010

```
        REPORT
        O N
        GRID A
        MAGNETOMETER AND ELECTROMAGNETIC SURVEYS
        STOCK TOWNSHIP
        DISTRICT OF COCHRANE
        PORCUPINE MINING DIVISION
            ONTARIO
```


November 21, 1980

Mr. J. A. Harquail
President
Surveymin Limited
330 Bay Street
Suite 1107
Toronto, Ontario
M5H 2S8

Dear Mr. Harquail:
Submitted herewith is our report entitled:
GRID A

MAGNETOMETER AND ELECTROMAGNETIC SURVEYS
 STOCK TOWNSHIP
 DISTRICT OF COCHRANE PORCUPINE MINING DIVISION ONTARIO

The Pipestone Fault zone was further defined during the course of the ground geophysical surveys. Magnetically, the fault zone is characterized by the sharp magnetic susceptibility contrast exhibited by the two adjacent rock units, the metasediments to the south and the metavolcanics and gabbroic rocks to the north. Conductivity along the fault zone is generally unremarkable.

In light of the proven structural significance of the Pipestone fault System as a known channel way for gold bearing mineralizing solutions, it is recommended that additional ground geophysical investigations be carried out in the vicinity of the Pipestone Fault in order to further define the magnetically inferred location of the fault. The ground geophysics would consist of several selected I.P. profiles carried out across the fault zone in an attempt to define possible disseminated sulfide zones (<5\% sulfides). The ground geophysics will be followed up by detailed section diamond drilling along the fault trace.

The following geophysical report details the results of the ground magnetometer and electromagnetic surveys undertaken by W. G. Wahl Limited on behalf of Surveymin Limited.

The property is situated in the northwest corner of Stock Township, District of Cochrane, and is accessible by truck south from the village of Monteith or north from the village of Shillingdon on Highway 577, then east on a concession road between Concession V and $V I$, a distance of 6 km , to the claim group.

The Stock Township property consists of the following twenty unpatented mining claims, all of which have been duly recorded with Mr. E. Craig, Mining Recorder, Porcupine Mining Division.

Clergue Twp

(2 inches to 1 mile)

LINE CUTTING

The line cutting was conducted under the direct supervision of Mr. Gordon McIntosh, Timmins, Ontario, during the period from September 22,1979 to September 28, 1979. The survey grid consisted of 1.21 miles of baseline trending 80° and 13.78 miles of grid line trending 170° on the northern block, and 0.45 miles of baseline trending $E-W$ and 1.72 miles of grid line trending $N-S$ on the southwest block. All grid lines were established at four hundred foot intervals along the entire baseline. One hundred foot stations were established on all lines.

MAGNETOMETER SURVEY
The magnetometer survey was carried out by R. Harwood of W. G. Wahl Limited during the period from August 26 to September 1, 1980, employing a Scintrex MP-2 total field proton precession magnetometer in conjunction with a Scintrex MBS-2 total field magnetic base station attached to a Simpson M2750 strip chart recorder.

The magnetic data was observed at a 50 foot station interval on all lines of the established grid. The data was
corrected for diurnal fluctuations, reduced to a local datum and presented as a contoured interpretation of these data.

MAXMIN II HORIZONTAL LOOP ELECTROMAGNETIC SURVEY
The horizontal loop electromagnetic survey was carried out by Mr. J. Palladini of W. G. Wahl Limited during the period from August 26 to September 1, 1980, employing an Apex Parametrics MaxMin II horizontal loop survey unit in the maximum coupled mode. The inphase and quadrature response parameters were recorded at 444 Hz and 1777 Hz utilizing a 600 foot coil separation and a 100 foot station interval. These data are presented in profile form.

DISCUSSION
The ground magnetometer survey extended and further defined the regional geology as mapped by the Ontario Division of Mines and presented on Map No. 2205.

The Pipestone Fault, believed to transect the central portion of the property, was mapped at $3+00 \mathrm{~N}$ on line 0 through to $5+50 \mathrm{~S}$ on line 64 W in the northern block and line $20+00 \mathrm{~W}$ at $12+50 \mathrm{~N}$ and $24+00 \mathrm{~W}$ at $11+00 \mathrm{~N}$ in the southwestern block, trending approximately $\mathrm{N} 80^{\circ} \mathrm{E}$.

The fault zone itself is defined by the sharp magnetic susceptibility contrast exhibited by the metasediments mapped south of the fault zone and by the intermediate to mafic metavolcanic sequence mapped north of the fault zone. The meta-
sediments are characterized by low uniform magnetic relief in the range of $250-450 \mathrm{nT}$ which is in sharp contrast to the $450-800 n T$ associated with the metavolcanic sequence. Lying with the metavolcanic sequence are several major lenticular magnetic expressions of up to $3,000 \mathrm{nT}$, all of which are thought to be the mappable expression of metamorphosed mafic rocks, possibly gabbro or diorite intrusive bodies.

The electromagnetic survey identified three anomalous conductive zones, two of which are classified as cultural anomalies, ie. anomalies whose causative bodies are man-made.

Conductor $\mathrm{C}-1$:

Conductor $C-1$ transects the southern portion of both the north block and the southwest block, and identifies a buried section of the Trans-Canada Pipeline.

Conductor $\mathrm{C}-2$:

Conductor c-2 lies roughly parallel to and 3,500 feet north of Conductor C-1 from lines 0 through 28W, then swings southwesterly to line $24+00 \mathrm{~W}$ in the southwest block, at a point 1,000 feet north of the baseline. This is the mappable expression of a power transmission line.

Conductor C-3:

Conductor $\mathrm{C}-3$ is located on line 4 W at $8+50 \mathrm{~N}$ and line 8 W at $8+50 \mathrm{~N}$ and has been interpreted to be a bedrock rise.

The Pipestone Fault zone was further defined during the course of the ground geophysical surveys. Magnetically, the fault zone is characterized by the sharp magnetic susceptibility contrast exhibited by the two adjacent rock units, the metasediments to the south and the metavolcanics and gabbroic rocks to the north. Conductivity along the fault zone is generally unremarkable.

RECOMMENDATIONS

In light of the proven structural significance of the Pipestone Fault System as a known channel way for gold bearing mineralizing solutions, it is recommended that additional ground geophysical investigations be carried out in the vicinity of the Pipestone Fault in order to further define the magnetically inferred location of the fault. The ground geophysics would consist of several selected I.P. profiles carried out across the fault zone in an attempt to define possible disseminated sulfide zones (<5\% sulfides). The ground geophysics will be followed up by detailed section diamond drilling along the fault trace.

All of which is respectfully submitted.
ncerely yours, W. G. WAHL LIMITED
D. G. Wahl, P.Eng. Consulting Engineer

Type of Survey (s) Geofuystcha
Township or Area Stock Tewnsule

Claim Holders) Surveqnoun Lingered

Total Miles of Line Cut \qquad 17.17 mi.

SPECIAL PROVISIONS		DAYS CREDITS REQUESTED
CRE claim		

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

Magnetometer \qquad Electromagnetic \qquad Radiometric

Res. Geol. Qualifications 63.0829

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey
Number of Stations MAG-1813 MAXMin-818 Number of Readings MAG-1813 MAXMNN K14Hz-1636 Station interval MAG - 50 fl ; MAXMN-100ff Line spacing Le oft.
Profile scale $1 i n=50 \%$
Contour interval 100 at

Instrument
Scintacx \qquad
Accuracy - Scale constant \quad - $<a\rceil$
Diurnal correction method Relative time interpolation based on strip chary
Base Station check-in interval (hours)_SerneteEx Mes 5-2 Sing
Base Station location and value Alselioc - grid line intercepts were stazdaidized to base station recording

Instrument ApEx PRPQneturcs MAxMIN IT
Coil configuration Co- planar, maximum coupled mode
Coil separation 600 At
Accuracy
\qquad

Method:
\square Fixed transmitterShoot back

In line
Parallel line
Frequency

Parameters measured In phase and Qut-ot phase

Instrument \qquad
Scale constant
Corrections made \qquad
\qquad
Base station value and location \qquad

Elevation accuracy

Instrument \qquad
Method \square Time Domain Frequency Domain
Parameters - On time Frequency

- Off time \qquad Range
\qquad
- Delay time
- Integration time \qquad
Power
Electrode array
Electrode spacing
Type of electrode

