KIDD CREEK MINES LTD.

REPORT ON GEOPHYSICAL WORK

WHITNEY 51

WHITNEY TOWNSHIP
N.T.S.: 42-A-11

RECEIVED

лінк $2 \mathbf{2} 983$

MINING LANDS SECTION

A good conductor was outlined within a zone of high magnetic susceptibility on the Whitney 51 property. The good magnetic correlation suggests that the conductor is sulphides, mainly pyrrhotite. One of the holes drilled to test the magnetic trend on claim $P 577602$ returned a value of $.94 \mathrm{oz} /$ ton gold over 2.5 feet.

An I.P. survey is recommended to locate any less conductive areas which may relfect alteration zones. A weak magnetic high striking east-northeast in the south half of the property may represent such a zone.

TABLE OF CONTENTS
page
SUMMARY i
INTRODUCTION 1
SURVEY DESCRIPTIONS 1
PREVIOUS WORK 3
MAGNETIC RESULTS 4
HEM RESULTS 5

LIST OF FIGURES

page1. Location Map vi
2. Grid Sketch 2
3. Anomaly A interpretation, 444 Hertz, 120 metre coil separation .. 6
4. Anomaly B interpretation, 1777 Hertz, 120 coil separation ... 7
5. Magnetic Results
6. HEM Results 444 Hz
7. HEM Results 1777 Hz

Figure 1 : Location map

During January and February, 1983, magnetic and horizontal loop electromagnetic surveys were carried out by Kidd Creek Mines Ltd, on five claims in Whitney Township, Porcupine Mining Division, Ontario. The claims located in Lots 11 and 12, Concession V, are numbered as follows:

$$
\begin{array}{ll}
\text { P } & 568896 \\
\text { P } & 576512 \\
\text { P } & 577602 \\
\text { P } & 611478 \\
\text { P } & 611479
\end{array}
$$

The property is located approximately 14 kilometres northeast of the City of Timmins (Figure l). It is accessible by a gravel road which runs off Highway 101 , just west of the Cochrane Temiskaming Resource Centre in Pottsville.

SURVEY DESCRIPTIONS

An east-west base line was established along the north boundary of the four east claims and along the south

boundary of the northwest claim. Cross lines were cut every 60 metres and picketed every 20 metres (Figure 2).

The magnetic survey was carried out with an EDA PPM-350. This instrument is a proton precession magnetometer which measures the earth's total field to an accuracy of .1 gamma. The diurnal drift was monitored with an EDA PPM-400 base station magnetometer located at 860 East on the base line. Readings were taken every 20 metres in areas of low magnetic gradient and every 10 metres in areas of high magnetics. A total of 845 readings were taken along 14.28 kilometres of line.

The electromagnetic survey was run with an Apex Parametrics Max Min II. A coil separation of 120 metres was used and readings were taken at 444 and 1777 Hertz. A total of 623 readings were taken at 20 metre intervals along 14.28 kilometres of line.

PREVIOUS WORK

In 1960, A.S. Bayne \& Company mapped the two north claims held by James H. Dillon and recommended geophysical work and drilling. In 1960 and 1961, four holes were drilled to test a west-northwest striking unit reflected by high magnetics. The best intersection averaged $.94 \mathrm{oz} /$ ton gold over 2.5 feet. An old shaft is located within this same zone
to the west of these claims on the south boundary of the northwest claim.

In 1964, Prospecting Geophysics Limited carried out horizontal loop EM and magnetic surveys for Hollander Mines Limited along lines spaced every 300 feet on the two south claims. A coil separation of 200 feet was used in the EM survey. A conductive zone with good magnetic correlation was outlined on three of the lines. Four holes were drilled to test this conductor; the best intersection ran $.24 \mathrm{oz} /$ ton gold over 1.5 feet.

MAGNETIC RESULTS

A magnetic high, up to 1400 gammas above background, strikes west-northwest across claims P 577602 and P 576512, and along the south boundary of claim P 568896. This zone was the target of the 1960 drilling and is described as 'spherulitic lavas' containing disseminated sulphides.

The 1964 drill program on the two south claims was aimed at a weak magnetic high striking east-northeast in the centre of claims P 611479 and P 611478. A similar weak trend is located along the south part of claim $P 576512$.

Isolated highs occur in the southwest corner of claims P 611479 and the northeast corner of claim P 577602. Both of these areas are topographic highs and the source of the
magnetic anomalies may be explained by geological investigation in the summer.

HEM RESULTS

Two conductive zones are labelled A and B on the horizontal loop EM maps. A summary of the interpretation of these anomalies is given in Tables 1 and 2.

Conductor A coincides with the stronger part of the magnetic anomaly which strikes west-northwest. The conductivity is good and gets better to the west, before running off the grid.

Conductor B is a poor conductor with a conductivity thickness of less than 1 . It is very doubtful that this anomaly has a bedrock source. Anomalous quadrature readings on claim $P 611478$ are also probably due to bedrock topography.

The anomalous response which follows the road reflects a natural gas pipeline.

TABLE 1: ANOMALY A 444 Hertz, 120 Metre Coil Separation

line	Anomaly Center	Anomoly Width	Indicated Depth	$\begin{aligned} & 1 . P \\ & \text { Mox } \end{aligned}$	$\begin{aligned} & \text { O.P } \\ & \text { Mox. } \end{aligned}$	Response Porometer	Conductivity Thickness	Remorks	
420 E	0+85S	narrow	48 metres	-11	-5	20	47	north dip direct mag 1400 gammas	
480 E	0+85S	narrow	48 metres	- 4	-3	5	12	direct mag 400 gammas	
540 E	$1+00 \mathrm{~S}$	narrow	79 metres	- 2	-1	15	36	direct mag 250 gammas	
600 E	$1+10 \mathrm{~S}$	narrow	48 metres	- 1	-2	3	7	direct mag 200 gammas	
780 E	$1+45 \mathrm{~S}$	narrow	48 metres	- 1	-2	3	7	direct mag 150 gammas	
840 E	$1+60 \mathrm{~S}$	narrow	48 metres	- 4 .	-3	5	12	direct mag 150 gammas	

TABLE 2: ANOMALY B 1777 Hertz, 120 Metre Coil Separation

Line	Anomoly Center	Anomaly Width	Indicated Depth	$\begin{aligned} & \text { I. P } \\ & \text { Max. } \end{aligned}$	$\begin{aligned} & \text { O.P } \\ & \text { Max. } \end{aligned}$	Response Porameter	Conductivity Thickness	Remorks
420 E	$2+60 \mathrm{~S}$	narrow		- 3	-9	1.2	<1	no mag correlation
480 E	$2+50 \mathrm{~S}$	narrow		- 3	-9	1.2	<1	no mag correlation
540 E	$2+43 \mathrm{~S}$	narrow		- 3	-10	1.0	<1	no mag correlation
600 E	$2+47 \mathrm{~S}$	narrow		- 3	-11	. 9	<1	no mag correlation

Ministry of Natural Resruiges

Report of Work

(Geophysical, Geological,
Geochemical and Expenditures
\#156
The A

Expenditures (excludes power stripping)
Type of Work Performed

Instructions

Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Date \quad Recorded Holder or Agent (Signature) JUNE 2/83

 Certification Verifying Report of WorkMining Claims Traversed (List in numerical sequence)

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.
Name and Postal Address of Person Certifying

$$
\text { w. GASTEIGER, BOX } 1140
$$

Ministry of Natural Resources

File \qquad

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

Res. Geol. \qquad Qualifications \qquad
Previous Surveys

GROUND SURVEYS - If more than one survey, specify data for each type of survey
Number of Stations Mag 735 HL 609 Number of Readings Mag 845 HL 623
Station interval 20 metres, 10 metre_detail_Line spacing__60_metres
Profile scale HL $444 \mathrm{~Hz} \quad 1 \mathrm{~cm}=20 \% \quad 1777 \mathrm{~Hz} \quad 1 \mathrm{~cm}=20 \%$
Contour interval Mag, 20 gammas
y Instrument EDA PPM-350, FDA Base Station Magnetometer PPM-400
Accuracy - Scale constant . 1 gamma
Diurnal correction method Automatically corrected from base station magnetometer
Base Station check-in interval (hours) Base station magnetometer read every 30 seconds
Base Station location and value Line 8400 East, \quad North. 59298 gammas
y Instrument Apex Parametrics Max Min II
콕 Coil configuration_Horizontal Loop
Coil separation 120 metres
Accuracy $\pm 1 \%$
Method: $\quad \square$ Fixed transmitter $\quad \square$ Shoot back $\quad \square$ In line Parallel line
Frequency 444, 1777 Hertz (specify V.L.F. station)
Parameters measured Secondary field measured as a percent of the primary field

Instrument \qquad
Scale constant
Corrections made \qquad

Base station value and location

Elevation accuracy \qquad

Instrument \qquad
Method \square Time Domain
Frequency Domain
Parameters - On time Frequency \qquad

> - Off time
\qquad Range \qquad

- Delay time
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing
Type of electrode \qquad

SELF POTENTIAL

\qquad
Survey Method

Corrections made

RADIOMETRIC

Instrument
Values measured \qquad
Energy windows (levels) \qquad
Height of instrument \qquad Background Count \qquad
Size of detector \qquad
Overburden \qquad
(type, depth - include outcrop map)
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey
Instrument \qquad
Accuracy
Parameters measured

Additional information (for understanding results) \qquad
\qquad

AIRBORNE SURVEYS
Type of survey(s)
Instrument(s) (specify for each type of survey)
Accuracy__ (specify for each type of survey)
Aircraft used \qquad
Sensor altitude \qquad
Navigation and flight path recovery method \qquad

Aircraft altitude
Line Spacing
Miles flown over total area

Numbers of claims from which samples taken

Total Number of Samples_______
Type of Sample \qquad
Average Sample Weight
Method of Collection \qquad

Soil Horizon Sampled
Horizon Development
Sample Depth \qquad
Terrain \qquad

Drainage Development \qquad
Estimated Range of Overburden Thickness
\qquad

SAMPLE PREPARATION
(Includes drying, screening, crushing, ashing)
Mesh size of fraction used for analysis \qquad
\qquad
\qquad
\square

General

\qquad

ANALYTICAL METHODS			
Values expressed in: \quadper cent			
$\mathrm{Cu}, \quad \mathrm{Pb}, \quad \mathrm{Zn}, \quad \mathrm{Ni}, \quad \mathrm{Co}$.			

Others
Field Analysis (\qquad tests)
Extraction Method \qquad
Analytical Method \qquad
Reagents Used
Field Laboratory Analysis
No. tests)
Extraction Method \qquad
Analytical Method
Reagents Used \qquad
Commercial Laboratory (___tests)
Name of Laboratory \qquad
Extraction Method
Analytical Method
Reagents Used

General \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Approval

Mining Lands Comments
To: Geophysics

To: Geology - Expenditures

Comments		
\square Approved	\square Wish to see again with corrections	Date

\square To: Geochemistry

\square To: Mining Lands Section, Room 6462, Whitney Block.
(Tel: 5-1380)

Mr. Willisin L. Good
Hining Rucorder
Hinistry of Natural Resources
60 Wilson Avenue
Yimalis, Ontario
P4N 257
Dear Sir:
We have received reports and maps for a Geophysical (Electromagnetic ard Magnetonctier) survey subuifted urder Spectal Provicions (credit fol Performance and Coverage) on mithing claims P563050 et al in the Towish1p of Hiltney.

This material will be examined and assessed and statement of assessnent work credits will be issued.

Yours very truly,
E.F. Anderson

Directer
Lend Management Branch
Whitney Block, Room 6450
Queen's Fark
Torcnto. Ontario
1:74. 112
Phore: 416/965-1380
A. Barr:cib
cc: Kidd Creek Mines
Theudris, Ontario
Rtt:r: D. Londry

