.           |       |       |       |   |   |  |     |      |                       |
| 163   | 226   | Coarse Mafic Flow - magnesian(?)                  |       |       |       |   |   |  |     |      |                       |
| 226   | 346   | Mafic Flow/Pillow Lava - andesitic,               |       |       |       | _ |   |  |     |      |                       |
|       |       | contacts are along zones of lost core as: 226-229 |       |       |       |   |   |  | • . |      |                       |
|       |       | and 346-352 (next xn.)                            |       |       |       |   |   |  |     |      |                       |
| 346   | 434   | Porphyry-Carbonate Sequence - blocky and          |       |       |       |   |   |  |     |      |                       |
|       |       | broken core with 356-358, 427-428 lost.           |       |       |       |   |   |  |     |      |                       |
|       |       | 346-379.3 - cherty and highly altered porphyry.   |       |       |       |   | - |  |     |      |                       |
|       |       | 379.3-418.4 - carbonated porphyry.                |       |       |       |   |   |  |     |      |                       |
|       |       | 418.4-434 - carbonate and porphyry.               |       |       |       |   |   |  |     |      |                       |
| 434   | 512.3 | Carbonate Zone - blocky, with:                    |       |       |       |   |   |  |     |      | ·                     |
|       |       | 434-455 - emerald green carbonate.                |       |       |       |   |   |  |     |      |                       |
|       |       | 455-479 - sericitic carbonate + porphyry.         |       |       |       |   |   |  |     |      |                       |
|       |       | 479-512.3 - emerald green carbonate.              |       |       |       |   |   |  |     |      |                       |
| 512.3 | 623.9 | Breccia Zone - brecciated sediments and           | 512.6 | 514.0 | 1.4'  |   |   |  |     | .016 | Sediments.            |
|       |       | carbonate breccia; blocky, broken core.           | 514   | 519   | 5'    |   |   |  |     | .056 | Carbonate bx.         |
|       |       | Sediments at: 512.3-513.8, 528-563, 604-614.      |       |       |       | , |   |  |     |      |                       |
| 623.9 | 695   | Carbonated Mafic and Ultramafic                   |       |       |       |   |   |  |     |      |                       |
|       |       | Volcanics - streaky/layered/schistose, blocky.    |       |       |       |   | _ |  |     |      |                       |
|       |       |                                                   |       |       |       |   |   |  |     |      |                       |
|       | 695   | END OF HOLE                                       |       |       |       | • |   |  |     |      | ·                     |
|       |       |                                                   |       |       |       |   |   |  |     |      |                       |
|       |       |                                                   |       |       |       |   |   |  |     |      |                       |

ВQ Core Size:

PROPERTY: QUEBEC STURGEON RIVER MINES LTD, - ASHBY PROPERTY

Azimuth:

360°

Township:

Taylor Township

Elevation:

Surface

Location of Collar from # Post of

Commenced:

Finished:

September 6, 1983

August 29, 1983

Dip: Collar @ -55°; @ 160'-57°;

@ 360'-54°; @ 560'-52°; @ 690'-52°

Contractor: Dominik Drilling Inc.

| From                                             | To   | DESCRIPTION.                                   | From | To | Width |      |   |     |   | Description of Sample |
|--------------------------------------------------|------|------------------------------------------------|------|----|-------|------|---|-----|---|-----------------------|
| 0                                                | 163' | Casing. (Casing pulled) - overburden           |      |    |       |      |   |     |   |                       |
|                                                  |      | to 160', casing driven to 163'.                |      |    |       |      |   |     |   |                       |
|                                                  |      | 0-57 sand and clay; 57-100 boulder             |      |    |       |      |   |     |   | •                     |
|                                                  |      | horizon - making water; 100-160 sand and       |      |    |       |      |   |     |   |                       |
|                                                  |      | clay.                                          |      |    |       |      |   |     | • |                       |
|                                                  |      |                                                | •    |    |       |      |   |     |   |                       |
| 163                                              | 226  | Coarse Mafic Flow - a sequence of              |      |    |       |      |   |     |   |                       |
|                                                  |      | medium to fine grained mafic volcanics with    |      |    |       |      |   |     |   |                       |
| •                                                |      | a presumed magnesian affinity.                 |      |    |       |      |   |     |   |                       |
|                                                  |      | At the collar of the hole, to approxi-         |      |    |       |      |   |     |   |                       |
| -                                                |      | mately 175, the volcanics are medium grained   |      |    |       |      |   |     |   |                       |
|                                                  |      | and somewhat granular textured with carbonate, |      |    |       |      |   |     |   |                       |
|                                                  |      | chlorite, plagioclase ± serpentine. Below      |      |    |       | -    |   |     |   |                       |
|                                                  |      | 175, the rocks become gradually finer grained  |      |    |       |      |   |     |   |                       |
| <del> , , , , , , , , , , , , , , , , , , </del> |      | approaching the lower contact. There is a      |      |    |       | <br> |   |     |   |                       |
|                                                  |      | spotted nature to most of the core due to      |      |    |       |      |   | -   |   |                       |
|                                                  |      | fairly numerous subrounded to ovoid blebs      |      |    |       |      |   | 1 . |   |                       |
|                                                  | -    | of dark chlorite ± serpentine. The matrix      |      |    |       |      |   |     |   |                       |
|                                                  |      | component of the finer grained volcanics       |      |    |       |      |   |     |   |                       |
|                                                  |      | commonly exhibits a finely felted texture      |      |    |       | -    | 1 |     |   |                       |
| •                                                |      | from the presence of chlorite and tremolite/   |      |    |       |      | 1 |     |   |                       |
|                                                  |      | actinolite(?).                                 |      |    |       |      |   |     |   |                       |
|                                                  |      | The mafic volcanics vary from dark green       |      |    |       |      |   |     |   |                       |
|                                                  |      | to dark grey green in colour and are relativel |      |    |       |      |   |     |   |                       |

| m   | To  | DESCRIPTION                                      | From | То | Width |   |    |          |   |   |   | Description of Sample |
|-----|-----|--------------------------------------------------|------|----|-------|---|----|----------|---|---|---|-----------------------|
|     |     | fresh in appearance. The rocks are weakly to     |      |    |       |   |    |          |   |   |   |                       |
|     |     | moderately altered with carbonate and chlorite   |      |    |       |   |    |          |   |   |   |                       |
|     |     | t epidote, are poorly veined and unmineralized.  |      |    |       |   |    |          |   |   |   |                       |
|     |     | The mafic (andesite to basalt in com-            |      |    |       |   |    |          |   |   |   |                       |
|     |     | position) sequence is often fractured at low     |      |    |       |   |    | <i>‡</i> | , |   |   |                       |
|     |     | angles to the core axis with chlorite, hematite  |      |    |       |   |    |          |   |   |   |                       |
|     |     | t quartz-carbonate veining and local streaky     |      |    |       | • |    |          |   |   |   |                       |
|     |     | epidote alteration. None of the volcanics        |      |    |       |   |    |          |   |   |   |                       |
|     |     | are magnetic.                                    |      |    |       |   |    |          |   |   |   |                       |
|     |     | Approaching the lower contact, the mafic         |      |    |       |   |    |          |   |   |   |                       |
|     |     | flow becomes much finer grained and more         |      |    |       |   |    |          |   |   |   |                       |
|     |     | siliceous in appearance previous to a section    |      |    |       |   |    |          |   |   |   |                       |
|     |     | of lost core at the contact from 226-229.        |      |    |       |   |    |          |   |   |   |                       |
|     |     |                                                  |      |    |       |   | -  |          |   |   |   |                       |
| 226 | 346 | Mafic Flow/Pillow Lava - a much finer            |      |    |       |   |    |          |   |   |   | ·                     |
| ,   |     | grained sequence of andesitic volcanics which    |      |    |       |   |    |          |   |   |   |                       |
|     |     | are locally pillowed in appearance.              |      |    |       |   |    |          |   |   |   |                       |
|     |     | The upper contact of the sequence is             |      |    |       |   |    |          |   |   |   |                       |
|     |     | along a zone of lost core from 226-229, followed |      |    |       |   | 1  |          |   |   |   |                       |
|     |     | by blocky and broken core to 231.5. The first    |      |    |       |   |    |          |   |   |   |                       |
|     |     | few fragments in the blocky zone are pale green  |      |    |       |   |    |          |   |   |   |                       |
|     |     | in colour, very fine grained and cherty -        |      |    |       |   |    |          |   |   |   |                       |
|     |     | potential flow top material(?).                  |      | -  |       |   |    | -        |   |   |   |                       |
|     |     | Below the zone of blocky core the sequence       | e    | 1  |       |   |    |          |   |   |   | ·                     |
|     |     | is very fine grained, partly silicified and      |      |    |       |   |    |          |   | 1 | 1 |                       |
|     | -   | bleached, and has a remotely pillowed appearance |      | -  |       | - | _[ | _        |   | - | _ |                       |

PROPERTY QUEBEC STURGEON RIVER MINES LTD.-ASHBY PROPERTY Township Taylor Township

| com              | TO | DESCRIPTION                                     | From | To | Width |   | - |   |   |   |   | Description of Sample |
|------------------|----|-------------------------------------------------|------|----|-------|---|---|---|---|---|---|-----------------------|
|                  |    | from the presence of dark, chloritic,           |      |    |       |   |   |   |   |   |   |                       |
|                  |    | irregularly-spaced selvage zones at variable    |      |    |       |   |   |   |   |   |   |                       |
|                  |    | angles to the core axis. The rock varies from   |      |    |       |   |   |   |   |   |   |                       |
|                  |    | medium to pale green and grey green in colour   |      |    |       |   |   |   |   |   |   |                       |
|                  |    | with darker green, chloritic, selvage zones -   |      |    |       |   |   |   | · |   |   |                       |
|                  |    | the sequence grades marginally lighter in       |      |    |       |   |   |   |   |   |   |                       |
|                  |    | colour with depth.                              |      |    |       | , |   |   |   |   |   |                       |
|                  |    | The core is weakly to moderately altered        |      |    |       |   |   |   |   |   |   |                       |
|                  |    | with chlorite, carbonate ± local hematite, is   |      |    |       |   |   |   |   |   |   |                       |
|                  |    | poorly to moderately veined with quartz-        |      |    |       |   |   |   |   |   |   |                       |
|                  |    | carbonate, and is sparsely mineralized with     |      |    |       |   |   |   |   |   |   |                       |
| ·                |    | pyrite. The sulphide mineralization is most     |      |    |       |   |   |   |   |   |   |                       |
|                  |    | common within or around selvage zones, or       |      |    |       |   |   |   | • |   |   |                       |
| ·· <u>·</u> ···· |    | adjacent to stringers.                          |      |    |       |   |   |   |   |   |   |                       |
|                  |    | There are at least two, and possibly            |      |    |       |   |   |   |   |   |   |                       |
|                  |    | three, generations of stringers in the pillowed |      |    |       |   |   |   |   |   |   |                       |
|                  |    | sequence - the oldest set of quartz-calcite     |      |    |       |   |   |   |   |   |   |                       |
|                  |    | stringers at roughly 650 are offset by quartz-  |      |    |       |   | • |   |   |   |   |                       |
|                  |    | calcite stringers at 30-45°, with an apparent   |      |    |       |   |   |   |   |   |   | ·                     |
|                  |    | younger set at 0-30° to the core axis. The      |      |    |       |   |   |   |   |   |   |                       |
|                  |    | youngest set, at 0-30°, are predominately       |      |    |       |   |   |   |   |   |   |                       |
|                  |    | calcite and may not offset but do crosscut the  | 2    |    |       |   | , |   |   |   |   |                       |
|                  |    | other generations.                              |      |    |       |   |   |   |   |   |   |                       |
|                  | T  | Adjacent to the dark selvage zones the          |      |    |       |   |   |   |   |   |   |                       |
|                  |    | andesite is normally very fine grained and      |      |    |       |   |   |   |   |   |   |                       |
|                  |    | bleached, and contains scattered stretched      |      | _  | -     | _ |   | _ |   | _ | _ |                       |

| com                                   | To  | DESCRIPTION                                      | From                                             | То | Width |                                                  |     |   |   |   |                | Description of Sample |
|---------------------------------------|-----|--------------------------------------------------|--------------------------------------------------|----|-------|--------------------------------------------------|-----|---|---|---|----------------|-----------------------|
|                                       |     | amygdules/vesicles filled with calcite-chlorite. |                                                  |    |       |                                                  |     |   |   |   |                |                       |
|                                       |     | The norm is for the amygdaloidal section to be   | 1 1                                              |    |       |                                                  |     |   |   |   |                |                       |
|                                       |     | slightly removed from the pillow selvage but     |                                                  |    |       |                                                  |     |   |   |   |                |                       |
|                                       |     | still within the bleached pillow margin. There   |                                                  |    |       |                                                  |     |   |   |   |                |                       |
|                                       |     | is no inference on tops from the pillows.        |                                                  |    |       |                                                  | -   |   |   |   |                |                       |
|                                       |     | The lower contact of the pillowed andesite       |                                                  |    |       |                                                  |     |   |   |   |                |                       |
|                                       |     | is along a zone of lost core from 346-352.       |                                                  |    |       | •                                                |     |   |   |   |                |                       |
|                                       |     |                                                  |                                                  |    |       |                                                  |     |   |   |   |                |                       |
| 346                                   | 434 | Porphyry-Carbonate Sequence - a very com-        |                                                  |    |       |                                                  |     |   |   |   |                |                       |
| -                                     |     | plicated sequence of porphyry, carbonated        |                                                  |    |       |                                                  | ,   | 3 |   |   |                | ·                     |
|                                       |     | porphyry and carbonate rocks.                    |                                                  |    |       |                                                  |     | 2 |   |   |                |                       |
|                                       |     | The upper contact of the sequence is along       | g                                                |    |       |                                                  | 4-3 |   |   |   |                |                       |
|                                       |     | a zone of lost core from 346-352 with additional |                                                  |    |       |                                                  |     |   |   |   |                |                       |
| · · · · · · · · · · · · · · · · · · · |     | lost core from 356-358 and 427-428. The ground   |                                                  |    |       |                                                  |     |   |   |   |                |                       |
|                                       |     | throughout the sequence is blocky and broken     | -                                                |    |       |                                                  |     |   |   |   |                |                       |
|                                       |     | plus there are several scattered sections with   | <del> </del>                                     |    |       |                                                  |     |   |   |   |                |                       |
| <del></del>                           |     | gouge at 35-45° to the core axis.                | <del>                                     </del> |    |       |                                                  |     |   |   |   |                |                       |
|                                       |     | The sequence is divisible into three             |                                                  |    | -     |                                                  |     |   |   |   |                |                       |
|                                       |     | major zones as: 346-379.3, 379.3-418.4 and       | -                                                | -  | _     |                                                  |     |   |   |   |                |                       |
|                                       |     | 418.4-434, all of which contain a mix of         |                                                  |    |       |                                                  |     |   |   |   |                |                       |
|                                       |     | porphyry and carbonate. There are units of       | \ <u>\</u>                                       |    |       |                                                  |     |   | - |   |                |                       |
|                                       |     | cherty porphyry and highly altered, lath-        |                                                  | -  |       |                                                  |     |   |   |   |                |                       |
|                                       |     | textured porphyry, plus there are a great deal   |                                                  | -  |       | <del>                                     </del> |     | - | 1 |   |                |                       |
|                                       |     | of light coloured carbonate rocks below 379.3    | -                                                | 1  | -     |                                                  |     |   | - |   | <del> </del>   |                       |
| ÷ -                                   | 1   | which may have been originally porphyry.         | -                                                |    |       | 1                                                | 1   | 1 |   | 1 | 1              |                       |
|                                       | _   | Overall, the sequence is moderate to well        | _                                                |    | -     | 1                                                | -   | - | - | · | - <del> </del> |                       |

PROPERTY QUEBEC STURGEON RIVER MINES LTD.-ASHBY PROPERTY Township To

Taylor Township

| om | To | DESCRIPTION                                       | From | To | Width |                                        |   |    |     |                                         |   | Description of Sample |
|----|----|---------------------------------------------------|------|----|-------|----------------------------------------|---|----|-----|-----------------------------------------|---|-----------------------|
|    |    | fractured and altered but is weakly to moderately |      |    |       |                                        |   |    | (§) | -                                       |   |                       |
|    |    | veined and sparsely mineralized.                  |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | The cherty porphyries are aphanitic,              |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | siliceous, brittle units that vary from cream     |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | to white and buff in colour. The cherty units     |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | are weakly to moderately fractured and veined,    |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | and are sparsely mineralized with pyrite.         |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | The highly altered porphyries, of which a         |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | unit from 372-373.9 is representative, contain    |      |    |       |                                        |   | ٠, |     |                                         |   | ·                     |
|    |    | laths, threads and blebs of sericite ± fuchsite   |      |    |       |                                        |   |    | 4   |                                         |   |                       |
|    |    | in a very siliceous groundmass. Locally, some     |      |    |       |                                        |   |    |     | -                                       |   |                       |
|    |    | of the sericite appears to be pseudomorphic       |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | after albite.                                     |      |    |       |                                        |   |    | •   |                                         |   |                       |
|    |    | The light coloured carbonate sections-            |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | potential carbonated porphyries vary from         |      |    |       | ************************************** |   |    |     |                                         |   |                       |
|    |    | medium to light grey and grey green in colour,    |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | and locally appear siliceous even though the      |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | rocks are highly altered and fractured with       |      |    |       |                                        | • |    |     |                                         |   |                       |
|    |    | carbonate-chlorite. Adjacent to fractures         |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | the rock is normally bleached yellowish brown     |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | in colour; such that, in areas of dense           |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | fracturing there is a pervasive bleaching and     |      |    |       |                                        |   |    |     | · • • • • • • • • • • • • • • • • • • • |   |                       |
|    |    | carbonatization of the rock to a light buff       |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | colour. There are also local siliceous patches    |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | in these grey carbonate rocks.                    |      |    |       |                                        |   |    |     |                                         |   |                       |
|    |    | Most of the rock below 418.4 is carbonate         |      |    |       |                                        | - |    | -   |                                         | - |                       |

| From | To | DESCRIPTION                                    | From | To          | Width |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |   | Description of Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|----|------------------------------------------------|------|-------------|-------|---|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |    | with few parameters available to indicate an   | ar.  |             |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | original composition. The carbonate varies     |      | <del></del> |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | from medium to dark grey green and olive in    |      |             |       |   |              | The state of the s |             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | colour and normally contains a weak fuchsite   |      | <del></del> |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |    | component.                                     |      |             |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | The majority of the cherty and highly          |      |             |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | altered porphyries are localized in the upper  |      |             |       | • |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | zone of the sequence from 346-379.3. The       |      |             |       |   | ·            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •    |    | breakdown includes:                            |      |             |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | 346-352: Lost Core.                            |      |             |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | 352-360.2: White cherty porphyry, blocky,      |      |             |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | with lost core at 356-358.                     |      |             |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | 360.2-364.9: Pale brownish buff, to yellow,    |      |             |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |    | fine grained, siliceous porphyry (or dacite??) | -    |             |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | From 361-361.5, dark grey green carbonate with |      |             |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | a trace of fuchsite.                           |      |             |       |   | <del> </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | 364.9-369.9: Buff, cherty porphyry.            |      |             |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | 369.9-372.0: Grey green carbonate to           |      |             |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | carbonated porphyry.                           |      |             | -     |   |              | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | 372.0-373.9: Yellow green, highly altered      |      | <del></del> |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _           |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | porphyry with sericite, fuchsite.              |      |             |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del> |   | - | and the second s |
|      |    | 373.9-377.9: Pale brown to buff, weakly        |      |             |       |   | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | altered cherty porphyry.                       |      |             |       | - | -            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | - |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | 377.9-379.0: Pale grey green to buff grey      |      |             |       |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |    | green and yellow highly altered porphyry.      |      |             |       |   |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -    |    | 379.0-379.3: Cherty porphyry.                  |      |             |       | 1 | _            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _           | - | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| ,rom | To | DESCRIPTION                                     | From | To          | Width         |              |              |   |   |   |   | Description of Sample |
|------|----|-------------------------------------------------|------|-------------|---------------|--------------|--------------|---|---|---|---|-----------------------|
|      |    | The middle zone of the sequence, from           |      |             |               |              |              |   |   |   |   |                       |
|      |    | 379.3-418.4, is predominately light coloured    |      |             |               |              |              |   |   |   |   |                       |
|      |    | carbonate / carbonated porphyry which grades    |      |             |               |              |              |   |   |   |   |                       |
|      |    | from light to medium grey, grey green, pale     |      |             |               |              |              |   |   |   |   |                       |
|      |    | grey green and brownish grey green at first to  |      |             |               |              |              |   |   | i |   |                       |
|      |    | darker grey in colour below 401. The core is    |      |             |               |              |              |   |   |   |   |                       |
|      |    | generally blocky in this section and contains   |      |             |               |              |              |   |   |   |   |                       |
|      |    | erratic zones of broken, gouged and granulated  |      |             |               |              |              |   |   |   |   |                       |
|      |    | core.                                           |      |             |               |              |              |   |   |   |   |                       |
|      |    | At 404-405, and 406.2-406.6 there are           |      |             |               |              |              |   |   |   |   |                       |
|      |    | darker grey to grey green carbonate zones - not |      |             |               |              |              |   |   |   |   |                       |
|      |    | apparent porphyry.                              |      |             |               |              |              |   |   |   |   |                       |
|      |    | Below 410.3, there are some broken sections     |      |             |               |              |              |   |   |   |   | ·                     |
|      |    | of cherty porphyry at 410.3-411 and 417-418.4   |      | <del></del> |               |              |              |   |   |   |   |                       |
|      |    | around a more carbonated zone from 411-417.     |      | <del></del> |               |              |              |   |   |   |   |                       |
|      | 1  | From 416.1-417, there is a section of medium to |      |             |               | 1            |              |   |   |   |   |                       |
|      |    | dark yellow green carbonate with trace amounts  |      |             |               |              |              |   |   |   |   |                       |
|      |    | of fuchsite.                                    |      |             | 1             | <del> </del> | <del> </del> | 1 |   |   |   |                       |
|      |    | The lower zone, from 418.4-434, is largely      |      |             | <del>- </del> | T.           |              | 1 |   |   |   |                       |
|      |    | medium to dark grey green and olive coloured    |      |             | <del>- </del> | <del> </del> | 1            |   |   |   |   |                       |
|      |    | carbonate with trace amounts of fuchsite -      |      |             |               |              |              |   |   |   |   |                       |
|      |    | fuchsite increases with depth, especially       |      |             |               |              |              |   |   |   |   |                       |
|      |    | around the lower contact from 432-434. There    |      |             |               |              |              |   |   |   |   |                       |
|      |    | are three sections of porphyry in the lower     |      |             |               |              |              | * |   |   |   |                       |
|      |    | zone at: 419.2-420.6 - medium to dark grey      |      |             |               | 1            |              |   | 1 |   |   |                       |
|      |    | carbonate/carbonated porphyry;                  |      | 1           | _             | -            |              | - | _ | - | - |                       |

| mc                                    | TO    | DESCRIPTION                                      | From | То | Width |   |   |   |   |  |   | Description of Sampl |
|---------------------------------------|-------|--------------------------------------------------|------|----|-------|---|---|---|---|--|---|----------------------|
|                                       |       | 423.9-424.3 - dark grey, brecciated,             |      |    |       |   |   |   |   |  |   |                      |
|                                       |       | altered cherty porphyry; and                     |      |    |       |   |   |   |   |  |   |                      |
|                                       |       | 429.4-430.8 - grey green to brownish grey        |      |    |       |   |   | , |   |  |   |                      |
|                                       |       | green, siliceous, carbonate/carbonated porphyry. |      |    |       |   |   |   |   |  |   |                      |
|                                       |       | The upper contact of the lower zone is.          |      |    |       |   |   |   |   |  |   |                      |
|                                       |       | gouged and granulated at 450 to the core axis.   |      |    |       |   |   |   |   |  |   |                      |
|                                       |       | Most of the core in the section 423-429.4 is     |      |    |       |   |   |   |   |  |   |                      |
|                                       |       | also gouged and granulated at 450, with lost     |      |    |       |   |   |   |   |  |   |                      |
| · · · · · · · · · · · · · · · · · · · |       | core from 427-428. The lower contact of the      |      |    |       |   |   |   |   |  |   | •                    |
|                                       |       | sequence is broken.                              |      |    |       |   |   |   |   |  |   |                      |
| <del></del>                           |       |                                                  |      |    |       |   |   |   |   |  |   |                      |
| 134                                   | 512.3 | Carbonate Zone - a mixed sequence of             |      |    |       |   |   |   |   |  |   |                      |
|                                       |       | emerald green and ochre coloured carbonate       |      |    |       |   |   |   | • |  |   | •                    |
|                                       |       | rocks that can be subdivided into upper, middle  |      |    |       |   |   |   |   |  |   |                      |
| ···                                   |       | and lower zones at: 434-455, 455-479 and 479-    |      |    |       |   |   |   |   |  |   |                      |
|                                       |       | 512.3 respectively.                              |      |    |       |   |   |   |   |  |   |                      |
|                                       |       | The upper zone consists of dull to normal        |      |    |       |   |   |   |   |  |   |                      |
|                                       |       | emerald green carbonate which is blocky and      |      | 1  |       |   | • |   |   |  |   |                      |
|                                       |       | broken and contains several scattered sections   |      |    |       |   |   |   |   |  |   |                      |
|                                       |       | with gouge and granulation.                      |      |    |       |   |   |   |   |  |   |                      |
|                                       |       | The carbonate is well altered, moderately        |      |    |       |   |   |   |   |  |   |                      |
|                                       | -     | veined and sparsely to unmineralized. The upper  |      | 1  |       |   |   |   |   |  |   |                      |
|                                       | _     | contact of the emerald green carbonate is        |      |    |       | 1 |   |   |   |  |   |                      |
|                                       |       | gradational from the previous dark carbonate     |      |    |       |   |   |   |   |  |   |                      |
|                                       |       | rocks while the lower contact is along a zone of | of   |    |       |   |   |   |   |  |   |                      |
|                                       |       | lost core from 455-457.                          | -    | _  | -     | _ | _ | _ | _ |  | _ |                      |

| rom                    | To | DESCRIPTION                                     | From | To | Width |   |      |   | Description of Sample |
|------------------------|----|-------------------------------------------------|------|----|-------|---|------|---|-----------------------|
|                        |    | The middle zone, from 455-479, is               |      |    |       |   |      |   |                       |
|                        |    | characterized by accessory sericite alteration. |      |    |       |   |      |   |                       |
|                        |    | The first part of the middle zone (to 462.3)    |      |    |       |   |      |   |                       |
| -                      |    | is blocky and broken grey green to olive        |      |    |       |   | <br> |   |                       |
|                        |    | carbonate with lost core from 455-457, and 459- |      |    |       |   |      |   |                       |
|                        |    | 461. The carbonate is partly siliceous and      |      |    |       |   |      |   |                       |
|                        |    | weakly altered with fuchsite.                   |      |    |       | · |      |   |                       |
| <del>" '' ' '' '</del> |    | From 462.3-466.2, the rock is very similar      |      |    |       |   |      |   |                       |
|                        |    | to the grey carbonate-potential carbonated      |      |    |       |   |      |   |                       |
|                        |    | porphyry sections seen in the earlier sequence  |      |    |       |   |      |   | •                     |
|                        |    | from 379.3-418.4. The rock is dark grey and     |      |    |       |   |      |   |                       |
|                        |    | highly carbonated but has weakly siliceous      |      |    |       |   |      |   |                       |
|                        |    | portions. The upper contact is broken, the      |      |    |       |   |      |   | •                     |
|                        |    | lower contact is with veining at 25°.           |      |    |       |   |      |   |                       |
|                        |    | From 466.2-479, the rock is yellow to           |      |    |       |   |      |   |                       |
| _                      |    | ochre and yellowish grey green in colour with   |      |    |       |   |      |   |                       |
| •                      |    | scattered grey to grey brown more siliceous     |      |    |       |   |      |   |                       |
|                        |    | patches. The core is well altered with sericite |      |    |       |   |      |   |                       |
|                        |    | and carbonate - the sericite occurring as laths | 3    |    |       |   |      |   |                       |
|                        |    | and threads in a fine grained siliceous matrix  |      |    |       |   |      | - |                       |
|                        |    | The unit could be either a highly altered       |      |    |       |   |      |   |                       |
| •                      |    | porphyry or a sericitic felsic volcanic.        |      |    |       |   |      |   | <br>•                 |
| - (                    |    | The first part of this section (466.2-479)      |      |    |       |   |      |   |                       |
|                        |    | is relatively competent, but is badly broken    |      |    |       |   |      |   |                       |
|                        |    | from 473.5-477, and continues to be blocky from | m    |    |       |   |      |   |                       |
|                        |    | 477-479. The lower contact is partly rusted     | 1    |    |       | 1 |      |   |                       |

| From     | To    | DESCRIPTION                                      | From  | То    | Width |   |   |   |   |   | Au<br>Oz | Description of Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|-------|--------------------------------------------------|-------|-------|-------|---|---|---|---|---|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |       | with ankerite and is gradational into emerald    |       |       |       |   |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | green carbonate.                                 |       |       |       |   |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | The lower zone of the carbonate sequence,        |       |       |       |   |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | from 479-512.3, is an emerald green carbonate    |       |       |       |   |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | which is blocky, broken and weakly rusted at     |       |       |       |   |   |   | • |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | first, but becomes more competent and strongly   |       |       | -     |   |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | veined below 486. A section from 496-505.8       |       |       |       | • | • | , |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -        |       | contains 60-80% quartz and quartz-ankerite       |       |       |       |   |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | veining previous to a basal silicified breccia   |       |       |       |   |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | zone from 505.8-512.3.                           |       |       |       |   | • | ; |   |   |          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ,        |       | The basal, silicified, carbonate breccia         |       |       |       | - |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | varies from olive, to yellow olive and putty     |       |       |       |   |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | coloured, and appears gradational from the       |       |       |       |   |   |   | • |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | emerald green carbonate rocks. The breccia       |       |       |       |   |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> </u> |       | contains fragments of quartz and quartz-ankerite |       |       |       |   |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | in a streaky sericitic carbonate matrix with     |       |       |       |   |   |   |   | _ |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •        |       | traces of fuchsite. The breccia may represent    |       |       |       |   |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | the altered top of the adjacent breccia zone.    |       |       |       |   | • |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | The lower contact of the sequence is             |       |       |       |   |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | broken with veining.                             |       |       |       |   |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       |                                                  |       |       |       |   |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 512.3    | 623.9 | Breccia Zone - a sequence of brecciated          |       |       |       |   |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | sediments and carbonate breccia with a great     |       |       |       |   |   |   |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |       | deal of broken and granulated core. The          | 512.6 | 514.0 | 1.4   |   |   |   |   |   | .016     | Sediments - fine qr. black tr.py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |       | sequence encompasses several types of units,     |       | 519.0 |       |   |   |   |   |   |          | Carbonate bx strong veining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |       | but is initially distinguished by the presence   |       |       |       | 1 |   | - |   |   | -        | The state of the s |

PROPERTY QUEBEC STURGEON RIVER MINES LTD. -ASHBY PROPERTY Township Taylor Township

| com | To | DESCRIPTION                                    | From | To          | Width                                            |                  |               |                                                  |                                                  |   | Description of Sample                            |
|-----|----|------------------------------------------------|------|-------------|--------------------------------------------------|------------------|---------------|--------------------------------------------------|--------------------------------------------------|---|--------------------------------------------------|
|     |    | of dark grey to dark grey brown and dark grey  |      |             |                                                  | <br>             |               |                                                  |                                                  |   |                                                  |
|     |    | olive sediments from 512.3-513.8.              |      | <del></del> |                                                  |                  |               |                                                  |                                                  |   |                                                  |
|     |    | The sediments from 512.3-513.8 consist of      |      |             |                                                  |                  |               |                                                  |                                                  |   | <del>*************************************</del> |
|     |    | fine grained silt and arkose/greywacke - the   |      |             |                                                  | <del></del>      |               |                                                  |                                                  |   |                                                  |
|     |    | arkose/greywacke portion being identified by   |      |             |                                                  |                  |               |                                                  | <del>                                     </del> |   |                                                  |
|     |    | a weakly granular, fine grained matrix with    |      |             |                                                  | <del></del>      |               |                                                  |                                                  |   |                                                  |
|     |    | traces of muscovite, sericite and scattered    |      | <del></del> |                                                  |                  |               |                                                  |                                                  |   |                                                  |
|     |    | black specks of graphite. The core in this     |      |             |                                                  |                  |               |                                                  |                                                  |   |                                                  |
|     |    | upper contact zone is broken.                  |      |             |                                                  |                  |               |                                                  |                                                  |   |                                                  |
|     |    | Following the initial contact zone the         |      |             |                                                  |                  |               |                                                  |                                                  |   | · · · · · · · · · · · · · · · · · · ·            |
|     |    | sequence becomes highly brecciated, veined,    |      |             |                                                  | <br><b></b>      |               |                                                  |                                                  |   |                                                  |
|     |    | altered and carbonated from 513.8-528. There   |      |             |                                                  |                  |               |                                                  | ļ                                                |   |                                                  |
|     |    | are no recognizable sedimentary features in    |      | <del></del> |                                                  | <br>             |               | -                                                |                                                  |   |                                                  |
|     |    | this section - the rock is a well altered      |      |             |                                                  |                  |               |                                                  |                                                  |   |                                                  |
|     |    | carbonate breccia that contains fragments,     |      | <del></del> |                                                  |                  |               |                                                  |                                                  |   |                                                  |
|     |    | lenses and discontinuous stringers of quartz ± |      |             |                                                  | <br>··           |               |                                                  |                                                  |   | •                                                |
| ·   |    | ankerite in a carbonate-chlorite-sericite ±    |      | ·           |                                                  | <br>             |               |                                                  |                                                  |   |                                                  |
|     |    | fuchsite-altered matrix. The carbonate breccia | 1    |             |                                                  | <br>             |               |                                                  |                                                  |   |                                                  |
|     |    | varies from olive to grey olive, brown olive,  |      |             | <del>  -</del>                                   |                  |               | <del> </del>                                     |                                                  |   |                                                  |
|     |    | grey green, brownish grey green and emerald    |      |             |                                                  |                  |               |                                                  |                                                  |   |                                                  |
|     |    | green in colour. The core remains blocky.      |      |             |                                                  | <br>             |               | <del> </del>                                     |                                                  |   |                                                  |
|     |    | Around 528, the carbonate component            |      | ···         | <del>                                     </del> |                  |               |                                                  |                                                  | - |                                                  |
|     |    | abruptly decreases previous to a sequence of   |      | <del></del> |                                                  | <br>             |               |                                                  |                                                  |   |                                                  |
|     |    | badly broken and blocky, brecciated sediments  |      |             | 1                                                | <br>             | -             | -                                                |                                                  |   |                                                  |
|     |    | from 528-563 - there is considerable ground    |      |             | <del> </del>                                     | <br><del>-</del> |               | <del>                                     </del> |                                                  | - |                                                  |
|     |    | core in this zone with lost core from 552-557. |      |             | -                                                | <br><del></del>  | ļ <del></del> | -                                                |                                                  | - |                                                  |

| , LOW | To       | DESCRIPTION                                     | From                                             | To           | Width | 1           |                                                  |                                                  |               |                                                  |                | Description of Sample |
|-------|----------|-------------------------------------------------|--------------------------------------------------|--------------|-------|-------------|--------------------------------------------------|--------------------------------------------------|---------------|--------------------------------------------------|----------------|-----------------------|
|       | <u> </u> | The sediments are dark grey to black with       |                                                  |              |       |             | 1                                                |                                                  |               |                                                  |                |                       |
|       | <u></u>  | a minor amount of yellow olive to yellowish,    |                                                  |              |       | 1           | 1                                                |                                                  |               |                                                  |                |                       |
|       | 1        | sericite ± carbonate. Being badly broken,       |                                                  | 1            |       | 1           | 1                                                |                                                  |               |                                                  |                |                       |
|       |          | most of the core is represented by the more     |                                                  |              | 1     |             |                                                  |                                                  |               |                                                  |                |                       |
| -     |          | competent fragments, lenses and patches of      | 1                                                |              |       | <del></del> |                                                  |                                                  | \ \frac{1}{1} | <u>'</u>                                         |                |                       |
|       |          | stringer material in a black, fine grained,     |                                                  |              | +     | <del></del> |                                                  |                                                  | <del> </del>  | <del> </del>                                     |                |                       |
|       |          | partly graphitic matrix.                        | 1                                                |              | +     |             |                                                  |                                                  | '             | -                                                | +              | (                     |
|       |          | At 563, contact to a more competent olive       | <u>_</u>                                         |              | +     | <del></del> |                                                  |                                                  | +             | <del>                                     </del> | +              |                       |
|       |          | to yellow olive carbonate breccia which grades  | !!                                               |              | +     |             |                                                  |                                                  | <del></del> ' | <del> </del>                                     | +              |                       |
|       |          | to emerald green carbonate below 573 - contacts |                                                  |              | +     | , ———       |                                                  | <del></del>                                      | <del></del> ' | <del> </del>                                     | +              |                       |
|       |          | are broken. The carbonate breccia contains      | <del>                                     </del> |              | +     | , ———       |                                                  |                                                  | <del></del> ' | <del> </del>                                     | +              |                       |
|       |          | fragments of quartz and quartz-ankerite         | <del>  </del>                                    |              | +     | ,——         |                                                  | <del> </del>                                     | +'            | <del> </del>                                     | +              |                       |
|       |          | stringer material similar to the unit 513.8-    | <del>  </del>                                    |              | +     | , ———       |                                                  |                                                  | +             | <del> </del>                                     | <del> </del>   |                       |
|       |          | 528. In addition to carbonate-sericite, the     | <del>  </del>                                    |              | -     | ,——         |                                                  | <del> </del>                                     |               | <del> </del>                                     | <del>  -</del> | •                     |
|       |          | breccia is weakly altered with fuchsite, and    | <del>                                     </del> |              | -     |             | <del></del>                                      | <del> </del>                                     |               | <del> </del> '                                   | -              |                       |
|       |          | is sparsely mineralized with traces of pyrite.  | <del>  </del>                                    |              |       |             | · · ·                                            | <del> </del>                                     | 1             | <del> </del> '                                   | +              |                       |
|       |          | The core continues to be blocky but is not as   | 1 1                                              |              | -     |             |                                                  | <del> </del>                                     | <del></del>   | <del> </del>                                     | +              |                       |
|       |          | badly broken as previous.                       | +                                                |              |       |             | <u> </u>                                         | <del> </del>                                     | <del></del>   | 4'                                               | +              |                       |
|       |          | The emerald green carbonate section             |                                                  |              | -     |             | .                                                | <del>                                     </del> | -             | 1                                                | 1              |                       |
|       |          | extends from 573-604 and contains vague         | +                                                |              | -     |             | <del></del>                                      | <del> </del>                                     |               | 1                                                | 4              |                       |
|       |          | patches/remnants of potential sediment - most   | +                                                | <del> </del> | -     |             | <del></del> 1                                    | <del> </del>                                     |               | 1                                                |                |                       |
|       |          | notable at 583, and at the base of the section  | i !                                              | <del></del>  | -     |             | <del> </del>                                     | <del> </del>                                     |               | 4                                                | -              |                       |
|       |          | from 601-604. The carbonate varies from dark    | 1 1                                              | <del> </del> |       | , <u> </u>  | <del> </del>                                     | <u> </u>                                         |               | 1                                                |                |                       |
|       |          | rich emerald green to bright lime in colour     |                                                  | <del> </del> | _     | ,           | 1                                                | <del> </del>                                     |               |                                                  |                |                       |
|       |          | and is well altered with fuchsite, carbonate    |                                                  | <del> </del> |       | <u> </u>    | <del>                                     </del> | <b></b>                                          |               | 1                                                |                |                       |
|       | -        | ± sericite, chlorite. The core is moderately    |                                                  |              |       | ·           | <u> </u>                                         | 1                                                | 1             | 1                                                |                |                       |

| PROPI        | ERTY_ | QUEBEC STURGEON RIVER MINES LTDASHBY PROPERTY Townshi | <u> </u> | Tayl         | lor Tow | nship |   | <del>-</del> |   |                       |
|--------------|-------|-------------------------------------------------------|----------|--------------|---------|-------|---|--------------|---|-----------------------|
| From         | To    | DESCRIPTION                                           | From     | To           | Width   |       |   |              |   | Description of Sample |
|              |       | veined and sparsely mineralized.                      | *        |              |         |       |   |              |   |                       |
| <del></del>  |       | From 597.6-598.7, there is a narrow,                  |          |              |         |       |   |              |   |                       |
|              |       | greyish to pale grey brown remnant of fine            |          |              |         |       |   |              |   |                       |
|              |       | grained, cherty, moderately ankeritic porphyry(?)     | 1        |              |         |       |   |              |   |                       |
| <del></del>  |       | within the emerald green carbonate - contacts         |          |              |         |       |   |              |   |                       |
|              |       | are broken.                                           |          |              |         |       |   |              |   |                       |
| <del>*</del> |       | At 604, broken contact into brecciated                |          |              |         |       |   |              |   |                       |
|              |       | and partly carbonated sediments previous to the       | 3        |              |         |       |   |              |   |                       |
|              |       | basal contact zone of carbonate breccia with          |          | 1            |         |       |   |              |   |                       |
|              |       | remnants of sediment from 614-623.9. The              |          |              |         |       |   |              |   |                       |
|              |       | sediments, from 604-614, are fine grained with        |          |              | 1       |       |   |              |   |                       |
|              |       | local more granular sections indicative of            |          |              |         |       |   |              |   |                       |
|              |       | arkosic material. The sediments vary from dark        | K        |              |         |       |   |              | • | ·                     |
|              |       | grey to black and brownish olive in colour with       |          |              | 1       |       |   |              |   |                       |
| •            |       | erratic portions of dull yellow to yellow olive       | 4        | <del> </del> | +       |       | ! |              |   |                       |
|              |       | sericitic carbonate. The rocks are brecciated         |          |              | -       |       |   |              |   |                       |
| -            |       | with fragments, lenses, etc. of stringer              | -        | -            |         |       |   |              |   |                       |
|              | 1     | material in a fine grained matrix containing          | -        | 1            | -       |       |   |              |   |                       |
|              |       | traces of graphite.                                   |          |              | +       | 1.    |   |              |   |                       |
|              |       | The core continues to be broken but is                |          | -            | -       | -     |   | -            |   |                       |
|              | 1     | more competent than previous - only minor             | -        | +            |         | -     | - |              |   |                       |
|              |       | gouge and granulation are noted in the sediments      | s        | -            |         | 1     |   |              |   |                       |
|              |       | as at 609.7 - 3 cm of gouge @ 60°.                    | 1        |              |         | -     |   |              |   |                       |
|              |       | There are also silicified sections in the             |          |              |         |       |   | -            |   |                       |
|              |       | sediments which could be related to either            |          | 1            |         |       |   |              |   |                       |
|              |       | pervasive silicification from veining or units        |          |              |         |       |   | -            |   |                       |

PROPERTY QUEBEC STURGEON RIVER MINES LTD.-ASHBY PROPERTY Township

Taylor Township

| com | To | DESCRIPTION                                    | From | To | Width |   |              |   |              |   |   | Description of Sample |
|-----|----|------------------------------------------------|------|----|-------|---|--------------|---|--------------|---|---|-----------------------|
|     |    | The core is blocky and broken throughout       |      |    |       |   |              |   |              |   |   |                       |
|     |    | but particularly from 623.9-634 and below 645. |      |    |       |   |              |   |              |   |   |                       |
|     |    | From 671-677, there are six feet of lost core, |      |    |       |   |              |   |              |   |   |                       |
|     | -  | plus there is moderate to strong granulation   |      |    |       |   |              |   |              |   |   |                       |
|     |    | below that point.                              |      |    |       |   |              |   |              |   |   |                       |
|     |    | The early dark, streaky carbonate rocks        |      |    |       |   |              |   |              |   |   |                       |
|     | _  | give way to an olive coloured, more competent  |      |    |       | • |              |   |              |   |   |                       |
|     |    | streaky carbonate zone with traces of fuchsite |      |    |       |   |              |   |              |   |   | •                     |
|     |    | from 635.5-640, followed by a narrow, grey to  |      |    |       |   |              |   |              |   |   |                       |
|     |    | dark grey buff unit of cherty moderately       |      |    |       |   |              |   |              |   |   |                       |
|     |    | ankeritic porphyry from 640.0-640.9.           |      |    |       |   |              |   |              |   |   |                       |
|     |    | Below 640.9 the carbonate becomes              |      |    |       |   |              |   |              |   |   |                       |
|     |    | increasingly blocky with largely broken core   |      |    |       |   |              |   |              |   |   |                       |
|     |    | after 645, due to local strong granulation.    |      |    |       |   |              |   |              |   |   |                       |
|     |    | At 647-647.3, 648.1-648.3, and 662.5-          |      |    |       |   |              |   |              |   |   |                       |
|     |    | 665.6, there are three sections of very dark   |      |    |       |   |              |   |              |   |   |                       |
| -   |    | grey to black strongly altered, weakly         |      |    |       |   |              |   |              |   |   |                       |
|     |    | silicified porphyry, with ghost silicification |      |    | -     |   | <del> </del> |   | -            |   |   |                       |
|     |    | and buff coloured patches - contacts are       |      |    |       |   |              |   |              |   |   |                       |
|     |    | broken.                                        |      |    | -     |   |              |   |              |   |   |                       |
|     |    | Approaching the end of the hole, there is      |      |    |       |   |              |   |              |   |   |                       |
|     |    | a marrow zone of black, streaky/layered,       |      |    |       |   |              |   |              | - | - |                       |
|     |    | magnetic ultramafic from 688-692, below a zone |      |    |       |   |              | - | <del> </del> | - | - |                       |
|     |    | of moderate to strong granulation from 681-688 |      |    |       |   |              | - | -            | - |   |                       |
|     |    |                                                |      |    |       |   |              |   |              |   |   |                       |
|     |    |                                                |      |    | -     | 1 | -            | - | -            | - | - |                       |

| rom | To          | DESCRIPTION                                 | From        | То           | Width |             |   |         | Description of Sampl |
|-----|-------------|---------------------------------------------|-------------|--------------|-------|-------------|---|---------|----------------------|
|     |             | At the end of the hole the rock is a        |             |              |       |             |   |         |                      |
|     |             | dark carbonate, potential carbonated ultra- | <del></del> |              |       |             |   |         |                      |
|     |             | mafic.                                      |             |              | +     | <br>        | † |         |                      |
|     |             |                                             |             |              | -     |             |   |         |                      |
|     | -           |                                             |             | -            | +     |             | + |         |                      |
|     | 695'        | END OF HOLE                                 |             | <del> </del> |       | -           | - |         |                      |
|     |             |                                             |             | -            |       | <br>+       | + |         |                      |
|     |             |                                             |             |              |       | <br>-       |   |         | _                    |
|     |             |                                             |             |              |       |             |   |         |                      |
| -   |             |                                             |             | -            |       |             |   |         |                      |
|     |             | 1                                           |             | -            |       |             |   | <u></u> | A                    |
|     |             |                                             |             |              |       |             |   |         |                      |
|     |             |                                             |             |              |       |             | • |         | ·                    |
|     |             |                                             |             |              |       |             |   |         |                      |
|     |             | ·                                           | 1           |              |       |             |   |         |                      |
|     |             |                                             |             |              |       | -           |   |         |                      |
|     |             |                                             | -           |              |       |             | + |         |                      |
|     |             |                                             |             |              | +     | +           | + |         |                      |
|     | <del></del> |                                             | -           |              |       |             | + |         |                      |
|     |             |                                             | <del></del> | <del> </del> |       | <del></del> | - |         |                      |
|     |             |                                             | +           | <del> </del> |       | +           | - |         |                      |
|     |             |                                             | '           | -            |       |             |   |         |                      |
|     |             |                                             | '           |              |       | <br>        |   |         |                      |
|     | <i></i>     |                                             |             |              |       |             |   |         |                      |
|     |             | ·                                           |             | <del></del>  |       |             |   |         |                      |
|     |             |                                             |             |              |       |             |   |         |                      |
|     |             |                                             |             |              |       |             |   |         |                      |

HOLE No. QS-83

-Location: XL 2+00W @ 10+00N

PROPERTY: QUEBEC STURGEON RIVER MINES LTD, - Ashby Property

AUDITOR ARIEF RELAKT

Azimuth: Grid North - 00

Coro Sizo: BQ

Township:

Taylor Township

Elevation: Surface

Location of Collar from # Post of

Dip: Collar @ -55°; @ 114'-55.5° @ 314'-56°; @ 514'-57°

Finished : 16 September 1983

Contractor: Dominik Drilling Inc.

Commenced: 10 September 1983

(i)

| From  | To    | DESCRIPTION                                           | From | To | Width |  |     |   |     | <br>Description of Sample |
|-------|-------|-------------------------------------------------------|------|----|-------|--|-----|---|-----|---------------------------|
|       |       | SUMMARY LOG                                           |      |    |       |  |     |   |     |                           |
| 0     | 126'  | Casing. (Casing pulled).                              |      |    |       |  |     |   |     |                           |
| 126   | 138   | Sediments - brecciated, moderately altered            |      |    |       |  |     | · |     |                           |
|       |       | arkose/greywacke and argillite.                       |      |    |       |  |     |   |     |                           |
| 138   | 264   | Diabase - Matachewan style -                          |      |    |       |  |     |   | • • |                           |
|       |       | badly broken with 45% recovery from 138-220.          |      |    |       |  |     |   |     |                           |
| 264   | 337.2 | Carbonated Ultramafic - strong gouge                  |      |    |       |  |     |   |     |                           |
|       |       | at 298.5-302 and 328-330.5.                           |      |    |       |  |     |   |     |                           |
| 337.2 | 442   | Diabase - Matachewan style.                           |      |    |       |  |     |   |     |                           |
| 442   | 463   | Porphyry Zone - cherty, and strongly                  |      |    |       |  |     |   |     |                           |
|       |       | carbonated cherty porphyry, blocky with 33% core      |      |    |       |  |     |   |     |                           |
|       |       | lost.                                                 |      |    |       |  |     |   |     |                           |
| 463   | 559.6 | Carbonate Zone - mixed sequence with                  |      |    |       |  |     |   |     |                           |
|       |       | : 463-489 - ultramafic to mafic volcanics.            |      |    |       |  |     |   |     |                           |
|       |       | : 489-497 - cherty porphyry, strong veining (85%).    |      |    |       |  |     |   |     |                           |
|       |       | : 497-530.3 - strongly veined, intermediate volcanic. |      |    |       |  |     |   |     |                           |
|       |       | : 530.3-544.3 - mafic to ultramafic volcanic.         |      |    |       |  |     | , |     |                           |
|       |       | : 544.3-556.5 - granular, chloritic mafic volcanic,   |      |    |       |  |     |   |     |                           |
|       |       | with rhombs of ankerite.                              |      |    |       |  | . , |   |     | -                         |
|       |       | : 556.5-559.6 - cherty porphyry, rhomb's of ankerite. |      |    |       |  |     |   |     |                           |
| 559.6 | 5 567 | Carbonated Ultramafic - pyroxenite and                |      |    |       |  |     |   |     | ·                         |
|       |       | serpentinite.                                         |      |    |       |  |     |   |     |                           |
|       | 567'  | END OF HOLE (Hole Lost).                              |      |    |       |  |     |   |     |                           |
|       |       |                                                       |      |    |       |  |     |   |     |                           |

- Location: XL 2+00W @ 10+00N

Azimuth: Grid North - 00

PROPERTY: QUEBEC STURGEON RIVER MINES LTD, - Ashby Property

Township:

Taylor Township

Commenced:

Finished:

September 1983

Coro Sizo: BQ

Elevation: Surface

Location of Collar from # Post of

Contractor: Dominik Drilling Inc.

Dip: Collar @ -550; @ 114'-55.50

| æ | 314 | -260; | a | 514 | 5/ |  |
|---|-----|-------|---|-----|----|--|
|   |     |       |   |     |    |  |

| From         | To           | DESCRIPTION                                    | From                                             | То | Width                                            |   |         |   |   |    |   | Description of Sample |
|--------------|--------------|------------------------------------------------|--------------------------------------------------|----|--------------------------------------------------|---|---------|---|---|----|---|-----------------------|
| 0            | 126'         | Casing. (Casing pulled) -                      |                                                  |    |                                                  |   |         |   | 2 |    |   |                       |
|              | 120          | 0-62, sand and clay; 62-109 boulders and sand, |                                                  |    |                                                  |   |         |   |   |    |   |                       |
|              |              | making water; 109-126 core - boulders and      |                                                  |    |                                                  |   | · · · - |   |   |    |   |                       |
|              |              | cement. The drill hole was cemented to 135'.   |                                                  |    |                                                  |   |         |   |   |    |   |                       |
|              |              |                                                |                                                  |    |                                                  |   |         |   |   | ٠. |   |                       |
| 126          | 138          | Sediments - a sequence with scattered          |                                                  |    |                                                  |   |         |   |   |    |   |                       |
| 120          | 130          | recognizable sections of sediment and brec-    |                                                  |    |                                                  |   |         |   |   |    |   |                       |
|              |              | ciated sediment amongst blocky, broken and     |                                                  |    |                                                  | _ |         |   |   |    |   |                       |
| <del> </del> | <del> </del> | moderately altered core. The base of the       |                                                  |    |                                                  |   |         |   |   |    |   | •                     |
|              |              | sequence, from 134-138, is strongly altered,   |                                                  |    | 1                                                |   |         |   |   |    |   |                       |
| <del></del>  |              | baked, and hematite-stained from an adjacent   | <del> </del>                                     |    | <del></del>                                      |   |         |   |   |    | • |                       |
|              | -            | dyke of diabase.                               |                                                  |    | <del> </del>                                     |   |         |   |   |    |   |                       |
|              |              | The sediments vary from dark grey green,       |                                                  |    | <del> </del>                                     |   |         |   |   |    |   |                       |
| •            | <del> </del> | to dark grey, dark brownish grey and black in  | <del> </del>                                     |    | <del>                                     </del> |   |         |   |   |    |   |                       |
| <del> </del> |              | colour and are fine grained, moderately        | <del>                                     </del> |    |                                                  |   |         |   |   |    |   |                       |
|              |              | altered with chlorite, sericite, carbonate,    |                                                  |    |                                                  |   |         | 1 | 1 |    |   |                       |
|              | 1            | poorly veined with quartz-ankerite, and        |                                                  |    |                                                  |   |         |   |   |    |   |                       |
|              | 1            | sparsely mineralized with pyrite.              |                                                  |    |                                                  |   | 1       |   |   |    |   |                       |
| <del></del>  |              | The most diagnostic section of arkose,         |                                                  |    |                                                  |   | 1       |   |   |    |   |                       |
|              |              | although more siliceous than normal, is found  |                                                  |    |                                                  |   |         |   |   |    |   |                       |
| <b></b>      |              | around 129, and has a granular, detrital       |                                                  |    |                                                  |   |         |   |   |    |   |                       |
| -            |              | texture with grains of quartz, feldspar,       |                                                  |    |                                                  |   |         |   |   |    |   |                       |
| <del></del>  |              | scattered flecks of sericite/muscovite, and    |                                                  |    |                                                  |   |         |   |   |    |   |                       |
|              |              |                                                |                                                  |    |                                                  |   |         |   |   |    | 1 |                       |

| From        | To  | DESCRIPTION '                                  | From | To | Width |   |   |   |      |   | Description of Sample |
|-------------|-----|------------------------------------------------|------|----|-------|---|---|---|------|---|-----------------------|
|             |     | erratic blebs of graphite. The remainder of    |      |    |       |   |   |   |      |   |                       |
|             |     | the sequence consists of ill-defined units of  |      |    |       |   |   |   |      |   |                       |
|             |     | moderately altered arkose and argillite. At    |      |    |       |   |   |   |      |   |                       |
|             |     | the collar of the section, the sediments are   |      |    | <br>  |   |   |   | 2.7. |   |                       |
|             |     | moderately brecciated and contain fairly       |      |    |       |   |   |   |      |   |                       |
| -           |     | numerous fragments of quartz-ankerite stringer |      |    |       |   |   |   |      |   |                       |
|             |     | material.                                      |      |    |       | • |   |   |      |   |                       |
| •           |     | The lower contact zone is strongly altered     |      |    |       |   |   |   |      |   |                       |
|             | -   | and broken.                                    |      |    |       |   |   |   |      |   |                       |
|             |     |                                                |      |    |       |   |   |   |      |   |                       |
| 138         | 264 | Diabase Dyke - a unit of apparent              |      |    |       |   |   |   |      |   | •                     |
| <del></del> | ·   | Matachewan style diabase with considerable     |      |    |       |   |   |   |      |   |                       |
|             |     | blocky, broken and lost core over the first    |      |    |       |   |   |   | •    |   | ·                     |
|             |     | part of the zone.                              |      |    |       |   |   |   |      |   | ·                     |
|             |     | The upper part of the diabase unit, from       |      |    |       |   |   |   |      |   |                       |
|             |     | 138-220, is badly broken and blocky from       |      |    |       |   |   |   |      |   |                       |
| •           |     | strong, pervasive fracturing at shallow angles |      |    |       |   |   |   |      | · |                       |
|             |     | to the core axis. Although minor granulation/  |      |    |       |   |   |   |      |   |                       |
|             |     | gouge are noted, there is considerable lost    |      |    |       |   | • | • |      |   |                       |
| •           |     | core as: 141-147; 153-157, 159-163, 165-167,   |      |    |       |   |   | 3 |      |   |                       |
|             |     | 169-175, 181-185, 187-189, 190-195, 198-201,   |      |    |       |   |   |   |      |   |                       |
| •           |     | 203-207, 208-211, and 217.5-220 - i.e. core    |      |    |       |   |   |   |      |   |                       |
|             |     | recovery is less than 45%.                     |      |    |       |   |   |   |      |   |                       |
|             |     | Between sections of lost core, the diabas      | е    |    |       |   |   |   |      |   |                       |
|             |     | is very fine grained dark green to black in    |      |    |       |   |   |   |      |   | ·                     |
|             |     | colour, moderate to strongly magnetic, strong  | У    |    |       |   |   |   |      |   |                       |

|          | TO TO     | Quebec Sturgeon River Mines Ltd. Ashby Property Townshi                               | From | To        | Width                                            |          |              |              |              |              |               | Description of Sample |
|----------|-----------|---------------------------------------------------------------------------------------|------|-----------|--------------------------------------------------|----------|--------------|--------------|--------------|--------------|---------------|-----------------------|
|          |           | - the stand                                                                           |      |           |                                                  |          |              |              |              |              |               |                       |
|          |           | fractured, moderate to strongly altered,                                              |      |           |                                                  |          |              |              |              |              |               |                       |
|          |           | poorly veined and sparsely to unmineralized.                                          |      |           |                                                  |          |              |              |              |              |               |                       |
|          | التناس سي | The diabase is prevasively altered by chlorite                                        |      |           |                                                  |          |              |              |              |              |               |                       |
|          |           | and carbonate, with more localized chlorite,                                          |      |           | <del>                                     </del> |          |              |              | ·            |              |               |                       |
|          |           | carbonate, epidote, hematite, serpentine and                                          |      |           |                                                  |          |              |              |              |              |               |                       |
|          |           | calcite within fractures and along slip faces.                                        |      |           |                                                  |          |              |              |              |              |               |                       |
|          |           | From 220-227.9, there is a narrow unit of                                             |      |           |                                                  |          |              |              | -            |              |               |                       |
| ٠.       |           | dark green to black granulated, in part gouged,                                       |      |           | · · · · · · · · · · · · · · · · · · ·            |          |              |              | <del> </del> |              |               |                       |
| <u>:</u> |           | carbonated, ultramafic previous to a second                                           |      |           |                                                  |          |              |              |              |              |               |                       |
|          | -         | section of diabase below 227.9. The upper                                             |      |           |                                                  |          |              | <del> </del> | -            |              |               |                       |
|          |           | contact is along a zone of lost core, the                                             |      | <u> </u>  |                                                  |          |              |              |              |              |               |                       |
|          | 1         | lower contact is somewhat diffuse at 55°. The                                         |      | ļ         |                                                  |          | ļ .          |              |              |              |               |                       |
|          |           | ultramafic contains scattered fragments of                                            |      |           | _                                                | <u> </u> |              |              |              |              |               |                       |
|          |           | fine grained serpentinized diabase and is                                             |      | <u> </u>  |                                                  | · ·      | ļ            |              | -            |              |               |                       |
|          |           | weakly veined with quartz-carbonate.                                                  | ļ    | ļ         |                                                  | <u> </u> |              |              | <del> </del> |              |               |                       |
|          | 1         | From 227.9-261 the diabase remains blocky                                             |      |           | _                                                | _        | <del> </del> |              | -            | :            |               |                       |
| •        |           | but is more competent than previous with the                                          |      | <b></b> _ |                                                  |          |              |              |              |              | <del> </del>  |                       |
|          | -         | only section of lost core extending from 259-                                         |      |           |                                                  | _        | -            |              | _            |              |               |                       |
|          |           | 261. The diabase varies from dark green to                                            |      |           |                                                  |          |              |              | _            |              |               |                       |
|          | _         | dark brownish grey green in colour and is                                             |      |           |                                                  |          | _            |              |              | <del> </del> |               |                       |
|          |           | fine to medium grained, magnetic, moderately                                          |      |           |                                                  |          |              | _            |              | <del> </del> | _             |                       |
|          | 1         | altered and moderately fractured. The dark                                            |      |           |                                                  |          |              |              |              |              |               |                       |
|          |           | fractures with chlorite, serpentine ± calcite                                         |      |           |                                                  |          | _            | _            |              |              | -             |                       |
|          | _         | continue to occur at shallow angles to the continue to occur at shallow angles to the | re   |           |                                                  |          |              |              | _            |              | <del>-\</del> |                       |
|          |           | axis.                                                                                 |      |           |                                                  |          |              |              |              |              | _             |                       |
| <u> </u> |           |                                                                                       |      | 1         |                                                  |          |              |              |              |              | _             |                       |

Taylor Township . PROPERTY Quebec Sturgeon River Mines Ltd. Ashby Property Township Description of Sample Width From To DESCRIPTION To From Below the section of lost core, from 259-261, is the basal contact zone/chill margin of the diabase. The rock is very fine grained, somewhat siliceous, partly serpentinized and baked - portions of this section contain features suggestive of a 'cooked' sediment. The lower contact of the diabase dyke is broken. Carbonated Ultramafic - a sequence of 337.2 dark grey green to dark green and black carbonated ultramafic with a section of very dark green to black carbonated serpentinite from 283-298.5. The core is moderate to strongly granulated throughout with sections of strong mud gouge at 298.5-302 and 328-330.5. There are no sections of lost core, however. The ultramafic is strongly altered with carbonate, chlorite and serpentine and is moderate to well veined with irregular, discontinuous lenses and stringers t patches of quartz-ankerite. Schistosity/granulation generally trends at shallow angles to the core axis - from 0-40°. None of the ultramafic is found to be magnetic, and the rocks are

. PROPERTY Quebec Sturgeon River Mines Ltd. Ashby Property Township Taylor Township

| From  | To  | DESCRIPTION                                    | From                                             | To           | Width        |                |              |              |              |             |  | Description of Sample |
|-------|-----|------------------------------------------------|--------------------------------------------------|--------------|--------------|----------------|--------------|--------------|--------------|-------------|--|-----------------------|
|       |     | effectively unmineralized.                     |                                                  |              |              |                |              |              |              |             |  |                       |
|       |     | The upper contact of the sequence is           |                                                  |              |              |                |              |              |              |             |  |                       |
| _     |     | broken, the lower contact is partly adsorbed   |                                                  |              |              |                |              |              |              | •           |  |                       |
|       |     | and serpentinized at 50° to the core axis.     |                                                  |              |              |                |              |              |              |             |  |                       |
|       |     |                                                |                                                  |              |              |                |              |              | · ·          |             |  |                       |
| 37.2° | 442 | Diabase Dyke - return to diabasic rocks,       |                                                  |              |              |                |              |              |              |             |  |                       |
| _     |     | presumed to be the down dip expression of the  |                                                  |              |              |                |              |              |              |             |  |                       |
| •     | _   | earlier dyke, i.e. Matachewan style.           |                                                  |              |              | <del></del>    |              |              |              |             |  |                       |
|       |     | The diabase is fine to medium grained,         |                                                  |              |              | · <del>V</del> |              |              |              |             |  |                       |
|       |     | dark grey green to dark brownish grey green in |                                                  |              |              |                | ·            | <del> </del> |              |             |  |                       |
|       |     | colour and strongly magnetic. At the upper     |                                                  |              |              | 477,00         |              |              |              |             |  | •                     |
|       |     | contact, from 337.2-338.3, the diabase is      |                                                  |              |              |                |              |              |              |             |  | ·                     |
|       |     | chilled and bleached with some accessory       |                                                  |              |              |                | -            |              |              |             |  | •                     |
|       |     | hematite staining.                             |                                                  | <del></del>  |              |                |              |              |              |             |  |                       |
|       |     | In the medium grained central portion of       |                                                  |              |              |                |              |              |              |             |  | <del></del>           |
| -     |     | the dyke, the diabase contains subrounded      |                                                  |              |              |                |              |              |              |             |  |                       |
| -     |     | grains of grey green to greenish feldspar      |                                                  |              |              |                |              |              |              | •           |  | <del></del>           |
|       |     | up to 5 mm in size. Locally, the feldspars     |                                                  |              |              |                |              |              |              | <del></del> |  |                       |
|       |     | are stained orange from hematite. The dyke     |                                                  |              |              |                |              | <del> </del> |              |             |  |                       |
|       |     | also contains rather indistinct bladed grains  |                                                  |              |              |                |              | 1            |              |             |  |                       |
|       |     | of hornblende/pyroxene, plus chlorite and      |                                                  |              |              |                |              | <u> </u>     | -            |             |  |                       |
|       |     | minor serpentine along fractures.              |                                                  |              | -            |                | <del> </del> | ,            |              |             |  |                       |
|       |     | The diabase is moderately altered with         |                                                  |              | <del> </del> |                | -            | <del> </del> |              |             |  |                       |
|       |     | chlorite, serpentine ± traces of carbonate,    |                                                  |              | -            |                | +            | -            | <del> </del> |             |  |                       |
|       |     | weakly veined with stringers of calcite        | <del>                                     </del> |              | <del> </del> |                | 1            | -            | <del> </del> |             |  |                       |
|       |     | ± quartz, and sparsely to unmineralized.       | <del> </del>                                     | <del> </del> | +            | <del> </del> - | <del> </del> | -            | <del> </del> |             |  |                       |

| PROPERTY | Quebec Sturgeon River Mines Ltd. Ashby Property Township | Taylor | Township |
|----------|----------------------------------------------------------|--------|----------|
| * *****  | Vacate                                                   |        |          |

| From        | To    | DESCRIPTION .                                   | From | То  | Width |   |   |     |   |   | Au<br>oz | Description of Sample |
|-------------|-------|-------------------------------------------------|------|-----|-------|---|---|-----|---|---|----------|-----------------------|
|             |       | At the base of the dyke, below 434, the         |      |     |       |   |   |     |   |   |          |                       |
|             |       | core is blocky and broken - the lower contact   |      |     |       |   |   |     |   |   |          |                       |
|             |       | being along a zone of lost core from 442-444.   |      |     |       |   |   |     |   |   |          |                       |
|             |       | Within this basal contact section, there is a   |      |     | 1-1.  |   |   |     |   |   |          |                       |
|             |       | narrow unit of dark grey to dark grey green     |      |     |       |   |   |     | · |   |          |                       |
|             |       | carbonate/carbonated mafic volcanic from 437.0- |      |     |       |   |   |     |   |   |          |                       |
|             |       | 438.0, followed by a zone of mud gouge from     |      |     |       |   |   |     |   |   |          | •                     |
| . • .       |       | 438.0-438.5.                                    |      |     |       |   |   |     |   |   |          |                       |
| <u></u>     | -     |                                                 |      |     |       |   |   |     |   |   |          |                       |
| 442         | . 463 | Porphyry Zone - a sequence of moderate to       |      |     |       |   |   |     |   |   |          |                       |
| <del></del> |       | well altered porphyry rocks similar to parts    |      |     |       |   |   |     |   |   |          | •                     |
|             | · -   | of the sequence '346-434' in DDH QS-82.         |      |     |       |   |   |     |   |   |          |                       |
| <u> </u>    |       | The porphyry is fine grained and varies         |      |     |       |   |   |     | • |   |          | ·                     |
|             |       | from grey to grey green, grey buff and putty    |      |     |       |   |   |     |   |   |          | ·                     |
|             |       | coloured. No discreet phenocrysts of either     |      |     |       | · |   |     |   |   |          |                       |
| _           |       | quartz or feldspar are noted through most of    |      |     |       |   |   |     |   |   |          |                       |
|             |       | the zone - a feature in part related to the     |      |     |       |   |   |     |   | · |          |                       |
|             |       | strong alteration and the blocky, broken core.  | 450  | 455 | 5     |   |   |     |   |   | .006     | Porphyry.             |
| <del></del> |       | The porphyry is well altered with car-          |      |     |       |   |   |     |   |   |          |                       |
| -           |       | bonate and chlorite. For the most part, the     |      |     |       |   |   |     |   |   |          |                       |
|             |       | rock appears to have been originally a fine     |      |     |       |   |   |     |   |   |          |                       |
|             |       | grained cherty porphyry which is now well       |      | 1   |       |   |   |     |   |   |          |                       |
|             |       | altered, and fractured with carbonate and       |      |     |       |   | · | , . |   |   |          |                       |
|             |       | chlorite. Most of the core is quite blocky and  | đ    |     |       |   |   |     |   |   |          |                       |
| · .         |       | broken with zones of lost core at 442-444,      |      |     |       |   |   |     |   |   |          |                       |
|             |       | 445-447, 450-451, and 461-463.                  |      |     |       |   |   |     |   |   |          |                       |

. PROPERTY Quebec Sturgeon River Mines Ltd. Ashby Property Township Taylor Township

| From        | To           | DESCRIPTION                                     | From | To | Width |   |   |   |   |   | Description of Sample |
|-------------|--------------|-------------------------------------------------|------|----|-------|---|---|---|---|---|-----------------------|
|             |              | The porphyry is weakly to moderately            |      |    |       |   |   |   |   |   |                       |
|             |              | veined with quartz ± ankerite, finely fractured |      |    |       |   |   |   |   |   |                       |
|             |              | with dark chlorite-carbonate, and sparsely      |      |    |       |   |   |   |   |   |                       |
|             |              | mineralized with fine grained pyrite.           |      |    |       |   |   |   |   |   |                       |
|             |              | Both contacts of the sequence are along         |      |    |       |   |   |   |   |   |                       |
|             |              | zones of lost core as 442-444 and 461-463 -     |      |    |       |   |   |   |   |   | <u> </u>              |
| <del></del> |              | the lower part of the zone visible in core from |      |    |       |   |   |   |   |   |                       |
| • .         |              | 459.5-461, being a more strongly carbonated,    |      |    |       |   |   |   |   |   |                       |
|             | -            | granular version of porphyry, with 'ghost'      |      |    |       | • |   |   |   |   |                       |
| ·           | -            | cherty patches.                                 |      |    |       |   | · |   |   |   |                       |
| <del></del> | <del> </del> |                                                 |      |    |       |   |   |   |   | , |                       |
| 463         | 559.6        | Carbonate Zone - a very mixed sequence of       |      |    |       |   |   |   |   |   |                       |
| -           |              | carbonated mafic to ultramafic and potential    |      |    |       |   |   |   | • |   | ·                     |
|             |              | intermediate volcanics with units of porphyry   |      |    |       |   |   |   |   |   | ·                     |
| <u> </u>    |              | and sections of lost core. The upper 2/3 of     |      |    |       |   |   |   |   |   |                       |
| _           |              | the zone are blocky and broken.                 |      |    |       |   |   |   |   |   |                       |
|             |              | The upper part of the sequence, from 463-       |      |    |       |   |   |   |   | • | ·                     |
|             |              | 489, consists of dark, carbonated mafic to      |      |    |       |   |   |   |   |   |                       |
| •           |              | ultramafic volcanics which grade progressively  |      |    |       |   |   |   |   |   |                       |
|             | 1            | lighter in colour with depth - i.e. the ultra-  |      |    |       |   |   | , |   |   |                       |
|             |              | mafic component decreases, particularly below   |      |    |       |   |   |   |   |   |                       |
| •           |              | 471'. This part of the sequence is layered/     |      |    |       |   |   |   |   |   |                       |
|             |              | laminated at 40-50° to the core axis from       |      |    |       |   |   |   |   |   |                       |
|             |              | carbonate-rich and chlorite-serpentine-rich     |      |    |       |   |   | - |   |   |                       |
| • _ ·       |              | sections. The core is well altered, moderate    |      |    |       |   |   | , |   |   |                       |
|             |              | to well veined and sparsely to unmineralized.   |      |    |       |   | · |   |   |   |                       |

• PROPERTY Quebec Sturgeon River Mines Ltd. Ashby Property Township Taylor Township

| From                                    | To | DESCRIPTION                                     | From | То | Width |   |  | , |         |   |   | Description of Sample |
|-----------------------------------------|----|-------------------------------------------------|------|----|-------|---|--|---|---------|---|---|-----------------------|
| 4                                       |    | From 483-489, the carbonate contains            |      |    |       |   |  |   |         |   |   |                       |
|                                         |    | accessory quartz-ankerite veining (app. 80%)    |      |    |       |   |  |   |         |   |   |                       |
| _                                       |    | previous to a zone of well veined porphyry at   |      |    |       |   |  |   |         |   |   |                       |
|                                         |    | 489. The contact with porphyry is along a       |      |    |       |   |  |   |         |   |   |                       |
|                                         |    | zone of lost core from 487-489(?) with minor    |      |    |       |   |  |   |         |   | ; |                       |
|                                         |    | lost core earlier in the sequence from 474-476. |      |    |       |   |  |   |         |   |   |                       |
|                                         |    | The porphyry section, from 489-497, is          |      |    |       |   |  |   |         |   |   |                       |
| • • • • • • • • • • • • • • • • • • • • |    | very well veined with 80-90% quartz and quartz- |      |    |       |   |  |   |         |   |   |                       |
|                                         | -  | ankerite stringers. The unit is a very fine     |      |    |       |   |  |   |         |   |   |                       |
|                                         |    | grained, bleached, altered cherty porphyry      |      |    |       |   |  |   |         | - |   |                       |
|                                         |    | which is most strongly altered around the       |      |    |       |   |  |   |         |   |   | 4                     |
|                                         | 1  | upper contact zone. The porphyry is grey to     |      |    |       |   |  |   |         | • |   |                       |
|                                         |    | pinkish grey and brownish grey in colour, is    |      |    |       |   |  |   |         |   |   | ·                     |
| _                                       |    | partly bleached adjacent to veining and is      |      |    |       |   |  |   |         |   |   | ·                     |
|                                         |    | lightly mineralized with fine grained pyrite.   |      |    |       |   |  |   | ·       |   |   |                       |
| -                                       |    | The lower contact is also along a zone of lost  |      |    |       |   |  |   |         |   |   |                       |
| •                                       |    | core from 495-497.                              |      |    |       | - |  |   |         | • |   | -                     |
|                                         |    | From 497-530.3, the rock is a very well         |      |    |       |   |  |   |         |   |   |                       |
|                                         |    | veined (40-50%) brownish grey to brownish       |      |    |       |   |  |   |         |   |   |                       |
|                                         |    | grey green and brownish ochre coloured,         |      |    |       |   |  | 1 |         |   |   |                       |
|                                         |    | sericitic carbonate, potential carbonated       |      |    |       |   |  |   |         |   |   |                       |
| •                                       |    | intermediate volcanic, with erratic lenses/     |      |    |       |   |  |   |         |   |   |                       |
|                                         |    | patches of dark carbonate/carbonated ultramafic | -    |    |       |   |  | - | <b></b> |   |   |                       |
|                                         |    | Within this zone, there is a narrow, dark       |      |    |       |   |  |   |         |   |   |                       |
|                                         |    | brownish grey, granular, more competent         |      |    |       |   |  | 1 |         |   |   |                       |
|                                         |    |                                                 |      |    |       |   |  |   |         |   |   |                       |

Taylor Township . PROPERTY Quebec Sturgeon River Mines Ltd. Ashby Property Township Description of Sample Width From To DESCRIPTION To From carbonate unit with accessory coarse cubes of pyrite to 5 mm in size, from 500.4-501.0 - a potential strongly altered porphyry?? Below 509.2, the carbonate/carbonated intermediate volcanic is strongly veined with an average of 80-90% quartz-ankerite stringers. There is also some lost core in this section from 518-523. At 530.3, broken contact (@ 50°) into dark, poorly laminated, carbonated mafic to ultramafic volcanics. The laminations vary from 30-500 to the core axis. The carbonate is dark green to dark grey green in colour, and is soft, moderately granulated, moderately veined and well altered with chlorite ± serpentine. The ultramafic component of this section increases slightly with depth. At 544.3, contact at 50° into a more competent basal contact sequence. At the outset, from 544.3-547, the rock is a very fine grained, finely granular, grey green to dark green carbonate - probable carbonated mafic volcanic. The rock is much more competent than previous, is harder, weakly fractured,

. PROPERTY Quebec Sturgeon River Mines Ltd. Ashby Property Township Taylor Township

| rom           | To                                               | DESCRIPTION                                     | From | To                                               | Width    |   |   |   |   | Description of Sample                 |
|---------------|--------------------------------------------------|-------------------------------------------------|------|--------------------------------------------------|----------|---|---|---|---|---------------------------------------|
|               |                                                  | unveined and unmineralized. Portions of this    |      |                                                  |          |   |   |   |   |                                       |
|               |                                                  | first part of the sequence appear more          |      |                                                  |          |   |   |   |   |                                       |
|               |                                                  | siliceous as if originally porphyry.            |      |                                                  |          |   |   |   |   |                                       |
|               |                                                  | Below 547, the carbonated mafic volcanic        |      |                                                  |          |   |   |   |   |                                       |
|               |                                                  | becomes very dark green in colour, is strongly  |      |                                                  |          |   |   |   |   |                                       |
| <u> </u>      |                                                  | chloritized, and contains coarse (to 5 mm)      |      |                                                  |          |   |   |   |   | · · · · · · · · · · · · · · · · · · · |
|               |                                                  | distinct rhombs of ankerite. The core remains   |      |                                                  |          | • |   |   |   |                                       |
| • ,           |                                                  | competent, is poorly veined and sparsely to     |      |                                                  |          |   |   |   |   |                                       |
| <del></del>   | <del> </del>                                     | unmineralized. The mafic volcanic appears to    |      |                                                  |          |   |   |   |   |                                       |
| <del></del> _ |                                                  | grade somewhat more siliceous below 556,        |      |                                                  |          |   |   |   |   |                                       |
|               |                                                  | approaching a basal unit of porphyry.           |      |                                                  |          |   |   |   |   | •                                     |
|               |                                                  | The lower contact of the carbonate              |      |                                                  |          |   |   |   |   |                                       |
|               | +                                                | sequence is along a fine grained porphyry dyke  |      |                                                  |          |   |   | • |   |                                       |
|               |                                                  | from 556.5-559.6 - upper contact irregular,     |      |                                                  | <u> </u> |   |   |   |   |                                       |
|               |                                                  | averaging 45°, lower contact broken @ 55°.      |      |                                                  | -        |   |   |   |   |                                       |
| <del></del>   |                                                  | The porphyry is grey to grey brown in colour,   |      |                                                  |          |   |   |   |   |                                       |
|               | 1                                                | very fine grained, siliceous and contains       |      |                                                  |          |   |   |   | · |                                       |
|               |                                                  | coarse rhombs of ankerite similar to the        |      |                                                  |          |   |   |   |   |                                       |
|               |                                                  | overlying mafic volcanic unit.                  |      |                                                  |          | - |   |   |   |                                       |
|               | <del>                                     </del> | The porphyry is weakly fractured with           |      |                                                  |          |   | 1 |   |   |                                       |
|               |                                                  | carbonate-healed fractures and is very sparsely | 1    | 1                                                |          |   |   |   |   |                                       |
| •             |                                                  | mineralized with pyrite.                        |      | 1                                                |          |   |   |   |   |                                       |
|               |                                                  | The lower contact of the porphyry is alon       | a    | <del>                                     </del> |          |   |   |   |   |                                       |
|               |                                                  | 10 cm of broken core - the adjacent ultramafic  |      |                                                  |          |   |   |   |   |                                       |
| <del></del>   |                                                  | contact being broken at 55°.                    |      |                                                  |          |   |   |   |   |                                       |
| <u> </u>      |                                                  |                                                 |      |                                                  |          |   |   |   |   |                                       |

| m !     | To            | DESCRIPTION ·                                 | From                                              | То                  | Width         | -               |                                                  |                |                                                  |                                                  |               | Description of Samp |
|---------|---------------|-----------------------------------------------|---------------------------------------------------|---------------------|---------------|-----------------|--------------------------------------------------|----------------|--------------------------------------------------|--------------------------------------------------|---------------|---------------------|
| 6 5     | 567           | Carbonated Ultramafic - a short sequence      |                                                   |                     |               |                 |                                                  |                |                                                  |                                                  |               |                     |
|         |               | of very dark green to dark brownish green and |                                                   |                     |               |                 |                                                  |                |                                                  |                                                  |               |                     |
|         |               | black carbonated pyroxenite and serpentinite  |                                                   | 1                   | 1             |                 |                                                  | 7              |                                                  |                                                  |               |                     |
|         |               | at the end of the hole. The drill hole was    |                                                   | 1                   | 1             |                 |                                                  |                |                                                  |                                                  | <del> </del>  |                     |
| $\perp$ |               | lost at 567' due to rods seizing from the     |                                                   |                     | 1             |                 | <del> </del>                                     |                |                                                  |                                                  | <del> </del>  |                     |
|         |               | overlying gouged zones.                       |                                                   | 1                   | 1             |                 | <del> </del>                                     |                |                                                  |                                                  |               |                     |
|         | <u>'</u>      | The ultramafics are fine grained, rather      |                                                   |                     | +             | •               |                                                  |                |                                                  | -                                                | <del>  </del> |                     |
|         | 1             | sugary textured, and strongly altered with    |                                                   | 1                   | +             |                 |                                                  |                | <del> </del>                                     |                                                  | -             |                     |
|         |               | chlorite, serpentine, carbonate and talc.     |                                                   | 1                   | +             |                 | <del> </del>                                     | <del> </del>   | <u> </u>                                         |                                                  |               |                     |
|         | 1             | Locally there are olive to bronze coloured    |                                                   | (                   | +             |                 | <del> </del>                                     |                | <del>                                     </del> |                                                  |               |                     |
|         | · · · · ·     | patches/blebs of pyroxene (bronzite?). The    |                                                   |                     | +             |                 | <del> </del>                                     | <del> </del>   |                                                  |                                                  | <del> </del>  |                     |
|         |               | ultramafics are nonmagnetic, very poorly      |                                                   | 1                   |               |                 | <del> </del>                                     | <del> </del>   |                                                  | -                                                | <del></del>   |                     |
|         |               | veined and sparsely to unmineralized. The     |                                                   | 1                   | 1             | (               | <del>                                     </del> | <del> </del>   | ·                                                | <del>                                     </del> | <del>  </del> |                     |
|         |               | upper part of the section from 559.6-561, is  |                                                   |                     | +             | ſ <u></u>       | <del>  </del>                                    |                |                                                  | <del> </del>                                     |               |                     |
|         |               | weakly schistose at 50-550 to the core axis.  | <del>                                      </del> |                     | -             |                 | <del></del>                                      | <del> </del>   |                                                  | <del></del>                                      |               |                     |
|         |               |                                               | 1                                                 |                     | -             | ·               |                                                  | <del></del>    |                                                  | <del></del> '                                    |               |                     |
|         |               |                                               | <del>  </del>                                     | '                   | +             | (               |                                                  |                |                                                  | <del> </del>                                     | <del></del>   | <del> </del>        |
|         | 567 <b>'</b>  | END OF HOLE (Hole Lost).                      | 1                                                 |                     | <del>  </del> |                 | <del>  </del>                                    | <del></del>    |                                                  | <del></del>                                      |               |                     |
|         | ,             |                                               |                                                   | , ———— <sup>*</sup> | <del>  </del> | ( <del></del> ' |                                                  |                |                                                  | <del></del> '                                    | <del>  </del> |                     |
|         | <del></del> - |                                               |                                                   | ·                   | <del>  </del> |                 | <del>                                     </del> |                |                                                  | <del> </del>                                     | <del>  </del> |                     |
|         | ,             |                                               | +                                                 | ·                   | <del>  </del> | <u></u>         |                                                  | +              |                                                  | <del></del>                                      |               |                     |
|         |               |                                               | +                                                 | (                   | +             | <b></b>         |                                                  | <del> </del>   | <del></del>                                      | <del></del>                                      |               |                     |
|         |               |                                               | +                                                 |                     | +             | -               | <del></del>                                      | <del> </del> ' | <del></del> '                                    | <del> </del>                                     |               |                     |
| 7       |               |                                               | +                                                 |                     | 1             |                 | <del> </del> '                                   | <del> </del> ' | <del></del>                                      | <del> </del>                                     |               |                     |
| _ 1     |               |                                               | +                                                 |                     |               | <del></del>     | <del> </del>                                     | <del></del>    | <del></del> '                                    | <del> </del>                                     | <del></del> ' |                     |

Location: XL 6+10W @ 6+00N - 10' West of DDH QS-79

Coro Sizo:

Azimuth:

Elevation:

Surface

PROPERTY: QUEBEC STURGEON RIVER MINES LTD. - Ashby Property

Grid North - 00 Township: Taylor Township

Location of Collar from # Post of

Dip: Collar @ -70°; @ 86'-70°;

PS 84

Commenced:

September 21, 1983

Finished:

September 24, 1983

(i)

Dominik Drilling Inc. Contractor:

| From     | То           | DESCRIPTION                                       | From  | То    | Width |          |   |   |            | Au<br>ozs   | Description of Sample   |
|----------|--------------|---------------------------------------------------|-------|-------|-------|----------|---|---|------------|-------------|-------------------------|
|          |              | SUMMARY LOG                                       |       |       |       |          |   |   | <br>       |             |                         |
| 0        | 86'          | Casing. (Casing pulled).                          |       |       |       |          |   |   | <br>       |             |                         |
| 86       | 168.3        | Sediments - arkose/greywacke and argillite        |       |       |       |          |   |   | <br>       | -           |                         |
|          |              | with: 103-127, 159-168.3 brecciated; and 127-129, |       |       |       |          |   |   | <br>       | ļ. <u>.</u> |                         |
|          |              | 130-131 ash fall tuff(?).                         |       |       |       |          |   |   | · .        |             |                         |
| 168.3    | 246.0        | 'Dioritic' Zone - granular carbonate rocks        | 170.5 | 175.5 | 5'    |          |   |   | ļ <u>-</u> | .014        | Diorite - 5% qtz tr.pv. |
|          |              | with relict feldspars, some coarse pyrite.        |       |       |       |          |   |   | <u> </u>   |             |                         |
|          |              | 168.3-170.4: schistose, carbonated ultramafic.    |       |       |       |          |   |   |            |             |                         |
| 246.0    | 319.8        | Carbonated Ultramafic - the upper part            |       |       |       |          |   |   |            |             |                         |
|          |              | (to 291) is sheared, schistose and brecciated.    |       |       | ,     |          |   |   |            |             |                         |
| 319.8    | 373.0        | Feldspar Porphyry - strongly altered and          | 360.7 | 365.7 | 5 '   |          |   |   |            | .012        | Fsp.Por altered xn.     |
|          |              | blotchy below 344'.                               |       |       |       |          |   |   |            |             |                         |
| 373.0    | 505.5        | Carbonated Ultramafic - strongly gouged           |       |       |       |          |   |   |            |             |                         |
| <u> </u> | -            | and granulated from 380.0-399.5.                  |       |       |       |          |   |   |            |             |                         |
|          |              | 428.7-436.0 - altered feldspar porphyry.          |       |       |       |          |   |   |            |             |                         |
| 505.5    | 527          | Carbonate Zone - carbonated mafic to              |       |       |       |          |   |   |            |             |                         |
|          |              | intermediate volcanics, with                      |       |       |       |          |   |   |            |             | -                       |
|          | +            | 505.5-512.5: cherty porphyry.                     |       |       |       |          | - |   |            |             |                         |
|          | <u> </u>     | 521-527: moderate to strongly altered porphyry.   |       |       |       | <b></b>  |   |   |            |             |                         |
|          |              | ,                                                 |       |       |       | <b> </b> |   | - |            |             |                         |
|          | 527          | ' END OF HOLE                                     |       |       |       |          |   |   |            |             |                         |
|          | 1 321        | BND OI NOBB                                       |       | 1     |       |          |   |   |            |             |                         |
|          | -            |                                                   |       |       |       |          |   |   |            |             |                         |
|          | <del> </del> |                                                   |       | 1     |       | 1        | 1 |   |            |             |                         |

Coro Sizo: BQ PROPERTY: QUEBEC STURGEON RIVER MINES LTD. - Ashby Property

Azimuth:

Grid North - 00

Township:

Taylor Township

Elevation: Surface

Location of Collar from # Post of

Dip: Collar @ -70°; @ 86'-70°; @ 290'-69.5°; @ 490'-69.5°

September 24, 1983 Finished:

Contractor:

Commenced:

Dominik Drilling Inc.

September 21, 1983

| From     | To    | DESCRIPTION                                    | From | To       | width |  |          |            |         |          |  | Description of Sample |
|----------|-------|------------------------------------------------|------|----------|-------|--|----------|------------|---------|----------|--|-----------------------|
| 0        | 86'   | Casing. (Casing pulled) -                      |      |          |       |  |          |            |         |          |  |                       |
|          |       | 0-60 sand and clay; 60-86 boulder layer,       |      |          |       |  |          |            |         |          |  |                       |
|          |       | making water.                                  |      |          |       |  |          |            |         |          |  |                       |
|          |       |                                                |      |          |       |  |          |            |         | <u> </u> |  |                       |
| 86       | 168.3 |                                                |      |          |       |  | <u> </u> |            | -       | <u> </u> |  |                       |
|          |       | arkose and argillite with erratic sections     |      |          |       |  |          |            | -       | ļ        |  |                       |
|          |       | of breccia and two potential units of          |      |          |       |  |          | ļ <u>-</u> | <b></b> |          |  |                       |
|          |       | volcanic ash.                                  |      |          |       |  |          |            | ļ       | ļ        |  |                       |
|          |       | For the most part, the sediments are           |      |          |       |  |          |            |         | ļ        |  |                       |
|          |       | defined by the presence of two units - a       |      |          |       |  |          |            |         |          |  |                       |
|          |       | grey to slightly brownish grey greywacke/      |      |          |       |  |          |            |         |          |  |                       |
|          |       | arkose, and a much darker grey to black, very  | 7    |          |       |  |          |            |         |          |  |                       |
|          |       | fine grained argillite. The greywacke/arkos    | 9    |          |       |  |          |            |         |          |  |                       |
| •        |       | sections are distinctive, with a finely        |      |          |       |  |          |            |         |          |  |                       |
|          |       | granular matrix containing grains of feldspar, |      |          |       |  |          |            |         |          |  |                       |
|          |       | quartz, sericite, muscovite and erratic        |      |          |       |  |          |            |         |          |  |                       |
|          |       | black specks/fragments of either graphite or   |      |          |       |  |          |            |         |          |  |                       |
| <u> </u> |       | argillite. Banding is fairly consistent        |      |          |       |  |          |            |         |          |  |                       |
| <u></u>  |       | throughout the sequence at 50-550 to the       |      |          |       |  |          |            |         |          |  |                       |
|          |       | core axis. Tops are ill-defined.               |      |          |       |  |          |            |         |          |  |                       |
|          |       | The sediments are moderate to poorly           |      | <u> </u> |       |  |          |            |         |          |  |                       |
|          |       | veined with only two areas containing wider    |      |          |       |  |          |            |         |          |  |                       |
|          |       | porcelainous quartz-ankerite stringers at      |      | <u> </u> |       |  |          |            |         |          |  |                       |
|          |       |                                                |      |          |       |  |          |            |         |          |  |                       |

Taylor Township PROPERTY Quebec Sturgeon River Mines Ltd.-Ashby Property Township Description of Sample To Width From DESCRIPTION To From 108-110, and 157-158. The core is sparsely mineralized with pyrite. The sediments are weakly altered except in the breccia horizons. The first breccia horizon extends from 103-127, and consists of fragments and lenses of stringer material in a matrix of arkose and argillite. From 107-113.5 the sediments are partly carbonated, resulting in the granular arkosic units becoming dull brownish yellow to olive in colour - this section also contains accessory quartz-ankerite veining. Below 113.5 the sediments are not as strongly brecciated as in the upper part of the section, although there is some lost core at 114-117, and 124-127. From 127-131, there are two very fine grained to amorphous units of possible volcanic ash, separated by a granular, moderately veined section of arkose from 129.0-130.0. The ash units are potentially dacitic - both are very fine grained, hard, earthy textured, grey to putty coloured, and are without features distinctive of the sedimentary sequence. Below the units of dacite/ash fall tuff(?) return to interlayered argillite and greywacke/

| rom            | To    | DESCRIPTION                                     | From | То   | Width |                 |      |          | Au<br>oz | Description of Sample  |
|----------------|-------|-------------------------------------------------|------|------|-------|-----------------|------|----------|----------|------------------------|
|                | i     | arkose previous to a basal breccia zone         |      |      |       |                 |      |          |          |                        |
|                |       | from 159-168.3.                                 |      |      |       | <br><del></del> | <br> |          |          |                        |
|                |       | The lower breccia unit, from 159-168.3,         |      |      |       |                 | <br> |          |          |                        |
|                |       | contains numerous fragments and lenses of       |      |      |       | <br>            |      |          |          |                        |
|                |       | quartz-ankerite stringer material in a more     |      |      |       |                 |      |          |          |                        |
| -              | 1     | highly altered yellow green to olive and ochre, |      |      |       |                 |      |          |          |                        |
|                |       | sometimes streaky, matrix. The matrix           |      |      |       |                 |      |          |          |                        |
|                |       | component is sufficiently altered with chlorite | ,    |      |       |                 |      |          |          |                        |
|                |       | sericite and carbonate to obscure any sedi-     |      |      |       |                 |      |          |          |                        |
|                |       | mentary features - the unit being nearly        |      |      |       | ٠               |      |          |          |                        |
|                |       | identical to the dacite tuff sections in        |      |      |       |                 |      |          |          |                        |
|                |       | DDH QS-80 (see unit 416-426.1, QS-80). The      |      |      |       |                 |      |          |          |                        |
|                |       | streaky sections, if equivalent to argillite    |      |      |       |                 | 1    |          |          |                        |
| •              |       | units, do not contain a carbonaceous/graphitic  |      |      |       |                 |      |          |          |                        |
|                |       | component - the darker minerals/dark streaks    |      |      |       |                 |      |          |          |                        |
|                |       | are a combination of carbonate, chlorite and    |      |      |       |                 |      |          |          |                        |
|                | 1     | serpentine alteration.                          |      |      |       |                 |      | <u> </u> |          |                        |
|                |       | The lower contact of the sequence is            |      |      |       |                 |      |          |          |                        |
|                |       | broken at 60° to the core axis.                 |      |      |       |                 |      |          |          |                        |
| <del></del>    |       |                                                 |      |      |       |                 |      |          |          |                        |
| 168.3          | 246.0 | 'Dioritic' Zone - a sequence of granular        |      |      |       |                 |      |          |          |                        |
| <del></del>    |       | carbonate rocks previously logged as diorite    |      |      |       |                 |      |          |          |                        |
|                |       | in DDH QS-79. The equivalent section in QS-79   |      |      |       |                 |      |          |          |                        |
| <del></del>    |       | extends from 167.8-186.3.                       |      | 175. | 5 5   |                 |      |          | .014     | Diorite - 5% qtz tr.py |
| <del>-</del> : | 1     | The sequence is initiated along a short zone of |      |      |       |                 |      |          |          |                        |
|                |       |                                                 |      |      |       |                 |      |          |          |                        |

Taylor Township PROPERTY Quebec Sturgeon River Mines Ltd.-Ashby Property Township Description of Sample Width To From DESCRIPTION From To carbonated ultramafic from 168.3-170.4, which is schistose at 500 to the core axis. The dioritic phenomena logged in QS-79 is most notable near the contact zones in this drill hole - circa 170-180 and 220-246. These contact zones are coarsely granular rocks with carbonate, serpentine and chlorite but appear to contain numerous, ill-defined relict feldspars t quartz within the carbonate patches The quartz and feldspar locally exhibit granophyric textures. The central zone of the dioritic sequence (i.e. app. 180-220), is a finely granular carbonate rock which varies from medium to dark grey green in colour, but is often bleached buff to ochre and pinkish tones adjacent to quartz-ankerite veining. The bleaching is a function of sericite, epidote, carbonate ± albite alteration and extends only a short distance into the adjacent wallrocks such that there is rare preferential alteration of the nearby rock-forming minerals. Overall, the core is well altered with carbonate and chlorite ± serpentine, epidote, sericite, and albite - serpentine being most

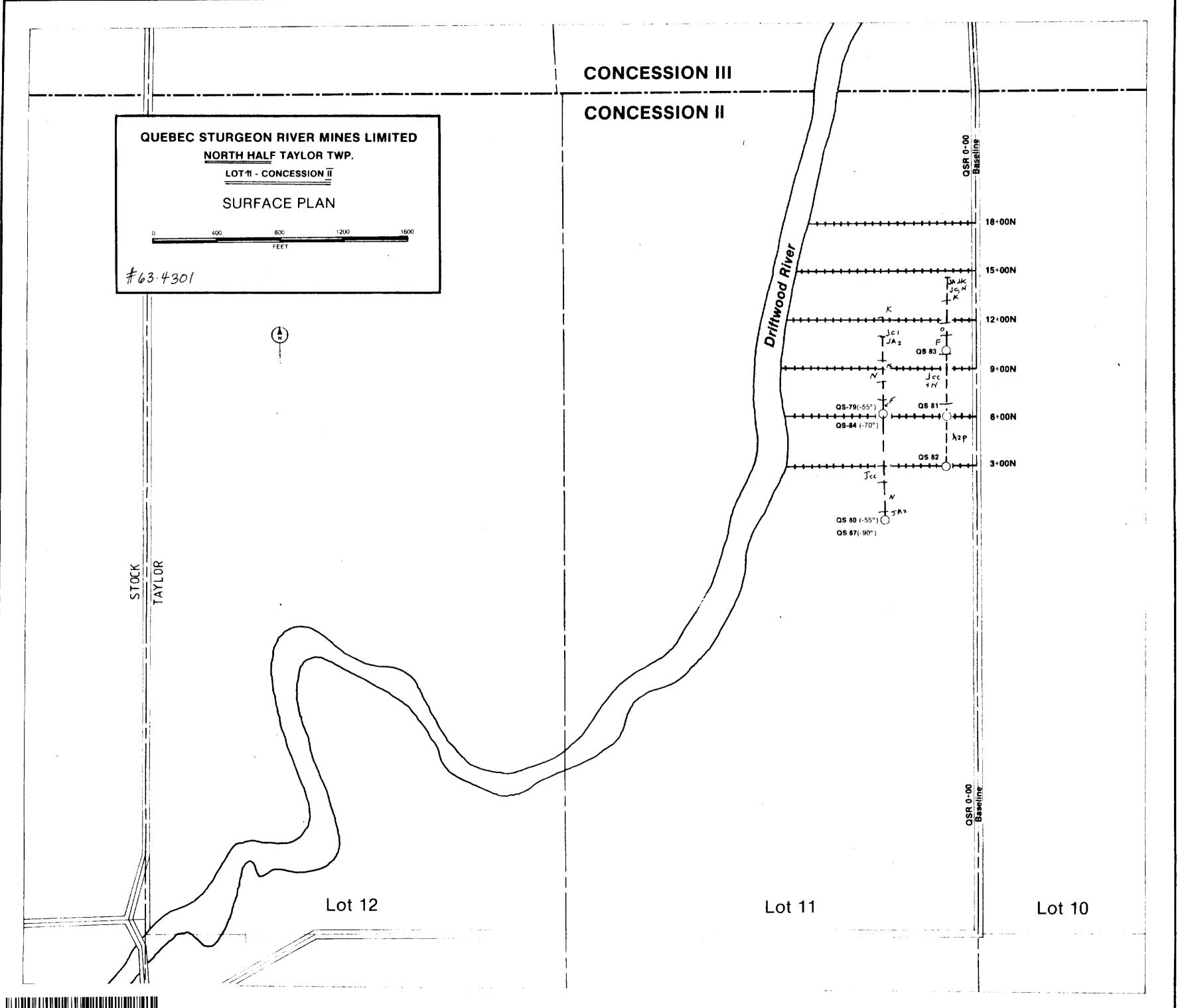
| From        | To | DESCRIPTION                                      | From | To | Width |   |   |   |  | Description of Sample |
|-------------|----|--------------------------------------------------|------|----|-------|---|---|---|--|-----------------------|
|             |    | common in the contact zones. The diorite also    |      |    |       |   |   |   |  |                       |
|             | ·  | contains trace amounts of fuchsite and local     |      |    |       |   |   |   |  |                       |
|             |    | fine grained biotite. The core is weakly         |      |    |       |   |   |   |  |                       |
|             |    | fractured with dark chlorite, carbonate,         |      |    |       |   | • | , |  |                       |
| <b>A</b>    |    | serpentine, and is moderately veined with        |      |    |       |   |   |   |  |                       |
|             |    | quartz-ankerite.                                 |      |    |       |   |   |   |  |                       |
|             |    | A most distinctive feature of the diorite        |      |    |       |   |   |   |  |                       |
|             |    | is the presence of coarse cubes of pyrite up     |      |    |       |   |   |   |  | •                     |
|             | -  | to 1 cm on edge. Although more scattered than    |      |    |       |   |   |   |  |                       |
| <del></del> | 1  | in DDH QS-79, the better coarse pyrite is found  |      |    |       |   |   |   |  |                       |
|             |    | in the central part of the sequence from app.    |      |    |       |   |   |   |  |                       |
|             |    | 180-225 - the coarsest cube being noted at 223'  |      |    |       |   |   |   |  |                       |
| <del></del> |    | There are also trace amounts of chalcopyrite     |      |    |       |   |   |   |  |                       |
|             |    | within the system.                               |      |    |       | · |   |   |  |                       |
|             |    | The dioritic rocks also contain scattered        |      |    |       |   |   |   |  |                       |
|             |    | subovoid to subrounded blebs of carbonate ±      |      |    |       |   |   |   |  |                       |
| •           |    | quartz up to 5 mm in size. The blebs are         |      |    |       |   |   |   |  |                       |
|             |    | commonly zoned with quartz marginal to car-      |      |    |       |   |   |   |  |                       |
|             |    | bonate centers. In most instances this phenomena |      |    |       |   |   |   |  |                       |
|             |    | appears to be a secondary metamorphic effect     |      |    |       |   |   |   |  |                       |
|             |    | rather than primary amygdaloidal or vesicular    |      |    | ·     |   |   |   |  |                       |
|             |    | structures.                                      |      |    |       |   |   |   |  |                       |
|             |    | The lower contact of the dioritic sequence       | 2    |    |       |   |   |   |  |                       |
|             |    | is along a 30 cm quartz-ankerite vein from 245-  | -    |    |       |   |   |   |  |                       |
| -           |    | 246.                                             |      |    |       |   |   |   |  |                       |
|             |    |                                                  |      |    |       |   |   |   |  |                       |

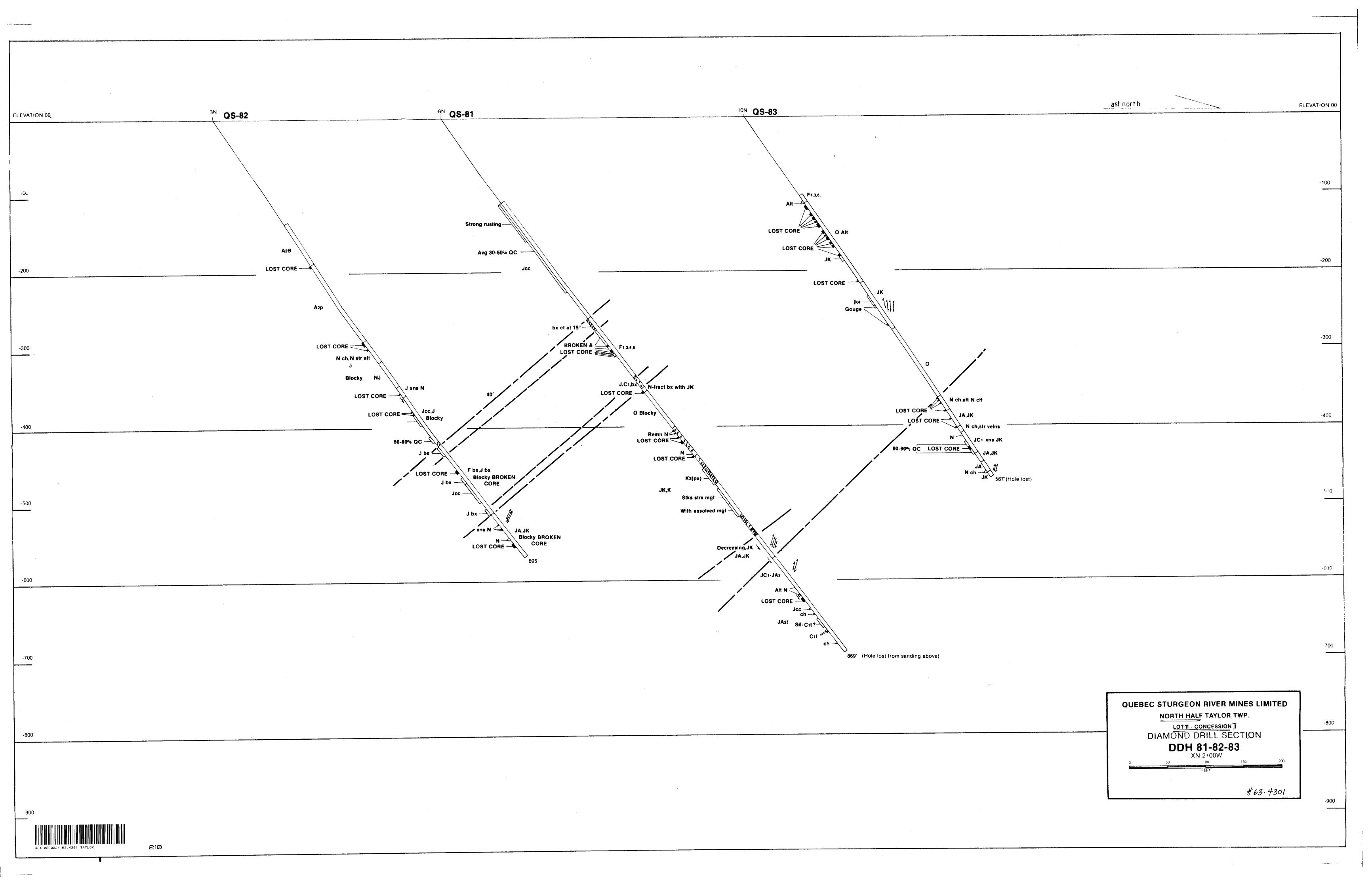
| rom         | To                                               | DESCRIPTION                                       | From | To | Width |   |   |      |   | Description of Sample |
|-------------|--------------------------------------------------|---------------------------------------------------|------|----|-------|---|---|------|---|-----------------------|
| 246         | 319.8                                            | Carbonated Ultramafic - a sequence of             |      |    |       |   |   | <br> |   |                       |
|             |                                                  | variably altered and schistose, dark blue grey    |      |    |       |   |   | <br> |   |                       |
|             |                                                  | to blue black carbonated ultramafic rocks.        |      |    |       |   |   |      |   |                       |
|             |                                                  | The upper part of the sequence, to                |      |    |       |   |   | <br> |   |                       |
|             |                                                  | approximately 291, consists of sheared, schistose |      |    |       |   |   | •    |   |                       |
|             |                                                  | and locally gouged carbonated serpentinite,       |      |    |       |   |   | <br> |   |                       |
|             |                                                  | crudely laminated ultramafic and brecciated       |      |    |       |   |   |      |   |                       |
|             |                                                  | ultramafic. The basal section, which extends      |      |    |       |   |   |      |   |                       |
|             | <del>                                     </del> | from 291-319.8, is a much more competent zone     |      |    |       |   |   |      |   |                       |
|             | -                                                | of ultramafic rocks characterized by a develop-   |      |    |       |   | · |      |   |                       |
|             |                                                  | ment of coarse carbonate rosettes.                |      |    |       |   |   |      | · |                       |
|             |                                                  | The upper portion contains two main zones         |      |    |       |   |   |      |   |                       |
|             | 1                                                | of gouge at 279-280 and 288.5-289 - there is      |      |    |       |   |   |      |   |                       |
| •           |                                                  | no lost core in this part of the sequence. The    |      |    |       |   |   |      |   |                       |
|             | <del> </del>                                     | schistosity varies from 0-500, with an average    |      |    |       |   | · |      |   | -                     |
|             | 1                                                | schistosity at 40-50° to the core axis.           |      |    |       |   |   |      |   |                       |
| •           |                                                  | The ultramafics are well altered, a               |      |    |       |   |   |      | • |                       |
|             | -                                                | feature illustrated by the crudely laminated      |      |    |       |   |   |      |   |                       |
|             |                                                  | rocks which are made up of carbonate-rich and     |      |    |       | 1 |   |      |   |                       |
|             | -                                                | chlorite-serpentine-rich lamallae. The            |      | 1  |       |   |   |      |   |                       |
|             |                                                  | brecciated ultramafic unit occurs at the base     |      |    |       |   |   |      |   |                       |
|             |                                                  | of the upper section, from 285-291, and consists  | 5    |    |       |   |   |      |   |                       |
|             |                                                  | of fragments and discontinuous lenses of stringer |      |    |       |   |   |      |   |                       |
| <del></del> |                                                  | material in a fine grained, black, carbonated     |      |    |       |   |   |      |   |                       |
| <del></del> |                                                  | ultramafic matrix.                                |      |    |       |   |   |      |   |                       |

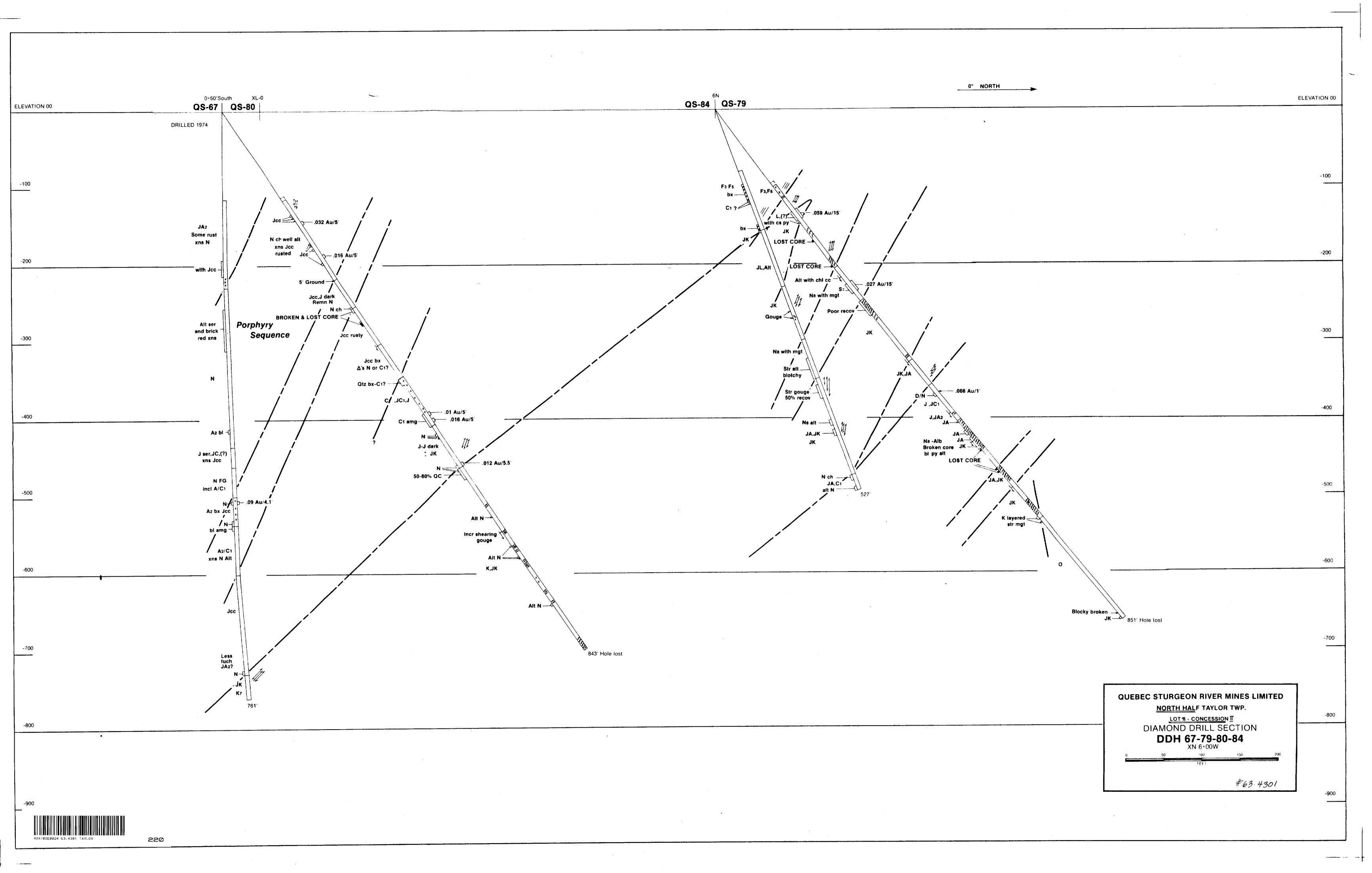
| , LOW      | To    | DESCRIPTION                                      | From | То          | Width |   |   |          |  | Description of Sample |
|------------|-------|--------------------------------------------------|------|-------------|-------|---|---|----------|--|-----------------------|
|            |       | Overall, the upper part of the sequence          |      |             |       |   |   |          |  |                       |
|            |       | is much more strongly magnetic, than the basal   |      |             |       |   |   | <u> </u> |  |                       |
|            |       | section with carbonate rosettes. The core is     |      |             |       |   |   |          |  |                       |
|            |       | moderately to well veined with stringers of      |      |             |       |   |   |          |  |                       |
|            |       | quartz-ankerite and is sparsely mineralized      |      |             |       |   |   |          |  |                       |
|            |       | with scattered cubes, nodules and fine grained   |      |             |       |   |   |          |  |                       |
|            |       | aggregates of pyrite.                            |      |             |       |   |   |          |  |                       |
|            |       | The lower contact of the ultramafic is           |      |             |       |   |   |          |  |                       |
| •          |       | very fine grained and strongly chloritized from  |      | 4           |       |   |   |          |  |                       |
|            |       | 319.2-319.8 - lower contact at 55°.              |      |             |       | · |   |          |  |                       |
|            |       |                                                  |      | <del></del> |       |   |   |          |  |                       |
| 319.8      | 373.0 | Feldspar Porphyry - a dyke of moderate to        |      |             |       |   |   |          |  |                       |
|            |       | well veined grey feldspar porphyry which         |      |             |       |   |   |          |  |                       |
|            |       | becomes blotchy, stained and more strongly       |      |             |       |   |   |          |  |                       |
|            |       | altered below 344'.                              |      |             |       |   |   |          |  |                       |
|            |       | The porphyry is essentially composed of          |      |             |       |   |   |          |  |                       |
| •          |       | feldspar and quartz with secondary(?) carbonate, |      |             |       |   |   |          |  |                       |
|            |       | chlorite, magnetite, serpentine, fuchsite and    |      |             |       |   |   |          |  |                       |
|            |       | hematite. The magnetite component occurs as a    |      |             |       |   |   |          |  |                       |
|            |       | fine dust and as coarse exsolved blebs through-  | -    |             |       |   | 1 |          |  |                       |
| <b>-</b> . |       | out the unit and appears to be the contributing  | 9    |             |       |   |   |          |  |                       |
|            |       | factor to reddish hematite stainings. The        |      |             |       |   |   |          |  |                       |
|            |       | dyke is moderate to well veined with quartz-     |      |             |       |   |   |          |  |                       |
|            |       | ankerite and is moderate to sparsely mineralized |      |             |       |   |   |          |  |                       |
| • •        |       | with coarse cubes, fine grained aggregates, an   | 7    |             |       |   |   |          |  | _                     |

| rom         | To | DESCRIPTION                                      | From | To | Width |      |   |   |      | Description of Sample |
|-------------|----|--------------------------------------------------|------|----|-------|------|---|---|------|-----------------------|
|             |    | developed carbonate rosettes. This portion is    |      |    |       |      |   |   |      |                       |
|             |    | moderate to strongly magnetic, and has a         |      |    | 1     | <br> |   |   | <br> |                       |
|             |    | crudely defined schistosity at 15-30° to the     |      | ·  |       | <br> |   |   |      |                       |
|             |    | core axis. The magnetic susceptibility of the    |      |    |       | <br> |   |   |      |                       |
|             |    | ultramafic decreases across the zone.            |      |    |       |      |   |   |      |                       |
| <u></u>     |    | From 380.0-399.5, the ultramafic rocks are       |      |    |       |      |   |   |      |                       |
|             |    | strongly gouged and granulated with sections     |      |    |       |      |   |   |      |                       |
|             |    | of gouge at 380-381, 397-399.5 and lost core at  |      |    |       |      |   |   |      |                       |
|             |    | 381-387, 392-394 and 395-397. There is only      |      |    |       |      |   |   |      |                       |
| •           |    | minor gouge and granulation in the lower part    |      |    |       |      |   |   |      |                       |
|             |    | of the ultramafic sequence.                      |      |    |       |      |   |   |      |                       |
|             | 1  | Below the zone of gouge the rock is a            |      |    |       | •    | , |   |      |                       |
|             |    | brecciated, carbonated ultramafic with fragments | 3    |    |       |      |   | , |      |                       |
|             |    | and lenses of stringer material. Within the      |      |    |       |      |   |   |      |                       |
| <u> </u>    | 1  | brecciated ultramafic there is a narrow unit     |      |    |       |      |   |   |      |                       |
|             |    | carrying approximately 15% disseminated coarse   |      |    |       |      |   |   |      |                       |
| •           |    | pyrite in cubes up to 5 mm on edge, from 412-    |      |    |       |      |   |   |      |                       |
| <del></del> |    | 413.                                             |      |    |       |      |   |   |      |                       |
|             |    | Around 418, the brecciated ultramafic            |      |    |       |      |   |   |      |                       |
|             |    | grades weakly schistose, and contains fairly     |      |    |       |      | · |   |      |                       |
|             |    | well developed carbonate rosettes previous to    |      |    |       |      |   |   |      |                       |
|             |    | a dark, altered dyke of feldspar porphyry        |      |    |       |      |   |   |      |                       |
|             |    | from 428.7-436.0.                                |      |    |       |      |   |   |      |                       |
|             |    | The feldspar porphyry is a fine grained,         |      |    |       |      |   |   |      |                       |
| •           |    | granular, baked and altered unit. The rock       |      |    |       |      |   |   |      |                       |

PROPERTY Quebec Sturgeon River Mines Ltd.-Ashby Property Township Taylor Township Description of Sample Width From To DESCRIPTION From TO varies from dark grey brown to dark pinkish grey brown, and is essentially composed of albite and quartz with carbonate and chlorite alteration. The dyke is locally bleached pale grey buff in colour adjacent to veining, and is weakly to moderately mineralized with fine cubes of pyrite up to 2 mm in size. From 431.5-432.3, there is an inclusion/ remnant of carbonated ultramafic in the feldspar porphyry - contacts are irregular. The contacts of the feldspar porphyry dyke are broken - the upper contact with veining, lower contact at 750. Dark carbonated ultramafic rocks are encountered below the porphyry unit which, as previous, are brecciated and contain fragments and lenses of stringer material. The rocks are also variably schistose at 30-500 to the core axis (30° predominates). A section, 442-451, is somewhat lighter grey to grey olive in colour, and approaches a carbonated mafic volcanic composition - there is a high ultramafic component in the section, however, and the rocks grade to dark blue grey and blue black at either margin.


PROPERTY Quebec Sturgeon River Mines Ltd. + Ashby Property Township


Taylor Township


| rom   | To   | DESCRIPTION                                     | From | То | Width |          |   |   |              |   | Description of Sampl |
|-------|------|-------------------------------------------------|------|----|-------|----------|---|---|--------------|---|----------------------|
|       |      | There are two wider quartz-ankerite veins       |      |    |       |          |   |   |              |   |                      |
|       |      | in the system at 459-460.3 and 485-487, at      |      |    |       | <br>     | 2 |   |              |   |                      |
|       |      | shallow angles to the core axis plus a third    |      |    |       | <br>     |   |   |              |   |                      |
|       |      | quartz-ankerite vein along the lower contact    |      |    |       | <br>     |   |   |              |   |                      |
|       |      | from 504-505.5.                                 |      |    |       | <br>     |   |   |              |   |                      |
|       |      |                                                 |      |    |       |          |   |   |              |   |                      |
| 505.5 | 527  | Carbonate Zone - contact along a unit of        |      |    |       |          |   |   |              |   |                      |
| ,03.5 | 0.01 | porphyry into more leucocratic carbonate rocks- |      |    |       |          |   | • |              |   |                      |
|       |      | potential carbonated mafic to intermediate      |      |    |       | <br>     |   |   | ļ            |   |                      |
| ·     | -    | volcanics.                                      |      |    |       | <br>·    |   |   |              |   |                      |
|       |      | The contact porphyry unit from 505.5-512.5      |      |    |       |          |   |   |              |   |                      |
|       |      | is very fine grained and cherty. The rock       |      |    |       |          |   | _ | <del> </del> |   |                      |
|       | -    | varies from off white to pale grey buff and     |      |    |       | ·        |   |   |              | _ |                      |
|       |      | pinkish buff in colour and contains scattered   |      |    |       |          |   |   |              |   |                      |
|       |      | 'ghost' phenocrysts of albite. The dyke is      |      |    |       |          |   |   |              |   |                      |
|       |      | moderately veined with quartz-ankerite, is      |      |    |       | <u> </u> |   |   |              |   |                      |
|       | 1    | rather well fractured with dark chlorite-       |      |    |       |          |   |   |              |   |                      |
|       |      | carbonate, and is moderately mineralized with   |      |    |       |          |   |   |              |   |                      |
|       | -    | fine disseminated pyrite. The upper contact of  | E    |    |       |          |   |   |              |   |                      |
|       | -    | the porphyry is with veining, the lower contact | _1   |    |       |          |   | · | _            | _ |                      |
|       | 1    | is at 75°.                                      |      |    |       |          |   |   |              |   |                      |
|       |      | The underlying carbonate rocks from 512.5       | -    |    |       | _        |   |   |              |   |                      |
|       |      | 521 vary from medium grey green to dark green   |      |    |       | <br>     |   |   | _            |   |                      |
|       |      | and grey olive in colour. The first part of     |      |    |       |          |   |   |              |   |                      |
| • •   |      | the section, to 516, is blocky, with one 3 cm   |      |    |       |          |   |   |              |   |                      |
|       |      |                                                 |      |    |       |          |   | l |              |   |                      |

12.

| Erom        | To   | DESCRIPTION                                    | From | То | Width |             |  |  | Description of Sample |
|-------------|------|------------------------------------------------|------|----|-------|-------------|--|--|-----------------------|
|             |      | remnant of cherty porphyry at 514.5. The       |      |    |       |             |  |  |                       |
|             |      | rocks are weakly schistose at 40-50° to the    |      |    |       |             |  |  |                       |
|             |      | core axis; moderately altered with chlorite,   |      | _  |       | <br>        |  |  |                       |
|             |      | carbonate t traces of fuchsite; moderately to  |      |    |       |             |  |  |                       |
|             |      | well veined with quartz-ankerite; and sparsely |      |    |       |             |  |  |                       |
|             |      | mineralized with pyrite.                       |      |    |       |             |  |  |                       |
|             |      | At the end of the hole, from 521-527, the      |      |    |       |             |  |  |                       |
|             |      | rock appears to be a more strongly altered     |      |    |       |             |  |  |                       |
|             |      | porphyry. The porphyry is fine grained,        |      |    |       |             |  |  |                       |
|             |      | granular, cherty, moderately ankeritic,        |      |    |       |             |  |  |                       |
|             |      | moderately chloritic and contains local relict |      |    |       |             |  |  |                       |
|             |      | feldspars. The core is moderately veined with  |      |    |       |             |  |  |                       |
|             |      | quartz-ankerite, and is sparsely to moderately |      |    |       |             |  |  |                       |
| •           |      | mineralized with pyrite plus a few splashes of |      |    |       |             |  |  | •                     |
|             |      | chalcopyrite (at 526.5). The porphyry contains | +    |    |       |             |  |  |                       |
|             |      | scattered tiny blebs and is weakly fractured   |      |    |       | <del></del> |  |  |                       |
|             |      | with chlorite.                                 |      |    |       |             |  |  |                       |
| <del></del> |      |                                                |      |    |       |             |  |  |                       |
|             |      |                                                |      |    |       |             |  |  |                       |
|             | 527' | END OF HOLE                                    |      |    |       |             |  |  |                       |
|             |      |                                                |      | 1  | •     |             |  |  |                       |
|             | 1    | <u></u>                                        | 1    |    | 1     |             |  |  |                       |
|             |      |                                                | 1    | 1  |       |             |  |  |                       |
|             |      |                                                |      |    |       |             |  |  |                       |
|             |      |                                                |      |    |       |             |  |  |                       |
|             |      |                                                |      |    |       |             |  |  |                       |





