

LEGEND		MR. A. J. SALO			
Terrain Clearance $\ldots \ldots \ldots$ 100 meters Line Spacing $\ldots \ldots \ldots$ 100 meters		INTERPRETATION			
ContactFault					
VLF-EM Conductor Property Boundary					
VLF-EM Conductor Axes		WARK TOWNSHIP, ONTARIO			
		ntts. no.	42A/11	drawing no.	A-739.2-4
See text for classification of VLF-EM conductor axes		scale	1:10,000	date.	February 1988
		TERRAQUEST LTD.			

42A1 1 NEE8828 2. 10988 CLLERGUE

010

REPORT ON AN
AIRBORNE MAGNETIC AND VLF-EM SURVEY
CLERGUE TOWNSHIP
WARK TOWNSHIP
MATHESON AND EVELYN TOWNSHIPS
PORCUPINE MINING DIVISION, ONTARIO

February 24, 1988

「：Cロローロ
1388
MHR LAHDS SEOTOR

REPORT ON AN
AIRBORNE MAGNETIC AND VLF－EM SURVEY

CLERGUE TOWNSHIP
WARK＇TOWNSHIP
MATHESON AND EVELYN TOWNSHIPS
PORCUPINE MINING DIVISION，ONTARIO
for
MR．A．J．SALO
by

TERRAQUEST LTD．
Toronto，Canada

February 24， 1988
Page

1. INTRODUCTION 1
2. THE PROPERTY 1
3. GEOLOGY 2
4. SURVEY SPECIFICATIONS 3
4.1 Instruments 3
4.2 Lines and Data 4
4.3 Tolerances 4
4.4 Photomosaics 4
5. DATA PROCESSING 5
6. INTERPRETATION 6
6.1 General Approach 6
6.2 Interpretation 6
7. SUMMARY 9

LIST OF FIGURES

Figure 1 - General Location Map
Figure 2 - Survey Area Map
Figure 3 - Sample Record
Figure 4 - Terraquest Classification of VLF-EM Conductor Axes

LIST OF MAPS IN JACKET

No. A-739-1, Total Magnetic Field
No. A-739-2, Vertical Magnetic Gradient
No. A-739-3, VLF-EM Survey
No. A-739-4, Interpretation
Note: There are three survey areas, therefore there are three of the above listed maps.

1. INTRODUCTION

This report describes the specifications and results of a geophysical survey carried out for Mr. A.J. Salo of General Delivery, Prince George, B.C., V2L 4R8 by Terraquest Ltd., 240 Adelaide Street West, Toronto, Canada. The field work was performed on February 2 , 1988 and the data processing, interpretation and reporting from February 3 to February 24, 1988.

The purpose of a survey of this type is two-fold. One is to prospect directly for anomalously conductive and magnetic areas in the earth's crust which may be caused by, or at least related to, mineral deposits. A second is to use the magnetic and conductivity patterns derived from the survey results to assist in mapping geology, and to indicate the presence of faults, shear zones, folding, alteration zones and other structures potentially favourable to the presence of gold and base-metal concentration. To achieve this purpose the survey area was systematically traversed by an aircraft carrying geophysical instruments along parallel flight lines spaced at even intervals, 100 metres above the terrain surface, and aligned so as to intersect the regional geology in a way to provide the optimum contour patterns of geophysical data.

2. THE PROPERTIES

CLERGUE TOWNSHIP

The property is located in the southwest corner of Clergue township, in the Porcupine Mining Division of Ontario about 44 kilometres northeast of the town of Timmins. The property can be accessed by bush roads to the west leading from Highway 67.

The latitude and longitude are 48 degrees 38 minutes, and 80 degrees 48 minutes respectively, and the N.T.S. reference is $42 \mathrm{~A} / 10$.

The claim numbers are shown in figure 2 and listed below:

$$
\text { P.1013956-1013959 (4) Total of } 4 \text { claims }
$$

WARK TOWNSHIP PROPERTY

The property is located in the southeast quadrant of Wark township in the Porcupine Mining Division of Ontario about 18 kilometres northeast of the town of Timmins. The property lies on the southwest side of the North Porcupine River and can be accessed by bush roads from the southwest which connect to Highway 655.

FIGURE 1. General Location

FIGURE 2B Claim Location Map
(exact locations not certified)

The latitude and longitude are 48 degrees 38 minutes, and 81 degrees 15 minutes respectively, and the N.T.S. reference is $42 \mathrm{~A} / 11$.

The claim numbers are shown in figure 2 and listed below:

$$
\text { P.1026985-1026986 (2) Total of } 2 \text { claims }
$$

MATHESON AND EVELYN TOWNSHIPS PROPERTY

This property is located in the north centre of Matheson township and the south centre of Evelyn township in the Porcupine Mining Division of Ontario about 28 kilometres northeast of the town of Timmins. The property is approximately one half a kilometre west of a major road which connects to Highway 610 at the settlement of Dugwal.

The latitue and longitude are 48 degrees 38 minutes, and 81 degrees 02 minutes respectively, and the N.T.S. reference is $42 \mathrm{~A} / 11$.

The claim numbers are shown in figure 2 and listed below:

$$
\begin{array}{ll}
\text { P } & 59050 \\
595101 \\
& 997231-997232 \\
& 997415-997416
\end{array}
$$

(1)
(1)
(2)
(2) Total of 6 claims

3. GEOLOGY

Map References

1. Map 48N: Big Water Lake Area. scale 1:63,360. O.D.M. 1939.
2. Map P. 308: Clergue Township. scale 1:15,840. O.D.M. 1965.
3. Map 2205: Timmins-Kirkland Lake, Geological Compilation Series. scale $1: 253,440$. O.D.M. 1973.

CLERGUE TOWNSHIP PROPERTY (A-739.1)
No outcrops have been mapped within the survey area. By extrapolation from drilled hole data to the northeast the area is thought to be underlain by andesitic and rhyolitic metavolcanics trending to the northeast. A peridotite-pyroxenite mafic intrusive occurs to the northwest and hosts asbestos mineralization. Regionally faults trend to the east, northeast and north-northwest.

WARK TOWNSHIP PROPERTY (A-739.2)
The geological maps do not show any outcrops within the survey area. Regional mapping suggests that the property is underlain predominantly by northeast trending greywacke and minor rhyolite.

Gabbroic intrusives are common throughout the area. Regional structures trend to the northeast, north-northeast and northwest. Diabase dykes trend to the north-northwest.

MATHESON AND EVELYN TOWNSHIPS PROPERTY (A-739.3)
There are no outcrops indicated on the geological maps within this survey area. Regional geology indicates east trending greywackes and slate. The property lies on the centre of an east trending syncline. Locally faults trend to the northwest and diabase dykes trend to the north.

4. SURVEY SPECIFICATIONS

4.1 Instruments

The survey was carried out using a Cessna 182 aircraft, registration C-FAKK, which carries a magnetometer and a VLF electromagnetic detector.

The magnetometer is a proton precession type based on the Overhauser effect. The Overhauser effect allows for polarization of a proton rich liquid of the sensor by adding a "free radical" to it and irradiating it by RF magnetic field. Strong precession signals are generated with modest RF power. The sensor element is mounted in an extension of the right wing tip. It's specifications are as follows:

Resolution: $\quad 0.5$ gamma
Accuracy:
0.5 gamma

Cycle time:
0.5 second

Range: $\quad 20,000-100,000$ gammas in 23 overlapping steps
Gradient tolerance: Up to 5000 gammas per metre
Model:
Manufacturer: GSM-9BA
GEM Systems Inc., 105 Scarsdale Rd.. Don Mills, Ontario, M3B 2R5

The VLF-EM unit uses three orthoganol detector coils to measure (a) the total field strength of the time-varying EM field and (b) the phase relationship between the vertical coil and both the "along line" coil (LINE) and the "cross-line" coil (ORTHO). The LINE coil is tuned to a transmitter station that is ideally positioned at right angles to the flight lines, while the ORTHO coil transmitter should be in line with the flight lines. It's specifications are:
$\begin{array}{ll}\text { Accuracy: } & 18 \\ \text { Reading interval: } & 1 / 2 \text { second } \\ \text { Model: } & \text { TOTEM 2A } \\ \text { Manufacturer: } & \text { Herz Industries, Toronto }\end{array}$
The VLF sensor is mounted in the left wing tip extension.
二口 エ

VLF station 1

VLF station 2

E以れ リーは ：

Fiducials
I:

FIGURE 3．Sample of analogue data

Other instruments are:

- King KRA-10A radar altimeter
. PDAS-ll00 data acquisition system with two 3.5" floppy disk drives manufactured by Picodas Group Inc., Richmond Hill, Ontario.
- Geocam video camera and recorder for flight path recovery, manufactured by Geotech Ltd., Markham, Ontario.

PBAS-9000 portable field base station with a 3.5" floppy disk drive and an analog print out manufactured by Picodas Group Inc., Richmond Hill, Ontario, coupled with a GSM-8 proton magnetometer manufactured by Gem Systems Inc., Toronto, Ontario.

4.2 Lines and Data

a) Line spacing: 100 metres
b) Line direction:
c) Terrain clearance: 000 degrees
d) Average ground speed: 100 metres
e) Data point interval:

$$
\text { Magnetic: } 27 \text { metres }
$$

VLF-EM: 27 metres
f) Tie Line interval:

2 kilometres
g) Channel l (LINE):

NAA Cutler, 24.0 kHz
h) Channel 2 (ORTHO):

NSS Annapolis. 21.4 kHz
i) Line km over total survey area including overrun: 40 line km
j) Line km over claim groups: Clergue Township Property... 8 line km Wark Township Property 4 line km Matheson, Evelyn Property .. 12 line km

4.3 Tolerances

a) Line spacing: Any gaps wider than twice the line spacing and longer than 10 times the line spacing were filled in by a new line. b) Terrain clearance: Portions of line which were flown above 125 metres for more than one km were reflown if safety considerations were acceptable.
c) Diurnal magnetic variation: Less than twenty gammas deviation from a smooth background over a period of two minutes or less as seen on the base station analogue record.
d) Manoeuvre noise: Approximately +/-5 gammas.

4.4 Photomosaics

For navigating the aircraft and recovering the flight path, mosaics of aerial photographs were made from existing air photos.

5. DATA PROCESSING

Flight. path recovery was carried out in the field using a video tape viewer to observe the flight path as recorded by the Geocam video camera system. The flight path recovery was completed daily to enable reflights to be selected where needed for the following day.

The magnetic data was levelled in the standard manner by tying survey lines to the tie lines. The IGRF has not been removed. The total field was contoured by computer using a program provided by Dataplotting Services Inc. To do this the final levelled data set is gridded at a grid cell spacing of $1 / 10$ th of an inch at map scale.

The vertical magnetic gradient is computed from the total field data using a method of transforming the data set into the frequency domain, applying a transfer function to calculate the gradient, and then transforming back into the spatial domain. The method is described by a number of authors including Grant, 1972 and Spector, 1968. The computer program. for this purpose is provided by Paterson, Grant and Watson Ltd. of Toronto

The VLF data was treated automatically so as to normalize the non conductive background areas to 100 (total field strength) and zero (quadrature). The algorithms to do this were developed by Terraquest and will be provided to anyone interested by application to the company.

All of these dataprocessing calculations and map contouring were carried out by Dataplotting Services Inc. of Toronto.

Grant, F.S. and Spector A., 1970: Statistical Models for Interpreting Aeromagnetic Data; Geophysics, Vol 35
Grant, F.S., 1972: Review of Data Processing and Interpretation Methods in Gravity and Magnetics; Geophysics Vol 37-4 Spector, A., 1968: Spectral Analysis of Aeromagnetic maps; unpublished thesis; University of Toronto

INTERPRETATION

6.1 General Approach

To satisfy the purpose of the survey as stated in the introduction, the interpretation procedure was carried out on both the magnetic and VLF data. On a local scale the magnetic gradient contour patterns were used to outline geological. units which have different magnetic intensity and patterns or "signatures". Where possible these are related to existing geology to provide a geological identity to the units. On a regional scale the total field contour patterns were used in the same way.

Faults and shear zones are interpreted mainly from lateral displacements of otherwise linear magnetic anomalies but also from long narrow "lows". The direction of regional faulting in the general area is taken into account when selecting faults. Folding is usually seen as curved regional patterns. Alteration zones can show up as anomalously quiet areas, often adjacent to strong, circular anomalies that represent intrusives. Magnetic anomalies that are caused by iron deposits of ore quality are usually obvious owing to their high amplitude, often in tens of thousands of gammas.

VLF anomalies are categorized according to whether the phase response is normal, reverse, or no phase at all. The significance of the differing phase responses is not completely understood although in general reverse phase indicates either overburden as the source or a conductor with considerable depth extent, or both. Normal phase response is theoretically caused by surface conductors with limited depth extent.

Areas showing a smooth response somewhat above background (ie. 110 or so) are likely caused by overburden which is thick enough and conductive enough to saturate at these frequencies. In this case no response from bedrock is seen.

The VLF-EM conductor axes have been identified and evaluated according to the Terraquest classification system (Figure 4). This system correlates the nature and orientation of the conductor axes with stratigraphic, structural and topographic features to obtain an association from which one or more origins may be selected. Alternate associations are indicated in parentheses.

6.2 Interpretation

The magnetic and VLF-EM data are shown in contoured format on maps in the back pocket. An interpretation map is also provided. The following notes are intended to supplement these maps.

CLERGUE TOWNSHIP PROPERTY (A-739.1)
The total magnetic field over the clergue township property has a relief of approximately 1,125 gammas and shows a strong magnetic anomaly trending to the northeast in the northwest corner of the survey area. This anomaly appears to dominate and overwhelm the responses from the rest of the survey area. The vertical magnetic gradient improves the resolution of the strong anomaly and enhances a weak magnetic trend to the south.

The strong anomalies to the northwest correlate well with the peridotite-pyroxenite intrusives (Unit 6). The remaining responses are interpreted to be derived from the andesitic and rhyolitic rocks (Unit 2). Horizons with a slight increase in magnetic activity (Unit $2 m$) are probably related to the andesitic or more mafic compositions.

Several northwest trending faults have been interpreted from displacements in the magnetic data. These possess the same orientation as a geologically mapped fault approximately two kilometres to the east of the survey area.

The VLF-EM survey shows very flat and uniform responses, probably a function of masking or saturation by wide spread conductive overburden. Three very weak to moderate strength conductor axes have been identified, all of them are associated with magnetically interpreted faults.

WARK TOWNSHIP PROPERTY (A-739.2)

The total magnetic field has a relief of approximately 40 gammas and shows a magnetic anomaly aiong the western edge of the survey and several weak anomalies trending to the northwest across the centre of the property. The vertical magnetic gradient data show greater continuity within the weaker magnetic anomalies.

The strongest anomaly to the west which is only approximately 30 gammas in relief, is interpreted to be derived from the rhyolitic metavolcanics (Unit 2). The quiet magnetic background is associated with the greywacke (Unit 5). The weak northwest trending anomalies cross-cut the regional trend and therefore are interpreted as diabase dykes (Unit ll).

Several northeast trending faults have been interpreted from disruptions in the east magnetic trends. Any faults trending to the northwest would be difficult to detect as they would parallel the diabasic magnetic units.

The VLF-EM survey shows relatively flat and uniform responses, probably due to masking by conductive overburden. One moderately strong conductor axis south of the property trends to the northwest. and is interpreted to be associated with structural sources.

MATHESON AND EVELYN TOWNSHIPS PROPERTY (A-739.3)
The total magnetic field has a relief of approximately 37 gammas, the higher responses are located to the north and south of the property. Very weak magnetic units trend to the northwest across the property. The vertical magnetic gradient data shows improved resolution of all the anomalies.

The low magnetic relief across the survey area is consistent with the regionally mapped greywacke (Unit 5). The weak magnetic trends (Unit 5 m) are probably related to minor metavolcanic intercalations or possibly to increased concentrations of magnetic minerals such as pyrrhotite or magnetite.

Numerous northeast trending faults have been interpreted from the magnetic data, showing considerable displacement. Northwest trending faults would be difficult to detect by magnetic techniques.

The VLF-EM survey shows very weak and flat responses, probably related to extensive conductive overburden. There are no significant conductor axes indicated by this survey. Three very weak and poorly defined conductor axes are shown tentatively on the interpretation map. They may be associated either with structural or stratigraphic origins. These should be verified on the ground using EM or IP methods.
7. SUMMARY

An airborne combined magnetic and VLF-EM survey has been done on the property at line intervals of 100 metres. The total field and vertical gradient magnetic data, VLF-EM data and interpretation maps are produced at a scale of l:10,000.

The magnetic data has been used to modify and update the existing geology and has shown a number of new contacts and faults. A number of VLF-EM conductor axes were found of which most are associated with structural origins.

AN ADDENDUM TO REPORT A－739 AIRBORNE VLF／EM SURVEY COMPUTED VERTICAL GRADIENT OF TOTAL FIELD （IN－PHASE）

CLERGUE TOWNSHIP，WARK TOWNSHIP，MATHESON AND EVELYN TOWNSHIP

PORCUPINE MINING DIVISION，ONTARIO

RECE：O
1939
MO．こといこここご $3 N$
for
MR．A．J．SALO
by

TERRAQUEST LTD．
Toronto，Canada

March 28， 1988

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
2. INTERPRETATION 1

LIST OF ACCOMPANYING VLF/EM AND INTERPRETATION MAPS
A-739.1-5 Colour Plot of Computed Vertical Gradient of Total Field, Clergue Township
A-739.2-5 Colour Plot of Computed Vertical Gradient of Total Field,
Wark Township
A-739.3-5 Colour Plot of Computed Vertical Gradient of Total Field,
Matheson/Evelyn Townships
A-739.1-6 Interpretation of Enhanced VLF/EM Data, Clergue Township A-739.2-6 Interpretation of Enhanced VLF/EM Data, Wark Township A-739.3-6 Interpretation of Enhanced VLF/EM Data,

Matheson and Evelyn Townships

INTRODUCTION

The calculated vertical gradient of the total field VLF/EM data is an innovative application and is created by applying the same process as is used on the magnetic data. The calculation removes broad regional anomalies and leaves the short wavelength part of anomalies. Some advantages of treating the data this way are:

1) Improved resolution between strong conductors that on the unprocessed VLF/EM data appear as a large conductive area.
2) Enhancement of subtle conductor axes, revealing conductors that were too weak to be seen on the unprocessed data.
3) Reduces the necessity of the VLF/EM conductor to have optimum coupling with the transmitter.
4) The increase in the number of conductors improves the detection of faults and other displacement "structures".

The enhanced data is shown on colour plots, one for each property. An interpretation of each area is provided on drafting mylar and can be superimposed on the interpretation maps from the original report (A-739).

INTERPRETATION

In general, the vertical gradient enhancement of the VLF over all three properties shows a considerable increase in the number of conductor axes. It should be noted that the unprocessed VLF/EM data maps show very little relief in conductivity and therefore it is difficult to ascertain whether the enhancements are a mathematical artifact or a bonafide enhancement of weak conductors within the bedrock or overburden. Furthermore, the interpretation maps are highly subjective, several variations are possible.

The data over the Clergue Township property shows numerous southeast trending conductor axes, parallel to the magnetically interpreted faults. Displacement of these trends suggests the presence of several north to northeast trending faults.

The enhancement of the VLF/EM data from Wark Township property shows several southeast trending faults. These are parallel to both the magnetic units and the topographic features. It is suspected that they are related to structural sources. Several northeast trending structures have also been interpreted.

The calculated vertical gradient of the total field VLF from the Matheson and Evelyn Townships property shows numerous conductor axes with a wide variety of orientations. Note that the original unprocessed VLF data map shows very weak responses that do not correlate very well with the magnetic data. It is suspected that most of these responses are related to a combination of overburden and bedrock sources and hence are very difficult to interpret. Most of the responses are so short that it is difficult to obtain a definitive orientation. This interpretation shows a variety of orientations with numerous faults trending to the northwest.

Credits Requested per Each Claim in Columns at right

Expenditures excludes power stripping

Mining Claims Traversed (List in numerical sequence)

Total number of mong claims covered by :-.s report of work.

Certification Verifying Report of Work
I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of work annexed hereto. having per-armec :ne work or witnessed same during and/or after its completion and the annexed report is true.
amend Postal Address of Person Certitving
TER HA QuEST LT i - C4 BHRRIE
[Date cornea - |cerraciuov spore?

Report of Work
(Geophysical!, Geological.
Geochemical and Expenditures)
8806.043 N If number of mining exceeds space on this form. attach a list

C. Q. Barrie 240

 alseovene

Rome if us inv

