A combined magnetomater-electromegnetic burvay has bean curried out on the property of Elephant Country Explorers Limited In Hoyle Township, Ontario. The survey was completed during the last half of June, 1968.

The object of the programme is to locate specific guam logical or gaophyaical condition a favourable to the deposition of base metals or gold.

PROPERTY, LLCATILN AND ACCESS

The property consists of 16 contiguous unpatented wining c.lalmb numbered f 96678 , $P 96918$ to 96921 inclusive, p 96695 to f: 96702 inclusive, and f 96705 to P 96707 inclusive.

These claims, in Hoyle Township, are located in Conession IV, Lot 6; Concession IV, north half of Lot 5 ; and Concession V, south half of Lot 6. Timing, Ontario, mining community is situated 12 miles southwest of the property.

The property is accessible by bot or amp vehicle. The Porcupine River, which flow north along the wast boundary of the claims, provides encase by boat from whitney Township or Matheson Township. Alternatively, winter rosa from the railroad crossing, just north of the pamaur mine, extends west and then north along the centre line of Hoyle Township to the property, a distance of about 5 miles. This road cen only be negotiated by swamp vehicle.

The writer is not ware of any previoug work which has buen carried out on the claim group.

geolligy

The geology of the gencral ures 18 ghewn on hap No. 48n published by the Ontario Department of Minata in 1939.

Although no rock exposures are presiont on the property, exposures and drilling to the eat ouggente that the contact betwaen sadiments to the narth and valcanics to tha fouth crosese the south half of Lot 6, Conceasion IV, in mn eant-fert dirmetion. Hock exposures to the wast tend to atrike about anst-want and dip vertically or atemply north.

ELECTROMAGNETIC-MAGNETOMETER SURVEY RESULTS AMD INTERPRETATICMS

The survey was conductad elong northmauth picket linus. On the south half of Lot 6 , Concemaion IV, the lines werw establishad at 200 foot intervale and on the ramaining portion of the proparty at 400 foot intervala. Mapa, at ande of ons inch to three huncred feat, accompanying this report shad the geophyaleel data. A ronka EM 16 slectromagnatic unit and a Sharpa M.F.- 1 fluxgate magnetamater were used for the turvay.

The magnetic beckground ti the property rangen betwean 650 and 750 gammas and the ganieral trend of isomapnetles in westnorthweat. Three maghetic enomallesespapreant on the property.

The most prominent pnommiy, rangiog frohe 75 to 1025 gammas, is lineor shaped, Etiking nerthomorthwast. It rapraeints
a diabame dyke which is approximately 50 fast wide and dipa amst.

Dn claim f 96919 crasing the north porttone of Limes 4 East and 8 East are two emall blongate anamaliey bbout 150 fat apart, striking about mastwast. The north anomily is markad by one atation at 2231 gamase. The south momaly is eantinuous for over 400 feet $u p$ to 200 gammas, above background. Conduttos $C, 0$ be described, is associated with thase magnatie features.

A mall manetic anomaly, st atation 16 North, Line 12
 with this anomaly.

The magnatometar survey does nat maw variation whieh might indicate a greanstonm-amdimentery cantact.

Many conductive zones of variable intenal ty have teen detected by the electromegnetic survey. With the exeaption of conductors A, B, and C, all heve wask charactariatice and ara, tharefore, probably cauaind by bbhductive ovarburdan or wat paulta.

Conduator A, at Station 16 Narth, Line 12 Enat, corresponds with the peak of the bove deacribedinegpatic anomay. Thle conductor ia partially masked by overturdan conductars to the north and south and, therafore, the in-phise profile is not true eramover. However, the ralationuhip of the An-phase propila to the quadrature profile indicaten bedraok conductivity. Bath the conductor and magnatic anomely ery laan then sa0 fat lang; having bean detected on only one 11 ng . The magnatic high is appraximitely

150 Peet wide.

Conductor B is at leset a half wile long, extending wast-northwest from the dimbase dyke merose the centre portion of the property. The atrongast portion of conduetivity id betwan Line b East and Line whare it crosee the property boundary. On Line 4 East the ralationship of the in-phees profile to the quadrature profila indicates moderate bedrock conductivity ovarlainimy conductive avarburden. The zone of strongent canductivity 10 within a slightly highar magnatic aram.

The in-phase and quadrature profileg of Canduetor C, in the north part of the property, Indicata poor to moderate conduce: tivity. It is uncertain whathar or not the conduetivity de in badrock or overburdan. It it the premanog of omell magnatif linears corresponding fo, or nearby, the cpmaduotir axie which atcounte for the importance of Condustor C. Thie conductor atriken wast-nor thwast and is approximately ead faet leng.

The greanstone-medimentary contact on the property may to indicated by the electromagnatic profiles. Just north of the bese lina in Lot 6 , the inmphase and quadrature prafilas show grester variation and intensity than in the south partion of the proparty.

CUNCLUSILAS

Tha magnetometer eurvey indicates a prominent tiabase dyke crossing the proparty in a north-northwast diraction. Dthar-
wise the magnetic trand if 11 ttia north of wast. The contact betwean saddments to the north and volcanics to the south is not indicatad by a change in the magnetic interialifa.

Numerous poar condictive ganes caused by wet faulte or conductive overburden trend generblly weat-indrtwient earresponding to the magnatic trand and tha probable atrike uf the racke in the ares. The variation and change in intenaity of the alaetromagnetic profiles indicates that the contast batwean andimente to the north and volcanice to the south may be located juet nerth of the base Iine in Lot 6. It is expected to strike west-northest.

Three conductive zonm, two of which ore associated with magnatic anomalias, require furthar investigation. Conductor A, less than BOO feet long, correaponds with the piak of magnetic anomaly which mey be caused by pyrinotite or magnatite associated with besm matal aulphides. Conductor is at laseta half inila long. Tha etrongest partion of this conductive zone is more than ban peut long in an arwa of alightly ineraased magnatio intensity. This conductor may be cauged by ohearing, graphite, or sulphidas. Conductor C, of wask to maderate strength, is asguciated with amall lenticular magnetic highs. To determine the cause of this conductor, approximately 800 fant long, and the anacciated magnatic features requiresfurther inveatigation.

RECUMMENDATILNS

Oiamond drilling is recommended to invastigate Conductora A, B, and C. It ia proposed that man conductor be investi-

Hole No.	Location	phrection	Dip	Depth (ft.)
68-1	Line $12 \in(A)$ St. $17+30 \mathrm{~N}$	South	50°	375
68-2	Ling 4E(8) 5t. $35+75 \mathrm{~N}$	South	50	375
68-3	Line 4 E (C) 5t. $49+60 \mathrm{~N}$	South	50*	450
		Tutel Foutege		

Cost of thia drill programme is eatimitad at $\$ 9600$.

Reapectfully eubmitted,
SHIELD GEOPHYSICS LIMITED.

Timming, Lintario, July 4, 1968.

R. J. Bradihaw, B.A., F.G.A.C.. Conaulting Ganlogiat.

EERTIFICATE

I, Roneld J. Bradehaw, residing at 480 Howard Streat, Timmina, Ontaria, a consulting geologist with office at 26 Pime Strast South, Timmins, Unterio, do haraby certify that:

I sttended quaen's University, Kingston, Ditaria, and gradueted with an Honours $甘$. A. degrea in Gmological Selencas in 1950.

1 am a Fallow of the Geological Absociation of Canada, Mamber of the Canadian Institute of Mining and Metallurgy, and qualifiad for mambersifip in the Asadeciation of Professionsi Enginaser of the frovince of Manitoba in 1959.

I have no inturest either directiy or indirectiy in the shares or ascuritias of Elaphant Country Explarars Limited.

Timming, Untario, July 4, 1968.
R. J. Bradmhaw, B,A, F, B, A, C, , Consulting Gmolagizt.
APPENDIX

Survey Mathod and Inatrumant Data

A Ronke EM 16, number 35, was used for the burvay.
This ingtrumant is eimply e enaitive raceivar covaring the frequency of the new VLF-transmitting atations uith mams of measuring the vertical field componente. The VLf-trangititing stations operats for communications with oubmarines ot frequencies between 17.8 and 24.0 khz . The vartical antanne ourrent of these tranamitting atations createn o concentric horizantal magnetic field around them. When these magnatic fialde meet conductive bodies in the ground, there will be mecondary Pielde radiating from these bodies. This equipment measures the vertical componante of these secondary fields.

The receiver has two inputs, with two recaiving calle built into the instrument. Une coll has a normally vartical wis and the other is horizontal.

The signal Prom the coil with vertical oxis is pirst minimized by tilting the instrument. The tilt angle is calibrated in percentages. The remaining signal in thia cail is finilly balanced out by measured parcontage of aignel from tha ather call.

Aftar a suitable station is eleteted, at right angias to the diraction of the gurvey lines, readings are made of the in-phawe
and quadrature components where the signal ha ben minimized to Its greatest degrees. The VLF-transmitting stations, at Cutler, Maine and Seattle, washington, have been used for this aurvey.

The lower end of the handle, will an rule, paint towards the conductor and the instrument is go calibrated that when approaching a conductor, the angles are positive in the inmphas component.

As with any electromagnetic unit, the largest and best conductors give the highest ratio of the in-phase and quadrature components.

A Sharpe N.F.-1 Pluxgete magnetometer was used in the magnetic survey. This instrument measures the vertical component of the earth's magnetic field in games. Gan stations for determining the magnetic diurnal variations warm astabliohad along the main base line ot 400 foot intervals. Magnetic readimge were taken at 50 foot intervals, along the cross lines.

