

42A10SE8887 63.4226 BOND

010

REPORT ON THE ONTARIO PAPER COMPANY FREEHOLD PARCELS STOCK-MCCANN BLOCK LARDER LAKE MINING DIVISION DISTRICT OF COCHRANE, ONTARIO FOR STEBOB RESOURCES LIMITED

DERRY, MICHENER, BOOTH & WAHL

12l

D. G. Wahl, P.Eng. Consulting Engineer

Toronto, Canada April 13, 1983

This report may not be reproduced, in whole or in part, without the written consent of Derry, Michener, Booth & Wahl.

<u>T/</u>

010C

Page

SUMMARY	
INTRODUCTION	1
PROPERTY AND LOCATION	1
REGIONAL GEOLOGY	4
PREVIOUS WORK	4
Major Discoveries	5
DISCUSSION	6
CONCLUSIONS	9
RECOMMENDATIONS	10

LIST OF FIGURES

Figure 1 - Property Location Map - Stock-McCann Block 2

LIST OF MAPS

Map 6h - Geology of Stock-McCann Block

In pocket

j

SUMMARY

The Stock-McCann Block comprises 29 patented lots totalling approximately 4,400 acres in Stock, Taylor, Carr, Bond, Currie, Bowman, Sheraton, Egan and McCann Townships approximately 30 miles east of Timmins, Ontario.

The majority of these freehold parcels, 24 out of a total of 29, are located in Bond, Sheraton and Egan Townships; all of which are located on the limbs of the Sheraton-Egan-McCann syncline which consists of a complex sequence of mafic to intermediate to felsic metavolcanic and metasedimentary rocks. Several of the blocks, N-12, 13, 20, 40 and 41 lie astride the Destor-Porcupine Fault which is the major locus of gold mineralization throughout the region and therefore these blocks are very prospective. Freehold parcels N-21, 22, 38 and 39 situated in the northwest corner of Bond Township lie along strike approximately 3¹/₂ miles east of the ASARCO Aquarius deposit. Diamond drilling carried out 3,000 ft. northeast of N-39 intersected heavily carbonatized metavolcanics containing numerous quartz-carbonate veins suggesting that similar structures may be present on the patented lands.

Patented parcels N-15, 16, 44, 45, 46, 47 and 48 are located within and peripheral to the Bradley Lake syenite and have potential for porphyry-type gold mineralization.

The majority of the freehold parcels located in the Stock-McCann Block are situated within highly favourable lithological as well structural environments. The patented nature of these parcels and the absence of any previous option agreements presents a unique opportunity to carry out exploration on previously unexplored properties within the Timmins gold camp. B. & C. LTD.

INTRODUCTION

The following report was prepared by Derry, Michener, Booth and Wahl at the request of Mr. F. W. Christensen, President, Stebob Resources Limited and is based on our examination and evaluation of all available data pertaining to 29 freehold properties, totalling 4,400 acres owned by the Ontario Paper Company in Pic Township, Ontario.

- 1 -

PROPERTY AND LOCATION

The Stock-McCann Block, consisting of Stock, Taylor, Carr, Bond, Currie, Bowman, Sheraton, Egan and McCann Townships, is situated in the Larder Lake Mining Division, District of Cochrane; approximately 30 miles east of Timmins, Ontario.

The properties of the Stock-McCann Block are outlined on Figure 1 and consist of the following 29 patented lots comprising approximately 4,400 acres: -

N-26	Stock Township	NY LOT 10, Con. IV, SMR+

- N-6 Carr Township N¹/₂ Lot 11, Con. I, SMR
- N-7 Carr Township NW¹ S¹/₂ Lot 10, Con. II, SMR
- N-9 Carr Township SEt St Lot 10, Con. II, SMR
- N-17 Bond Township N¹/₂ Lot 2, Con. I, SMR
- N-18 Bond Township $S\frac{1}{2}$ Lot 2, Con. II, SMR
- N-19 Bond Township S¹/₂ Lot 3, Con. II, SMR
- N-20 Bond Township $N\frac{1}{2}$ Lot 2, Con. III, SMR

		- 3 -
N-21	Bond Township	S ¹ / ₂ Lot 10, Con. IV, SMR
N-22	Bond Township	S ¹ / ₂ Lot 11, Con. IV, SMR
N-23	Bond Township	S ¹ / ₂ Lot 3, Con. IV, SMR
N-38	Bond Township	$N\frac{1}{2}$ Lot 11, Con. V, SMR
N-39	Bond Township	S ¹ / ₂ Lot 11, Con. VI, SMR
N-10	Currie Township	S ¹ / ₂ Lot 11, Con. IV, SMR
N-11	Sheraton Township	$N\frac{1}{2}$ Lot 5, Con. I, SMR
N-12	Sheraton Township	S ¹ / ₂ Lot 5, Con. VI, SMR
N-13	Sheraton Township	N ¹ / ₂ Lot 11, Con. V, SMR
N-40	Sheraton Township	$N\frac{1}{2}$ Lot 4, Con. I, MRO**
N-41	Sheraton Township	S ¹ / ₂ Lot 4, Con. II, MRO
N-42	Sheraton Township	$S^{\frac{1}{2}}$ Lot 3, Con. VI, MRO
N-14	Egan Township	S ¹ / ₂ Lot 10, Con. II, SMR
N-15	Egan Township	$N\frac{1}{2}$ Lot 7, Con. III, SMR
N-16	Egan Township	S ¹ / ₂ Lot 10, Con. VI, SMR
N-43	Egan Township	N ¹ / ₂ Lot 11, Con. I, MRO
N-44	Egan Township	S ¹ / ₂ Lot 1, Con. III, MRO
N-45	Egan Township	N ¹ / ₂ Lot 6, Con. III, MRO
N-46	Egan Township	$S_{\frac{1}{2}}^{\frac{1}{2}}$ Lot 6, Con. IV, MRO
N-47	Egan Township	S ¹ / ₂ Lot 6, Con. VI, MRO
N-48	Egan Township	S ¹ / ₂ Lot 11, Con. VI, MRO
	*SMR - Surf	ace and Mineral Rights
	**MRO -	Mineral Rights Only

REGIONAL GEOLOGY

The geology of the area consists of easterly to north-easterly trending mafic to felsic Archean metavolcanics with subordinate associated metasediments which locally define synclinal or anticlinal structures (Ref. Map 6h). Mafic metavolcanics dominate the southern portion of the volcanic domain whereas felsic metavolcanics are more abundant throughout the central and northeastern portions. The Destor-Porcupine Fault, the locus of gold mineralization throughout the region, passes in an easterly trend through the northern portion of the area (Stock, Taylor and Carr Townships) defining a sharp break between metasediments to the north and the predominantly metavolcanic terrain to the south. The Pipestone Fault passes northeasterly across the northeastern portion of Stock Township defining the northern boundary of the metasedimentary band which is of regional significance.

- 4 -

Two syenitic bodies intrude the metavolcanics in the southeastern portion of the area, and three generations of diabase dykes crosscut all other lithologies.

Pleistocene clay cover is extensive throughout the central portion of the area, obscuring all exposures.

PREVIOUS WORK

Previous work in the area consisted of airborne and ground geophysical surveys as well as diamond drilling.

Magnetic surveys have succeeded in delineating the diabase dykes mapped to date and suggest that similar dykes are far more abundant than those delineated to date from surface exposures.

- 5 -

Electromagnetic surveys have delineated a number of conductors (many of which with easterly trends) believed to reflect abrupt lithologic contrasts or graphitic horizons within the metavolcanic-metasedimentary composites.

Diamond drill programmes have further defined numerous ground geophysical anomalies; intersecting graphitic beds and sulphides consisting of pyrite, pyrrhotite, chalcopyrite, sphalerite and galena. It is also evident from the drilling that porphyry dykes are common throughout the metavolcanic-sedimentary domain.

Major Discoveries

There have been no major discoveries in the Stock-McCann Block; however, the recent (Sept. 1980) ASARCO Aquarius discovery, located in the northeast corner (Lot 6, Con VI) of Macklem Township approximately $3\frac{1}{2}$ miles west of N-37 and N-38, has added significantly to the exploration potential of the Stock-McCann Block and in particular the Bond Township properties. Macklem Township, like all of the townships in the project area, is extensively covered with glacial till and varved clays which can be over 200 feet thick. This overburden presents a unique exploration challenge.

The Aquarius deposit was discovered as a result of an extensive basal till sampling programme followed-up by diamond drilling. The deposit has been outlined along strike for 900 feet by 23 diamond drill holes. The gold mineralization is erratic and consists of visible gold in the matrix of an easterly trending quartzcarbonate breccia zone lying within an easterly trending carbonatized mafic metavolcanic rock. Intersections are reported to range from 10 feet up to 55 feet of core length and average 0.10 oz. gold per ton up to a high of 0.40 oz. gold per ton (N.M. Sept. 1980). Subsequent shaft sinking and underground exploration has confirmed that the gold is erratically distributed throughout the deposit and that all future work will be directed towards outlining additional reserves. No work is presently being undertaken on the property.

- 6 -

In addition to the Aquarius deposit numerous gold and base metal occurrences have been discovered in the project area with specific reference to Bond, Currie, Sheraton and Egan Townships.

DISCUSSION

The majority of the freehold parcels, twenty-four out of a total of twentynine, are located in Bond, Sheraton and Egan Townships; all of which are located on the limbs of the Sheraton-Egan-McCann syncline which consists of a complex sequence of mafic to intermediate to felsic metavolcanic and metasedimentary volcanic rocks. This regional structural feature trends easterly across Sheraton Township into Egan and McCann Townships where it has been disrupted by the Bradley Lake and Wildgoose Lake syenites.

Parcel N-26 located in Stock Township is favourably situated between the Pipestone and the Destor-Porcupine faults and is underlain by metagreywacke and related argillitic rocks. The area is extensively covered with glacial till and varved clay. Freehold parcels N-6, 7 and 9 are located in the southwest corner of Carr Township, in an area extensively covered by varved clays. The properties are geologically interpreted to be underlain by easterly trending intermediate to felsic metavolcanics.

-7-

Freehold parcels N-38 and N-39, situated in the northwest corner of Bond Township, are located approximately $3\frac{1}{2}$ miles east of Asarco's Aquarius deposit. Diamond drilling carried out 3,000 feet northeast of N-39 intersected intensely carbonatized metavolcanics containing numerous quartz-carbonate (calcite-ankerite) veins.

Parcels N-10, N-20, 21, 22 and 23, are situated in the central portion of Bond and Currie Townships, located immediately south and east of N-38 and N-39. The properties lie in an area of extensive clay cover and are believed to be underlain by easterly trending mafic and intermediate to felsic metavolcanics. A major northnorthwesterly trending fault zone has been geophysically inferred along the eastern edge of N-20.

In the southern part of Bond Township and the north half of Sheraton Township freehold parcels N-12, 13, 42 and 17 through 19 are underlain by mafic to intermediate metavolcanics and metasediments; all of which have been disrupted by several major north-northwesterly trending fault zones. Numerous parallel diabase and porphyry dykes have been geophysically inferred in the area.

Parcels N-17 through N-19 tie onto the old Seaway Copper property which lies astride the Bond-Sheraton Township boundary. The main area of interest on the Seaway property centres around several east-northeasterly anomalous conductive

zones on the south half of Lot 5, Concession I of Bond Township. Subsequently drilling intersected a graphitic tuff-slate bed containing low grade base metal sulphides. Intersections of up to 42 feet averaging 3.02% zinc and 0.26% lead were recorded with the OGS Assessment Work Library. A major fault zone trending north-northwesterly across the anomalous conductive zone has also been inferred. These and other conductors strike onto the adjoining parcels N-17 through N-19.

- 8 -

Parcels N-12 and N-42 located in the north half of Sheraton Township tie onto the southern boundary of the old Seaway Copper property and also lie adjacent to the J. P. Roy gold occurrence located on the south half of Lot 4, Concession VI. The J. P. Roy occurrence lies within a mafic metavolcanic fragmental which has been cut by northerly trending porphyry and diabase dykes. The gold occurs as free gold in quartz stringers associated with the porphyry dykes and adjacent wall rocks. A selected grab sample taken by the O.G.S. averaged 0.32 oz. gold per ton. Similar porphyry dykes could exist on adjoining parcels N-17 and N-42. A major north-northwesterly trending fault zone is also mapped on N-12. This fault zone could have acted as a channel way for mineralizing solutions.

In the southern part of Sheraton and Egan Township freehold parcels N-11, 40 and 41 are underlain by easterly trending mafic tuff and pillowed metavolcanic rocks. A major fault zone trends north-northwest across parcels N-40 and 41 and offsetts an easterly trending geophysically inferred quartz diabase dyke. Minor pyrite and pyrrhotite is reported (OGS Assessment Work Library) 3,000 feet east of the property along the contact between the dyke and the metavolcanics.

Parcels N-14 and N-43 are located in the southwest corner of Egan Township and are underlain by a sequence mafic metavolcanics, metagreywacke and related

argillitic rocks. Geophysical data infers several diabase dykes trend northerly across parcel N-43.

Freehold parcels N-15, 16, 44, 45, 46, 47 and 48 are located in Egan Township and are underlain by the Bradley Lake Syenite. Numerous diabase dykes trend northerly across the properties. Two major north-westerly fault zones have also been mapped. These fault zones offsett significant portions of the intrusive.

CONCLUSIONS

B. & C. LTD

The majority of the freehold parcels located in the Stock-McCann Block are situated within favourable lithologic as well as structural environments.

The Destor-Porcupine fault, the locus of gold mineralization throughout the region, and the related cross faults have acted as channelways for mineralizing solutions. Several of the freehold parcels N-12, 13, 20, 40 and 41 lie astride these major cross faults and therefore exhibit good exploration potential not only for gold but also for base metals as indicated on the Seaway Copper property discussed earlier.

Freehold parcels N-21, 22, 38 and 39 situated in the northwest corner of Bond Township exhibit good exploration potential because of their structural relationship to the Aquarius and other gold deposits mapped in the northeast corner of Macklem Township. The intersection of heavily carbonatized metavolcanics containing quartz-ankerite veins on strike and 3,000 feet northeast of N-39 increases the exploration potential of parcels N-38 and N-39.

The Sheraton-Egan-McCann syncline is an anomalous metalliferous structural feature exhibiting numerous base and precious metal occurrences. These occurrences are hosted by a complex sequence of metavolcanic and metasedimentary rocks. All of the freehold parcels in Bond, Currie, Sheraton and Egan Townships lie on the flanks of this syncline.

The relative structural position of the Bradley Lake Syenite is also significant as a possible host rock for "porphyry-type" sulphide mineralization. The numerous cross faults cutting both the metavolcanics and the intrusive body could provide the necessary plumbing systems for the mineralizing solutions. Freehold parcels N-15, 16, 44, 45, 46, 47 and 48 located within and peripheral to the syenite would be possible "porphyry-type" exploration targets.

RECOMMENDATIONS

Based on the forementioned conclusions it is recommended that the following three-year exploration program be carried out over the Stock-McCann properties:

FIRST YEAR

During the first year, nearly all of the freehold properties will be evaluated on a reconnaissance basis. This will be accomplished by one three-man field crew, responsible for initiating magnetometer and electromagnetic surveys on a 400-foot controlled grid traverse. Geological mapping and geochemical sampling will be carried out at the same time. B. & C. LTD.

SECOND YEAR

During the early part of the second field season, the remaining properties will be investigated on a reconnaissance basis, allowing the majority of the field season for detailed investigation of the more promising properties. This will include line cutting, magnetometer and deep penetration electromagnetic surveys, geological mapping and diamond drilling.

THIRD YEAR

During the third field season the detailed investigations will be completed.

The first year's exploration program will be carried out by Derry, Michener, Booth & Wahl according to the following cost estimate:

- 12 -

COST ESTIMATE

STEBOB - O.P.C. JOINT VENTURE

PROJECT VARIABLES:

(a) DURATION

Pre-Engineering 2		weeks
Field Examination 1	4	weeks
Data Compilation & Report	4	weeks

(b) FIELD CREW (2)

Geologist-Party Chief Senior Technician Junior Technician

(c) FIELD CREW BILLING RATE

Geologist-Party Chief	\$200/day
Senior Technician	\$130/day
Junior Technician	\$100/day
	TOTAL; <u>\$430/crew-day</u>

B. & C. LTD.

COST SUMMARY

- 13 -

TO FEES

(i)	Pre-Engineering & Logistics	\$ 3,800	
(ii)	Field Crews	45,150	
(iii)	Supervision	3,150	
(iv)	Data Compilation & Report	7,500	
(v)	Accounting & Secretarial	1,600	61,200

TO EXPENSES

(i)	Air Photographs, maps & Publications	\$ 1,250	
(ii)	Travel (truck rentals)	4,250	
(iii)	Consumables (field)	5,355	
(iv)	Consumables (town)	1,345	
(v)	Lodging (town)	2,250	
(vi)	Camp Costs	5,000	
(vii)	Instrument Rentals	5,418	
(viii)	Air Charter	2,500	
(ix)	Boats & Motors	2,625	
(x)	Analysis	1,250	
(xi)	Air Travel	1,750	
(xii)	Printing & Reproduction	807	
(xiii)	Contingency	5,000	38,800
		TOTAL:	\$100,000

DETAILED COST ESTIMATE

- 14 -

TO FEES

(i)	Pre-Engineering & Logistics		\$ 3,800
(ii)	Field Crews (3½ months) 1-3 man field crew @ \$45,150/crew		45,150
(iii)	Supervision (3½ months) 2 days/month @ \$450/day		3,150
(iv)	Data Compilation & Report		7,500
(v)	Accounting & Secretarial		
	-Secretarial 10 days @ \$100/day	\$1,000	
	-Accounting 4 days @ \$150/day	600	1,600
		TOTAL:	\$61,200

B. & C. LTD.

.

DETAILED COST ESTIMATE (CONTINUED)

- 15 -

TO EXPENSES

(i)	Pre-Engineering & Logistics	
	-Travel -Maps, publications, airphoto	\$ 1,250
(ii)	Travel (4 months)	
	-1 only 4x4 Jeep including gas	4,250
(iii)	Consumables (field)	
	-(3 men) (3½ months) (\$17/day/man)	5,355
(iv)	Consumables (town)	
	-contingency allowance for meals obtained in town	1,345
(v)	Lodging (town)	
	-contingency allowance for hotels	2,250
(vi)	Camp Costs	
	-i.e. tents, stoves, cookery, etc.	5,000
(vii)	Instrument Rentals	
	-MP-2 TOTAL FIELD PROTON MAGNETOMETER (1 only) (\$774/month) (3½ months) \$2,709	
	-VLF EM-16 (1 only) (\$774/month) (3½ months) <u>2,709</u>	5,418
(viii)	Air Charter	2,500
(ix)	Boat & Motors	
	-1 canoe and motor (1) (\$25/day) (30) (3½ months)	2,625

DETAILED COST ESTIMATE (CONTINUED)

- 16 -

TO EXPENSES (Continued...)

(x)	Analyses		1,250
(xi)	Air Fare & Travel		
	-Supervising Geologist		1,750
(xii)	Printing & Reproduction		807
(xiii)	Contingency		5,000
		TOTAL:	<u>\$38,800</u>

Respectfully submitted,

DERRY, MICHENER, BOOTH & WAHL

in 22

D. G. Wahl, P.Eng. Consulting Engineer

Toronto, Ontario April 13, 1983

020

REPORT ON RECONNAISSANCE GEOPHYSICAL AND GEOLOGICAL EXPLORATION OF THE STOCK-MCCANN BLOCK, LARDER LAKE AND PORCUPINE MINING DIVISIONS, DISTRICT OF COCHRANE, ONTARIO FOR SHOGRIN MINERALS INC.

VOLUME I

Steven & M. Hohert

S. S. McRoberts, B.Sc.

D. G. Wahl, P.Eng.

N. Pearson, Ph.

Toronto, Canada March 12, 1984

This report may not be reproduced, in whole or in part, without the written consent of Derry, Michener, Booth & Wahl.

42A10SE8887 63.4226 BOND

TABLE OF CONTENTS

020C

		Page
VOLUME I		
SUMMARY		(i)
INTRODUCTION		1
Figure 1:	Property Location Map	3
Figure 2:	Claim Map	4
Table 1:	List of Freehold Parcels and Mining Claims	5
REGIONAL GEOLOGY	Y	7
Figure 3:	Regional Geology	8
PROPERTY DISCUSSION		10
Table 2:	Description of VLF-EM Conductors of the Freehold Parcels	11
Figure 4:	Detailed Trench Area, Parcel N-17	38
REFERENCES		46

B. & C. LTD.

LIST OF MAPS (In Pockets)

	•		
Map No.	Grid	Description	
100A 100B	N-6, 7, 8, 9 N-6, 7, 8, 9	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Main	
 101A 101B	N-10 N-10	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine	;
 102A 102B 102C	N-11, 40, 41 N-11, 40, 41 N-11, 40, 41	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine Geology	:
103A 103B	N-12 N-12	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine)
104A 104B	N-13 N-13	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine	;
	N-17, 18, 19 N-17, 18, 19 N-17, 18, 19	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine Geology	;
VOLUME II			
 106A 106B	N-21, 22 N-21, 22	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine)
 107A 107B 107C	N-20, 23 N-20, 23 N-20, 23	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine Geology	•
108A 108B	N-26 N-26	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine)
109A 109B	N-38, 39 N-38, 39	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine	;
110A 110B 110C	N-42 N-42 N-42	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine Geology	•
111A 111B 111C	N-14, 43 N-14, 43 N-14, 43	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine Geology	;
112A 112B 112C	N-44 N-44 N-44	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine Geology	:
113A 113B	N-47 N-47	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine	;
114A 114B	N-16, 48 N-16, 48	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine	•

.

SUMMARY

A reconnaissance program consisting of proton precession magnetometer and VLF electromagnetic surveys, geological mapping and some rock geochemical sampling was carried out during the 1983 summer exploration season by Derry, Michener, Booth & Wahl over 29 freehold parcels owned by The Ontario Paper Company (OPC) southeast of Timmins, Ontario in an area designated as the Stock-McCann Block, all of which are presently under option to Shogrin Minerals Inc.

Numerous significant exploration targets have been outlined on 13 of the 29 freehold parcels investigated during the summer program. The 13 freehold parcels that warrant further investigation are N-10, N-11, N-12, N-13, N-14, N-17, N-18, N-19, N-22, N-26, N-39, N-40 and N-41.

Exploration targets include several moderate to strong VLF-EM conductors, possible alteration zones associated with magnetic lows and faults, and metasediment underlying N-26. All exploration targets for the 13 parcels have been summarized in the following table:

Freehold Parcel(s)	Exploration Targets	Priority	Comments
N-10	two 100 m wide magnetic lows	high	may represent possible alteration zones
N-11, 40, 41	a north-trending fault zone and the associated large, 300 n wide, magnetic low	high n	may reflect possible alteration along the fault

(ii)

Parcel(s)	Exploration Target	Priority	Comments
N-11, 40, 41 (cont'd)	several moderate to strong VLF-EM conductors of which N-41-4 and N-41-9 are the most significan	high nt	may reflect possible mineralization
	sulphide-bearing quartz vein with significant arsenic, copper, zinc and lead values	: high	may reflect further mineralization
N-12	north-trending fault	moderate	possible locus for mineralization
	a 100 m wide, magnetic low	moderate	possible alteration
	another, 100 m wide magnetic low in close proximity to the fault	moderate	may reflect alteration associated with the fault
	gold occurrence 400 m to the east	moderate	
N-13	a north-south west striking fault zone and associated magnet lows	high ic	may reflect alteration associated with the fault
	numerous small isolated magnetic lows across the property	high	may represent alteration
N-14,43	a group of moderate to strong VLF conduc- tors (N-14-1) in proxin to elongated magnetic	nity	possible mineralization within alteration zones
	a highly magnetic gabbro which contains pyrite and magnetite	high	possible extensive mineralization
	two northeast- trending fault zones with several weak VLF conductors	high	possible mineralization from within alteration zones

•

(iii)			
Parcel(s)	Exploration Target	Priority	Comments
N-14, 43 (cont'd)	two weak to strong conductors N-43-1 and N-43-10	high	may represent possible mineralization
	Fe, Cu showing to the northwest of N-43	high	
N-17, 18, 19	a north-northwest trending fault	high	could be possible alteration and mineralization associated with the fault
	pyrite-bearing shear zone and associated conductors (N-17-3 and N-17-4)	high	possibility for an extended strike length
N-22	one strong VLF-EM conductor (N-22-4) within mafic volcanics	moderate	possible mineralization
N-26	underlain by meta- sediments similar to those at Hemlo	high	
N-39	one strong VLF-EM 300 m long anomaly	high	possible mineralization

Fourty-three (43) additional unpatented mining claims were staked to cover possible extensions of the promising exploration targets outlined on parcels N-10, N-13, N-14 and N-43.

The program to date has shown that 13 freehold parcels are underlain by significant exploration targets for which further work is warranted. Additional work should include Max-Min II surveys on 12 of the 13 freehold parcels and an induced polarization/resistivity survey on N-26. Detailed magnetometer surveys should also be extended to include the additional mining claims and detailed magnetometer surveys should be carried out across all of the fault zones. Trenching and further rock geochemical sampling of the shear zone on N-17 and the sulphide-bearing quartz vein on N-40 is also recommended.

B. & C. LTD

& C. LTD

INTRODUCTION

This report was prepared for Shogrin Minerals Inc. and summarizes the results of a reconnaissance exploration program carried out on the "Stock-McCann" Block by Derry, Michener, Booth & Wahl, from May 15 to September 1, 1983.

- 1 -

The Stock-McCann Block is located within the Larder Lake and Porcupine Mining Divisions of the District of Cochrane approximately 50 km east of Timmins, Ontario. The block contains 29 separate freehold parcels owned by the Ontario Paper Company and under option to Shogrin Minerals Inc. The parcels are located within the townships of Stock, Taylor, Carr, Bond, Currie, Bowman, Sheraton, Egan and McCann as shown in Figure 1.

As a result of the current program, 43 additional unpatented mining claims were staked to cover extensions of promising geophysical targets outlined on blocks N-10, N-13, N-14 and N-43 (Figure 2). No work, however, was carried out on these claims.

Table 1 gives a complete listing of freehold parcels and unpatented mining claims comprising the Stock-McCann Block.

Access to most of the claims is generally obtained from Highway 101 through the use of primary and secondary logging roads although in some areas a small boat and ATCs were required.

A reconnaissance program consisting of proton precession magnetometer and VLF electromagnetic surveys using compass lines at 100 m spacings with 25 m stations was performed on all patented properties. Geological mapping and some rock geochemical sampling were also carried out but these surveys were greatly limited by the lack of outcrop due to the thick glacial cover over much of the area.

.

- 3 -

TABLE 1

LIST OF FREEHOLD PARCELS AND MINING CLAIMS,

STOCK-MCCANN BLOCK

*

Freehold Parcels

N-26	Stock Township	N ¹ Lot 10, Con. IV, SMR*
N-6	Carr Township	N ¹ / ₂ Lot 11, Con. I, SMR*
N-7	Carr Township	NW 3 St Lot 10, Con. II, SMR
N-9	Carr Township	SE ¹ / ₂ S ¹ / ₂ Lot 10, Con. II, SMR*
N-17	Bond Township	$N\frac{1}{2}$ Lot 2, Con. I, SMR*
N-18	Bond Township	$S^{\frac{1}{2}}$ Lot 2, Con. II, SMR*
N-19	Bond Township	$S^{\frac{1}{2}}$ Lot 3, Con. II, SMR*
N-20	Bond Township	N ¹ / ₂ Lot 2, Con. III, SMR*
N-21	Bond Township	S ¹ / ₂ Lot 10, Con. IV, SMR*
N-22	Bond Township	$S^{\frac{1}{2}}$ Lot 11, Con. IV, SMR*
N-23	Bond Township	$S^{\frac{1}{2}}$ Lot 3, Con. IV, SMR*
N-38	Bond Township	N ¹ Lot 11, Con. V, SMR*
N-39	Bond Township	$S^{\frac{1}{2}}$ Lot 11, Con. VI, SMR*
	-	
N-10	Currie Township	$S^{\frac{1}{2}}$ Lot 11, Con. IV, SMR*
	, -	
N-11	Sheraton Township	N ¹ / ₂ Lot 5, Con. I, SMR*
N-12	Sheraton Township	$S^{\frac{1}{2}}$ Lot 5, Con. VI, SMR*
N-13	Sheraton Township	N ¹ / ₂ Lot 11, Con. V, SMR*
N-40	Sheraton Township	N ¹ Lot 4, Con. I, MRO**
N-41	Sheraton Township	$S^{\frac{1}{2}}$ Lot 4, Con. II, MRO**
N-42	Sheraton Township	S ¹ / ₂ Lot 3, Con. VI, MRO**
	-	
N-14	Egan Township	S ¹ Lot 10, Con. II, SMR*
N-15	Egan Township	N ¹ / ₂ Lot 7, Con. III, SMR*
N-16	Egan Township	S ¹ / ₂ Lot 10, Con. VI, SMR*
N-43	Egan Township	N ¹ / ₂ Lot 11, Con. I, MRO**
N-44	Egan Township	S ¹ / ₂ Lot 1, Con. III, MRO**
N-45	Egan Township	N ¹ / ₂ Lot 6, Con. III, MRO**
N-46	Egan Township	S ¹ / ₂ Lot 6, Con. IV, MRO**
N-47	Egan Township	S ¹ / ₂ Lot 6, Con. VI, MRO**
N-48	Egan Township	S ¹ / ₂ Lot 11, Con. VI, MRO**
		· ·

*SMR - Surface and Mineral Rights **MRO - Mineral Rights Only

Mining Claims (Mineral Rights Only)

N-43, N-14 Egan Township NE¹/₂ S¹/₂ Lot 12, Con. I SE¹/₄ N¹/₂ Lot 12, Con. I SW¹/₄ N¹/₂ Lot 12, Con. I NW¹/₄ N¹/₂ Lot 12, Con. I

B. & C. LTD.

(Continued)

- 6 -

Mining Claims

N-43, N-14 Egan Township	NE ¹ / ₄ N ¹ / ₂ Lot 12, Con. I SE ¹ / ₄ S ¹ / ₄ Lot 12, Con. II SW ¹ / ₄ S ¹ / ₄ Lot 12, Con. II NW ¹ / ₄ S ¹ / ₄ Lot 12, Con. II NE ¹ / ₄ S ¹ / ₄ Lot 12, Con. II SW ¹ / ₄ S ¹ / ₄ Lot 11, Con. I NW ¹ / ₄ S ¹ / ₄ Lot 11, Con. II SW ¹ / ₄ S ¹ / ₄ Lot 11, Con. II NW ¹ / ₄ S ¹ / ₄ Lot 11, Con. II NW ¹ / ₄ S ¹ / ₄ Lot 11, Con. II NE ¹ / ₄ S ¹ / ₄ Lot 11, Con. II
N-13 Sheraton Township	NE ¹ / ₄ N ¹ / ₂ Lot 12, Con. IV SE ¹ / ₄ S ¹ / ₄ Lot 12, Con. V NE ¹ / ₄ S ¹ / ₄ Lot 12, Con. V SE ¹ / ₄ N ¹ / ₄ Lot 12, Con. I NE ¹ / ₄ N ¹ / ₄ Lot 11, Con. IV NE ¹ / ₄ N ¹ / ₄ Lot 11, Con. IV SE ¹ / ₄ S ¹ / ₄ Lot 11, Con. V SW ¹ / ₄ S ¹ / ₄ Lot 11, Con. V NW ¹ / ₄ S ¹ / ₄ Lot 11, Con. V NE ¹ / ₄ S ¹ / ₄ Lot 11, Con. V SE ¹ / ₄ S ¹ / ₄ Lot 11, Con. V SE ¹ / ₄ S ¹ / ₄ Lot 11, Con. VI SW ¹ / ₄ S ¹ / ₄ Lot 11, Con. VI NW ¹ / ₄ S ¹ / ₄ Lot 11, Con. VI NW ¹ / ₄ S ¹ / ₄ Lot 11, Con. VI NE ¹ / ₄ S ¹ / ₄ Lot 11, Con. VI
N-10 Currie Township	NW ¹ / ₄ N ¹ / ₂ Lot 12, Con. III NE ¹ / ₄ N ¹ / ₂ Lot 12, Con. III SE ¹ / ₄ S ¹ / ₄ Lot 12, Con. IV NE ¹ / ₄ S ¹ / ₄ Lot 12, Con. IV NE ¹ / ₄ N ¹ / ₅ Lot 12, Con. IV SE ¹ / ₄ N ¹ / ₅ Lot 12, Con. IV NW ¹ / ₄ N ¹ / ₅ Lot 11, Con. III NE ¹ / ₄ N ¹ / ₅ Lot 11, Con. III SE ¹ / ₄ N ¹ / ₅ Lot 11, Con. IV NE ¹ / ₄ N ¹ / ₅ Lot 11, Con. IV NW ¹ / ₅ N ¹ / ₅ Lot 10, Con. IV SW ¹ / ₅ N ¹ / ₅ Lot 10, Con. IV NW ¹ / ₅ N ¹ / ₅ Lot 10, Con. IV

REGIONAL GEOLOGY

The "Stock-McCann Block" is underlain by a succession of Archean mafic to felsic metavolcanics with lesser amounts of metasediments that form part of the Deloro and Tisdale Supergroups recognized by Pyke (1983) in the Timmins area. These rocks, which strike northeast to east-west and are steeply-dipping, are separated into three major domains by the Destor-Porcupine and Pipestone Faults as shown in Figure 3. The northeasterly trending Destor-Porcupine Fault crosses the central part of the Stock-McCann Block and is an important exploration target because the majority of gold deposits in the Timmins area occur in close proximity to this stucture. The Pipestone Fault is subparallel and about 8 km north of the Destor-Porcupine Fault.

The stratigraphy within the three major domains is as follows: South of the Destor-Porcupine Fault, mafic metavolcanics predominate except in the northeast part of this region which is underlain by intermediate to felsic volcanics. North of the Destor-Porcupine Fault and south of the Pipestone Fault, metasediments including greywacke, siltstone, argillite and minor conglomerate predominate whereas north of the Pipestone Fault the stratigraphy comprises intermediate to felsic metavolcanics.

The Archean supracrustal rocks are intruded by the Bradley Lake and Wildgoose Lake syenites, of late Archean Age, as well as three separate stages of younger gabbroic dykes.

Pyke (1983) has recognized two major periods of deformation north of the Destor-Porcupine Fault that consist of an earlier phase of north-trending folds which

- 7 -

.

Figure 3 REGIONAL GEOLOGY OF THE STOCK - McCANN BLOCK

LEGEND

5	Intrusives
4	Metasediments
3	Felsic metavolcanics
2	Intermediate metavolcanics
1	Mafic metavolcanics
	SYMBOLS

www Major Fault

– – Fault

--- Geological Boundary

Freehold area

were subsequently folded about an east-northeast trending axis. South of the Destor-Porcupine Fault, only one phase of folding with east-trending axes has been recognized.

Much of the Stock-McCann Block is covered by thick extensive glacial deposits predominantly of glaciofluvial and glaciolacustrine origin with lesser amounts of ablation and lodgment tills. Prominent eskers are present in several parts of the area most notably the Frederick House Esker on N-13. The thick glacial cover and limited outcrop have rendered exploration in the area difficult because the conductive overburden consistently masked bedrock geophysical response.

GEOPHYSICAL SURVEYS

B. & C. LTD

The ground geophysical surveys were carried out during the period May 17, 1983 through August 19, 1983, inclusive, under the supervision of Mr. S. S. McRoberts, B.Sc., using a 100 metre line spacing with 25 metre stations and flag and compass lines.

The magnetometer survey was carried out using a Scintrex MP-2 total field proton precession magnetometer. The total magnetic field intensity data was recorded at elevations of 1 m above ground level with a sensitivity of \pm 1 nT. Diurnal fluctuations were monitored using a Scintrex MBS-2 base station recording magnetometer and all data was adjusted accordingly. The magnetic data is presented as corrected station values above the local background of 58,000 nT and as a contoured interpretation of these data.

- 9 -

The VLF electromagnetic surveys were carried out using a Geonics EM-16 unit. The VLF in-phase and quadrature response parameters were recorded with an

accuracy of \pm 1%. The transmitting station used is located in Cutler, Maine and broadcasts at a frequency of 17.8 kHz (now 24.0 kHz). All data was plotted as line profiles at a vertical scale of 1 cm = 10%.

PROPERTY DISCUSSION

Freehold Parcels N-6, 7 and 9

Parcels N-6, 7 and 9, located about 5 km northwest of the town of Matheson in Carr Township, are directly accessible from Highway 626.

Geologically these claims are located immediately south of the Destor-Porcupine Fault and based on geophysical data are inferred to be underlain by felsic to intermediate metavolcanics.

Magnetic relief over much of the property is uniform ranging from 1,100 to 1,200 nT. Local magnetic highs of up to 2,000 nT occur on L8E at station 6+50N and on L10E station 7+00N and these anomalies probably reflect gabbro dykes. Other lower order of magnitude highs present in the southern part of N-9 most likely reflect cultural influence.

Several strong VLF conductors were outlined on N-7 and 9 (Table 2) but these reflect railway, hydro and power lines. Six weak VLF anomalies most likely reflecting conductive overburden are present on N-6.

& C. LTD.

p. 1 of 15

Table 2

DESCRIPTION OF VLF-EM CONDUCTORS OF THE FREEHOLD PARCELS

Conductor Number	Location	Strike	Length (m)	Conductivity	Magnetic Association	Geology	Comments	Priority	_
N-6-1	L3E 7+505 - L8E 5+355	east- northeast	500 continuous discon- tinuous	poor - fair	1050 - 1100 nT	no outcrop, probably intermediate to felsic metavolcanics	probable over- burden conductor	low	
N-6-2	L4E 6+10S - L5E 5+60S	east- northeast	100 discon- tinuous	poor	1050 - 1100 nT	no outcrop, probably intermediate to felsic metavolcanics	probable over- burden conductor	low	
N-6-3	LOE 5+155 - L1E 4+855	east- northeast	100 discontinuuous	poor - fair	1050 - 1100 nT	no outcrop, probably intermediate to felsic metavolcanics	probable over- burden conductor	low	-
N-6-4	L8E 3+25S	east-west	point anomaly	fair	1000 nT	no outcrop, probably intermediate to felsic metavolcanics	probable over- burden conductor	low	I
N-6-5	L6E 1+75S - L7E 1+15S	northeast	100 dis- continu- ous	fair	1050 nT	no outcrop, probably intermediate to felsic metavolcanics	probable over- burden conductor	low	
N-6-6	L2E 1+75S	east-west	point anomaly	fair	1050 - 1100 nT	no outcrop, probably intermediate to felsic metavolcanics	probable over- burden	low	
N-7,8,9- 1	L8E - 4+00N - L11E 0+50N	southéast	400 continu- ous	excellent	900 - 1100 nT	no outcrop, probably intermediate to felsic metavolcanics	gas pipeline	low	
N-7,8,9- 2	L9E 4+25N - L15E 0+00N	southeast	900 continu- ous	excellent	800 - 1100 nT	no outcrop, probably intermediate to felsic metavolcanics	railway	low	
N-7,8,9- 3	L10E 7+50N - L16E 2+60N	southeast	700 continu- ous	excellent	800 - 1100 nT	no outcrop, probably intermediate to felsic metavolcanics	gas pipeline	low	
					· .				
		I							

p. 2 of 15

...

·

Table 2 (Continued)

Conductor Number	Location	Strike	Length (m)	Conductivity	Magnetic Association	Geology	Comments	Priority	
N-10-1	LIE 1+15N	east- west	100 continu- ous	poor	1100 - 1200 nT	no outcrop, probably intermediate to felsic ash tuff, lapilli tuff	possible over- burden conductor	low	
N-10-2	L4E 6+35N	east- west	point anomaly	fair	1000 - 1200 nT	no outcrop, probably intermediate to felsic ash tuff lapilli tuff	possible over- burden conductor	low	
N-10-3	L62 7+10N - L82 6+10N	east- southeast		fair	1200 - 1300 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low	ı
N-10-4	L6E 6+85N - L7E 7+05N	east- West	100 continu- ous	average	1200 - 1300 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	102	12 -
N-11-1	L3E 0+25S	east- west	point anomaly	poor	1900 nT	no outcrop, probably a mafic dyke	probable magne- tite in mafic dyke	low	
N-11-2	L6E 0+40S	east- west	point anomaly	poor	2000 - 2100 nT	no outcrop, probably a mafic dyka	probable magne- tite in mafic dyke	low	
N-11-3	L4E 1+10S	east- west	point anomaly	poor	1900 - 2000 nT	no outcrop, probably a mafic dyke	probable magne- tite in mafic dyke	low	
N-11-4	L1E 2+055 - L2E 2+105	east- west	100 discontin- uous	poor	1900 - 2000 nT	no outcrop, probably a mafic dyke	probable magne- tite in mafic dyke	low	
N-11-5	L3E 2+905 - L9E 1+505	east- northeast	650 discontin- uoùs	poor - fair	1200 - 1800 nT		probable magne- tite in mafic dyke	low	
N-11-6	L1E 4+608 - L3E 4+158	east- northeast	200 dis- continuous	poor	1100 - 1300 nT		along edge of hill, probably overburden conductor	low	
	1	• .	-						

Table 2 (Continued)

p. 3 of 15

Conductor Number	Location	Strike	Length (m)	Conductivity	Magnetic Association	Geology	Comments	Priority	
N-11-7	L2E 5+10S - L3E 4+90S	east- west	150 discontin- uous	poor - fair	1100 - 1200 nT	no outcrop, probably mafic metavolcanics	possible over- burden conductor	low	
N-11-8	L3E 5+355 - L4E 5+255	east- west	100 discontin- uous	poor	1000 - 1100 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low	
N-11-9	L3E 5+90S	east-vest	point anomaly	poor	1000 - 1100 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low	
N-11-10	LOE 6+655 - L2E 6+855	east-west	200 discontin- uous	poor - fair	1000 - 1200 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low	
N-40-1	L14E 0+208 - L17E 0+25N	east- west	300 discon- tinuous	poor - fair	2200 - 3200 nT	mafic dyke	probable magne- tite in mafic dyke	low	
N-40-2	L16E 0+90S	east-west	point anomaly	poor	1000 - 4000 nT	mafic dyke	probable magne- tite in mafic dyke	low	
N-40-3	L10E 3+30S - L12E 3+50S	east- west	200 discon- tinuous	poor	1200 - 1400 nT	no outcrop, probably mafic dyke	probable over- burden conductor	low	
N-40-4	L10E 4+105 - L11E 4+25S	Bast-West	100 discontin- uous	poor	1200 - 1300 nT	no outcrop, probably mafic dyke	probable over- burden conductor	low	
N-40-5	L10E 7+40S	Bast-west	point anomaly	average	900 - 1000 nT	no outcrop, probably mafic meta- volcanics	probable over- burden conductor	low	
		ļ							

DERRY, MICHENER, BOOTH & WAHL

- 13 -

p. 4 of 15

- 14 -

•

Table 2 (Continued)

Conductor Number	Location	Strike	Length	Conductivity	Hagnetic Association	Geology	Comments	Priority
N-41-1	L14E 0+60N ~ L15E 0+60N	east-west	100 discontin- uous	poor	3500 - 5000 nT	no outcrop, probably mafic dyke	probable magne- tite in mafic dyke	low
N-41-2	L8E 0+85N	east-west	point anomaly	poor	1400 - 1500 nT	no outcrop, probably mafic dyke	probable magne- tite in mafic dyke	low
N-41-3	L8E 1+50N - L15E 1+80N	east-west	700 discontin- uous	poor - good	900 - 5000 nT	no outcrop, probably mafic dyke	along edge of hill, possible overburden	low
N-41-4	L16E 2+15N L17E 1+40N	northeast	100 discontin- uous	poor - fair	800 - 1500 nT	no outcrop, probably a mafic dyke	possible bedrock conductor	moderate
N-41-5	L8E 4+65N - L13E 2+10N	southeast	550 discontin- uous	boor	1800 - 3500 n t	no outcrop, probably mafic dyke	along edge of hill, possible overburden	low
N-41-6	L128 3+10N	east-vest	point anomely	poor	1400 - 1500 nT	no outcrop, probably mafic dyke	probable over- burden conductor	low
N-41-7	L128 4+00N	east-west	point anomaly	poor	1300 - 1400 nT	no outcrop, probably mafic dyke	probable over- burden conductor	low
N-41-8	L98 4+75N - L138 5+65N	northeast	400 dis- continuous	fair - good	800 - 1200 nT	no outcrop, probably mafic metavolcanics	possible over- burden conductor	low
N-41-9	L8E 7+05N - L9E 7+25N	east-vest	100 dis- continuous	fair - good	700 - 900 nT	no outcrop, probably mafic metavolcanics	possible over- burden conductor	moderate
N-41-10	1.128 7+45N	east-west	point anomaly	average	800 - 900 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low
N-12-1	lje 4+905 - Lje 4+908	Bast-west	150 pontinuous	poor - good	1100 - 1400 nT	no outcrop, probably mafic metavolcanics	probable magne- tite in mafic dyke	Low
			-				- -	

Table 2 (Continued)

Conductor Number	Location	Strike	Length (m)	Conductivity	Magnetic Association	Geology	Coments	Priority
N-12-2	L7E 3+75S	east-vest	point anomaly	fair	1300 - 1400 nT	no outcrop, probably a mafic dyke	probable magne- tite in mafic dyke	low
	L2E 2+75S - L6E 2+00S	east-north east	450 dis- continuous	poor - average	1100 - 1500 nT	no outcrop, probably a mafic dyke	probable magne- tite low in mafic dyke	low
N-12-4	L8E 0+40S	east-west	point anomaly	poor	1200 - 1300 nT	no outcrop, probably a mafic dyke	possible over- burden conductor	low
N-13-1	L58 3+108 - L68 3+158	east-west	100 continuous	booz	1100 - 1200 nT	no outcrop, probably mafic ash tuff lapilli tuff	probable over- burden conductor	low
N-13-2	L28 0+40N	east-west	point anomaly	boor	1200 - 1250 nT	no outcrop, probably mafic ash tuff, lapilli tuff	probable over- burden conductor	low
N-13-3	L4E 0+00N - L5E 0+00N	east-west	100 continuous	boor	1175 - 1200 nT	no outcrop, probably mafic ash tuff, lapilli tuff	probable over- burden conductor	low
N-14-1	L15E 6+25N - 7+75N L20E 5+75N - 7+10N	east-west	500 continuous	poor – good	-200 - 700 nT	probably mafic ash tuff, lapilli tuff	probable strati- form unit	high
N-14-2	L13E 4+65N	east-west	point anomaly	pcor	100 - 200 nT	mafic metavolcanics	possible bedrock conductor	100
N-14-3	L13E 2+60N	east-west	point anomaly	poor	500 nT	mafic metavolcanics	possible bedrock conductor	low
ั ห-14-4	L13E 1+50N - L15E 0+85N	southeast	200 dis- continuous	poor - fair	100 - 1000 nT	no outcrop, probably mafic metavolcanics	along edge of hill - possible overburden conductor	low
N-43-1	L3E 7+908 - L12E 5+856	east- northeast	1000 dis- continuous continuous	lent	400 - 2000 nT	mafic flows	possible over- burden conductor	moderate
	•	I	۱.		ļ	ŧ.		

DERRY. MICHENER, BOOTH & WAHL

- 15 -

.

p. 6 of 15

, ,

,

Table 2 (Continued)

Conductor Number	Location	Strike	Length (B)	Conductivity	Magnetic Association	Geology	Coments	Priority
N-43-2	L6E 4+758 - L8E 4+40S	east-vest	200 continuous	poor	1400 nT	possible iron formation	probable magne- tite in possible iron formation	moderate
N-43-3	L8E 3+35S	east-west	200 continuous	boor	2200 - 6000 nT	possible iron formation	probable magne- tite in possible iron formation	moderate
N-43-4	L48 4+155	east-west	point anomaly	poor	700 - 800 nT	mafic flows and possible fault mafic dyke	possible fault zone	high
N-43-5	L2E 4+15S L3E 4+75S	southeast	150 continuous	poor	1300 - 1600 nT	mafic dyke	possible magne- tite in mafic dyke	low I Low Ji G
N-43-6	LOE 3+158 L2E 3+758	southeast	250 continuous	boor	900 - 1300 mT	mafic dyke	possible edge effect of iron formation	moderate
N-43-7	L3E 2+508 L4E 2+408	east-west	100 dis- continuous	boor	2700 - 6000 nT	possible iron formation	probable magne- tite in possible iron formation	moderate
N-43-8	L3E 3+105 L4E 3+005	east-west	100 dis- continuous	boor.	5800 - 6500 nT	possible iron formation	probable magne- tite in possible iron formation	moderate
N-43-9	L3E 1+25S L5E 0+90S	east-west	200 continuous	poor	1100 - 11,000 nT	no outcrop, probably iron formation	probable magne- tite in possible iron formation	moderate
N-43-10	LOE 0+755 L8E 0+005	east-west	BOO continuous	poor - good	1000 - 10,000 nT	iron formation and mafic meta- volcanics	probable magne- tite in possible iron formation	high
N-43-11	L7E 1+25S	east-west	point anomaly	poor	1500 - 1600 nT	no outcrop, probably mafic volcanics	possible fault	moderate
		:	i	ł		ŧ.		

DERRY, MICHENER, BOOTH & WAHL

i

.

p. 7 of 15

	~
^N	ĺδ.
2	Įž
Ыe	믭
Tal	g
-	5
	\sim

				-	17 -	-				
Priority	moderate	moderate	moderate	moderate	noderate	jo I	ğ	Ŋ	low	loe
Commute	possible fault and probable bedrock conductor	probable bedrock conductor	probable bedrock conductor	possible bedrock conductor	possible bedrock conductor	along edge of hill - possible overburden conductor	along edge of hill - possible overburden conductor	possible magne- tite in mafic dyte	possible magne- tite in mafic dybe	possible magne- tite in mafic dyke
Geology	no outcrop, probably mafic volcanics	no outcrop, probably mafic metavolcanics	no outcrop, probably mafic volcanics	no outcrop, probably granite	no outcrop, probably granite	no outcrop, probably granite	no outcrop, probably granite	no outcrop, probably granite	no outcrop, probably mafic dytem	no outcrop, probably granite
Negnatic Association	2000 - 2800 nr	1100 - 1300 nT	1000 - 1200 nT	1200 - 1900 nT	1400 - 1900 nT	1600 - 2100 HT	1300 - 1500 nT	2400 - 2600 nT	2700 - 3100 nT	2200 - 3000 n ''
Conduct i vi ty	poor - average	POOL	TOO	poor - average	fair - good	poor - fair	ž		poor	Xood
Length	nonuia	<u>×</u>	<u>></u>	200 dis- continuou	100 dis- continuou	200 continuou	200 continuou	point anomaly	point anomaly	100 dis- continuous
Strike	east-west 100	east-west point anomal	east-west point anomal	east-west 200 dis- continuo	east-west 100 dis- continuo	northeast 200 continuou	east-west 200 con	east-west point anomal	east-west point anomal	east-west 100 dis- continuou
Location	L8E 0+65S	LIOE 0+65S	858+I a II7	LI3W 0+75% - LI3W 0+90%	LJN 1+258 - LAN 1+258 -	L3H 3+25H L1H 4+25H	Ljør 4+408 Ljør 4+658	LIN 6-854	1.5W 6+85M	NS8+L MTT
Conductor Number	N-43-12	N-43-13	A1-69-N	N-16-1	N-16-2	K-16-3	H-16-4	N-16-5	N-16-6	1-91-N

DERRY, MICHENER, BOOTH & WAHL

p. 8 of 15

· . ·

Conductor Number	Location	Strike	Length (m)	Conductivity	Magnetic Association	Geology	Comments	Priority
N-16-8	L2W 8+30N L1W 8+35N	east-west	100 dis- continu- ous	poor	2000 - 2500 n t	no outcrop, probably granite	possible magne- tite in mafic dyke	low
N-16-9	L1W 9+65N	east-west	point anomaly	poor	2500 - 3000 nT	no outcrop, probably mafic dyke	possible magne- tite in mafic dyke	low
N-16-10	L5W 10+00N L3W 10+00N	northeast	100 con- tinuous	average	1200 - 1500 nT	no outcrop, probably mafic dyke	possible magne- tite in mafic dyke	low
N-48-1	L15W 0+45N	east-west	point anomaly	<i>f</i> air	1100 - 1200 nT	no outcrop, probably mafic metavolcanic	probable magne- tite in mafic dyke	low
N-48-2	L15W 2+00W	east-vest	point anomaly	poor	1400 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low
N-48-3	L14W 4+40N L16W 5+10W	southeast	200 dis- continu- ous	poor - average	1100 - 1500 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low
N-48-4	L11W 6+25N	east-west	point anomaly	fair	1200 - 1300 nT	no outcrop, probable mafic metavolcanics	possible over- burden conductor	low
N-48-5	L10W 3+20N	east-west	point anomaly	fair	2500 T	no outcrop, probably mafic metavolcanics	possible over- burden conductor	low
N-48-6	L7W 2+65N	east-west	point anomaly	fair	3000 - 3100 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low
N-17-1	L8W 6+00S L5W 6+10S	east-west	300 dis- continu- ous	fair - good	600 - 2500 nT	mafic dyke	probable magne- tite in mafic dyke	high
N-17-2	L7W 5+508 L5W 5+508	east-west	200 dis- continu- ous	fair - average	1200 - 1800 nT	mafic dyke	probable magne- tite in mafic dyke	high
•		1						
	ļ	ţ	•					

Table 2 (Continued)

e.

- 18 -

p. 9 of 15

· . ·

Conductor Number	Location	Strike	Length (m)	Conductivity	Magnetic Association	Geology	Comments	Priority
N-17-3	L6W 4+75S L5W 4+40S	east- northeast	100 continu- ous	fair-average	2500 - 3000 nT	mafic dyke	probable magne- tite in mafic dyke	high
N-17-4	L8W 5+10S L5W 3+75S	north- east	350	poor-good	1000 - 5000 nT	mafic dyke	probable magne- tite in mafic dyke	high
N-17-5	17W 3+905	east- west	point anomaly	good	1500 - 2000 nT	mafic dyke	probable magne- tite in mafic dyke	high
N-17-6	L8W 3+50S	east-west	point anomaly	average	1000 nT	mafic dyke	probable magne- tite in mafic dyke	high
N-17-7	L4W 2+155	east-west	point anomaly	fair	1000 - 2500 nT	mafic dyke	probable magne- tite in mafic dyke	high
N-17-8	LGN 1+85S L3W 1+85W	east-west	300 dis- continuous	poor-average	1500 - 2500 nT	mafic dyke	probable magne- tite in mafic dyke	high
N-17-9	L0 1+655	ast-vest	point anomaly	poor	1200 nT	no outcrop, probably mafic dyke	probable over- burden conductor	low
N-17-10	LO 1+158	east-vest	point anomaly	boor	1200 n T	no outcrop, probably mafic dyke	probable over- burden conductor	low
N-17-11	L7W 1+30S	past-west	point anomaly	poor	800 n T	mafic dyke	probable magne- tite in mafic dyke	low
N-17-12	12W 0+90S	east-vest	point anomaly	poor	2000 nT	no outcrop, probably mafic dyke	probable over- burden conductor	low
•			-					

Table 2 (Continued)

,

- 19 -

.

p. 10 of 15

- 20 -

•. •

Table 2	
(Continue	d)

Conductor Number	Location	Strike	Langth (M)	Conductivity	Hagnetic Association	Geology	Coments	Priority
N-17-13	L4W 0+655 L0 0+50N	northeast	400 dis- continu- ous	poor - average	1600 - 2300 nT	no outcrop, probably mafic dyke	along edge of hill, possible overburden conductor	low
N-17-14	L7W 0+35S L5W 0+10N	east-west	200 dis- continuous	poor - fair	600 - 1500 nT	no outcrop, probably mafic dyke	probable magne- tite in mafic dyke	low
N-18-1	L7W 1+90N L0 1+10N	east-vest	700 dis- continu- ous	poor - fair	1000 - 2500 nT	gabbro dyke	probable magne- tite in gabbro dyke	low
N-18-2	L4W 2+15N L0 3+15N	east-north east	400 dis- continuous	poor - average	1000 - 3000 nT	no outcrop, probably mafic dyke	possible magne- tite in mafic dyke	moderate
N-18-3	L7N 2+60N LO 3+75N	east-north east	750 dis- continuous	poor - average	1300 - 2700 nT	no outcrop, probably mafic dyke	possible magne- tite in mafic dyke	moderate
N-18-4	L10W 4+40N L3W 4+00N	east-vest	800 dis- continuous	poor - good	1000 - 1500 nT	gabbro dyke	probable magne- tite in gabbro dyke	moderate
N-18-5	LGN 4+10N L5W 4+10N	east-west	100	poor	1100 - 1500 nT	no outcrop, possible mafic dyke	possible magne- tite in mafic dyke	low
N-18-6	L2W 4+90N L0 4+30N	east- southwest	200	poor - average	1000 - 3200 nT	no outcrop, probable mafic dyke	probable magne- tite in mafic dyke	10 w
N-18-7	L1W 5+60N LO 5+25N	east- southwest	100	poor	1400 - 2500 nT	no outcrop, probable mafic dyke	probable magne- tite in mafic dyke	low
N-18-8	L2W 6+35N L1W 6+85N	ast-west	100	poor - fair	1000 - 1400 nT	no outcrop, probable mafic dyke	probable magne- tite in mafic dyke	low

ł

p. 11 of 15

- 21 -

• .

<u>Table 2</u> (Continued)

Conductor Number	Location	Strike	Length (#)	Conductivity	Magnetic Association	Geology	Conments	Priority
N-19-1	L11W 0+75N	east-west	point anomaly	poor	1100 nT	no outcrop, probable mafic metavolcanics	probable over- burden conductor	low
N-19-2	L16W 2+00N	east-west	point anomaly	fair	1100 nT	no outcrop, probable mafic metavolcanics	probable over- burden conductor	low
N-19-3	L14W 5+00N	east-west	point anomaly	poor	1200 nT	no outcrop, probable mafic metavolcanics	probable over- burden conductor	low
N-19-4	L10W 5+25N	east-vest	point anomaly	poor	2000 nT	no outcrop, probable mafic dyke	probable magne- tite in mafic • dyke	10 v
N-19-5	L13W 6+65N	east-west	point anomaly	poor	1200 nT	no outcrop, probable mafic metavolcanics	probable over- burden conductor	low
N-19-6	L14W 7+65N	east-west	point anomaly	poor	1300 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low
N-20-1	L13E 7+158	east-west	point anomaly	poor	1600 - 1700 nT	no outcrop, probably mafic dyke	probable over- burden conductor	low
N-20-2	L10E 4+85S	east-vest	point anomaly	poor	1600 - 1700 nT	no outcrop, probably a mafic dyke	probable over- burden conductor	low
N-20-3	L8E 4+755	east-west	point anomaly	poor	1600 - 1700 nT	no outcrop, probably a mafic dyke	probable over- burden conductor	low
N-20-4	L8E 3+755 L9E 2+905	northeast	100 dis- continu- ous	poor	1600 - 1800 nT	no outcrop, probably a mafic dyke	probable over- burden conductor	low
N-20-5	L13E 3+25S	east-west	point anomaly	fair	1700 - 2400 nT		probable magne- tite in mafic dyke	low
					-			

.

¥

p. 12 of 15

- 22 -

Table 2 (Continued)

Conductor Number	Location	Strike	Length (m)	Conductivity	Hagnetic Association	Geology	Conments	Priority
₩-20-6	L8E 2+658 L13E 2+658	east-west	500 dis- continuous	poor	1400 - 2500 nT	no outcrop, probably a mafic dyke	probable over- burden conductor	low
N-20-7	L14E 1+60S	east-west	point anomaly	poor	1600 nT	no outcrop, probably a mafic dyke	probable over- burden conductor	low
N-20-8	L168 1+758	east-west	point anomaly	boor	1200 - 1300 nT	no outcrop, probably a mafic dyke	probable over- burden conductor	low
N-20-9	L8E 0+60S L10E 0+158	east- hortheast	250 dis- continu- ous	fair — average	2000 - 2600 nT	no outcrop, probably mafic dyke	probable magne- tite in mafic dyke	moderate
N-23-1	L1E 1+00N L4E 1+15N	east-west	300 dis- continuous	poor	900 - 1500 nT	mafic dyke	probable magne- tite in mafic dyke	low
N-23-2	L15 1+90N L45 1+90N	east-west	300 dis- continuous	poor	1100 - 2100 nT	no outcrop, probably a mafic dyke	probable magne- tité in mafic dyke	low
N-23-3	L82 1+90N	east-west	point anomaly	average	1600 - 2100 nT	no outcrop, probably a mafic dyke	probable magne- tite in mafic dyke	low
N-23-4	L8E 2+40 N	east-west	point anomaly	fair	1200 - 1300 nT	no outcrop, probably a mafic dyke	probable magne- tite in mafic dyke	low
N-23-5	L2E 5+65N L3E 5+10N	southeast	100 dis- continuous	poor	1300 - 1800 nT	no outcrop, probably a mafic dyke	possible over- burden	low
N-23-6	L7E 6+35N	east-west	point anomaly	poor	1400 nT	no outcrop, probably a mafic metavolcanic	probable over- burden conductor	low
N-22-1	L1E 0+90N L2E 1+00N	east-west	100 continuou	poor	1200 nT		along edge of hill probably overburden	low
N-22-2	L3E 3+95N L4E 4+15N	east-west	100 continuou	good	1800 - 2100 nT		possible magne- tite in gabbro dyke	low

à.

p. 13 of 15

۰.

Table 2 (Continued)

Conductor Number	Location	Strike	Length	Conductivity	Magnetic Association	Geology	Coments	Priority
N-22-3	LOE 3+50N L2E 4+35N	east- northeast	200 continuous	poor - fair	1200 - 1300 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low
N-22-4	L18 6+65N L48 5+50N	east- southeast	300 continuous	poor - excellent	1250 - 1400 nT	no outcrop, probably mafic metavolcanics	conductor	high
N-26-1	L7E 3+15N	ast-west	point , anomaly	poor	1100 - 1200 nT	no outcrop, probably metasediments	probable over- burden conductor	low
N-26-2	L3E 4+90N	BAST-WEST	point anomaly	average	1100 - 1200 n T	no outcrop, probably metasediments	probable over- burden conductor	low
N-26-3	L8E 5+90N	past-west	point anomaly	poor	1100 - 1200 nT	no outcrop, probably metasediments	probable over- burden conductor	low
N-26-4	188 7+00N	ast-west	point anomaly	poor	1100 - 1200 n 7	no outcrop, probably metasediments	probable over- burden conductor	low
N-38-1	L5W 1+158 L7W 1+008	ast-west	200 dis- continuous	poor - fair	1500 - 1600 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low
N-38-2	L6W 2+405	ast- southeast	point anomaly	fair	1500 - 1600 nT	no outcrop, probably mafic meta- volcanics	probable over- burden conductor	low
N-38-3	L4W 2+808 L2W 3+905	east- southeast	200 dis- continu- ous	fair	1500 - 1600 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low
N-38-4	L6W 4+25S L3W 5+85S	southeast	300 dis- continu- ous	poor	1400 - 1700 nT	ho outcrop, probably mafic metavolcanics	probable over- burden conductor	low
N-38-5	L5W 7+258	east-west	point anomaly	boor	1600 - 1700 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low
N+38-6	LOW 6+00S	east-vest	point	poor	1400 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low
• .								

DERRY, MICHENER, BOOTH & WAHL

.

ŧ

- 23 -

p. 14 of 15

I.

24 -

· .

Table 2 (Continued)

5 sast-west	point anomaly	good			1 1	
outheast			1100 - 1600 nT	gabbro dyke	possible magne- tite in gabbro dyke	low
	100 continuous	poor	1200 - 1400 nT	no outcrop, probably gabbroic dyke	probable magne- tite in gabbroic dyke	low
		poor	1000 - 1200 nT	no outcrop, probably a gabbroic dyke	probable magne- tite in a gabbroic dyke	low
east- ortheast	100 continuous	poor	1100 - 1300 n T	no outcrop, probably a gabbroic dyka	probable magne- tite in a gabbroic dyke	low
i past-west	point anomaly	fair	1200 - 1300 nT	no outcrop, probably a gabbroic dyke	probable magne- tite in a gabbroic dyke	low
5 past-west	point anomaly	poor	1000 nT	no outcrop, probably symite	probably an over- burden conductor	low
S east- S poutheast	100 continuous	fair	1000 - 1600 nT	no outcrop, probably a gabbroic dyka	probably magne- tite in gabbroic dyke	low
6 east-west	point anomaly	fair	1000 - 1100 nT	no outcrop, probably a gabbroic dyke	probable magne- tite in gabbroic dyke	low
s southeast	100 continu- ous	boor	1400 - 1600 nT	no outcrop, probably a gabbroic dyke	probable magne- tite in gabbroic dyke	low
S southeast S	100 continuous	fair	1400 - 1700 nT	dyke	probable magne- tite in gabbroic dyke	low
	east- portheast east-west east- southeast southeast	hortheast continuous ast-west point anomaly bast-west point anomaly bast-west 100 boutheast continuous bast-west point anomaly southeast 100 continu- ous boutheast 100	continuouseast- northeast100 continuouspoormast-westpoint anomalyfairmast-westpoint anomalypoormast-westpoint continuousfairmast-westpoint anomalyfairmast-westpoint anomalyfairmast-westpoint anomalyfairmast-westpoint continuousfairmast-westpoint anomalyfairmast-westpoint anomalyfairmast-west100 continu- ouspoor	continuous continuous continuous continuous east- northeast 100 continuous poor 1100 - 1300 nT east-west point anomaly fair 1200 - 1300 nT east-west point anomaly poor 1000 nT east-west point continuous fair 1000 - 1600 nT east-west point continuous fair 1000 - 1600 nT east-west point anomaly fair 1000 - 1100 nT southeast 100 continu- ous poor 1400 - 1600 nT	continuouspoor100100100100100east- hortheast100poor1100 - 1300 nTno outcrop, probably a gabbroic dykemast-westpoint anomalyfair1200 - 1300 nTno outcrop, probably a gabbroic dykemast-westpoint anomalyfair1000 nTno outcrop, probably a gabbroic dykemast-westpoint anomalypoor1000 nTno outcrop, probably a gabbroic dykemast-westpoint anomalyfair1000 - 1600 nTno outcrop, probably a gabbroic dykemast-westpoint anomalyfair1000 - 1600 nTno outcrop, probably a gabbroic dykemast-westpoint anomalyfair1000 - 1100 nTno outcrop, probably a gabbroic dykesoutheast100 continu- ouspoor1400 - 1600 nTno outcrop, probably a gabbroic dykesoutheast100 continu- ousfair1400 - 1600 nTno outcrop, probably a gabbroic dyke	ast-west100 continuouspoor1000 - 1200 nTno outcrop, probably a gabbroicprobable magne- tits in a gabbroic dykeeast- hortheast100 continuouspoor1100 - 1300 nTno outcrop, probably a gabbroicprobable magne- tits in a gabbroic dykeeast- westpoint anomalyfair1200 - 1300 nTno outcrop, probably a gabbroicprobable magne- tits in a gabbroic dykeeast-westpoint anomalyfair1200 - 1300 nTno outcrop, probably a gabbroicprobable magne- tits in a gabbroic dykeeast-westpoint anomalyfair1000 nTno outcrop, probably a gabbroicprobable magne- tits in a gabbroic dykeeast-westpoint anomalypoor1000 nTno outcrop, probably a gabbroicprobably an over- burden conductoreast-westpoint anomalyfair1000 - 1600 nTno outcrop, probably a gabbroicprobably magne- tits in gabbroiceast-westpoint anomalyfair1000 - 1600 nTno outcrop, probably a gabbroicprobable magne- tits in gabbroicsoutheast100 continuouspoor1400 - 1600 nTno outcrop, probably a gabbroicprobable magne- tits in gabbroicsoutheast100 continuousfair1400 - 1600 nTno outcrop, probably a gabbroicprobable magne- tits in gabbroicsoutheast100 continuousfair1400 - 1600 nTno outcrop, probably a gabbroicprobable magne- tits in gabbroicsoutheast100 continuousfair

ŧ

p. 15 of 15

• ... •

Conductor Number	Location	Strike	Length (m)	Conductivity	Magnetic Association	Geology	Comments	Priority
N-38-7	L1W 0+658	east-west	point anomaly	fair	1500 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low
N-39-1	L8W 0+15N L7W 0+10N	dast-west	100 dis- continuous	poor	1600 - 1800 nT	no outcrop, probably mafic meta- volcanics	probable over- burden conductor	low
N-39-2	L7W 2+15N	east-west	point anomaly	fair	2500 - 2900 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low
N-39-3	L2W 2+60N	east-west	point anomaly	poor	1700 nT	no outcrop, probably mafic . metavolcanics	probable over- burden conductor	low
N-39-4	LOW 4+35N	east-west	point anomaly	poor	1600 - 1700 BT	no outcrop, probably gabbro dyke	probable over- burden conductor	low
N-39-5	L7W 6+35N	east-west	point anomaly	fair	1300 - 1400 nT	no outcrop, mafic metavolcanics, metavolcanics	possible over- burden conductor	low
N-39-6	L8W 7+00N L3W 6+85N	east-west	500 dis- continuous	poor - fair	1300 - 1600 nT	no outcrop, probably mafic metavolcanics	probable magne- tite in mafic dyke	low
N-39-7	L6W 7+80N	east-west	point anomaly	poor	1500 - 1600 nT	no outcrop, probably mafic metavolcanics	probable over- burden conductor	low
N-42-1	L5E 1+00S L7E 1+35S	east-west	250 dis- continuous	poor - fair	900 - 1600 nT	no outcrop, probably a mafic dyke	probable over- burden conductor	low
N+42-2	L6E 4+10E	east-west	point anomaly	average	900 - 1100 nT	no outcrop, probably a mafic dyke	probable over- burden conductor	low
N-42-3	LO 4+355	east-west	point anomaly	fair	900 - 1000-nT	no outcrop, probably a mafic dyke	probable bedrock conductor	moderate
N-42-4	L1E 5+658	east-west	point anomaly	poor	1300 nT	no outcrop, probably a mafic dyke	possible over- burden conductor	
N-42-5	LO 6+655 L1E 6+505	east-west	100 dis- continuous	poor - fair	900 - 1300 nT	no outcrop, probably a mafic dyke	probable magne- tite in mafic dyke	low
N-42-6	LO 7+258 L1E 7+158	east-vest	100 dis- continu- ous	poor	1200 - 1600 nT	no outcrop, probably a mafic dyke	probable magne- tite in mafic dyke	low
		1	ļ			1		

Table 2 (Continued)

.

- 25 -

The thick glacial overburden and excessive cultural influence greatly limited the effectiveness of the geophysical surveys. Nevertheless the uniform flat magnetic response suggests a lack of favourable structure and stratigraphy for gold mineralization hence no further work is recommended.

Freehold Parcel N-10

& C. LTD.

Parcel N-10, located in west Currie Township, is accessible from Highway 101 via the township boundary road between Currie and Bond Townships.

Based on geophysical data, N-10 is probably underlain by mafic metavolcanics in the north and intermediate to felsic metavolcanics in the south. The contact between these two units is interpreted to strike east-northeast and the units appear to be steeply-dipping.

Two, 150 to 300 m wide, magnetic highs (1,500 to 1,600 nT) (L3E-6+00N; L8E-2+00N) with flanking magnetic lows (1,100 to 1,200 nT) (L2E-7+00N; L7E-1+00N) about 100 m wide are present in the northwest and southeast portions of the property. The magnetic highs are probably gabbro dykes and the associated magnetic lows may be dipoles related to these dykes. However, the magnetic lows may also represent alteration associated with these dykes and this possibility warrants further investigation.

Four weak to moderate VLF-EM conductors occur in the northeast and southwest corners of the property (Table 2) and these appear to reflect conductive overburden.

- 26 -

An additional 10 unpatented mining claims have been acquired to cover possible extensions of the magnetic lows and it is recommended that a Max-Min II survey be carried out using north-south oriented lines across both N-10 and the newly acquired claims. A more detailed magnetometer survey should also be performed on the areas of magnetic lows on N-10 as well as extending the existing coverage over the newly acquired mining claims.

Freehold Parcels N-11, 40 and 41

B. & C. LTD

Parcels N-11, 40 and 41 are located in southeast Sheraton Township. Access is available from Highway 101, via Gibson Lake Road for 23 km, and then a secondary logging road for a further 3 km.

These blocks are underlain by mafic metavolcanics principally ash and lapilli tuff, as well as probable flows. An 800 m wide ash and lapilli tuff horizon trends east across N-41 and the northern portion of N-11 and 40. The probable mafic flows are restricted to the northern-most portion of N-41 and the southern portion of N-11 and 40. A major, 200 - 500 m wide, geophysically interpreted gabbro dyke occurs along the northern boundary of N-11 and 40. A small exposure of this dyke is present near the northeast corner of N-40. Two phases of gabbro dykes are present in this outcrop as shown by crosscutting relationships. A second gabbro dyke, approximately 300 m wide, trends northeast across the southeast corner of N-40 as shown by a high magnetic relief. Two smaller, 100 m wide, north-trending gabbro dykes occur along the east boundary and are exposed in the northeast corner of N-41.

- 27 -

A north-trending geophysically inferred fault shown by a sharp break in the magnetic pattern near L9E bisects the property. This break extends south from

- 28 -

the gabbro dyke where it is outlined by a large, 300 m wide, low which may reflect alteration associated with this fault. Only limited displacement appears to have occurred along this fault.

Several moderately strong conductors were outlined of which N-41-4 and N-41-9 are the most significant possible bedrock conductors within a mafic metavolcanic sequence. A number of other conductors were also located but these are probably a result of conductive overburden or are associated with gabbro dykes.

Four grab samples were collected from the limited outcrop on N-11, 40 and 41 and these returned low gold values (less than or equal to 10 ppb). However, one of two quartz veins sampled which contained pyrite and chalcopyrite returned 33.3 ppm arsenic, 70 ppm copper, 190 ppm zinc and 1,260 ppm lead. These values require further follow up work to assess their significance.

It is recommended that 16 mining claims be acquired to cover possible extensions of the northwest-trending fault zone and the sulphide-bearing quartz vein. A Max-Min II survey should be carried out using east-west cut lines across both patened and unpatened mining claims to explore the fault zone and the mineralized quartz vein. The magnetometer survey should be extended to the unsurveyed ground and a detailed magnetometer survey should be carried out across the fault zone. Trenching and further geochemical sampling of the sulphide-bearing quartz vein should also be carried out.

Claim block N-12 is located in northeast Sheraton Township and access is available through the use of a township road, lakes and rivers in the area as follows: From Highway 101, travel approximately 2.5 km on Bond Bond Road 1, then follow the Driftwood River west for approximately 1 km. Upon arriving on Moose Lake travel to the southeast end. Finally continue along the Driftwood River towards Sheraton Lake for approximately 6.5 km until the property is reached.

- 29 -

Property N-12 is underlain by mafic ash and lapilli tuff. A large, 200 m wide, geophysically inferred gabbroic dyke trends northeast across the northwest part of the block and is truncated by a north-trending fault which bisects the property. Two, 100 to 150 m wide, north-trending gabbroic dykes shown as magnetic highs crosscut the block. A 100 m wide magnetic low occurs in the northwest corner of the property and could indicate an alteration zone. A second 100 m wide magnetic low occurs just north of the large, 200 m wide gabbro dyke and in close proximity to the north-trending fault. This magnetic low could be either alteration associated with the fault or a dipole of the adjacent magnetic high. A gold occurrence shown on the Ontario Geological Survey Map 2205 occurs approximately 400 m to the east of the property.

Four weak to moderately strong VLF-EM conductors exist but these are either associated with the gabbro dyke or the overburden.

Therefore, it is recommended that nine mining claims be staked to cover possible extensions of the fault and magnetic lows and to include the gold showing to the east. A Max-Min II survey using east-west cut lines should then be carried

3. & C. LTD

DERRY, MICHENER, BOOTH & WAHL

out across both the patented lot and the mining claims. A detailed magnetometer survey should be run across the fault zone and an extended magnetometer survey should be carried out across the additional mining claims. Geological mapping and some geochemical sampling of the mining claims should also be carried out.

- 30 -

Freehold Parcel N-13

Parcel N-13 is located in northeast Sheraton Township. Excellent access is available from Highway 101 via a primary logging road (Gibson Lake Road) for approximately 13 km and then a secondary logging road (Heart Lake Road) for an approximate distance of 0.5 km.

Based on geophysical interpretation, this parcel is probably underlain by two units of metavolcanics; ash and lapilli tuff and probable mafic flows. The contact between these units strikes east-west across the southern portion of the grid and the rocks appear to be steeply dipping. A fault zone (Cross Lake Fault) shown by a truncated magnetic pattern strikes north-northeast across the west half of the parcel. Much of the property is covered by a prominent esker (Frederick House Esker) on which several sand pits have been excavated by a previous operator.

The magnetometer survey shows a complex pattern of sinuous magnetic highs and magnetic lows. The magnetic lows could represent alteration zones associated with gold mineralization in the Timmins camp. The VLF-EM survey outlined four weak conductors which probably reflect conductive overburden. Because of the thick glacial overburden, however, it is unlikely that the VLF-EM survey would detect bedrock conductors.

- 31 -

Geophysical data is incomplete for the area covered by Heart Lake because readings could not be obtained during the summer program.

The possible alteration zones indicated by the sinuous magnetic pattern as well as the major Cross Lake Fault zone warrant further investigation. A Max-Min II survey and a detailed magnetometer survey using east-west cut lines should be carried out across both N-13 and the newly acquired mining claims to follow up these targets.

Freehold Parcels N-14 and 43

Parcels N-14 and 43 are located in southeast Egan Township. Access is available from Highway 101 through the use of primary and secondary logging roads. The Gibson Lake Road is followed from Highway 101 for a distance of approximately 29 km. A secondary logging road is then followed east for an approximate distance of 4.5 km. to a second logging road which is followed north for a further 4.5 km. Finally, a winter logging road is followed to the northwest corner of the property.

N-14 and 43 are underlain by predominantly foliated mafic metavolcanics including a small mafic pyroclastic unit between N-43 and N-14 in the eastern portion of the property. A large 200 - 300 m wide highly magnetic rock unit, probably gabbro dyke, trends east-southeast across the northern half of N-43. This

DERRY, MICHENER, BOOTH & WAHL

unit outcrops with a high level in the northwest and east-central portions of N-43. Two, 200 m wide, north-trending gabbro dykes cut the mafic metavolcanics in the southern half of N-43. Exposures of these dykes indicate that two phases of gabbro exist as shown by inclusions of one phase within the other. These gabbro dykes are not readily apparent from magnetic data because the highly magnetic unit to the north tends to mask the magnetic relief of these intrusives.

- 32 -

Two mineral occurrences, shown on Ontario Geological Survey Map 2205, occur near parcel N-43. The first occurrence, which is to the north of N-43, is an iron-copper showing and the other, which is 2 km to the southwest of N-43, is a gold-molybdenum showing which has been explored by a small shaft.

Ten grab samples of pyrite-bearing mafic metavolcanics and gabbroic dykes on the property were analyzed and all returned low gold (less than or equal to 20 ppb) and arsenic (less than or equal to 1.5 ppm) values.

B. & C. LTD

Numerous elongated (400 to 600 m) magnetic lows occur in the northeast corner of N-14 and these magnetic lows are possible areas of alteration which may host for gold mineralization comparable to that in the Timmins camp. Similar but smaller, 25 m wide, magnetic lows occur sporadically across most of N-14.

Several small, 500 m wide, magnetic lows also exist along the margins of these magnetic highs in N-43 and these lows are probably dipoles of the magnetic highs.

Two, northeasterly-trending fault zones occur within N-43 as shown by sharp breaks in the magnetic pattern on L3E and 6E. The faults cut the highly magnetic rock unit however; only limited displacement appears to have occurred.

Numerous weak to strong VLF-EM conductors occur throughout the property (Table 2). A group of moderate to strong conductors (N-14-1) occurs in the northeast corner of N-14 and the arrangement of these conductors suggests an underlying layered rock unit with conductive lenses which could represent mineralization within alteration zones marked by the series of elongated magnetic lows. An 800 m long weak to strong VLF-EM conductor (N-43-10) occurs just north of the large, highly magnetic rock unit which could reflect possible mineralization. Weak conductors are associated with the inferred fault although the nature of the anomalies is not clear. These conductors may result from conductive clays which have infilled the fault zone or may represent mineralization within the fault. Other weak bedrock conductors appear to be associated with the highly magnetic rock unit or with gabbro dykes.

Fifteen mining claims were staked near the end of the summer program and an additional 8 mining claims should be acquired to the northeast so that all possible extensions of conductors, magnetic lows and favourable rock units can be included. It is also recommended that a Max-Min II survey, using north-south cut lines, be performed across all of the property. In addition the magnetometer survey should be extended to the newly acquired claims and a more detailed survey carried out across the fault zones.

B. & C. LTD.

Freehold Parcels N-15, 45 and 46

Parcels N-15, 45 and 46 are located in central Egan Township and are accessible via a trail from Currie Road 2, 5 km south of Highway 101. This trail is followed southward for an approximate distance of 10 km to the property.

- 34 -

Properties N-15, 45 and 46 are underlain by two phases of felsic to intermediate intrusive rocks, principally syenite and granodiorite, which have been intruded by a series of 100 m wide gabbro dykes. Prospecting of exposed outcrop, amounting to 30% of the total property, did not locate any significant mineralization.

Geophysical surveys were not carried out because of the geologically unfavourable environment for base or precious metal occurrence.

No further work is warranted on these freehold parcels.

Freehold Parcels N-16 and 48

Parcels N-16 and 48 are located in northwest Egan Township and are accessible from Highway 101 through the use of a primary logging road between Bond and Currie townships. This road is followed to the north boundary of the property which is just south of the northern boundary of Egan Township.

The property is probably underlain by mafic metavolcanics which have been intruded by the Bradley Lake Syenite. The contact between the metavolcanics to the west and the syenite to the east appears to strike north-northeast between the two claim blocks.

Several 100 to 300 m wide magnetic highs (3,000 to 4,000 nT) occur to the east of the contact between the metavolcanics and the intrusive, and these magnetic highs may represent migmatites or roof pendants which form a transition zone between the metavolcanics and syenite. Magnetic lows that occur along the margins of the magnetic highs are probably dipoles of these magnetic highs. A moderate anomaly (approximately 1,500 nT) occurs along the west boundary of the property and probably reflects a gabbro dyke.

VLF-EM conductors are generally weak to moderately strong but all appear to be related to conductive overburden, topographic effects, diabase dyke or migmatites.

The thick glacial overburden limited the overall effectiveness of the geophysical surveys. Nevertheless, the eastern portion of the property appears to lack favourable lithologies for base or precious metal mineralization, based on magnetic interpretation. The magnetic survey on the west half of the claims did not outline any potential alteration or fault zones although the area is underlain by mafic metavolcanics. Therefore, it is recommended that no further work be carried out on these parcels.

B. & C. LTD

Freehold Parcels N-17, 18 and 19

Parcels N-17, 18 and 19, located in southeast Bond Township, can be reached from Bond Road 1, 2.5 km south of Highway 101. From there follow the Driftwood River southeast for 1.8 km. Upon arriving at the junction of the Driftwood River and the Little Driftwood River, travel south on the Little Driftwood River for 4.5 km. A trail from the creek leads to the base line of the property.

- 36 -

N-17, 18 and 19 are underlain by mafic metavolcanics which have been intruded by numerous gabbroic dykes. A north-trending, 100 m to 150 m wide, gabbro dyke is present about 200 m east of the west boundary of parcels N-17 and N-18. This gabbro dyke is exposed for 200 m north of the base line and intermittently for 800 m south of the base line. A second 300 m wide magnetic high (5,500 nT), which possibly represents a gabbro dyke, strikes northeast across N-17. A larger magnetic high, or series of highs (2,000 to 4,000 nT), probably representative of a mafic intrusive, is located in the northeast corner of N-18. Two, 300 m wide, magnetic highs (1,500 to 2,000 nT) occur in the south and northeast sections of N-19. Several smaller, 50 to 150 m wide, mafic intrusives are located in the central part of N-18 and the southeast corner of N-19. Magnetic lows typically occur along the margins of these magnetic highs and are probably dipoles of these highs.

A major north-northeast-trending fault zone cuts several of the magnetic highs. The fault is most clearly shown by the magnetic break across the northeast trending 300 m wide gabbro dyke. Only limited displacement appears to have occurred along the fault.

DERRY, MICHENER, BOOTH & WAHL

A 10 m wide east-west trending mineralized shear zone with up to 10% pyrite occurs within the 300 m wide, northeast trending gabbro dyke which is immediately west of the interpreted fault trace. More detailed magnetometer and VLF-EM surveys were carried out across the exposed shear zone in the vicinity of L5+50W at 4+25S. Trenching and sampling across this zone was done by a previous operator but results of this work are not available. Sampling during the summer program at 30 cm intervals across the main trench returned low gold (less than 10 ppb) and arsenic (less than 1.5 ppm) values (Figure 4). Other exposures of mineralized occurrences associated with the gabbro dykes in the property yielded similarly low gold and arsenic values.

Numerous, weak to strong VLF-EM conductors have been outlined on the property (Table 2). Several strong conductors are coincident with the 300 m northeast-trending magnetic high. Conductors N-17-3 and N-17-4 correlated with the surface exposure of the mineralized shear zone and, therefore, this shear zone probably extends much further along strike east and west of the trenched area. Conductor N-17-4 is strongest to the west of the trenched area but appears to weaken to the east as the thickness of the overburden increases. Several other strong conductors outlined elsewhere on the property are probably associated with gabbro dykes. The majority of weak conductors appear to reflect conductive overburden.

The program has been successful in outlining several targets for further follow up work including conductors N-17-3 and N-17-4, the major fault zone inferred from magnetic data and the mineralized shear zone. As a consequence, it is recommended that 14 mining claims be staked where possible to cover extensions of these features. A Max-Min II survey on north-south cut lines and extended

& C. LTD

- 37 -

UNSHEARED GABBRO SHEAR ZONE

UNSHEARED GABBRO

Note: Sample Interval Approximately 30 cm

Scale: 1 cm = 30 cm

FIGURE 4 - SAMPLE LOCATIONS OF THE TRENCH ON PARCEL N-17

B. & C. LTD.

- 38 -

- N-17-20-L - N-17-20

 QV N-17-19 - N-17-20-B

- N-17-20-C - N-17-20-D - N-17-20-E - N-17-20-F - N-17-20-G - N-17-20-H - N-17-20-I - N-17-20-J - N-17-20-K magnetometer coverage should be completed across all patented and unpatented mining claims. A detailed magnetometer survey should also be carried out across the north-northwest trending fault. Further trenching and geochemical sampling of the mineralized shear zone should also be performed to the east and west of the old trench.

Freehold Parcels N-20 and 23

Parcels N-20 and 23 are located in east-central Bond Township and are accessible by the use of a township road, and a lake of the area. From Highway 101, travel approximately 2.5 km on Bond Road 1, then follow the Driftwood River west for approximately 1 km. Upon arrival at Moose Lake travel to the southeast end. The western part of the property extends out into Moose Lake.

N-20 and 23 are underlain by mafic metavolcanics and several gabbroic dykes. A large 400 m wide gabbroic dyke trends east-northeast between the two parcels. One, 200 m wide, north-trending Matachewan diabase dyke is exposed in the southwest corner of N-23 and a second 200 m wide diabase dyke, which is exposed at the northern boundary of N-20, strikes north-northeast across N-20.

VLF conductors range from poor to moderately strong but all are associated with the gabbro dykes or with conductive overburden.

The lack of significant bedrock conductors and possible structural breaks indicates the property has limited potential and, therefore, no further work is recommended on the property.

DERRY, MICHENER, BOOTH & WAHL

Freehold Parcels N-21 and 22

Parcels N-21 and 22 are located in west-central Bond Township. Access is available from Highway 101 through the use of primary and secondary logging roads. The Gibson Lake Road is followed to the June Lake - Round Lake turnoff. A secondary logging road is then followed to the southwest corner of the claim group, a distance of about 4 km.

- 40 -

Bedrock consists of mafic metavolcanics with a large 200 - 600 m wide, geophysically inferred gabbro dyke striking northeast across the northern portion of the claim blocks. Several small probable mafic intrusions are marked by magnetic highs on lines 1E, 4E, 6E, 9E, 11E and 12E. Magnetic lows, along or in close proximity to the margin of the large gabbro dyke, probably represent dipoles related to this dyke.

Four weak to strong conductors have been outlined on the west half of N-22 (Table 2). One weak to strong conductor (N-22-4) with a strike length of 300 m may reflect sulphide mineralization within mafic metavolcanics. Other anomalies are either overburden conductors or associated with the large 200 to 600 m wide gabbro dyke.

A Max-Min II survey, using north-south cut lines, is recommended to test conductor N-22-4.

Parcel N-26 is located in west-central Stock Township. Access is available from Highway 101 by travelling from Shillington along Highway 577 to Concession Road 3. Concession Road 3 is then followed for about 7.5 km at which point a flagged trail leads to the south boundary of the property.

- 41 -

The property is underlain by a sequence of metasediments which occur between the Pipestone Fault to the north and The Destor-Porcupine Fault to the south. A 100 - 150 m wide geophysically interpreted dyke trends northeast across the north section of the property. Approximately 5 km to the south-southwest is the St. Andrews Gold fields (Quebec Sturgeon River Mines) gold deposit.

The magnetometer data shows an overall weak magnetic relief characteristic of metasediments with the exception of a strong anomaly coincident with the 100 - 150 m wide gabbroic dyke.

Four weak to moderately strong VLF-EM conductors have been outlined but all appear to reflect conductive overburden.

Overall, no significant magnetic lows or breaks occur and the VLF-EM survey revealed only overburden conductors. However, the metasediments may host gold mineralization similar to that at Hemlo and it is recommended that an IP survey using north-south cut lines be carried out across the property.

Freehold Parcels N-38 and 39

B. & C. LTD.

Parcels N-38 and 39 are located in northwest Bond Township and just south of the Dester-Porcupine Fault. The recent Pominex discovery is 1 km to the west and the Asarco "Aquarius" deposit lies 6 km to the west. Access is available from Highway 101 through the use of a farm road which originates at the highway just north of the property.

- 42 -

The parcels are underlain by mafic metavolcanics with a large, 350 m wide, northeast trending gabbroic dyke cross-cutting the northern block (N-39). Two smaller possible mafic intrusions are located south of the large gabbroic dyke and a larger felsic intrusion is located north of the 350 m wide gabbroic intrusive. All intrusions have been inferred from geophysics due to a lack of bedrock exposure.

Conductor N-39-6 extends for a length of 500 m and is a possible bedrock conductor. As a result of the recent Pominex discovery, this anomaly warrants investigation. Numerous weak VLF conductors related to overburden effects or associated with mafic intrusions are widespread on the property.

A Max-Min II survey is required to penetrate the thick overburden and distinguish between overburden and bedrock conductors. This survey should be carried out over the northern half of the property, especially in the vicinity of conductor N-39-6.

DERRY, MICHENER, BOOTH & WAHL

Parcel N-42 is located in northeast Sheraton Township and 800 m east of property N-12. Access is available through the use of a township road, lakes and rivers in the area. From Highway 101, travel approximately 2.5 km on Bond Road 1, then follow the Driftwood River west for approximately 1 km. Upon arriving on Moose Lake travel to the southwest end and from there the Driftwood River for about 5.5 km to the southeast end of a small unnamed lake. The northwest corner of the property can be reached by following the adjoining claim lines.

The block is underlain by mafic ash and lapilli tuff which is intruded by a small, 100 m wide, north-striking gabbroic dyke along the western boundary and a larger, 200-300 m wide, gabbroic dyke along the eastern boundary. The small gabbro dyke outcrops in the southwest corner of the property whereas the larger gabbroic dyke is geophysically inferred from a large magnetic high. Except for the one small outcrop, the parcel is completely covered by thick varved clays.

Five weak to moderately strong VLF-EM conductors have been outlined and are related to conductive overburden or magnetite in gabbroic dykes.

Since most conductors are overburden conductors or the result of mafic dykes and no structural breaks exist, mineralization potential appears low. Therefore, no further work is recommended.

& C. LTD.

Parcel N-44 is located in southeast Egan Township. Access is available from Highway 101 from Matheson through the use of a primary logging road leading southwards from town. This road is followed for approximately 15.5 km after which the Carr Creek Road is travelled for about 2 km. A trail is then followed west to the Egan-McCann Township line. This township line leads south to the northeast corner of the property.

- 44 -

The property is underlain by granitic rocks and two large 200 m wide gabbro dykes. These units are extensively exposed in the western portion of the property, whereas the eastern part is covered by thick glacial overburden.

The magnetic highs correspond to the gabbro dykes which trend north along the western half of the property. Isolated magnetic lows are dipoles of these magnetic highs. Areas underlain by granitic rocks typically have a low magnetic relief.

One weak VLF-EM conductor was located and this anomaly is associated with the westernmost mafic dyke, hence is of limited significance.

The property appears to have poor exploration potential based on the lack of conductors and the unfavourable geological environment as much of the area is underlain by granitic rocks.

It is therefore recommended that no further work be carried out on the property.

B. & C. LTD.

Parcel N-47 is located in north-central Egan Township. Access is available through the use of Currie Road 2 for 5 km and a trail for 5.5 km. This trail leads south to the northeast corner of the property.

The property is underlain by the Bradley Lake Syenite and two large, 300 m wide, north-south trending gabbroic dykes marked by prominent magnetic highs. VLF conductors outlined are weak and all appear to be associated with the gabbroic dykes or a result of conductive overburden.

The potential for precious and base metal mineralization on the property is minimal and no further work is recommended.

B. & C. LTD.

Pyke, D. R.; Ayres, L. D.; Innes, D. G.

1970, 1971: Ontario Geological Survey, Map 2205, Timmins - Kirkland Lake Geological Compilation Series; Cochrane, Sudbury and Timiskaming Districts.

Pyke, D. R.

1982: Geology of the Timmins Area, District of Cochrane, Ontario Geological Survey Report 219.

B. & C. LTD.

DERRY, MICHENER, BOOTH & WAHL

REPORT ON RECONNAISSANCE GEOPHYSICAL AND GEOLOGICAL EXPLORATION OF THE STOCK-MCCANN BLOCK, LARDER LAKE AND PORCUPINE MINING DIVISIONS, DISTRICT OF COCHRANE, ONTARIO FOR SHOGRIN MINERALS INC. VOLUME II

Stevens nichobia

S. S. McRoberts, B.Sc.

D. G. Wahl, P.Eng.

hen N. Pearson, Ph.D.

Toronto, Canada March 12, 1984

This report may not be reproduced, in whole or in part, without the written consent of Derry, Michener, Booth & Wahl.

TABLE OF CONTENTS

SUMMARY	
INTRODUCTION	
Figure 1:	Property Location Map
Figure 2:	Claim Map
Table 1:	List of Freehold Parcels and Mining Claims
REGIONAL GEOLOGY	
Figure 3:	Regional Geology
PROPERTY DISCUSSIO	N
Table 2:	Description of VLF-EM Conductors of the Freehold Parcels

Figure 4: Detailed Trench Area, Parcel N-17

B. & C. LTD.

VOLUME I

REFERENCES

Page

(i)

1

3

4

5

7

8

10

11

38

LIST OF MAPS (In Pockets)

Map No.	Grid	Description
100A	N-6, 7, 8, 9	Proton Magnetometer Survey
100B	N-6, 7, 8, 9	VLF-EM 16 Survey, NAA - Cutler, Main
1014	NT 10	
101A 101B	N-10 N-10	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine
101D	N-10	VLF-EM 10 Survey, NAA - Cutter, Mame
102A	N-11, 40, 41	Proton Magnetometer Survey
102B	N-11, 40, 41	VLF-EM 16 Survey, NAA - Cutler, Maine
102C	N-11, 40, 41	Geology
103A	N-12	Proton Magnetometer Survey
103B	N-12 N-12	VLF-EM 16 Survey, NAA - Cutler, Maine
	N-13	Proton Magnetometer Survey
104B	N-13	VLF-EM 16 Survey, NAA - Cutler, Maine
105A	N-17, 18, 19	Proton Magnetometer Survey
105B	N-17, 18, 19	VLF-EM 16 Survey, NAA - Cutler, Maine
105C	N-17, 18, 19	Geology
VOLUME II		
106A	N-21, 22	Proton Magnetometer Survey
106B	N-21, 22	VLF-EM 16 Survey, NAA - Cutler, Maine
	NT 0.0 0.0	
107A 107B	N-20, 23 N-20, 23	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine
107C	N-20, 23	Geology
2010	11 20, 20	асою Б у
108A	N-26	Proton Magnetometer Survey
108B	N-26	VLF-EM 16 Survey, NAA - Cutler, Maine
109A	N-38, 39	Proton Magnetometer Survey
109B	N-38, 39	VLF-EM 16 Survey, NAA - Cutler, Maine
	·	
110A	N-42	Proton Magnetometer Survey
110B	N-42	VLF-EM 16 Survey, NAA - Cutler, Maine
110C	N-42	Geology
111 A	N-14, 43	Proton Magnetometer Survey
111B	N-14, 43	VLF-EM 16 Survey, NAA - Cutler, Maine
111C	N-14, 43	Geology
112A	N-44	Proton Magnetometer Survey
112A 112B	N-44 N-44	VLF-EM 16 Survey, NAA - Cutler, Maine
112C	N-44	Geology
1194	NT 47	Destan Magnatan Gumun
113A 113B	N-47 N-47	Proton Magnetometer Survey VLF-EM 16 Survey, NAA - Cutler, Maine
TTOD	74-21	The survey, where outer, manie
114A	N-16, 48	Proton Magnetometer Survey
114B	N-16, 48	VLF-EM 16 Survey, NAA - Cutler, Maine

DERRY, MICHENER, BOOTH & WAHL

B,D,

DISPOSITION OF CROWN LANDS

TYPE OF DOCUMENT	SYMBOL
PATENT, SURFACE & MINING RIGHTS	•
	0
", MINING RIGHTS ONLY	•
LEASE, SURFACE & MINING RIGHTS	
", SURFACE RIGHTS ONLY	🖪
", MINING RIGHTS ONLY	
LICENCE OF OCCUPATION	▼
ORDER-IN-COUNCIL	00
RESERVATION	🖲
CANCELLED	🛇
SAND & GRAVEL	(6)
NOTE MUMINIC CICUTS IN RADOFIS BATENTED PRI	OR TO MAY 6

NOTE: MINING RIGHTS IN PARCELS PATENTED PRIOR TO MAY 6, 1913, VESTED IN ORIGINAL PATENTEE BY THE PUBLIC LANDS ACT, R.S.O. 1970, CHAP. 380, SEC. 63, SUBSEC 1.

.

,

- ----

4

МР.

–

 \succ

┣---

BEAT

-

in the second second

=**{(**(N))

LEGEND

- 1736 Total magnetic field intensity above local background of 58,000 nT _________Contour interval 25 nT, 50 nT, 100 nT

.

 \oplus

Ð

:

LEGEND

Total magnetic field intensity above local background of 58,000 nT

Contour interval IOO n T, 500 nT, 1000 nT

- 1736

VLF-EM Conductor

MII-7

L-12W

M21-7 W41-1

MGI-T

M91-7

42A10SE8887 63.4226 BOND

320

M6-7

ROI-J

z

· ,

ר-0

SURVEY

PROTON TOMETER

MICHENER, BOOTH

SOC

ž

STOCK

GRID

BOND TWP.

MINERA

HOGRIN

ഗ

42A105E8887 63.4226 BOND

•

M91-7

Ω

Q

Ė

£

MICHENER, BOOTH

.

· · · ·

And the second second second

_____N

7-2E .

7-4E Γ-3E

L-2E

21-7

0-1

32-7

Ξ9-Л

											•			.			0-7
Z 00	N OO	N 00	2 00	z 0	N		Z 0	eline	s O	s 00	S O O	• • 00 S	SOO	soo	s oc	s OO	87 63.4226 BOND
œ	↓ ►	¢	ۍ ب	4 + +	3+0	5+0	0 	Ba	• •	Š	m M	4	ۍ ب	ġ	,	ŵ	42A10SE88

LEGEND

Total magnetic field intensity above local background of 58,000 nT

Contour interval 100 nT, 500 nT, 1000 nT

Well

VLF-EM Conductor

DERRY, MICHENER, BOOTH & WAHL

DWG No

ΙΙΟ Α

	-				
- - -				LEGEND	
-	-	-	I	•	SYMBOLS
_	-		MAFIC INTRUSIVES	br	Breccia
-	-		10 Fine grained diabase	f h	Foliated Hornfels
-				m	Massive
			9 Gabbro	5 QV	Sheared Quartz vein
-	-		8 Matachewan diabase	qs	Quartz stringers
			FELSIC INTRUSIVES	(STS) Cr hs	Carbonate alteration Hematite staining
				py	Pyrite
-			7 Syenite	сру	Chalcopyrite
			6 Granite	· mt	Magnetite
	-		METASEDIMENTS	0	Outcrop
MIXED FOREST	- -	-	5 ¹ Greywacke, siltstone, argillite & minor a	congiomerate	Area of outcrop
· •			HITERMEDIATE TO I METAVOLCANIO		Smali outcrop Subcrop
	-		4		Contact (actual, inferred)
-	-	-	MAFIC METAVOLCANI	ر کی کمبر رس	ہے Fault (defined, approximate,
-	-		3 Matic Pyroclastics	J .	assumed)
			mainly ash tuff, l	opilli tuff	Foliation (strike & dip)
-	-		2 Tholeiitic Basalt a unsubdivided	8	Sample location
	-		b Fe Tholeiitic b	asalt	N Grid#-sample. #
			c Mg Tholeiitic I massive to loca massive to loca	basalt	Inferred from geophysical data
		-			
			I Komatiitic Basalt		
	· · ·		· · ·		
	-			SCALE	
-			Ŷ		200 300
-				METRES	634771
			SHOG	RIN MINER	63.4226 RALS INC.
	J			STOCK - MCCA	
. 11	រ ា ព		D. G. WAHL	SHERATON TWF	C. GRID N-42 C. GRID N-42 APPROVED BY:
	ם ס ז ו	- 1 8 -	D. G. WAHL		D.G. Wahl
		Ľ. L		GEOLO)GY 42-A/7
			POLINCE OF ONTAN		DATE: Jan., 1984
					450 DWG. No.
			19Wh 2	DERRY, MICHENER, B	OOTH & WAHL 110 C

LEGEND

- 1736

Total magnetic field intensity above local background of 58,000 nT

Contour interval IOOnT, 500 nT, 1000 nT

VLF-EM Conductor

SCALE METRES 63.42.26 INC. MINERALS SHOGRIN SURVEY BY. STOCK - M°CANN BLOCK R. HARWOOD DRAWN BY SHERATON TWP. GRID N-13 G.V. / g.m.e.s. APPROVED BY: D. G. WAHL D.WAHL N.T.S. PROTON 42-A/7 MAGNETOMETER SURVEY DATE. SEPT.,1983 DWG. No 500 104 A (Olisel DERRY, MICHENER, BOOTH & WAHL

	. <u>.</u>
	2
	AFIC INT
	Fine gra
9	Gabbro
FI	Matache (felds ELSIC IN
7	Syenite
6	Granite
M	ETASEDIN ¹ Greywad argillite
	TERMED
4	MET
N	AFIC ME
⊻ 2	Mafic I main Tholeiit a u b Fi m c M
	JLTRAMA
	Komati
	[
	0. D.
	.a 🖁
	1 40.00

---- --- -

LEGEND

•

MAFIC INTRUSIVES br Breacia To Fine grained diabase h Honfiels Gabbro s Sheared Gabbro s Sheared Matachewan diabase a Gauntz stringers (fildepor phenorysh) FELSIC INTRUSIVES hs Hematile staining Pyrite cry Chalcopyrite To Symite cry Chalcopyrite Ganite METASEDIMENTS Outerap S ' Greywacks, siltstore, slate, argilitte & minor conglomerate INTERMEDIATE TO FELSIC METAVOLCANICS s Subcrop MAFIC METAVOLCANICS Marke Pyroclastics mainly ash tuff, lapilit tuff Tholeithe basalt massive to locality variabilit ULTRAMAFIC METAVOLCANICS S C A L E Marke Metaly unitability Marke Basalt Marke		•	S	YMBOLS	· · · ·
ID Fine grained diabase Fine grained diabase Fine grained diabase ID Fine grained diabase Nontels ID Gabbro s Sheared ID Gabbro g Quartz stringes ID Grante Controct oiteration ID Grante Magnetite INTERMEDIATE TO FELSIC X Small autorop INTERMEDIATE TO FELSIC Subcrop ID Mafic Metavolcanics ID Fatigut (defined, oproximate,				Dessein	·
ID Fine grained diabase h Hornfels 9 Gobbro s Sherred 9 Gobbro s Sherred 9 Gudrz vein (feldspor phenocrysts) cr Corbonate alteration Hemotite staining 7 Syanite Gpy Chiccopyrite 7 Syanite Cpy Chiccopyrite 8 minor conglomerate argilite & minor conglomerate argilite & minor conglomerate X Small autorop 3 If Greywocks, sittstone, slote, argilite & minor conglomerate X Small autorop 4 Area of outcrop Subcrop 4 Subcrop Contact (actual, inferred) 6 Foliction (strike & dip) Somple iocotion N Grd#-sample.# 7 Tholeitic bosolt Somple iocotion N Grd#-sample.# 8 Stock - McCANN BLOCK Survery gr. S. MaRents 9 Inferred Stock - McCANN BLOCK Survery gr. S. Marents <td>MAFIC INTRUSIVES</td> <td></td> <td></td> <td>-</td> <td></td>	MAFIC INTRUSIVES			-	
10 File ground backet m Mossive Mossive 9 Gabbro s Sheared Quartz stringes 8 Matcchewan diabase qs Quartz stringes Quartz stringes 7 Syshite Carboarde alteration Hemotite stolning Pyrite 7 Syshite Cpy Chalcopyrite Matcchewan diabase 8 Groute m Magnetite Magnetite 8 Groute Contoct alteration Hemotite stolning 7 Syshite Cpy Chalcopyrite 8 Groute mit Magnetite Single 8 Groute Contact (actual, inferred) Area of outcrop 9 Gabbro subcrop Subcrop 4 Contact (actual, inferred) Foult (defined, approximate, assumed) 9 Good to alter (actual, inferred) Foult (actual, inferred) 9 Matic Pyroclostics Subcrop Sample location 1 Matic boolity woriotitic G Inferred from geophysical data 1 Matic boolity woriotitic G Infer			•		
Gobbro Gobbro Gobbro Gobbro Gudztz wein Quartz wein Guarta Suberop Chalcopyrite mt Magnetite METASEDIMENTS Outcrop J Greywocke, siltstone, slote, argilitite & minor conglomerate INTERMEDIATE TO FELSIC METAVOLCANICS Suberop Gottori (actual, inferred) MAFIC METAVOLCANICS suberop Gottoric (actual, inferred) MaFic MetavolcANICS masive to locally variolitic c Mig Tholeitic basolt masive to locally variolitic c Mig Tholeitic basolt masive to locally variolitic ultTRAMAFIC METAVOLCANICS STOCK - McCANN BLOCK Suberop METRES GEOLOGY STOCK - McCANN BLOCK Suberop Geology Matts GEOLOGY STOCK - McCANN BLOCK Suberop Geology Geology STO Joe wain Store Joe wain Joe wain Store Joe wain	10 Fine grained diabase		h		
9 Dublic gv Quartz vein 8 Matachewan diabase (teldpar phenoryste) gs Quartz stringers Carboards alteration 7 Syenite Cpy Chalcopyrite 7 Syenite cpy Chalcopyrite 8 Gartz vein Magnetite 9 System cpy Chalcopyrite 7 Syenite cpy Chalcopyrite 8 Gartz vein mt Magnetite 9 System controp controp 7 Syenite cpy Chalcopyrite 9 Growtes sitistone, slote, mt controp 9 'Greywacke, siltstone, slote, mt controp controp 9 'Greywacke, siltstone, slote, mt Storp Area of outcrop 1 Marce Proclatics subcrop Controct (actual, inferred) 4 Controct (actual, inferred) Sample location Sample location 1 Tholeithic basolt mensive to locally variolitic Stree of the magnetite 2 Marce Marce Stree of the magnetite Stree of the magn			m		
avarative vein (feldspor phenocrysis) gv Quartz vein G Quartz vein G B Matachevior phenocrysis) cr Carbanate alteration FELSIC INTRUSIVES hs Hematite stanning 7 Syenite cr Carbanate alteration 8 Granite mt Magnetite 7 Syenite cr Carbanate alteration 8 Granite mt Magnetite 8 Granite mt Magnetite 9 Outcrop area of outcrop 3 Inferred of outcrop x 9 Marice Proclostics small outcrop 9 Marice Proclostics subcrap 9 mosiny csh turki, tapilit turf Foulit (defined, opproximate, assumet) 9 nossive to locally varialitic G inferred from geophysical data 1 Negretite basalt % SC A L E 200 1 Komatitic Basalt SC A L E 200 300 1 Komatitic Basalt STOCK - McCANN BLOCK Structry graphical data 1 Stock - McCANN BLOCK <t< td=""><td>9 Gabbro</td><td></td><td>\$</td><td></td><td></td></t<>	9 Gabbro		\$		
Image: Second state of the second s			٩v	Quartz vein	
(feldspor phenocrysts) cr Carboarte diteration FELSIC INTRUSIVES hs Hematite staining 7 Syenite cpy Chalcopyrite 8 Granite mt Magnetite 9 Pyrite Chalcopyrite 6 Granite mt Magnetite 9 Greywacke, sittstore, slote, arguille & minor conglomerate Area of outcrop 1 Greywacke, sittstore, slote, arguille & minor conglomerate X area of outcrop 1 Greywacke, sittstore, slote, arguille & minor conglomerate X area of outcrop 1 Marco Pyroclastics S Subcrop 4 Contact (actual, inferred) MAFIC METAVOLCANICS S Subcrop 3 Matic Pyroclastics Fault (defined, approximate, assumed) 7 Tholeitic bosolt % Ar Fault (defined, approximate, assumed) 8 frobetitic bosolt % Grid#-somple.# Fault (defined, approximate, assumed) 1 tocolity variolitic G Inferred from geophysical data 1 tocolity variolitic G Statever Br 1 tocolity variolitic S	8 Matachewan diabase		qs	Quartz stringers	
7 Syenite py Pyrite 7 Syenite cpy Chalcopyrite 8 Granite min Magnetite 8 Granite Outcrop 3 1 Greywacks, sittstone, slote, argillite & minor conglomerate Area of outcrop 5 1 Greywacks, sittstone, slote, argillite & minor conglomerate Area of outcrop 4 Area of outcrop Small outcrop 4 Contact (actual, inferred) METAVOLCANICS 3 Mafic Pyroclastics Subcrop 4 Contact (actual, inferred) 7 Foultifue Basolt Sample location 6 usubdivided Sample location 7 Tholeitifue Basolt Sample location 7 Masive to locally variolitic G 1 Komatiitic Basolt SCALE 0 EGAN TWP, GRID N- 44 Brawn By 0 STOCK - McCANN BLOCK Survery By 0 Stock - McCANN BLOCK Survery By 0 Stock - McCANN BLOCK Survery By 0 GEOLOGY Az-Azrz 0)	cr	Carbonate alteration	
Py Pyrite cpy 7 Syenite 7 Syenite 7 Syenite 8 Granite 8 Granite METASEDIMENTS Outcrop 5 ' Greywocke, siltstore, slote, grigilite & minor conglomerate 1 Smootheast Strate 1 Smootheast Strate Area of outcrop 3 Marce of outcrop 4 Cantact (actual, inferred) MARC METAVOLCANICS Subcrap 3 Maric Pyroclostics massive to locally variolitic 4 Fault (defined, approximate, assumed) 7 Foliotion (strike & dip) 7 Tholeithe basolt 9 Smoothite basolt 9 Scale 9 Scale 9 Scale 1 Komotific basolt 9 Scale 9 Scale 9 Scale 9 Scale 9 Stock – McCANN BLOCK 1 Komotific Basolt 9 Stock – McCANN BLOCK	EELSIC INTRUSIVES		hs	Hematite staining	
7 Sysnite Cholcopyrite 8 Granite Magnetite 9 1 Greywacke, siltstone, slate, argillite & micor conglomerate Area of outcrop 5 1 Greywacke, siltstone, slate, argillite & micor conglomerate Area of outcrop 1 INTERMEDIATE TO FELSIC X Small outcrop 4 Contact (actual, inferred) MAFIC METAVOLCANICS Foult (defined, approximate, assumed) 3 Matic Pyroclastics mininy ash tuff, lapilli tuff Contact (actual, inferred) 2 Tholeitic Bosolt a unsubdivided Sample location N Grid#-sample.# G Matric METAVOLCANICS Inferred from geophysical data a unsubdivided SCALE a u			עם	Pvrite	
Image: Second	T Suppits		-	•	
6 Granite METASEDIMENTS Outcrop 3 ' Greywacke, sittstone, slate, aminor conglomerate Area of outcrop INTERMEDIATE TO FELSIC x Small outcrop 4 Contact (actual, inferred) MAPIC METAVOLCANICS subcrop 3 Maria Pyroclastics mainly ash huff, lapilit huff Fault (defined, approximate, assumed) 2 unsubdivided % 5 Fa Tholeittic basalt % 6 Mg Tholeittic basalt % 7 Read from geophysical data 8 Sch & L E 200 9 Inferred from geophysical data 9 SC A L E 200 9 Inferred from geophysical data 9 Stock – McCANN BLOCK Surver Br 1 Komatitic Basalt Stock – McCANN BLOCK Surver Br 1 Stock – McCANN BLOCK Surver Br Subore 9 GEOLOGY 42-A/7 Data 9 Want Approved Br Drever Br 9 GEOLOGY 42-A/7 Data 9 StP	/ Syenire				1 ·
METASEDIMENTS Outcrop S Greywacke, siltstone, slate, argillite & minor conglomerate INTERMEDIATE TO FELSIC METAVOLCANICS MAFIC METAVOLCANICS MAFIC METAVOLCANICS METAVOLCANICS MAFIC METAVOLCANICS			••••	anagnorro	
METRSLOIMENTS 3 Greywocke, siltstore, slate, argillite & minor conglomerate INTERMEDIATE TO FELSIC Small outcrop MAFIC METAVOLCANICS Subcrop 3 Mafic Pyroclastics 3 Mafic Pyroclastics audititic Baselt Fault (defined, approximate, assumed) 2 Tholeitic baselt a unsubdivided Sample location b Fe Tholeitic baselt Sample location massive to locally variolitic G c Mg Tholeitic Baselt S C A L E 0 Inferred from geophysical data 1 Komathitic Baselt 0 SC A L E 0 Inferred from geophysical data 1 Komathitic Baselt 1 Stock – McCANN BLOCK 1 Komathitic Baselt 1 Stock – McCANN BLOCK	Granite				
METRSLOIMENTS 3 Greywocke, siltstore, slate, argillite & minor conglomerate INTERMEDIATE TO FELSIC Small outcrop MAFIC METAVOLCANICS Subcrop 3 Mafic Pyroclastics 3 Mafic Pyroclastics audititic Baselt Fault (defined, approximate, assumed) 2 Tholeitic baselt a unsubdivided Sample location b Fe Tholeitic baselt Sample location massive to locally variolitic G c Mg Tholeitic Baselt S C A L E 0 Inferred from geophysical data 1 Komathitic Baselt 0 SC A L E 0 Inferred from geophysical data 1 Komathitic Baselt 1 Stock – McCANN BLOCK 1 Komathitic Baselt 1 Stock – McCANN BLOCK				Outeron	
S C A L E Contect (actual, inferred) S C A L E S C A L E Contect (actual, inferred) S C A L E S C A	METASEDIMENTS		\cup	Odiciop	
S C A L E Contect (actual, inferred) S C A L E S C A L E Contect (actual, inferred) S C A L E S C A					
INTERMEDIATE TO FELSIC METAVOLCANICS A MAFIC METAVOLCANICS Mafic Pyroclostics mainly ash tuff, lapilli tuff Contact (actual, inferred) Mafic Pyroclostics mainly ash tuff, lapilli tuff Tholeitric Basalt a unsubdivided b Fe Tholeitric basalt massive to locally variolitic c Mg Tholeitric basalt massive to locally variolitic ULTRAMAFIC METAVOLCANICS I Komatilitic Basalt S C A L E C METRES S C A L E C METRES S C A L E C METRES S C A L E C METRES S C A L E C S C				Area or outcrop	
INTERMEDIATE TO FELSIC METAVOLCANICS MARIC METAVOLCANICS Maric Pyroclastics mainly ash tuff, lapilli tuff Contact (actual, inferred) MARIC METAVOLCANICS Maric Pyroclastics mainly ash tuff, lapilli tuff Contact (actual, inferred) Fault (defined, approximate, assumed) Foliotion (strike B dtp) Foliotion (strike B dtp) Sample location N Grid #-sample. # Sample location N Grid #-sample. # Sample location N Grid #-sample. # Maric MetavolcANICS ULTRAMAFIC METAVOLCANICS Metrees SCALE SCALE SCALE Contact (actual, inferred) Foliotion (strike B dtp) Sample location N Grid #-sample. # Sample location Sample location N Grid #-sample. # Sample location Sample location N Grid #-sample docation N Grid #-sample	argillite & minor cong	lomerate		Omall schemes	
METAVOLCANICS MAFIC METAVOLCANICS MAFIC METAVOLCANICS Mafic Pyroclastics mainly ash tuff, lapilli tuff a unsubdivided b Fe Tholeitific basolt massive to locally variolitic C Mg Tholeitific basolt massive to locally variolitic ULTRAMAFIC METAVOLCANICS I Komatilitic Basolt S C A L E C MG Tholeitific basolt METRES C MG Tholeitific basolt METRES C MG Tholeitific basolt S C A L E C MG Tholeitific basolt METRES C MG Tholeitific basolt METRES C MG Tholeitific basolt METRES C MG Tholeitific basolt C MG Tholeitific basolt METRES C C A L E C C C MCGANN BLOCK SURVEY BY S MORDBERLS INC. SURVEY BY S MORDBERLS INC. SURVEY BY S MORDBERLS INC. C C M C MCGANN BLOCK SURVEY BY S MORDBERLS INC. C C M C MC MC C DRAWN BY C C M C MC MC C DRAWN BY C C M C MC C DRAWN BY C C M C MORDEN C C M C M C C DRAWN BY C C M C M C M C C DRAWN BY C C M C M C M C C DRAWN BY C C M C M C M C C DRAWN BY C C M C M C M C C DRAWN BY C C M C M C M C C DRAWN BY C C M C M C M C C DRAWN BY C C M C M C M C M C C DRAWN BY C C M C M C M C M C M C M C M C M C M C	INTERMEDIATE TO FE	SIC	x	Small outcrop	
4 MAFIC METAVOLCANICS 3 Mefic Pyroclostics mainly ash tuff, lopilli tuff 2 Tholeitic Basalt b Fe Tholeitic basalt massive to locally variolitic c Mg Tholeitic basalt massive to locally variolitic c Mg Tholeitic basalt ULTRAMAFIC METAVOLCANICS 1 Komatilitic Basalt Metrees C3.4226 SHOGRIN MINERALS INC, STOCK-McCANN BLOCK SURVEY BY STOCK-McCANN BLOCK SURVEY BY SURVEY BY SURVEY SURVEY SURVEY BY SURVEY BY SURVE					
MAFIC METAVOLCANICS Mafic Pyroclastics mainly ash tuff, lapilli tuff a unsubdivided b Fe Tholeittic basalt massive to locally variolitic c Mg Tholeittic basalt massive to locally variolitic ULTRAMAFIC METAVOLCANICS 1 Komatiitic Basalt METRES Cantact (defined, approximate, assumed) Foliation (strike & dip) Sample location N Grid#-sample.# Inferred from geophysical data b SCALE 0 METRES C3.4226 SHOGRIN MINERALS INC. STOCK-McCANN BLOCK S. MeRoberts BRAWN BY J. Sedore APPROVED BY D.G. WAHL D.G. WAHL Cantact Strike Cantact Strike Cantact (defined, approximate, assumed) Sample location N Grid#-sample.# Inferred from geophysical data SCALE 0 SCALE SCALE 0 SCALE SCALE 0 SCALE SCALE SCALE SCALE SCALE SCALE	METAVULCANICS		S	Subcrop	
MAFIC METAVOLCANICS Mafic Pyroclastics mainly ash tuff, lapilli tuff a unsubdivided b Fe Tholeittic basalt massive to locally variolitic c Mg Tholeittic basalt massive to locally variolitic ULTRAMAFIC METAVOLCANICS 1 Komatiitic Basalt METRES Cantact (defined, approximate, assumed) Foliation (strike & dip) Sample location N Grid#-sample.# Inferred from geophysical data b SCALE 0 METRES C3.4226 SHOGRIN MINERALS INC. STOCK-McCANN BLOCK S. MeRoberts BRAWN BY J. Sedore APPROVED BY D.G. WAHL D.G. WAHL Cantact Strike Cantact Strike Cantact (defined, approximate, assumed) Sample location N Grid#-sample.# Inferred from geophysical data SCALE 0 SCALE SCALE 0 SCALE SCALE 0 SCALE SCALE SCALE SCALE SCALE SCALE	4		1		
Metic Pyroclastics mainly ash tuff, lapilit tuff 2 Tholeiitic Basalt a unsubdivided b Fe Tholeiitic basalt massive to locally variolitic ULTRAMAFIC METAVOLCANICS 1 Komatilitic Basalt I Komatilitic Basalt S C A L E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			11	Contact (actual, infer	red)
Metic Pyroclastics mainly ash tuff, lapilit tuff 2 Tholeiitic Basalt a unsubdivided b Fe Tholeiitic basalt massive to locally variolitic ULTRAMAFIC METAVOLCANICS 1 Komatilitic Basalt I Komatilitic Basalt S C A L E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MARC METAVOLCANICS		/ /		
3 Mefic Pyroclastics mainly ash tuff, lapilit tuff 2 Tholeiitic Basalt a unsubdivided b Fe Tholeiitic basalt massive to locally variolitic c Mg Tholeiitic basalt massive to locally variolitic ULTRAMAFIC METAVOLCANICS 1 Komatiitic Basalt S C A L E 0 100 200 300 METRES 6 3. 4226 SHOGRIN MINERALS INC. S TOCK - McCANN BLOCK S. MaRberts D. G. WAHL D. G. WAHL D. G. WAHL S C A L E 0 100 200 300 METRES GEOLOGY APPROVED BY D. G. WAHL METRES GEOLOGY APPROVED BY D. G. WAHL METRES GEOLOGY METRES C A L E 0 100 200 300 METRES C A L E 0 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MARIC METROCCARIOS	,	יק א, א	Fault (defined, approx	kimate,
mainly ash tuff, lapilli tuff Foliation (strike & dip) 2 Tholeitric Basalt a unsubdivided Sample location b Fe Tholeitric basalt N Grid#-sample. # massive to locally variolitic Inferred from geophysical data c Mg Tholeitric basalt S C A L E uttrassive to locally variolitic S C A L E uttrassive to locally variolitic METRES 63.42226 SHOGRIN MINERALS INC. Stock – McCANN BLOCK Survey BY Stock – McCANN BLOCK Survey BY Basalt Stock – McCANN BLOCK Basalt GEOLOGY 42-4/7 DATE: Jarres Jarres Stock – McCANN BLOCK Survey BY Survey BY Sedare Approved BY Sedare Jarres Stock – McCANN BLOCK Strate Store GEOLOGY 42-4/7 DATE: Jarres Jarres Jarres Store Store			کر میں کی		
2 Tholeiitic Besolt a unsubdivided b Fe Tholeiitic bosolt mossive to locally variolitic c Mg Tholeiitic basolt massive to locally variolitic ULTRAMAFIC METAVOLCANICS 1 Komatiitic Basolt S C A L E 0 100 200 300 METRES 63.4226 SHOGRIN MINERALS INC. STOCK-McCANN BLOCK S. Maberts S. Maker B. G. WAHL D. G. WAHL C. MARKER GEOLOGY 42.4/7 DATE: Jan. 1984 WE RES		1. 4	_	Editation (strike & du	•)
a unsubdivided b Fe Tholeiitic basalt massive to locally variolitic c Mg Tholeiitic basalt massive to locally variolitic ULTRAMAFIC METAVOLCANICS I Komatiitic Basalt S C A L E 0 100 200 300 METRES 63.4226 SHOGRIN MINERALS INC. STOCK - McCANN BLOCK S MROBERTS S MARDERTS BURVEY BY S MROBERTS BURVEY BY D G WAHL STO D G WAHL STO D G WAHL STO D G WAHL STO D G WAHL STO D G WAHL D G				Fundhun (sinine or og	-1
b Fe Tholeiitic basalt massive to locally variolitic c Mg Tholeiitic basalt massive to locally variolitic ULTRAMAFIC METAVOLCANICS I Nordific Basalt ULTRAMAFIC METAVOLCANICS Komatiitic Basalt S C A L E 0 100 200 300 METRES 63.4226 SHOGRIN MINERALS INC. SURVEY BY STOCK - McCANN BLOCK SURVEY BY S Scale C Stock - McCANN BLOCK SURVEY BY S Scale C Survey BY S Scale S Scale	· - 1			Comple location	
b Fe Thoteitric basalt massive to locally variolitic c Mg Tholeitric basalt ULTRAMAFIC METAVOLCANICS I Komatiitic Basalt S C A L E 0 METRES 63.4226 SHOGRIN MINERALS INC. STOCK-McCANN BLOCK EGAN TWP. GRID N-44 DRAWN BY J. Sedore METRES SURVEY BY S. McRoberts D. G. WAHL D. G. WAHL STOCK-MCCANN BLOCK SURVEY BY S. McRoberts GEOLOGY STOCK - MCCANN BLOCK SURVEY BY S. McRoberts D. G. WAHL STOCK - MCCANN BLOCK SURVEY BY S. McRoberts GEOLOGY STOCK - MCCANN BLOCK D. G. WAHL STOCK - MCCANN BLOCK SURVEY BY S. McRoberts D. G. WAHL STOCK - MCCANN BLOCK SURVEY BY S. MCROBERTS SURVEY BY S. MCROBERTS D. G. WAHL STOCK - MCCANN BLOCK SURVEY BY S. MCROBERTS SURVEY BY S. MC			8		ie #
c Mg Tholeitic basolt massive to locally variolitic ULTRAMAFIC METAVOLCANICS I Komotiitic Basalt METRES					
c Mg Tholeilitic basalt massive to locally varialitic ULTRAMAFIC METAVOLCANICS I Komatiitic Basalt S C A L E 0 100 200 300 METRES	massive to locally	variolitic	G	interred from geophy	sical data
INDESSIVE TO locally variolitic ULTRAMAFIC METAVOLCANICS I Komatiitic Basalt S C A L E 0 100 200 300 METRES 63.4226 SHOGRIN MINERALS INC. SURVEY BY S. MCROBERTS EGAN TWP. GRID N-44 DRAWN BY J. Sedere APPROVED BY D.G. WAHL STP D.G. WAHL S					·
ULTRAMAFIC METAVOLCANICS Mornatiitic Basalt S C A L E 200 300 METRES 63.4226 SHOGRIN MINERALS INC. SURVEY BY S. MCROBERTS EGAN TWP. GRID N-44 J. Sadore APPROVED BY D.G. WAHL STO METRES C. SHOGRIN MINERALS INC. SURVEY BY S. MCROBERTS BARWN BY S. MCROBERTS BCALE SURVEY BY S. MCROBERTS BCALE SURVEY BY D.G. WAHL STO MG. NO. 112 C	•				
Image: start baseling Image: start baseling <td< td=""><td>•</td><td>-</td><td></td><td></td><td></td></td<>	•	-			
Image: start baseling Image: start baseling <td< td=""><td>HI TRAMAFIC METAVO</td><td></td><td></td><td></td><td></td></td<>	HI TRAMAFIC METAVO				
SCALE 100 100 100 100 100 100 100 10					
SCALE 100 100 100 100 100 100 100 10	Komatiitic Basalt				
IDO 200 300 METRES 63.42226 SHOGRIN MINERALS INC. STOCK - MCCANN BLOCK SURVEY BY S. McRoberts DRAWN BY D. G. WAHL D. G. WAHL Stoces					
IDO 200 300 METRES 63.42226 SHOGRIN MINERALS INC. STOCK - MCCANN BLOCK SURVEY BY S. McRoberts DRAWN BY D. G. WAHL D. G. WAHL Stoces	•				
IDO 200 300 METRES 63.42226 SHOGRIN MINERALS INC. STOCK - MCCANN BLOCK SURVEY BY S. McRoberts DRAWN BY D. G. WAHL D. G. WAHL Stoces			SCALE		
METRES 63.4226 SHOGRIN MINERALS INC. SURVEY BY S. MORDBETS EGAN TWP. GRID N-44 D. G. WAHL D. G. WAHL STOCK - MCCANN BLOCK EGAN TWP. GRID N-44 Store APPROVED BY D. G. WAHL STO D. G. WAHL STO STO STO STO STO STO STO STO	0	100		200	300
BADGRIN MINERALS INC. STOCK - McCANN BLOCK SURVEY BY S. MoRoberts D. G. WAHL D. G. WAHL Batter GEOLOGY STO DWG. No. DWG. No. DWG. No.					
BADGRIN MINERALS INC. STOCK - McCANN BLOCK SURVEY BY S. MoRoberts D. G. WAHL D. G. WAHL Batter GEOLOGY STO DWG. No. DWG. No. DWG. No.			METRES		
SHOGRIN MINERALS INC. STOCK - McCANN BLOCK SURVEY BY S. McRoberts S. McRoberts D. G. WAHL EGAN TWP. GRID N-44 DRAWN BY J. Sedore APPROVED BY D. G. WAHL GEOLOGY 42-A/7 DATE: Jan., 1984 DWG. No. DWG. No.			ing rited	<i>)</i>	
SHOGRIN MINERALS INC. STOCK - McCANN BLOCK SURVEY BY S. McRoberts S. McRoberts D. G. WAHL EGAN TWP. GRID N-44 DRAWN BY J. Sedore APPROVED BY D. G. WAHL GEOLOGY 42-A/7 DATE: Jan., 1984 DWG. No. DWG. No.				63.4	226
STOCK - McCANN BLOCK SURVEY BY S. McRoberts D. G. WAHL EGAN TWP. GRID N-44 DRAWN BY J. Sedore B. GEOLOGY APPROVED BY D.G. WAHL B. GEOLOGY 42-A/7 DATE: Jan., 1984 DWG. No. B. G. W. AND STOCK		- <u>,</u> ,,,			
STOCK - McCANN BLOCK SURVEY BY S. McRoberts D. G. WAHL EGAN TWP. GRID N-44 DRAWN BY J. Sedore B. GEOLOGY APPROVED BY D.G. WAHL B. GEOLOGY 42-A/7 DATE: Jan., 1984 DWG. No. B. G. W. AND STOCK	SHUC SHUC	RIN	MINF	RALS IN	C .
GEOLOGY M.T.S. 42-A/7 DATE: Jan., 1984 DWG. No. 112 C		• • • • •			
GEOLOGY M.T.S. 42-A/7 DATE: Jan., 1984 DWG. No. 112 C	1 01	CTC			
GEOLOGY M.T.S. 42-A/7 DATE: Jan., 1984 DWG. No. 112 C		510			S. McRoberts
GEOLOGY M.T.S. 42-A/7 DATE: Jan., 1984 DWG. No. 112 C	S CONAL		CAN THE O		DRAWN BY
GEOLOGY M.T.S. 42-A/7 DATE: Jan., 1984 DWG. No. 112 C		E	JAN LWP. G		J. Sedore
GEOLOGY M.T.S. 42-A/7 DATE: Jan., 1984 DWG. No. 112 C		· · · · · · · · · · · · · · · · · · ·	<u> </u>	·	APPROVED BY
GEOLOGY M.T.S. 42-A/7 DATE: Jan., 1984 DWG. No. 112 C	D. G. WAHL				
GEOLOGY 42-A/7 DATE: Jan., 1984 DWG. No. 112 C					
DATE: Jan., 1984 DWG. No. 112 C			GEOL	OGY	
Jan., 1984 550 DWG. No. 112 C	White and Okine				
550 DWG. No.		l			
310 112 0	ľ				
Swell DERRY, MICHENER, BOOTH & WAHL 112 C		1		550	DWG. No.
KYWERK DERRY, MICHENER, BUUTH & WARE I'L C	101.10				1112 C
	KURK	DERRI, N		BUUIN O WANL	

.

300 METRES SHOGRIN MINERALS INC. SURVEY BY

	STOCK-MCCANN BLOCK	SURVET BY J.NIKIFORUK
ALLO PROFILES (ON RY PE	EGAN TWP., GRID N-47	ORAWN BY g.m.e.s.
D. G. WAHL		APPROVED BY D.G. Wahl
· · · · · /	VLF-EM I6 SURVEY	NTS 42-A/7
A DATE OF OFTING	NAA CUTLER, MAINE 17-8 kHz	DATE AUG., 1983
194 - L	590	DWG No
942/2	DERRY, MICHENER, BOOTH & WAHL	113 B

 ${\rm E}_{\rm eff}$

