

42A105W0209 63.4116 B0

010

om 81-5-C-139 63.4116

REPORT ON 1982 DIAMOND DRILLING

PROGRAMME

MACKLEM AND BOND TOWNSHIPS PROPERTY,

ONTARIO, FOR

GOLDEIDT EXPLORATIONS INC.

DERRY, MICHENER, BOOTH & WAHL

R.E. Kouldidge

R. E. Routledge, B.Sc., M.Sc. (applied) F.G.A.C.

December 1, 1982 Toronto, Ontario

-

]

Ì

4

đ

1

B. A.C. LTD.

This report may not be reproduced, in whole or in part, without the written permission of Derry, Michener, Booth & Wahl.

,

TABLL

E and

]

1

1

8. 4 C. LTD.

Ø10C

1

!,

		1			
					Page
INTRODUCTION	COMMENDATION	NS			(i)
					1
PROPERTY, LOCATI	ON AND ACCES	55			1
Figure 1 -	Location of Ge Macklem & Bo	oldeidt Exploratio nd Townships Pro	ns Inc. Operty	After	Page 1
Figure 2 -	Location of Cl Macklem & Bo	aims and Propert nd Townships Pro	y Owners perty	hip After	Page 1
GENERAL GEOLOGY	AND PREVIOU	S WORK			2
1982 DRILL PROGRA	MME				-
Figure 3 -	Location of Dia TCD-82-01 to (Macklem & Bor	amond Drill Holes)3 nd Townships Prop	3 Derty	After	Page 3
RESULTS OF THE 198	2 DRILL PROG	RAMME	• .		h
Volcanic Stratic Mineralization Assay Results	graphy of the D	rill Area		•	4
CONCLUSIONS					5
BIBLIOGRAPHY					6
					7
	100		•		
		ENDICES			
APPENDIX A - DIAN	10ND DRILL L(DGS			•
AFFEINDIX B - CERT	IFICATES OF A	NALYSIS			
	V	MAPS	•		
Map 1 - Geologic: Scale 1"	al Compilation = 1/4 mile		·	In Map F	ocket
Section 1 - Diamond Scale 1"	Drill Section = 40 ft.		с	In Map P	ocket

nemous another and

B. & C. LTO

A total of 1,551 ft. of BQ diamond drilling in three holes was completed between October 11th and November 3rd, 1982 on patented claim P23055 of the Goldeidt Explorations Inc. Macklem and Bond Townships Property, Ontario. Of this, 974 ft. was cored in bedrock and 326.6 ft. was split and assayed for gold.

(i)

Drilling intersected a sequence of vertical to steeply-south dipping, thin metavolcanic flows of dominantly calc-alkaline composition. These are field termed andesites and dacites with smaller amounts of more mafic rocks including andesitebasalt and basalt (tholeiitic). Although green in colour, indicative of low grade metamorphic alteration, these rocks are quite fresh and primary volcanic structures are readily recognizable. Weak to intense post-metamorphic fracturing has occurred in two stages and fractures are filled by white, barren quartz and calcite. Pillow selvages are mineralized by pyrite which is coarsely recrystallized where quartzcalcite veinlets cross-cut pillow selvages. Quartz-calcite veinlets in fractures and mineralized selvages were examined and assayed for gold. Free gold was not observed in any of the core and assays were correspondingly not encouraging with values ranging from nil to 0.02 Au oz./ton.

As expressed in an earlier DMBW report on the property, the volcanic rocks on the property and underlying the drill area appear to correlate to the Watabeag calc-alkalic and tholeiitic volcanic complex to the east rather than the older and more favourable Deloro and Tisdale Groups of calc-alkaline and komatiitic volcanics east of Nighthawk Lake and north of the Porcupine-Destor Fault. Hence, the volcanic sequence in the area drilled does not have high potential for gold occurrences

(ii)

when viewed in the context of favourable bedrock environments of the Porcupine camp.

From the results of a 1982 drilling programme, it is concluded that the bedrock source of anomalous gold disclosed in glacial drift of 1982 overburden drill holes TC-82-08 and TC-82-09 lies further north of the area diamond drilled.

In order to further follow-up the significant gold anomalies in the overburden, additional overburden drilling to the east and north of overburden holes TC-82-07, 08 and 09 is recommended to attempt to trace the east flank of the gold dispersal train (if present) northwards to source. Continued diamond drilling to test the stratigraphy for gold occurrences north of the three holes completed in the 1982 diamond drilling programme is also recommended. These two phases of additional exploration would cost approximately \$100,000 and will provide additional information essential in locating the bedrock source of the gold dispersal train. This bedrock source is believed to lie between the diabase dyke located along the north property boundary and the area of 1982 drilling investigations (Map 1).

8. 8. C. LTD.

The second second

-

INTRODUCTION

B. & C. LTD.

From October 11th to November 3rd, 1982, Derry, Michener, Booth & Wahi carried out a three hole - 1,551 ft. BQ diamond drilling programme on patented claim P23055 of the Macklem and Bond Townships property of Goldeidt Explorations Inc.

- 1 -

The programme was implemented, under the direction of Mr. R.E. Routledge of DMBW, Toronto, to test for the bedrock source of gold geochemical anomalies in basal overburden of reverse circulation rotary overburden drill holes TC-82-08 and TC-82-09 completed in an earlier programme in 1982.

PROPERTY, LOCATION AND ACCESS - Figures 1 and 2

(NTS 42A7 and A10; longitude 80°47'30W - 80°54'30W; latitude 48°28'25N - 48°37'30N)

The property consists of 187 contiguous unpatented mining claims acquired directly by the company through staking and 9 patented claims held under option.

The claims are located 35 air km east-southeast of Timmins, Ontario in central Macklem and west-central Bond Townships, Porcupine Mining Division, District of Cochrane. Regularly scheduled commercial airline service is available at Timmins.

The claim group is accessible by all-weather highway #101 and the Gibson Lake road which departs south from the highway 38 km east of Timmins and traverses the east half of the property. Three kilometers south of the highway a bush road

0 100 200 MILES 0 300 KILOMETRES

- 2 -

leads east of the former Miller Paving Pit 1 1/2 km to the drill site located in a north-central portion of the property.

GENERAL GEOLOGY AND PREVIOUS WORK

Regional mapping by the Ontario Ministry of Natural Resources and Ontario Geological Survey is published in Leahy (1971) and Pyke and others (1973). Geology, exploration prior to 1982 and gold mining potential of the Goldeidt property is available in detail in Routledge and Thompson (1982) filed with the Ontario Securities Commission. Routledge (1982) reports on the reverse circulation rotary overburden drilling programme carried out in the drill area during August 1982.

The drill area is blanketed by glacial overburden to depths of 176 ft. The area is located in the northeast portion of the Goldeidt property and previous to the 1982 diamond drilling programme, the underlying bedrock was known only from reverse circulation rotary drilled bedrock intersections and interpretation from regional aeromagnetic surveys and recently completed ground proton precession magnetometer surveys. This data, and mapping on a regional scale, indicates the area is underlain by calc-alkaline and tholeiitic volcanics.

1982 DRILL PROGRAMME

B. & C. LTD

Ĩ,

The objective of the drill programme was to test for the presence of gold mineralization in bedrock and to gain information on the volcanic stratigraphy for

- 3 -

a distance of about 800 ft. up-ice to the north-northwest of overburden hole 8 (Figure 3).

Drilling was subcontracted to Heath & Sherwood Drilling of Kirkland Lake, Ontario. The BBS 17A drill, John Deere 450C tractor and ancilliary pumps and equipment was mobilized on October 12th and demobilized on November 1st, 1982.

Drill operations commenced October 14th and were shut down on October 30th, 1982. The first hole required seven days to complete because of difficult coring in broken bedrock caused by the weathering out of carbonate in fractures oriented subparallel to the dip of the hole. Drilling the remaining two holes proceeded without delay.

B. & C. LTD.

Holes TCD-82-01, TCD-82-02 and TCD-82-03 were collared at step outs of 233 ft. and 243 ft. on section oriented 325° Az and drilled 325° to 330° at initial dip angles of -47° to -48°. Hole 1 was spotted so as to intersect bedrock at the bottom of anomalous overburden hole TCD-82-08 and was drilled to 527 ft. Hole 2, drilled to 507 ft., penetrated bedrock at the bottom of overburden hole TCD-82-07 vertically above the termination point of diamond drill hole 1. Similarly hole 3, 517 ft., was positioned to intersect bedrock vertically above the end of diamond drill hole 2. Drill logs are attached in Appendix A.

A total of 974 ft. of BQ coring was completed of which 326.6 ft. was split and delivered for assay at Swastika Laboratories Ltd., Swastika, Ontario. At the Company's request drill core was stored at the residence of Michael Pickens (Geoex Ltd.) at Kamiskotia, Ontario.

RESULTS OF THE 1982 DRILL PROGRAMME

Volcanic Stratigraphy of the Drill Area

Drilling intersected a sequence of thin, steeply south-dipping to vertical metavolcanic flows of calc-alkaline to tholeiltic affinity. Rocks were field identified as dominantly pillowed and amygdaloidal andesite and dacite with lesser amounts of more mafic andesite to basalt and basalt. The volcanics appear to be undeformed; however, weak regional metamorphism is evident in the slight carbonate alteration of andesite-basalt and basalt and in the saussuritization of feldspars which has imparted a green hue to the rock. Primary volcanic structures such as basal-flow accumulation of phenocrysts, autobrecciation and flow top brecciation, pillow selvages, variolites and amygdales are all readily recognizable. Individual flows are as thin as several feet and since tops are down hole, they young to the north and are overturned. As expected from the thinness of individual flows in relation to their steep dip and the comparatively wide drill hole spacing, it is not feasible to correlate individual flows and rock types between holes as these are likely discontinuous both vertically and horizontally.

Along with minor faulting, weak to intense post-metamorphic fracturing has occurred in two stages: one at 40° to 60° to core axis and a later set at 10° to 30° to core axis. Fractures are filled in the center by white, barren quartz and walled by white calcite. Deep surface weathering of fractures has occurred to 290 ft. and core breakage along fractures subparallel to the dip of the hole caused considerable drilling problems in hole #1. In the regional stratigraphic sense, the calc-alkaline to tholeiitic volcanics in the drill area appear to correlate with the volcanics of the Watabeag volcanic complex lying to the east of the drill area rather than to the more favourable and older Deloro and Tisdale Group komatilitic to calc-alkaline volcanics comprising the Shaw Dome west of Nighthawk Lake and found north of the Porcupine-Destor Fault.

Mineralization

A C. LTD

Pillow selvages are mineralized by finely disseminated to coarse aggregates of cubic pyrite which is recrystallized and included in quartz-calcite veins where these vein-fracture fillings intersect pillow selvages. Traces of chalcopyrite were also observed in two such intersections. Fine pyrite also occurs weakly disseminated less than 1% in the matrix of all rock types.

Intervals of mineralized core which were assayed contained: zones of high fracture density and quartz-calcite filling, individual quartz-calcite veins greater than 5 mm in thickness, abundant pyrite in pillow selvages and the intersection of quartz-calcite veins and pyritic pillow selvages. These zones were assayed under the premise that even though free gold was not observed in the core, trace amounts of free gold could occur in the quartz-calcite veining or be bound in the pyrite of pillow selvages.

Assay Results (Appendix B)

Assays were mostly nil and ranged up to 0.02 Au oz./ton. These values are not encouraging and were anticipated for this type of mineralization. Gold values ranging from 0.002 to 0.02 Au oz./ton (62 to 622 ppb) in fresh core account for the several slightly elevated background levels up to 25 ppb Au yielded by weathered bedrock intersected and analyzed in overburden drill holes.

- 6 -

CONCLUSIONS

B. & C. LTD.

100

From the type of mineralization encountered in drilling, the unfavourable volcanics of the drill area and the correspondingly discouraging assay results, it is concluded that the bedrock of the drill area has no economic gold potential and the trace amount of gold in the quartz-calcite veinlets and in the volcanics cannot account for the significant gold anomalies disclosed in the basal overburden of overburden drill hole TC-82-08 and TC-82-09 located in the diamond drilling area and immediately to the south. The bedrock source of these gold anomalies must therefore lie further north of the area drilled and is still considered to lie up-ice in the area between the diabase dyke at the north property boundary and the areas drilled in 1982.

Respectfully submitted,

KE Pratice GE

DERRY, MICHENER, BOOTH & WAHL

R.E. Routledge, B.Sc., M.Sc. (applied) F.G.A.C.

December 1, 1982 Toronto, Ontario

BIBLIOGRAPHY

- 7 -

Leahy, E.J.

- 1969: Macklem Township, District of Cochrane; O.D.M. Prelim. Geol. Map P.546, scale 1:15,840.
- 1971: Geology of the Night Hawk Lake area, District of Cochrane; Ontario Dept. Mines and Northern Affairs, Geol. Rept. 96, 74 pp, Map 2222, scale 1:31,680.

Pyke, D.R.; Ayres, L.D., and Innes, D.G.

1973: Timmins-Kirkland Lake Geological Compilation Series, Cochrane, Sudbury and Timiskaming districts; Ontario Div. Mines Map 2205, scale 1:253,440.

Routledge, R.E.

B. & C. LTD.

1982: Report on 1982 reverse circulation rotary drilling programme - Macklem Township, Goldeidt Explorations Inc., 18 p.

Routledge, R.E. and Thompson, I.S. (Derry, Michener, Booth & Wahl)

1982: Report on Macklem and Bond Townships Property, Timmins, Ontario of Goldeidt Explorations Inc.; Ontario Securities Commission Rept., 45 p.

۔ • •		DERRY, MICHENER	R, BOOTH	5 WAHI	<u> </u>	•	•		HOLEN	lo. TCD	-82-01	
D-ORDS:	13+97E/	/27+42N DIAMOND D	RILL RECO	RD			PROPERTY		Goldeid	lt Explo	rations	Inc
ZIMUTH:	330°		·	c Sharway			LOCATION		Mackler	Townsh	ip. Ont	ario
		DRILL TYPE & SIZE: Boyles-BBS-1	7A Heath	& Sherwon					Ostahov	- 14th.	1982	· · · · · · · · · · · · · · · · · · ·
<u> </u>	4/	BQ - WITEIII					DATE STAP	TED:	October	- 21et.	1982	
EVATION:	Datum	- 7° DIP TESTS: 205° etched	60° - act	ual 53}			DATE COM	V.	Detober	Poutled	10	
······		527° etched	61° - act	ual 54 3	<u>/4°</u>		DATELOG	GED:	<u>Retobe</u>	r 21 - 22	1982	
ENGTH:	527.0'			·			ical and	malv i	n overbu	rden.		
ECTION:	<u>325°</u>	tion porthwest of overburden hole T	C-82-08 f	or source	of Au	geochei	IICar and					
URPOSE:	Test s	tratigraphic section nor envoye		500	TAGE	1	Au					
FOOT		DESCRIPTION	SAMPLE No.	from	to	LENGT	Oz./T					ويترجع والمتحدي
from 1	10	DESCRIPTION										
0 197.0 204.0	197.0 204.0 221.0	Overburden. B-tricone into bedrock; 204.0'-207.0' BX standard core, weathered andesite-basalt. Porphyritic mafic metavolcanic-basalt; apparently			•							
		subhedral saussuritized plagioclase phenocrysts less than 1 mm up to 10%-15% and 1%-2% 1 to 1 mm amphibole phenocrysts (actinolite or hornblende) with epidote altered halos in a greenish-gray aphanitic matrix. Strongly fractured (blocky- broken core) and faulted with chlorite and epidote gouge and breccia zones 15°-25° to c.a.							0	<i>n</i> 8	1-5-	4-
		<pre>210.0' - 1-2 mm fracture partially occupied by pyrite in anhedral masses and 1 mm cubes. 213.0'-221.0' - pervasive saussuritization. 221.0' - core fresher, more siliceous.</pre>							00	63	4116	
221.0	287.6	Intermediate metavolcanic-andesite; similar to above but less altered. Close spaced thin fractures epidote altered with vuggy walls 55° to core axis (c.a.) at 222.0'.								1	1 of	8

1. A. 1. A.

Ŧ

				SAMPLE	FOOT	AGE	LENGTH	Au	ţ				
ſ	FOOT	AGE	DESCRIPTION	No.:	from	to		Oz./T	ļ		 		
· · · •	from	to]		1	{			
·			and an aniour opidate alteration.							ł		. · · '	
	· ·		225.0' - green colour, epidote articlation,		,	·						I	
· · }			locally fadiating i Zhu Zololoo oli i					•	· ·				
			Variolitic and anyugioldul										
			225.1'-233.0' - epidote and zeolite: lilleu						1 ·				
			fault, vuggy, curvipianar						[
			parallel shears 20 to the planes.	1		1.							
		1 1	Dlack chlorite on slip planet	1					1			1	
			228.2'-231.2' - brecciated with 4 min queres	ļ									
1													1
			200 71 - mager 3 mm fracture with enhedral		1								
			guartz crystals on vug walls and	1					1				
			epidote alteration.								1		
			245.0', 248.0', 250.0', 262.0'-264.0', 267.0'-					1	.				
			275.0' - fractured broken core.		1						1	1	
			257.2' - weathered open fractures 40°-45° to c.a.										1
•			offset by opposing fractures 15°-25°	1									
			to c.a.	1				· · ·					
1			264.0'-268.0' - longitudinal fracture parallel	1									
			to c.a.										
· · · ·			268.0' - zoisite-quartz crystallization in vug,			ļ						1.	
			fault plane, 45° to c.a.										
			268.0'+ - finer grained, less saussuritization			1			· ·				
			of feldspar, no amphibole phenocrysts										4
ant an The state	· ·		and slightly harder and slilceous.										
	la de la companya de		287.6' - colour change to lighter apple green	1									
			and very fine porphyritic of micro										
•			porphyritic texture with iterio			1		14 ¹⁵			-		
			phenocryst in hard, grass uptain one					e 🖡 🖓					
			Matrix, contract broken about of										
			C.d.										
			The metavolcanic-andesite;										
	287.6	296.2	Intermediate metavolotimo										
			293.5' - silicified and epidote altered 0.2'	1 .									
			wide fault 50° to c.a. Minor				1						
			brecciation and tension cross-				1	1					
	4		fractures in fault zone.						·				
	ł	-		la la companya da serie de la companya d				1					
		× L							1				
	I						i						

.

· · ·

· · .

750

15

-

÷.,

٠

		<u> </u>	DESCRIPTION	SAMPLE	FOOT	TAGE to	LENGTH	Au Oz./T		•			4
FC			DESCRIPTION	110									
		294.8' 295.0'	 1-5 mm open fractures 50° and cross- cutting 5° to c.a. -295.5' - silicified, epidote and chlorite altered vuggy, brecciated curviplanar fault 40° to c.a. Fractured and altered to 296.0' with patchy epidote alteration 		•				-				
296.2	2 36	.0 Intern light and an amygda and r Plagio 40°-5 and c	nediate metavolcanic-andesite/dacite; apple-greenish gray, apparently massive phanitic fabric with quartz (chalcedony) ales some of which contain pyrite centres ims and epidote altered irregular margins. oclase variolites locally, fractures 5° to c.a. some of which are bleached ut by later 10° fractures.										
		304.0 296.7	-311.0' - broken core. -297.5', 318.5' - quartz-epidote alteration brecciation and vuggy.	, 1101	329.2	331.3	3 2.1	Nil			-		
		320.0 329.2	<pre>broken core. 2'-331.3' - brecciated, vuggy bull white, barren quartz-carbonate vein, abundant chloritic-altered inclusions of wall rock from 330.8' to 331.3', core broken to 334.0', fractured, vuggy</pre>										
			and epidote altered to 335.2'. Lineation of amydales and alteration shaddows 45° to c.a. with possible indication of formational dip.										
		343. 344.	6' - serpentinized slip, 20° to c.a. 6'-347.2' - shear 15° to c.a., patchy epidote alteration with possible flow contact at 347.2' at 50°	1102	344.	6 347.	2 2.6	0.002					
			to c.a. Clear quartz breccia fragments 1 mm to 1 cm and irregular quartz-carbonate veining 3-4 mm thick at 345.1'-										

T	DESCRIPTION	SAMPLE No.:	FOOT	AGE to	LENGTH	Au Oz./T	 	 	 .
FOOTAGE from to	DESCRIPTION 354.0'-368.0' - pillowed andesite dacite. 350.6', 351.1' - banding and silicification of fractures 45° to c.a. 351.1', 351.9' - broken clear quartz-carbonate vein, 2 mm wide 40° to c.a. and silicified thin tension fractures 85°-90° to c.a. 353.0' - 2°-5° pyrite cubes to 3 mm developed in pillow selvage adjacent to quartz- calcite vein. 354.0' - 4 mm quartz-carbonate vein 30° to c.a. 355.5' - 2-4 mm quartz-carbonate vein cutting pillow selvage 25° to c.a. 358.3' - 1 cm quartz-carbonate vein, 30° to c.a. 359.4'-360.2' - pillow selvage and 1-3 mm quartz-carbonate vein 10° to c.a. 361.3' - 2 mm quartz-carbonate vein 35° to c.a. 363.0' - 2 mm quartz-carbonate vein 8° to c.a.	No: 1103 1104 1105 1106 1107 1108	352.7 354.7 356.3 357.6 358.9 362.0	354.7 356.3 357.6 358.9 362.0 366.0	2.0 1.6 1.3 1.3 2.1 4.0	Nil Nil Nil Nil O.002 Nil			
369.0 390.6	extends 361.5' to 363.5. 363.5'-366.0' - hair-width quartz-carbonate vein 10°-45° to c.a. 369.0' - amydaloidal. <u>Intermediate metavolcanic-andesite</u> ; equigranular aphanitic, light greenish-gray, apparently massive fabric, similar in colour to above unit, abundant hair-width fractures 30°-55° to c.a. cut by 10° fractures to 387.5'.	.s 1109 1110 1111 1112	369.6 374.6 379.6 384.6	374.6 379.6 384.6 388.0	5.0 5.0 5.0 3.4	Nil Nil Nil Nil			
	<pre>378.5'-386.7' - 5% to 1-2 mm amygdales. 375.0'-375.3' - barren, white quartz-carbonate vein with irregular contacts. 375.9'-376.8' - epidote alteration and 2-3 mm clear quartz-carbonate veinlet and silicification 25° to c.a.</pre>								

.

1 .

FOOT from	AGE to	DESCRIPTION	SAMPLE No.:	FOO1 from	AGE to	LENGTH	Au Oz./T			
390.6	422.0	Intermediate metavolcanic-dacite; light apple-green, aphanitic equigranular, siliceous and hard. Lineation by quartz filled amygdales 40° to c.a.				•				
		<pre>389.6'-392.9' - flow breccia, epidote alteration and clear quartz carbonate vein, 30° to c.a. 395.0' - flow contact 45°-50° to c.a. 395.5'-396.4' - cumulus porphyry texture with plagioclase phenocrysts in base of flow gradational to aphanitic equigranular. Same dacite lithology.</pre>								
		Quartz carbonate veinlets 1-4 mm thick at 396.4', 396.7', 403.5' at 20° to c.a., 404.0', 405.5' at 80° to c.a., 406.3' at 30° to c.a., 410.0' fractures with carbonate fillings and rare fine pyrite, 410.3'.		•			•			
	•	<pre>412.0' - 0.2' band of epidote-silica alteration</pre>	1113	410.0	417.0	7.0	Nil			
422.0	445.9	Porphyritic mafic metavolcanic basalt; porphyritic to porphyry texture to 442.6'; white plagioclase phenocrysts 1-1 mm. Ophitic texture from 438.7' to 442.6' and grain size slightly coarser but still aphanitic except for ophitic plagioclase plates up to 5 mm - sharp textural change to equigranular aphanitic 30° to c.a. at 442.6'. Quartz-carbonate veins 427.9', 30° to c.a., 428.0' 4 mm thick 25° to c.a., 430.2', 431.6', 431.8', 432.9', 433.8', 436.6', 437.5', 439.2', 440.4', 440.7', 440.9', 442.0', 443.0', 443.3'.	1114 1115 1116	427.5 437.0 440.5	429.5 440.5 443.5	2.0 3.5 3.0	Nil 0.002 Nil			
		445.9' - thin, sharp flow contact 25° to c.a., textural change from aphanitic equigranular to porphyritic, tops down hole.	8		•					

÷,

SHEET No : 5 of 8

.

FOOT	AGE	DESCRIPTION	SAMPLE No.:	FOOT from	AGE to	LENGTH	Au Oz./T		 	 	
445.9	482.4	Pillowed mafic to intermediate metavolcanic-basalt; same as above, porphyry ophitic texture to 453.0' then gradational to aphanitic equigranular fabric, abundant primary gas vuggs filled with con- centrically zoned quartz (chalcedony) and pillowed from 456.0'. Pyrite rims and occasional centres in larger vugs. Silicification and pyrite aggregates and cubes developed in dark pillow selvages 0.1 to 0.2' wide are common.		•				•			
		<pre>446.0'-447.0' - broken core. Quartz carbonate veins at: 449.3' 1 mm 30° to c.a., 450.6' 1 mm 25° to c.a., 456.6'-456.9' selvage-clear quartz and coarse pyrite, 457.2' 4 mm quartz carbonate vein 25° to c.a., 459.6' 5 mm quartz vein 40° to c.a., 461.3' 1 cm vein 20° to c.a. and silicified shears 40°-45° to c.a., 463.4', 5 mm vein 25° to c.a., 464.4'-465.4' discontinuous 1 cm vein 80° to c.a. cross-cuts pyritized and silicified selvage, 467.7'-468.3' converging veins 25° and 10° to c.a., 470.5' 5 mm vein at 45° to c.a., 472.1', 473.0'-474.7' pyrite blebs in pillow selvage, 476.3'-476.6 vein in selvage zone 30° to c.a., 478.4' 4 mm vein 45° to c.a. cutting selvage, 479.4'-481.7' (converging) veining 20°-25° to c.a. and 3 mm vein subparallel to c.a., 482.1' 2 mm vein 35° to c.a. 482.4' - flow contact, top to base down hole, sharp with banded lower chill zone 55° to c.a.</pre>	1117 1118 1119 1120 1121 1121 1122 1123 1124 1125 1126 1127 1128 1129	456.5 489.3 461.7 463.0 464.0 464.0 483.0 483.0 487.5 493.0 498.0 503.0 508.0 513.0	459.3 461.7 463.0 464.0 466.0 466.0 487.5 493.0 498.0 503.0 508.0 513.0 519.5	2.8 2.4 1.3 1.0 2.0 5.0 4.5 5.5 5.0 5.0 5.0 5.0 5.0 6.5	0.002 Nil Nil 0.002 Nil 0.002 Nil 0.002 Nil 0.005 Nil Nil Nil Nil				
482.4	524.9	<u>Pillowed mafic metavolcanic-basalt; medium</u> greenish-gray, apparently massive, and very fine grained to aphanitic. Locally finely porphyritic with white plagioclase phenocrysts less than 0.1 mm. Irregular clear quartz amydales developed in short sections, black banded selvages generally 80° to perpendicular to c.a. and about									

SHEET No. 6 of 8

FOOT	AGE	DESCRIPTION	SAMPLE No.:	FOOT from	AGE to	LENGTH	Au Oz./T	 	 	
trom		0.1' thick. Pyrite, finely disseminated less than 1% in the slightly carbonated matrix is medium to coarsely crystallized in pillow selvages or fractured with numerous quartz- carbonate veinlets of hair to 1 cm widths.	.	•						
		<pre>505.4'-506.1' - flow breccia, green very fine to aphanitic basalt in dark glassy matrix. 512.0'-514.3' - 8%-10% fine plagioclase lath- phenocrysts. 513.3'-513.8' - flow breccia. 520.3' - selvage and porphyry texture</pre>								
		developed 0.4' on pillow walls. 520.3' - thin dark siliceous primary flow banding 50° to c.a.								
		Quartz-carbonate veinlets:- 483.3'-483.9' - 5 mm veins 10° and 25° to c.a. 484.2' - pyrite in selvage. 487.5'-489.5' - 3 mm to 1 cm veins subparallel to C.a.		•						
		489.8' - pinching vein 4 mm, 15° to c.a. 491.6' - 1 cm vein, 40° to c.a. 492.6' - 1 mm, 30° to c.a. 493.8'-496.2' - 2 veins 1 cm thick 45° to c.a. and irregular discontinuous								
		veins subparallel to c.a. 498.0'-499.2' - same with hair veins, 10° to c.a. 499.2' - 8 mm at 40° to c.a. 507.0' - irregular patches, hair veinlets								
		parallel to c.a. 507.7', 507.9' - hair-width veins 25° and 30° to c.a. 508.4' - 2 mm veins 50° to c.a. cut selvage.						•		•
		508.8'-509.4' - hair veins and patches, same at 510.3'-510.7'. 514.7' - 1 cm translucent white vein and 2-5 mm alteration on lower wall.			•			-		
		and subparallel to c.a.								

÷.

÷ .

from	TAGE	DESCRIPTION	No.:	from	to	LENGTH	Oz./T		 	 l · ·
524.9	527.0	524.9' - sharp contact and colour change 18° to c.a. Intermediate metavolcanic-dacite; light apple green mottled colour with quartz	÷					· · · ·		
		amygdales and fine amphibole and quartz aggregates as phenocrysts, fine primary banding 50° to c.a.								
		525.8' - quartz-carbonate veinlet 20° to c.a.								
	527.0	END OF HOLE								
				·						

τ.

CO-ORDS:	12+90E	/29+62N	DERRY, MICHENER, B	OOTH RECOR	<u>ε wah</u> D				· ·	HOLE	No.	D-82-02	2
ZIMUTH:	330°				•		•	PROPERT	Y:	Golde	idt Expl	oration	is Inc
IP:	-47°	DRILI. TYPE &	SIZE: Boyles BBS-17A					LOCATIO	N:	Mackl	em Towns	hip, Or	itario
LEVATION:	Datum	+ 12' DIP TESTS:	BQ Wireline		2010			DATE STA	ATED:		er 23rd, er 26th	1952	
	507.0'		207 etch 60 ; a	CLUAL	<u> </u>		. <u> </u>	LOGGED DATE LOG	BY: GGED:	<u> </u>	Routled	.ge	
URPOSE:	Test f	or source of Au geochemical anomaly	TC-82	-07 and	l to nor	thwest.	· · · · · · · · · · · · · · · · · · ·						
FOOT.	AGE	DESCRIPTION	SAMI	PLE	FOOT froin 1	AGE to	LENGTH	Au Oz./T					
0 192.0	191.0 234.0	Overburden; casing to 192.0', bed and blocky to 230.0'. Intermediate metavolcanic-andesit grey, very fine grained to aphani and apparently massive. Locally to variolitic and amygdaloidal. 2 cm epidote alteration bands 45° Fractures, subparallel to 80° to c weathered out to vuggy, weathered moderate to intense weathering to Fresh rock light apple greenish g hair-width 5 mm fractures filled calcite with minor pyrite develop and in adjacent wall rock. Fract orientation 40°-80° to c.a. cross set subparallel to 10° to c.a. to irregular network. Few gas vugs concentric-accretion zoned clear (chalcedony). 233.6'-237.1' - mottled core - fl and sharp but ind at 234.2' 40° to	rock broken e; greenish- tic equigranular porphyritic Thin 5 mm to to c.a. a. are out amygdales - 223.0'. ray with with quartz- bed on walls ture-vein -cut by later o form an filled with quartz to breccia distinct contact c.a.			· · ·							
	-												

· · · · · · · · · · ·

...

		DESCRIPTION	SAMPLE No.:	FOOT from	AGE to	LENGTH	Au Oz./T		 	 	-
FO from 234.0	277.7	Pillowed intermediate metavolcanic-andesite- dacite; same as above more siliceous and hard. Abundant guartz-calcite veins with a density of about 1/ft. oriented 30° to 70° to c.a. and	1154 1155 1158 1157	245.0 253.5 267.0 270.5	247.0 256.0 268.0 272.0	2.0 2.5 1.5 1.5	Nil Nil Nil Nil				
		cut by thin veinlets subparallel to 10°-20° to cut by thin veinlets subparallel to 10°-20° to c.a., mostly barrren. Veinlets average 2-5 mm, a few 1-2 cm widths. Occasional epidote-silica alteration in dark bands at pillow selvages 65°-90° to c.a. accompanied by minor fine pyrite									
		<pre>disseminations. 239.7' - 0.2' accretionary white, clear quartz- epidote and purplish mineral (zeolite) as primary gas vug filling. 277.7' - colour change, sharp contact 45° to c.a. offset by 1 mm quartz-carbonate filled</pre>									
277.	.7 331.1	Intermediate to mafic metavolcanic-andesite- basalt; greenish gray, apparently massive aphanitic equigranular with chlorite and carbonate alteration of matrix. Disseminated fine pyrite cubes in matrix less than 1%.									
		Quartz-carbonate verming thicker as $\frac{1}{2}$ -1 cm barren veins. 277.7'-284.0' - finely porphyritic with $\frac{1}{2}$ -1 mm fine anhedral plagioclase phenocrysts up to 5%. 277.7'-279.4' - mottled flow breccia. 279.4'-279.6' - cross-cutting quartz-calcite veinlets disseminated fine pyrite cubes in quartz and accregates and patchy brecciation	1156 1130 1143 1144 1145 1131 1132 m 1133	277.0 279.0 280.0 287.0 292.0 285.3 309.0 314.0	279. 280. 285. 292. 297. 287. 311. 315. 302	0 2.0 0 1.0 3 5.3 0 5.0 0 5.0 0 5.0 0 2.0 .0 2.0 .0 1.0 0 5.0	Nil Nil Nil Nil 0.000 Nil 0.000 Nil 0.000 Nil	2			
		aggregates and patent of wall rock. 285.8'-286.5' - 2 cm white quartz-calcite vein, silicification and development of pyrite in patches of quartz along fractures from 285.3' to 286.8'.	1146 1147 1148 1149	297.0 302.0 307.0 311.0) 307) 309) 314	.0 5. .0 2. .0 3.	0 Nil 0 Nil 0 Nil				

SHEET No.:

-			SAMPLE	FOOT	AGE	LENGT	H Oz.	/T					1	• •
		DESCRIPTION	No.:	trom		+								
FOOTAG	to	210 5' - 1 cm quartz-calcite vein 25° to c.a.		•										
		and 3-4 mm pyrite cubes on term, 314.1'-314.6' - 2 cm quartz-calcite vein, wall rock inclusions.	-	•										
		<pre>321.5'-327.0' - pillowed. 331.4'-332.3' - flow breccia and contact zone, sharp contact at 332.1', carbonate alteration on hanging wall.</pre>												
31.1	337.9	Pillowed mafic metavolcanic-basalt; slightly lighter green, massive, equigranular and												
		aphanitic. 334.2'-336.3' - quartz-carbonate vein subparalle to c.a., pyrite cubes in wall rock, trace chalcopyrite.	1									E		
		337.0'-338.0' - silicification, rehealed brecciation and contact zone, upper contact brecciated, lower contact sharp 20° to c.a.												
		with 3%-8% pyrite developed in breccia.	1150	315.) 32) 32	0.0 5 5.0 5	.0	Nil Nil						
337 . 9	439.4	Intermediate metavoicanic-andonation light apple green apparently massive, aphanitic and equigranular with a very weakly carbonated matrix. Silica filled amygdales developed 28-58. Pillowed with local pillow margin cilicification and pyritization.	1151 1152 1153 1135 1134	325. 330. 333. 337.	0 33 C 33 9 33 0 33	0.0 5 3.9 3 7.0 3 8.5 1	.0 .9 .1 .5	NII Nil Nil Nil						
		brecciation, silication not well developed Quartz-carbonate veining not well developed veinlets less than 1/ft. 339.9'-340.9' - quartz-calcite veinlets trunca by late thin veinlet/fracture in aillow breccia zone, minor	ated 1136	338	.5 3	43.0	4.5	Nil						•
		at pillow bitter pyrite in selvage and late cross fractures.												
										SHE	ET NO.:	3 of 5		ı

•			SAMPLE	FOOT	AGE	LENGTH	Au				
FOOT	AGE	DESCRIPTION	No.:	from	10		Oz./T	 	 		•
trom	10	 341.0'-342.1' - 1 cm quartz-calcite vein 15° to c.a. cuts parallel to selvage. 344.6' - barren quartz-calcite veinlet 33° to c.a. 		•							
		<pre>372.0'-378.0' - larger pillow sizes of pilloward less well developed. 378.0'-385.0' - flow brecciation/pillow breccia fractured and rehealed with silica. 425.2'-425.3' - dark green gray sill (?) with pyroxene-actinolite phenocrysts, 45° to c.a. with sharp but irregular contacts.</pre>									
		<pre>435.2'-439.2' - Ifactured and Fondation silica. Quartz-calcite veinlets:- 376.3' - 5 mm veinlets cuts pillow selvage at 25° to c.a.</pre>			•			•			
		<pre>377.1' - 4 mm veinlet 25° to c.a. 387.1' - 4 mm veinlet 25° to c.a. 388.0' - 5 mm veinlet 20° to c.a. cross-cuts 3 mm at 30° to c.a. 399.1' - 4 mm veinlet at 40° to c.a.</pre>									
		<pre>399.5' - 1 cm veinlet at 30° to c.a. and pyrice cubes on vein wall. 399.9' - 2 mm veinlet at 30° to c.a. 425.6' - 1 cm veinlet at 20° to c.a. 431.7' - 5 mm veinlet at 35° to c.a. and 2 mm weinlet at 85° to c.a.</pre>									
		433.6' - three 1 cm veinlets at 80° to c.a. 434.2'-434.7' - 3 veinlets 2-4 cm with pyrite cubes in wall rock.	1137	431.5	435.	0 3.5	N11			an a	
439.4	440.5	Intermediate metavolcanic-andesite or altered dacite; contacts marked by 1 cm quartz-calcite veins, upper contact at 40° to c.a., lower contact at 30° to c.a. Quartz-calcite veinlets with finely disseminated pyrite at 440.0'.	1138 1139 1140	439.2 440.9 443.7	440. 443. 446.	9 1.7 7 2.8 6 2.9	0.002 Nil				

SHEET No:

.

-----SHEE | MO.

H

-

i	•		• • .						н	JLE No			
•			SAMPLE	FOOT	AGE	LENGTH	Au Oz./T						
5007/	AGE	DESCRIPTION	No.:	from	10		02.7 -	1					
440.5	to 447.5	<u>Pillowed, amygdaloidal intermediate metavolcanic- dacite; light apple green, aphanitic equigranular</u> with well developed pyritized pillow selvages and silicified fractures with minor pyrite developed.			•								
:43.7	447.1	Intermediate to mafic metavolcanic-andesite- basalt sill or darker coloured flow; upper contact broken, lower contact sharp 60° to c.a. 443.7'-446.9' - brecciation, silicification and white quartz veining at 444.8' to 445.2', thin quartz carbonate veins from 445.2' to lower contact.											
447.1	507.0	Amygdaloidal, pillowed intermediate metavolcanic dacite; 451.0', 452.8', 453.5', 455.0' - pillow selvages with 5%-25% disseminated pyrite and silica filled vug at 455.2'.	1141	451.0	455.	5 4.5 0 1.3	Nil 0.00	95					
		462.8'-463.9' - pillow margin breccla, silicification and white quartz calcite veins 35°-40° to c.a. Quartz-calcite veins (larger than hair-width fractures):-											
		483.2' - 8 mm veinlet at 30° to c.a. 489.0' - 1 cm pinching veinlets at 30° to c.a. 492.9' - 1.3 cm veinlet at 35° to c.a. 495.8' - 2-5 mm at 30° to c.a. 499.0' - 5 mm veinlet at 55° to c.a.											
		485.0'-505.0' - massive flow, no pillows, amygdales or brecciation, possibly andesite composition, slightly darker green but no contacts observed.											
	507	END OF HOLE									5	of 5	

τ.

SHEET No.:

1.145.3

والمرغ يحدثون والم

CO-ORDS:	11+48E/	<u>/31+67N</u> DIAM	OND DRILL REC	ORD		•		· · ·	HOL	E No. TC	D-82-03	}		
AZIMUTH:	325°		• . •				PROPER	rY:	Gold	Goldeidt Explorations Inc.				
DIP:	-48°	DRILL TYPE & SIZE: Boyles	BBS 17A	· · · · · · · · · · · · · · · · · · ·		•	LOCATIC	N:	Mack	Macklem Township, Ontario				
		BO wir	e line "											
ELEVATION:	Datum +	13' DIP TESTS:	· · · · ·				DATE ST	ARTED:	Octol	ber 27th	, 1982			
		197' e	tched 574° -	actual 50	0		DATE CO	MPLETED	Octo	ber 30th	, 1982			
LENGTH:	. 517:0'						LOGGED	BY:	R. E	R. E. Routledge				
SECTION:							DATE LO	GGED:	Oct.	31st - 1	Nov. 1s	t, 1987		
PURPOSE:	<u>Test fc</u>	or source of Au geochemical anomalies in overbur	den northwest	of overt	ourden h	ole TC-	82-07.			······································				
FOOT	AGE	DESCRIPTION	SAMPLE	FOC	TAGE	LENGTH	Au	T				<u> </u>		
from	to		<u>No.</u>	from	to		0z./T	<u> </u>			<u></u>			
0	176.0	Overburden; N standard drilled to 181.2', broken bedrock and weathered with vugs in veinlets to 210'.												
176.0	182.3	Intermediate metavolcanic-andesite-dacite; light greenish gray, hard, apparently massive and aphanitic equigranular. Primary flow or fractures silica healed. Sharp flow contact 182.3' 30° to c.a., tops downhole.	at											
		181.2'-181.6' - white quartz-calcite vein parallel to core, breccia and broken.												
182.3	222.7	Pillowed intermediate metavolcanic-andesite; dark apple green at contact grading to light apple green at 185'. Apparently massive, aphanitic equigranular. Locally porphyritic												
		with acicular laths of white plagioclase less than 15% at 185'. Variolite/amygdales alteration locally; brecciation resealed by silica at pillow margins and cubic pyrite												
		developed in selvages 1%-5%. Hair-width to 1 cm quartz-calcite veinlets 40°-55° to c.a. Later cross-cutting veinlets 20°-30° to c.a. Most appear to be fracture fillings and zoned												
		with calcite on walls centered by quartz. Veining density less than 1/ft.												

SHEET No 4 UL 3

FOOT from	AGE to	DESCRIPTION	SAMPLE No.:	FOO from	AGE to	LENGTH	Au Oz./T]	
		Quartz-calcite veinlets (greater than 5 mm):-												
		182.6'-183.3' - 6 mm veinlets 35° to c.a. cut	1160	181.2	183.0	1.8	0.002							- 11
		by 5 mm veinlets subparallel to	1159	183.0	185.0	2.0	0.002							
		208.2' - 1 cm veinlets 35° to c.a. cuts pillow												.1
		selvage.	1161	207.5	209.0	1.5	0.02							i
		211.6' - 5 mm veinlets 45° to c.a. 217.2'-223.7' - fractured and silicified -	1162	210.7	212.0	1.3	0.002							i
		carbonated on fractures.	1163	217.2	223.0	5.8	0.002		1 1					İ
		223.6'-224.3' - 4 cm white quartz veinlets	1164	223.0	225.0	2.0	Nil							
		at contact.												
000 T	242.0												1.1	
223.7	240.9	Porphyritic intermediate metavolcanic-dacite; light, slightly green tinged gray apparently												
		massive, hard, porphyritic fabric. Phenocrysts						·-						à
		of subhedral plagioclase 1-2 mm up to 1% and					- -							
		1%-2% in gray aphanitic siliceous matrix.												
		Pyrite less than 1% finely disseminated in	•		•									
		matrix.				• •	-				ŀ			
		239.4' - irregular flow contact about 50° to	1165	239.4	241.0	1.6	Nil							H
		239.4'-241.0' - silicification and contact					•							1
		at 240.9', 50° to c.a.												5
240.8	311.0	Pillowed, amygdaloidal intermediate metavolcanic-						-						i X
		dacite; light apple green aphanitic, massive.			-			• •						1
		Minor disseminated pyrite in matrix and local brecciation of pillow margins. Inclusion of			•						1.1		х. Х	
		porphyritic dacite at 248.0' indicating a												
		younger flow and tops downhole.												•
		255.0'-262.0' - flow breccia section, possibly	1166	245.1	245.9	0.8	Nil							
		a thin flow. 284.0'-287.0' - silicification and massive	1167	255.2	257.0	1.8	0.002				1.1	• 1.1		
n an		pyrite developed at pillowed	1169	262.0	267.0	5.0	Nil							
		selvages, 284.4', 286.6 -	1170	204.0	207 7					. .				
		raurted with quartz-carcite veinlets.	11/0	284.0	281.1	3.7	0.005		•					
	:						·							

=

SHEET No .: 2 of 5

SHEET No. 4 OI 5

torian Ar ¥ torian						· · · · ·	-	· · · · ·	*****	 		1
FOOT	AGE I to	DESCRIPTION	SAMPLE No.:	FOOT from	TAGE to	LENGTH	Au Oz./T					
		302.0' - silicification and feldspar development at pillow selvage.										
ļ	•	White quartz-calcite veinlets:-										
		245.5' - 2 veinlets 2 cm thick at 60° to c.a. 255.2'-256.5' - flow breccia and irregular 3-6 mm veinlets 10° to c.a. 258.9' - veinlets subparallel to c.a.			t.							
		261.8' - patch of quartz-calcite.										
		262.0'-267.0' - veinlets filling fractures. 298.2'-299.2' - clear vein, 2 mm to 1 cm subparallel to c.a.	1171	298.0	302.2	4.2	Nil					
		300.5' - irregular mass at selvage with aggregated pyrite cubes.										
		311.0' - sharp but indistinct sillcifled contact at flow top breccia 55° to c.a.								-		
					-							
311.0	350.4	Intermediate metavolcanic-andesite; slightly darker greenish gray than dacite, massive, aphanitic and equigranular with few quartz- calcite veinlets 20°-25° to c.a virtually unfractured.										
		348.0'-350.4' - amygdale alteration developed to flow contact at 35°-45° to									•	
		c.a.										
350.4	353.8	Amygdaloidal intermediate metavolcanic-dacite; dark apple green - typical, possibly pillowed, minor pyrite rimming amygdales, lower flow contact 50° to c.a.										
353.8	364.8	Same as above. Very fine-grained, equigranular and grey at base, grading to apple green.										
		358.4'-356.8' - quartz-calcite vein 5-6 mm at 20°-25° to c.a.	1177	389.0	393.0	4.0	Nil					
		Irregular flow contact 20°-30° to c.a. at 364.8.										

. . .

~

The survey of the second s

4.4

HOLE No. 100-02-03

. .

FOOT from	AGE to	DESCRIPTION	SAMPLE No.:	FOOT from	AGE to	LENGTH	Au Oz./T				
364.8	382.5	Intermediate metavolcanic-andesite; similar to 311.0' to 350.0' but mottled. White quartz- calcite veining 45°-55° to c.a. cross-cut by later veining subparallel to 30° to c.a.	1173 1174 1175 1176	365.5 367.5 372.5 377.5	367.5 372.5 377.5 382.5	2.0 5.0 5.0 5.0	Nil Nil 0.002 Nil				
382.5	386.4	Intermediate metavolcanic-dacite; typical, lower contact sharp at 25° to c.a.							·		
386.4	403.4	Pillowed, amygdaloidal intermediate metavolcanic- dacite; light apple green, aphanitic, siliceous, massive and pillow brecciated - typical - possibly several thin flows.	-								
		389.6' - 1 cm quartz-carbonate veinlet cross- cutting selvage. 391.1'-391.5' - sill or flow of porphyritic andesite.	1177	389.0	393.0	4.0	Nil				
		<pre>391.9' - 1.5 cm quartz-calcite vein and silicification to 192.6. 403.4' - silicified contact.</pre>		•							
403.4	445.6	Intermediate metavolcanic-andesite-dacite; light gray, massive aphanitic to 412', brownish bleaching 411'-412'. Finely porphyritic with white plagioclase laths less than 1 mm in an	1178 1179 1180	402.5 407.5 412.5	407.5 412.5 414.3	5.0 5.0 1.8	Nil Nil Nil				
		aphanitic matrix to 406'. Gradational colour and textural change to light apple green, pillowed, fractured and silicified dacite at 412'. Close space fractures filled by quartz and calcite from contact to 412'. Silicification and quartz-calcite veins 2½-3 cm cutting pillow selvages from 413.6' to 414.0'.	1181	429.5	435.5	6.0	0.002				
		Possible flow contacts at 429.8' accompanied by brecciation and silicification at 429.4' to 431.0'.									
		Silicification and development of pyrite cubes at pillow selvages and brecciation of pillow margins at 431.8', 432.7', 434.2'-435.2', 437.4', 440.9' and 441.3'.						1			

٠.

.

.

SHEET No. 4 of 5

FOOT from	AGE to	DESCRIPTION	SAMPLE No.:	FOOT from	AGE to	LENGTH	Au Oz./T			
		Lower contact sharp 25° to c.a.							1	
45.6	454.9	Porphyritic intermediate metavolcanic-andesite; massive gray, very fine grained with fine phenocrysts of hornblende-actinolite 10%-15%.	1182 1183 1184	445.€ 450.6 454.9	450.6 454.9 458.0	5.0 4.3 3.1	Nil Nil Nil			
		Fracture-filled very thin quartz-carbonate veining with typical vein orientations. Pyrite cubes $\frac{1}{2}$ -2 mm disseminated in matrix approximately 1%.	1185 1186 1187 1188	458.0 463.0 468.0 473.0	463.0 468.0 473.0 478.0	5.0 5.0 5.0 5.0	Nil Nil 0.002 0.002			
549	458.0	Intermediate metavolcanic-dacite; light apple green, fractured and silicified, upper contact 20° to core, lower contact irregular 80° to c.a.	1189 1190 1191 1192 1193	478.C 483.0 489.2 493.8 498.8	483.0 489.2 493.8 498.8 503.8	5.0 6.2 4.6 5.0 5.0	Nil 0.002 Nil Nil Nil			
8.0	468.0	Porphyritic intermediate metavolcanic-dacite; white, subhedral to lath plagioclase 1 mm phenocrysts in aphanitic, massive matrix.								
8.0	493.8	Colour typical. <u>Intermediate metavolcanic-dacite;</u> typical light apple green, primary flow banding fracturing and brecciation sealed by silica 45°-55° to								•
•		c.a. Typical quartz-calcite veining, intense silicification and quartz-calcite veining from 489.2'-493.8' with 4 mm cubic pyrite developed in quartz veining and silicification banding at contact zone 50°-90° to c.a.								
3.8	517.0	Intermediate metavolcanic-andesite; Indistinctly porphyritic with altered fine plagioglase phenocrysts up to 10% in massive medium green, hard matrix to 500 ft. then aphanitic and similar to andesite-desite units								
	517.0	Occasional quartz-calcite vein only.								
l										

- . ·

E.C

APPENDIX B

CERTIFICATES OF ANALYSIS

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1T0 TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

urtificate	No.	54187		Date	e: <u>November</u>	2, 1982	
topoined	October 28.	1982	58 Samı	oles of	Split Co	re	
veceiveu	Calde	dat Evalora	tion Incorporat	ed. Toronto.	Ontario Att	n: Mr. R. E	. Routledge
submitted	by Gorde	The exhibit	·				
	•		· · · · · ·				
	SAMPLE NO.	GOLD Oz./ton	SAMPLE NO.	GOLD Oz./ton	SAMPLE NO.	GOLD Oz./ton	
•	1101	Nil	1121	Nil	1141	Nil	an de la companya de Na companya de la comp
	1102	0.002	1122	0.02	1142	0.005	
	1103	Nil	1123	Ni1	1143	Nil	•
•	1104	Nil	1124	0.002	1144	Nil	
	1105	Nil	1125	Nil	1145	0.002	
•	1106	Nil	1126	0.005	1146	Nil	
	1107	0.002	1127	Nil	1147	Nil	·
	1108	Nil	1128	Nil	1148	Nil	
	1109	Nil	1129	Nil	1149	Nil	
•*	1110	Nil	1130	Nil	1150	Nil ,	
	1111	Nil	1131	Nil	1151	NIT	
	1112	Nil	1132	0.005	1152	Nil :	
	1113	Nil	1133	Nil	1153	Nil	
	1114	Nil	1134	Nil	1154	Nil	
	1115	0.002	1135	Nil	1155	Ni1	
	1116	Nil	1136	Nil	1156	NIT	
	1117	0.002	1137	Nil .	1157	Nil	
	1118	Nil	1138	0.005	1158	Nil	n an troige anns an Tha tha tha tha tha tha tha tha tha tha t
	1119	Nil	1139	0.002			
	1120	0.002	1140	Nil			•

Per G. Lebel - Manager

1

Contraction of the second

.

ESTABLISHED 1928

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

ificate	No		54209				Dat	te: <u>No</u>	vember	9, 1982	
wived	Nov	1. 3. 1	982	35	Samples	of		Spl	it Core	2	
erveu		Goldei	t Exploratio	ons Inc	orporated,	То	ronto,	Ontario			
mittea	бу						Attn:	Mr. R.	E. Rout	ledge	
			<u>.</u>					•			
SI	AMPLE	NO.	GOLD Oz./ton					SAMPLE	NO.	GOLD Oz./ton	
	1159		0.002					1179	•	N11	
•	1160		0.002			•		1180		Nil	
	1161		0.02					1181		0.002	
	1162		0.002		•		•	1182		Nil	tan Serie Serie
	1163		0.002					1183	•	Nil	
· · ·	1164		Nil					1184		Ni1	
	1165		Nil			•		1185		Nil	
	1166		Nil					1186	• • • • • • • •	Nil	n e
•	1167	· .	0.002					1187		0.002	
	1168		0.002			·		1188	3	0.002	
	1169	, }	Nil	· .				1189		Nil	
•	1170		0.005				•	1190)	0.002	
	1171		Nil				•	1191	1	Nil	:
	1172)	Nil			•		119	2	Nil	
	1173	•	Nil					119	3	Nil	•
	1174	, 1 ·	Ni]					· · · ·			
	1175	, ,	0.002								•
	1176	, ,	Nil						e Al de la composición br>de la composición de l		
	117	, 7	Nil		•		•				
· · ·	1178	, B	Nil			•	•				

Per

G. Lebel - Manager

ESTABLISHED 1928

DERRY, MICHENER, BOOLG & W Sec. 2. CONSULTING GEOLOGISTS AND ENGINEERS REVERSE CIRCULATION DRILL HOLE LOG HOLE NO. TC-82-01 LOCATION L 8E/26+65 N CLIENT: Goldeidt Expl. Inc DATE 23 Aug 19 82 GEOLOGIST R. ROUTLEVE DRILLER G. HOWG BIT NO. KODD 431 BIT FOOTAGE 0-150' MOVE TO HOLE _______ - 90 for water SHIFT DRILL 12-2B - 14:54 Pull rods to 15:20 11:10 TO 20:40 TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS . CONTRACT HOURS OTHER . 15:20 - 15:24 MOVE TO NEXT HOLE ELEVATION: 0'- detum Notes & Analyses `**,** • GRAPHIC LOG INTERVAL FEET SAMPLE NO. DESCRIPTIVE LOG z N.K. medium beige grey well sorted sand (beach sand ?) 10 . 20. beige grey sand with 5% granules 30 fine Countrine grey sand with ourserval clay beds grey lacustrine clay with brown (exisized) clay at lace 50 · fine lacustrine grey sand 60 -1:0:1fore to medium sound with few gronules 40 · fine to medumi sound 10 wood chips fine well ported beige gray sond vary fine at 95' **9**0 very fine sons ous sell with mar : lar,

CONSULTING GEOLOGISTS AND ENGINEERS

REVERSE CIRCULATION DRILL HOLE LOG

DATE 23 1982	HOLE NO. TC-82-01 LOCATION 1. 8E/ 2645 M CLIENT: Goldeidt Expl. In
SHIFT	MOVE TO HOLE BIT NO DI TOUTOL
TOTAL HOURS	MECHANICAL DOWN TIME
CONTRACT HOURS	DRILLING PROBLEMS
	MOVE TO NEXT HOLE

E -	PLE D. E			PAD						
in Fe	GRAP	SAMP	DESCRIPTIVE LOG	An	Az	Cn	Ni	Pb	Zn	A
	1.1.		very fine sond and silt light brown word chips, grey clay meduin to coarse bugi grey sond					•		
<i> D -</i> -			meduum to fine sand platy lacustime silty clay							
120-	0.9 0.9	01	obly - trulder gravel with premish gravel of bould publics, fin trulder. Volume. gravel of bould publics, fin trulder. Volume.	570						
130-		03	126' griting grey clay, platy with romanial 126' griting grey clay, platy with romanial 126' griting grey clay, platy grite cube-summ	130 75						
•		04	133-134' soft grity grey clay 134' compart, stiff clay - vorved lawstr clays.	10 1 22						
140		06	139' stiff quie to medium' sandy grey clay 140' striky stiff grey clay, platy with	25						
15D-	158	07	141' soft stricky, plastic gray clay 142' stiff gray laustonic clay 1448-1452 broken rock and smooth	10	D-1	58	58	12	46	<.
	-		plastic gray clay to 147' 145' bestroch 147-148' white bull guarty on 1-Some		•	•				
	• • • •		- dork greenish, aphontic, foliated mafin meta volcomi							
							•			
	لمعمطه									
	T									
	-									!

CONSULTING GLOLOGISTS AND ENGINEERS

•

REVERSE CIRCULATION DRILL HOLE LOG

				REVEN					- 102	. 7.	- 		. <i>C</i> .	Idai	4F.	17	
Ď	ATE 23-	<u>94 Au</u>	19 <u>82</u>	HOLE NO). <u>ТС- 82</u> т <u><i>R. Kout</i>.</u>	<u>L-DZ</u> LI <u>Lodg</u> e DRILI	OCATION	l 256 lowg	BIT 1	NO.KO	N DD 431	BIT FO	OTAGI	: 150	<u>11 En</u> 5'- 3	<u>1. 1</u> 82'	
S	HIFT 1/130 2115_TC	20140 18:00		MOVE TO	HOLE	15:20- - 20:37	15:24	:15 -	<u>et a</u> 1014	6 K8	Pull	rods	- 61	kon	tonk	·	
. T(DTAL H	IOURS		MECHANIC	AL DOWN	TIME	le en de		85'	@ 15	55%	- All	to 16	107.			
-	ONTRA	ст но	UBŠ	DRILLING PROBLEMS ROUS SEMANA AT 25 - redrill 40' & continue on 24th Any - redrill 40' & continue on 24th Any													
· · -				MOVE TO	NEXT HOL	E	:09 -	12:	14		1985- 199		·			<u> </u>	
	U H			ELEVAT	100: #2		Notes & Analyses										
FEEI	API	MPLI NO.		DES	CRIPTIVE	LOG							T	-T			
Z	8 N	¥S.												-		+	
						· .				• .	1 N						
-	NR		no	return						, ,							
														1			
10 -	::::	-	bro	m losid	ized) m	edum s	and			•							
															,		
-		F	97	ity to go	muter b	eize gre	7 mede										
20 -		Ļ	4 m - 1	Sand	(veren	5 3 mar 3	' 1										
		ł															
•		ł															
	<u>.</u>	ŧ,		fine we	l'artes	1 benje	grey s	ond		ł		1.					
30-	····	ŧ		with	brownie	the grey	day t	Ceder									
	· · · ·	Ł	1	- La	custrime	53745-	•										
]::	F															
40-	1:::	-		c ·		•	• •	-		1							
·		ŧ	1	fine s	ana										·		
		F			and and	alt					1					1	
	11.	ł		fore s	clay					l				· •			
50.				Crea 6	, d	in here	men si	224								1	
		È	ł	fine l'	, mayour		175.										
		ŧ												•			
60	_ :]	F		fine on	a very a	fine so	nd				•		1		ł	·	
		ł			U		•										
		ŀ															
70	·/ :			fine au	wery b	fine som	d ond	alt		·				. •			
Ť]!				Ţ	,											
	· · · ·	ļĘ															
		ļţ		fine' .	nd very	fine	s and										
80	-	-		1		-											
											•			•			
									1					-			
			1	fine to	medum	wells	sorted b	enje			· •			•	ſ		
,,,			1	mey	5 ond(1								i	
	<u> </u>			word chip	s mel	grey de	y bed									•	
	-		1	von tra		ا م مربعه کارمینی	U.							<u> </u>	l	ţ	
		et al								:		·					

CONSULTING GEOLOGISTS AND ENGINEERS 1L

REVERSE CIRCULATION DRILL HOLE LOG

.

	Tr- 02- 00 - 00- 1	8E 11	10+20	n r		r:	deilt	Tac	•
DATE 23-24 Aug 19 82	HOLE NO. 10-82-02 LOCATION Z	<u>g = / /</u> g BIT	NO	`	BIT FC	DOTAGE		······································	
SHIFT	MOVE TO HOLE		•		• • •				
0	DRILL		•						
TOTAL HOURS	DRILLING PROBLEMS bit failed m	bedm	h of	ter d	illm	7 131	1-192		
CONTRACT HOURS	OTHER + Somples TC-82-02-01 to	p TC	- 82-0	2-05	i	score	led		
• • • • • • • • • • • • • • • • • • • •	MOVE TO NEXT HOLE	•							ž,
			i No	tes &	Anal	yses			
NOPL LEAR	DESCRIPTIVE LOG	1.	1	<u>c.</u>	A/	·P	17		1.
		Ли	73	Lu		14			13
								-	
	a i shum and						· 1		
	me to metaum sona				1				
110-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1									
	reduin well sorted beige grey								•
- 33.55 -	Escustant sand	1							-
2105 DI*	matic rich gravel with 35% corre sond				1				
120-0-0-0	116-117' grey clay under land by matrice								
	I to trinsled, corre and matrix, bu	1							
	122-123' grey cher								
	124' willy grande layer it shall								
130	-135' gritty sondy clay with soft				1				
	132' gunt pebbler , 131-135 grilly	·				1.			
The AN	granales of militie volcomes 135-13	7							
05 × 05 ×	lang lang have been a war from							· .	
00	grained porphyritic basalt with 18 cm	145	0						
	of pyrte.								
	clay silt matrix - till or turbid de.							1	
	142-147 Smooth, plastic grey tacastric a	7							
<u>z.;/:</u>	148' gray clay - no fit - vorved	1							
NS NS	150-158 fore sond and sell 152'-154' ore vorwed lawstrone day]			
	154'-156' fine sond and word chips					1			
160	1562 - 1602 grey vorred clay - pelly			·					
	1602-166' gravel metricalcances and see	(r 7.15)	000						
	- got - pettly with colbles				1				
1232	166-167 grey lawstrine day gradest	* <2	00						
170	soft gatty clay.								
	1 to prity day, play to tage on	Te	50						
- 1000 A 00	pettly sand feels 173', 175'								
10 10	133'-1512 green day rich till		60						
180	oust broken hedrock , fine to		255						
·	meduum sond matrix, sond ump	~r `							
	183° cobbly trulders sond fill.		60	·					1
12 /2	1997 come male volemes melbles on		SO			4	•	1	1
190- 400-13	cuttles and broken bearsh -							1.	
197'	no day - green way some on	2	4 D	.8	81	50	12	61	
	cuttings		·						j.

IN THE SE TOCTION · 11. EMPE CONSULTING GEOLOGISTS AND ENGINEERS REVERSE CIRCULATION DRILL HOLE LOG HOLE NO. TC- 82-03 LOCATION L BE /30+70 N CLIENT: Goldeidt Erd Tr. DATE 24 Aug 19 82 GEOLOGIST R. Roulledge DRILLER G. HOWE BIT NOB63430 BIT FOOTAGE 0-177' MOVE TO HOLE 12:09 - 12:14 - Set up SHIFT DRILL 12:24 - 15:30 Pull rods 7:15 TO 18:00 TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS CONTRACT HOURS OTHER _ MOVE TO NEXT HOLE __________ ELEVATION: #2+5 المترجعين المجرج والمعالية Notes & Analyses GRAPHIL LOG SAMPLE NO. FEET DESCRIPTIVE LOG z brown (oxidized) meduin sand brown gritty clay - light yellow some day grades to buff yellow cilt with clay matrix 20. Course to gronular medium beige gro Sond - beach deposit? - volume is sea to felsic intous wes - 50:50. meduum to fine beige grey sond, - modenty well sorted - lainstrine -30. store lithie sond 30' - medium imm coorsening with defth fine buye sond 40very fine soud and silt 1.1.17 very line to fine send fine send 50. very fine sand grey locustrine chy orduna chips very fine sond and silt word chips and silt 1.11 60light rod orrange and black word chips fine same fine soud 70very fine sand and silt 80very fine to fine soud fine to meshim sand fine sand

5 T 	HIFT	O HOURS	-	MOVE T DRILL MECHAI DRILLIN	NICAL DI	OWN TIN	ие		· · · · · · · · · · · · · · · · · · ·												
-			URS	MOVE 1	TO NEXT	HOLE															
	UH0	91.E	•							Notes & Analyses											
ž	GRAI	SAM	-	D	ESCRIPT				Au	Az	Cu	Ni	Pb	In	14	5					
	-1-		woo Fm fn	et chu i son	jos nol meelu	im" ;	52nd														
<i></i>																					
120-			ج اس	ine s	and ips		но 191 <u>1</u> 1917 - Сен														
 3 0-			131 1 133 '	- gra	vel m mel with bull guor	terbede to green to vein f	dod col gritty symme	bly and clay	915				•								
]40		62	144	pebbles somer i stuff	the gray	styl 7 beeden 7 diama fissil	with most	haten till me clay,	285 ,. 3400												
150		NS T	152 153' - 10	pray si	lastic d hastic d lt, pl sheds,	lay lay light gr	ay land	Time chy	e	-			-		~						
160				chery magni . 61' con	-sand. volcom	i bruli bbly a	der nafri orl	enner- si	106							•					
170		- 05	14	9701 mat plat plat 172' 1 til	ni mi elets for las,	Corre mior + Occasión Groken	gren i	en clay	103 700-tks		6				2						
180			17	green a break	inck -	cp) mof	hantic, si meta	dork volcom	i-	5 0.0		3	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								

CONSTRUCTOR CONTRACTS AND AND AND AND AND AND AND AND REVERSE CIRCULATION DRILL HOLE LOG HOLE NO. TC-82-04 LOCATION <u>L 8 E / 32 + 70 N</u> CLIENT: <u>Goldent Era Inc.</u> GEOLOGIST <u>R Routladge</u> DRILLER <u>G HONG</u> BIT NO. <u>B 63430</u> BIT FOOTAGE <u>177-287</u> DATE ANG 19 82 MOVE TO HOLE 15:54 - 15:58 Set 40 SHIFT Paul to 17:25 7:15 TO 18:00 16:05-17:08 DRILL . MECHANICAL DOWN TIME TOTAL HOURS DRILLING PROBLEMS Clean sod fanks 17:25 18:10 CONTRACT HOURS OTHER _ MOVE TO NEXT HOLE ELEVATION: #3 - 2' Notes & Analyses GRAPHIC LOG FEET SAMPL. DESCRIPTIVE LOG ٠z N.R. Light to briff brown medium, vellsothet impositionally immiture sand. 1D 20 fine to medium beige-grey sand yellow-brown (oxidized), soft, sticky, self clay fine berge grey lacustrine sand very fine to fine sand 40 brown - oxidized very fine sand grey very fine si jug chy has 50. fine to medium grey sand 60fine sand I me to mashin soul 70-fine sand word chips fine to maxim sand 8 D fire sond : fine to machin beye-gray sand 50 -Hole to ; me sand Page No 4 7

	لم ن ن ا						•							
			REVERSE CIRCULATION DRILL	. HOL	E LO	G		0		• •				
D		Auc	HOLE NO. 76-82-04 LOCATION L	8 <u>E/3</u> 19 BIT	NO	<u> </u>	LIENT: BIT FOO	G <i>older</i> TAGE	it Expl	<u>In</u> c				
S	HIFT	18:01	MOVE TO HOLE		<u></u>		•							
T	OTAL H	IOURS	MECHANICAL DOWN TIME		•									
c	ONTRA	ст ноі	JRS OTHER	<u>.</u> .	•					*				
		•••	MOVE TO NEXT HOLE											
EET	PHIC	PLE O.	DESCRIPTIVE 10G	Notes & Analyses										
Z	GR C	Ϋ́ς Ϋ́ς		Au	A3	Cu	Ni	16	Zn	As-				
		01	fine some 102' gravel - dimentally make	145		-	. ,		1 a.					
-			intrasives and seds with 25% febris, intrasives and volcanis. 10-15% graden	10	1.1	62	51	/2	53	21				
110-			to coorse, green grey, wellsorted sometime											
			with bomen 1-2mm white to clear											
			guing ciring. Banching of felds por noted in several chifes. Monor iron											
-		\mathbf{F}	staming at surface . Composition	•			· · .							
	·		minimular 10 my u.											
								- N. 4.						
-		-												
•														
-									·					
	4													
-		E E												
, ¹ ,		F												
. •						•								
		ł												
		Ē												
		F	•											
	-				•									
			•											
	-													
								<u> </u>						

E.C. REVERSE CIRCULATION DRILL HOLE LOG HOLE NO. 76-82-05 LOCATION 4 7+90E/37+17. N CLIENT: Golderatt Expl. Inc DATE _____ Aug 19 82 GEOLOGIST <u>R. Roufledge</u> DRILLER <u>G Now</u> BIT NO <u>B 4343/</u> BIT FOOTAGE <u>3/2'-460'</u> MOVE TO HOLE <u>13:55 - 14:12</u> Set up SHIFT DRILL 14:16 - 16:15 Pall + 16:35 7:30 TO 17:30 MECHANICAL DOWN TIME _ TOTAL HOURS DRILLING PROBLEMS Clean tanks , go for water 1635+17:50 CONTRACT HOURS OTHER __ MOVE TO NEXT HOLE ELEVATION: #4+15" Notes & Analyses GRAPHIC LOG INTERVAL WPLE NO. FEET DESCRIPTIVE LOG 8 Q organics cally gravel bronnesk grey very fine sand and silt; She coarse send grains and granules 10. .1. brown very fine sound and silt, for very this gronale to correspond 20-۱. yellow from chy bas yollar brown silt 1/2/ 1 30 minor day in sill sequence of inter layer as pebbles and clay - and of shid atim at 87' 36' grey plaster, s ticky baustrine clay: and grey sill young to very fineson 114 fine to medium grey sand gradests fine sand - poor return course sound with few shy bads fore to medium grey sound course sand poorly sorted with med. to finice sand matrix or interless. 60 medium somet, but coorse gravis at 64' nadum to fine sond medumi sond bes growles and core gravis decreasing with depth 70 coorse sand, for pettles and grounde grey laws trine day very fine gray sand and silt. gray Caustine clay 90 fine soud washing to very fine Hole Mo. Page No

STRESS CLOSE -REVERSE CIRCULATION DRILL HOLE LOG HOLE NO. TC- 82-05 LOCATION & 7+90E/37+12N CLIENT: Goldendt Expl. In-DATE A46 19 82 GEOLOGIST R. ROUKINGORILLER S. Howy BIT NO. _____ BIT FOOTAGE. SHIFT MOVE TO HOLE -.TO. DRILL . TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS CONTRACT HOURS OTHER _____ MOVE TO NEXT HOLE THE PARTY IS Notes & Analyses DESCRIPTIVE LOG GRAPHIC FEET SAMPLE NO. 110 PP P Az Cu As Ni f b In Au Z laustrine very fine sand and silt 1., • fine sand //D very fine sound and selt this, light gray clay layer 12D very fine send wood chips fine sond 130 word chips fore to meslum so · 01 #D medun grey - beige sond grades 25 to fine some and rounded pebbles. 144 " Bestrock 02 34 11 17 66 10 1.0 65 Hard, effile green, siliciones, applienti meterolionic. While gunts vening or layering. Streaky lowering of near-surface chips. Intermediate, 150 possibly puffactores , volumi. Hele No. | Did Ge زيني کې

STN ANTI CALLER REVERSE CIRCULATION DRILL HOLE LOG HOLE NO. TC- 82- 06 LOCATION L 16+75 E/12+80N CLIENT: Goldeilt Erol. Inc. DATE 77 Aug 19 82 GEOLOGIST R. Routladge DRILLER G. Hows BIT NOB 63432 BIT FOOTAGE D- 166" MOVE TO HOLE 7:50 - 8:10 Satup SHIFT 730 TO 11:30 8:15 - 10:25 Put rods to 10:53 TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS 100 20 40 **83** 20 70 3 CONTRACT HOURS OTHER . MOVE TO SHAR MEDE TRUCK ROND 10:55-11:30 Notes & Analyses 2 CRAPHIC LOG INTERVA SAMPLE NO. DESCRIPTIVE LOG origellow brown oridized day gray sondy, gritty lawstrine day 6' - no sand or grit striky, plastic blue gray clay selly blue grey day - unroad? progressively more silt self with day bads silt -**--**; very fine sand and silt with very this grey silly day beds. silt very fine sound and silt fine sand -: :-very fine sand and sell fine sand word chips grey day bed grey day had find sond word chips in clay and find sand lets pellby has , grantice & sets > volcanis medun well sorted bege greg sont fine some oursional pebble and wood hijo . Page

REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO. TC- 82-06 LOCATION LIGATSE / 12+80N CLIENT: Gildent Expl Inc. DATE GEOLOGIST & Reutledge DRILLER S. Howg BIT NO._____ BIT FOOTAGE. MOVE TO HOLE SHIFT JOT_ DRILL . TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS OTHER CONTRACT HOURS MOVE TO NEXT HOLE Notes & Analyses FEET Mb 1 Denaphi Log SAMPL DESCRIPTIVE LOG Pb As Ni Zn Au Ag Cu z fine sand gritty grey limitrie clay nifed day sond and pebbles]10 · gravel, make nit worse gry sand metrix 900 01 pellely and grounder coarse gray sand 120 130. 1135 02 meduin sond very fer publics 71000 le poor return 140 fine sand clay and word chips NS fine sand - word childs 150. beds of clay and fine sand 150'- 152' 156' callly-pellby till? - fine to meduin greenish sond materis very little greenish clay, ormales pelles and calles of migre informer washed till?? with lacustrinie migitlesso 250 03 160 29 9 <] 0.4 29 33 12 04 161' bedrock - sunsi clay ground at sofaa. 1- 1 mm laths of white quests 170van Bryments. 165'-166' green grilly day - took flows . Dork gren appointin, ultre nofig! to mifer volcomi. Hole No. | Page No.

الفتنانين المق REVERSE CIRCULATION DRILL HOLE LOG HOLE NO. TC-P2-07 LOCATION 612E/30+9: N CLIENT: Goldeidt Espl. Inc. DATE 28 Aug 19 82 GEOLOGIST <u>R. Routladge</u> DRILLER <u>G. Howg</u> BIT NO<u>B63431</u> BIT FOOTAGE <u>165-312</u> MOVE TO HOLE <u>17:06 - 12:11</u> Set up. SHIFT 12:17 -Pull rods 7:30 10 17:30 13:35 DRILL __ TOTAL HOURS MECHANICAL DOWN TIME . DRILLING PROBLEMS CONTRACT HOURS OTHER 13:55-14:12 MOVE TO NEXT HOLE_ Notes & Analyses SAMPLE NO. FEET GRAPHI LOG DESCRIPTIVE LOG Z -1' black to dark brown organics i's yellow from to hiff brown clay 4-7 buff tomm day 71-10" yellow born clay 10. 10's - 21' biff bonn day, platy and fissil at 14-12 20 grey sill our laustrini clay - stricky plastic clay cilt silt 30very fine beige grey sond 40very fine send and sill 1 fine sand S fine to marking soud meduum sand ~ 10% coarse som grows - bedded. 60. Sme to very fine sand may lametrone clay 70 fine some - word chips grey, the clay hads at 74' and 99' fine sand 90-100

الخدان المانية REVERSE CIRCULATION DRILL HOLE LOG HOLE NO. TE-82-07 LOCATION 112E/30+70N CLIENT: Goldent Ed Zus DATE 25 Aug 19 82 GEOLOGIST <u>Routledge</u> DRILLER <u>G. Howg</u> BIT NO. _ BIT FOOTAGE MOVE TO HOLE SHIFT DRILL TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS CONTRACT HOURS 100 OTHER . MOVE TO NEXT HOLE Notes & Analyses P/M FEET GRAPHI LOG SAMPLE NO. 115 DESCRIPTIVE LOG In As Az Ni РЬ Au Cu fine sout 110 fine to very fine some 120 granel - mind lith dogy - 70% mafri vole messeds, 30% felsie mitrusie - seelly, vary bew willes 125'-126' medium to Fine 5 and bed 135 01 126' pebbly gronular medumin to fine sond grades to pelbly, groundar 130 Sand grades to pelbly, grownlar gravel with med. to fine sound quatris 130 mostly sond grades to granule gravel and sts course sond matrix isth platy clay hads 1353 fissil, gitty, plat clay 136-1403 - folling granet 1403 - 1413 - broken bedrock - green clay Fork flow. 1265 02 140 49 41 91 40 11 0.7 16 03 1412 - bedrock - dork green internet to mefici metavolcanic. 150.

REVERSE CIRCULATION DRILL HOLE LOG HOLE NO. <u>TC- 82-08</u> LOCATION <u>L 13+60 E / 29+00 N</u> CLIENT: <u>Golderit Erpl. Inc</u> GEOLOGIST<u>R. Routledge</u> DRILLER <u>G. Howg</u> BIT NO. <u>B63+31</u> BIT FOOTAGE <u>D-165'</u> DATE A 19 82 MOVE TO HOLE 8:05 - 8:30 SHIFT 8:30 - 11:35 Pull rods 7:32 10 17:32 DRILL . MECHANICAL DOWN TIME . TOTAL HOURS DRILLING PROBLEMS CONTRACT HOURS . OTHER 12:06 - 12:11 MOVE TO NEXT HOLE ELEVATION : NO + 10 Notes & Analyses GRAPHIC LOG SAMPLE NO. DESCRIPTIVE LOG NK yellow brown oxidized day -sticky silty 21-25 soust and yellow clay 23'-24' bronnish yellow clay 24'-31' grey, grading to dor grey Counstrine clay Look medu 30 31-34 yellow born clay gone beige grey sand 40 very fine sond and silt yellow hours day and silt fine sound, few coorse sourd gravis and clay hed at 50-51. fine to medium soud and far corre sour groin's and grounde 60. fine soud coarsening to meduin grey lacustrie clay 70 fine sond 80 **3**D 1---- 1 100

REVERSE CIRCULATION DRILL HOLE LOG

the court

HOLE NO. <u>IC-82-08</u> LOCATION <u>L73+80E/29+00</u> CLIENT: Goldendt Engl Inc GEOLOGIST <u>R. Rout (edge</u> DRILLER <u>G. Howg</u> BIT NO. _____ BIT FOOTAGE _____ DATE Aug 19 82 GEOLOGIST <u>R. Rout ledge</u> DRILLER G. Howg BIT NO _ SHIFT MOVE TO HOLE : 10 DRILL TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS _ -CONTRACT HOURS OTHER . Castle MOVE TO NEXT HOLE **ELEVATION:** Carson States and a second Notes & Analyses GRAPHIC LOG SAMPLE NO. FEET PPb 1 DESCRIPTIVE LOG Au Cu Ni PL As Zn Hz z fine to meduin beige grey sond word chips grey clay had 110 120 abundant wood chips. Bedded gronulor and gubbly groved - medium to coorse beige-grey sould 1045 materia - maked lithology, Listace, intermediate volcomie and growthe DI cubbles, mafries boto-felous not. gravely day diamicton, grey day 325 02 139-140 manily fine selly day balls ber groweles - sounded to sal - angular. 145' + hole making water matic volconie boulders, gotty green 03 240 149'150' clay (flow) growel- corre sond materix 715,000 04 151' 05 3170 grey day talls and grand - till? 151-153 155 155-156 pelly from - ally at 154 NS 7 15,000 06 - 158-159 maple i fid + broken fermh y-fla 07 bet mk . gren day calles mofin who . cha , my grilly 13 40 7 0.9 56 50 **دع** 164' bedreck solid - dork, green my 165 to ultra mafii volcanici. 170 role No. | Page No

LTING GEOLOGISTS AND ENGINE. REVERSE CIRCULATION DRILL HOLE LOG HOLE NO. TC- 82-09 LOCATION LISE /26+70 N CLIENT: Goldent End. Inc. DATE 25 Aug 1982 GEOLOGIST R. Routledge DRILLER G. Howe BIT NOK OND 443 BIT FOOTAGE D -177 MOVE TO HOLE 12:48 - 12:51 Set up. SHIFT 7:00 19:00 DRILL 12:59-18:40 Juli to 19:00 TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS **新社会**教育 sub.-CONTRACT HOURS OTHER - New 8:05 - 8:30 Pull tois to TOSI-MOVE TO NEXT HOLE ساد صاد تعديد المعيالية والعظير ELEVATION: NID +151 Notes & Analyses Ppb SAMPLI NO. GRAPHI DESCRIPTIVE LOG In Ap Cu Pb Ŕś Ni Au black much - organiss yellow brown ositized day and few publis 0-1' yellow from day 13 - 14" CORAL OXIDIZEd Sand 16-27' grey lawstrine clay - striky, style, non - plastic 20. SD. silt, day in materia greg lawstrine day bed very fine sand and selt very fine to fine blige goy sond very fine sond and silt word chips very fine to fine sond Sime to medum sond, fear gronules at 60' 60 medum sand, beige grey with few cooks send grows and grownle ofelsni lithis & magai lithis male 70 fine sand them clay bass at 76 and 50' 80. word chips - fine sond very this clay be **3**Dfine sand Hole No. Page 1

- 4

22

PRACTURE GROUP INTE **E**NULE REVERSE CIRCULATION DRILL HOLE LOG HOLE NO. TC-82-09 LOCATION 415E /26+ 90 N CLIENT: Golderit Erel. I. DATE 5 Aug 19 82 GEOLOGIST R. R. Dutledge DRILLER G. Howg BIT NO _____ BIT FOOTAGE. MOVE TO HOLE _ SHIFT _10_ DRILL MECHANICAL DOWN TIME TOTAL HOURS DRILLING PROBLEMS ^{الن} کر و بر بر ایک از بر ایک مراجع می میکند و زوان می Sec. Sec. in . MOVE TO NEXT HOLE CONTRACT HOURS OTHER . Notes & Analyses FEET 112 PP M SAMPL NO. έ8 DESCRIPTIVE LOG Az Pb Ni Рь Cu Zn • Au B Z word chips 7. no Sine send 120 interbedded grey clay and yebbly \$ \$ 3.0 grould • • • • granulor corre sand - igen materis, 10%. medium to corre sand materis, mafri volumeis and seds boto, felsis antrastrives 40% granite brulater 128-128. Ani, 10%. 1890 di li 01 NS 1#5 130 40% grante brucher 120-128". 129-133° green sonty clay with pettler, matric pettles dominant, four granitic caller. 160 133'-140' 02 000 LR -3 -140' grovel - italexded gronalor and pullily to chily beds with lowlear, 52 cross sond - open work - low return 85% on the midual while, 15% falling. 03 133-140 6 4055 04 Σ 8.9 R 140' - growellor course sand, brukebry at 141 2410 1431 green clay dismition 05 0.1 • 0 builders black to green volcanics 150 715,000 9.53 06 jufi vlemi balder 156' grave 20.2 grovel, motivales Job, coare sous grades to medium sous at 160° men inter the , NS to madium sound at 160°, many gray day at 157° - putridile or gland flurned & hythere 161°-162° green sound this after clay had 162°-11-1° 910 3475 07 161-162 green snoothystative clay bed 1623-165' pebliky grovel, gray medicin sand nutra 165-167' medicin to gronular gray medicin sond 167'-169' pebliky gronular grovel, corrects medicin grey sand scatter at 170' corres grownlar sand 171' effete green smorth plastic day, limitic-weathered tooken onk of lowelle above clay ~ 120-131' - minish allerd 0.00 8:8 C 06 8185 120 . 915 09 14,407 10 " clay ~ 170-171" - possibly allows the - men day might with sound. - 11 54 0.5 58 12 42 19 above 177 175' stid yet enerther ad sock forgments and public. 178' fedrock - very fint grained to of hmitic, forghyntic suffic to internation meta volcanic. Soft hh 20 possibly altered. Pare N Hole No.

REVERSE CIRCULATION DRILL HOLE LOG HOLE NO. TC- 82-10 LOCATION LIG+ 90E/ 20+00N CLIENT: Guldent Ent. Inc. GEOLOGIST R. Routledes DRILLER G. Howg BIT NO. 1363430 BIT FOOTAGE 287'-434' MOVE TO HOLE 7:40 - 8:10 Set up SHIFT 8:14 - 12:20 Pull rods 7:30 TO 19:00 DRILL _ MECHANICAL DOWN TIME . TOTAL HOURS bit finished at 145' DRILLING PROBLEMS OTHER CONTRACT HOURS MOVE TO NEXT HOLE 12:48- - 12:51 <u>e</u> (e)... ELEVATION : # 11-14 + 2 Notes & Analyses FEET A DA SAMPL DESCRIPTIVE LOG z dork trown, wordy- peaky organices sark born mud & clay 10 grey sound grey day - mity meduin to coarce grey sond with few gronules grey day, - sund and pebbly has 30 medum Beyi-grey sand inter-bedded medum greg soud and sondy clay and stilly clay products clay and stilly plastic clay at 45' 11 50. sit dork meduin grey striky clay and sit Ľ 1 60 silt and very fine sand 1. wood chips 70. sonely day and meduin sond bed Smeto very fine sond 20 my day be . interfaces to L Jelsees • • sond patri 30. ::: march y eling in R. for pethods 102 1 all 92'- 102 finil utilles min no claster y day stiff, dont ble sour clay - sondy of 100' - silt-Ne Gel P - 74

ELS, LONGE التعانية والاست REVERSE CIRCULATION DRILL HOLE LOG HOLE NO. TC-82-10 LOCATION L 19+70 E/ 20+00N CLIENT: Golderdt Erpl. Inc DATE Aug 19 82 GEOLOGIST R. Routleye DRILLER G. Howg BIT NO BIT FOOTAGE SHIFT MOVE TO HOLE and the second second TO. DRILL _ MECHANICAL DOWN TIME TOTAL HOURS 2. . . . DRILLING PROBLEMS CONTRACT HOURS OTHER _ MOVE TO NEXT HOLE A 54 2 Notes & Analyses FEET AFF DOJ LOG DESCRIPTIVE LOG Ppm SAMPL NO. 1 Č.s DEDURIFITE LOG Au Zn **Ni** Pb As A, Cu Z verved blue grey selly som 1 day 102-103' plastic grey clays 105' 51 fb blue grey day 107' silty and plastics strong by 108, bew grantes mixed lith joi-11 110 *[*// ' still, semi-bittle blue grey rsilly - varves 117' britle , first , platy clay & 189 119-1192 medum sand; few growales 120 120-125 fissed, platy blue gray clay 1252 - 126 very fine sond and so 126 growels gravel, ber petter Ľ .1.1 gravel, ben yetter mileds ه خده 126 claty first 130 - 50 130-131 stey clay fill -byti one 25 1 grag of 01 131'-]34' 70 02 ght green aphratic vole builder 170 02 1342-138' light yple green to green grey in the NS 360 138-140 till- green to apple green 3D 58 7 39 20. 1 0.5 (out flow) rule at the goods to 05 - 1408 - gravelly to saying to but white dytell." ly; by clasts or veris When mak a ballers. 150 1402 - bedrik - greensk grey, ophonitic intermediate meta volcanie note No.] . .

020

REPORT ON 1982 REVERSE CIRCULATION ROTARY OVERBURDEN DRILLING PROGRAMME - MACKLEM TOWNSHIP, GOLDEIDT EXPLORATIONS INC.

DERRY, MICHENER, BOOTH & WAHL

R.E. Routledge, B.Sc., M.Sc. (applied) F.G.A.C.

November 5, 1982 Toronto, Ontario

5.00

2

 \mathbb{P}^{n}

. 1

1.2.3

(installed

12.00

12 AN

B. & C. LTD.

This report may not be reproduced, in whole or in part, without the written permission of Derry, Michener, Booth & Wahl.

TABLE OF CONTENTS

1.5

L'AN

A.C.S.

Part in the

.

. .

.

B. A.C. LTD.

• :

020C

Page

· -	INTRODUCTION		1
	Figure 1 - Location of Goldeidt Explorations Inc. Macklem & Bond Townships Property	After Page	1
	LOCATION AND ACCESS		2
	Figure 2 - Location of Claims and Property Ownership Macklem & Bond Townships Property	After Page	2
	DESCRIPTION OF THE OVERBURDEN DRILLING PROGRAMME		2
	Figure 3 - Location of Reverse Circulation Rotary Drill Macklem & Bond Townships Property	Holes After Page	2
	Table 1 - Summary of Overburden Drilling Programme Macklem & Bond Townships Property	After Page	3
	Figure 4 - Sample Processing Flow Sheet	After Page	3
	OVERBURDEN DRILLING THEORY, TECHNIQUE AND EQUIPMEN	NT	4
	Theory Technique Equipment		4 5 6
<i>.</i> ,	GEOLOGY		7
-	BEDROCK GEOLOGY		7
	QUATERNARY GEOLOGY		8
	Glacial Stratigraphy		10
	Figure 5 - Surface Topography of Drill Area Macklem & Bond Townships Property	After Page	10
	Figure 6 - Bedrock Topography of Drill Area Macklem & Bond Townships Property	After Page	10
	Figure 7 - Distribution of Basal Till and Anomalous Gold in Overburden Macklem & Bond Townships Property	After Page	10
	Figure 8 - Overburden Profiles A - A' and A - B Macklem & Bond Townships Property	After Page	10

TABLE OF CONTENTS (Continued)

Page

GOLD ANOMALIES	S AND OVERBURDEN MINERALOGY		12
Gold Anom	alies		12
Table 2 -	1982 Overburden Drilling Programme Summary of Gold Anomalies in Overburden Macklem & Bond Townships Property	After Page	13
Overburden	Mineralogy		15
CONCLUSIONS AN	D RECOMMENDATIONS		16
BIBLIOGRAPHY			18

APPENDICES

A - Overburden Drill Logs

1.25

1976

100

38 C 16

N.S.A.

7

B. B.C.LTD.

B - Laboratory Sample Logs

C - Geochemical Analyses - Bedrock and Overburden Concentrates

D - Binocular Description of Bedrock Chip Samples

Rei (R)

现的点

12

.....

10 A

LAC.LTD

INTRODUCTION

From August 21st to 27th, 1982 a 10-hole dual tube reverse circulation rotary overburden drilling programme was carried out on the Macklem-Bond Township property of Goldeidt Explorations Inc. by Heath & Sherwood Drilling Limited under the supervision of Messrs. R.E. Routledge and R. Sedore of Derry, Michener, Booth & Wahl (DMBW).

- T

The programme was recommended by DMBW and implemented to follow up gold anomalies disclosed in basal overburden of holes TC-81-14 and TC-81-19 drilled in a previous 30-hole overburden drilling programme undertaken in October 1981.

The two-fold objective of the 1982 programme, in keeping with budgetary constraints of drilling a maximum of 10 holes, was to:-

(1) confirm anomalous values in basal overburden of the 1981 holes and verify or modify the previous interpretation of the Quaternary stratigraphy in the anomalous area, and

(2) trace the gold dispersal train up-ice to determine if the source is on Goldeidt property and if so to locate and delineate it so as to provide a diamond drill target.

Figure I. LOCATION OF GOLDEIDT EXPLORATIONS INC. MACKLEM & BOND TOWNSHIPS PROPERTY

1. A. T. T.

7

E. M.

1. C. M. M.

100

開建

٦

LOCATION AND ACCESS - Figures 1 and 2

10.44

6.03

見たの日

A density

LAC.LTD

(NTS 42A10; longitude 80°47'32W - 80°54'30W; latitude 48°28'25N - 48°37'30N)

- 2 -

The property is located 35 km east of Timmins, Ontario, in central Macklem and west-central Bond Townships, Porcupine Mining Division, District of Cochrane. Regularly scheduled airline service is available at Timmins. The claim group is accessible by all-weather highway #101 and the Gibson Lake Road. The Gibson Lake Road departs from highway #101 at 38 km east of Timmins and traverses the east-half of the property, about 3 km south of the highway. The access road to the former Miller Paving Gravel Pit leads 1.5 km to the drill area centered at the intersections of claims P23054, P23055, P486668 and P486672. A number of old lumber haulage and skidder roads as well as newly cut north-south picket lines cut at 400 ft. intervals provide good access in the area drilled.

DESCRIPTION OF THE OVERBURDEN DRILLING PROGRAMME

Holes were spotted on the 22nd of August at 200 ft. to 400 ft. intervals north of TC-81-19 on line 8E to cover an up-ice direction from hole #19 of 1,250 ft. and north-northwest of hole TC-81-14 covering an up-ice distance of 2,350 ft. The drill area is contained by 7E to 21E; 18N to 37N. Drill hole locations are shown on Figure 3.

The Heath & Sherwood drilling equipment was mobilized from Kirkland Lake on Monday, August 23rd and demobilized on August 27th. Drilling of the 10 holes numbered TC-82-01 to 10 proceeded exceptionally smoothly with no problems or delays and production rate was 2 1/2 holes per actual drilling day. Equipment wear

and used down-hole consumables was normal and adequately provided for in the budget.

- 3 -

A total footage of 1,575 ft. was completed of which 1,543 ft. consisted of overburden for an average overburden depth of 154.3 ft. (Appendix A). A total of 30 ft. of bedrock, averaging 3 ft. per hole, was drilled. Bit production footage averaged 315 ft.

Forty-six overburden samples were collected from the lower 50 ft. of glaciofluvial sediment and till in each hole. Glaciofluvial material was collected at plus or minus 5 to 10 ft. intervals whereas till or basal overburden was collected at less than or equal to 5 ft. intervals. Samples were shipped by bus to the Overburden Drilling Management Ltd. Laboratory in Nepean, Ontario for processing to heavy mineral concentrate (Appendix B). Three-quarter splits of heavy mineral concentrates were analyzed for gold using the fire assay and atomic absorption method with minimum detection method of 5 ppb at Bondar-Clegg & Company Ltd. of Ottawa. Minus 10 mesh bedrock cuttings were geochemically analyzed for Au, Ag, As, Cu, Ni, Pb and Zn by Technical Services Laboratories of Mississauga, Ontario (Appendix C).

R.E. Routledge of DMBW conducted binocular microscope examinations of bedrock chips and anomalous heavy mineral concentrates.

Table 1 summarizes the drill programme and a flow sheet illustrating laboratory sample processing is outlined in Figure 4.

· Wett

Table 1

GOLDEIDT EXPLORATIONS INC.

Hacklem and Bond Tounships Property Summary of Overburden Drilling Programme

. 1.

August 21-27, 1982 .

										5					
Nole			Flevation	Footag	e Drilled		Samp	les Coll	ected		Consi	mables			Super Poly
No.	Date	Location	<u>(Ft.)</u>	<u>0.8.</u>	Bedrock	Depth	0.8.	B	drock	Bit No./&	Ftge	Sub. No.	/& Ftge	Rods	2,000 (L)
.* 1	23/08/82	8E/26+65N		0-145	145-150	150	6		1	K000431	150	1	150	***1 Head Ro	1 I
2	23-24/08/82	\$E/28+70N	+8	0-1911	1911-192	192	8		1	K000431	382	- 1 -	382		1
3	24/08/82	8E/30+70N	+13	0-172	172-177	177	5		1	863430	177	1	559		1
4	24/08/82	8E/32+70N	+11	0-104)	-1041-110	110	1		1	863430	287	1	669		ì
5	26/08/82	7+90E/37+12N	+26	0-144)	144]-148	148	1		1	863431	460	2.0	637		1
6	27/08/82	16+75E/22+80N	-18	9-161	161-166	166	3		1 .	B63432**	166	<u>25</u> 2 - 2	803		1
7	26/08/82	12E/30+70N	+14	0-146	146-147	147	2		1	. B63431	312	2	489		1
8	26/08/82	13+60E/29N	+4	0-161}	1613-165	165	6		1	863431	165	2	342		1 -
. 9	25/08/82	15E/26+70N	-6	0-176	176-177	177	10		្រោះ	K000413	177	2	177		1
10	25/08/82	19+70E/20N	-21	0-141	141-143	143	€. 4	si set	1	863430	430	· 1	812		ł
				1				1 . S.		_					_
10	5 days (461 hrs.). }		1,543	32	1,675	45 		10	5		2		1	9

-

1

- Drilling order - holes 1 to 4, 10 to 7, 5 and 6.

- Additional footage remains on bit.

- Used head rod. 1.11 1

E : Bath

ð F

A WAH

N. Same

6.030

11269

14. 2

STOP 1

B. & C. LTO.

EP 2

1.373

<u>EA EN - 847</u>

Average bit life (4 bits) 3621'.

1. 1. 1.

1. 11 B

Bondar-Clegg & Co. Analytical Laboratory analyse for Au

Figure 4 - Sample processing flow sheet

Theory

の時代

3 . I. I.

PC LD

In theory, subcropping concentrations of economic minerals were abraided or plucked and together with barren bedrock were incorporated within basal ice during the southerly advance of the Wisconsinan continental ice mass. This material was subsequently deposited as till from the moving sole of the glacier or transported englacially. Englacial debris was later released as terminal moraine at the glacier snout, when rates of wasting and advance at the ice-front were equal, or this debris melted out of the ice as supraglacial material or ablation till after stagnation of the ice mass during recession. This material was washed or flowed off the margin of the ice into pro-glacial lake Ojibway. Much of this debris was flushed from the glacier in glaciofluvial streams which formed eskers and esker deltas.

Ore minerals as discrete clasts or as constituents of rock fragments were dispersed and underwent communition during transport to be deposited as constituents of till called dispersal trains. The outline of these trains within a till sheet is generally a cone which expands vertically and laterally within a till sheet as distance from the parent source increases. Dispersal trains are narrow and of limited length but possess areal dimensions many times larger than the subcrop area of the parent deposit. As an exploration target, this large size of the dispersal train increases the probability of discovery of the orebody.

Depending upon local glacial history, till may have been subsequently subjected to additional transport by succeeding glacial advances or ice margin fluctuations or reworked and deposited as glaciofluvial sediments. Therefore, either initial or resorted dispersal trains may occur at any stratigraphic position and to optimize drift exploration the entire overburden profile is sampled. Correct interpretation of the overburden stratigraphy, depositional environment and sequence of glacial events is essential in determining the significance of geochemical and heavy mineral anomalies and tracing these anomalies to source.

Technique

14.201

Sec.40

i.

Ser.

398.33

Sec. 1

5

(TEM)

A.C.LTC

The dual tube reverse circulation rotary technique is designed to deliver unconsolidated material continuously while drilling through the overburden and this permits logging and interpretation of the overburden stratigraphy and uninterrupted geochemical sampling. Bedrock can also be drilled and rock chips collected, examined and analyzed.

Heavy mineral separates are prepared from bulk 5 to 7 kg overburden samples in order to concentrate weakly dispersed heavy minerals and amplify anomalies. Processing the sample in this manner effectively eliminates the "nugget effect" whereby a single or few significant ore grains are either lost in reject splits or report in retained splits to augment or "salt" the content of the analyzed reduced portion of normally processed geochemical sample. Concentration therefore retains all heavy ore minerals and is well suited to sampling immature, poorly sorted glaciofluvial sediments and tills having varied heavy mineral suites. Glaciolacustrine sediments other than beach facies are characterized by uniform suites of mainly non-opaque and non-ore heavy minerals and the source of any glaciolacustrine anomalies is virtually untraceable. Hence, glaciofluvial sediments and tills are customarily logged and sampled whereas glaciolacustrine sediments are only logged.

DERRY. MICHENER, BOOTH & WAHL

1:

No.

A SARA

- 1

Equipment

The Heath & Sherwood drill employed on this programme was a unitized rig consisting of a fully hydraulic Aker Drill with 10 ft. feed and ancilliary equipment such as a "Bean" piston water pump and air compressor mounted on a GO Track GT 3000 tracked carrier. A smaller Go Track GT-1000 on which a 500 gallon tank is mounted, was used to supply water to the drill rig.

- 6 -

A mixture of water, under high pressure and a capacity of 20 gallons per minute, and compressed air up to 60 psi is delivered to the 3 inch tri-cone bit face through the annulus between the inner tube and the outer wall of the dual tube rods (2.75 inches diameter). A slurry of cuttings and material less than 1/2" diameter is returned to surface through the inner tube and collected from the cyclone where it is logged and sampled. Material is screened initially through a No. 12 Tyler (10 mesh - 1.7 mm) sieve and collected in 5 gallon pails. The -10 mesh sample, including fines collected in an additional overflow bucket, are sampled. The +10 m materials retained on the screens are logged and generally discarded unless base or precious metal mineralization is observed where upon the "oversize" is sampled separately and submitted for geochemical analysis. GEOLOGY

97) - |

чe

1

3.4.C.LTO

BEDROCK GEOLOGY

Regional mapping by the Ontario Ministry of Natural Resources and Ontario Geological Survey is published in Pyke and others (1973) and Leahy (1971). Geology, previous exploration and gold mining potential of the Goldeidt property is available in detail in Routledge and Thompson (1982) filed with the Ontario Securities Commission.

-7-

The drill area is located in the northeast portion of the Goldeidt property and underlying bedrock is known only from reverse circulation drilling bedrock intersections and interpretation from regional aeromagnetic surveys and recently completed ground proton procession magnetometer surveys. Regional mapping indicates the area is underlain by calc-alkaline and tholeiitic volcanics.

Bedrock underlying the drill area is composed of equigranular, massive to foliated, light apple green to dark green, intermediate to mafic metavolcanic flows. Lithologic composition, on the basis of field identification, varies from andesite through andesite/basalt to altered (weathered) andesite or basalt and possibly to basaltic komatiite. From the evidence of "boulders" or slabs of identical composition drilled adjacent to bedrock and intersection of clay and sand-gravel filled seams, bedrock appears to be weathered, fractured and broken at surface.

Because of the deep overburden obscuring bedrock and the presence of a magnetically interpreted north-south fault on the west side of the drill area, the widths and structure of these volcanic flows cannot be resolved with any degree of

confidence. Maximum thickness of the individual flow units, determined from the hole spacings, may be in the order of 300 ft. and likely considerably less.

- 8 -

Thin, 3 to 5 mm clear, barren quartz veinlets, mostly composed of sugary euhedral grains, and to a lesser extent carbonate veinlets are present in much of the bedrock as thin joint/fracture or foliation fillings. Very little carbonate alteration of the volcanics has occurred. Limonitic surface weathering, possibly derived from the oxidization of minor pyrite, was observed in holes 4 and 9. No sulphide, gold indicator or gangue minerals were identified in rock chips obtained from drilling.

Gold geochemical analyses of bedrock ranging from 7 to 25 ppb indicate gold enrichment above normal background of about 6 and 9 ppb for mafic and ultramafic volcanic rocks; however, this is not anomalous in terms of economic mineralization and likely indicates the elevated level of metallogenically enriched regional gold background of the Porcupine camp. Silver, arsenic and base metals, copper, lead, nickel and zinc analyses are background. Drilling therefore apparently has not intersected the source of gold found in basal overburden.

Descriptions of bedrock chips and geochemical analyses of -10 mesh rock samples are listed in Appendices D and C respectively.

QUATERNARY GEOLOGY

に行政

<u>.</u>

LAC.LT

Quaternary geology and stratigraphy of the north half of the property is well known on a reconnaissance scale. To date, 30 overburden reverse circulation holes have been collared at centers of 1,500 ft. (Chernis and Averill, 1982) and an additional 10 holes were drilled in the current programme to further elucidate the stratigraphy in detail and follow-up gold anomalies encountered in holes TC-81-14 and TC-81-19.

- 9 -

20

i.y

40.10

Chernis and Averili (1982) on the basis of 30 wide spaced holes interpreted the glacial history. They postulate repeated Wisconsinan glaciations each of which eroded previous glacial materials and deposited till. Successive recessions were accompanied by the inundation of the glaciated area by lake Ojibway and deposition of glaciolacustrine sediments.

From bedrock to surface, Chernis and Averill subdivide the glacial stratigraphy into: a lower (lodgement) sandy till, lower deglacial sediments comprising grey silts and clays, a middle clayey till succeeded by an upper cobbly sandy till. This "stacked" till succession is overlain by upper deglacial sediments of esker sanda and gravels and lake silts and clays. From the drill cross-sections, it is evident that complete sequence of stacked tills is preserved only on the flanks of the Fredrickhouse esker, which overlies the east-central portion of the property and the 1982 drill area. Drilling elsewhere in this region (Routledge et al, 1981) has shown that glaciofluvial esker stratigraphy beneath glaciolacustrine sand aprons flanking eskers can be complex in that rhythmic sequences of the fluvatile coarse to fine clastics and clays can resemble unsorted tills as returned in drill slurries and hence be seen as indicative of episodic glacial advances. The correct genetic interpretation is critical in predicting transport distances of dispersal trains in till or eskers and in following-up gold anomalies.

During the 1982 drill programme, particular care was exercised in logging the subtle variations and clay characteristics attributable to bedding in till-like sediments to distinguish these from true tills. It now seems apparent that the interpretation of three existing till sheets should be revised. Detailed presentation of surface and bedrock topography and distribution of basal till is shown in Figures 5, 6 and 7 and re-interpretation of glacial stratigraphy from results of the 1982 programme is provided in overburden profiles in Figure 8.

Middle and upper tills have been re-interpreted to represent glaciofluvial gravel and sand (gf) and glaciofluvial rhythmic depositional sequences (gfr) related to esker sedimentation. These form small lenses and blankets extending in the subsurface away from the esker beneath the lacustrine sand apron. "Lower deglaciation" lacustrine silt and clays interfinger with these units and this likely occurred through the mechanism of seasonal flushes of sediments along the esker channel. (This revised interpretation agrees with regional interpretations of a single till sheet deposited in one episode of glacial advance. The later Cochrane advance documented north of the drill area is not recognized in drilling on the property). Gold or base metal anomalies within these middle stratigraphic units, specifically the 14 and 35 micro gm/kg anomalies in hole TC-81-14, are considered to be upper and middle tills.

Glacial Stratigraphy

1

1

S. Horse

3

3

₽ C L

Glacial sediments of the drill area are considered to be Wisconsinan age (recession 6,000-8,000 B.P.) and are classified according to origin into major glacial units such as glaciolacustrine (gl), glaciofluvial (gf), and basal or lodgement till (BT).

- 10 -

新聞教育教育学校の教育を行いていた。このでは、このでは、

Gray, lake bottom varved clays, oxidizing to yellow-brown at surface, and esker flanking apron sediments such as coarse to granular beach sand or lag gravel at surface, and very fine to fine sand at depth compose glaciolacustrine sediments (gl) which extend from surface to 100 ft. to 145 ft. Clay and silt at thicknesses of 12 ft. to 27 ft. underlie and interfinger with glaciofluvial materials in holes 1, 2, 3, 6 and 10.

Glaciofluvial esker material (gf) in general was deposited earlier than glaciolacustrine units and consists of well sorted coarse to medium sand, pebbly and granular sand, and cobbly to bouldery gravel composed largely of Archean metavolcanic, Temiskaming metasedimentary and lesser felsic intrusive rock types typical of the Porcupine camp. Thinly bedded rhythmic sequences of interbedded gravel, sand and silt or clay characteristic of esker delta sedimentation are further subdivided into unit (gfr). This occurs as a transition unit up to 14 ft. thick between glaciofluvial (gf) and glaciolacustrine (gl) sediments.

B. & C. LTD.

_

Hall Mar

A green, pebbly to bouldery gravel unit, up to 14 ft. thick, termed "green diamicton" (dt) is so named because of abundant green clay rock flour produced from drilling altered mafic to ultramafic volcanic boulders and cobbles, likely derived from the ultramafic bedrock, lying to the north on Asarco property. The diamicton is distinguished from true till by properties such as bedding, rounding of clasts, good sorting of coarse to medium sand matrix and by correlation to glaciofluvial and glaciolacustrine units between holes which suggests that this unit is more likely related to esker sedimentation rather than the alternative interpretation of till deposition during a limited ice margin fluctuation in this area. This till-like unit could also have originated from flushes of supraglacial debris or melt-out material from the base of lifting or floating ice at the ice margin, i.e. turbidite.

- 11 -

From 3 ft. to 14 ft. of basal till was identified in holes 2, 3 and 8 and possibly occurs in washed or reworked form in holes 6, 9 and 10. Till is identified by poorly sorted fine to medium gray to green sand, green rock flour and grey claysilt matrix and angular volcanic-sedimentary rock fragments in addition to rounded clasts of local bedrock debris-boulder content. Lack of bedding, mix of rock fragments and pebble shapes and nature of clay-silt component are main criteria for distinguishing the till from units of glaciofluvial, rhythmite and green diamicton material. Washed till (btw) lacks fines such as clay and silt and shows some sorting of sand matrix but rock fragment and pebble lithology and lack of bedding in addition to basal stratigraphic position suggests that fines have been washed and it is a reworked till. Basal tills appear to be present only in bedrock depressions at elevations below 130 ft. as illustrated in Figure 8. At higher elevations till may not have been deposited or alternatively, late-stage subglacial esker streams may have eroded to bedrock and removed till, or wave action from low lake levels may have washed till from bedrock at higher elevations. Distribution of till is shown in Figure 7.

GOLD ANOMALIES AND OVERBURDEN MINERALOGY

Gold Anomalies

Gold in overburden concentrates ranges from less than 5 to greater than 15,000 ppb and ten sample analyses in holes 2, 3, 8 and 9 exceeded the local anomaly threshold of 3,000 ppb (Routledge and Thompson, 1982).

DERVY MICHE

- 12 -

B. & C. LTD

THE P

こうからかい 地球保険機能をあたい あたい しょうき 二人 疑惑 後端 おおおお かくりょう しょう

Concentrate mass in relation to initial sample mass has a bearing on the significance of an anomaly inasmuch as high values in a proportionately larger concentrate mass will be more reliable and significant than a smaller concentrate of similar tenor (Chernis and Averill, 1981). Anomalous samples were therefore weighted to relate values in the concentrate to the total sample size. Significant anomalies thus recognized are considered to be equal or greater than 10 micrograms per kilogram (ppb) and these values would compare to anomalous levels of gold found in soils sampled using normal procedures. Eight samples in holes 3, 8 and 9 range from 13 to greater than 47 microgram/kilogram.

Gold observed during tabling concentrates may be lost in subsequent concentrate splits and geochemical analysis splits, therefore, for samples with visible gold having concentrate tenors which are seemingly too low, an estimate of the gold content of the total sample in micrograms/kilogram (ppb) was made using calculated masses of the observed gold grains in proportion to the total sample mass. This kind of estimation is commonly practiced in placer gold grade estimation and is a valuable semiquantitative tool for gold exploration in overburden. By this method several low values have been upgraded to anomalous levels reported in micrograms/kg and termed "gold indications".

A C. LTD

13

とない

1. S. S. S.

Anomalous gold and visible gold occurrences in samples are summarized in Table 2 and correlated to glacial stratigraphy in Figure 8.

Holes 2, 8 and 9 carry strong gold anomalies with gold indications in holes 3 and 7. In hole 2, the value exceeding 45 micrograms/kilogram occurs in glaciofluvial rhythmites some 27 ft. above bedrock. Gold indications are also found in the diamicton unit of hole 3, 25 ft. above bedrock. However, basal till found in both

- 13 -

14

Table 2

1.41

122-23 - 12-2340

لتستعا

L.

L

GOLDEIDT EXPLORATIONS INCORPORATED

Macklem and Bond Townships Property

1982 Overburden Drilling Programme

Summary of Gold Anomalies in Overburden

Hole and Sample No.	Concentrate Analysis (ppb)	Micrograms Au/ kg Total Sample (ppb)	Visible Au <u>Grains</u>	Grain Size and +Character (microns)	Pertinent Concentrate <u>Characteristics</u>	Overburden Unit
TC+82-02-07	>15,000	>45	2	200 x 400 100 x 50 a	5%-10% angular pyrite as cubes	gfr**
TC-82-03-03	3,400	4,9	0	-		dt
TC-82-07-01	135/7,100*	0.74/39*	1	400 x 250 a	3% pyrite	gf
TC-82-07-02	1,266/4,600*	4.7/17	2	250 x 100 300 x 150 d	•	gfr
TC-82-08-04	>15,000	* >47	3	350 x 400 a 650 x 650 a 300 x 200 d	abundant magnetite, 3% pyrite. trace pyrrhotite	gfr
TC-82-08-05	3,170	3.5	1	200 x 150 a	pyrite <1%	BT
TC-82-08-06	>15,000	· >17	0	-	abundant pyroxene, pyrite <1%	BT
TC-82-09-01	1,890/4,700*	5,1/13*	1	200 x 250 a	abundant magnetite	gf
TC-82-09-02	145/2,800+	D.49/9.6*	1	350 x 150 a	coarse pyrite <1%	dt
TC-82-09-04	4,055	13	Q		1%-2% pyrite, diabase lithic fragments	gfr
TC-82-09-05	1,890	4,4	1	150 x 200 a	<pre>oxidized, 1%-2% pyrite, abundant magnetite</pre>	dt
TC-82-09-06	>15,000	>25	4	800 x 200 d 250 x 150 a 250 x 250 a 200 x 150 a	3%-5% pyrite, quartz-pyrite clasts, l quartz-pyrite-gold - j mm clast, abundant pyroxene	đt
TC-82-09-07	3,475	14	2	300 x 250 a	•	gfr
TC-82-09-08	8,185	26	2	500 x 250 d 450 x 300 a	lithic fragments, <l\$ pyrite,<br="">abundant magnetite</l\$>	BT
TC-82-09-10	14,400	39	4	250 x 150 a 400 x 300 a 100 x 100 a	coarse pyrite <1%, lithic and pyroxene clasts	BT and Bedrock
	a george and a second			300 x 150 a		

recalculated using estimated mass of visible golu grain(s) under premise that grain(s) did not report in analyzed 3/4 concentrate split, see Figure 8 for legend. a • abraided; d = delicate, non-transported.

HUU.

ALL OF

Mar I.

12.4

101211

•

í

- 14 -

2

.

2.

1

4 C. LTD

these holes is not anomalous indicating that the source of this gold may be placer in origin or weakly dispersed secondary train a considerable distance from its upice source. Alternatively it may be representative of the west flank of an anomaly cone rising from the gold dispersion in the lower sections of holes 8 and 9 some 500 ft. to the east.

In summary, anomalous values at the base of hole TC-81-19 (14 and 35 mg/kg) down-ice from holes 2 and 3 are found in what is considered to be glaciofluvial rhythmites correlating to stratigraphy occurring 40 ft. above bedrock in holes 1 to 3 and hence this anomaly may be either placer or a train far removed from bedrock source.

By contrast, almost the entire coarse clastic section of hole 9 exhibits visible gold, weak indications of gold or strong gold anomalies with the strongest value of 39 micrograms/kilogram found in a washed basal till unit adjacent to bedrock. Upper coarse stratigraphic units are glaciofluvials, glaciofluvial rhythmites and diamicton members extending some 45 ft. above bedrock. Continuous gold values are greater than 17 to greater than 47 micrograms/kilogram and visible gold extends in basal till (BT) and lower glaciofluvial rhythmite to 11 ft. above bedrock in hole 8. Visible gold is also found in the glaciofluvial section of hole 7 and correlates to the similar units in hole 8. Although these three holes are 1,000 to 1,500 ft. north of 1981 hole TC-81-14, in which the basal till gold value is 64.9 micrograms/kilogram, this anomaly in hole 14 may correlate to those in basal till of holes 7 to 9. The lack of gold anomalies in till in intervening holes 6 and 10 suggests the dispersal train may be spotty and weakening towards the rising bedrock surface. Gold values would be expected in upper glaciofluvial sections in these holes; however, these units are absent at the base of holes 6 and 10. The source of the gold anomalies in holes 7 to 9 is likely directly up-ice to the NNW. The abraided nature of the gold seen during tabling suggests that gold occurs freely rather than having been transported bound in larger rock fragments and liberated during drilling. Anomalies in basal till are considered indicative of generally short transport, and gold in the free state in (glacio) fluvial gravels and sands does not move great distances and is not far removed from its original source in till released from the glacier. Elsewhere in esker terrains, studies have shown that gold transport distances are likely to have been about a mile or less (Lee, 1968). These criteria suggest there is a relatively short distance between the bedrock gold source and holes 7 to 9.

Overburden Mineralogy

1

2

N. N. 4

おり、ビ

1000

9. & C. LTD

Sixteen , split, non-magnetic samples of concentrates were examined from holes 2, 3, 7, 8 and 9 in which gold geochemical anomalies were disclosed or visible gold was observed during table concentration. Concentrate mineralogy is a suite typical of the Abitibi greenstone belt and consists primarily of varying amounts of the physically resistant minerals; pyroxene, garnet, epidote, zircon and minor amounts of pyrite/sulphides, hematite, ilmenite and lithic or rock fragments. Lower glaciofluvial rhythmites and basal till in hole 9 and basal till in hole 8 are enriched in pyroxene and/or lithic diabase fragments indicating local derivation from the diabase dyke immediately north of the north property boundary, a transport distance of some 3,300 ft. from these anomalous holes.

The low amounts of pyrite and other sulphides in addition to the trace of gold observed in a pyrite-quartz fragment diamicton (dt) sample TC-82-09-06, which

- 15 -

- 16 -

was taken relatively high in the stratigraphy of hole 9, indicates the source may be in part free gold in quartz veins with only minor amounts of pyrite and possibly other sulphide mineralization.

CONCLUSIONS AND RECOMMENDATIONS

The significant gold anomalies in holes 8 and 9 appear to be related to the bedrock source within a mile up-ice. Since gold in the concentrates is accompanied by an abundance of pyroxene and rock fragments correlatable to the diabase dyke north of the property boundary, the gold source may be related to guartz vein mineralization in tension fractures or in a shear zone in volcanics along the margin of the diabase dyke. However, free gold generally does not transport nearly as far as rock fragments in glaciofluvial environments and this suggests the source may be somewhat nearer to the anomalies and may indeed lie south of the property boundary. Unfortunately, glaciofluvial units and basal till are absent north of hole 7 and further overburden drilling to test this hypothesis directly up-ice of the anomalies would not be effective. Additional overburden holes drilled east of holes 7 to 9 in a northerly direction could be considered to test and sample for basal till and to possibly intersect a lateral extension of the dispersal train to the east. This would involve considerably higher risk for the expenditure than the previous set of A more realistic alternative would be diamond core drilling a number of holes. holes to test for gold in the bedrock formations north-northwest of holes 7 and 8.

E. TWA

Vience!

1885 N

140.02

`.

. 1

Approximately 1,500 ft. of diamond drilling, at a budgeted cost of \$50,000, is therefore recommended to test for bedrock gold mineralization north of the anomalous overburden drill holes.

Respectfully submitted,

DERRY, MICHENER, BOOTH & WAHL

R.E. Routledy 2

17 1 1 1 1 4 1 4 ST

2010

A 10/25 11 1

R.E. Routledge, B.Sc., M.Sc. (applied) F.G.A.C.

November 5, 1982 Toronto, Ontario

1.00

Sec. 1

No. of Street, or Stre

ALL

18 m

1. J. J. J. J.

Sec. 65.

and the second

Ŷ

Į

和小型

B. & C. LTD.

.

Chernis, J. and Averill, S.A. 1981: Goldeidt Expl

L: Goldeidt Explorations Incorporated, Macklem Township, Porcupine Mining Division, Ontario - Reverse circulation drilling report; M.N.R. Assess. File Rept., 33 pp.

Leahy, E.J.

- 1969: Macklem Township, District of Cochrane; O.D.M. Prelim. Geol. Map P.546, scale 1:15,840.
- 1971: Geology of the Night Hawk Lake area, District of Cochrane; Ontario Dept. Mines and Northern Affairs, Geol. Rept. 96, 74 pp, map 2222, scale 1:31,680.

Leahy, E.J. and Hogg, D.W.

1962: Preliminary geological map - Bond Township; O.D.M. Map No. P161, scale 1:15,840.

Lee, Hulbert A.

- 1968: An Ontario kimberlite occurrence discovered by application of the glaciofocus method to a study of the Munro Esker; Geol. Survey of Canada, Paper 68-7, 3 p.
- Pyke, D.R., Ayres, L.D., and Innes, D.G.
 - 1973: Timmins-Kirkland Lake Geological Compilation Series, Cochrane, Sudbury and Timiskaming Districts; Ontario Div. Mines Map 2205, scale 1:253,440.

Routledge, R.E., Thomson, I., Thompson, I.S., and Dixon, J.A.

1981: Deep overburden drilling and geochemical sampling in Benoit, Melba, Bisley, Maisonville, Morissette, Arnold, Grenfell, Lebel, Eby, Otto, Boston and McElroy Townships, Districts of Timiskaming and Cochrane; Ontario Geol. Survey Open File Rept. S356.

Routledge, R.E. and Thompson, I.S. (Derry, Michener, Booth & Wahl)

ولأبر فيبار كا

1982: Report on Macklem and Bond Townships Property Timmins, Ontario of Goldeidt Explorations Inc.; Ontario Securities Commission Rept., 45 p.

- 18 -

BIBLIOGRAPHY

List of abbreviations used on lab data sheets.

2

.

Tr	Trace
Cobs	Cobbles
Pebs	Pebbles
GCls	Gritty clay balls
SCls	Smooth clay balls
v/s	Volcanic and/or sedimentary rocks
Gr	Granitic rocks
Lime	Limestone
A	Abraded gold grain
D	Delicate gold grain
T	Transported gold grain
D _	Quartz

A MARINE OVERBURDEN DRILLING MANAGEMENT LIMITED LABORATORY SAMPLE LOG

S. LAN

Samala	We	ight (kg,	wet)		Weight (gr	ams dry)			Description		
Number	Table Spiit	+ 10 Rock Chips	- 10 Table Feed	Table Çong	M.I. Lighta	Nonimag	Mag	N G.	+ 10	Matrix	Classific On
TC-82-01-01	7.4	0.1	7.3	175.6	156.3	12.8	6.5	O	Pabe to Line 854. u/s 15% Gr	Unserted grey-beige with grey clay	TILL
02	3.2	0.2	3.0	61.5	50.0	8.8	2.7	0	Cobs 95% uls tr Lime	*	TILL
. 03	5.6	0.3	5.3	59.7	49.8	8.1	1.8	0	Paba 90% u/s 1% Lime	A	TILL
04	6.2	0.3	5.9	62.2	49.1	10.5	2.6	0	Pala 85% v/s 3/ Line		TILL
05	5.4	40.1	5.4	48.8	32.6	12.7	3.5	• 0	Reha tr Lime Box u/s 20% Gr	Sorted fine + meetium	SAND
. 06	6.0	0.5	5.5	82.4	68.0	10.7	3.7	0	Cabe 85% v/s 3% Lime	Unsorted grey with clay	TILL
02-06	7.1	2.3	4.8	63.2	48.1	13.6	1.5	0	Cuttings 90% V/s to Lime	Unsorted dark green chips	MAINLY BOULDER
07	7.9	0.2	7.7	157.5	122.1	23.2	12.2	200×400 Jul 100×50 Jul	Coba 95%. uls tr Line	Unsorted grey green	TILL
08	5.7	0.6	5.1	56.8	56.4	0.4	Few Grains	0	Cuttings 99% u/s	Unsorted chips dark green with chuy	BEDROCK
09	3.4	0.2	3.2	101.3	98.6	1.8	0.9	0	•	1)	BEDROCK
	8.9	0.7	8.2	213.5	197.6	10.2	5.7	0	41	Unsorted chips - green with grey sand and	BEDROCK
/	15.8	0.7	15.1	344.4	291.2	35.4	17.8	0	al and a second s	Unsorted grey green with green	BEDROCK WITH
	7.8	0.1	7.7	199.6	161.2	25.3	13.1	0		Unsorted grey green	BEDROCK WITH MINOR OVERBURDENTIN!
13	7.9	<0.1	7.9	219.2	187.5	20.9	10.8	0			BEDROCK WITH MINOR
03-01	6.4	0.4	6.0	165.4	147.1	13.1	5.2	0	Cobs 85% 1/5	Unsorted grey with grey chay	TILL
02	6.7	0.4	6.3	119.8	100.1	15.2	4.5	0	Cobs	11	TILL
03	7.5	0.4	7.1	207.7	194.4	10.2	- 3.1	0	11		TILL
04	8.0	0.5	7.5	229.5	199.5	20.0	10.0	0		Unsorted grey	Till
05	5.9	0.1	5.8	176.7	161.4	9.4	5.9	0	Cuttings 99% up the Line	Unsarted - durk green chips with day	BEDROCK

OVERBURDEN DRILLING MANAGEMENT LIMITED LABORATORY SAMPLE LOG

٠ ۰.

: 11

N. L. A. SHELL

Serrela	We	ight (kg,	wal)		Weight (gr	ams dry)			Desc	ription	
Sample Number	Table Split	+ 10 Rock Chips	- 10 Table Feed	Table Conc	M.I. Lights	Non-mag	Mag	V G.	+ 10	Matrix	Classifiction
TC-82.04-01	2.9	0.2	2.7	73.0	57.7	12.2	3.1	0	Cobs 70% V/S SoxGr to Line	Unsorted beige-grey with chay	TILL .
05-01	8.0	Few Asbs	8.0	178.9	123.7	45.7	9.5	0	V/S and Guarde pobs	Sorted - Fine, medium beige	SAND
	8.2	0.3	7.9	222.5	185.0	27.0	10.5	0	Pebs 55% u/s Hoy. Cr 5% Lime	Unsorted grey-beige	TILL
<u>62</u>	10.7	0.8	9.9	179.9	140.1	36.5	3.3	0	11	Unsorted group beige	The
03	9,2	Few Prbs	9.2	177.3	140.0	29.0	8.3	0	Pebs 99% v/s	Sorted - five medium grey-boye	SANU
07-01	5.4	Few Granules	5.4	92.0	54.2	29.4	8.4	400 x 250 ли Abradd	4/5 and Gr granules	Unsarted grey-beige	TILL
02	5.4	0.2	5.2	70.2	45.6	19.4	5.2	250×100 D 300×150 D	Rebs 85% u/s 5% Line	11	TIL
08-01	6.5	0.1	6.4	91.7	51.1	29.6	11.0	0	Granules 55% V/s 40% Gr SS/ Kinc	11	TILL
02	4.2	0.5	3.7	94.0	83.4	8.3	2.3	0	Pebs 80% u/s <5% Line	11	TILL
03	4.1	<0.1	4.1	113.1	97.3	10.5	5.3	0	Granules 95% v/s 2-3% Line	Sorted - fine - gry beige. with rock chips	SAND will abble
04	6.9	0.4	6.5	174.9	143.7	20.5	10.7	350×400 A 650×650 A 300×600 D	Pebs 90% v/s 5% Line	Sorted - coarse with reck chips	SAND with cubble
05	9.5	0.1	9.4	40.3	25.6	10.3	4.4	200×150 A	Granules + rock chips 95% v/s Tr Line		SAND will cobble
06	3.9	0.3	3.6	49.6	43.6	4.1	1.9	0	Cuttings 99% u/s Tr Line	Rock cutting & with given chay	BEDROCK
09-01	4.7	<0.1	4.7	72.9	48.7	12.6	11.6	200×250 A	Ganules	Sorted medium - fine. with Gr rock chips	SAND will coldle
02	6.8	0.7	6.1	69.8	39.9	20.8	9.1	350 X150 A	Rebs 10%. 4/5 25%. Gr 5% Line	Unsorted gray beinge with silt	TILL
03	5.0	0.1	4.9	92.9	69.5	16.7	6.7	0	Pebs 60% uts 35th Gr 5% Line	11	TILL
04	6.9	<0.1	6.9	132.0	100.2	21.5	10.3	0	Pebs and V/s cuttings 70% v/s 30% Gr to Line),	The
05	6.8	0.8	6.0	37.6	17.7	11.0	8.9	150x200 A	Cobs 85% 4/5 5% Line	Sorted - course grag-beinge with rock	SAND
. 64.	7.3	1.2	6.1	43.7	27.1	10.0	6.6	300×700 D 250×750 A 260×250 A 200×250 A	Pebs Soyly/s 5% Lime	Unserted grey-beige with silt	Til

OVERBURDEN DRILLING MANAGEMENT LIMITED

LABORATORY SAMPLE LOG

لحد ما را

Scanla	We	ight (kg.)	wet)		Weight (gr	ama dry)		Graina	Description		
Number	Table Split	+ 10 Rock Chips	- 10 Table Feed	Table Conc	M, I, Lights	Nontmag	Mag	K G,	+ 10	Matrix	Classificeun
TC-82-09-07	8.0	<0.1	8.0		91.9	32.2	18.4	300×150 A 200×150 A	Granules 95% VK 2-3% Line	Unsorted grey - beige with sill	TILL
08	7.7	20.1	7.7		106.4	24.9	15.9	500X 250 D 450X 300 A	Granules 15% Gr 60% Uls 25% Line	11	Tim
. 09	2.7	0.2	2.5		65.2	4.8	2.9	0	Pabs 90%. V/s Tr Line	Rock cuttings	BOULDER
	3.8	0.3	3.5		47.2	9.5	5.7	250 x / 50 A 100 x 750 A 300 x 750 A	Cuttings + Pebs 914. Ws Tr Line	Unsorted - grey beige with sift plus green	TILL + BEDROCK
TC-82-10-01	7.1	20.1			137.1	16.4	5.4	0	Granules Soxuls 35%.Gr 15%Line	Sorted fine-medium grey-beige	SAND
02	7.4	Few Grains			81.2	19.8	6.4	0	Granules V/S	il i	SAND
a3	7.3	0.2			57.3	27.5	9.8	0	Cuttings - 99% u/s 1% Lime + Gr pebs	Surted grey beige Fine-medium with Vis tock chies	SAND with cobble
04	7.7	0.5			100.0	13.3	5.2	0	Cuttings 65× V/s 35% QZ		SAND with cobble
	的编制						R				
			1	1							
										•	
		н			. :						
									a Bayla nga mangka kana di sakan di sa Angan di sakan di sak		
							1				

0m81-5-C-139 63.4116

APPENDIX C

GEOCHEMICAL ANALYSES

BEDROCK AND OVERBURDEN CONCENTRATES

. CHEMICAL RESEARCH AND ANALYSIS

. CONTRACT LASCRATORIES

TECHNICAL SERVICE LABORATORIES Division of Burgener technical enterprises limited

1301 FEWSTER DRIVE, MISSISSAUGA, ONT. LAW 1A2

TELEPHONE (416) 625-1544 TELEX 06 - 960215

CERTIFICATE OF ANALYSIS

Attention: R.E. RoutledgeInv.#20422SAMPLE(S) OFPULVERISED ROCK	SAMPLE(S) FROM	Derry Michener Booth and Wahl Suite 2302, 401 Eay St., Toronto. Ont. M5H 2Y4	REPORT NO. T 11179
SAMPLE(S) OF PULVERISED ROCK	·	Attention: R.E. Routledge	Inv.#20422
	SAMPLE(S) OF	PULVERISED ROCK	

Samples	F.A./A.A. Gold (Au) ppb	Silver (Ag) ppm	Arsenic (As) ppm	Copper (Cu) ppm	Lead (Pb) ppm	Nickel (Ni) ppm	Zinc (Zn) pr
TC-82-01-07	10	0.6	<1	58	12	58	46
TC-82-02-14	24	0.8	<1	81	12	50	61
TC-82-03-06	25	0.6	<1	59	11	56	52
TC-82-04-02	10	1.1	<1	62	12	51	53
TC-82-05-02	17	1.0	<1	65	10	66	34
TC-82-06-04	12	0.4	<1	29	9	33	27
TC-82-07-03	16	0.7	<1	91	11	40	49
TC-82-08-07	7	0.9	<1	56	13	50	40
TC-82-09-11 '	19	J.9	<1	54	12	58	42
TC-82-10-05	7	0.5	1	39	20	30	58

Samples, Pulps and Rejects discarded after two months.

September 17, 1992

1 an EBurge CENCINE D

. CHEMICAL RESEARCH AND ANALYSIS

. CONTRACT LABORATORIES

1301 FEWSTER DRIVE, MISSISSAUGA, ONT. LAW 142

TELEPHONE. (416) 625-1544 TELEX 06-960215

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Derry Michener Booth and Wahl Suite 2302, 401 Bay St., Toronto, Ont. M5H 2Y4	REPORT No. T 11179		
	Attention: R.E. Routledge	Inv.#20422		
SAMPLE(S) OF	PULVERISED ROCK			

Samples	F.A./A.A. Gold (Au) ppb	Silver (Ag) ppm	Arsenic (As) ppm	Copper (Cu) ppm	Lead (Pb) ppm	Nickel (Ni) ppm	Zinc (Zn) pr
TC-82-01-07	10	0.6	<1	58	12	58	46
TC-82-02-14	24	0.8	<1	81	12	50	61
TC-82-03-06	25	0.6	<1	59	11	56	52
TC-82-04-02	10	1.1	<1	62	12	51	53
TC-82-05-02	17	1.0	<1	65	10	66	34
TC-82-06-04	12	0.4	<1	29	9	33	27
TC-82-07-03	16	0.7	<1	91	11	40	49
TC-82-08-07	7	0.9	<1	56	13	50	40
TC-82-09-11	19	0.9	<1	54	12	58	42
TC-82-10-05	7	0.5	1	39	20	30	58

and the survey

Samples, Pulps and Rejects discarded after two months.

DATE September 17, 1982

· ·	
Binder-Org. & Compart Ltd. 764 Sectars Road Octava, Ontare Canata Kic 025 Phone (6:13) 237-31 Teles 201-4455	DNDAR-CLEGG Lab Report
FROM: SOLDEINT EXPLORATIONS INC.	EUBAILTED BY: AVERILL
ELEMENT DETECTION LINIT EXTRACTION - METHOD Au 5 PPB AQUA REGIA Fire A	SIZE FRACTION SAMPLE TYPE SAMPLE PREPARATIONS SSRY AA -200 HEAVY MINERAL CONC. PULVERIZE -200
REPORT CUPIES TO: J. EIDT, MID. DCH. LTD. RICK RUTLEDGE	INVOICE (UT J. EINT) MID. OCH. LTD.
REMARKS: > MEANS BREATER THAN < MEANS LESS THAN	DETECTION LIMITS FOR BOLD 10 dram sample: 5 ppb. 5 dram sample: 10 ppb. 1 dram sample: 50 ppb.
	Statte Wt. 10 g. unless otherwise stated. NOTE: Check concentration/sample weight ratio for effective detection level.

.....

•

• · · • • • • •

and the second states of the

=G

1

1 5

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	REPORT 112-1620 -	ROCECT				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BAAPLE ELEMENT HUHBER UNITS	Au FFB	ut/ag Gh	micacgaams Au /kg = FSAmple (ppb totalsample)	NOTES	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	TC82-04-01-3/4H	145	7.20	. 0.66		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TC82-05-01-3/4H	<5		<0.03	•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TC82-96-91-3/4H	700		3.1		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	TC32-06-02-3/4H	1135	• • *	4.2		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	TE82-06-03-3/4H	250		0.79		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	TC32-07-01-374H	135		0.74		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	TCB2-07-02-3/4H	1265		4.7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TE92-08-01-3/4H	1045	•	4.8	•	
7632-36-33-3/4H 240 7.50 0.87 $1052-06-3-3/4H$ 51500 247 $1052-36-35-3/4H$ 5170 7.55 3.5 $1052-06-374H$ 5170 7.55 3.5 $1052-08-36-374H$ 51500 2.65 17 $1032-09-01-374H$ 1890 9.00 5.1 $1052-09-32-374H$ 145 0.493 $1052-09-32-374H$ 145 0.493 $1052-09-32-374H$ 145 0.493 $1052-09-32-374H$ 160 0.594 $1022-09-32-374H$ 160 0.594 $1022-09-32-374H$ 15000 7.10 $1022-09-02-374H$ 2410 8.15 4.4 $1022-09-02-374H$ 1805 16 $1022-09-02-374H$ 18195 1.45 1.9 $1022-09-03-374H$ 18100 6.55 3.9 $1022-10-01-374H$ 125 0.06 1.19 $1022-10-02-374H$ 70 0.166 0.666	TC82-08-02-3/4H	325	5.70	0.73		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TC82-08-03-3/4H	240	7.50	0.87		
$\frac{1022-03-05-3/4H}{1022-09-01-3/4H} = \frac{3179}{15000} = 2.85 \qquad 17$ $\frac{1052-09-04-3/4H}{1022-09-02-3/4H} = \frac{160}{155} \qquad 0.49$ $\frac{1022-09-02-3/4H}{155} = \frac{160}{12} \qquad 0.54$ $\frac{1022-09-04-3/4H}{155} = \frac{160}{12} \qquad 0.54$ $\frac{1022-09-06-3/4H}{155} = \frac{160}{12} \qquad 0.54$ $\frac{1022-09-06-3/4H}{155} = \frac{160}{12} \qquad 0.54$ $\frac{1022-09-06-3/4H}{155} = \frac{160}{12} \qquad 0.55$ $\frac{1602-09-06-3/4H}{155} = \frac{160}{15} \qquad 0.66$ $\frac{1022-09-06-3/4H}{1022-10-04-3/4H} = \frac{170}{12} \qquad 0.66$	TC32=0E=04=372H->	1500v		>47		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TC82-08-05-3/4H	3179	7.55	3.5		
1032-09-01-3/4H 1890 9.30 5.1 $1052-09-02-3/4H$ 145 0.49 $1032-09-03-3/4H$ 160 0.54 $1032-09-03-3/4H$ 4055 13 $1032-09-03-3/4H$ 4055 13 $1032-09-03-3/4H$ 2410 8.15 4.4 $1032-09-06-3/4H$ 15060 7.10 >25 $1032-09-06-3/4H$ 15060 7.10 >25 $1022-09-06-3/4H$ 1895 16 $1022-09-06-3/4H$ 915 3.45 1.49 $1022-09-03-3/4H$ 915 3.45 1.69 $1022-09-03-3/4H$ 915 3.45 1.69 $1022-10-03-3/4H$ 14400 6.55 3.9 $1022-10-02-3/4H$ 120 0.15 0.166 $1022-10-03-3/4H$ 170 0.666 0.666	7062-08-06-3/48 >	15000	2.85	17		▲
1052-09-02-3/4H 145 0.49 $1052-09-03-3/4H$ 160 0.54 $1032-09-04-3/4H$ 4055 13 $1022-09-05-3/4H$ 2410 8.15 4.4 $1032-09-06-3/4H$ 15000 7.10 >25 $1022-09-06-3/4H$ 15000 7.10 >25 $1022-09-06-3/4H$ 15000 7.10 >25 $1022-09-07-3/4H$ 3475 14 1400 $1022-09-07-3/4H$ 915 3.45 1.8 $1022-09-07-3/4H$ 915 3.45 1.9 $1022-09-01-3/4H$ 14400 6.55 3.9 $1022-10-03-3/4H$ 125 0.06 0.15 $1022-10-03-3/4H$ 170 0.15 0.66	TC32-09-01-3/4H	1890	7.00	5.1	· · ·	
1652-39-33-374H 160 0.54 $1292-39-34-374H$ 4055 13 $1282-69-35-374H$ 2413 8.15 4.4 $1282-69-35-374H$ 2413 8.15 4.4 $1282-69-35-374H$ 2413 8.15 4.4 $1282-69-374H$ 15000 7.10 225 $1282-39-08-374H$ 16185 26 $1282-39-08-374H$ 915 3.45 1.49 $1282-39-08-374H$ 915 3.45 1.9 $1282-39-08-374H$ 915 3.45 1.9 $1282-39-08-374H$ 915 3.45 1.9 $1282-39-01-374H$ 915 3.45 1.9 $1282-10-03-374H$ 12400 6.55 39 $1282-10-02-374H$ 70 0.15 0.66 $1282-10-03-374H$ 170 0.66 0.66	TC82-09-02-3/4H	145		0.49		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TES2-09-03-3/4H	160		0.54	*	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	TC82-09-04-3/4K	4055		13		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	TC22-09-05-3/4H	2410	8.15	4.4		
IC82-07-07-3/4H 3475 14 $IC62-07-08-3/4H$ 8185 26 $IC62-07-07-3/4H$ 915 3.45 1.8 $IC62-07-10-3/4H$ 14400 6.55 39 $IC62-10-01-3/4H$ 25 0.06 $IC62-10-02-3/4H$ 70 0.15 $IC82-10-02-3/4H$ 70 0.15 $IC82-10-03-3/4H$ 170 0.66 $IC82-10-04-3/4H$ 360 9.50 0.66	TC82-09-06-3/4H >	15000	7.10	>25		•
TC82=37-08=374H 18185 26 IC82=09-08=374H 915 3.45 1.8 IC82=09-10=374H 14400 6.55 39 IC82=10=01=374H 25 0.06 IC82=10=02=374H 70 0.15 IC92=10=03=374H 170 0.66 IC92=10=04=374H 350 9.50 0.66 0.66	TC82-09-07-3/4H	- 3475		14		
IC62-09-09-3/4H 915 3.45 1.8 IC62-09-10-3/4H 14400 6.55 39 IC62-10-01-3/4H 25 0.06 IC62-10-02-3/4H 70 0.19 IC92-10-03-3/4H 170 0.66 IC82-10-04-3/4H 360 9.50 0.66	TC82-07-08-374H	-6185		26		
IC82-09-10-3/4H 14409 6.55 39 IC82-10-01-3/4H 25 0.06 TC82-10-02-3/4H 70 0.15 IC92-10-03-3/4H 170 0.66 IC82-10-04-3/4H 350 9.50 0.66 0.66	TC82-09-09-3/4H	915	3.45	1-8		
IC82-10-01-3/4H 25 0.06 TC82-10-02-3/4H 70 0.15 IC92-10-03-3/4H 170 0.66 IC82-10-04-3/4H 360 9.69 0.66 0.66	TC82-09-10-3/4H	14400	6.55	39		
TC82-10-02-3/4H 70 0.15 TC92-10-03-3/4H 170 0.66 TC82-10-04-3/4H 350 9.59 0.66	TC82-10-01-3/4H	25		0.06		
1232-10-03-3/48 170 0.66 IC82-10-04-3/4K 360 9.69 0.66	TC82-10-02-3/4H	70	an Na	0-19		
ICB2-10-04-3/4H 350 9.59 0.66	1002-10-03-374B	170	· · · · · · · · · · · · · · · · · · ·	0.66		
	TC82-10-04-3/4H	360	9+39	0.66		· · · ·
				· -		
			· · ·	•		

³ Bondsr-Cing, S. Currup to Ltd. 764 Bedday Road Otawa, Ontano Curada VIG 025 Phone. (611) 217-31 U Teler: 053-4455

SEERIN: 112-1507_PR0.4CT1 The set of and the "OTES SMRE ELERNI Full Utility The set of and the "OTES CPANE UNITS Full Utility The set of and the "OTES CPANE CPANE CPANE The set of and the "OTES CPANE CPANE CPANE The set of and the "OTES" CPANE CPANE CPANE The set of and the "OTES" CPANE CPANE CPANE The set of and the "OTES" CPANE CPANE CPANE CPANE CPANE							·
Sharte Element Au With concernant Au NOTES Junces Junce Concernant Concernant		ī:				FAGE 1	
Charlen et al. Complete ID = 22-01-013/4H 130 6.43 0.38 ID = 22-01-013/4H 130 6.43 0.38 ID = 22-01-013/4H 130 6.43 0.32 ID = 22-01-013/4H 120 5.45 0.02 ID = 22-01-013/4H 120 5.45 0.52 ID = 22-01-013/4H 120 5.45 0.52 ID = 22-01-013/4H 120 5.45 0.52 ID = 22-01-013/4H 120 0.02 1.75 ID = 22-010-013/4H 1500 > 2.42 ID = 22-010-013/4H 1500 > 2.45 ID = 22-010-013/4H 1500 > 2.45 ID = 22-010-013/4H 50 0.02 ID = 22-010-013/4H 50 0.03 ID = 22-010-013/4H 50 0.00 ID = 22-010-013/4H 50 0.464 ID = 22-02-013/4H 1640 1.58 ID = 22-02-013/4H	SAMPLE ELEMENT AU MUMBER UNITS PPB	ut/Au Să	MICROGRAMS AU The of sample	NOTES			
10-22-01-013/4# 570 9.30 /.0 10-21-013/4# 75 5.65 0.11 10-12-01-03/4# 10 7.60 0.02 10-22-01-03/4# 125 5.00 0.05 10-22-02-03/4# 150 2.72 4/.1 10-22-02-03/4# 150 0.25		·	(ppb total sample)	1			
10-02-01-033/44 130 6.43 0.38 10-32-01-033/44 15 5.45 0.11 10-32-01-033/44 15 5.45 0.11 10-32-01-033/44 15 5.40 0.02 10-32-01-033/44 15 5.40 0.05 10-32-01-033/44 15 5.40 0.05 10-32-02-033/44 1500 > 45 10-32-02-033/44 1500 > 45 10-32-02-033/44 1500 > 45 10-32-02-033/44 1500 > 45 10-32-02-033/44 50 7.17 0 07 10-32-02-033/44 50 7.17 0 07 10-32-02-033/44 50 7.17 0 07 10-32-02-033/44 50 7.15 0.46 10-32-033-033/44 340 7.15 4.3 10-32-033-033/44 3400 7.15 4.3 10-32-033/44 1030 5.60 1.7	TD-82-01-013/4H 570	9.30	1.0				
1:-3:-1:-3:3:44 75 5.65 0.11 1:-3:-1:-3:3:44 27 5.95 0.02 1:-3:-2:-3:-3:5:44 27 5.95 0.52 1:-3:-2:-3:-3:5:44 25 8.60 0.05 1:-3:-2:-3:-3:5:44 25 0.60 0.15 1:-3:-2:-3:-3:5:44 2.72 4.1 1:-3:-2:-3:-3:44 500 0.25 1:-3:-2:-3:-3:44 500 0.25 1:-3:-2:-3:-3:44 500 0.25 1:-3:-2:-3:-3:44 50 0.31 1:-3:-2:-3:-3::44 50 0.40 1:-3:-2:-3::3::48 50 0.40 1:-3:-3::3::48 50 0.40 1:-3:-3::3::48 50 0.49 1:-3:-3::3::48 50 0.49 1:-3:-3::3::48 50 1.5 1:-3:-3::3::48 50 1.5 1:-3:-3::3::48 50 1.4 1:-3:-3::3::48 50 1.4 1:-3:-3::3::48 50 1.4 1:-3:-3::3::48 50 1.4 1:-3::3::3:48 50 1.5	IC-82-01-023/4H 130	6.40	- 0.38	· `			
10-12-01-04374H 10 7.60 0.02 12-32-01-04374H 250 9.95 0.53 12-32-01-06374H 250 0.00 > 45 12-32-02-06374H 15500 > 445 12-32-02-06374H 5500 > 455 12-32-02-06374H 5500 > 455 12-32-02-06374H 550 0.60 12-32-02-06374H 500 0.10 12-32-02-06374H 500 0.69 12-32-02-07274H 500 0.69 12-32-03-02374H 1000 2.8 12-32-02374H 1080 2.8 12-32-02374H 1080 2.60 12-32-02374H 1030 6.60 12-32-02374H 1030 6.60 12-32-02374H 1030 6.60 12-32-02374H 1030 6.60 12-3	TC-82-01-033/4H 75	5.05	0.11				
11-32-31-053/44 220 9.75 0.52 10-32-01-053/44 25 8.60 0.05 10-32-02-053/44 1500 > 445 10-32-02-053/44 550 > 445 10-32-02-053/44 550 > 37 10-32-02-053/44 550 55 10-32-02-053/44 550 55 10-32-02-053/44 550 55 10-32-02-053/44 550 0.60 10-32-02-053/44 550 0.60 10-32-02-053/44 550 0.60 10-32-02-053/44 553 0.66 10-32-02-053/44 255 0.69 11-32-03-053/44 255 0.69 11-32-03-053/44 1060 2.8 10-32-03-053/44 1030 6.60 10-32-03-053/44 1030 6.60	TC-52-01-043/4H 10	7.60	0.02				
IC-32-01-06374H 25 8.00 0.05 IC-32-02-06374H 1450 2.72 4.1 IC-32-02-0374H 2500 >445 IC-32-02-0374H 2500 >45 IC-32-02-0374H 2500 >45 IC-32-02-0374H 250 .02 IC-32-02-0374H 255 0.60 IC-32-02-0374H 255 0.60 IC-32-02-0374H 255 0.60 IC-32-02-0374H 255 0.60 IC-32-02-0374H 255 0.69 IC-32-03-0374H 255 0.69 IC-32-03-0374H 255 0.69 IC-32-03-0374H 200 7.15 4.9 IC-32-03-0374H 1060 2.8 0.62 IC-32-03-0374H 1060 2.8 0.62 IC-32-03-0374H 1060 3.60 1.7	<u>10-67-01-053/48</u> 220	<u> </u>	0.52				
1C-32-30-63/4H 155 0.0 0.05 1C-32-30-263/4H 1500 >445 1C-32-30-263/4H 1500 >445 1C-32-30-263/4H 1500 >445 1C-32-30-263/4H 150 0.15 0.02 1C-32-30-263/4H 150 0.15 0.37 1C-32-30-263/4H 50 7.57 0.03 1C-32-30-263/4H 55 0.60 1C-32-30-263/4H 55 0.60 1C-32-30-303/4H 55 0.66 1C-32-30-303/4H 255 0.69 1C-32-30-303/4H 255 0.69 1C-32-30-303/4H 3600 7.15 1C-32-30-303/4H 1030 6.60 1C-32-30-303/4H 1040 2.8 1C-32-30-303/4H 1030 6.60 1C-32-30-303/4H 1030 6.60 1C-32-32-305/4H 1030 6.60 1C-32-32-32-32-32-32-32-32-32-32-32-32-32-				· · · · · · · · · · · · · · · · · · ·			
TC-32-0-202/03/4H 1450 2.72 4.1 TC-32-0-273/4H 500 >44.5 [C-32-02-03/4H 500 >45.5 [C-32-02-03/4H 500 >3.1 TC-32-02-03/4H 500 7.37 0.07 [C-32-02-03/4H 50 7.37 0.07 [C-32-02-03/4H 50 7.37 0.07 [C-32-02-03/4H 505 0.60 [C-32-02-03/4H 255 0.64 [C-32-02-03/4H 255 0.64 [C-32-03-02/4H 255 0.69 [T-32-03-02/4H 255 0.69 [T-32-03-02/4H 1060 2.8 [T-32-03-035/4H 1050 6.60 [T-32-03-055/4H 1053 6.60 [T-32-03-055/4H 1053 6.60	10-32-01-063/4H 25	8.00	0.05				
TC-22-02-073/44 51500 >43 TC-22-02-023/44 559 1,75 0.3/ TC-22-02-103/44 50 7,37 0.03 TC-22-02-103/44 50 7,37 0.03 TC-22-02-103/44 50 7,37 0.03 TC-22-02-103/44 50 7,37 0.03 TC-22-02-103/44 50 0.20 TC-22-02-103/44 553 0.60 TC-22-02-103/44 553 0.66 TC-22-02-103/44 555 0.69 TC-32-02-103/44 540 7.15 TC-32-02-103/44 540 7.15 TC-32-02-103/44 540 7.15 TC-32-02-103/44 1060 2.8 TC-32-03-043/44 1030 6.62 TC-32-053/44 1030 6.62	TC-82-02-063/4H 1450	2.72	4.1	, •			
10-22-202-032/44 (200 0.125 (200-2) 10-22-02-032/44 (50) 7.37 0.03 10-22-02-032/44 (50) 7.37 0.03 10-22-02-032/44 (50) 7.37 0.03 10-22-02-032/44 (50) 7.37 0.03 10-22-02-032/44 (50) 0.40 10-22-032/44 (55) 0.60 10-22-032/44 (25) 0.64 11-22-032/44 (25) 0.69 11-22-032/44 (25) 0.69 11-22-032/44 (26) 2.8 10-22-032/44 1030 6.60 11-22-03-053/48 1030 6.60	TC-82-92-973/4H > 15000		>45				
11-22-122-102/4H 50 7.137 0 03 12-22-22-112/4H 50 7.137 0 03 12-22-22-112/4H 255 0.60 7C-32-212-133/4B 250 0.66 12-22-12-133/4B 253 0.66 12-22-12-133/4B 253 0.66 12-22-12-133/4B 253 0.66 12-22-12-133/4B 253 0.69 12-22-12-33/4B 300 7.15 4.9 12-32-03-052/4H 255 0.69 12-32-03-053/4H 1030 6.60 1.3	10-82-02-083/48 <200	0.25	<0.01				
TC-82-92-103/4H 55 7.37 0.07 IC-82-02-113/4H 255 0.60 TC-82-02-113/4H 250 0.66 TC-82-03-027/4H 295 9.55 2.2 TC-82-03-027/4H 295 0.66 10 TC-82-03-027/4H 295 0.69 10 TC-82-03-027/4H 295 0.69 10 TC-82-03-037/4H 3000 7.15 4.9 TC-82-03-053/4H 1069 2.8 10 TC-82-03-053/4H 1030 6.60 1.7	10-32-02-093/44 559		0.3/				
1: 5: 5: 5: 7: 11:7.44; 255 0. 60 1: 5: 5: 7: 12: 14:44; 253 0. 66 1: 5: 5: 7: 12: 14: 14:44; 255 0. 66 1: 5: 5: 7: 12: 14: 14:44; 255 0. 69 1: 5: 5: 7: 5: 7: 12: 14: 14:44; 255 0. 69 1: 5: 5: 7: 5: 7: 12: 14: 14:44; 255 0. 69 1: 5: 6: 7: 5: 7: 5: 7: 12: 14: 14:44; 265 0. 69 1: 5: 6: 7: 5: 7: 5: 7: 12: 14: 1600 2. 8 1: 7: 6: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7:	70-00-137-1877/39 5A	7 7	0.05				
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 10 11 10 10 10 11 10 10 10 11 10 10 10 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	F0-00-00-113/38	1101	0.60				
C - 22: - 22: - 23: - 44 250 0.66 (C - 22: - 33: - 44 255 0.69 (C - 52: - 03: - 023/44 3400 7.15 4.9 - 2 - 62: - 03: - 023/44 1060 2.8 (C - 52: - 33: - 023/44 1030 6.60 7.7			0.00				
10-32-33-017/2H 125 0.69 10-32-033-027/2H 255 0.69 10-32-033-033/2H 300 7.15 4.5 10-32-03-033/2H 1060 2.8 10-32-03-053/2H 1030 6.60 7.7	0.051.051.122.174 529		0.10				
13-12-03-0027/44 295 0.69 17-62-03-033/4K 3400 7.15 4.9 72-62-03-033/4K 1060 2.8 10-32-03-053/4K 1030 4.60 7.17	T0-00-02-013/04/ 200	Q. 55	2.7.				
12-32-93-00274H 265 0.69 17-32-93-03374H 3400 7.15 4.5 72-82-03-04374H 1060 2.8 10.62 10-32-93-05374H 1030 6.60 7.7	الاست که مسید میشد است. کارانده این به در الا است. هم کار است. - میشون بیده این این از این با به می در میشون بیشون و میرون و میتونسید. - میشون بیده این این این و مواد و بیشون بیشون و میرون و میتونسید.						
T2-62-03-033/4H 3400 7.15 4.9 72-82-03-043/4H 1060 2.8 T2-82-053/4H 1030 6.60 7.7	10-32-03-023/4H 285		0.69				
	T0-62+03-033/4H 3400	7.15	4.9				
IC-32-33-053/4H 1030 6.60 /.7	TD-82-03-043/4H 1060		2.8				
	тс-82-03-053/ан 1030	6.60	1.7				
	· •• •••••••••••••••••••••••••••••••••		·				
					-		
	•						· ·
	· · · ·		•				
							······································
			,				
	· · · · · · · · · · · · · · · · · · ·						
	·						

••

BONDAR-CLEGG

.

0m 81-5-c-139 63.4116

APPENDIX D

BINOCULAR DESCRIPTION OF BEDROCK CHIP SAMPLES

APPENDIX D

BINOCULAR DESCRIPTION OF BEDROCK CHIP SAMPLES

TC-82-01-07 - Dark greenish-grey, chloritic, very fine-grained equigranular mafic metavolcanic of basalt composition. Slight carbonate alteration of weakly foliated matrix. Thin veinlets of clear quartz and coarsely crystalline calcite 3 to 5 mm thick.

- TC-82-02-14 Medium greenish-grey, aphanitic equigranular intermediate to mafic metavolcanic. Weakly foliated.
- TC-82-03-06 Weakly foliated, dark greenish-grey, very fine-grained equigranular mafic metavolcanic of basalt composition. Thin veinlets of euhedrally crystallized clear, barren guartz.
- TC-82-04-02 Light to medium apple greenish-grey aphanitic intermediate metavolcanic. Less than 1%, 0.25 mm chloritic amphibole porphyroblasts developed in an equigranular matrix. Thin feldspar banding in several chips noted, possibly tuffaceous. Weathered surface shows minor iron staining. Veined by thin 3 to 5 mm clear, barren quartz.
- TC-82-05-02 Medium greenish-grey aphanitic to very fine-grained intermediate to mafic metavolcanic. Thin, clear quartz veinlets probably parallel to weak foliation occur as layering with streaky banding of chips near surface; possibly tuffaceous. Minor, local silicification and carbonate alteration of matrix.
- TC-82-06-04 Dark greenish-grey very fine-grained equigranular mafic metavolcanic of basaltic or basaltic komatiite composition. Abundant 4 to 5 mm thick barren, clear quartz veinlets.
- TC-82-07-03 Light apple greenish-grey aphanitic, equigranular to porphyritic, intermediate to mafic metavolcanic. Calcite developed on foliation planes. Few chlorite schist chips indicates shearing and clay developed during drilling indicates possible alteration. Composition may be altered ultramafic metavolcanic.

2 10 41 11

8. & C. LTD.

1145

BINOCULAR DESCRIPTION OF BEDROCK CHIP SAMPLES

(Continued)

TC-82-08-07 - Dark greenish-grey, very fine-grained, equigranular mafic metavolcanic of basalt to basaltic komatiite (ultramafic) composition.

TC-82-09-11 - Medium greenish-grey, well foliated, chloritic intermediate to mafic metavolcanic. Felty equiangular matrix with less than 5% amphibole (actinolite) porphyroblasts retrograde-altered to chlorite.

TC-82-10-05 - Light greenish-grey, aphanitic, intermediate metavolcanic. Amphibole (actinolite or hornblende) occurs as porphyroblasts less than ½ mm, discontinuous streaks and banding developed parallel to weak foliation. Andesite composition.

B. & C. LTD.

. 1

0 M81 - 5 - C - 139

SUBMITTAL CONSISTED OF VARIOUS TH IS REPORTS, SOME OF WHICH HAVE BEEN CULLED FROM THIS FILE. THE CULLED MATERIAL HAD BEEN PREVIOUSLY SUBMITTED UNDER THE FOLLOWING RECORD SERIES (THE DOCUMENTS CAN BE VIEWED IN THESE SERIES): In 2.5459 One report of E.M & MAG SURVEYS. Report of Work # P486658 #140

TIE LINE GOLDEIDT EXPLORATION INC. TINCAN PROJECT MACKLEM & BOND TPS. Electromagnetic Survey GEONICS EM.16 INSTRUMENT: CUTLER, MAINE STAT ION SURVEYED BY : R.SIBTHORPE 310-82 4 R.SIBTHORPE 12-82 DRAWN BY SCALE (YERT) : LINCH = SCALE (HORIZ) : 1 INCH = 400 FEET PROFILE: IN-PHASE X X-X QUADRATURE LBASE LINE Relithorpe B.Sc.

THE THE THE THE THE THE THE THE	Constr Constr Constr State State	2987 61 2987 61 200 61 200 61 200 61 200 61 <th61< th=""> 61 61</th61<>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	330 341 372 326 340 342 332 335 340 337 336 334 334 334 334 336 334 336 334 336 334 336 334 336 336 336 336 336 336 336 336 336 336 336 337 337 337 336 337 337 337 336 337 337 336 337 337 336 337 337 336 337 337 336 337 337 337 337 337 337 337 337 337 337 337 337 337	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

l I

42A10SW0209 63.4116 BOND

-GOLDEIDT EXPLORATION INC. TINCAN PROJECT MACKLEM & BOND TPS. MAGNETOMETER SURVEY INSTRUMENT: GEONICS G-816 CONTOUR : 100 GAMMA RANGE : 61000 GAMMAS SURVEYED BY: J. EIDT 7-82 R. DOLEGOWSKI DRAWN BY: R. SIBTHORPE 9-82 SCALE : I INCH = 400 FEET RSibthofe B.Sc.

.