010

2.13139

REPORT ON
COMBINED HELICOPTER BORNE MAGNETIC AND VLF
SURVEY
NIGHT HAWK LAKE BLOCK
TIMMINS AREA
ONTARIO

RECEIVED

FEB 28 M

MINING LANDS SECTION

FOR
PAMOREX MINERALS INC. BY
AERODAT LIMITED
February 19, 1990

> R.J. de Carle
> Consulting Geophysicist
> Qual 2.11556

1. INTRODUCTION $1-1$
2. SURVEY AREA LOCATION 2-1
2.1 Property Location and Access 2-2
2.2 Claim Numbers 2-2
3. AIRCRAFT AND EQUIPMENT
3.1 Aircraft 3-1
3.2 Equipment 3-1
3.2.1 VLF-EM System 3.1
3.2.2 Magnetometer 3 -2
3.2.3 Magnetic Base Station 3-2
3.2.4 Radar Altimeter 3-2
3.2.5 Tracking Camera $3-2$
3.2.6 Analog Recorder $3-3$
3.2.7 Digital Recorder 3 3-3
3.2.8 Radar Positioning System 3.4
4. DATA PRESENTATION
4.1 Base Map 4-1
4.2 Total Field Magnetic Contours 4-1
4.3 VLF-EM Total Field Contours 4 -1
5. INTERPRETATION
5.1 Geology 5.1
5.2 Magnetics 5.3
5.3 VLF-EM Total Field 5-4
5.4 Conclusions 5-6
APPENDIX I References
APPENDIX II Personnel
APPENDIX III Certificate of Qualifications
APPENDIX IV General Interpretative Considerations
Page No.
6. BASE MAP;
two claim maps showing topography, survey boundary and claims covered in the airborne survey.
7. TOTAL FIELD MAGNETIC CONTOURS;
showing magnetic values contoured at 2 nanoTesla intervals, flight lines and fiducials with the photomosaic base map of the area.
8. VLF-EM TOTAL FIELD CONTOURS;
showing VLF-EM Orthogonal Station values contoured at 1% intervals, flight lines for north-south and east-west flying, and fiducials with the photomosaic base map.

1. INTRODUCTION

This report describes an airborne geophysical survey carried out on behalf of Pamorex Minerals Inc. by Aerodat Limited. Equipment operated included a high sensitivity cesium vapour magnetometer, a two frequency VLF-EM system, a video tracking camera and a radar altimeter. Magnetic, VLF-EM and altimeter data were recorded both in digital and analog form. Positioning data were stored in digital form and recorded on VHS video tapes as well as being marked on the flight path mosaic by the operator while in flight.

The survey area, comprised of a block of ground in the Night Hawk Lake area, is located approximately 20 kilometres east of Timmins, Ontario. Nine (9) flights, which were flown between November 30 and December 14, 1989, were required to complete the survey with flight lines oriented in two directions. The Night Hawk Lake block was flown at an Azimuth of $160-340$ degrees employing a 100 metre line spacing and at an Azimuth of 070-250 degrees with a line spacing of 200 metre line spacing. Coverage and data quality were considered to be well within the specifications described in the contract.

The survey objective is to acquire magnetic and VLF-EM data which will assist in the detection and location of structural effects and the mapping of favourable geological horizons for gold bearing environments. "It is the writer's contention that the ultramafic volcanic rocks in the Timmins area may have provided the main source bed for the gold mineralization. The gold was subsequently mobilized in large part during carbonatization

1-2

of the ultramafic rocks, and deposited in structurally favourable sites." The VLF-EM data will also be assessed for its base metal potential within the felsic cal-alkalic volcanic rocks near the top of the Deloro Group and the lower sequence of the upper Tisdale Group.

A total of 819 kilometres of magnetic data and 766 kilometres of VLF-EM data were acquired and compiled in map form and are presented as part of this report according to specifications outlined by Pamorex Minerals Inc.

2.1 Property Location and Access

The survey block is depicted on the index map as shown. It is centred at Latitude 48 degrees 30 minutes north, Longitude 80 degrees 58 minutes west, approximately 20 kilometres east of Timmins, Ontario.

Highway 101, between Matheson and Timmins, gives access to the northern portions of Night Hawk Lake, including northwestern Cody Township, the North Peninsula and west Central Macklem Township including East Peninsula. Travel by water gives best access to most areas within the Night Hawk Lake block. Parts of the area, notably southwest Cody. Township and southwest Macklem Township are best reached by helicopter.

2.2 Claim Numbers

Cody Township
There were a total of 246 claims in Cody Township covered in this airborne geophysical survey. They are as follows:
P. 724605-P. 724611
P. 779926 - P. 779928
P. 970001 - P. 970003
P. 1025818 - P. 1025844
P. 1025847 - P. 1025852
P. 1025867
P. 1026095 - P. 1026099
P. 1029586
P. 1030718 - P. 1030727
P. 1031177 - P. 1031178
P. 1031180 - P. 1031181
P. 1031183 - P. 1031195
P. 1031217 - P. 1031251
P. 1115200 - P. 1115205
P. 1127500 - P. 1127501
P. 1127789 - P. 1127790
P. 1128378 - P. 1128392
P. 1128393 - P. 1128407
P. 1128408 - P. 1128428
P. 1128433 - P. 1128437
P. 1128446 - P. 1128483
P. 1128491 - P. 1128497
P. 1128508 - P. 1128512
P. 1128538 - P. 1128547
P. 1128609 - P. 1128613

Macklem Township
There were a total of 92 claims covered in Macklem Township and are as follows:
P. 724599 - P. 724604
P. 849670
P. 867797 - P. 867800
P. 868201 - P. 868228
P. 995002 - P. 995003
P. 995005
P. 995075
P. 995351
P. 1115194 - P. 1115199
P. 1116270
P. 1126561 - P. 1126566
P. 1126568 - P. 1126569
P. 1127494 - P. 1127499
P. 1128438 - P. 1128445
P. 1128498 - P. 1128507
P. 1128528 - P. 1128535

3. AIRCRAFT AND EQUIPMENT

3.1 \quad Aircraft

An Aerospatiale A-Star 350D helicopter, (C-GDUF), owned and operated by Canadian Helicopters Limited, was used for the survey. Installation of the geophysical and ancillary equipment was carried out by Aerodat. The survey aircraft was flown at a mean terrain clearance of 60 metres.

3.2 Equipment

3.2.1 VLF-EM System

The VLF-EM System was a Herz Totem 2A. This instrument measures the total field and quadrature components of two selected transmitters, preferably oriented at right angles to one another. The sensor was towed in a bird 15 metres below the helicopter. The transmitters monitored were NAA, Cutler, Maine and NSS, Annapolis, Maryland broadcasting at 24.0 kHz and 21.4 kHz respectively for the Line Station. NAA, Cutler, Maine, NSS, Annapolis, Maryland and NLK, Jim Creek, Washington broadcasting at $24.0 \mathrm{kHz}, 21.4 \mathrm{kHz}$ and 24.8 kHz respectively were used for the Orthogonal Station. Different stations were used for both the Line Station and Orthogonal Station because of intermittent signals, were not detected or because of station shutdowns.

3.2.2 Magnetometer

The magnetometer employed was a Scintrex Model VIW-2321 H8 cesium, optically pumped magnetometer sensor. The sensitivity of this instrument was 0.1 nanoTeslas at a 0.2 second sampling rate. The sensor was towed in a bird 15 metres below the helicopter.

3.2.3 Magnetic Base Station

An IFG-2 proton precession magnetometer was operated at the base of operations to record diurnal variations of the earth's magnetic field. The clock of the base station was synchronized with that of the airborne system to facilitate later correlation.

3.2.4 Radar Altimeter

A King Air KRA-10 radar altimeter was used to record terrain clearance. The output from the instrument is a linear function of altitude for maximum accuracy.

3.2.5 Tracking Camera

A Panasonic video tracking camera was used to record flight path on VHS video tape. The camera was operated in continuous mode and the fiducial numbers and time marks for cross reference to the analog and digital data were encoded on the video tape.

3.3

3.2.6 Analog Recorder

An RMS dot-matrix recorder was used to display the data during the survey. In addition to manual and time fiducials, the following data were recorded:

Channel	Input	Scale
PWRL	Power Line	60 Hz
VLT	VLF-EM Total Field, Line	$2.5 \% / \mathrm{mm}$
VLQ	VLF-EM Quadrature, Line	$2.5 \% / \mathrm{mm}$
VOT	VLF-EM Total Field, Ortho	$2.5 \% / \mathrm{mm}$
VOQ	VLF-EM Quadrature, Ortho	$2.5 \% / \mathrm{mm}$
RALT	Radar Altimeter	$10 \mathrm{ft} / \mathrm{mm}$
MAGF	Magnetometer, fine	$2.5 \mathrm{nT} / \mathrm{mm}$
MAGC	Magnetometer, coarse	$25 \mathrm{nT} / \mathrm{mm}$

3.2.7 Digital Recorder

A DGR 33 data system recorded the survey on magnetic tape. Information recorded was as follows:

Equipment	Recording Interval
VLF-EM	0.5 seconds
Magnetometer	0.1 seconds
Altimeter	0.5 seconds

3.2.8 Radar Positioning System

A Falcon 484 radar positioning system was used for both navigation and flight path recovery. Transponders located at fixed locations were interrogated several times per second and the ranges from these points to the helicopter were measured to an accuracy of about 5 metres. A navigational computer triangulates the position of the helicopter and provides the pilot with navigation information. The positional data was recorded on magnetic tape for subsequent flight path generation.

4-1

4. DATA PRESENTATION

4.1 Base Map

Two claim maps, numbers G-3994 and G-3997, at a scale of $1: 20,000$ indicate the boundary of the block surveyed, as well as the claims covered with both the magnetometer and VLF-EM airborne systems.

4.2 Total Field Magnetic Contours

The aeromagnetic data were corrected for diurnal variations by adjustment with the digitally recorded base station magnetic values. No correction for regional variation was applied. The corrected profile data were interpolated onto a regular grid at a 25 metre true scale interval using a cubic spline technique. The grid provided the basis for threading the presented contours at a 2 nanoTesla interval.

The contoured aeromagnetic data have been presented on a Cronaflex copy of the photomosaic base map.

4.3 VLF-EM Total Field Contours

The total field VLF-EM signals from the Orthogonal Stations, NSS, Annapolis, Maryland and NAA, Cutler, Maine, were gridded at a 20 metre interval and presented on Cronaflex copies of the photomosaic base maps, for each flight direction, along with fiducials and the flight lines.

5.1

5. INTERPRETATION

5.1

Geology

The airborne survey area is located in the northwestern part of the Archean Abitibi Greenstone Belt. All known rocks underlying the Night Hawk Lake claim block are Precambrian in age. In the immediate area of the large claim block, metavolcanic and metasedimentary rocks make up most of the stratigraphy and have been identified as belonging to the Tisdale Group. Towards the west central region, the underlying rocks have been identified as belonging to the Porcupine Group.

The northern and northeastern extremities of the claim block are believed to be underlain with the lower Tisdale Group sequence, thought to be correlatable with the Stoughton-Roquemaure Group in the Kirkland Lake area. This basal group is composed mainly of basaltic and peridotitic komatites and magnesium-rich tholeiitic basalts.

Across the southern portions of the claim block and mostly within Night Hawk Lake is the overlying middle Tisdale Group. This overlying group is dominantly an iron-rich tholeiitic sequence and is interpreted to form the western extremity of the Kenojevis Group.

Towards the western region of the claim block and the west central portion of Cody Township, the rocks have been described as belonging to the Whitney Formation within the Porcupine Group. The basal portion of this sequence consists largely of siltstones, argillites and minor feldspathic wackes, and intermediate to mafic tuffs interlayered with minor siltstone in the upper part. The rocks underlying Poplar Point are believed to be felsic and mafic metavolcanics associated with the middle Tisdale Group.

There are two sets of diabase dykes within the claim block, basically north-south and east-northeast. The former structures are Early Precambrian olivine and quartz bearing diabase dykes. This diabase is massive, and weathers brown to orange-brown. There are also two large dykes of olivine diabase traversing across the middle of the claim block in an east-northeast direction and are interpreted as being Late Precambrian. This relationship is best seen in the middle of the claim block where an east-northeast dyke cuts through a north-south dyke.

Referring to Map 2222, it will be noted that several northeast-southwest and northwest-southeast trending structural faults traverse through the claim block. For the most part, the offsets of the diabase dykes is clear evidence of the faulting.

Economically, the Night Hawk Lake area has essentially been explored for gold because of its proximity to the Porcupine gold area. To the north of the large claim block, on North Peninsula, a considerable amount of exploration has been
carried out for gold with some success. Recently, it is believed that Pamorex Minerals Inc. has outlined approximately 1.59 million tons averaging 0.16 oz . gold per ton. To the northeast, on East Peninsula, the search for gold has also contributed to the exploration activity in the region. Towards the western portion of the claim block, near Poplar Point, minor amounts of chalcopyrite and sphalerite have been found within the felsic volcanics. However, there does not seem to be any great amounts. A concentrated exploration effort for base metals may result in a discovery.

5.2 Magnetics

The most notable magnetic features within the claim block are the two eastnortheast magnetic trends that traverse through the middle of the area. They both display quite high intensities and tend to be rather wide, approximately 200 metres. These east-northeast trending dykes are interpreted to be the Late Precambrian olivine diabase dykes. There is also the second set of diabase dykes and these are the north-south trending set of dykes. They are the ones that are interpreted as being Early Precambrian Matatchewan olivine and quartz bearing diabase dykes. The most prominent ones are located towards the western portion of the claim block intruding the rocks of the Whitney Formation. There are other Matatchewan diabase dykes in other parts of the claim block as well.

Most of the claim block is contained in a region of generally low intensity magnetic background and this is believed to be related to the underlying mafic to
intermediate metavolcanics associated with both the Stoughton-Roquemaure Group and the Kenojevis Group. However, it is apparent that there is not much difference in the magnetic intensity between the two groups. There may be a slightly higher magnetic background for the Kenojevis Group rocks because it is dominantly an iron-rich tholeiitic sequence.

The high intensity magnetic background towards the northwestern portion of the claim block, near Goose Creek, is believed to be related to a group of komatitic flows, in which ultramafic and mafic rocks dominate, and belonging to the basal sequence of the Tisdale Group.

A complete and comprehensive evaluation of the magnetic data will reveal further structures than what is shown on Map 2222. These will be important horizons as they are sometimes associated with the ore forming process in the Porcupine gold camp.

5.3 VLF-EM Total Field

The VLF-EM data has apparently not revealed much information, if any, within the claim block. It should be understood, of course, that the conductive nature from the lake bottom sediments of Night Hawk Lake, as well as from the overlying Barlow-Ojibway Formation, has impeded the penetration of the VLF through such an environment to the basement.

VLF-EM data was acquired from the Orthogonal Station in both a north-south and east-west flight direction over the claim block. In reference to the north-south flight direction, it will be noted that there was no VLF response, whatsoever, over the water of Night Hawk Lake. It was virtually flat. The one obvious feature is the correlation of VLF lows with islands in the lake, as well as over some locations on land. This phenomena seems to be quite evident near most islands in Night Hawk Lake towards the eastern portion of the claim block in Macklem Township. It is also noted towards the west, near Poplar Point. The writer suggests that this event is related to a thinning of the overlying conductive surficial material due to a protruding basement topography.

Towards the western portion of the claim block, in the vicinity of the north-south trending Early Precambrian diabase dykes, there is known to be a considerable amount of outcrops in this area. It is because of this and the resulting thinner layer of overburden, that there are a number of VLF lows. One, in fact, could correlate the VLF lows with the region of outcrops quite well.

The VLF data from the Orthogonal Station for the east-west flight direction display a very biased northwest-southeast trending phenomena. This is quite opposite to what the magnetics indicate and would tend to indicate then that there is no relationship at all with the basement lithologies. As mentioned earlier, for
the north-south VLF data, there seems to be a very subtle correlation between the VLF lows and higher regions of topography. This, it seems, is due to a thinning of the overlying conductive overburden.

5.4 Conclusion

The magnetic data presentation has apparent outlined the relatively non-magnetic sequences of the Tisdale Group. As mentioned earlier, there does not seem to be any obvious differences in the magnetics to distinguish between the two sequences within the Tisdale Group, the lower Stoughton-Roquemaure Formation and the middle Kenojevis Formation. Towards the extreme northwestern portion of the block, where Porcupine rocks are believed to outcrop, a closer look at the contact (magnetic flank) between the Porcupine Group and Tisdale Group rocks is suggested. To the north of the Destor-Porcupine Fault, which is to the north of this claim block, it is this contact that tends to be the favourable horizon for many of the gold bearing structures.

With respect to the VLF-EM data, it has apparently not revealed any signatures that one could relate to gold bearing structures within the basement rocks. Structurally, the VLF data may reveal fault zones, but this would only be possible after a much more intense assessment of the data.

Respectfully submitted,
R.J. de Carle

Robert J. de Carle Consulting Geophysicist for AERODAT LIMITED February 19, 1990
Qual 1.11556

APPENDIX I

REFERENCES

Anderson, T., Chamois, P., Desnoyers, D.
1979
Proceedings of a Special Symposium "Gold Exploration \& Outlook, Adams Club, Department of Geological Sciences, McGill University, Feb. 22-23, 1979, Pages 35-56.

Kelly, S.F.
1957: Resistivity and Magnetic Surveys in 1936 on the Broulan-Porcupine Gold Prospect, South Porcupine, Ontario, Methods and Case Histories in Mining Geophysics, 6th Commonwealth Mining and Metallurgical Congress 1957, pages 283-289.

Pyke, D.P. 1982:

Geology of the Timmins Area, District of Cochrane; Ontario Geological Survey Report 219, 141 p. Accompanied by Map 2455.

Leahy, E.H.
1971: Geology of the Night Hawk Lake area, District of Cochrane; Ontario Department of Mines and Northern Affairs, GR96, 74p. Accompanied by Map 2222.

APPENDIX II

PERSONNEL

FIELD

Flown

Pilot

Operator

OFFICE

Report

P. Moore
M. Chong-Foo

December, 1989
A. Sweet
R. J. De Carle

APPENDIX III

CERTIFICATE OF QUALIFICATIONS

I, ROBERT J. DE CARLE, certify that: -

1. I hold a B. A. Sc. in Applied Geophysics with a minor in geology from Michigan Technological University, having graduated in 1970.
2. I reside at 28 Westview Crescent in the town of Palgrave, Ontario.
3. I have been continuously engaged in both professional and managerial roles in the minerals industry in Canada and abroad for the past twenty years.
4. I have been an active member of the Society of Exploration Geophysicists since 1967 and hold memberships on other professional societies involved in the minerals extraction and exploration industry.
5. The accompanying report was prepared from information published by government agencies, materials supplied by Pamorex Minerals Inc. from a review of the proprietary airborne geophysical survey flown by Aerodat Limited for Pamorex Minerals Inc. I have not personally visited the property.
6. I have no interest, direct or indirect, in the property described nor do I hold securities in Pamorex Minerals Inc.

Palgrave, Ontario
February 19, 1990

Signed

R. Y. de Cate
Robert J. de Carl
Consulting Geophysicist for
AERODAT LIMITED

APPENDIX IV

GENERAL INTERPRETATION

Magnetics

The Total Field Magnetic Map shows contours of the total magnetic field, uncorrected for regional variation. Whether an EM anomaly with a magnetic correlation is more likely to be caused by a sulphide deposit than one without depends on the type of mineralization. An apparent coincidence between an EM and a magnetic anomaly may be caused by a conductor which is also magnetic, or by a conductor which lies in close proximity to a magnetic body. The majority of conductors which are also magnetic are sulphides containing pyrrhotite and/or magnetite. Conductive and magnetic bodies in close association can be, and often are, graphite and magnetite. It is often very difficult to distinguish between these cases. If the conductor is also magnetic, it will usually produce an EM anomaly whose general pattern resembles that of the magnetics. Depending on the magnetic permeability of the conducting body, the amplitude of the inphase EM anomaly will be weakened, and if the conductivity is also weak, the inphase EM anomaly may even be reversed in sign.

VLF Electromagnetics

The VLF-EM method employs the radiation from powerful military radio transmitters as the primary signals. The magnetic field associated with the primary field is elliptically polarized in the vicinity of electrical conductors. The Herz Totem uses three coils in the
polarized in the vicinity of electrical conductors. The Herz Totem uses three coils in the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ configuration to measure the total field and vertical quadrature component of the polarization ellipse.

The relatively high frequency of VLF (15-25) kHz provides high response factors for bodies of low conductance. Relatively "disconnected" sulphide ores have been found to produce measurable VLF signals. For the same reason, poor conductors such as sheared contacts, breccia zones, narrow faults, alteration zones and porous flow tops normally produce VLF anomalies. The method can therefore be used effectively for geological mapping. The only relative disadvantage of the method lies in its sensitivity to conductive overburden. In conductive ground to depth of exploration is severely limited.

The effect of strike direction is important in the sense of the relation of the conductor axis relative to the energizing electromagnetic field. A conductor aligned along a radius drawn from a transmitting station will be in a maximum coupled orientation and thereby produce a stronger response than a similar conductor at a different strike angle. Theoretically, it would be possible for a conductor, oriented tangentially to the transmitter to produce no signal. The most obvious effect of the strike angle consideration is that conductors favourably oriented with respect to the transmitter location and also near perpendicular to the flight direction are most clearly rendered and usually dominate the map presentation.

The total field response is an indicator of the existence and position of a conductivity anomaly. The response will be a maximum over the conductor, without any special
filtering, and strongly favour the upper edge of the conductor even in the case of a relatively shallow dip.

The vertical quadrature component over steeply dipping sheet-like conductor will be a cross-over type response with the cross-over closely associated with the upper edge of the conductor.

The response is a cross-over type due to the fact that it is the vertical rather than total field quadrature component that is measured. The response shape is due largely to geometrical rather than conductivity considerations and the distance between the maximum and minimum on either side of the cross-over is related to target depth. For a given target geometry, the larger this distance the greater the depth.

The amplitude of the quadrature response, as opposed to shape is function of target conductance and depth as well as the conductivity of the overburden and host rock. As the primary field travels down to the conductor through conductive material it is both attenuated and phase shifted in a negative sense. The secondary field produced by this
altered field at the target also has an associated phase shift. This phase shift is positive and is larger for relatively poor conductors. This secondary field is attenuated and phase shifted in a negative sense during return travel to the surface. The net effect of these 3 phase shifts determine the phase of the secondary field sensed at the receiver.

A relatively poor conductor in resistive ground will yield a net positive phase shift. A relatively good conductor in more conductive ground will yield a net negative phase shift. A combination is possible whereby the net phase shift is zero and the response is purely in-phase with no quadrature component.

A net positive phase shift combined with the geometrical cross-over shape will lead to a positive quadrature response on the side of approach and a negative on the side of departure. A net negative phase shift would produce the reverse. A further sign reversal occurs with a 180 degree change in instrument orientation as occurs on reciprocal line headings. During digital processing of the quadrature data for map presentation this is corrected for by normalizing the sign to one of the flight line headings.

Ontario

Ministry of
Northern Development
and Mines
Ministère du
Développement du Norad et dis Mines

June 25, 1990

900

Mining Lands Section 880 Bay Street, 3rd Floor Toronto, Ontario MSS 128

Tel: (416) 965-4888
Your File: W9006.60314
Our File: 2.13139

Mining Recorder
Ministry of Northern Development \& Mines
60 Wilson Avenue
TIMMINS, ONTARIO
PAN 2 ST
Dear Sir/Madam:
Re: Geophysical (Electromagnetic and Magnetometer) Survey submitted on Mining Claims P 1127789 et al in Cody/Macklem Townships.

The enclosed statement of assessment work credits has been approved as of the above date. This approval replaces all previous approvals.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,

W. R. Gowan

Provincial Manager, Mining Lands
Mines \& Minerals Division

45: mm
Encl:

CC: Mr. W. D. Tieman
Mining \& Lands Commissioner
Resident Geologist
Toronto, Ontario
Pamorex Minerals Inc
Aerodat Ltd
Schumacher, Ontario
Mississauga, Ontario
Doug Clark
Timmins, Ontario
Recorded Holder
PAMOREX MINERALS INC.
Townsthp or ARee
CODY AND MACKLEM

Special credits under section 77 (16) for the following mining claims

No credits have been allowed for the following mining claims
冈
not sulficiently covered by the survey
\square insufficient technicel date filed

P1127789-90

The Mining fecorder may reduce the above credits if necessery in order that the total number of approved assetiment devs fecorded on ech claim does not cxceed the meximum altowed as lollows: Geophrical - 80; Geologocal - 40; Geochemical - 40; Section $77(19) \cdot 60$.

TWP
CLAIM \#
MAG \& VLF

MAG \& VLF

TWP	CLAIM \#	MAG \& VLF
CODY	1031239	80
CODY	1031240	80
CODY	1031241	80
CODY	1031242	80
CODY	1031243	80
CODY	1031244	80
CODY	1031245	80
CODY	1031246	80
CODY	1032247	80
CODY	1031248	80
CODY	1031249	80
CODY	1031250	80
CODY	1031251	\ldots

FROM:M.R. PORCUPINE MIN.DIU. (0)

- Please type or prim.
- Refer to Section 77, the Mining Act for assessment work requirements and maximum credits allowed par survey type.
- If number of mining claims traverser oxoegds space an this form. allach a list.
- Technical Reports and maps in duplicate should be submitted to Mining Lands Suction. Mineral Dovolopmeni and Lends Branch:
Mining Act (Geophysical, Geological and Geochemical Surveys

rodent Ld 3883 Nashua Dr, Mississauga, Ont

Mining Claims Traversed (Lion) 1 rutrinical sequence)

Grlilicallon Verifying Report of Wo /k
hereby contily that I have a personal and formate knowledge of the facts sol forth in this Report of Work, having performed the work of wilnossed ammo during andiron her is completion and arnicxed report is rue.

TWP	CLAIM \#	MAG \& VLF
MACKLEM	724599	20
MACKLEM	724600	20
MACKLEM	724601	20
MACKLEM	724602	20
MACKLEM	724603	20
MACKLEM	724604	20
CODY	724605	20
CODY	724606	20
CODY	724607	20
CODY	724608	20
CODY	724609	20
CODY	724610	20
CODY	724611	20
CODY	779926	20
CODY	779927	20
CODY	779928	20
MACKIEM	-849670	20
MACKLEM	86779^{7}	20
MACKLEM	867798	20
MACKLEM	867799	20
MACKLEM	867800	0
MACKLEM	868201	20
MACKLEM	868202	20
MACKLEM	868203	20
MACKLEM	868204	2
MACKLEM	868205	20
MACKLEM	868206	20
MACKLEM	868207	20
MACKLEM	868208	20
MACKLEM	868209	20
MACKLEM	868210	20
MACKLEM	868211	20
MACKLEM	868213	20
MACKLEM	868214	20
MACKLEM	868215	20
MACKLEM	868216	20
P MACKLEM	868218	20
MACKLEM	868219	20
MACKLEM	868220	20
MACKLEM	868221	20
MACKLEM	868222	20
MACKLEM	868223	20
MACKLEM	868224	20
MACKLEM	868225	20
MACKLEM	868226	20
M ${ }^{\text {MCKLEM }}$	868227	20
MACKLEM	868228	20
CODX	-970001	80

RECEIVED
MAY 011980
MINING LANDS SECTION

MAG \& VLF

FROM:M.R. PORCLIPINE MIN.DIU.
\because

TO:MINING LANDS SECTION
Pabe 5 of 6

MAG \& VLF

	CJAIM \#	MAG \& VLF		
$P \quad \mathrm{C}$		80		
CODX 1	1030719	80		
CODX	1030720	80		
CODY	2030721	80		
CODY	1030722	80		
CODY	1030723	80		
CODX	1030724	80		
CODY	1030725	80		
CODY	1030726	80		
CODX	1030727	80		
CODY	1031177	80		
CODY	1031178	80		
CODY	1031180	80		
CODY	1031181	80		
CODY	2032183	80		
CODY	1031184	80		
CODY	1031185	80		
CODY	1031186	80		
CODY	1031187	80		FCEIVED
CODY	1031188	80		RECEIVED
CODY	1031189	80		WAY 01999
CODY	1031190	80		MAY 1
CODY	1031191	80		SECTION
CODY	1031192	80		MINING LANDS SECTION
CODY	1031193	80		
CODY	1031195	80		
CODY	1031217	80		
CODY	1031228	80		
CODY	1031219	80		
CODY	1031220	80		
CODY	1031221	80		
CODY	1031222	80		
CODY	1031223	80		
CODY	1031224 =	80		
CODY	1031225	80		
CODY	1031226	80		
CODY	1031227	80		
CODI	1031228	80		
CODY	1031229	80		
CODY	1031230	80		
CODY	1031231	80		
CODY	1031232	80		
CODY	1031233	80		
CODY	1031234	80		.
CODY	$1 \quad 1031235$	80		
CODX	Y 1031236	80	d	
CODX	X 1031237	80		
CODY	Y 1031238			

2.13139

Mining Lands Section
Ministry of Northern Development
and Mines
ard Floor
880 Bay Street
Toronto, Ontario
MSS 1 Zs

February 27, 1990

RECEIVED

FEB 28 PM

MINING LANDS SECTION

Dear Sirs:
These two (2) reports of an airborne magnetic and VLF Survey carried out in the Night Hawk Lake area near Timmins, Ontario, are being submitted on behalf of Pamorex Minerals Inc. and associated company Giant Yellowknife Mines Limited.

The primary benefactor of this assessment filing should be with Pamorex Minerals Inc., even though the company name on the map legend indicates Giant Yellowknife Mines Ltd., which is an associated company of Pamorex.

If you have any questions on the above, please do not hesitate to contact me.

Yours truly,
R.I. de Carte.

Robert J. deCarle
Consulting Geophysicist

DISPOSITION OF CROWR LARDS
TYPE OF DOCUMENT SYMBOL

\qquad

SCALE $1: 20,100$
GRID ZONE:17

DPCETMED JAN $=1990$

oweshi
MEARLEM
тими!
PORCUPIRE
WANO TitLES/ FEGISTRY OIVISIO

ming div:sion
PORCUPINE
land mites/reg
COCHRANE

