minerginimechan
 2.1016

MAGNETIC - ELECTROMABNETIC gURVEY
 on the

J. V. BONHDMME PRDPERTY

Mathewon Tomensp, Drtario

Timmins, Ontario,
Septamber 11, 1972.
R. J. Bradahaw, P. Eng.,

Conzulting acologint.

Elactromepnetic and mapnatio muryaye have bean aompleted on the six claimproparty dasignated South Garoup, Mathnmpn Tewnm ship, hold by J. V. Bonhomme, 168 Algonquin Blva. E., Timminn, Ont.

Fioket lines ware eatablished on the property during the pariod August 9-13 and the burveye wre onrried out during the Auguat 14-17 pariod.

The objact of the eurvey mork is to loget ancmalous zonss which may represent or be aseodstad with bese or preokous matal daposite.

PROPERTY, LOCATION AND ACCEES
The property consiate of gix ogntiqumumantinntad mining claing designated P308597 to P308S02 ineiunive.

Situated in the southumet asotor of Muthenem Tonahip the claim group is about 15 miles ast of timina.

Highway 101 forms the eauth boundary of the claim group tharaby providing exaullant acomen.

PREULOUS WOAK
It is indiceted in amasomant wark files of the Ontario Minietry of Mines that Vanturee Limited previousiy huld the proparty, part of a larger group, on whith thay oarrled out a drill programme.

No drilling or other wark, however, way oompleted an the J. V. Bonhamme holdingn.

GECLGY
Accarding to governmant plana no rock expasure ie presant on the claim group. Duterops anat and wast of the proparty, however, indicate that on mamblage of oedimantaryvolcanic rock etrike ewet-northmant worase the praparty. Including greywacke and conglamarate, the asdimente to the north are in contact with madasite. A $12 t t 1 e_{\text {more }}$ than mile to the south is prasent the major aast striking Poreupinmodastor fault. MAGNETLC SURVEY RESULTS AMD TMTERPRE TAT1OM

A plan at ocale of ene Inoh to teohundsal fat Bhowing the contourwd mannetin sandinas ascompaniae thde rapart. The instrumant and aurvay methad are dameribed in the Appendix to this raport.

The mapnetio bmakopand on the preparty ranow face bbout 350 to 500 pamane, No anomalien whioh might be otributed to natural featuree appar to be preaent on the property.

In the centre of the property encle of manatio low and highs along a lina tranding bbout anet borrmapande to the location of a natural gae pipm 1ine. Along the wouth boundary of tha proparty widely divargant magnetic munaptibilitien no WAy ranging from -8605 to 6495 pamman corrampond to the location of the Ecatall water main edjeome sid parallel to the hiphurg. From atation 2+00 to 7+00 North on Line 2 an is lopated garbme dump. Matal obiligis inaluding old oars mooount for the onomious
magnotic suacoptibilitias in the arain. It ia muapactad that buriad matel object accounte for the mapnatio reading of 65 gammas on Lina B d , atation 3+50 North.

The 400 gamm imomapnetic ersame the nosth half of the property in an easteriy direction. This eantour may rapreaent an incrases in depth of ovarburden to the north.

ELECTRDMAGNETIC SURVEY BESU TS AND INTERPRETATHAK

The electromagnetic aurvay date is plattad on twa plans accompanying this ruport at acela of ons lnch to two hundred fest. The vertical lopp slectromarnatig unit and murvey method are deecribad in the Appundix to thie sapert.

The gas pipe hink through the auntre of the property and a power line along the highway provantad sevarage in adjacent areas because of zignal interfarence.

A series of etrang conductora are loonted north and south parallal to the gas pipe line. Becauae of the elphal intarference coused by the pipe line and the epatial rwiutionahip of the conductor axas to the pipe line the nonductore are ettributed to this peature.

CONCLUSIONS AND RECOMMEMDATIOMS
 detected on the proparty whioh have ooonomie alonipluance. Artificial fastures inciuding gan plpe lina, water line, power line and a parbage dump are intarpreted to mocount for the magnatic and alectromannetic momalias.

The gos pipe line afferte the watramagnetic unit in an aran zbout 1000 fest wide croseing the property. The conductive effecte resulting from this gas pipa ilne privent an effective survey of natural conduetive fasturew within this arew. Becoure of the premence of the volconio-sodimantary contect within this aras this is the most important zonm for the poasible prasence of conduative mineralization.

The only other type of geaphyaloul work which way be effective along the gue pipe line is en indwoed polarization survay. A survay of one plekat line morome the gas pipe 1ine would detarmine whathar or not this aurvey mathod in feasible.

Timains, Ontario,
September 11, 1972.

CERTIFIGATE

I, Ronald J. Bradshaw, remiding at 480 Howard Etrant, Timmina, Ontario, a consulting geologist with office at 26 Pine $\mathbf{3 t r a t}$ South, Timmins, Ontario, do haraby oertify thats

I attanded पuaen's Univaraity, Kingatan, Ontario, and graduated with an Honour's B.A. degres in Beologiagi Salanoas in 1950.

I am a fellow of the Geological Association of Canada, Mamber of the Canadian Inatitute of Mining and Matallurgy and of the Association of Propessional Enginwars of the Province af Ontario.

I have no interast eithar diractiy or indiractiy in the mures or securities of the J. V. Banhomen holdings.

Timmina, Onterio.
Septamber 11, 1972.

Any alternating magnetic field will induce an electrical eddy current in the medium through which the magnetic field passes. If a source of an alternating magnetic field is located near a conductive body anomalously strong eddy currents will be induced in the depasit due to its high electrical conductivity. Electrical currents induced in the conductive body will produce a secondary magnetic field proportional to the intensity of current flow.

A receiver coil tuned to the frequency of the transmitting device will pick up both the directly transmitted signal and the eddy current signal.

The electromagnetic unit used in this survey is a McPhar unit and consists of a vertically mounted, motor-generator powered transmitting coil operating at frequencies of 5000 and 1000 cps. and a receiving coil, tuned to the transmitting frequencies, an inclinometer, an amplifier and a headset.

Throughout the survey, the transmitter and receiver were separated by distances of 400,800 and 1200 feet. The plane of the transmitter coil was oriented so that the transmitter was vertical and pointed towards the receiver. Drientation was obtained using a plate on which predetermined receiver positions were plotted. Stations were read at one hundred foot intervals. At all times, the receiver "faced" the transmitter. The results obtained are dip angles, measured in degrees. The dip angles are obtained by first orienting the receiver coil in the plane of the
magnetic field by rotating the coil about a vertical axis until a null or minimum signal is obtained, and then rotating the coil about a horizontal axis until a null or minimum signal is obtained. The angle which the magnetic field makes with the horizontal is recorded as a "dip" or "tilt" angle. In the absence of a conductor the dip angle will be zero since no secondary field is present. In the presence of a conductor, the axis of the receiver coil points towards the conductor and the plane of the coil away from the conductor. In the presence of a conductor, the secondary mannetic field is usually displaced from the primary in-phase as well as direction so that the total field is elliptically polarized. The receiver cannot then be nulled completely but a minimum signal can be obtained, the width of the minimum being an indication of the phase displacement.

The tilt angles are plotted as profiles, the zero or "cross-over" point indicating the focus of the conductor axis. Once a conductor axis has heen established, the transmitter is set up over the conductor and lines are read on both sides of the transmitter and the conductor axis is traced out by "leap frogying" from "cross-over" to "cross-over".

SPEELIFICATIUNS

Qperating Frequencies: 1000 and 5000 cycles per second
Range: 2000 foot separation between transmitter and receiver for $a \pm 10$ degree null width.

Depth of Exploration: Roughly half the distance between transmitter and receiver.

Iransmitter Power Supply: 500 watt alternator driven by a 17 H.F. gasoline engine.

Weights:

$$
\begin{array}{lr}
\text { Packboard-mounted engine generator } & 48 \text { lbs. } \\
\text { Transmitter coil on packboard } & 49 \text { lbs. } \\
\text { Coil mounting pole and spreader bar } & 22 \text { lbs. } \\
\text { Receiver } & 7 \text { lbs. }
\end{array}
$$

A Sharpe M.F.-1 fluxgate magnetometer was used in the magnetic survey. This instrument measures the vertical component of the earth's magnetic field in gammas. Base stations for determining the magnetic diurnal variations were established along the main base line at 100 foot intervals. Magnetic readings were taken at 50 foot intervals, along the cross lines.

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

$$
\begin{aligned}
& \text { Type of Survey- Magnetic \& Electromagnetic } \\
& \text { Township or Area Matheson Township } \\
& \text { Claim holders) - J. V. Bonhomme } \\
& \qquad \begin{array}{l}
168 \text { Algonquin Blvd. E. . Timmins, Ont. }
\end{array}
\end{aligned}
$$

Author of Report _R. J. Bradshaw
Address_ 26 pine St. S., Timmins, Ontario.
Covering Dates of Survey August 9-17 incl, 1972
(linecutting to office)
Total Miles of Line cut
5.83

SPECIAL PROVISIONS CREDITS REQUESTED

ENTER 40 days (includes line cutting) for first survey.
ENTER 20 days for each additional survey using same grid.

MINING CLAIMS TRAVERSED List numerically

P
308597
(number) 308598

320598
308690
30860.1

308682

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer \qquad Electromagnetic \qquad Radiometric \qquad (enter days per claim)

DATE: Sept. B, 1972
SIGNATURE:

PROJECTS SECTION

Res. Geol.
Previous Surveys
 Qualifications \qquad

Checked by \qquad date \qquad

GEOLOGICAL BRANCH \qquad

Approved by \qquad date \qquad

GEOLOGICAL BRANCH

Approved by date

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS
Number of Station 300 100^{1}
Number of Readings $\frac{\text { magnstic }-}{E_{0} M_{\bullet}-300}$ 600
Station interval 4001
Line spacing
100 gamma magnetic contour interval (specify for each type of survey).
MAGNETIC
Instrument Sharpe M.F. -1 fluxgate
Accuracy - Scale constant

\qquad

+ or - 10 gammasDiurnal correction method_check of base stations at no graater than 1 hour intarvalsBase station location on cross lines at stations $4+00 \mathrm{~N}$
Note: could not be established on base line because of pipe iine anomaiy
ELECTROMAGNETIC
Instrument McPhar 1000-5000
Coil configuration vertical loop
Coil separation minimum - 400' maximum - 1600^{\prime}
Accuracy + or - 1 degree

Method:(x) Fixed transmitterShoot back 1000 \& 5000 cps
Frequency dip angles in degrees
Parameters measured \qquad
GRAVITY
Instrument
Scale constant \qquad
Corrections made \qquad
Base station value and location \qquad
Elevation accuracy
INDUCED POLARIZATION - RESISTIVITY
Instrument \qquad
Time domain \qquad Frequency domain Range
Frequency \qquad
Power
Electrode array
Electrode spacing \qquad _ـ_ـ_ـ_
Type of electrode

Evelyn Twp

THE TOWNSHIP OF

MATHESON

DISTRICT OF COCHRANE

PORCUPINE
MINING DIVISION
SCALE: I-INCH=40 CHAINS
LEGEND

```
PATENTED LAND
CRASES
LEASES
LLOCATED LAND 
LICENSE OF OCCUPAT
MINING RIGHTS ONLY
ROadS RIGHTS
IMPROVED ROADS
KING's HIGHWAYS
RAILWAYS
MOWER LINES
mines
```

NOTES
Reserve Flooding Rights to 903^{\prime} contour to
H.E.P.C. on Frederick House River

400 Surface rights reservation around all lakes \&
rivers.

> DATE OF IS SUE
> SEP 191972
> ONT DEPT. Of MNES

PLAN NO.- M-297
ONTARIO
DEPARTMENT OF MINES AND NORTHERN AFFAIR

