ELECTROMAGNETIC - MAONETIC SURVEY
on the
J. V. BONHOMHE PROPERTY

Mathason Townihip, Ontario

Timmina, Ontario,
Septamber 28, 1972.
R. J. Bradshaw, F. Eng.,

Conculting Geologist.

Magnatic and alectromannatic erryey have bean carriad out on the north proparty in Matheaon Townahip held by J. V. Bonhoman, 168 Alganquin ilva. Eant, Timmins, Ontario.

During the period Aupuat 14 加 26 , 1972 , ploknt 14 ing wars astablished and the survayswera completud during the August 18 to 29 Interval.

The object of the eurvay work is to logate momalous zones which may represent or be associated with base or pracious metul deporita.

PROPERTY LUCATION AND ACCESS

The property consists of 22 contiquour unvatenter wining claimf deaignatad P30B549 to P308570 incluaiva.

Situeted in the west-contral aecter of Matheeon Tounchip, the property is ebout a mila north of highway 101.

About 14 miles east of Timmins, Ontario, the property is acceasible by boat from the highaay along the forcupine Rivar which crosbes the claim group.

PRE VIOLS WORK
Aa indicated in the assasmant work filea of the Ministry of Minis, the only previous wark was completed on claime P308567, P308568 and P308569. Un behalf of Chiblow Minee Liwited, Advance Geology and Gepphysics completed magnetic end mantromagnatic surveys on thasa claims. The Crons JEM in-1ina survey with 200
foot coil abparation lacks oufficient powar to panstrate tha deap conductive overburden in the area.

GEOLOGY
Thare is no rock exposure on the pxoparty or immediate area. The geology, therefora, se interpreted on Map P698, mast recent publicetion of the Ontario Ministry of Minas, is based largely on the projection of geological faetures in the arae and dete from eirborna magnatic mape.

Mep P698 indicates thet the proparty in dominantiy underlain by mafic ta intermediata matavolcanice and mome matioBediments which atrike ganarally mest. Thase rocke are shown to be diaplaced by a northmorthwat tranding fault about a half mile eagt of the Forcupine fivar. This fault with rightohend dieplacement is part of aroup in the area, at about 1.5 mile intervals, which strike northonorthwant all with aimilar movemant.

About two miles to the wat is present gold-coppar occurrence near the voloanic-ardimantary oontact which was diecovared by Inco. Although there is little date avallable on this occurrence it is known that it was diecoverad by drilling a conductive zone and that gevaral thousand faet of drilling wan completed on tha minaralized zona.

NAGNETIC SURVEY RESULIS AND INTERPRETATION
A plan et acale of one inch to four hundred fant howing the contoured magnatic readinga accompanies this raport. The instrumant and survey method are demeribed in the Appendix.

The megnetic background on the proparty is in the range of 450 to 550 gammas. No prominent magnetic anomalles mra present in the survay eres although thare are variations in the magnetic pattarn.

On the northwest elaims in Lot 12, the magnetic ausceptibilities, elthough genarally of the sam magnitude as other arges of the property, how frequent minor variations indicating a well dafined essterly trend by the isamagnetian. This charmaterdstic may raflect the prasance of well bedded rooke in this sactor of the proparty, poseibly aedimants or tupfa.

In the south-aentral part of Lot 12 the 500 guman magnftic contour trends north-northuest. This ieomagnatic coincidas with the approximate looation and strika of the fault on Map P698.

On either alde of this poatulated fault the 500 gamma isomatynatic trands past-narthast. If thip magnatic contour represents the contact batween volcanics to the north and sedimants to the south than thara an approximately 1200 faet diaplacsment along the fault. The volcanic-asdimantary contact is ahown sevaral hundred feet Purthar anuth on Map P698; otherwiee the interpretation fita.

ELECIRUMGGETIC SURVEY RESULTS AND IMTERPRETATLON

The electromagnetic eurvey deta is plotted on two plens accompanying this report at geala of one inch to four hundrey feet. Tha Mcfhar vartical $10 n 0$ unlis and aurvey method ere deacribed in the Appendix to this raport.

The conductive zones dintected on the proparty are described as follows:

Conductor A - At lasst mile and a half long thia moderately strong conductor atrikes ganarally aast. It is lase wall defined in the vicinity of a postulated north-northwest trending feult. Particularly to tha eset, the high fraquancy profila indicatea deep conductive ovarburden.

A shear zone in volcanic rocke, probably rapreaented by graphite, perhaps with sulphidas, and covared by miteast ion faet of overburden is interprated to be the ceues of conductivity. Conductor - Located in Lot 12, thia zonductor is et laset 2000 faet long and continuse weat beyond tha property bowndary. From east to wast it varias from wask to moderate etrangth. It utrikes generally aast and is dragged batween Lines 40 w and 440 by folding or faulting.

A shas zone in banded volcanic rockie, probably with oraphite and perhaps sulphidas 1 a the probable cmuan of the conductor. Ovarburden in this ares eppeare to bo bout 100 fate deap.

Conductor E - Next to tha beaver pond on Lot 12, thia expraseion of conductivity is poorly defined. With detailed work the conductor axis ghifte quite markedly. Conductive overburdan is the likely cause of this anomaly.

Conductor D - On Line 28d e single wall-dafinad cromsovar rapreaents this conductor. It may etrike wast or possibly mouthase to correspond with conductor 01. Additional survay wark is requirad to provida adequate data for en interpretation of thia anamaly. Thie work was not undertaken because of the praximity of the conductar to the property boundery.

Conductor 01 - In the northwest corner of Lot 11 this wek conductor is shown to strike northwast on the plan. It is quite poseible, however, thet two parallel conductive zonee may be prament hare, atriking ganarally asat. Infiections of the dip angle prafilen support this possibility.

Although the conductivity in this arem appara to be wak from source of limitad langth, more murvey work is required to provide a reasonabie interpratution of thase indiontiona of conductivity.

Conductor E - Striking east-northeast this canductor is shown on both alactromagnatic plans. The conductivity 2 a wak raflected by tha low magnitude crossovers and discontinulty of tha conductar axis. At least 4000 fast long, the conductor coinoides with the postulatad volcanic-sadimantary cantact for much of 1 ta langth.

The development of graphite and perhap mulphides by shearing elong the contact is the probabla cause of the conductivity. Ovarburden in this aras is probably at least 100 faet dap.

Conductor F - This conductor gtrikea geat-northaat acroas the bese line in Lot 10 for a length of about 1000 feat. The probable
daep ovarburden in this araa may account for the apparant wak conductivity of this anomely.

For the moat part it coincides with the poatulatad volcanic-sadimentary cantact naxt to a fault intarpratad to merike northanorthwest. Graphite and perhaps ame aulphides developad by movament along the fault and contect is the likely cause of this anomaly.

Conductor G - Approximately 1000 feat long, and striking astnortheset, this weak conductor may be the ease extenaion of conductor F. As determined frum the magnatic aurvay this conductor appare to be within gedimentary rocks several hundrad fant gouth of tha volcanic contact.

Graphite with possibly some mulphides is the likely nause of conductivity.

CUNCLUSIONS

In conjunction with the peology as Interpretad on Map P698 by the Ministry of Minas, the magnetic survey seams to indicate the location of the prineipal etructuras within the eurvey area. The east-northesst striking contact betwarn volcanion to the north and sediments to the aouth is marked by the 500 gamms ianmagnetic. The magnetic museptibilities indicate also the approximate 1200 foot displacement of the rocke by aght-handed fault atriking north-northwest.

Severel zanes of conductivity ware detected by the survay. In genaral they etrike east and ara covared by daep overburden, of the order of 100 fast. All of the conductars with the axception of D and 01 sre interpreted to be oausad by graphite, with some sulphidss, but no magnatic minarale. A greatar amount of conductive mineralization is thought to be prasent along parta of conductor A and the wast half of eonduator日. Some additional detailed aurvay wark is requirad on condurtore D and D1, to provida en interpratation of thase anomaliab.

This area of deep overburden and minimal mubsurface exploration must be considered most important as possible lacstion for gold deposits. The area is within a faw miles north of the Porcupine-Destor fault whare mast of the gold minas of the Porcupine to the wast are located. It has been determined by Inco two milas to the west that graphitic conductiva zansa contain goldabearing quartz veins. Tha J. V. Bonhomas proparty is on thame roak horizon. Finally the writer has concluded that many of the numerous crose fault in the aast sactor of the Porcupine gold mina camp are contamporaneous with the dapasition of gold minaralization. A strong croas fault with probably abbidiary brank: 18 preaent on the Bonhomme proparty. Tharapore, the conductive zones should be investigated by diamond drlliling for the premence of gold-bearing quartz veins an will as conductiva base matele. Whare conductive zonas crass or are adjacent to the Bonhomen prom perty boundarias, soma attampt should be made to moquira adjacent land prior to arilling.

RLCOMMENOATIONS
A minimum of four holes ere recommanded for the investigetion of the conductive zones outilned as followe:

Hole No.	Location	Dirgation	Din	Depth	Taront
73-1	Ling 48w St. 37+50N	mouth	60°	$50{ }^{\prime}$	cond. B
73-2	Line BE St. 18 N	south	60°	500^{\prime}	cond. A
73-3	Line 4E St. $9+50 \mathrm{~N}$	gouth	60°	5001	cond. E
73-4	Lina 12 E St. D+50N	south	60°	500^{\prime}	cond. F
4 holes				2000°	

Conductora A and B may be conaidered base matal-gold passibilities while conductors E and F have potential for gald mineralization. The cast of this programa, which should be carriad out in winter for asas of tranaportation, is atimated at $\$ 20,000$. An amount of $\$ 1000$ ahould be allacated for additional datalled aurvay work.

Timmins, Ontario.
Saptember 28, 1972.

APPENDIX

INSTRUMENT METHOD AND SURUE.Y DATA

ELECTROMAGNETIC SURVEY

Any alternating magnetic field will induce an electrical eddy current in the medium through which the magnetic field passes. If a source of an alternating magnetic field is located near a conductive hody anomalously strong eddy currents will be induced in the deposit due to its high electrical conductivity. Electrical currents induced in the conductive body will produce a secondary magnetic field proportional to the intensity of current flow.

A receiver coil tuned to the frequency of the transmitting device uill pick up both the directly transmitted signal and the eddy current signal.

The electromagnetic unit used in this survey is a McPhar unit and consists of a vertically mounted, motor-generator Upowered transmitting coil operating at frequencies of 5000 and 1000 cps. and a receiving coil, tuned to the transmitting frequencies, an inclinemeter, an amplifier and a headset.

Throughout the survey, the transmitter and receiver were separated by distances of 400,800 and 1200 feet. The plane of the transmitter coil was ariented so that the transmitter was vertical and pointed touards the receiver. Orientation was obtained using a plate on which predetermined receiver positions were plotted. Stations were read at one hundred foot intervals. At all times, the receiver "faced" the transmitter. The results obtained are dip angles, measured in degrees. The dip angles are obtained by first orienting the receiver coil in the plane of the
magnetic field by rotating the coil about a vertical axis until a null or minimum signal is ohtained, and then rotating the coil about a horizontal axis until a null or minimum signal is obtained. The angle which the magnetic field makes with the horizontal is recorded as a "dip" or "tilt" angle. In the absence of a conductor the dip angle will be zero since no secnndary field is present. In the presence of a conductor, the axis of the receiver coil points towards the conductor and the plane of the coil away from the conductor. In the presence of a conductor, the secondary masnetic field is usually displaced from the primary in-phase as well as direction so that the total field is elliptically polarized. The receiver cannot then be nulled completely but*a minimum signal can be ontained, the width of the minimum being an indication of the phase displacement.

The tilt angles are plotited as profiles, the zero or "cross-over" noint indicating the focus of the conductor axis. Once a conductor axis has heen estahlished, the transmitter is set up over the conductor and lines are read on both sides of the transmitter and the conductor axis is traced out by "leap frogging" from "cross-over" to "cross-nver".

SPECIFICATIUNS

Qperating Frequencies: 1000 and 5000 cyclers per second
Range: 2000 foot separation between transmitter and receiver for $a \pm 10$ degree null width.

Depth of Explorgtion: Roughly half the distance between transmitite: and receiver.

Transmitter Prower Supply: 500 watt alternator driven by a 13 H H.F. gascline engine.

Weights:

Packbordmounted ennine generator	48 lbs.
Transmitter coil on packboard	49 lbs.
Cojl mounting pole and spreader har	22 lbs.
Recriver	7 lbs.

MAGNE TDME TER SURVEY
A Sharpe M.F.-1 fluxpate magnetometer was used in the magnetic survey. This instrument measures the vertical component of the earth's magnetic fjeld in gammas. Base stations for determining the magnetic diurnal variations were established along the main base line at 100 foot intervals. Magnetic readings were taken at 50 foot intervals, along the cross lines.

GEOPH?

1025 RECEIVED

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS

Number of Stations \qquad Number of Readings magnetic -2200
Station interval 100^{\prime}
Line spacing 400^{1}
Profile scale or Contour intervals $1^{\prime \prime}=20^{\circ}$ EM profile scale; 100 gamma magnetic contour interval (specify for each type of survey).

MAGNETIC

Instrument Sharpe M. F.-1 fluxgate Number of Readings $\frac{\text { magnetic }-2200}{E M-1300 \text { approx. }}$
\qquad 1100

Accuracy - Scale constant + or - 10 gammas
Diurnal correction method check of base stations at no greater than 1 hour intervals
Base station location along base line at 400^{\prime} intervale from Line 0

ELECTROMAGNETIC

Instrument_McPhar 1000-5000
Coil configuration vertical loop
Coil separation minimum 400' maximum 1600^{\prime}
Accuracy_ + or -1 degree
Method: [X] Fixed transmitter
Shoot back
In line
\square Parallel line
Frequency_ 1000 and 5000 cps (specify V.L.F. station)
Parameters measured_dip angle in degress

GRAVITY

Instrument \qquad
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

INDUCED POLARIZATION - RESISTIVITY

Instrument \qquad
Time domain Frequency domain \qquad
Frequency Range
Power
Electrode array
Electrode spacing \qquad
Type of electrode \qquad

