
dated at Toronto, Ontario. June 15, 1982.
S. W. Evans, P. Eng., Mining Geologist.

## RECEIVED

HEB21985
$010 C$

INDEX
Page
SUMMARY ..... 1
PROPERTY AND LOCATION ..... 2
PROPERTY LOCATION MAP ..... 4
GENERAL GEOLOGY ..... 5
PORCUPINE GEOLOGY (after Dunbar; C.I.M. 11948 ..... 7
HISTORY \& SUMMARY OF DEVELOPMENT ..... 8
SURVEY METHODS AND INSTRUMENT DATA ..... 11a) Magnetometer Surveyb) Electromagnetic (V. L. F.) Súrvey
GEOPHYSICAL RESULTS ..... 15
CONCLUSIONS ..... 18
RECOMMENDATIONS ..... 19
BIBLIOGRAPHY ..... 20
CERTIFICATE ..... 21
ENCLOSURES
1: LOCATION MAP
2: IINE GRID PLAN
3: MAGNETOMETER SURVEY
4: ELECTROMAGNETIC SURVEY

## SUMMARY

The property, highly folded, faulted and excellent underlying rock units, all of which could host gold deposits, has responded with valid and important geophysical results. The Geonics E.M. - 16, a V. L. F. unit performed exceedingly well and numerous conductors are recorded. However prolific the geophysical response we are not ready to recommend drilling at this stage.

The V. L. F. unit in the water covered and overburden areas of the property was at the limit of its capabilities and did not pick up important V. E. M. conductors that are recorded on the compilation map.

It is hard to believe, that after 70 years these 43 mining claims, around the corner from Manson \& Benella's Gold Island discovery of 1907, the first in the Porcupine, that no excellence of exploration techniques have been applied either on the land or on Northeast Bay.

I have recommended further geophysics, at closer line intervals, a proton magnetometer survey and further electromagnetic surveys with Crone's vertical loop unit ( $\mathrm{V}_{0} \mathrm{E}_{\circ} \mathrm{M}_{0}$ ).

## PROPERTY AND LOCATION

The property consists of 43 contiguous unoatented mining claims in the north central sector of Cody Township. They extend from the Cody north boundary with Matheson Township southwards and extend east and west from the Isthmus to the North Peninsula of Night Hawk Lake. Only $111 / 2$ of these claims are on the land, $51 / 2$ are water covered to the west and the rest are under the Northeast Bay of Night Hawk Lake.

They are numbered as follows:

| P 552605 | P 552616 | P 555241 | P 555827 |
| :---: | :---: | :---: | :---: |
| P 552606 | P 552617 | P 555242 | P 555828 |
| P 552607 | P. 552618 | P 555243 | P 555829 |
| P 552608 | P 552619 | P 555819 | P 555830 |
| P 552609 | P 552620 | P 555820 | P 555831 |
| P 552610 | P 552621 | P 555821 | P 555832 |
| P 552611 | P 555236 | P 555822 | P 555833 |
| P 552612 | P 555237 | P 555823 | P 555934 |
| P 552613 | P 555238 | P 555824 | P 555835 |
| P 552614 | P 555239 | P 555825 | P 555836 |
| P 552615 | P 555240 | P 555826 |  |

## PROPERTY_AND LOCATION (continued)

The property is readily reached via Highway No. 101, east from the Town of South Porcupine, Ontario, for 16 miles. Cross the Frederickhouse River bridge and proceed immediately south on paved road No. 803. You enter the proverty $3 / 4$ of a mile south of the No. 101 intersection, where the Cody Township north boundary crosses this road. Highway No. 803 for the next $11 / 2$ miles to the south traverses the property. Located in an area of low relief and sparse outcrop, the land is marked by thick stratified clays and tills. The water areas are the same with thick overburden layers to penetrate the bedrock. One old drill hole in the centre of the Northeast Bay of Night Hawk Lake went through 153 feet of overburden to bedrock. This shallow bay often has only 5 or 10 feet of water deoth. We do have sparse outcrop along the shore of the Northeast Bay which in this case would be outside the property boundary.


The property is underlain by folded and faulted Precambrian volcanics and sediments. This 'belt' originates west of Timmins and extends 90 miles east to and beyond the Quebec boundary. The series is intruded by stocks and sills of varied composition; ultrabasics, gabbro, granite and quartz porphyry. With the land area of the property almost devoid of outcrop, 1 trench to bedrock and 2 drill holes, our geology must be interpolated from our neighbours sparse outcrop and history with great reliance on E. J. Leahy's report and mans. Two thirds of our land acreage lies to the north of the Destor-Porcupine Fault. The major structural feature conform and follows With the series of volcanics and sediments to and beyond the quebec boundary. Striking $N 70^{\circ}$ E through Cody Township, the Destor-Porcupine dips steenly south. It is marked by, a shear zone several hundred feet wide. Talcose chloritic schists with carbonatization and the accessory fuchsite are common.

In addition Leahy identifies four additional fault systems in the eastern part of the Porcupine area: a $\mathrm{N} 55^{\circ} \mathrm{W}$ striking system; a $N 35^{\circ}$ W striking system; a third set of faults with strikes varying from $\mathrm{N} 25^{\circ} \mathrm{W}$ to $\mathrm{N} 25^{\circ} \mathrm{E}$; and a fourth system, the youngest, striking N $70^{\circ} \mathrm{E}$, the same as the Destor - Porcupine system but dipoing north. Rock Tyoes and Mineralization

Leahy reports the property underlain by three mafor important rock units. We have borrowed freely from F. E. Towsley's renort

## GENERAL GFOLOGY (continued)

Rock Types and Mineralization
to Pardee Amalgamted Group of Nov, 11, 1940. The discussion follows:
1: Younger Sediments, Timiskaming: located north of the Destor-Porcupine Fault, Towsley describes this series of greywacks, conglomerate, argillite in this fashion: "This siliceous Timiskaming greywacke and conglomerate lie in a synclinal fold which can be traced east from Timmins and along which are found many of the large gold producers of the Porcupine". Bedding is steeply south. Pyrite, chalcopyrite and some pyrrhotite are common to the sediments. Fracture systems and margins of conglomerate pebbles are mineralized. Gold values are usually low.
2: Mafic and Ultramafic Rocks: South of the Destor-Porcupine we have masses large and small of Mafic and Ultramafic Rocks. Leahy has differentiated into serpentinized peridotite and dunite, diorite, and carbonatized ultramafic rocks. Towsley remarks that this unit is only slightly mineralized and gold values are rare.
3: Extremely Altered Rocks: Leahy has designated this proverty major rock unit consisting of chlorite-carbonate schists, talc-chlorite carbonate-schists, chlorite-sericite quartz schists, serpentine schists. Towsley breaks the carbonates into three distinct types, the green dolomitic carbonates, the ferro rusty carbonates and the grey carbonates. The carbonates can be split by small lenticular masses of serpentine.
4: Felsic Intrusive Rocks: The carbonates have been injected with felsic intrusive rocks such as feldspar norphyry, quartz feldspar porphyry, aphanitic and felsitic dikes. Towsley says that the quartz and aplite are widespread in the carbonates and with such impregnation are reasonably well mineralized ( $5 \%$ of the rock). These are pyrite, chalcopyrite, sphalerite, pyrrhotite, galena, and occasional visible gold. The gold, according to Towsley, is associated with disseminated sulphides and the sulphide veinlets.

## HISTORY \& SUMMARY OF DEVELOPMENT

E. M. Burwash, 1896, W. A. Parks, 1899, and others reported on the Porcupine to the Ontario Bureau of Mines. It is of note that Burwash's statement "The district would be a promising one from a prospector's point of view were it not for the presence of the drift" is still pertinent and applicable to the property under discussion to-day. The first gold discovery in the Porcupine was made in 1907 by two Finnish prospectors, Victor Manson and Harry Benella on Gold Island in Night Hawk Lake. It is noteworthy that Gold Island is only 1 claim southeast of the southeast corner of this 43 claim group. The serious aspect of prospecting in those days of long difficult travel and material logistics is that Manson and Benella started a 50 ft . shaft on Gold Island in 1908. In any event, the Porcupine discoveries of Hollinger and Dome in 1909 and production from both of these properties in 1910 heralded events that made the Porcupine Mining Region one of the leading gold producers in the world. By the end of 1978, thirty-six mines had produced over 55 million ounces of gold and almost 12 million ounces of silver. The total value of this production was $\$ 1,999,169,913$.

From the Gold Island discovery, surface and underground exploration spread from the North Peninsula and East Peninsula locations. Sporadic impetus was given by the increase in gold prices in the 1930 's to $\$ 35.00$ (U.S.) an ounce. Work in many cases was

## HISTORY \& SUMMARY OF DEVELOPMENT (continued)

sponsored by some of the well known Porcupine production successes to the west. eg: Hollinger, Broulan Reef, Preston East Dome, Pamour Porcupine.

Gold prices at $\$ 35.00$ (U.S.) per ounce for many years did not assure stability of exploration and successes in this locale. Creative projects like the Preston East Dome sponsored Pardee were allowed to fold. At the time of writing the Aquarius shaft and extensive surrounding lands are now controlled by American Smelting \& Refining. Asarco adjoins the W. D. Evans property to the east and are presently underground and erecting a 400 ton per day PILOT MILL. The old Gold Hawk and Porcupine Peninsula are under option to Pamour Porcupine.

Only two drill holes and one trench to outcrop are reported on the land area of the property. One drill hole not shown on Leahy's map had 54 feet of overburden and intersected ultramafics and felsic volcanics. This intersection will move the Destor-Porcupine Fault north at this location. The western water covered $51 / 2$ claims have no reported drilling.

International Nickel completed magnetometer and ground electromagnetic surveys in 1966 over part of the Northeast Bay water covered 26 claims. Broulan Reef did a magnetometer survey only, over part of the property. Of the four holes drilled by Inco in 1969, the Northeast Bay, only two concern this property, Overburden was 125 and 153 feet respectively and both intersected ultramafics. They

## HISTORY \& SUMMARY OF DEVELOPMENT (continued)

were checked for copper and nickel and no gold assays are remorted. The other minor addition to property assessment is a section line of eight drill holes bearing $N 25^{\circ}$ W that started beside Goldhawk's Hollinger shaft on the North Peninsula. The northerm 1500 feet in plan would be on the Evans' property. It is reported privately that this sectional drilling was carried out under Broulan Reef's direction.

## SURVEY METHODS AND INSTRUMENT DATA

The baseline was established across the narrow part of the North Peninsula Isthmus of Night Hawk Lake and extended due East and West to the property boundaries. Line $0+\infty$ was located on the baseline beside Highway No. 803 right-ofway and for its ontire length stayed within this road allowance. The baseline to the East over the ice of Northeast Bay was also located to coincide with the two claims north boundary in this locale. Of the 43 mining claims only $111 / 2$ are on the land. Picket lines (cut and chained on the land portion) were turned off every 400 feet and extended the property boundaries. All lines were chained and picketed at 50 foot intervals. All pickets were marked giving the station location and the upper section with fluorescent marker spray ready quick recognition in the winter sun glare over the ice. A snowmobile was equally effective on the lake traverses.

A total of $371 / 4$ miles of picket line included $21 / 4$ miles of baseline and tielines. Geophysical readings were taken at 3,639 recording stations plus an additional 180 magnetometer readings along the baseline. Mr. J. Chevalier of Timmins, Ont., was the magnetometer operator. Mr. W. D. Evans, Don Mills, Ont.

SURVEY METHODS AND INSTRUMENT DATA (continued)
was the Geonics E.M.-16 operator. The grid system was directed by Mr. W. D. Evans and overall supervision by the author.

The field work started towards the end of January, 1982, and was completed April 6th, 1982. When the field work was completed, three days were spent recovering pickets from the lake. Ice and weather prevented the success of this recovery.

## a: Magnetometer Survey

A Scintrex Fluxgate Magnetometer with a sensitivity of $\pm 5$ gammas per scale division on the 1000 gamma range reads the vertical component of the earth's magnetic field. A central station was established on the baseline at $\mathrm{L} 0+00$. Control readings were taken along the baseline and diurnal corrections applied. The instrument was set at 425 gammas and this base was carried into the survey area. An arbitrary background of 725 gammas was assigned and 300 added to all readings. The survey field period was remarkably clear from atmospheric magnetic disturbances.
b: Electromagnetic Survey (V, L, F, Geonics 16)
The VLF-transmitting stations operating for communications with submarines have a vertical antenna. The antenna current is thus vertical, creating a concentric horizontal magnetic field around them. When these magnetic fields meet conductive bodies in the ground, there will be secondary fields radiating from these bodies. This equipment measures the vertical components of these secondary fileds. The EM 16 is simply a sensitive receiver covering the frenuency band of the new VIF transmitting stations, with means of measuring the vertical field components. The receiver has two inputs, with two receiving coils built into the instrument. One coil has normally vertical axis and the other is horizontal. The signal from one of the coils (vertical axis) is first minimized by tilting the instrument. The tilt-angle is calibrated in percentages. The remaining signal in this coil is finally balanced out by a measured percentage of a signal from the other coil, after being shifted by $90^{\circ}$. This coil is normally parallel to the primary field.

Thus, if the secondary signals are small compared to the primary horizontal field, the mechanical tilt-angle is an accurate measure of the vertical real-compoment, and the compensation II $/ 2$-signal from the horizontal coil is a measure of the quadrature vertical signal.

SURVEY METHODS AND INSTRUMENT DATA (continued)
b: Electromagnetic Survey (V.L.F. Geonics 16) (continued)
The north south line direction was at the optimum right angle across the geological structure with the Cutler/Seattle combined unit inserted. Cutler, Maine, U. S. A., with the stronger signal was used completely. The Cutler frequency is 17.8 kHz. The dials inside the inclinometer are calibrated in positive and negative percentages and in degrees. Either ones can be used. If the instrument is facing $180^{\circ}$ from the original direction of travel, the polarities of the readings will be reversed. When plotting the readings, care should be taken to correct the polarities. The important thing is to know the actual tilt angle of the instrument.

Quadrature results are plotted on the left side and In-Phase results on the right side of the line with the resultant polarity. Both quadrature and the in-phase readings are profiled with the dip angle in percentages at a scale 1 inch $=20$ vercent. With overburden thicknesses to 153 feet in the Northeast Bay of the lake composed of varved clays, sand and gravel, the effectiveness of the Geonic - 16 is reduced. Our swamps and lakes set up secondary currents which result in quadrature deviation with little or no response in the in-phase component.

Complex geology has created a complex geophysical nicture that at this stage, we can only obtain a preliminary assessment of the property. In any event, we are dividing the property (mapwise) into four main sections - $A, B, C, \& D$, with a further numbered subdivision.

A general statement on structural lineaments follows: Three major structural lineaments are mapped. Two that strike $N 30^{\circ} \mathrm{W}$ narallel to the Engleheart River system. The eastern structure is shown on Leahy's original Preliminary Map but not on his final. I have to accent my own field interpretations. The Destor-Porcupine Fault strikes $N 50^{\circ} \mathrm{E}$ in Area A. I have moved it north since an old drill hole intersected ultramafics and felsic volcanics. There are other complex natterns that eventually will be understood. This is just a preliminary look at the structural aspect of the property.

AREA A: The claims north of the Destor-Porcupine Fault are underlain by Timiskaming sediments. The magnetometer and electromagnetic resnonses are relatively low. If anything, there is a gradual increase from 450 gammas to 600 gammas in the northwest. The Destor-Porcunine Fault is marked by 600 gammas to 800 gammas and in the A 2 region, ultramafics (intersected in an old drill hole) result in localized magnetometer highs on three lines from 800 gammas to 1400 gammas.
A-1: Good electrical conductor on two lines. The West V. L. F. is within a magnetic low near the intersection of the Destor-Porcupine Fault and western mafor lineament. The conductor on the next line to the east falls within the 600 gamma isomagnetic.
A-2: Strong electrical conductors over four lines from the raad east to boundary. These conductors are just south of the ultramafic magnetic anomaly and approach the 500 gamma isomagnetic line. The strongest electrical conductor is located on the road ( $\mathrm{L} 0+00$ ).

## GEOPHYSICAL RESULTS

A-3: This weak conductor in the Timiskaming sediments on the edge of a magnetic low becomes of interest when searching for gold in these sediments.
AREA B: As we approach the north shore of the bay, a series of V. L. F. typical 'sulphide' conductors are recorded on every line. The younger diabase with 600 gammas and core to 1000 gammas abuts against the eastern lineament.
B-1: Excellent V. L. F. conductor also picked up by INCO'S vertical loop and no drill test record. Inco's vertical loop picked up on 5 lines for a strike length of 2000 feet. This conductor lies fust north of an interesting magnetic structure to 1200 gammas. This is a first class target.
B-2: Not unlike B-1 but lacks any direct magnetic association, No record of testing by drilling.
B-3: This series of conductors with on-shore build up. Wilwood to the north did much drilling over the years and there are sulphide associations to the north. The answer to these conductors may be available in the assessment files but not in all instances since they did not direct much drilling under the bay.
AREA C: As we approach the south shore of the bay and Goldhawk west boundary, we pick up further excellent strong sulphide conductors and a complicated magnetic anomaly. On two lines we have the highest magnetic readings taken on the property (highest: 2725 gammas). These results complicated by folding and faulting are related to the gold ore making quartz feldspar porphyry with widths to 50 feet. The strike length of our V. L. F. conductors is approximately 3500 feet. C-1: Two excellent V. L. F. conductors. Results to the west. indecisive as we approach western lineament.
C-2: Excellent strong V. I. F. conductors on both lines. Our strongest magnetic highs recorded on the pronerty. The small hill above shore is rusty. Extensive 2000 gamma isomagnetic continues south. We have isolated these two lines with two minor structural lineaments temporarily.

GEOPHYSICAL RESULTS (continued)

C-3: Excellent strong V. L. F. conductors. Double conductors extend to our property boundary and be extended east to the quartz feldspar porphyry ore that cuts across the point of land on the Goldhaw western claim.
AREA D: Our area $D$ can be considered the remaining water covered portion of the property. Electrical conductors are weak and the serpentinized ultramafics greater in extent than previously mapped. Faulting also complex.
D-1: Definite but weak electrical conductor within serpentinized ultramafics near eastern major structural lineament.
D-2: Definite but weak electrical conductor on two lines. Isomagnetic 1800 to 1400 gammas.
D-3: Weak electrical conductor off the end of the V. L. F. buildup approaching the north boundary of Goldhawk. Low magnetics. D-4: Extensive ultramafic region with broad 1400 gamme isomagnetic.

The property is completely underlain by rock types that are host to nearby important gold deposits. This includes the neighbouring Goldhawk and American Smelting and Refining Comoany properties to the east. The north end of the property is underlain by Timiskaming sediments from which the Pamour and the Hoyle are mining pold from closely spaced auriferous quartz veins which cross the younger sediment conglomerates.

The 43 claims almost devoid of outcrop are located in an area of complex faulting, folding, and geological alteration. The geophysical response to the work just completed has been definite and valuable. The magnetic survey in particular responded to our varied and complex geology. The Geonics EM-16 also delivered positive electrical conductors within its depth and overburden capabilities. However, the V. L. F. did not pick up the preponderance of the INCO V.E.M. anomalies that are recorded on the compilation sheet. Only two drill holes on the land area and two Inco holes on Northeast Bay to test ultramafics with no gold assays taken.

With this gap in the geophysical assessment, I am not prepared to drill test any of the prolific geophysical picture that is developing. It is also important to know the boundaries and extent of the Inco coverage since I believe that most of their field work was not carried to the shore. Forty-three claims and four diamond drill holes over 70 years of hit and miss exploration leaves the property virtually untested.

RECOMMENDATIONS

The following recommendations are listed:
1: Continue with the geological data compilation.
2: Close the line grid interval to 200 feet and be prepared to close to 100 feet in specific areas depending on results.

3: Proton Magnetometer Survey with sensitivity of 1 gamma with recording stations every 50 feet.

4: Deep overburden exists on the property. Therefore, a standard transmitter vertical loop survey method should be employed. The Crone Vertical Loop (VEM) with frequencies 480 and 1800 was successfully employed in laying out a gold - bearing structure on the Nickel Offsets Limited, Muley Township propertly with similar conditions. The Crone VEM is recommended.

5: Such a program should allow for detailed Induced Potential and provision for detailed Seismic to determine bedrock profiles before drilling.

6: Such a program should also be prepared to close the line grid to 100 feet if considered necessary.

This program could start on the land areas immediately and proceed to the ice when weather permits. This would allow a preliminary assessment of the effectiveness of this program.
dated at Toronto, Ontario. June 15, 1982.

S. W. Evans, P. Eng., Mining Geologist.

## BIBLIOGRAPHY

Twenty-First Annual Report Bureau of Mines,Ontario - Vol. XX1 Part 1................. 1912Page 205: The Porcupine Gold Area byA. G. Burrows - second reportStructural Geology of Canadian Ore DepositsC. I. M. Symposium. . . . . . . . . . . . . . . . . . . . 1948Geology of Ore Deposits of Tisdale TownshipO.D.M. Geological Report No. 58 byS. A. Ferguson. . . . . . . . . . . . . 1968Geology of the Night Hawk Lake Area, Districtof Cochrane, O.D.M. Geological Report byE. J. Leahy1971
Maps:
Cody Township; O.D.M. Prellminary GeologicalMap No. P 545 by E.J. Leahy \& assistants 1964-1968
Timmins - Kirkland Compilation SheetO.D.M. Map No. 2205O.D.M. Cartographic update.1972
Cody Township Compilation Sheet
O.D.M. No. P 2090 ..... 1980
Ontario Dep't. of Mines - Assessment filesOntario Resident Geologist, Timmins, Ontario

## CERTIFICATE

I, S. W. Evans, of the Municipality of Metropolitan Toronto, in the Province of Ontario, do hereby certify that:

1: I am a Mining Geologist residing at 29 Southwell Drive, Don Mills, Ontario.

2: I am a graduate of the University of Toronto in Mining Geology, 1951, with a degree of Bachelor of Applied Science and that I am a member of the Association of Professional Engineers of the Province of Ontario.

3: I have been practising my profession since graduation.
4: As a native of the Porcupine, I have been involved profession lily on innumerable projects over the years in this Mining Division. I am familiar with the mining geology and the development history of the region.
dated at Toronto, Ontario. June 15, 198?.

S. W. Evans, B. A. Sc., P. Eng., Mining Geologist.




Assessment Work Breakdown

Man Days are based on eight (8) hour Technical or Line-cutting days. Technical days include work performed by consultants, draftsmen, etc.. .





## Mining Recorder

Ministry of Matural Resources
60 Wilson Avenue
Timins, Ontario
P4N 257
Dear Sir:
We received reports and maps on Fobruary 21, 1985 for a Geophysical (Electromagnetic i Magnetometer) Survay submitted under Special Provisions (credit for Porformance and Coverage) on Mining cialms P 552605, et. 1.. in the Township of Cody.

This material will be examined and assessed and a statement of assessment work credits will be issued.

We do not have a copy of the maport of work which is normally filed with you prior to the subuifsion of this technical data. Please Eomard a copy as soen as possible.

Yours sincerely,

S.E. Yundt<br>Director<br>Land Management Branch

Whitmey Block, Room 6643
Quech's Park
Toronto, Ontario
M7A 1 M3
Phone: (416)965-4888

## A. Barrime

cc: | M. D. Evans | cc: S.N. Evans |
| :--- | :--- |
| 29 Southwell Drive | 29 Couthinil Drive |
| Don M1lis, Ontario | Don MIIIs. Ontario |
| M3B 2NB | M38 2NB |

GEOPHYSICAL GEOLOGICAL
_ GEOCHEMICAI.
_ EXPENDITURE

MINING LANDS COMMENTS:
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$



Signature of Assessor

Mining Recorder<br>Ministry of Natural Resources<br>60 Wilson Avenue<br>Trains, Ontario<br>PAN 257

## Dear Sir:

## RE: Notice of Intent dated May 7, 1035 Geophysical (Electromanhetict fights Survey on Mining Claims P 552605; 5 t in the Township of cody

The assessment work credits, 3 , 11 the thltheth
 as of the above date.

Please inform the recorded holder of this e initio claims and 80 indicate on your record is:

Yours sincerely.
S.E. Yundt

Director
Land Management Branch
Whitney Block, Room 6643 Queen's Park
Toronto. Ontario
nita 1 Wu
Phone: (416)965-4888
D. Isherwoodime

CC: W.D. Evans<br>Don Mills, Ontario<br>cc: S.W. Evans Don Mills, Ontario Encl.

to whom who
assesses.
only reduce crecuts for clams

P552607
552610
552614
Ray 5-4888


|  | File |
| :---: | :---: |
|  | 2.7830 |
| Oate | Mining Recorder's Report |
| 19850507 | WorkNo. 142 |


| Recorded Hoider | WILLIAM D. EVANS |
| :--- | :--- |
| Township or Area |  |



Special credits under section 77 (16) for the following mining claims
$\frac{20 \text { DAYS ELECTROMAGNETIC }}{10 \text { DAYS MAGNETOMETER }}$
10 DAYS MAGNETOMETER
P 552614

10DAYS ELECTROMAGENTIC 5 DAYS MAGNETOMETER

P 552610

No credits have been allowed for the following mining claims
not sufficiently covered by the survey
Insufficient technical data filed
P 552607

1110
$1985^{\prime} 0507$
Your File: 142
Our File: 2.7830

Mining Recorder
Ministry of Natural Resources
60 Wilson Avenue
Timmins, Ontario
PAN $2 S 7$
Dear Sir:

Enclosed are two copies of a Notice of Intent with statements listing a reduced rate of assessment work credits to be allowed for a technical survey. Please forward one copy to the recorded holder of the claims and retain the other. In approximately fifteen days from the above date, a final letter of approval of these credits will be sent to you. On receipt of the approval
letter, you may then change the work entries on the claim record sheets.
For further information, if required, please contact
Mr, R.J. Pichette at 416/965-4888.
Yours sincerely,
S.E. Y. ndt

Director
Land Management Branch
Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
MFA 1W3
D. Isherwood:mc

Encls:
cc: W.D. Evans
29 Southwell Drive Don Mills, Ontario MB 2N8
cc: S.W. Evans
29 Southwell Drive Don Mills, Ontario MB 2N8
cc: Mr. G.H. Ferguson Mining \& Lands Commissioner Toronto, Ontario

Ministry of
Natural
Resources
Notice of Intent
for Technical Reports

19850507

### 2.7830/142

An examination of your survey report indicates that the requirements of The Ontario Mining Act have not been fully met to warrant maximum assessment work credits. This notice is merely a warning that you will not be allowed the number of assessment work days credits that you expected and also that in approximately 15 days from the above date, the mining recorder will be authorized to change the entries on his record sheets to agree with the enclosed statement. Please note that until such time as the recorder actually changes the entry on the record sheet, the status of the claim remains unchanged.

If you are of the opinion that these changes by the mining recorder will jeopardize your claims, you may during the next fifteen days apply to the Mining and Lands Commissioner for an extension of time. Abstracts should be sent with your application.

If the reduced rate of credits does not jeopardize the status of the claims then you need not seek relief from the Mining and Lands Commissioner and this Notice of Intent may be disregarded.

If your survey was submitted and assessed under the "Special Provision-Performance and Coverage" method and you are of the-opinion that a re-appraisal under the "Man-days" method would result in the approval of a greater number of days credit per claim, you may, within the said fifteen day period, submit assessment work breakdowns listing the employees names, addresses and the dates and hours they worked. The new work breakdowns should be submitted direct to the Land Management Branch, Toronto. The report will be re-assessed and a new statement of credits based on actual days worked will be issued.

seez-o


| $\begin{aligned} & Q \\ & 1 \\ & \omega^{2} \\ & 0 \\ & 0 \\ & + \end{aligned}$ |  |  |  |  |  | \% |  | 尔 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |





