1 of 4

63.4734

: `

2A11SE0455 63.4734 TISDALE

010

1985 SUMMARY REPORT

FOR THE

GETTY-DAVIDSON TISDALE JOINT VENTURE

TISDALE PROJECT

TIMMINS, ONTARIO

OM84-337

June 24, 1986

John Kita OMEP Designation # OM84-5-JV-33**7**

TABLE OF CONTENTS

0100

æ

	Description	Page No.
	List of Figures List of Tables List of Appendices	i 11 111
1.0	SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 1.1 SUMMARY 1.2 CONCLUSIONS AND RECOMMENDATIONS 1.3 RECOMMENDATIONS	1 2 2
2.0	INTRODUCTION	3
3.0	LOCATION, ACCESS AND INFRASTRUCTURE	4
4.0	LAND POSITION	4
5.0	REGIONAL GEOLOGY 5.1 ORE GENESIS	6 7
6.0	PREVIOUS WORK AND HISTORY 6.1 1900-1982 6.2 1983 6.3 1984	9 9 10 11
7.0	1985 EXPLORATION PROGRAM	
	7.1 SUMMARY	13
	7.2 SURFACE DIAMOND DRILL PROGRAM 7.2.1 GEOSTATISTICAL EVALUATION	13 18
	 7.3 UNDERGROUND EXPLORATION PROGRAM 7.3.1 INTRODUCTION 7.3.2 GEOLOGY 7.3.3 ORE ZONES 7.3.4 DRILL HOLE GRADE VALIDATION PROGRAM 	26 31 31 32
8.0	METALURGICAL STUDIES	39
9.0	REFERENCES	42

LIST OF FIGURES

Figure No. Description

.

Page No.

1	Location Man	5
1	Location Map	
2	Surface D.D.H Location Map	In Folder
3	Kriging Standard deviation v.s. grid spacing	24
4	U/G drill hole location plan	In folder
5	Section 9700	In folder
6	Section 9800	In folder
7	Section 10,000	In folder
8	5th Level - Pre. 1985 Excavation	In folder
9	5th Level - Drill Hole Geology	In folder
10	5th Level - Geology	In folder
	5th Level - Average Block Assay Value	
11	: Using D.D.H. Sample	In folder
12	: Using Panel Sample	In folder
13	: Using Channel Samples	In folder
14	: Using Muck Samples	In folder
15	: Using Sample Tower Value	In folder
16	Section 81.25S Raise	In folder
17	: Horizontal Channel Assays	In folder
18	: Vertical Channel Assays	In folder

(i)

LIST OF APPENDICES

Appendix No. Description

Page No.

A	Diamond Drill Logs	Separate Text
В	Core Hole Assay Summary	Separate Text
С	Half Core Assay Comparison	Separate Text
D	Rehabilitation and Underground Exploration	Separate Text
E	Geology and Assay Plans	File Folder

(iii)

1.0 SUMMARY, CONCLUSIONS AND RECOMENDATIONS

1.1 SUMMARY

The Tisdale Project property is situated in the Porcupine Camp, Timmins, Ontario, the major gold producing camp of North America, approximately 2 miles northeast of the Hollinge-McIntyre-Coniaurum orebodies which have collectively produced in excess of 100 million tons of ore with an average recovered grade of 0.29 oz. Au per ton. The nature of the gold bearing quartz veining and the volcanic stratigraphy that hosts the veining on the Tisdale property is very similar to that which hosts the major deposits of the Timmins Camp.

The 1985 exploration program consisted of two phases. Phase 1 commenced in early February with the objective to evaluate the potential for near surface, open pittable reserves of the S-Zone in the Smith Vet-T Zone area. Ten core holes totalling 835 metres were completed. The vein zone was encountered where anticipated, however, the lack of significant assay values in conjunction with budget constraints caused the joint venture to agree to terminate the surface drill program and concentrate on the underground program in the Main Shaft area (Phase II). The objectives of the 1985 underground program was to take a bulk sample of the Lower Vein Zone in order to validate the drill indicated reserves between the 4th and 5th levels. The program commenced in June and was completed during the 4th quarter on October 31, 1985. This program consisted of 4 surface and 8 underground pilot core holes for a total of 761 metres, site preparation, headframe installation, underground rehabilitation, 97 metres of cross-cutting and 53 metres of raising, bulk sampling (2885 tonnes) along with systematic chip and muck sampling (approximately 4,000 samples). The sampling portion of this program commenced during mid-third quarter and was completed during the 4th quarter with all of the analytical results in hand by mid-December 1985.

Additional bulk validation work will be undertaken in 1986, when new funding has been arranged. The bulk validation work performed in 1985 represents about 20% of the validation work required and planned.

1.2 CONCLUSIONS

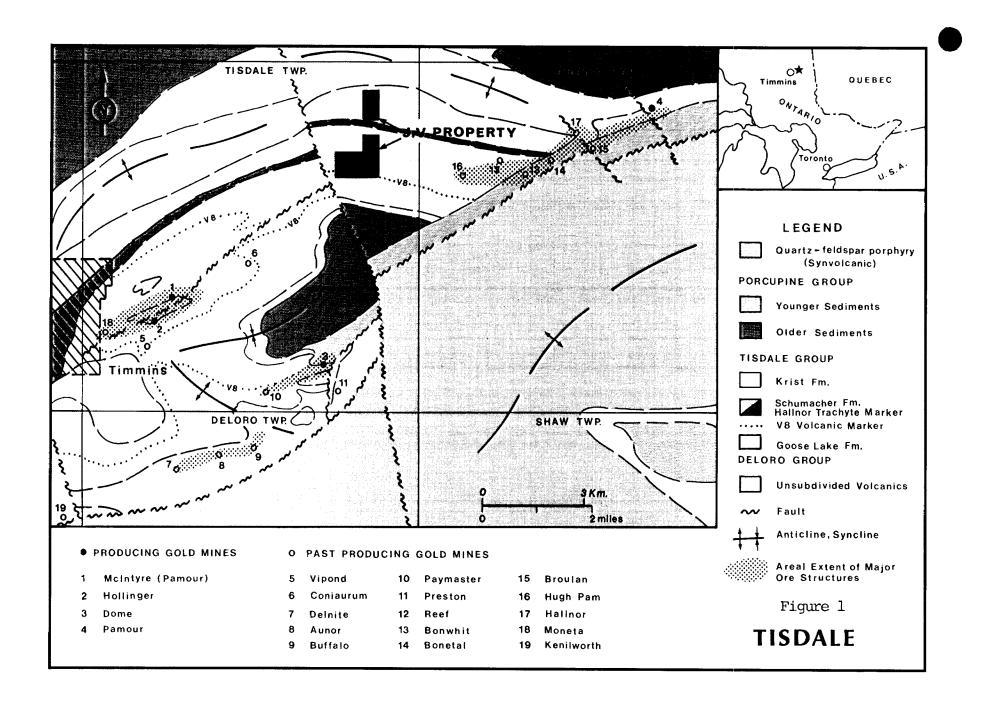
- a) Individual assays in diamond drill core samples whose values are greater than 34.28 grams Au per tonne should be cut to 34.28 grams Au per tonne for grade computation purposes.
- b) Whole core rather then split core should be sent for assay.
- c) The quartz stringer zones developed in the main mine area are very irregular and erratically mineralized.
- d) Faulting and possibly folding play an important part in quartz deposition. Detailed geological and structural mapping has lead to a better understanding of the geometry of the quartz vein system.
- e) Muck, pannel and channel sample values correlate very well with the sampling tower assay results. Future bulk sampling may not require a sampling tower on site if muck, pannel and channel sample values are used for grade estimation.

1.3 **RECOMMENDATIONS**

- a) As a result of the complex nature of the ore zones, diamond drill spacings and sections should be a maximum of 6.25 metres apart to outline economic blocks of ore.
- b) Additional bulk samples should be taken from the 4th level horizon to confirm grade, structure and continuity. This and the previous bulk sample should be treated at a custom mill.
- c) The Davidson Tisdale Property merits a systematic exploration program. Geology is favourable and the property has undergone only shallow exploration. Continued bulk validation work between the 5th and 3rd levels is recommended.

LIST OF TABLES

Table No.	Description	Page No.
1	Table of Formations and Gold Production	8
II	Getty Core Hole Data S-Zone, GT-85-119 Through 128	14
III	Getty Core Hole Data - Main Zone, GT-85-129 Through 132	16
IV	Geostatistical Reserves v.s. Getty Reserves (1.7 gm)	20
V	Geostatistical Reserves v.s. Getty Reserves (3.43 gm)	21
VI	Global Precision on Gold Grade	23
VII	Getty In-house Statistical Evaluation	25
VIII	Getty Core Hole Data - Underground D.D.H., GT-85-5-1 Through 13	28
IX	Block Assay Summary - with D.D.H. Information	37
x	Block Assay Summary - All Blocks	38


(ii)

2.0 INTRODUCTION

The Tisdale Project is a joint venture between Getty Canadian Metals, Limited and Davidson Tisdale Mines, Limited, which became effective January 1, 1984. On March 1, 1984 Getty became operator of the project following approval of the joint venture by Davidson Tisdale Mines shareholders. Getty has been assigned a 50% interest in the property and will fund 100% of expenditures up to a total of \$6,000,000 Cdn. to maintain this interest.

The objectives of the 1985 program were to:

- a) assess the near-surface ore potential of the up-dip extension of the previously drill defined South Zone, along a strike length 350 metres and a maximum depth of 90 metres.
- b) to define, in detail, the geometry of the Main Shaft zones above the 200 metre level and to drill indicate reserves to the 400 metre level.
- c) initiate a program to obtain a bulk sample of the Lower Vein Zone on the fifth level and between the 4th and 5th levels in order to validate the drill indicated reserves.
- d) mine prove the presence of sufficient reserves to justify a feasibility study and production decision by a drifting, raising, bulk sampling and diamond drilling.

3.0 LOCATION, ACCESS AND INFRASTRUCTURE

The Tisdale Project properties are located in Tisdale Township, District of Cochrane, approximately 12 km northeast of the City of Timmins (Figure 1). The property is situated approximately 3 km northeast and along strike from the Hollinger-McIntyre-Coniaurum ore bodies (Figure 1).

Ready access is provided to the south claim group by a 4.0 km gravel road north of highway 101 in South Porcupine. South Porcupine is located approximately 8.0 km east of Timmins. The north claim group can be reached by a good gravel road which begins on Highway 655 in Murphy Township.

The property is within the municipal boundaries of the City of Timmins (population 50,000), a municipality with a 75 year mining history. Timmins is a modern community with all of the infrastructure required to sustain major mining operations. The Timmins Camp is the largest gold producer in North America having produced in excess of 58 million ounces of gold from 215,000,000 tons of ore mined. In addition Timmins is the site of a large base metal mining, smelting and refining complex operated by Kidd Creek Mines.

4.0 LAND POSITION

The property consists of 9 patented mining claims in two blocks in Tisdale Township, Ontario, comprising 356 acres (Figure 1).

The North Group consists of 2 contiguous claims covering the northwest and southwest quarters of the south half of Lot 2, Concession 6.

The South Group consists of 7 contiguous claims covering the southwest quarter of the north half of Lot 2, Concession 5, the northwest and southwest quarters of the south half of Lot 2, Concession 5, and the south half of Lot 3, Concession 5.

The joint venture controls both the mining and surface rights to the properties.

5.0 **REGIONAL GEOLOGY**

The area is underlain by a thick sequence of Archean volcanic and sedimentary rocks that have been intruded by synvolcanic and post tectonic felsic rocks. The structural geology of the area is complex. At least three major periods of deformation are recognized which have resulted in a series of doubly plunging, upright, isoclinal folds offset by major fault structures and related secondary faults.

As illustrated in the legend on Figure 1 and in Table 1 the volcanicsedimentary sequence in the area has been subdivided into three major groups, the Deloro, Tisdale and Porcupine Groups.

The Deloro Group is characterized by a poorly developed Lower Formation made up of ultramafic volcanic flows overlain by a Middle Formation made up of calc-alkalic and tholeiitic, basaltic and andesitic flows in turn overlain by an Upper Formation made up of calc-alkalic, dacitic flows and pyroclastic rocks with a well developed regional iron formation at or near the top of the Upper Formation. No significant gold production is associated with the Deloro Group in the Timmins area.

The base of the Tisdale Group is marked by the Goose Lake Formation, a regionally well developed sequence of ultramafic volcanic flows, overlain by the Schumacher Formation made up of a sequence of tholeiitic, high iron basaltic flows containing a number of regionally developed carbonate chemical sedimentary units. The Schumacher Formation is overlain by felsic pyroclastic rocks of the Krist Formation. Major gold production in the Timmins Camp is all associated with the Tisdale Group, and in particular, with the portion of the stratigraphy below the V8-V10B Volcanic Marker of the Schumacher Formation down section to and including the upper part of the Goose Lake Formation.

The Porcupine Group is made up of clastic sedimentary rocks, primarily shales and greywackes with minor polymictic conglomerate. The sedimentary rocks of the Porcupine Group dominantly appear to overlie the volcanic rocks of the Tisdale and Deloro Groups, however, the sedimentary rocks may be the stratigraphic equivalent of the volcanic rocks away from the major centres of volcanism. The Porcupine Group has been subdivided into Older and Younger Sediments, the Younger Sediments (locally called Timiskaming) unconformably overlying the Older Sediments and the Tisdale Group.

Gold mineralization in the Timmins Camp displays a number of characteristics.

- 1) The dominant source of gold ore is quartz vein lodes containing locally spectacular free gold.
- 2) The quartz vein lode deposits are structurally controlled areas of dilatancy where open space allowed the development of the vein zones.

- 3) The majority of gold production in the Timmins area is related to rocks of the Tisdale Group and in particular to the portion of the stratigraphy below the V8-V10B Volcanic Marker of the Schumacher Formation down section to and including the upper part of the Goose Lake Formation.
- 4) Some gold production comes from sulphide (pyrite) bearing pyroclastic units within the mafic volcanic rocks of the Tisdale Group.
- 5) Some gold production comes from the overlying Younger Sediments of the Porcupine Group. All of the production occurs in quartz vein lodes at or near the unconformity where it is underlain by the productive portions of the Tisdale Group.

5.1 ORE GENESIS

It is beyond the scope of this report to review concepts of gold ore genesis in the Timmins area, however, the following is the currently favoured, very generallized model for the camp:

- a) Initial "protore" concentration of gold occurred during volcanism and was confined to volcanic rocks of the lower part of the Tisdale Group. This part of the volcanic stratigraphy also contains a number of carbonate rich chemical sedimentary units.
- b) During regional metamorphism and deformation, mobilization of volatiles, in particular water and carbonate, caused locally intense carbonatization of the ultramafic and theoleiitic basaltic volcanic rocks. This alteration process released abundant silica to the metamorphic solutions.
- c) Deformation produced zones of dilatency due to fracturing in competent lithologic units with deposition of major quartz vein systems within these fracture zones.
- d) Gold mineralization occurs within the quartz veining, within the wallrocks, and in locally spectacular concentrations within zones of late fracturing within the quartz veins.

TABLE 1 TABLE OF FORMATIONS AND GOLD PRODUCTION

ARCHEAN

Felsic Intrusive Rocks

Granite (late Archean) Quartz-feldspar porphyry (Synvolcanic)

- - Intrusive Contact - -

Porcupine Group

Younger Sediments
- Angular Unconformity - -

Older Sediments

Tisdale Group

Krist Formation Schumacher Fm. Goose Lake Fm.

3000 ft. stratigraphic thickness, hosts 89% of Timmins production; 190,000,000 tons, 0.29 oz. Au recovered per ton.

Younger Sediments at or near unconformity

oz. Au recovered per ton.

host 11% of Production; 25,000,000 tons, 0.11

Deloro Group.

Upper Formation Middle Formation Lower Formation

6.0 PREVIOUS WORK AND HISTORY

A number of zones of gold bearing veins have been known on the property since 1909 when the property was the site of one of the original gold discoveries in the camp. The Dome, Hollinger and McIntyre orebodies were also discovered in 1909. The property was incorporated in 1911 as Davidson Gold Mines Limited and was succeeded in 1919 by Davidson Consolidated Gold Mines Limited. In 1924 Porcupine Davidson Mines Limited was formed to carry on development, but following litigation, control reverted to Davidson Consolidated Mines Limited in 1925. During the next several years the property became tied up in the courts over a disagreement between the Canadian promoters and British financiers who were behind the project. In 1933 Davidson Consolidated Mines Ltd. sold the mineral rights to Mining Contracting and Supply Company (Ventures Limited) which in turn, sold them to Davidson Tisdale Mines Limited in 1945.

Kirwan (1983) has reviewed in detail the history of the property and has compiled all available data for the property up to the end of 1982. The following 1900 to 1982 overview is based on the data obtained in Kirwan's report and the geological report of Tisdale Township by Ferguson (1968).

6.1 1900 - 1982

The south claim group was explored by surface drilling and underground development during the period 1911 to 1924. Thirteen surface holes totalling 4,070 metres were completed between 1919 and 1922. In 1916 a two-compartment, vertical shaft (Main Shaft) was put down by Davidson Gold Mines to a depth of 95 metres. A second shaft, known as the South Shaft, was sunk to a depth of 15 metres. Levels at 30, 60 and 90 metres were established from the Main Shaft with approximately 700 metres of lateral workings done from the levels. In 1918 to 1919 a vertical winze was sunk 67 metres from the 90 metre level with new levels established at 150, 167 and 183 metres, with a total of 490 metres of drifting and crosscutting. A limited amount of underground drilling was done during the mine operation.

In 1918 electrical power was brought to the site along with a ten-stamp mill that operated at approximately 30 tons per day until it burned down in 1924. Gold was recovered in the mill by a mercury amalgamation process. A reported total of 8,519 tonnes of rock was milled; yielding 83,575 grams of gold and 5,142 grams of silver. About one-fifth of the gold content of the rock was lost by the extraction method employed. The average grade recovered was 8.91 gms per tonne.

In 1923 to 1924 a three-compartment shaft, known as the Horseshoe Shaft was sunk at a site 180 metres west of the Main Shaft. The shaft was inclined at an angle of 72° to the northwest with the objective of sinking it to a depth of 300 metres in order to develop a deeper auriferous vein zone previously encountered from drilling. The shaft was stopped at 247 metres owing to withdrawal of financial support from the company's English backers in late 1924. Stations were established on the incline at a depth of 60, 120 and 167 metres.

In 1945, Ventures Limited carried out a diamond drill program in an attempt to locate the extension of the veins found in the workings and to check high gold content of assays of cores from previous drilling. Eleven holes for 1,290 metres were drilled along with 267.0 metres of wedging in old core holes. The results failed to prove to Venture's satisfaction the presence of sufficient ore to warrant reactivating the old mine.

In 1981 Dome Mines optioned the property, drilled 10 holes totalling 3,895 feet and in 1982 dropped their option. It is believed that Dome dropped the option because of other corporate financial obligations.

6.2 **1983**

In early 1983 Davidson Tisdale Mines Limited came under the control of a new group who carried out an extensive surface and underground exploration program.

During 1983 the following work was completed:

- 1) A north-oriented grid consisting of lines spaced at 100 foot intervals and picketed at 50 foot intervals was established over the North and South claim groups.
- 2) Ground geophysical surveys were carried out on the grids:
 - a) Magnetic and VLF-EM Surveys on the south claim group
 - b) Magnetic, VLF-EM, Maxmin II HEM, and Pulse EM on the north claim group.
- 3) Kirwan (1983) completed a thorough compilation of all available data on the property up to and including the geophysical surveys completed early in 1983.

Kirwin concluded that the numerous and widespread indications of both gold and copper mineralization made it difficult to choose where to start exploring. Kirwan recommended an extensive program with the provision that the program should remain flexible and respond to results generated as the program proceeded.

The surface exploration program recommended by Kirwan involved extensive stripping in the Main Shaft, Smith Vet Shaft and South Shaft areas plus drilling in the Main Shaft area.

An underground program involving unwatering and surveying of the old workings, extensive geological mapping and assaying, and underground drilling was recommended.

4) The program carried out since May 1983 was basically as outlined above, however, certain aspects were de-emphasized as the program proceeded due to results achieved and budgetary limitations. By the end of 1983 the following work had been completed:

- a) Extensive stripping in the Main Shaft, Smith Vet and South Shaft areas and in the T Zone area where a new gold showing was discovered by the stripping program.
- b) Extensive percussion drill sampling of the stripped area around the Main Shaft and the T Zone area to test the open pit potential.
- c) Twenty-three holes totalling aproximately 2,125.0 metres were completed in the Main Shaft area.
- d) The underground workings were unwatered and rehabilitated, extensive sampling and assaying was carried out, and geological mapping was initiated. No underground drilling was completed.

As the program advanced during 1983, in particular, once the underground workings were available for inspection in the 3rd Quarter, it became apparent that the major vein structures in the Main Shaft area have a NE strike direction (030°) and a northwesterly (45°) dip direction rather than a near vertical dip $(70^{\circ}N, striking 070^{\circ})$ as had been inferred in the past.

6.3 **1984**

During January and February of 1984 an additional 11 core holes for approximately 2,080.0 metres were completed in the vicinity of the Main Shaft area under the supervision of J.L. Kirwan. In addition underground mapping and sampling was also carried out. The results of the 1983 and 1984 program are documented in Kirwan's 1984 report.

The principle achievements of the 1984 exploration program were as follows:

- 1) Completion of drill testing of the Main Shaft vein zones on 50 metre centres from the Main Shaft area to the S Zone area, a distance of approximately 450 metres.
- 2) Completion of step-out reconnaissance drilling at 100 metre centres for a distance of 200 metres west of the S Zone area (total strike length tested, 650 metres).
- 3) Completion of limited fill-in drilling on 25 metre centres in the S-Zone area to confirm the interpreted geometry of the zone and continuity of gold mineralization.
- 4) Completion of detailed geological and structural mapping.
- 5) Completion of fill-in drilling in the Main Shaft area to provide 25 metre centre drill tests in selected areas.
- 6) Completion of Ore Reserve calculations in the Main Shaft area and South Zone area.
- 7) Definition of areas of significant vein potential still to be tested.

The results of the 1984 drill program were very successful in that:

- The Main Shaft vein zones has been tested to a vertical depth of 250 metres along a strike length of approximately 450 metres. An additional 400 metre strike length of vein zone, west of the Smith Vet-T Zone, was explored to vertical depths of 50 to 200 metres. Over 90% of the core holes encountered quartz vein zones where anticipated.
- 2) In the Main Shaft area, two, en echelon, auriferous vein zones have been defined, striking at approximately 030°, and dipping 30 to 45° NW. In the Smith Vet-T Zone area at least 2 parallel quartz vein zones occur. The main auriferous structure (S Zone) has a strike of approximately 090° and dips approximately 25°N.
- 3) In the Main Shaft area 45% of the core holes encountered visible gold within the Main Shaft vein zones. Similarly, 45% of the total core holes returned 1.7 g Au/tonne or greater over the full width of the vein system.

In the Smith Vet-T Zone area 36% of the core holes that intersected the S Zone quartz vein system encountered visible gold and 26% of the total core holes returned 1.7 g Au/tonne or greater over the full width of the vein system.

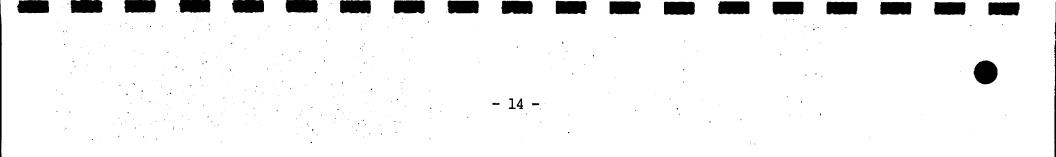
4) Approximately 400 metres of strike potential remains to be tested to the west of the S Zone as well as the down dip potential below 200 metres and the up-dip potential which may reveal open pitable reserves. Potential still exists in the Main Shaft area for the discovery of additional vein zones below 250 metres as a mineralized vein zone was intersected at a depth of approximately 540 metres by core hole M (14.74 g Au/tonne over 3.7 metres) drilled in 1924.

The exploration program completed to the end of 1984 has:

- (1) Achieved an overall understanding of the geometry of the vein systems.
- (2) Drill indicated 747,6000 tonnes having an average uncut, in-place grade of 12.39 gm Au/tonne over an average true width of 3.0 metres to a depth of approximately 200 metres which is sufficient to sustain a 500 tonne per day operation for 5 years.
- (3) Indicated that the potential exists to significantly increase the reserves down dip within the Main Shaft vein zones and within subparallel vein zones.
- (4) Indicated that open pit potential exists for the S Zone.
- (5) Indicated that the potential exists to significantly increase reserves along strike east of the Main Shaft vein zones and west of the S Zone.

7.0 1985 EXPLORATION PROGRAM

7.1 INTRODUCTION


The 1985 exploration program consisted of two phases. Phase 1 commenced in early February with the objective to evaluate the potential for near surface, open pittable reserves of the S-Zone. Ten core holes totalling 835 metres were completed. The vein zone was encountered where anticipated, however, the lack of significant assay values in conjunction with budget constraints caused the joint venture to agree to terminate the surface drill program and concentrate on the underground program in the Main Shaft area (Phase II). The objective of the 1985 underground program was to take a bulk sample of the Lower Vein Zone in order to validate the drill indicated reserves between the 4th and 5th levels. The underground program commenced in June and was completed on October 31, 1985. This program consisted of 4 surface and 8 underground pilot core holes for total of 761 metres, site preparation, headframe installation, underground rehabilitation, 97 metres of cross-cutting and 53 metres of raising, bulk sampling (2885 tonnes) along with systematic chip and muck sampling (approximately 4,000 samples). The sampling portion of this program commenced during midthird quarter and was completed during the 4th quarter with all of the analytical results in hand by mid-December 1985.

7.2 SURFACE DIAMOND DRILL PROGRAM

a) The initial phase of the 1985 work plan, a program of 100 metre centered diamond drilling to evaluate the near surface potential for open-pittable reserves in the S Zone, was initiated February 1st and completed February 12, 1985. Ten holes totalling 835 metres were completed (Figure 2). Table 2 details the vein intercepts and assay results. All of the core holes intercepted the vein zone where anticipated and established the subcropping surface trace of the S Zone. The open pit potential of this vein zone has not been fully evaluated, as the drilling was quite widely spaced, however, the lack of significant assays made this a lower priority target, particularly in the light of budget constraints, and it was recommended that its evaluation be deferred to a later date with expenditures directed towards an underground program to evaluate the reserves in the Main Shaft area.

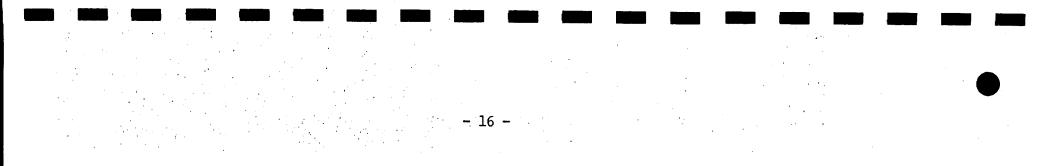
A summary of results for this drilling follows in Table II.

b) The initial underground work plan called for two raises to be driven from the fifth to the fourth levels. To better define the ore zones that the raises would follow four surface core holes were drilled, a total of 529 metres. All of the core holes intercepted the vein zone. Table III details the vein intercepts and assay results.

TABLE II

TISDALE DRILL PROGRAM GETTY CORE HOLE DATA

								······································	ASSAY	DATA	
Hole No.	Grid Location	Elev. (m)	Az.	Dip	Depth Purpose/Target Description (m)	From (m)	To (m)	Length (m)	Assay (gms/tonne) Uncut	Assay (gms/tonne) Cut To 34.28 gm	
GT-85-119	9460N/ 10,000E	308.0		-900	50.0	To test for the up dip extension of vein zone. Qtz. vein systems from: a) 18.5 m to 23.8 m b) 23.8 m to 33.9 m (v.g.) c) 33.9 m to 42.7 m	18.5 23.5 34.0	23.5 34.0 42.7	5.0 10.5 8.7	0.007 0.052 0.462	0.007 0.052 0.462
GT-85-120	9460N/ 10,000E	308.0	1800	- 550	62.0	To test for the up dip extension of vein zone. Qtz vein systems from: a) 18.7 m to 23.0 m b) 33.6 m to 34.2 m c) 51.8 m to 52.8 m	18.7 33.5 52.0	23.0 35.0 53.0	4.3 1.5 1.0	0.024 0.05 Tr	0.024 0.05 Tr
GT-85-121	9490N/ 9,900E	315.0		-900	71.0	To test for the up dip extension of vein zone. Qtz. vein systems from: a) 33.8 m to 43.4 m	33.8	43.4	9.6	0.211	0.211
GT-85-122	9490N/ 9,900E	315.0	1800	_450	58.5	To test for the up dip extension of vein zone. Qtz vein systems from: a) 39.0 m to 43.2 m	39.0	43.2	4.2	0.183	0.183
GT-85-123	9550N/ 9,800E	315.0		-90°	131.0	To test for the up dip extension of vein zone. Qtz. vein systems from: a) 34.5 m to 40.1 m b) 75.7 m to 78.5 m	34.5 75.7 (82.0	40.1 78.5 84.0	5.6 2.8 2.0	0.31 Tr 1.07	0.31 Tr 1.07)



-2-

TABLE II (Cont'd.)

TISDALE DRILL PROGRAM GETTY CORE HOLE DATA

								·····	ASSAY	DATA	
Hole No.	Grid Location	Elev. (m)	Az.	Dip	Depth (m)	Purpose/Target Description	From (m)	To (m)	Length (m)	Assay (gms/tonne) Uncut	Assay (gms/tonne) Cut To 34.28 gm
GT-85-124	9550N/ 9,800E	315.0	1800	_ 550	92.0	To test for the up dip extension of vein zone. Qtz. vein system from: a) 35.8 m to 37.4 m b) 75.3 m to 82.8 m	35.8 75.3 (80.0	37.4 82.8 82.8	1.6 7.5 2.8	2.12 0.08 1.95	2.12 0.08 1.95)
GT-85-125	9575N/ 9,700E	315.0		-900	160.5	To test for the up dip extension of vein zone. Qtz. vein system from: a) 55.3 m to 57.3 b) 57.3 to 69.6 (62.0	55.3 57.3 64.0	57.3 69.6 2.0	2.0 12.3 6.37)	0.02 1.16	0.02 1.16
GT-85-126	9575N/ 9,700E	315.0	180°	<u>- 500</u>	83.0	To test for the up dip extension of vein zone. Qtz. vein system from: a) 64.4 m to 66.2 m	64.4 (69.5	66.2 71.0	1.8 1.5	0.02 1.71	0.02
GT-85-127	9510N/ 9,700E	315.0		-900	65.0	To test for the up dip extension of vein zone. Qtz. vein system from: a) 39.4 m to 41.3 m	39.4	41.3	1.9	0.08	0.08
GT-85-128	9510N/ 9,700E	315.0	1800	_450	62.0	To test for the up dip extension of vein zone. Qtz. vein system from: a) 44.5 m to 45.5 m	44.5	45.5	1.0	Tr	Tr

TABLE III

TISDALE DRILL PROGRAM GETTY CORE HOLE DATA

									ASSAY	DATA	
Hole No.	Grid Location	Elev. (m)	Az.	Dip	Depth (m)	Purpose/Target Description	From (m)	To (m)	Length (m)	Assay (gms/tonne) Uncut	Assay (gms/tonne) Cut To 34.28 gm
GT-85-129	9891N 10108E	307.8	-	-900	154.0	Outline Quartz Vein System above the 147 m level a) Quartz Vein System (weak) from 145.06 m - 149.66 m at 149.47, 149.62 m v.g.	145.0	149.7	4.7	4.32	3.29
GT-85-130	9884N 10,120E	308.6	-	-900	149.0	Outline Quartz Vein System above the 147 m level					
						a) Quartz Vein System (strong) from 134.03 m - 137.8 m	134.0	138.0	4.0	0.29	0.29
						b) Quartz Vein System (weak) from 138.54 m - 143.65 m	138.5	144.0	5.5	0.79	0.79
GT-85-131	9923N 10128E	304.8	-	-900	149.0	Outline Quartz Vein System above the 147 m level	<u> </u>	<u> </u>			
						a) Quartz Vein System (moderate) from 80.52 m - 83.15 m at 82.26 v.g.	80.5	83.5	3.0	11.20	7.64
						b) Quartz Vein System (weak) from 115.0 m - 126.42 m at 125.2 m v.g.	115.0	126.5	11.5	0.40	0.40
						c) Quartz Vein System (strong) from 127.2 m - 133.46 m	127.0	133.5	6.5	2.63	2.63
						 d) Quartz Vein System (weak) from 137.0 m - 142.33 m at 138.7 m v.g. 	137.0	142.5	5.5	3.98	3.98

TABLE III (Cont'd.)

TISDALE DRILL PROGRAM GETTY CORE HOLE DATA

									ASSAY	DATA	
Hole No.	Grid Location	Elev. (m)	Az.	Dip	Depth (m)	Purpose/Target Description	From (m)	To (m)	Length (m)	Assay (gms/tonne) Uncut	Assay (gms/tonne) Cut To 34.28 gm
GT-85-132	9916N 10140E	306.2	-	-900	140.0	Outline Quartz Vein System above the 147 m level					
						a) Quartz Vein System (moderate) from 81.35 m - 88.27 m	81.0	88.5	7.5	0.52	0.52
						b) Quartz Vein System (weak - moderate) from 106.32 m - 109.30 m	106.25	109.75	3.5	0.01	0.01
						c) Quartz Vein System (strong) from 115.88 m - 124.0 m at 116.97, 121.89, 122.25, 122.98 & 123.02 m v.g.	115.0	124.0	8.5	14.94	9.08

7.2.1 GEOSTATISTICS

Geostat Systems International Inc. was contracted by Getty Canadian Metals Ltd. on April 12, 1985 (service contract no. 30960) to perform a geostatistical evaluation of the Tisdale deposit. The work scope consisted of:

- (a) Determining the spatial variability of the mineralization (through variogram analysis) and establishing whether or not the present drill hole density is sufficient to provide a good grasp of the mineralization's continuity, grade and tonnage.
- (b) Calculating the in-situ geological reserves for the Upper, Lower and S vein zones.
- (c) Classifying the in-situ geological reserves into proven, probable and possible categories;
- (d) Making recommendations for additional drilling, geared toward up-grading the reserves into higher categories, and defining the drilling density that would be required for further exploration on the property.

Tables I and II summarize the Geostat in-situ geological reserve calculations and also presents the Getty reserve calculations for comparison.

The Geostat "proven" reserve category is equivalent to Getty's "drill indicated" category and the Geostat "probable" category is equivalent to Getty's "drill inferred" plus "drill geologically inferred" category. Getty did not calculate "geologically inferred" reserves which would be equivalent to Geostat's "possible" category.

At the 1.7 gm Au/tonne cut-off, the Geostat reserve tonnages in the proven and probable categories are very similar to those of Getty's equivalent categories as the geostatistical limits (precision of estimate) between the categories were set in order to approximate the tonnages in Getty's reserve categories. The proven and probable reserve blocks calculated by Geostats for the Main Shaft area display a similar aerial distribution to the Getty reserve blocks. The areal distribution of the proven and probable reserve blocks for the "S" Zone, as defined by Geostat, is smaller and confined within the central portion of the zone compared to the larger and more even distribution defined by Getty. This smaller areal extent is due to the distribution of the core holes in the zone in which the majority of the closely spaced holes (approximately 25 m centres) were drilled in the central portion of the zone. Because of the sample intensity within the central portion of the zone the precision estimate for the geostatistical reserve blocks (used for defining proven, probable and possible reserves) are better defined and higher within this portion of the zone.

At the 3.43 gm Au/tonne cut-off the Geostat proven and probable reserve tonnages for the vein zones in the Main Shaft area are substantially higher than the comparable reserve tonnages outlined by Getty. The reason for this is that the kriging process has generated additional proven and probable reserve blocks in which there are no drill hole intercepts, with a number of these blocks meeting the 3.43 gm Au/tonne cut-off, resulting in additional tonnes. For the "S" Zone the Geostat proven and probable reserve tonnages are lower than the Getty tonnages because many of the kriged blocks are less than 3.43 gm Au/tonne.

In the Main Shaft area the Geostat reserve grades in the proven and probable categories at both the 1.7 and 3.43 gm Au/tonne cut-offs are less than the calculated Getty grades. This is simply due to the kriging process in which the estimated grade for an individual block is averaged from all the surrounding drill holes influencing that block as defined by the variograms. As a result the individual blocks will generally have a lower grade than those calculated by Getty which will result in an overall lower average grade. The reserve grade of the "S" Zone as calculated by Geostat is significantly lower than the Getty calculation. This is also due to the kriging process and the fact the best core hole intercepts (GT-84-55, 57 and 77) lie in the periphery of the zone with little or no drilling concentrated around them and as such these holes are not a major influence on the geostatistically estimated grade. The majority of the closely spaced drill holes, concentrated in the central portion of the zone, returned

low average grades. Therefore, the well sampled area of the zone is weighted heavily in the kriging process resulting in a low estimated grade. From Tables I and II it can be seen that a significant amount of the total tonnes for the "S" Zone as calculated by Geostat (approximately 75%) have been classified in the possible category. Note that the grades for the probable and possible categories are higher than the proven grade. This is due to the higher grade holes in the periphery of the zone.

Considering the geostatistical method employed in calculating reserves (utilizing several data points to calculate an estimated grade) the estimated grades for the Upper and Lower vein zones are considered to be excellent. The reserve grade estimate for the "S" Zone is marginal and indicates that further exploration drilling is required to upgrade the Geostat estimated reserves.

Geostat Systems International Inc. has recommended that additional drilling be carried out on each vein zone in order to improve the estimated gold grade precision for each zone. They have calculated the gold grade precision for each zone based on the existing core holes and the improvement on that precision for each zone if additional core holes are drilled (Table III). They performed two exercises, one - adding holes to provide an even distribution of data points referred to as a regular grid pattern and two - adding holes around higher grade holes, referred to as cluster drilling.

TABLE IV

TISDALE PROJECT

GEOSTATISTICAL RESERVES VS GETTY RESERVES At 1.7 gm Au/tonne Cut-off

	Geostat	Systems Inte	rnational Inc	. Reserves		Getty	Reserves		
Zones	Proven	Tonı Probable	n e s Possible	Total	Grade (gm Au/Tonne) Uncut	Ton Drill Ind.	n e s * Drill Inf. & Drill Geol.	Total	Grade (gm Au/Tonne) Uncut
<u>Main Shaft Area</u> Upper Zone	49,880	25,783	10.070		9.92 7.34	43,899	29,027		12.86 10.18
			49,379	125,042	7.14 8.29			72,926	11.79
Lower Zone	140,583	182,167	201,927		13.30 7.98 7.42	133,701	185,978		13.68 13.34
Smith Vet-T				524,677	9.19			319,679	13.48
Zone Area "S" Zone	71,129	218,571	851,100		3.00 5.04	70,124	217,094		13.09 12.85
			891,100	1,140,800	4.79 4.73			287,218	12.91
Total	261,592	426,521			9.85	247,724	k22 000		13.37
		.20,721	1,102,406	1,790,519	6.43 5.38 6.28		432,099	679,823	12.88 13.06

Drill Ind. category equivalent to the proven category of Geostat Systems International Inc. Drill Inf. plus Drill Geol. Inf. category equivalent to the probable category of Geostat Systems International Inc. ¥

TABLE V

TISDALE PROJECT

GEOSTATISTICAL RESERVES VS GETTY RESERVES At 3.43 gm Au/tonne Cut-off

	Geostat S	System <mark>s</mark> Inte	ernational Inc.	. Reserves		Getty	Reserves		
Zones	Proven	T o n Probable	n e s Possible	Total	Grade (gm Au/Tonne) Uncut		n e s * Drill Inf. & Drill Geol.	Total	Grade (gm Au/Tonne) Uncut
Main Shaft Area									~~ ~~~~
Upper Zone	49,880	05 700			9.92	33,901			15.91
		25,783	49,379		7.34 7.14		22,325		12.47
			47,777	125,042				56,226	14.54
								,	
Lower Zone	140,583				13.30	111,561			15.89
		182,167	001 007		7.98		138,413		17.15
			201,927	501 (77	7.42			040 074	16 50
				524,677	9.19			249,974	16.59
Smith Vet-T									
Zone Area	26 001								
"S" Zone	26,021	100 701			4.38	47,516			18.29
		128,701	500 727		6.82		158,767		16.63
			509,737	(() 150	6.25			206 202	17 01
				664,459	6.28			206,283	17.01
	216 684				11 4.5	100.070			
Total	216,484	336,651			11.45 7.49	192,978	319,505		16.48 16.56
		JJ0,0J1	761,043		6.62		217,202		10.70
				1,314,178				512,483	16.53

* Drill Ind. category equivalent to the proven category of Geostat Systems International Inc. Drill Inf. plus Drill Geol. Inf. category equivalent to the probable category of Geostat Systems International Inc.

On the regular grid pattern, adding 9 more holes in the Lower Zone and 3 more holes in the Upper zone would increase the gold grade precision for each zone by 10.5% and 11.3%, respectively. On the cluster grid pattern adding 6 more holes in the Lower zone would increase its gold grade precision by 11.3%. No cluster grid pattern drilling was recommended for the Upper Vein. I consider the gold grade precision for the Upper and Lower zones based on the existing holes, to be fairly good and the expenditures required to improve the gold grade precision by approximately 10% is deemed not to be very cost effective. I would recommend that no additional drilling be carried out in the Upper and Lower Vein Zones just for the purposes of increasing the gold grade precision.

For the "S" Zone Geostat determined that adding 9 more holes on a regular grid pattern or 8 more holes on a cluster pattern (concentrate in the central and eastern portion of the zone) would increase the gold grade precision by 20.7% and 29.5%, respectively. We already know that the Getty reserves calculated for the "S" Zone are based partly on wide spaced holes and that further fill-in drilling is required in order to up-grade the confidence level of the calculated reserves. It is recommended that additional drilling be carried out in the "S" Zone and that the drilling pattern(s) recommended by Geostat be considered along with additional drilling on the western portion of the "S" Zone not only to up-grade the precision but also to test for additional ore grade mineralization in the western portion of the zone.

Geostat Systems International Inc. also carried out a grid spacing study in order to analyze what effect drill spacings of 100 m, 75 m, 50 m and 12.5 m would have on the estimation variance of a single 25 m x 25 m block. The variogram information of the 3 vein zones was used to produce a hypothetical graph of Kriging standard deviation (level of precision) versus grid spacing. Figure 1 shows this graph as constructed by Geostat.

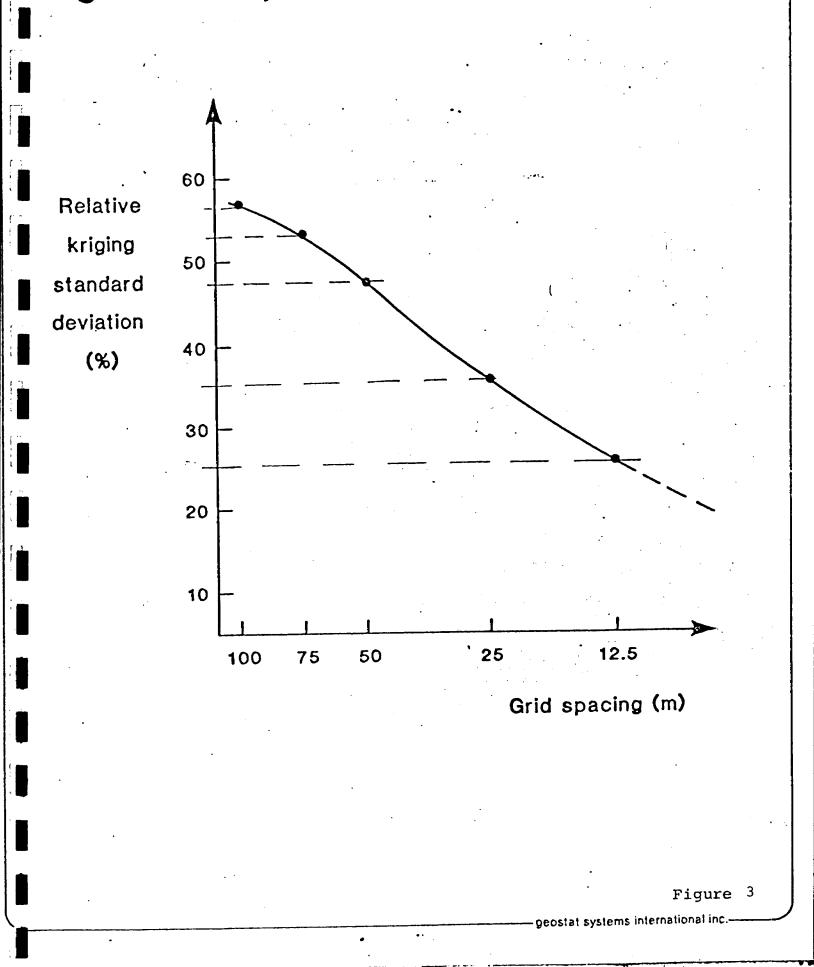
The curve on the graph is essentially a straight line which shows that the level of accuracy is systematically increased by closer spaced drilling. Ideally one would like to see the curve flatten out which would then indicate what the minimum drill spacing requirements would be in order to achieve a constant level of precision. As it stands it appears that 12.5 m drill spacing would achieve a 25% level of precision vs 35% and 48% level of precision with 25 m and 50 m drill spacing, respectively on the estimation variance for a single 25 m x 25 m block. In order to relate this graph on a global scale, the relative difference between the precisions must be looked at rather than the absolute values in order to determine what improvents would be achieved with closer spaced drilling. For example an improvement in precision of 23% would be obtained by increasing the drill spacing to 12.5 m from 50 m centres with a 10% improvement from 25 m to 12.5 m drill centres.

TA	BLE	VI

GLOBAL PRECISION ON GOLD GRADE

A) Existing Drill Holes

Zone	No. of Samples (Drill Holes)	Gold Grade Precision				
Upper Lower	31	17.48%				
Lower	20	23.18%				
"S"	24	27.10%				


B) Drill Holes Added - Regular Grid Pattern

	No. of Samples (existing + extra drill holes)	Gold Grade Precision	Relative Improvement		
Upper	40	15.64%	10.5%		
Lower	23	20.56%	11.3%		
"S"	33	21.48%	20.7%		

C) Drill Holes Added - Cluster Grid Pattern

	No. of Samples (existing + extra drill holes)	Gold Grade Precision	Relative Improvement		
Upper	37	15.50%	11.3%		
"S"	32	19.10%	29.5%		

-23-

7.3 UNDERGROUND EXPLORATION PROGRAMME

7.3.1 SUMMARY

The underground exploration program was initiated in June and completed during the 4th quarter on October 31, 1985 as planned. The primary objective of the underground program was the bulk mining of approximately 3000 tonnes of the Lower Quartz Vein material, Main Shaft Area in order to:

- a) Confirm that drill indicated grades are a valid indication of reserve grades.
- b) Confirm lateral and vertical continuity of the vein zone.
- c) Provide a preliminary evaluation of sampling methods and assay cutting procedures to be utilized in future programs.

Mining Corporation was awarded a contract on May 31, 1985 to carry out the underground program. C. Pitcher, consulting mining engineer, was retained by Getty as project manager for the underground program. The work carried out during the underground program was as follows:

- 1) The completion of 4 surface pilot core holes for 592 metres for detailed definition of the vein zone (Table II).
- 2) Site preparation.
- 3) Erection of an exploration B.C. Fir Slope (72°) headframe, tressell and shaft house on the No. 2 shaft.
- 4) Mine unwatering.
- 5) Rehabilitation of the No. 1 and No. 2 shaft to the 5th level.
- 6) Surveying of the entire mine workings. The survey revealed an error of closure in the original 1920's survey in the order of 6° on azimuth and 1.83 metres on elevation.
- 7) A 97 metre cross-cut connecting the No. 2 shaft to the Main workings at the 5th level.
- 8) Detailed underground drilling of 8 pilot core holes for 169 metres (Table III) through the portion of the vein zone to be bulk sampled.
- 9) Underground exploration drilling of 5 core holes for 286 metres (Table IV) to investigate the vein zone below the 5th level and the S Vein Zone.
- Bulk sampling of 32 block samples totalling 2,885 tonnes from the 5th level and from a raise driven on the vein between the 5th and 4th levels (Figure 2). Of the total tonnage 2,505 tonnes were obtained by drifting and slashing on the 5th level and 380 tonnes obtained from a raise driven between the 5th and 4th levels.

TABLE VII GETTY IN-HOUSE STATISTICAL EVALUATION

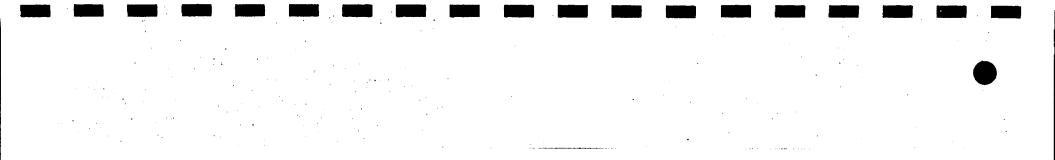
TISDALE PROJECT

									Tonnes		-	
Drill Spacing Vein Zone	Total No. Holes	Holes with QVS Targetted	Holes with v.g.	Holes with v.g. in QVS Targetted	Holes 1.7 g	Holes 3.4g	Holes with v.g. in Ore	Drill Indic.	Drill Inf.	Drill Geol. Inf.	Total	Uncut Grade/ Av. True
100 Metre Spacing												
Upper Lower S	3 9 13	1 (33%) 7 (78%) 12 (92%)	2 (66%) 2 (22%) 4 (31%)	l (100%) 0 (0%) 4 (33%)	1 (100%) 4 (57%) 5 (42%)	1 (100%) 4 (57%) 4 (33%)	1 (100%) 0 (0%) 3 (60%)	22,330 104,510 87,430	60,738 287,504 236,812	138,365 124,480	83,068 530,379 448,722	8.08/3.19 7.37/3.70 10.80/2.46
Total Total (Lower + S)	22	19 (86%)	6 (27%)	4 (21%)	9 (47%)	8 (42%)	3 (33%)	214,270	585,054	262,845	1,062,169	8.87/3.02
50 Metre Spacing												
Upper Lower S	12 29 39	4 (33%) 18 (62%) 35 (90%)	6 (50%) 12 (41%) 15 (38%)	3 (75%) 6 (33%) 12 (34%)	2 (50%) 11 (61%) 12 (37%)	2 (50%) 9 (50%) 11 (31%)	1 (50%) 6 (55%) 9 (69%)	8,872 61,230 47,356	26,618 174,020 125,583	140,600 128,818	35,490 375,850 301,757	7.28/2.54 10.98/3.24 17.70/3.38
Total Total (Lower + S)	68	53 (78%)	27 (40%)	18 (34%)	24 (45%)	20 (38%)	15 (63%)	117,458	326,221	269,418	713,097	13.64/3.25
Ore Reserve Spacing	g											
Upper Lower S	40 52 51	19 (48%) 33 (63%) 47 (92%)	12 (30%) 23 (44%) 19 (31%)	15 (45%)	12 (63%) 20 (61%) 18 (38%)	9 (47%) 17 (52%) 12 (25%)	6 (50%) 15 (75%) 12 (67%)	43,900 133,700 70,124	29,026 162,300 134,970	23,680 82,125	72,926 319,680 287,219	13.48/3.16
Total Total (Lower + S)	103	80 (78%)	42 (41%)	31 (39%)	38 (48%)	29 (36%)	27 (71%)	247,724	326,296	105,805	679,825	13.05/3.04

-25-

- 11) Detailed chip sampling of the backs and walls for each bulk sample block along with muck samples for each block. More than 4,000 samples were collected and assayed.
- 12) Detailed mapping of the bulk sample area.
- 13) Surface sampling of each block from the bulk sample utilizing a sampling tower.

TABLE VIII TISDALE DRILL PROGRAM GETTY CORE HOLE DATA


					Depth (m)		ASSAY DATA					
Hole No.	Mine Grid Location	Collar Elev. (m)	Az.	Dip		Purpose/Target Description	From (m)	To (m)	Length (m)	Assay (gms/tonne) Uncut	Assay (gms/tonne) Cut To 34.28 gm	
GT-85-05-01	9914.85N/ 10,094.37E	157.42	1200	Flat	18.59	Define quartz vein system contacts :2.64 m - 9.00, Q.v.s. (m) 11.00 - 17.06 Q.v.s. (m), v.g.	2.50 11.00	9.00 17.00	6.50 6.00	0.23 34.13	0.23 3.83	
GT-85-05-02	9920.38N/ 10097.07E	157.65	1200	Flat	20.42	Define quartz vein system contacts : 1.83-10.54 Q.v.s. (m), v.g.	2.00	11.50	9.50	4.50	3.07	
GT-85-05-03	9926.58N/ 10100.42E	157.66	1200	Flat	20.12	Define quartz vein system contacts :1.06 - 10.60 Q.v.s. (m) v.g. :14.77 - v.g. in quartz vein, flat	1.00 14.50	11.00 15.00	10.00 0.50	6.69 40.03	6.19 34.28	
GT-85-05-04	9931.44N/ 10102.99E	157.29	1200	Flat	20.12	Define quartz vein system contacts : 0.92 - 4.01 Q.v.s. (m) v.g. : shear zone	1.00 9.00	4.00 12.00	3.00 3.00	6.94 2.13	6.94 2.13	
GT-85-05-05	9935.80N/ 10,107.9E	157.19	1200	Flat	27.13	Define quartz vein system contacts : 0.0 - 4.43, v.g. Q.v.s. (m)	0.00	6.00	6.00	3.31	3.31	
GT-85-05-06	9935.76N/ 10,107.87E	157.41	1200	+300	31.39	Define quartz vein system contacts : 0.0 - 7.40 Q.v.s. (s) v.g. : 9.70 - 24.87 Q.v.s. (w-m)	0.00 9.50 (0.00	7.50 25.00 25.00	7.50 15.50 25.00	3.13 2.50 2.54	3.13 2.50 2.54)	

-2-

TABLE VIII (Continued) TISDALE DRILL PROGRAM GETTY CORE HOLE DATA

		Collar Elev. (m)					ASSAY DATA					
Hole No.	Mine Grid Location		Az.	Dip	Depth (m)	Purpose/Target Description	From (m)	To (m)	Length (m)	Assay (gms/tonne) Uncut	Assay (gms/tonne) Cut To 34.28 gm	
GT-85-05-07	9947.28N/ 10,123.92E	156.32	1500	Flat	19.20	Define quartz vein system contacts v.g. in flat vein at 9.50	8.00 9.00 9.50	10.00 9.50 10.00	2.00 0.50 0.50	7.62 18.71 7.73	7.62 18.71 7.73	
GT-85-05-08	9949.60N/ 10,121.4E	156.29	3000	Flat	12.19	Define quartz vein system contacts	3.50	4.00	0.50	27.69	27.69	
GT-85-05-09	9936.4N/ 10,065 E	156.98	2280	-780	74.67	Test for the Down dip continuation of the Lower Vein Zone Minor quartz veins at. a) $54.15 - 54.25$ m b) $56.61 - 56.75$ m c) $59.33 - 59.37$ m d) $61.04 - 61.18$ m	54.0 56.5 59.0 61.0	54.5 57.0 60.0 61.5	0.5 0.5 0.5 0.5	0.62 0.75 Tr Tr	0.62 0.75 Tr Tr	
GT-85-05-10A	9936.8N/ 10,065.6E	156.97	0350	-660	7.31	Hole Abandoned		N/A				

-3-

TABLE VIII (Continued) TISDALE DRILL PROGRAM GETTY CORE HOLE DATA

							e		ASSAY	<u>' DATA</u>	
Hole No.	Mine Grid Location	Collar Ele v. (m)	Az.	Dip	Depth (m)	Purpose/Target Description	From (m)	To (m)	Length (m)	Assay (gms/tonne) Uncut	Assay (gms/tonn d) Cut To 34.28 gm
GT-85-05-10B	9936.8 N/ 10,065.6E	156.97	0880	-72°	70.10	Test for the Down dip continuation of the Lower Vein Zone. Quartz veining encountered at:					
						a) 16.84 - 17.01 m	16.0	17.0	1.0	0.52	0.52
						b) 29.62 - 29.68 m	29.5	30.0	0.5	1.10	1.10
						c) 31.65 - 31.70 m	31.0	31.5	0.5	Tr	
GT-85-05-11	9859 N/ 10,070.4E	158.78	2040	00	31.39	Test for the S-Vein Zone: No vein encountered. Core in Fault Zone.		NO V	ALUES		
GT-85-05-12	9858.8 N/ 10,071.2E	158.78	1660	00	43.68	Test for the S-Vein Zone: Quartz vein zone encountered from: a) 41.95 – 43.68 m (Hole lost in veining)	41.95	43.68	1.73	Tr	Tr
GT-85-05-13	9858.7N/ 10,070.8 E	159.09	1860	+120	58.52	Test for the S-Vein Zone. No veining encountered due to faulting.		NO V	ALUES		

7.3.2 GEOLOGY

The South Group of claims at the Davidson Tisdale is underlain by basic to intermediate Keewatin volcanic flows striking approximatley N80°W and dipping steeply north. The Vg flow, a sphereolitic lava, important as a marker in the Timmins area, is present near the south boundary of the property. No porphyry intrusives have been mapped on the property but interpretation of magnetometer work by Davidson Tisdale indicates that small porphyry bodies may be present.

The main workings at Davidson Tisdale are in a strong shear which, on the northern part of the property, strikes N30°E and dips north at 65° and to the south strikes N30°E and dips 45° north. This change of strike may represent folding.

There is a sericite-carbonate alteration halo associated with the quartz veining. This halo extends from 10 metres to 30 metres into the hangingwall and footwall. In some cases the contact between fresh rock and altered rock is quite sharp, in others it is gradational over 1-2 metres.

Faulting is quite intense in the main mine area and it is the writers opinion that this is the controlling feature for quartz deposition. The strongest fault in the mine strikes approximately N60°E and dips 65° in the northern part of the mine and flattens to the south to 35° . It is felt that this fault may have a scissor action with the pivot point to the north.

7.3.3 ORE ZONES

In the area of the main mine, gold values occur in a quartz stringer zone associated with a strong shear and a sericite-carbonate alteration halo. The quartz does not conform to the dip of the shearing; but, cuts the shear at all angles, but it does conform along strike. The stringer zones locally are very irregular and contain very erratic gold values. The individual veins dip from 900 at the center of the system to 0° at the footwall and hangingwall, suggesting a sigmoidal pattern. The flat veins wedge out over a few metres in both the hangingwall and footwall.

There appears to be more of a concentration of gold values near the footwall side of the system. Tourmaline, also appears to be closely associated with the gold. Pyrite cubes are well developed within the center of the system and decrease in size near the boundaries and outside the system; but, there is no apparent association between gold values and pyrite cubes.

The zones which were undercut on the 5th level during the 1985 program occur in an enchelon pattern with new zones repeating to the northwest.

Numerous minor faults occupy the quartz vein system and in some cases determine the hangingwall and footwall contacts. Most quartz veins can be traced as beginning and ending in association with these minor faults.

7.3.4 DRILL HOLE GRADE VALIDATION PROGRAM

SAMPLING PROCEDURES 1985 (5th Level)

The following provides details of the various sampling methods utilized during the 1985 underground bulk sampling program at the Tisdale Project.

The test area was diamond drilled at 6.25 metre centers prior to the bulk sampling layout. This provided a detailed comparison of the drill hole assay data and the bulk sample assay data. Using the information obtained from the five horizontal diamond drill holes, a layout of the proposed excavation was given to the contractor. Approximately 2 m x 6 m blocks were laid out to straddle the diamond drill holes. These blocks were assigned numbers.

The following sequence of events occurred for each individual sample block.

- 1. The bulk sample block was marked up by Getty and drilled off and blasted by Mining Corporation (contractor).
- 2. Prior to mucking, the Getty geologist/sampler ensured that the loading pocket was empty. Getty provided a geologist/sampler on each shift.
- 3. The broken muck from the sample block was loaded in 1 tonne cars, trammed to the 5th level loading pocket, skipped to surface and piled in a layout area where it was clearly marked by sample block number and kept segragated from other blocks until such time as it was processed through the sampling tower.
- 4. One grab sample per one tonne car was taken during the mucking of the block by the miners. The Getty geologist/sampler tagged these samples.
- 5. During the extraction of the block, the Getty geologist/sampler mapped and chip sampled the various faces
- 6. Once the block was extracted, the void was surveyed and plotted before proceeding to the next block.
- 7. Once all the blocks were removed the undercut was washed and three baselines were established using a transit. These baselines were approximately parallel to the strike of the vein system. Paint lines at 90° to the baselines were established every 2 m throughout the undercut. These lines were numbered I through 23 and used as a guide for the channel samples taken across the back
- 8. Once an entire block (75-100 tonnes) was on surface it was fed into the sampling tower using a 930 loader. All blocks put through the sampling tower were under the supervision of a Getty geologist sampler. A total of 32 individual blocks were processed through the sampling tower which included 26 blocks from the undercut and 6 blocks from the raise.

The pails collected from the sampling tower were sent to Bell-White Analytical Laboratories in Haileybury for assaying and the drums to Lakefield Research for metalurgical work.

Small piles of fines which collected under the conveyor feeding the tower was also sampled and averaged 3.67 gm/tonne.

UNDERGROUND SAMPLING METHODS

MUCK SAMPLES

One sample per car (approximately 1 tonne) was taken by the miners and tagged by the Getty geologist/sampler. The sample was made up of random grabs over the total surface area of the car. Individual muck pieces did not exceed 5 cm in size. Each sample was approximately 2 kilograms in weight. The sample was tagged by the Getty geologist/sampler as to the block number from which it came as well as the date and shift. A total of 2769 muck samples were taken.

CHIP SAMPLES

The face or wall was divided into approximately 1 metre squares using paint and tape. Approximately 2 kilograms of material was chipped from each square. The face or wall was measured in from a survey plug and noted along with the date and time. Visible gold was noted and marked on the tag as to enable the assayer to take the necessary precautions. Once the 2 m x 6 m block was extracted, the void was surveyed, and the tonnage removed calculated.

CHANNEL SAMPLES

Channel samples were taken on 2 metre centers throughout the entire undercut. The channel lines were established using transit and paint. A total of 23 lines were marked up. The samples were taken approximately perpendicular to the general strike of the veining. Individual sample lines were marked up geologically and sampled in that manner, with the minimum sample width being .2 m and the maximum being 1.5 m. The samples were taken with a hammer and moil and collected on a sheet of plastic layed on the floor. Visible gold was noted as well as the percent quartz and pyrite. Mapping of the undercut was done in conjunction with the sampling. A total of 487 channel samples were taken.

SURFACE SAMPLING TOWER PROCEDURE

Muck from the underground blocks, each approximately 75 tonnes, is transported to surface under close supervision. A front-end Loader transports the sample and dumps it into a vibrating grizzly type feeder which moves the material into a portable primary jaw crusher. Minus 3 inch crushed material from the primary jaw is further reduced to minus 5/8 inch in a cone crusher.

The minus 5/8 inch material is conveyed to the top of the sample tower and discharged into the primary sampler. This primary sampler with a cutter opening of 1 3/8 inches making a total of 20 cuts per minute for a sample recovery of 4.58%. The primary reject is discharged onto a conveyor and carried to a stockpile. The "cut" from the primary sampler is fed into a secondary continuous linear type sampler having a 1 1/2 inch cutter opening and making 19 cuts per minute for a sample recovery of 0.475%. The secondary rejects are discharged onto the rejects conveyor. The sample from the second "cut" is discharged into a $12" \times 10"$ roll crusher. The minus 1/8 inch material from the rolls crusher is fed into a tertiary sampler. The tertiary sampler is a continuous vein type quad cutter. The cutter opening is 1 inch and produces a 0.054% sample which is collected in a 5 gallon pail. The remaining 0.42% is discharged into a 45 gallon drum. The pail and drum are labelled with a number which corresponds to the underground block number.

For each approximately 75 tonne block, 2 samples were obtained, a "pail" sample of approximately 40 kilograms which was sent to Bell-White Analytical Laboratories in Haileybury for gold content determination and a "drum" sample of approximately 300 kilograms which was forwarded to Lakefield Research, Lakefield Ontario, for metallurgical testwork.

BELL WHITE STANDARD FIRE ASSAY PROCEDURE

A. <u>SAMPLE PREPARATION</u>

Samples are placed in metal pans in numerical order. If necessary, the samples are then dried.

Pass through a #1 jaw crusher to reduce to -1/2". Pass through a #0 jaw crusher to reduce to -1/4". Pass through a 4 x 6 rolls crusher to reduce to -10 mesh.

All crushers are cleaned by brush between samples. Riffle to approximately one (1) pound through a 3/8" riffle. Crusher reject is bagged and stored if necessary. Pulverize remaining sample to 85% -200 mesh. Pulverizers are cleaned with compressed air between samples. Roll sample 80 times - to assay.

On completion of assay, all pulps are bagged and stored for a maximum of six (6) months.

B. ASSAY

Weighout 1 assay ton into crucible with flux. Fire and separate slag from Pb button. Cupel Pb button. Part Au and Ag in HNO3 acid Weigh Au bead.

C. SPECIAL PROCEDURE FOR VISIBLE GOLD SAMPLES

(a) <u>Sample Preparation</u>

Samples are placed in metal pans in numerical order. If necessary, the samples are then dried.

Samples are weighed.

Pass through a #1 jaw crusher to reduce to -1/2". Pass through a #0 jaw crusher to reduce to -1/4". Pass through a 4 x 6 rolls crusher to reduce to -10 mesh.

Whole sample is pulverized to -200 mesh. Remaining +200 mesh material is pulverized by hand in mortar and pestle until only gold metallic remains.

Borax is passed through crushers to clean them and is added to the +200 mesh metallics.

+200 mesh + borax to assay.

-200 mesh is rolled and then sampled for standard assay.

(b) <u>Assay</u>

Assay procedure for -200 mesh material is standard, as described above.

The +200 mesh metallic fraction is fired, cupelled, parted and weighed.

The metallic gold is added back into the -200 mesh assay utilizing the following formula

weight of Au (g) x 29.166 weight of sample (g)

BULK SAMPLE PREPARATION PROCEDURE

- 1 pail per sample (30-50 kg)
- Crush total sample to -10 mesh
- Pulverize total sample to aproximately 50 mesh
- Blend sample
- Split sample in half (reject 1/2)
- Riffle remaining half to obtain three 500 gm samples
- Screen through 150 mesh
- Repulverize over size and screen through 150 mesh until over size is 25-35 gm
- Assay pulp in triplicate
- Assay metallic

ANALYTICAL RESULTS OF THE BULK SAMPLING PROGRAM

During the 1985 underground bulk sampling program 32 samples totalling 2,885 tonnes of quartz vein system were taken. Of this total tonnes, 2505 tonnes of material was taken from the 5th level and 380 tonnes mined from a raise driven on the vein between the 5th and 4th levels. Figure 2 shows the blocks mined from the 5th level and the raise.

As can be seen from Figure 2, some of the sample blocks mined on the 5th level are partially or totally in either the hangingwall or footwall of the vein zone (Blocks 4,8,9,10,12,13,14,16,18,21, and 23). In addition, Blocks 1,22,23, and 24, do not have a pilot hole through them as do the remainder of the blocks on the level. Blocks 25,26,27,28,29, and 32 are from the raise between the 5th and 4th levels.

The overall grade, as determined from the sampling tower pail samples, from the 5th level in the vicinity of pilot drill core holes is 3.63 grams Au per tonne. This compares favourably with the drill indicated cut grade of 3.39 grams Au per tonne (Assays greater then 34.28 grams cut to 34.28 grams) versus the uncut drill grade of 7.56 grams Au.

The drill indicated grades for the vein material mined from the raise also compares favourabley. The overall grade of the 380 tonnes mined from the raise was 3.86 grams Au/tonne compared to a drill indicated grade of 2.20 grams Au per tonne (cut or uncut).

From these results it can be concluded that drillhole data cut to 34.28 grams Au per tonne provides reasonable indications of the grade of the mineralization and therefore ore reserve estimates should be based on assay values cut to 34.28 grams Au per tonne.

Table 4 summarizes the assay results of various sampling methods with drill core information. Individual Block assay comparisons shows moderate variations however, overall the five sampling methods are within \pm 0.5 gms Au per tonne with the average value.

Table IX summarizes the assay results for all of the blocks removed during the sampling program.

TABLE IX BLOCK ASSAY SUMMARY FOR BLOCKS WITH CORE HOLE ASSAYS

AU	GR	AM	S/T	ONNE

			Whole Core y Values				
Block #	Tonnes	Uncut	Cut 34.28	Muck Assay Average	Pannel Assay Average	Back Channel Assay Average	Sample Tower Average
2	89	0.55	0.55	3.27	3.53	2.14	6.78
3	89	15.01	9.14	4.08	3.99	2.64	4.21
4	112	10.16	8.22	1.10	0.96	1.62	1.90
5	88	6.74	6.74	2.75	1.71	2.12	3.32
6	71	0.56	0.56	2.36	2.17	2.27	1.37
7	92	0.99	0.99	2.25	2.54	1.53	1.65
8	123	9.29	9.29	2.93	5.99	2.85	3.39
9	74	2.08	2.08	3.04	6.05	3.43	3.54
10	91	0.27	0.27	2.45	3.69	4.82	3.11
11	90	11.22	11.22	3.91	5.03	3.46	4.01
12	107	0.06	0.06	0.81	0.57	0.67	2.57
13	96	Tr	Tr	1.08	2.30	1.08	2.83
14	89	2.18	2.18	2.75	5.30	1.08	2.85
15	118	2.87	2.87	4.30	3.44	8.34	4.69
16	89	1.24	1.24	2.09	3.07	1.67	3.38
17	71	0.85	0.85	3.45	4.33	7.79	2.85
18	132	2.18	2.18	4.93	6.51	4.75	5.35
19	81	2.45	2.45	10.12	8.94	2.80	9.03
20	84	99.87	8.97	4.82	7.89	2.22	5.45
21	64	0.24	0.24	3.43	3.43	0.56	3.25
30	81	0.02	0.02	0.91	1.19	3.03	1.51
31	81	0.27	0.27	0.72	1.18	0.74	1.96
Total	2,012						
	Weighted Avg.	7.56	3.39	3.06	3.82	2.88	3.63

BLOCK ASSAY SUMMARY

ALL BLOCKS

				AU GRAMS/TONNE		
Block No.	Tonnes	D.D.H. Whole Core Assay Value Cut 34.28	Muck Assay Average	Pannel Assay Average	Back Channel Assay Average	Sample Tower
1	104	_	2.11	5.14	5.76	2.54
2	89	0.55	3.27	3.53	2.14	6.78
3	89	9.14	4.08	3.99	2.64	4.21
4	112	8.22	1.10	0.96	1.62	1.90
5	88	6.74	2.75	1.71	2.12	3.32
6	71	0.56	2.36	2.17	2.27	1.37
7	92	0.99	2.25	2.54	1.53	1.65
8	123	9.29	2.93	5.99	2.85	3.39
9	74	2.08	3.04	6.05	3.43	3.54
10	91	0.27	2.45	3.69	4.82	3.11
11	90	11.22	3.91	5.03	3.46	
12	107	0.06	0.81	0.57	0.67	4.01
13	96	T	1.08	2.30		2.57
14	89	2.18	2.75	5.30	1.08	2.83
15	118	2.18	4.30		1.17	2.85
16	89	1.24	2.09	3.44	8.34	4.69
17	71	0.85		3.07	1.67	3.38
18	132	2.18	3.45 4.93	4.33	7.79	2.85
19	81	2.18		6.51	4.75	5.35
20	84		10.12	8.94	2.80	9.03
21		8.97	4.82	7.89	2.22	5.45
22	64	0.24	3.43	3.43	0.56	3.25
22	77	-	10.84	14.74	7.70	10.17
	93	-	3.38	15.78	19.82	4.28
24	219	-	4.31	4.79	2.22	5.13
25	67	-	5.06	-	13.99	5.24
26	59	-	5.34	-	6.13	4.82
27	62	-	0.67	-	1.00	1.67
28	66	-	1.58	-	4.62	5.16
29	60	-	4.87	-	1.41	4.74
30	81	0.02	0.91	1.19	3.03	1.51
31	81	0.27	0.72	1.18	0.74	1.96
32	66	-	1.32	-	0.00	1.50
Total	2885					
Avg. gm/tonne		3.39	3.34	4.74	3.84	3.93
Tonnes Sampled	2012	2885	2505	2885	2885	

8.0 METALLURGICAL STUDIES

The thirty-two barrel samples from the sampling tower were shipped to Lakefield Research of Canada Limited for metallurgical testing.

The test work was directly supervised by Bechtel Canada Engineers Limited.

Test Work Program

Sample Preparation

On receipt at Lakefield Research, each individual drum (or block sample) will be weighed, then follow the procedure below:

- drum contents will be fed, using a drum tipper mounted on a fork lift truck, to a two-way splitter
- one-half of the sample (156 kg) will be re-drummed and stored as a block reject sample
- one-half will be successively riffled to yield a block head sample (15-20 kg) and the balance (140 kg) which will form part of the overall metallurgical composite sample
- the individual block head samples will be retained for possible confirmatory analysis and/or testing
- the metallurgical composite sample will be prepared from generally equal weights of the individual blocks; the portions will be blended, coned and quartered, and the head sample and test sample charges will be taken.

Head Sample

The following are the objectives of the work on the metallurgical composite head sample:

- establish a sample preparation/analytical method in order to minimize the effect on the accuracy of the assay of any erratic gold occurrences
- obtain a reliable head sample analysis suitable for mine ore reserve calculation purposes
- establish the analytical standards to be used in the balance of the metallurgical testwork, including the size of sample, treatment of metallics, etc.

Grind/Extraction Relationship

The bench scale test work on the metallurgical composite will include the establishment of the relationship of fineness of grind to the gold extraction (liberation). This work, consisting of 5-8 bottle roll tests on 1000 gram charges, will serve to optimize the earlier work.

Gold Occurrence

Gravity separation tests will be conducted generally on coarse-ground pulps, to identify and determine the proportion and distribution of the gold in the feed. A gravity jig separation will be made on 50-100 kilos of sample; the concentrate will then be amalgamated and both the amalgamation tailings and the jig tailings will separately be cyanide-leached after fine grinding. Following analysis of the various products a balance will be made to determine the amount of gold present in the head sample, the amount of coarse gravity gold present, gold readily soluble in cyanide and the amount of gold locked in residues (sulphides and gangue).

Information obtained from the gold occurrence testing will assist in selecting and sizing the gravity circuit equipment, and in the method of treatment of the gravity concentrate.

Leaching Tests

Confirmatory cyanidation leach tests will be made on ground ore and on jig tailings.

Settling and Filtration

Selected pulps from bench scale leach test work will be used for filtration testing. Previous test work indicated vacuum filtration of the leached pulp to be very difficult. Subsequent to this initial work, it was revealed that there is a sericite component of the rock which, because of its clay-like characteristics, may be the cause of the poor filtration rates. Should the low filtration rates again be found, the carbon-in-pulp test work program will be made. A high filtration rate would make the conventional zinc dust (Merrill-Crowe) route a viable option to CIP.

Settling tests on ground pulp will be made to establish the thickener area requirements. A thickener would likely be incorporated into the Tisdale circuit with either the CIP or Merrill-Crowe routes.

Carbon-In-Pulp (CIP)

A continuous pilot plant leach/CIP run for 100 hours will be made using about 100 kilos of gravity circuit tailings. This work will be used to assist in the selecting the CIP design parameters of number of stages, carbon loadings and selections, and to identify whether any special treatment of the loaded carbon may be required.

As a part of the test program, the technical feasibility of using carbon-in-leach (CIL) rather than carbon-in-pulp (CIP) can be examined. Where feasible, CIL can lead to some economies in capital and operating costs.

Miscellaneous Tests

Conduct Bond rod and ball mill work index derterminations on the metalurgical composite sample.

Depending upon the selected mining method, percolation tests on cycloned leach residues can be made to determine the suitability for mine backfill.

Confirmatory analytical and metallurgical testing may be made following completion of the principal test program. Samples which may be considered for this confirmatory work include the one-half individual block rejects or the samples taken at the property by Getty in the course of their bulk sample development work.

Final results from the metallurgical work should be available in April, 1986.

9.0 **REFERENCES (Continued)**

Titaro, D. 1985

35 1984 Summary Report for the Getty-Davidson Tisdale Joint Venture, Tisdale Project, Timmins, Ontario June 1, 1985.

Westhaver, B. 1985

35 1984 Summary Report.

-42-

- 9.0 **REFERENCES**
 - Davies, J.F.

1977

1968

- Structural Interpretation of the Timmins Mining Area, Ontario; Canadian Journal of Earth Sciences, v.14 p.1046-1053.
- Ferguson, S.A.

Geology and Ore Deposits of Tisdale Township, District of Cochrane; Ontario Department of Mines, Geological Report 58, 177p.

- Fyon, J.A. and Crockett, J.H.
 - 1983 Gold Exploration in the Timmins Area; Ontario Geological Survey Study 26, 56p.
- George, P.T.
 - 1967 The Timmins Area, District of Cochrane; Ontario Department of Mines, Preliminary Map P425, Scale 1=63,360.
- George, P.T. 1985
 - 1985 Work Plan, Tisdale Project Getty Davidson Tisdale Joint Venture, unpublished report for Davidson Tisdale Mines Limited, March 1, 1985, 18 p.
- Kirwan, J.L.
 - 1983 Davidson Tisdale Mines Limited, Tisdale Township Properties, Ontario; Unpublished report for Davidson Tisdale Mines Limited by Earth Resource Associates, April 1, 1983, 140p.
- Kirwan, J.L.
 - 1984 The Davidson Mine, Tisdale Township, Ontario; Unpublished report for Getty Mines, Limited by Earth Resource Associates, June 6, 1984; 196p.
- Pyke, D.R. 1982 Geology of the Timmins area, District of Cochrane; Ontario Geological Survey, Report 219, 141p.
- Rogers, D.S. 1981 Diamond Drilling as an aid in ore definition at the Dome Mine; reprint of paper presented at C.I.M.M. 83rd Annual Meeting, Calgary, Alberta, 17p.
- Titaro, D. 1985
 - Geological Ore Reserve Estimates, Getty-Davidson Tisdale Joint Venture, Tisdale Project, Timmins, Ontario; Unpublished Report for Getty Canadian Metals Limited, March 29, 1985 21p.

Murphy Twp.

655

i																
6 1	5.4.0(1) P	1		P. (P) 11 22 3	Р. (Р) 11324	(1) (1) (1) (1)	. 40.5	^P (P) 589 5864 34	P. (P) 8154	13 08 S	м. (р) 13115	н. (н) 13556	P. (19) P. 135551131	(12) 557		
-	SROP P	9.11.0 P	P. 01	12961	P. D	e 63 38	P. 0	P. 0			P. (P) 12868	~	P. (P) P. 13279 13	~		
Ð	594784 P	P	204100 1		P. CP	P. P 6340	P. 0		P. (P)				P. (P) P. 13625 70	@	\mathbf{M}	
2	5 			^س (P. 2 68		P. (P)	P P	Price	A D	P. (P	P. (P)	P. P. 13624 130	- ē	•	•
	594786	1										i.	-0	~~		
P	г. р 27066	P. (P) 27067	P. 8100 595967	8101		Р. (Р) 13538 ·	р. (р) 6287	P. (P) 6239 		P. (P) 12:812) P. (P) 12811 			Rell)	יי	
Ð	P. O		r. D				p. @ 6 45 4	P. D 12959			Ĩ Ĩ	р. Ф 12888			1	0
٩ ٩	P. 0	1595767 (P) SRQ.	р. Ф 252	P. P 253	13579	\$ #.0 13732 ^f	13539	' 1567396		hitti and	р. С 12763	P. © 12867	P. P. P. 12886 12	@ 906	And the second se	
E)	595769 P., O 8107	595770 P. P 115562	P. P	P. P 530750	P P 530751 1 13634	595970 P. P 5.8 c 13731	P. (P)	SR.O.	L (E	۹	P. (j)	P	P P 530647 6	© 577		•
চ		<u> </u>	r.	S.R.O. P	P. (P)	530755 P. (P)		567397 P. P	i i i i i i i i i i i i i i i i i i i	P				Ð		
Π			530746	R.O.	530752 13687 \$.A.0.	530752 13688 S.R.O.	13589	113590	507325 ERD P	567387 S.R.Q (D)	P		530646 B	576		
Ð	Œ		P \$.R		P. 0	P. (P) 13052	р. (Р 13236	р. (Р) 13239	₽ 5684C7	·		/ -	P. P P 12891 12	, (Р) 1808	8 A	2
Ð	P. @	· •	530747 P. P	P. 0		P. (P)	P. (P)	•	1 K .	P. 0	P. 0	p. (P)	P. D P 591			V
	اسهر سه مسا	500413		532113	12994			6272		13588			14095 13 P ^{5x0} PP.	73 P		•
5	р. (Р) 13534	500412	P. (P) 13000	P. (P) 13349	P. (P) 129 93 ·	129 99	12998	p. (P) 13729 				••••	12977, 13 • @	74		
Ð	5				·P (P) 132.74	P. (p) 13270	P. (P) 13372	P P 13816		-			P. (P) P. 12979 13			
	- Carl		. @	2	P. (P)		P. D 13373	P. P	in	8-8- 		Ð	P. D 13933 113	Đ		
Ĥ	P/I	IP. P	A D	P. @			р. Ф	· \	P. (P)	- D	N. Perop	P. P 13931				
Ē	//13065	13069	13064	13315	13276	13277	13743	1 (14136	14248	13399	l l	13931				8 U
(D) 2	P P 13043		P. P.	P. P 8431	P. P. 13397	р ,3396	P. 13376		P. (p) 12797	P. (P) 13395	P 13402	P. (P) - 13403				
Ē	P. D		° P		P. (P)	F. O	P. (P) 13563	P. D	P. (P) 13561	\sim		Ver I		7	luida.	
	P. P	13325 P	13597 F. DI	P. P	13177 P. P		P = P	P (P)	P.(P)	р — (Р		Đ	PW		Por.	
	140G0	13301	13598	13420	13394	13393	13125 RY.	13198	Le.LQ.	13166			Rive			(] .
. All	202	An	P. (P)		NORTH	AND				P. (P) 12985	P(P)	13164	P. (P) 13848			IJ
	p \$80(1)	P	P 309			•	¢ (р. Р. 13192					ור פ פ		
1	Exercise 1	- / 1	ł	13310)	I	1	- W (//	1.01.04	, where it	1.0.00	1	18.5.5.1		••	

2 of 4

63.4734

APPENDIX A, B, C

1985 SUMMARY REPORT

FOR THE

GETTY-DAVIDSON TISDALE JOINT VENTURE

TISDALE PROJECT

OM 84 - 337

APPENDIX A

1985 SUMMARY REPORT

FOR THE

GETTY-DAVIDSON TISDALE JOINT VENTURE

TISDALE PROJECT

DIAMOND DRILL LOGS

Page 1

GETTY MINES, LIMITED

Hole Number

DRILL HOLE LOG

Property, Tisdale	Core Size. ^{BQ}	Starting Date Feb. 2/85
Location2048	Elev. Collar	Completion DateFeb., 3/8
Grid. Mine Latitude. 9460N Departure10,000 E.	Bearing Dip90° Length500 m Horiz. Trace. 0.0 m Vert. Trace. 500 m	Date Logged. Feb. 3/85 Logged byKen Guy

Starting Date Fep. 2/85 Completion Date. Feb. 3/85
Date Logged. Feb. 3/85 Logged byKen Guy

GT-	85 -1 19	
Dip	Tests	
Dend	Ang	le
Depth	Read	Act
Collar		-90°
25M		-90°
	L	

FROM	то	DESCRIPTION	SAMPLE	METR		CORE	(gm/tor	nne)	ASSAY	
(m)	TO (m)		NUMBER	FROM	TO	LGTH.	Au			l
0	5.2	Casing - overburden								
				· · · · ·						
5.2	18,5	Intermediate Volcanic	DT7601	5.2	6.7	1.5	Tr		11	
		- Grey colour								
		-Medium grained	7602	8.5	10.0	1.5	0.07			
		-Pillowed	1						1	_
		-Sericitie, carbonatized	7603	11.5	12.5	1.0	0.07			
		-Many siderite sections, often associated with	7604	12.5	14.0	1.5	Tr		1	
		narrow gtz. veins	7605	14.0	15.5	1.5	0.07			
		-5.2-12 calcite	7606	15.5	17.0	1.5	0.07			
		-12-18.5 ferrodolmite	7607	17.0	18.5	1.5	Tr			
		-Occasional gtz, veinlets at random orientation								
		with bleached contacts								
		-pillow selvage zones are black chlorite								
		py, calcite rich								
	<u>_</u>			-						
	· · · · · · · · · · · · · · · · · · ·	11.60 - 11.65 gtz, vein at 85° to C.A.								
		11.65 - 11.75 siderite							20	
		11.75 - 14.0 silicified section with py, siderite							11/1	- * * ·
		16.5 - 2 cm. gtz. vein at 90° to C.A. with siderite for								
		5 cm on both sides		· · · ·						

Page7 DBILL HOLE LOO SAMPLE FEOUR CONF General Sector SSAV 18.5 12.05.012. 0.05.012. 0.05.012. 0.011.012.	· · · · · · · · · · · · · · · · · · ·										t ipi	
CETTY MINES, LIMITED Page 4											,	
CETTY MINES, LIMITED Page 4		,			4			•				
CETTY MINES, LIMITED Page 4		· ·										
CETTY MINES, LIMITED Page 4		•.		•							-	
CETTY MINES, LIMITED Page A		•			•							
CETTY MINES, LIMITED Page A												
CETTY MINES, LIMITED Page 4						r						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		a second a second s				:	;		Pa	ge. ²	
JRILL HOLE LOC Hole Number Gr-85-139 Factor DESCRIPTION SAMPLE NUMBER DESTRES NUMBER CORE text/tornet ASSAY 16.9.=17.05 qtz. siderito R CORE text/tornet ASSAY 18.5 42.7 Quartz Vein System IT 7609 19.5 19.6 0.5 Tr Interview Core Interview ASSAY 18.5 -33.9 stringle vein 7609 19.6 0.5 Tr Interview Interview <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					1							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			المراجع المستوجعة فيسابه المالية المستحد مستراف المتناف فالمسار				F	Iole Nu	mber	GT-8	5-119	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			DRILL HOLE LOG							L		
Part Area DESCRIPTION NUMBER FROM TO LGTH Au Au Au 16.9 = 17.05.gtz. siderite 16.9 = 17.05.gtz. siderite 16.9 = 17.05.gtz. siderite 16.5 = 12.0 model 16.5 = 12.0 model				SAMPLE	METR	ES	CORE	(cm/tc		ASSAY		
16.9 = 17.05 qtz. siderito 1000 10012 10012 18.5 42.7 Quartz Vein System 177 7608 18.5 19.0 0.5 Tr 18.5 23.8 woak to moderate 7609 19.0 19.5 0.6 Tr 1 23.9 42.7 weak 7610 19.5 20.6 0.5 Tr 1 33.9 42.7 weak 7611 20.6 0.5 Tr 1 19.5 23.8 qtz, vein with pillowed, sericitie : 7612 20.6 0.5 Tr 1 19.5 72.2 Vein with pillowed, sericitie : 7613 21.6 0.5 Tr 1 19.5 72.2 Vein with pillowed, sericitie : 7613 21.0 0.5 Tr 1 19.4 -0.15 dt2. Vein with pillowed, sericitie : 7614 21.5 0.5 Tr 1	m)		DESCRIPTION									T
18.5 42.7 Quartz Vein System DT 7608 18.5 19.0 0.5 Tr 23.8 -33.9 storag 1 sincle vein 7609 19.0 19.5 0.0 0.5 Tr 33.9 -42.7 weak 7610 19.5 20.0 0.5 Tr 33.9 -42.7 weak 7611 20.0 20.5 71 1 18.5 -23.8 qtz. vein with pillowed, sericitie 7612 20.0 20.5 Tr 1 18.5 -23.8 qtz. vein with pillowed, sericitie 7612 21.0 0.5 Tr 1 18.5 -23.8 qtz. vein are siderite rich 7613 21.0 0.5 Tr 1 -contacts of ctz. veins are siderite rich 7613 22.0 0.5 Tr 1			16.9 - 17.05 gtz, siderite					_Au	<u> </u>	_Metal_	Check	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									1		<u> </u>	+
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							<u> </u>	·				+
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									1		1	1
23.8 - 33.9 strong - 1 single vein 7610 19.5 20.0 0.5 Tr 33.9 - 42.7 weak 7611 20.0 20.5 0.5 Tr 18.5 - 23.8 gtz. vein with pillowed, sericitie 7612 20.5 0.5 Tr 18.5 - 23.8 gtz. vein with pillowed, sericitie 7614 21.5 0.5 Tr 18.5 - 23.8 gtz. vein with pillowed, sericitie 7614 21.5 0.5 Tr 18.5 - 18.9 gtz sidorite 7616 22.5 0.5 Tr 18.5 - 18.9 gtz sidorite 7616 22.5 0.5 Tr 18.5 - 18.9 gtz sidorite 7616 22.5 0.5 Tr 18.5 - 18.9 gtz sidorite 7616 22.5 0.5 Tr 18.5 - 18.9 gtz sidorite vein at 35° to C.A. 7617 21.0 0.5 Tr 20.1 - 20.6 gtz sidorite vein at 35° to C.A. 7620 24.5 0.5 Tr 21.2 - 3 cm gtz vein at 45° to C.A. 7621 25.0 5.5 Tr 21.2 - 3 cm gtz vein at 50° to C.A. 7622 25.0 5.5		42.7		DT 7608	18,5	19,0	0,5	Tr				1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				7609	19.0	19.5	0.5	Tr				
18.5 - 23.8 qtz. vein with pillowed, sericitie: 7612 20.5 21.0 0.5 Tr 18.5 - 23.8 qtz. vein with pillowed, sericitie: 7613 22.0 0.5 Tr 1 19.5 - 23.8 qtz. vein with pillowed, sericitie: 7613 22.0 0.5 Tr 1 19.5 - 23.9 qtz. vein are siderite rich 7614 21.5 22.0 0.5 Tr 1 18.5 - 18.9 qtz. siderite 7616 7616 22.5 0.5 Tr 1 18.9 - 13.9 qtz. toru vein at 75° to C.A. 7617 23.0 0.5 Tr 1 18.9 - 13.9 qtz. vein at 45° to C.A. 7618 23.5 0.5 0.97 1 20.1 - 20.6 qtz., vein at 45° to C.A. 7620 24.5 25.0 0.5 Tr 21.7 - 3 cm qtz. vein at 45° to C.A. 7621 25.0 0.5 Tr 1 22.17 - 22.35 qtz. vein at 45° to C.A. 7621 25.0 0.5 Tr 1 22.10 - 23.5 3 x 2 cm qtz. vein at 45° to C.A. 7621 25.0 0.5 Tr 1 22.17 - 23.5 qtz. vein at 45° to C.A. 7624 26.5 27.0	- <u></u>		23.8 - 33.9 strong - 1 single vein					Tr				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.	33.9 - 42.7 weak		20.0	20.5	0.5	Tr				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	· <u>····································</u>	· · ·					a second s	Tr				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- <u></u>	· · · · · · · · · · · · · · · · · · ·					<u>+</u>	Tr				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				and the second division of the second divisio				- Include the second se				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							<u> </u>				[<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			10.9 - 19.5 gtz, tour vein at 75° to C.A.						ļ			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			20.1 - 20.6 gtz siderite vein at 35° to C.A.						}			
21.73 - 1.5 cm qtz. vein at 45° to C.A. 7621 25.5 0.5 Tr 22.1 - 22.35 qtz. vein at 50° to C.A. 7622 25.5 26.0 0.5 Tr 22.72 - 5 cm qtz. vein no orientation 7623 26.0 26.5 0.6 0.7 23.0 - 23.5 3 x 2 cm qtz. veins at 45° to 7624 26.5 27.0 0.5 Tr 23.52 - 23.67 - qtz. vein at 60° to C.A. 7624 26.5 27.0 0.5 Tr 23.52 - 23.67 - qtz. vein at 60° to C.A. 7626 27.5 28.0 0.5 Tr 7628 28.5 29.0 29.5 0.5 Tr 1 7629 29.0 29.5 0.5 0.82 1 7629 29.0 29.5 0.5 0.82 1 7629 29.0 29.5 30.0 0.5 Tr 7629 29.0 29.5 30.0 0.5 Tr 7629 29.0 29.5 30.0 0.5 Tr 7630 29.5 30.0 0.5 Tr 1 7630 29.5 30.0									· · · · ·			+
22.1 - 22.35 qtz. vein at 50° to C.A. 7622 25.5 26.0 0.5 Tr 1 22.72 - 5 cm qtz. vein - no orientation 7623 26.0 26.5 0.5 0.07 1 23.0 - 23.5 3 x 2 cm qtz. veins at 45° to 7624 26.5 27.0 0.5 Tr 1 C.A. 7625 27.0 27.5 0.5 Tr 1 1 23.52 - 23.67 - qtz. vein at 60° to C.A. 7628 28.5 0.5 Tr 1 1 7628 28.5 29.0 0.5 Tr 1							1					<u> </u>
22.72 - 5 cm qtz. vein - no orientation 7623 26.0 26.5 0.5 0.07 23.0 - 23.5 3 x 2 cm qtz. veins at 45° to 7624 26.5 27.0 0.5 Tr C.A. 7625 27.0 27.5 0.5 Tr 1 23.52 - 23.67 - qtz. vein at 60° to C.A. 7626 27.5 28.0 0.5 0.07 7627 28.0 28.5 29.0 0.5 Tr 1 7629 29.0 29.0 5.5 Tr 1 1 7630 29.5 30.0 0.5 Tr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			22.1 - 22.35 gtz. vein at 50° to C.A.					Tr				1
23.0 - 23.5 3 x 2 cm qtz. veins at 45° to 7624 26.5 27.0 0.5 Tr C.A. 7625 27.0 27.5 0.5 Tr 1 23.52 - 23.67 - qtz. vein at 60° to C.A. 7626 27.5 28.0 0.5 0.07 7627 28.0 28.5 0.5 Tr 1 1 7628 29.5 29.0 0.5 Tr 1 1 7627 28.0 28.5 0.5 Tr 1 1 7629 29.0 29.5 0.5 0.82 1 1 7630 29.5 30.0 0.5 Tr 1 1 7630 29.5 30.0 0.5 Tr 1 1 7630 29.5 30.0 0.5 Tr 1 1 1 7630 29.5 30.0 0.5 Tr 1 1 1 1 7630 29.5 30.0 0.5 Tr 1 1 1 1 1 1 1 1 1 1			22.72 - 5 cm qtz. vein - no orientation						<u> </u>			
C.A. 7625 27.0 27.5 0.5 Tr 23.52 - 23.67 - qtz. vein at 60° to C.A. 7626 27.5 28.0 0.5 0.07 7627 28.0 28.5 0.5 Tr 1 1 7628 28.5 29.0 0.5 Tr 1 7629 29.0 29.5 0.5 0.82 1 7630 29.5 30.0 0.5 Tr 1 1 7630 29.5 30.0 0.5 Tr 1 1 1 7630 29.5 30.0 1 1 1 1 1 1			23.0 - 23.5 3 x 2 cm qtz. veins at 45° to		26.5	27.0	0.5			1		<u>†</u>
7627 28.0 28.5 0.5 Tr 1 7628 28.5 29.0 0.5 Tr 1 7629 29.0 29.5 0.5 0.82 1 7630 29.5 30.0 0.5 Tr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>27.5</td><td>0.5</td><td></td><td></td><td></td><td></td><td></td></t<>						27.5	0.5					
7628 28.5 29.0 0.5 Tr			23.52 - 23.67 - qtz. vein at 60° to C.A.		the second s							
7620 20.3 29.0 0.5 11 7629 29.0 29.5 0.5 0.82 7630 29.5 30.0 0.5 Tr		l					[
			· · · · · · · · · · · · · · · · · · ·		the second s				<u></u>			ļ
		İ		7630								
							- <u></u>	- 4. 				
							<u> </u>			1		
										·}{		<u> </u>
										1		
		l								100		
		·	the second se									
	,]				·					
	······	۰. 							Í	1		

			·			,					
		an an an an an an an ann an ann an ann an a	.								
. .									Da		
-		GETTY MINES, LIMIT	<u> </u>						Г¢	ge	•••
	× .	GETTY MINES, LIMIT	ED	-		1	Hole Nu	mher	Cm	85-119	
		DR ILL HOLE LOG				1			<u> </u>		-
			SAMPLE	METR	FC		(gm/t		ASSAY		
FROM	TO	DESCRIPTION	NUMBER			CORE LGTH	· · · · · · · · · · · · · · · · · · ·			Au Check	<u> </u>
		23.8 - 33.9 1 single qtztour vein		30.0		J			Metal	Check	
		-upper contact 35° to C.A.	<u>DT7631</u> 7632	30.0	<u>30.5</u> 31.0	0.5					
		-occasional assimilated host fragment	7633	31.0	31.5	1				i	
		with siderite, py	7634	31.5	32.0	0.5					
	· · · · · · · · · · · · · · · · · · ·	-tourmaline veinlets are randomly	7635	32.0	32.5	0.5	Tr				
		oriented	· 7636	32.5	33.0	0.5	Tr		-		
		-27.85 V.G. tour veinlet parallel to	7637	33.0	33.5	5_					-
		C.A. for 2 cm on edge of core - 5 flecks	DT7638	33.5	34.0	0.5					
		of V.G. with veinlet - all V.G. in	7639	34.0	34_5	_0.5					
		box - no V.G. in assay sample	7640	34.5	35.0	0.5				4 35	
		and the second secon	7641	35.0	35.5	0.5				4.22	
		33.9 - 42.7 gtz veins in Intermediated - pillowed	7642	35.5		0.5					
- <u>.</u>		sericitic, ferrodolmite	7643	36.0	36.5	0.5					
		- selvage zones are calcite, chlorite with	7644	36.5	37.0.	0.5					
		large euhedral py, tr cpy	7645	37.0	37.5	0.5	0.27				
		34.63 - 1 cm qtz-py vein at 90° to C.A.	7646	37.5	38.0	5_	34				
		<u>35.9 - 3 cm qtz vein at 90° to C.A.</u>	7647	38.0		_ 0.5		······			
	•	36.6 - 36.92 qtz vein at 40° to C.A.	7648	38.5	_39.0	0.5	1.65				
		<u>37.45 - 37.50 gtz vein at 40° to C.A.</u> 38.90 - 39.0 gtz vein no orientation	7649	39.0	39.5	0-5-					
				39.5	40.0	0.5	1				
	i	41.6 - 42.7 gtz tour vein at 40° to C.A.		40.0	_40.5_	_0_5_					
				<u>40_5</u> 41.0	41.0	0.5					
	· ··· · · · · · · · · · · · · · · · ·			41.0	41.5	0.5	0.07				
				41.5	42.0	0.7	Tr				
				a 🕹 🗤 🔤	-42-1-	<u>II</u>	Tr.				
							<u>├</u>	······································	1		
									1		••••
									0		
								l			
		the second se									
									↓ ₹		
			· · · · · · · · · · · · · · · · · · ·				11			ا د شمون م د	

• • · ·

. ·

			_								
			•								
•										•	
		in an an an an an an ann an an an an an a		•							
							• • •			4	
		•				•			P	age	•••
	×	GETTY MINES, LIMIT	ED			i . 1	Hole Nu	mher	GT-	85-119	
	· .	DRILL HOLE LOG			•	. •	iore nu	moer			
	I			<u></u>		<u>}</u>	 		10011	,	
FROM	то	DESCRIPTION	SAMPLE NUMBER			CORE		nne) I	ASSAY		
42.7	50.0	Intermediate Volcanic				LGTH	}		Metal	Metal	
	<u></u>	- grey colour	DT7656 7657	42.7	<u>435</u> 45.0	<u> 0.8</u> 1.5	0.14	Í			
		- medium grained	7658	45.0	45.0	1.0	1.37				+
		- pillowed	7659	46.0	47.0	1.0	27				+
		- sericitic, carbonatized - ferrodolmite									
		- selvage zones are chlorite, calcite	7660	48.5	50.0	1.5	0.27				
		rich with large, euhedral py									
		13.0 - 3 cm at a voir at 000 to 0.2	·····				<u></u>				
		43.0 - 3 cm qtz vein at 90° to C.A,	1.1				·				
5	0.Om	Е.О.Н.									
		· · · · · · · · · · · · · · · · · · ·									
		· · · · · · · · · · · · · · · · · · ·								ļ	
			· · · · · · · · · · · · · · · · · · ·							·	
				·····		· ·					
		e to the second s	· · · · · · · · · · · · · · · · · · ·	· · ·					1	1	<u>+-</u>
		مېچې د چې د د د و و ومړو ومړو د دو وې ور وه وو د د د دوه د د دوه د وه وه وه د دوه د وه د در د د د د د د د د د د د وه وې و د د د د		· · · ·		·					
			••••••••••••••••••••••••••••••••••••••		-	,					
		n pari para any amin'ny tanàna mandritra dia mampina mpikambana amin'ny fisiana amin'ny fisiana amin'ny fisiana Amin'ny tanàna mandritra dia kaominina dia mandritra dia mandritra dia mampina dia kaominina dia kaominina dia m		· · ·							
	······································			·····							<u> </u>
									1		
							_/	1 /	V /		
							-	111 4	N		
						A	ewit		<u> </u> Z		┼━━ ┃
											<u> </u>
											<u> </u>
	•	in the projection of th							1		<u>├ </u>
7	. 1]

Page 1		GETTY	MINES, LI	MITED	. /		Hole Number	
	• •	· · · · · · · · · · · · · · · · · · ·	. · ·				-	
		•			· ·	· ·		

DRILL HOLE LOG

Property. TISDALE	Core Size ^{BQ}	Starti
Location. 2048	Elev. Collar .	Comp
GridMINE	Bearing. az 180°	Date :
Latitude	Dip	Logge

Starting Date. Feb.3/85 Completion Date. Feb.4/85	
Date Logged Feb 4/85	

GT-85	5-120	
Dip	Tests	
Denth	Ang	le
Depth	Read	Actu.
Collar		
	•	

	— ——		SAMPLE	METR	RS_		(gm/tc	nne)	ASSAY		
FROM (m)	oŢŋ	DESCRIPTION	NUMBER	FROM	TO	LGTH.	Au	· · · · · · · · · · · · · · · · · · ·	· .]
0	5,0	Casing - overburden									
				1				1		1	1
5.0	18.7	Intermediate Volcanic	DT7661	8.0	9.5	1.5	0.21				-
		- grey colour	1. A.								
		- medium grained - pillowed	DT7662	12.5	14.0	1.5	<u> </u>				
	· · ·	- sericitic, carbonatized - calcite	DT7663	15.5	17.0	1.5	Tr				
		- selvage zones are find grained, chlorite, calcite rich with coarse, euhedral py	DT7664	17.0	18.7	1.7	Tr				
		 - 15.8 - 5cm gtz. vein at 45° to C.A. - 16.3, 16.95 water seams, 10 cm, weathered broken core. 									,
						1					+
18.7	23.0	Quartz Vein System - moderate	DT7665	18.7	19.5	0.8	т-				
		18.7 - 18.9 qtz vein at 45° to C.A.	DT7666	19.5	20.0	0.5	Т-	1			
		19.0 - 19.3 qtz and silicified section	DT7667	20.0	20.5	0.5	T-				1
		19.65 - 20.0 80% qtz veins randomly oriented	DT7668	20.5	21.0	0.5	0.07				
		20.2 - 21.8 qtz tourmaline vein, contacts are	DT7669	21.0	21.5	0.5	0.07				1
		uneven, occasional assimilated host	DT7670	21.5	22.0	0.5	0.07	1			1
		20.5 - 20.6 30% tourmaline in qtz vein	DT7671	22.0	22.5	0.5	т-	1			1
		21.8 - 22.45 many narrow qtz veins and veinlets at	DT7672	22.5	23.0	0.5	т-		$\overline{)}$	101	1
		random orientation, 30% qtz 22.45 - 22.75 qtz veins at							70	Q.	1
		50° to C.A.									1

•			n in an /b>									
							· ·					
		. · ·					• •				-	
	·			· · ·			••.					
	· .						•					
	· •			•			,					
					•	·						
			n. 1997 - Norma State and a state a second second second second state a state second second second second second s		• • • • •		. • .				-	
-			ارد. این اور ایران از ایران میشود ویروز ایران در مدیر دارد در میران در وارد ایران میرود میشود در میرود در ایران ایرا					1		5	. 2	
			المراجع	ata a sa		4		1		Pa	age2	• • • •
		X	CETTY MINES, LIMIT	ED			i · •	Hole Num	han	GT-85	120	
			DRILL HOLE LOG		 		1	TOTE NUT	ber	01-85-	120	
		····	DRILL HOLE LOG		 	. 		i •				
FRO (m)	м	TO	DESCR IPTION	SAMPLE			CORE		ne)	ASSAY	· · · · · · · · · · · · · · · · · · ·	
(m)		(m)		NUMBER	FROM	TO	LGTH	Au				
			22.75 - 23.0 silicified with occasional qtz vein					_				
			and veinlet.	·	ļ <u> </u>			 			1	
				+				├ ────┤─			 	
23.0		45.0	Intermediate Volcanic									
		3310	- grey-green colour	DT7673	23.0	24.5	1.5	0.48			<u> </u>	
			- <u>medium grained</u>								<u> </u>	
				DT7674	26.0	27.5	-1-5				ł	_
			- massive to brecciated texture, sections of schistosity									
			defined by parallel calcite veinlets at 45-50° to C.A. - many calcite filled amzgdiiles	DT7675	-29-0-	30,5	1-5	- <u>r</u>			ļ	
			- sericitic, chloritic, carbonatized - calcite					}			<u> </u>	
			- many sections of calcite veinlets with occasional	DT7677	33.5	34.5	-1-0	0.07				
••••••			course, euhidial py	DT7678	24 5	25.0					<u> </u>	
			- 32.4 - 32.6 gtz vein	DT7678	34.5		0.5	Tr				
			- 33.6 - 34.2 gtz - tourmaline vein, upper	DT7680	40.0		1.0	-0-07				
			contact at 75° to C.A., lower at 30° to C.A.	DT7681	42.0		1 5	-Tr				
			- 35,6 - 3cm gtz vein at 30° to C.A.	DT7682	43.5		1.5	0.07				1
		,	10.25 10.5 min and 200 in 0.5									T
			- from 41m increasing chlorite down hole.									
			1 - 4].8 - 4].9 atz - ch vein									
		·	= 42.1 - 5cm qtz-ch vein at 60° to C.A.									
		· · · · · · · · · · · · · · · · · · ·	<u>-42,35 - 42.60 gtz cb vein at 30° to C.A.</u>	 	ļ					 	;	
		·····	42.05 - 43.15 QC2 - CD. Vein at 40. to C.A.								ſ	
	— -		- 43.85 - 44.15 qtz - cb vein				i					
					,							
							<u> </u>			}		
45.0		56.0	Fault Zone - chlorite, calcite, quartz	DT7683	45.0	46.0	1.0	Tr				+
			- broken blocky core	DT7684	46.0		1.0					
			- host rock is brecciated, chloritic,	DT7684	46.0		1.0	Tr			1	1
			carbonatized with py	DT7686	48.0		1.0	Tr		7	<u> </u>	1
			- matrix of, breccia is calcite	DT7687	49.0		io	Tr		24	3	1
			- many qtz - cb veins	DT7688	50.0	51.0	1.0	Tr				
	<u>}_</u>											
	ł	·					f l	1		{		1

		i tana tana tana tana tana tana tana tan								
• •	•			· .					•	
							•			
				•			•			
	and the second									
			•							
					•					•
				•		÷ .				•
					,			•		
•		المراجع المراجع المراجع والمراجع المراجع		+			İ		Page	3
		GETTY MINES, LIMIT	ED					r		
		the second second second second second second second second second second second second second second second se	· · · · · · · · ·	1	i 1	F	fole Numb	er G	GT-85-120	
	·····	DRILL HOLE LOG				1	:			
FROM		DESCRIPTION	SAMPLE			CORE	(gm/tonn	ne) A	SSAY	·
FROM	T _m		NUMBER		and the second se	LGTH	Au			
		- many calcite veinlets	DT7689	51.0		1.0	Tr			
		<u>- 47.35 - 47.65 gtz - cb vein</u>	DT7690	52.0		1.0	Tr			
		- 47.65 - 50.3 brecciated with calcite py matrix, tr cpy	DT7691		54.0	1.0	Tr			
		- 51.25 - 51.5 gtz - cb-tour vein - py, tr, cpy	DT7692	54.0	a second s	1.0	Tr			
	1	-51.25 - 51.5 gtz - 60-1000 vein - 99, tr, cpy - 51.8 - 52.6 gtz-tour vein at 30° to C.A.	DT7693		56.0	1.0	Tr		<u> </u>	
			1							
56.0	62.0	Intermediate Volcanic	DT7694	56.0	57.5	1.5	Tr			
	·	- grey colour					'			
		- fine grained	DT7695	_59.0	60.5	1.5	Tr			
		- massive to brecciated texture								
		- sericitic, chloritc, carbonatized - calcite								
		- brecciated sections have course, euhidial py								
····										
62	.0	Е.О.Н.								
		la construction de la constructi								
				·						
		V . Jun		·	-					
		juny j								
		//////								
							<u> </u>	<u> </u>		
····	1									
	·	ACTIVE STATES IN A DESCRIPTION OF A DESC								
				[<u></u>	
	• • • •		. I				1	1		•

age 1	GETTY MINES, LIMITED	Hole Number	GT-85	-121	
	DRILL HOLE LOG	\checkmark	Dip	Tests	
Property, TISDALE	Core Size., B.Q.	Starting Date. Feb. 4/85	Denth	Ang	le
Location	Elev. Collar	Completion Date. Feb., 5/85	Depth	Read	Actu:
GridMINE	Bearing	Date Logged	Collar		
Latitude 9490N	Length71.0m	Logged byKGuy		·	
Departure. 9900É	Horiz. Trace				
	Vert. Trace			•	

.

			SAMPLE	мдті	RES	CORE	(gm/to	onne)	ASSAY	
FROM	Ta	DESCRIPTION	NUMBER	FROM	то	LGTH	Au			1
0	3.5	Casing - overburden			• • • •					
						•				
3.5	26.0	Mafic Volcanic	DT7696	4.5	5.5	1.0	_Tr			
		- green colours			· ·					
		- fine to medium grained	DT7697	24.5	26.0	_1.5	_0.07_			
		- massive		ļ				· ·		
		- chloritic		· .	·			· · · · · · · · · · · · · · · · · · ·		
		- from 14m disseminated carbonate - calcite			 					
		and ferrodolmite		ļ	 	· · ·				· · ·
		- 4.5 - 5.0 disseminated py to 5%	-	<u> </u>	, .	· · · ·		. 	<u> </u>	
				·						
					ļ					
26.0	33.8	Intermediate Volcanic	DT7698	26.0	26.5	0.5	0.07	· ·		
		- grey colour			· · ·	· · · ·		· · · · · · ·		
		- medium grained	DT7699	27.7	28.2	0.5	0.07		· · · ·	
		- massive	<u> </u>		· · ·				· · · ·	
		- sericitic, carbonatized - ferrodolmite	DT7700	29.0	30.5	1.5	Tr			4
		- siderite sections around qtz veins	DT7701	30.5	31.5	1.0	0.07			¥
		- 26.1 - 1cm qtz vein at 75° to C.A.	DT7702	31.5	32.5	1.0	Tr	ļ	1	
		- 28.9 - 5cm gtz vein at 80° to C.A.	DT7703	32.5	33.8	1.3	0.34	1 · · ·		

LATT DOLE LOC

FROM	, TO	DESCRIPTION	SAMPLE	ME'	PERS		(gm/tc	onne)	ASSAY	,
			NUMBER	FROM	то	LGTH	<u>Au</u>			Ļ
26.0	33.8	- 30.4 - 1cm qtz vein at 80° to C.A.								Ϊ
		- 30.7 - 31.0 edge of qtz vein parallel to C.A.]							1
		- 31.2 - 5cm qtz - ank vein at 30° to C.A.]							1
		- 32.6 - 1cm qtz - ank vein at 90° to C.A.								1
		- 32.8 - 33.0 - 3X2cm gtz - ank vein at 75-85° to C.A.				-				+
33.8	43.4	Quartz Vein System - moderate	DT7704	33 8	_34.5	0.7	0.21			╀
·····		- 40% vein material	DT7705	_34.5	1	0.5	0.14			t
	 	- 60% host - pillowed Intermediate	DT7706	35.0		0.5	2.81			t
		Volcanic - sericitic, carbonatized - ferrodolmite	DT7707	35.5	36.0	0.5	0.14		- 14	t
·····		- siderite on vein contacts	DT7708	36.0	36.5	0.5	Tr			t
	•	- sections of host have up to 15%	DT7709	36.5	37.0	0.5	Tr.			1
•		coarse, euhedral py	DT7710	37.0	37.5	0.5	Tr			t
		- 33.85 - 3cm qtz - cb vein at 70°to C.A.	DT7711	37.5	38.0	0.5	0.55			t
		- 34.0 - 34.13 qtz vein at 85° to C.A.	DT7712	38.0	39.0	1.0	Tr		****	t
		- 34.4 - 35.2 gtz - tourmaline - cb vein at				~ l			· • · · · · · · · · · · · · · · · · · ·	t
		75° to C.A., many wisps and	DT7713	39.0	39.5	0.5	Tr			t
		veinlets of tour at 70-90° to C.A.	DT7714		40.0	0.5	Tr			t
		- 35.5 - 8cm qtz - cb vein	DT7715	40.0	40.5	0.5	Tr			ľ
	·	- 36.6 - 37.3 qtz vein parallel to C.A.	DT7716	40.5	41.0	0.5	Tr			f
		and gtz vein at 20° to C.A.	DT7717	41.0	41.5	0.5	Tr			ľ
		- 37.5 - 1cm qtz vein at 20° to C.A.	DT7718	41.5	42.0	0.5	Tr			ľ
		- 37.9 - 38.3 section of qtz, host, py	DT7719	42.0	42.5	0.5	Tr			Ī
		- 39.1 - 2cm qtz vein at 20° to C.A.	DT7720	42.5	43.4	0.9	0:07		1	f
		·							,	L
{	·	·						{		i

2 Page..

GT-85-121

GET Y MINES, LIMITEL

LAILL HOLE LOG	1.4111	ь не	DLE	LOG
----------------	--------	------	-----	-----

FROM	TO	DESCRIDITION	SAMPLE	and a second sec	ERS		_(gm/to	on ne)	ASSAY	· · · · · · · · · · · · · · · · · · ·
FROM (m)	O _(Th)	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au			
33.8	43.4	- 39.5 - 39.9 qtz - cb section .								
		- 40.6 - 41.2 qtz					1	1		
		- 41.55 - 42.2 gtz						1		
		-42.6 - 43.4 qtz - cb								
						1		1.		
		- from 36.6 - 43.4 gtz sections may be								
		related to pillow selvages			· · · · · · · · · · · · · · · · · · ·					
								· · ·	•	
					•	•				
43.4	71.0	Intermediate Volcanic	DT7721	43.4	45.0	1.6	0.07			
•		- grey colours								
		- fine to medium grained	DT7722	48.0	49.0	1.0	Tr			
	· · · · · · · · · · · · · · · · · · ·	- pillowed				4 - A		}		
		- sericitic, carbonatized	DT7723	50.0	51.0	1.0	0,21			
		43.4 - 56.0 ferrodolmite		1		**************************************				
······	ļ	56.0 - 71.0 calcite	DT7724	53.0	54.0	1.0	0,27			
		- selvage zones are cb, chl, py rich		· ·			· · · .			
			DT7725	55.0	56.0	1.0	Tr			
		- 44.0 - 2cm qtz vein at 40° to C.A.	• • • • • • • • • •				an an an an an an an an an an an an an a			
		- 48.4 - 2cm qtz vein at 10° to C.A.	DT7726	59.0	60.5	1.5	Tr			
		- 50.1 - 8cm qtz vein at 60° to C.A.	· · · · · · ·			•				
		- 50.6 - 6cm qtz vein at 80° to C.A.	DT7727	65.0	66.5	1.5	0.07			
		- 60.4 -; 5cm qtz vein at 40° to C.A.		·						
			DT7728	69.5	71.0	1.5	Tr			
		68.0 - 71.0 buff grey coloured, calcite rich				1	_			
								-		
	71.0	EOH				{	-	}		

Page...3...

GT-85-121

Page 1	GETTY MINES, LIMITED	Hole Number	GT-85	5-122
	DRILL HOLE LOG	Ŭ	Dip	Tests
Property. TISDALE Location2048	Core Size ^{BQ} Elev. Collar .	Starting Date. Feb., 6/85 Completion Date. Feb., 6/85	Depth	Angle Read Actua
Grid	Bearing	Date LoggedFeb: 7/85 Logged byKGuy	Collar 58.5m	-45
Departure. 9900E	Horiz. Trace4175m Vert. Trace400. M			

•

.

			SAMPLE	METRI	35_	CORE	(gm	tonne)	ASSAY		
FROM	(m)	DESCRIPTION	NUMBER			LGTH.	Au	· · · · · · · · · · · · · · · · · · ·	[<u>·</u>]
0	4.2	Casing - overburden					• • • •				
					• • •					1	1
4.2	26.0	Mafic Volcanic									
		- dark green colour									1
		- medium grained	DT7729	15.5	17.0	1.5	Tr				
		- massive to pillowed texture									1
		- chloritic					-				<u> </u>
		- pillow selvages are calcite rich									
	•	- occassional sections with high density of calcite									
	•	stringers							1		1
	·	- water seams at 9.5, 15.3, 16.6			· · · · ·						
		- from 23m decreasing chlorite	·						1		
						1		1			1
26.0	39.0	Intermediate Volcanic	7730	29.0	30.5	1.5	0.07	/			T
		- grey colour	7731	30.5	32.0	1.5	Tr	·			
		- fine to medium grained	7732	32.0	33.5	1.5	Tr			h	
		- massive to pillowed texture	7733	33.5	35.0	1.5	Tr		1 Uk	1	
		- sericitic, carbonatized	7734	35.0	36.5	1.5	Tr	· ·	1		
		- 26 - 34 calcite, siderite	7735	36.5	38.0	1.5	Tr	1	1		
_		- 34 - ferrodolmite, siderite	7736	38.0	39.0	1.0	0.07	1	1		

DRILL HOLE LOG

		DATLE HOLE LOG									
TROV(m o		SAMPLE			CORE	(gm	tonne)	ASSAY	7	
FROM	(m)	DESCRIPTION	NUMBER	FROM	ТО	LGTH	Au		T		
26.0	39.0	- selvage zones are calcite, py rich / many siderite					1				1
	١	sections associated with qtz veins and veinlets and								1	-
		selvage zones siderite zones 32 25 - 32 9-waterses	n						1		
siderite	zones-cont	'd 33.3 - 33.35 - 33.20	[1	1
		33.4 - 33.5					1		1	1	1
		34.0 - 34.6 with gtz vein from 34.3 - 34.37 at	•							1	
		80° to C.A.								1	-
		34.9 - 35.7							1	1	
		36.2 - 36.7 - water seam, broken blocky core					1			1	1
		37.4 - 38.1 - broken, blocky core					· ·		1		1
		38.3 - 39.0 broken, blocky core	·				}				
							1				
•											
39.0	43.2	Quartz Vein System	DT7737	39.0	39.5	0.5	Tr		1		
		<u>- qtz veins in random orientations in host of</u>	7738	39.5			0.07	1	1		
		intermediate Volcanics - sericitic, ferrodolmite, py	7739	40.0	40.5	0.5	Tr	· · ·		1	1
			7740		41.0		0:07				
		- siderite disappears at upper contact	7741		41.5	0.5	0.07		<u> </u>		
		- 39.0 - 39.9 small gtz veins and blebs	7742	41.5			0.62			<u> </u>	1
		50% qt2.	7743		42.5			·			
		- 40.7 - 41.0 gtz, veins	7744		43.2			1			
		- 41.3 - 2 cm gtz vein at 60° to C.A.									
		- 41.4 - 5 cm gtz vein at 70° to C.A.									
		- 41.7 - 41.8 gtz vein at 70° to C.A.									
······		- 41.9 - 42.15 - gtz vein									
		- 42.9 - 2 cm gtz vein at 40° to C.A.									
		<u>- 42.9 - 43.2 gtz hlebs.</u>								in	
		•								1/1	
		- entire system - 40% gtz							U		
		60% host							/		<u> </u>
									/		
	· · ·							1			
								1			
	[]							}			1
			and the substant of the substa								hanness and the second s

Page. .2

GT-85-122

DRILL HOLE LOG

		DRILL HOLE LOG									
	mo		SAMPLE	MET	RES	CORE	(gm	tonne)	ASSAY		
FROM	(m)	DESCRIPTION	NUMBER	FROM	то	LGTH	Au ·	ŀ			
43.2	58.5	Intermediate Volcanics	DT7745	43.2	44.7	1.5	Tr				
		- grey colour	7746	44.7	46:0	1.3	Tr				
		- fine grained									
		- pillowed texture	7747	49.5	51.0	1.5	Tr				
- <u></u>		- sericitic									
		43.2, - 49.6 ferrodolmite	7748	53.0	54.0	1.0	Tr				, ,
		49.6 - 53.0 calcite	• •								
		53.0 - 58.5 ferrodolmite	DT7749	56.0	57.0	1.0	0.41				
		- selvage zone are black chlorite, calcite, py rich	•								
		- 53.4 - 53.55 qtz. zone									
		- 56.1 - 56.6 qtz. vein at 70° to C.A.									
											· · · · ·
	8.5	E.O.H.									
		···									
			· · · ·		· ·					,	
							• •				
	· · · ·							1			
	· · · · · · · · · · · · · · · · · · ·							Kons	Ki.		1
							1		17		
· • • • • • • • • • • • • • • • • • • •	<u></u>	1	1			1	 				

GT-85-122

Page 1	GETTY MINES, LIMITED	Hole Number	GT-8	5-123	
· · · · · · · · · · · · · · · · · · ·	DRILL HOLE LOG		Dip	Tests	
Property. Tisdale.	Core Size ^{BQ}	Starting DateFeb. 6/85	Denth	Ang	gle
Location2040	Elev, Collar,	Completion Date. Feb. 7/85	Depth	Read	Actu.
a Mine	Bearing	Data Tana Feb 7/85	Collar		90°
Grid	Dip	Date LoggedFeb.7/85 Logged byK.Guy	<u>50m</u>		87°
Departure 9800. F	Horiz. Trace.7.Qm		100	<u> </u>	87

			SAMPLE	METR	BS.	CORE	(gml-	onne)	ASSAY		
FROM	$(\tilde{\underline{m}})$	DESCRIPTION	NUMBER	FROM	то	LGTH.	Au	/			
0	3.6	Casing - overburden							<u> </u>		
								<u> </u>			
3.6	15.0	Mafic Volcanic		1		<i></i>					
		- green colour							· ·		
		- fine to medium grained									
		- pillowed	•								
		- chloritic - unaltered Mg - Tholeiite							•		
		- selvage zones are calcite, gtz, black									
		chlorite, py rich									
		- from 12m increasing calcite									
		- 7.8 water seam									
15.0	34.5	Intermediate Volcanic	DT7750	17.0	18.5	1.5	Tr				
		- grey colour			• •						
		- fine grained	7751	22.0	23.0	1.0	Tr				
		- pillowed	7752	23.0	24.0	1.0	Tr				
		- sericitic, carbonatized	7753	24.0	25.2	1.2	Tr				
		- upper contact is gradational over	7754	25.2	26.0	0.8	Tr				
		2m interval 14.0 - 16.0	7755	26.0	27.0	1.0	Tr		-21	2	
		15 - 31.5 calcite	7756	27.0	28.0	1.0	Tr		- fest		
					1						

. .

DRILL HOLE LOG

	— •	DESCRIPTION	SAMPLE			CORE	(aml+	onne)	ASSAY	
FROM	TO (m)		NUMBER			LGTH		-		
15.0	34.5	31.5 - 34.5 ferrodolomite	7757	28.0		1.0	Tr	· · · · · · · ·		
· <u> </u>		23.2 - 27.0 fault zone - broken, blocky	7758		30.5	1.5	Tr	, 		
		core - 30-40° to C.A. ? - rock in	7759		32.0	1.5	Tr			
		fault zone is chloritic	7760		33.5	1.5	Tr	· · ·		
		- from 27.0 - 34.5 many siderite sections	7761	33.5	34.5	1.0	0.41			
		associated with qtz veins, pillow selvages,						· · · ·		
		water seams-								
			· · ·	ļ			1 1 1 1 1 1	· · ·		·
				· .	, 					
··						ļ				
				· · ·	· · · ·			· · · · · ·	<u></u>	
				ļ		·				
				· .			ļ		<u> </u>	
					ļ. 		ļ			
			·	<u></u>						
				· · ·			· · ·			
						· · · · · · · · · · · · · · · · · · ·			·	· · · · · · · · · · · · · · · · · · ·
		· · ·								
						1				
	+									
<u></u>	+									
· · · · · · · · · · · · · · · · · · ·										
								1.7	XQ	· · ·
	1								¥~	
										<u> </u>

Page. . 2.

Hole Number G

GT-85-123

DRILL HOLE LOG

			SAMPLE	MMTI			(om / +	onne)	ASSAY	
FROM	(TO)	DESCRIPTION	NUMBER	FROM	то	LGTH	Λu .			·
		- 30.0 - 1cm qtz vein at 10° to C.A.					Ì			· · · · · · · · ·
	······································	- 33.4 - 34.5 siderite				• • • •				
					· ·				· ·	;
							ļ			
34.5	40.1	Quartz Vein System - strong	DT7762	34.5	35.0	0.5	2.40		ļ	
		34.5 - 34.9 - silicified, siderite, qtz veinlets	7763	35.0	35.5	0.5	0.82			
	1	34.9 - 40.0 guartz - tourmaline vein	. 7764	35.5	36.0	0.5	0.14			
		contacts are broken and irregular, tour	7765	36.0	36.5	0.5	Tr		 	
		to 5% as wisps and veinlets at	7766	36.5	37.0	0.5	Tr			
		40-70° to C.A. with occasional cb	7767	37.0	37.5	0.5	Tr			·
		35.0 - 35.1 section with assimilated host	7768	37.5	38.0	0.5	0.07		<u> </u>	
		39.85 - 40.1 section with very silicified,	7769	38.0	38.5	0.5	Tr	· · · · · ·	<u> </u>	
		assimilated host	7770	38.5	39.0	0.5	Tr			·
			7771	39.0	39.5	0.5	Tr			
			DT7772	39.5	40.1	0.6	Tr			·
			and a second second		· .	·	· · · ·		 -	· ·
					ļ					ļ
40.1	55.0	Intermediate Volcanic	7773	40.1	41.0	0.9	Tr	,		· ·
		- grey colour		<u> </u>						<u> </u>
		- fine grained	7774	42.5	44.0	1.5	0.14		· · · 	
		- pillowed	· · · · · · · · ·	ļ	· ·					
		- sericitic, carbonatized	7775	45.5	47.0	1.5	0.27			
		- 40.1 - 49.0 ferrodolomite	7776	47.0	48.0	1.0	Tr			
		- 49.0 - 55.0 calcite	ľ	ļ	· · · · ·					f
		- 43.3 - 3cm gtz vein at 75° to C.A.	7777	51.5	53.0	1.5	Tr		1/	
		- 43.3 - 44.0 silicified			1		1			l

Page...3

GT-85-123

DRILL HOLE LOG

	-		SAMPLE	MMTF	ES		(gm/to	nnc)	ASSAY	
FROM	(m)	DESCRIPTION	NUMBER	FROM	то	LGTH	<u>Au</u>			
		45.5 - 46.0 - silicified	· · ·							
		47.1 - qtz-tour vein at 75° to C.A.			•••••					·
		- 51.5 - 55.0 sericite - chlorite - carbonate						· · · · · ·	·	
			۰. ۱۹۹۹ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰							
55.0	68.5	Mafic Volcanic	DT7778	55.0	56.0	1.0	Tr			
		- dark green colour	7779	56.0		1.1	0.27			
		- medium grained		· · ·						ļ
		- pillowed	7780	63.5	64.5	1.0	Tr			ļ
		- chloritic, carbonatized - calcite		·		ļ	 	·	 	ļ
		- 55.0 - 57.1 silicified	7781	65.5	66.5	1.0	Tr		<u> </u>	·
		- selvage zones are qtz, calcite rich			<u> </u>	ļ		· ·		
				ļ		ļ			<u> </u>	<u> </u>
			. 	· · · · ·		ļ	· ·			
68.5	75.7	Intermediate Volcanic	7782	68.0	69.5	1.5	0.07			
		- grey to buff-grey colour				 				
		- fine to medium grained	7783	71.0	72.0	1.0	Tr			
		- pillowed	7784	72.0		1.0	Tr		<u> </u>	
		- sericitic, carbonatized	7785	73.0	74.0	1.0	Tr			<u> </u>
		- 68.5 - 71.3 calcite	7786	74.0	75.7	1.7	Tr			·
		- 71.3 - 74.7 ferrodolomite	· · · ·		 					
		- occasional silicified sections								
		- selvage zones are black chlorite, calcite, py		· [· · · ·		,				Å
		rich			.			· · ·	<u>X</u>	1
		- 71.2 - 71.4 silicified			· · · ·	· ·		ļ	4	ļ
				<u> </u>						
					L,	<u></u>	<u> </u>		<u> </u>	<u> </u>

Page. .4....

.

GT-85-123

DRILL HOLE LOG

		DRILL HOLE LOG	SAMPLE	митт	RES	CORE	(gm)te	onne)	ASSAY	···· ··· ·
FROM	(TO)	DESCRIPTION	NUMBER	FROM	то					
75.7	78.5	Quartz Vein System - moderate	DT7787	75.7	76.5	0.8	Tr			
		30% qtz vein material	7788	76.5	77.0	0.5	Tr			
		70% host - Intermediate Volcanic - sericitic,	7789	77.0	77.5	0.5	Tr			
		ferrodolomite	7790	77.5	78.0	0.5	Tr			
	. <u></u>	75.7 - 3cm qtz - siderite vein at 50°	7791	78.0	78.5	0.5	Tr			
		to C.A.								
		75.85 - 76.3 qtz - tour - siderite vein						· .		·
		at 60° to C.A.					· · · ·			
		76.4 - 76.5 gtz vein at 60° to C.A.	1						· · · ·	
		76.95 - 3cm qtz vein at 90° to C.A.			<u> </u>					
		77.0 - 78.0 5X1-3cm qtz veins at random			· · · ·				ļ	
		orientation						·		
		78.13 - 78.20 gtz vein at 60° to C.A.				· · · · ·			<u> </u>	
		78.2 - 78.5 3X1cm qtz veins at 40° to C.A.								
							Į			
							· ·		·	
78.5	112.0	Intermediate Volcanic	7792	78.5	79.0	0.5	Tr			
		- grey colour	7793	79.0	80.0	1.0	Tr			
		- fine to medium grained	7794	80.0	81.0	1.0	Tr			
		- pillowed, brecciated	7795	81.0	82.0	1.0	Tr		· · · ·	
~~~~ <u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- sericitic, carbonatized	7796	82.0	83.0	1.0	1.10			· ·
		78.5 - 91.5 ferrodolomite	7797	83.0	84.0	1.0	1.03		 	ļ
		91.5 - calcite	7798	84.0	85.0	1.0				
		79.2 - 4cm qtz zone	7799	85.0	86.0	1.0	0.27		$\mathbf{Y}$	<u> </u>
		80.45 - 3cm qtz vein at 20° to C.A.	7800	86.0	87.0	1.0	0.34		and the	· · · ·
				ļ	ļ				.	
					1			1		ļ

Page. .5. . . . .

1 "Berrit

GT-85-123

·----

DR	ILL	HO	$\mathbf{LE}$	LOG

		DRILL HOLE LOG	SAMPLE	MIRTON	RES	COPE	(gm/to	nhe	ASSAY	
FROM		DESCRIPTION	NUMBER	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se		LGTH		· · · · ·	• • • • • • • • • • • •	, · · ·
		82.7 - 83.0 qtz vein at 40° to C.A.	DT7801	87.0	88.0	1.0	0.07			
		- occasional brecciated sections with	7802	88.0		1.0	0.41			
		medium grained py to 10%	7803	89.0		1.5	0.48			
		82.4 - 82.7 brecciated - py to 10%	7804	90.5		1.5	Tr			
		83.15 - 3cm qtz vein at 80° to C.A.								
	·· ····	83.2 - 85.5 brecciated - py to 2%	7805	99.5	101.0	1.5	Tr			
		84.3 - 6cm qtz vein at 60° to C.A.								
		86.2 - 3cm qtz vein at 30° to C.A.	7806	102.5	103:5	1.0	Tr			
		86.75 - 86.95 qtz vein at 40° to C.A.								
		88.0 - 91.0 massive section with disseminated	7807	108.5	110.0	1.5	0.07	ļ		
		py to 5%					<u> </u>			
		102.8 - 102.9 qtz - cb vein at 70° to C.A.	7808	110.0	111.5	1.5	Tr			
		- 108 - 112 selvage zones rich in py	7809	111.5	113.0	1.5	Tr	·		
					· · · ·		<u> </u>			
				ļ						
							ļ			
112.0	131.0	Mafic Volcanic								
		- green colour	7810	122.0	123.5	1.5	Tr	·	·	
		- medium grained				ļ				
		- pillowed, pillow breccia					ļ	<b>/</b>		
		- chloritic, carbonatized - calcite					1_/	h//		
		- selvage zones and breccia matrix		·	ļ		$\gamma_{}$		· .	
		are rich in black chlorite, calcite					film	WM_	· ·	
			<u>`</u>				1			
	131.0m	Е.О.Н.		ļ	·	ļ	· · · ·		-	
		······································			ļ					
					L	<u> </u>	1			

Page. .6 . . . .

GT-85-123

age 1	GETTY MINES, LIMITED	D Hole Number	GT-85-124
	DRILL HOLE LOG	$\checkmark$	Dip Tests
PropertyTişdəle Location2048	Core Size, BQ Elev. Collar		Depth Read Actua
GridMine Grid	Bearing	Date Logged Feb. 8./8.5	Collar         -55°           41m         -54°
Latitude	Length92.0.m. Horiz. Trace.54.5.m. Vert. Trace74.5.m.	Logged by K., Suy Sperry-Sun AZ	18 <mark>6° 92 m -54°</mark>
	,	SAMPLE METRES CORE (3m Honne)	ASSAY

	T		SAMPLE	METRES		CORE	(gm )Tonne)		ASSAI		
FROM	TO	DESCRIPTION	NUMBER	FROM	TO	LGTH.	Au	(	•		
0	4.5	Casing - overburden		· · · · ·	· · · · ·			ļ			
<u> </u>			•			·		1	<u> </u>	ļ	
4.5	23.0	Mafic Volcanic	DT7811	11.0	12.0	1.0	Tr	 	. 	 	
		- green colour	7812	12.0	13.0	1.0	Tr			<u> </u>	
		- fine to medium grained		<u> </u>				ļ	ļ	<u> </u>	
		- pillowed	7813	14.0	15.5	1.5	Tr	ļ		ļ	
		- chloritic	• •			<u>  ·</u>				ļ	
		- 7.0 - 23.0 carbonatized - calcite								ļ <u> </u>	
		- 11.0 - 15.5 fault zone - broken, blocky core						· · · · · · · · · · · · · · · · · · ·	<u> </u>		
		with calcite infilling - 70° to C.A.								<b></b>	
		13-14m ground core				-					
	<u> </u>			•		<u> </u>			· ·		
									_ <u> </u>		
23.0	35.8	Intermediate Volcanic	7814	23.5	25.0	1.5	Tr				
	· · · · · · · · · · · · · · · · · · ·	- grey to buff-grey colour	7815	25.0	26.5	1.5	0.07				
		- fine grained	7816	26.5	28.0	1.5	Tr				
		- pillowed	7817	28.0		1.5	0.07	_	$1 \gamma 4$	<u>}</u>	
		- sericitic, carbonatized	7818	29.5	31.0	1.5	Tr	_	pos		
·		23-28 calcite	7819	31.0	32.5	1.5	Tr		1		
							<u> </u>		1	<u> </u>	

# -DRILL HOLE LOG

.

				METRES		CORE	(gm/tonne)		ASSAY		
Cm	(m)	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au			Check	<u>B</u>
23.0	35.8	28 - ferrodolomite	- 7820 -	32.5	34.0	1.5	0.07				}
		27.5 - 27.7 siderite	7821	34.0	35.0	1.0	0.07		·	1	-
		28.1 - 28.2 siderite	7822	35.0	35.8	0.8	Tr				
		28.9 - 30.5 siderite									
			•								
				•							
35.8 3	37.4	Quartz Vein System - moderate	DT7823	35.8	36.3	0.5	6.38			6:45	6.
		35.8 - 36.4 qtz vein, irregular contacts,	7824	36.3.	36.8	0.5.	0.27				
		assimilated host with py along contacts	7825	36.8	37.4	0.6	0.07		• •		
·····		36.4 - 36.5 siderite						• • • • •			
		36.5 - 36.8 qtz - cb sections									
		36.85 - 8cm qtz vein at 60° to C.A.									
		36.93 - 37.4 silicified						·			
		37.35 - 2cm qtz vein at 45° to C.A.					· · · · ·				
										· · ·	
				·					·	· ·	
37.4	45.5	Intermediate Volcanic	7826	37.4	38.5	1.1	0.27	· · · · ·			
		- grey to greenish-grey colour	7827	38.5	40.0	1.5	•Tr		· · ·	. 	
		- fine to medium grained	7828	40:0	41.0	1.0	0.75			, <b> </b>	
		- schistose to pillowed texture	7829	41.0	42.5	1.5	0.69			VA-	<u> </u>
		- sericitic, carbonatized	7830	42.5	44.0	1.5	Tr		<i>f</i>	¥	
		- 37.4 - 42.5 ferrodolomite	· · · ·		· ·			· · · · ·			
		- 42.5 - 45.5 calcite		····	· · · ·		· · · · ·				<u> </u>
		- 37.4 - 40.3 schistose at 75° to C.A.,	· · ·		· · · ·			· · · ·			
	<u>, {</u>	coarse, euhedral py to 5%				 		· 			<u> </u> _+=

Page..

GT-85-124

# DRILL HOLE LOG

	Τ		SAMPLE	METRI	S	CORE	(om/to	onne)	ASSAY		
ROM	(TO)	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au				
(m)		- 39.7 - 1.5cm gtz vein at 45° to C.A.,									
		crosscutting schistosity						· · · · · · · · · · · · · · · · · · ·		·	
		- 40.3 - 3cm qtz vein at 30° to C.A.	ļ					· <u>····</u>			
		- 40.3 - 41.7 very fine grained massive									
		section with 10% py									
45.5	72.5	Mafic Volcanic	DT7831	49.0	50,0	1.0	Tr				╞
		- green to dark green colour	-								+
		- medium grained	DT7832	56.5	57.5	1.0	0.07				+
		- massive, homogenous								{	┢
		- chloritic				.	 				╀
		- 45.5 - 51.0 carbonatized - calcite								<u></u>	
		- 56.4 - 59.0 hematitic									╇
	<u>-</u>	- 56.4 - 57.7 water seam/fracture								ļ	╉
<u></u>		parallel to C.A.				<u> </u>				·	╋
		- 59.0 - 72.5 massive, homogeneous, very						· · · ·			
		dark green, chlorite - carbonate (calcite)		j.							+
	<u> </u>	alterations - mottled texture									4-
		alterations - mottled concurs									
بكند بسانت البني بر	ļ	- 68 - 72.5 chlorite - sericite - carbonate,		· · ·		1					∔
					-						
		increasing sericite, decreasing chlorite			-{	-		1		1	1
				72.5	74.0	1.5	Tr			1	T
72.5	75.3	Intermediate Volcanic	DT7833								╈
		- grey to greenish grey colour	DT7834	74.0	75.3	1.3	Tr			1/1.	+
		- massive, homogenous					-			H.	+
		- sericitic, carbonatized - ferrodolmite				_	-			<u> </u>	-+
	-	- 74.6 - 75.3 siderite									+
	-}	- 74.6 - Icm qtz vein at 20° to C.A.			<u> </u>	1				. <u> </u>	<u></u>

Page ... 3. . .

Hole Number | GT-85-124

GETTY	MINES,	LIMITED	

### DRILL HOLE LOG

CORE (Sm /tonne) ASSAY SAMPLE METERS FROM TO DESCRIPTION NUMBER FROM Au check i то LGTH Au 75.3 82.8 Quartz Vein System - strong - 1 vein . . . . DT7835 75.3 76.0 0.7 0.07 75.3 - 3cm gtz vein at 40° to C.A. 76.0 7836 76.5 0.5 ----. . . . Tr 75.5 - 82.8 - qtz vein at 70° to C.A. 7837 76.5 77.0 ----0.5 Tr - tourmaline, assimilated host, py, cpy 7838 77.0 77.5 0.5 Tr - at 78.5 cpy begins to occur at 7839 77.5 78.0 0.5 Tr contact of vein and host fragments 7840 78.0 78.5 0.5 Tr - 75.5 - 79.8 massive gtz vein with 7841 78.5 79.0 0.5 0.07 minor small fragments of host, 7842 79.0 79.5 0.5 Τr 95% qtz, 5% host 7843 79.5 80.0 0.5 0.89 -79.8 - 82.8 vein has many fragments 7844 80.0 80.5 0.5 3.57 3,50 of host with py, cpy along contacts 7845 80.5 81.0 0.5 0.34 70% qtz, 25% host, 5% py, cpy 7846 81.0 81.5 0.5 1.30 - occasional tourmaline wisps and 7847 81.5 0.5 82.0 3.67 3.15 veinlets 1.44 7848 82.0 82.8 0.8 • • ____ : . . . . 92.0 82.8 Intermediate Volcanic 82.8 7849 83.5 0.7 0.07 - grey colour 7850 83.5 85.0 1.5 0.07 - medium grained - pillowed 7851 87.5 89.0 1.5 Tr 👉 - sericitic, carbonatized - ferrodolgmite - pillow selvages are black chlorite rich 7852 90.5 92.0 1.5 0.07 - 83.2 - 1cm gtz:vein at 75° to C.A. - 88.0 - 1cm qtz vein at 10° to C.A. - 88.65 - 89.8 gtz section 92.0m E.O.H. ....

Page. 4 . . .

.

GT-85-124

Hole Number

		· · · ·	•
.age 1	GETTY MINES, LIMITED	Hole Number	GT-85-125
· ·	DRILL HOLE LOG		Dip Tests
Property	Core SizeBQ	Feb.8, 1985 Starting Date	Ang Ang
Location. $\#20.48$	Elev. Collar	Completion Date. Feb.9. 1985	Depth Read
	Bearing	Eab 12 1985	Collar
GridMine.	Dip	Date Logged Feb. 12, 1985	

Grid.....Mine.... Latitude....9575 N Departure. .9700. E.....

•

Core Size	BQ
Elev. Collar	
Bearing	
Dip	90°
	160.5 m
	.6.0m. 160.0m
Vert. Trace	********

Logged by..... Ken Guy

Dip Tests							
<b>n</b> 11	Ang	le					
Depth	Read	Actu:					
Collar							
	•						

r	• •	T	SAMPLE	METRI	35.7	CORE	(gm/to	onne)	ASSAY		
FROM	(m)	DESCRIPTION	NUMBER	FROM	то	LGTH.	Au	f	·		
<u>(m)</u>	5.0	Casing - overburden		· · · · ·				, .			
5.0	13.0	Intermediate Volcanic	DT7853	5.0	6:0	1.0	Tr	<u> </u>	<u> </u>		
		- grey to buff colour	7854	6.0	7.0	1.0	0.07				
		- fine to very fine grained	7855	7.0	8.0	1.0	0.21				
		- massive	7856	8.0	9.0	1.0	Tr	<u> </u>			
		- sericitic, silicified, carbonatized	7857	9.0	10.0	1.0	0.07				
······		5.0 - 12.5 ferrodolomite	7858	10.0	11.0	1.0	0.07	_			
		12.5 - 14.0 calcite	7859	11.0	12.0	1.0	0.07				+
		- many siderite sections	7860	12.0	13.0	1.0	0.07	· ·			
		5.3 - 5.4	7861	13.0	14.0	1.0	Tr				
. <u></u>	· · · · · · · · · · · · · · · · · · ·	5.7 - 5.8	· · · · · ·			· ] · ·				<u> </u>	
		6.9 - 7.1 7.0 - 7.1 qtz vein at 80° to C.A.			. -					·	
		8.0 - 8.15 8.05 - 8.08 qtz - cb vein at 70° to C.A.		·							+
		9.8 - 10.3 with qtz stringers		· .	-						
		10.9 - 10.98							<del>///</del>		
		11.1 - 12.1 with qtz stringers									
		12.5 - 12.6							_		
		- 6.0 - 11.0 silicified, many qtz stringers and			_	<u>-</u>	-				
	· ·	gashes, sections of fine grained py to 10%									

Page 2 of Page 1	GETTY MINES, LIMITED DRILL HOLE LOG	Hole Number	GT-85-125
Property. Tisdale Location. #2048 GridMine	Core Size	Starting DateFeb 8, 1985 Completion Date.Feb 9, 1985 Date LoggedFeb 12, 1985	Dip Tests Angle Depth Read Actu: Collar
Latitude	Length	Logged by	

T			SAMPLE	METRE	35	CORE	(0m/+0	onne)	ASSAY		۸. <del></del>
ROM	CmS	DESCRIPTION	NUMBER	FROM	TO	LGTH.	(om 1+0 Au		·		
(m) 13.0	44.0	Mafic Volcanic			,	•					
		- green colour			• • •				•		
		- medium grained									
		- massive texture									1
							<u> </u>				
						<b> </b>					
. <u></u>			•				· · · · · · · · · · · · · · · · · · ·	ļ			
				1							
						1					
- <del></del>		***				-					
					1						
						-		1			
		Vali	-							[	
. <u> </u>											
	·										
		T		_ <u> </u>							
	· ·										
										<u> </u>	

GETTY MINES, LIMITED       Hole Number         DRILL HOLE LOG         FROM (TO)       SAMPLE METERS CORE (9m/tonne)         Image: product the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	Page.?
Hole Number         FROM       TO       DESCRIPTION       SAMPLE       METERS       CORE       (ym/tonne)         Image: Constitution of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	r
Hole Number         FROM       TO       DESCRIPTION       SAMPLE       METERS       CORE       (ym/tonne)         Image: Constitution of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	r
Hole Number         FROM       TO       DESCRIPTION       SAMPLE       METERS       CORE       (ym/tonne)         Image: Constitution of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	r
Hole Number         FROM       TO       DESCRIPTION       SAMPLE       METERS       CORE       (ym/tonne)         Image: Constitution of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	r
Hole Number         FROM       TO       DESCRIPTION       SAMPLE       METERS       CORE       (ym/tonne)         Image: Constitution of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	GT-85-125
FROM       TO       DESCRIPTION       SAMPLE       METERS       CORE       (ym/tonne)         - chloritic; carbonatized - calcite       - chl	· · ·
FROM       (TO)       DESCRIPTION       NUMBER       FROM       TO       LGTH       Au         - chloritic, carbonatized - calcite       - chloritic, carbonatize       - chlo	
- Chloritic, carbonatized - calcite       NOMBER FROM       TO       LGTH       Hu         - chloritic, carbonatized - calcite       -       -       -       -       -         44.0       55.3       Intermediate Volcanic       DT7862       44.0       45.5       1.5       Tr	ASSAY
44.0         55.3         Intermediate Volcanic         DT7862         44.0         45.5         1.5         Tr	
- occasional calcite veinlet         7865         49.5         51.5         2.0         Tr           - sericitic, carbonatized         7866         51.5         53.0         1.5         Tr	
- occasional sericite - chlorite - carbonate 7867 53.0 54.5 1.5 Tr	
- 48.5 - 49.5 fuchsite, disseminated and	
patches - 5%	
- 44.0 - 49.5 calcite	
- 49.5 - 55.3 ferrodolomite	
- 50.0 - 51.7 brecciated and bleached section	
55.3 69.6 Quartz Vein System - moderate 7869 55.3 55.8 0.5 0.07	
55.3 - 57.3 1 single massive qtz vein, 7870 55.8 56.3 0.5 Tr	
occasional tourmaline stringer 7871 56.3 56.8 0.5 Tr	
upper contact at 65° to C.A. 7872 56.8 57.3 0.5 Tr	<u> </u>
low contact at 80° to C.A. 7873 75.3 58.0 0.7 Tr	
<u>57.3 - 69.6 weak qtz vein system - 15% qtz,</u> 7874 58.0 59.0 1.0 0.07	
many qtz veins 2 - 25cm. in host of 7875 59.0 60.0 1.0 Tr	+
	Ve
	Vil

		DRILL HOLE LOG	-				•	•			
FROM	TO	DESCRIPTION	SAMPLE		ERS	CORE	(gm/1	tonne)	ASSAY		
{	<u> </u>	Intermediate Volcanic, sericitic, ferrodolomite	NUMBER							<u> </u>	╂━-
		occasional py sections	DT7876			1.0				·	+
			7877	1		1.0	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s			ļ	<u> </u>
		57.3 - 58.0 1x5, 1x8cm qtz-siderite veins	· 7878	1	63.0		11.24		<u> </u>	10.77	11
		at 80° to C.A.	7879		64.0		1.68		·	1.78	1.
		58.0 - 59.0 1x1cm at 60° to C.A., 1x5cm at	7880	64.0		1.0	0.69				
		80° to C.A5% py in host	··· 7881·	65.0	66.0	1.0	Tr		<u> </u>		
		60.0 - 61.0 1x11cm at 70° to C.A., 1x8cm	7882	66.0	67.0	1.0	Tr				
		at 75° to C.A.	· 7883·	67.0	68.0	1.0	0.55				
		62.0 - 63.0 1x20cm at 80° to C.A., 1x5cm	7884	68.0	69.0	1.0	Tr				
		at 60° to C.A., 1x1cm at 50° to C.A.,	7885	69.0	69.6	0.6	0.07				
		1x10cm at 45° to C.A 10% py in		• • •						,	
		host and at host/vein contact									
		63.0 - 64.0 1x8cm at 70°, 1x2cm at							1		
		60° to C.A.						·····			
		64.0 - 65.0 1x17cm qtz vein with assimilated									
		host at 60° to C.A., 1x8 cm at 60° to									-
		C.A.									
		65.0 - 66.0 2x1cm qtz veins									
		66.0 - 67.0 1x1cm, 1x6cm qtz vein at					1				
		80° to C.A.									
		67.0 - 68.0 1x20cm silicified zone with			·····						
		ру	•	· ·							,
		<u> 68.0 - 69.0 1x15cm, 2x0.5 cm</u>							11/		
		69.0 - 69.6 1x3cm, 1x1cm, 1x20cm							P#		
		gtz veins									
		$\mathbf{D}_{1}^{1}$									_
j											I

. . . .

Page...3

GT-85-125

Hole Number

• •••	•	
GETTY	MINES,	LIMITED

Page. 4....

GT-85-125

Hole Number

# DRILL HOLE LOG

FROM	то.	DESCRIPTION	SAMPLE		TERS	CORE	(gm)-	tonne)	ASSAY	
	(TO)		NUMBER	FROM	и то	LGTH	Au			T
69.6	76.0	Intermediate Volcanic	DT7886	69.6	71.0	1.4	Tr		1	
		- grey colour			· ·	1			1	1
		- medium grained	7887	72.5	73.5	1 0 .				1
		- massive							1	1
		- sericitic, carbonatized - ferrodolomite	7888	74.0	75.5	1.5	0.07			
		- occasional bleached section with py						1	1	1
		- 72.8 - 2cm qtz vein at 70° to C.A.				1			1	
										1
	·				· ·					
76.0	125.5	Mafic Volcanic	7889	79.0	80.0	1.0	Tr			
		- dark green to green colour								
		- massive	7890	84.5	86.0	1.5	Tr			
		- chloritic, carbonatized - calcite					± •			<u> </u>
		- many randomly orientated calcite hairlike	7891	92.5	93.5	1.0	0.07			
		stringers and wisps		93.5		1.5	Tr			
		- occasional hematite seam								
		- 92-99.5 non carbonatized	7893	101 0	102.5	1 6	Ͳr			
		- occasional epidote sections			102.2		<u></u>			
		- 92.55 - 92.85 gtz - calcite vein	. 7894	114 0	115.5	1 5	0.07	·······		
		- 93.5 - 94.2 qtz - calcite - epidote sections		4.14.0	++ <u>&gt;</u> • <u>&gt;</u> -	_ <u></u>	V.V/	<u> </u>		
		- 94.5 - 96.5 many hematite filled water	7895	116.0	117.5	15	Tr			
		seams								
		- 98.0 - 99.5 fault zone - broken, blocky								
		core							$\overline{\gamma}$	1.
		- 99.5 - 110.0 carbonatized - calcite							- 40	': <i>f</i>
		- 110.0 - 125.5 non-carbonatized								
{		- 116.6 - 117.1 calcite - qtz vein								·

GÉTTY	MINES,	LIMITED
-------	--------	---------

.

Page

GT-85-125

Hole Number

ή...

÷

DESCRIPTION  - from 117.1 rock is chloritic mafic volcanic but not chlorite alterations  - 124.5 - 125.5 broken, blocky core, possible fault zone  Mafic Volcanic - pale green colour - fine to medium grained - well pillowed	DT7896	<pre>     FROM     FROM     128.0 </pre>					ASSAY	
<pre>volcanic but not chlorite alterations - 124.5 - 125.5 broken, blocky core, possible fault zone Mafic Volcanic - pale green colour - fine to medium grained - well pillowed</pre>	· · · · ·	128.0			Tr			
<pre>alterations - 124.5 - 125.5 broken, blocky core, possible fault zone Mafic Volcanic - pale green colour - fine to medium grained - well pillowed</pre>	· · · · ·	128.0		1.6	Tr			
<pre>- 124.5 - 125.5 broken, blocky core, possible fault zone Mafic Volcanic - pale green colour - fine to medium grained - well pillowed</pre>	· · · · ·	128.0		1.6	Tr			
fault zone fault zone Mafic Volcanic - pale green colour - fine to medium grained - well pillowed	· · · · ·	128.0		1.6	Tr			
fault zone fault zone Mafic Volcanic - pale green colour - fine to medium grained - well pillowed	· · · · ·	128.0		1.6	Tr			
Mafic Volcanic - pale green colour - fine to medium grained - well pillowed	· · · · ·	128.0		1.6	Tr			
<ul> <li>pale green colour</li> <li>fine to medium grained</li> <li>well pillowed</li> </ul>	· · · · ·	128.0		1.6	Tr		-	
<ul> <li>pale green colour</li> <li>fine to medium grained</li> <li>well pillowed</li> </ul>	· · · · ·	128.0		1.6	Tr			
<ul> <li>pale green colour</li> <li>fine to medium grained</li> <li>well pillowed</li> </ul>	· · · · ·	128.0		1.6	Tr			
<ul> <li>pale green colour</li> <li>fine to medium grained</li> <li>well pillowed</li> </ul>	· · · · ·	128.0	129.6	1.6	Tr	 		
- fine to medium grained - well pillowed	· · · · ·	128.0	129.6	1.6	Tr			
- well pillowed	Dm7007			1			1 1	
	507007							i
	DT/897	156.0	157.5	1.5	Tr	}		
- chloritic				[				i
- fresh Mg-Tholeiite								
- many calcite micro fracture - cooling							1	
fracture		-					1	
- selvage zones are calcite, po	•							
rich							1	
- 128.0 - 129.6 several concurrent							<u> </u>	
							<u> </u>  -	
Е.О.Н.							1	
	- 128.0 - 129.6 several concurrent selvage zones - 10% po, py	- 128.0 - 129.6 several concurrent selvage zones - 10% po, py E.O.H.	- 128.0 - 129.6 several concurrent	- 128.0 - 129.6 several concurrent	- 128.0 - 129.6 several concurrent selvage zones - 10% po, py E.O.H.	- 128.0 - 129.6 several concurrent selvage zones - 10% po, py E.O.H.	- 128.0 - 129.6 several concurrent selvage zones - 10% po, py E.O.H.	- 128.0 - 129.6 several concurrent       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -

······································		an an an an an an an an an an an an an a	r
Age 1	GETTY MINES, LIMITED	Hole Number	GT-85-126
	DRILL HOLE LOG	$\checkmark$	Dip Tests
PropertyTişdale .ocation204β iridMine.Grid. .atitude9575.Ν.	Core Size. $BQ$ Elev. Collar. Bearing. $180^{\circ}$ Dip. $50^{\circ}$ Length. $83.0$ M	Starting DateFeb 10/85 Completion Date.Feb 11/85 Date LoggedFeb 12/85 Logged byKen Guy.	Depth Angle Read / Collar
)eparture9709.E	Horiz, Trace, 58.9, M.;	•	83.m.

.

.

. .. •

, •,

÷

.

1 1

•		, 	SAMPLE	- METR	ES" C	CORE			ASSAY	
ом	TO (m)	DESCRIPTION	NUMBER	FROM		LGTH.	(gms/tor	ne)		
•	5.1	Casing - overburden					·		·	 
1	25,5	Intermediate Volcanic	DT7898		8.0	1.5	0.07			
±	- 2323	- grey colour	7899	.8.0	9.5	1.5	<u>Tr</u>			
		- medium to fine grained	7900	and the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second designment of the second design	11.0	1.0	0.07		-	-
		- sericitic, carbonatized .	7901	11.0		1.0			-	
		<u>- 5,1 - 7.0 calcite</u>	7902	13.0		1.0	Tr			
		- 7:0 - 20.0 ferrodolmite	7904		15,5	1.5	0.07		_	
	 	- 20.0 calcite - many bleached and silicified sections,	7905	15.5		1.5	Tr			
		gtz gashes with bleached halos	7906	17.0		1.5	Tr	·	_	+
		- many siderite sections usually at 45° to C.A.	7907	18.5		1.5	Tr			╬
		- 5 3 - 6.5 lost core	7908	20.0	21.5_		<u>. Tr</u>			
		- 6.5 - 6.9 silicified with 2-5% py	`	-		1.5				+
	-	- 7,85 - 7,95 silicified	7909	23.0	24.5		Tr			1
		- 9.25 - 10.1 siderite						· · · ·	•	
		- 10.5 - 11.1 siderite		-						
		12.1 12.25 gtz vein at 40° to C.A.,								
		siderite for 8cm both sides			-	-				
		- 12.8 - 12.9 siderite - 16.2 - 16.5 siderite								<b>A</b> -
		- 17-20 many qtz gashes, silicified and							$-\mu$	4-
		bleached sections			_				-4	-+-
		- 19.8 - 20.1 siderite								┿
		- 20.4 - 20.55 siderite								

# Hole Number FT-85-126

# - DRILL HOLE LOG

FROM	TO	DESCRIPTION	SAMPLE		ŢERS		(em/tonne	S ASSAY
			NUMBER			LGTH	<u>Au</u>	
25.5	53.0	Mafic Volcanic	DT7910	35.0	36.0	1.0	Tr	
		- dark green colour						
		- medium grained						
		- massive, homogenous, dioritic texture						
		- very chloritic	· .					
·······		- calcite to 29.0						
		- 35.15 to 35.4 calcite vein at 30° to C.A.	•					
	· · · · · · · · · · · · · · · · · · ·							
53.0	64.4	Intermediate Volcanic	7911	54.5	56.0	1.5	0.07	
		- grey colour		54.5	50.0	1.5	0.07	
		- fine to medium grained	7912	57.0	58.0	1.0	Tr	
		- massive	7913		59.0	1.0		
		- sericitic, carbonatized	<u>(),+,</u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	±•V	·· <del>···································</del>	
		- 53.0 - 58.0 calcite	7914	60.0	61.0	1.0	Tr	
		- 58.0 - 64.4 ferrodolmite						
		- 58.8 - 5cm qts vein at 40° to C.A.	7915	62.0	63.0	1.0	Tr	
		- 60,65 - 2cm gtz vein at 30° to C.A.	7916	63.0	64.4	1.4	Tr	
		- 62.1 - 8cm gtz vein at 50° to C.A.						
		- 62.4 - 3cm qtz vein at 60° to C.A.					·	
		- 63.9 - 64.4 siderite						
		- 63.2 - 64.4 silicified					4	
							Valk	
						ł		
	·							
								{

Page. 2 

DRILL HOLE LOG

.

FROM	TO	DESCRIPTION	SAMPLE					fonne)	ASSAY		
FROM	TO (m)		NUMBER	FROM	ТО	LGTH	Au				T
64.4	66.2	Quartz Vein System - strong	DT7917	64.4	65.0	0.6	0.07				
		- 1 single qtz vein	7918	65.0	65.5	0.5	_Tr		1		
	ļ	- upper contact at 70° to C.A.	7919		66.2	0.7	Tr				1
	l	- lower_contact_at_10° to C.A.									
		- 65.55 - 66.2 lower contact, host									1
		is very sideritic	•								
66.2	83.0	Intermediate Volcanic	7920	66.2	67.0	0.8	0.27				
		- grey colour	7921	67.0	68.0	1.0	Tr '				
		- medium grained	7922		69.5	1.5	0.07		1		
	ļ <u></u>	- massive, occasional brecciation	. 7923	69.5	71.0	1.5	1.71				1
· · · · · · · · · · · · · · · · · · ·		- sericitic, carbonatized	. 7924	71.0	72.5	1.5	Tr			[	1
		66.2 - 69.5 ferrodolmite	7925		74.0	1.5	0.07			[	1
		69.5 - 72.0 calcite	7926	74.0	75.5	1.5	Tr				
		77.0 - 83.0 ferrodolmite									
		66.9 - 67.7 silicified	7927	80.0	81.5	1.5	Tr				
		67.45 - 67.7 siderite	7928	81.5	83.0	1.5	Tr			1	
		70.35 - 3cm qtz vein at 60° to C.A.									
****		70.9 - 73.9 fault zone - broken, blocky									
		core, brecciation with calcite matrix,									-
		fault gouge sections = 60°=70° to C.A.									
		72.35 - 72.5 gtz vein									
		74.75 - 6cm gtz vein		·····							
									ļ		_
	83.0	Е.О.Н.				· · · · ·					
							, 				_
						alle					1
	<b> </b>	·			100	11					
	{				/						
	<u> </u>										-
	<u> `</u>										<u>  </u>
	}								<b>├</b>		<del> </del>
			1			1		[			

Page. .3. . . .

Hole Number GT-85-126

						· ·						
age 1	ga an <b>s</b> a sa sa		CETTY MINES, LIMIT	ED ,			Нс	le Num	ber	GT-85	-127	
			DRILL HOLE LOG	· · ·					1	Dip	Tests	
roperty	,	l,e, , , , , , , , , , , , , , , , , , ,	Core Size,	•• Sta	rting Dat mpletion	eF	reb 11/8 reb 12/8	5	•	Depth	Ang Read	
irid	Mine 9510	- • • • • • • • • • • • • • • • • • • •	Elev. Collar. Bearing	Da Lo	te Logged gged by.	d ^F	eb 12/8	35	••	Collar A-7	266° at 65	87°
·		1		SAMPL		RES 🖸	CORE			ASSAY		
ROM	TO	DE	SCRIPTION	NUMBE	R FROM	<u>1 TO</u>	LGTH.	gms/tor	<u>ne)</u>	_		
. <u>m</u> ]0	9.0	Casing - overburden		-			-	·				
9.0	18.0	Mafic Volcanic						· · · · · · · · · · · · · · · · · · ·				
		- green colour								_		
		- massive						.				

			SAMPLE	- FILLIN		100	·····	·			
ROM	TO ·	DESCRIPTION	NUMBER	FROM	TO	LGTH.	gms/tor	ne)			-
0	9.0	Casing - overburden							·	1	
	1									ļ	-
9.0	18.0	Mafic Volcanic						ļ	.		
		- green colour			,		ļ			·	
		- medium grained									
		- 9.0 - 11.0 broken, blocky, weathered core									1-
		- chloritic				-{					1-
		- occasional carbonatized sections					0.21	+			
		- 17.0 - 18.0 carbonatized		17.0	18.5						
						-		1			
											- -
18.0	23.7	Intermediate Volcanic									
		- grey colour	7962	20-0-	21-5-	_1.5	<u></u>		-		
		- fine to medium grained		_	. <u> </u>		-				-
		- sericitic, carbonatized - calcite	7963	_22.0	23.5	_1.5				-	
		- many hairlike calcite veinlets				-					
											-
						_					-
23.7	25.0	Fault Zone							$\mathcal{H}$		-
		- broken, blocky, weathered core						+	YS-		-
	)	- muddy fault gouge						-			
	1										1

Hole Number GT-85-127

Page. 2....:

FROM	TO	DESCRIPTION	SAMPLE	MET	ERS	CORE	(gm/+	onne)	ASSAY		
FROM	(TO)	DESCRIPTION	NUMBER	FROM	то	LGTH	Au				T
25.0	34.5	Mafic Volcanic									T
		- dark green colour									T
		- medium grained				<u> </u>					
		- massive	ĺ				l				
		- chloritic	:								
		- many calcite veinlets									$\Box$
	ļ								_		
	· · · · · · · · · · · · · · · · · · ·				· ·						
34.5	39.4	Intermediate Volcanic	DT7930	34.0	35.0	1.0	Tr				
		- grey colour	<u>7931</u>	35.0	36.5	1,5	0,41				
		- medium grained	7932	36.5	38.0	1.5	0.34				
		- sericitic, carbonatized - calcite	7933	38.0	39.4	1.4	0.69				Τ
		- massive									Т
		- 37.0 - 2cm qtz vein at 80° to C.A.			بودقني كورد نما كما						T
		- 38.5 - 2cm qtz vein at 80° to C.A.									1
											T
											╈
											+
39.4	41.3	Quartz Vein System - strong - 1 vein	7934	39.4	40.0	0.6	0.27				$\uparrow$
		- 1 single massive vein		40.0	40.5		Tr				+
		- occasional tourmaline and chlorite		40.5	41.3		Tr				+
		stringer							-		+
		- 39.5 - 39.6 stringer of host with cpy								7	+
	1									Ki.	+
*****										<u>~~~</u>	+
· · ·										<u></u>	+

### DRILL HOLE LOG

CORE (gm/tonne) SAMPLE ASSAY METERS FROM (TO) DESCRIPTION NUMBER FROM LOTH AU то . . . . . . . . . . . . . . . . . . 41.3 42.5 41.3 65.0 Intermediate Volcanic 1.2 DT7937 Tr - grey colour 7938 42.5 44.0 1.5 Τr - medium grained . . . . . . . . . . . . . . 7939 44.0 45.5 1.5 Tr - massive 7940 45.5 47.0 1.5 0.07 - occasional brecciation . .. - sericitic, carbonatized - calcite . . . 7941 49.5 50.5 1.0 Tr • •• - Occasional silicification with py, often .7942 50.5 51.5 1.0 Tr ____ . in brecciated sections 7943 51.5 . . . . 53.0 1.5 0.07 - 41.3 - 42.0 silicified, py - 42.0 - 2cm gtz-siderite vein at 75° to C.A. . . 7944 53.5 54.5 1.0 Tr - 43.2 - 3cm qtz vein at 65° to C.A. - 49.5 - 49.6 silicified 7945 56.0 57.5 1.5 Tr - 52.5 - 53.0 silicified, py - 53.7 - 54.0 silicified, py 7946 59.0 60.0 1.0 0.14 - 59.2 - 59.3 qtz-calcite-py vein - 59.3 - 62.0 buff colour ferrodolmite . . 7947 60.5 62.0 1.5 Tr section DT7948 . . 62.0 63.5 1.5 Tr . 65.0 m E.O.H. lut e 11 .

Page. 3....

Hole Number GT-85-127

### Hole Number

# GT-85-128 Dip Tests

Depth

Collar

-44 9

Angle

٠

Read Actu:

### DRILL HOLE LOG

PropertyTisdale Location2048	
Grid	,

Page 1

Core Size	ВО
Bearing	az 180°
Dip	-45°
Length	62.0m
	45.0m 43.0m
vert. Trace	•••••

Starting DateFeb. 12/85 Completion Date. Feb. 12/85	
Date LoggedFeb. 13/85 Logged byK. Guy	•

Sperry-Sun AZ 186°

r			SAMPLE	METR	es.	CORE	(gm/te	shne)	ASSAY	
ROM	(m)	DESCRIPTION	NUMBER	FROM	TO	LGTH.	Au	· · · · · ·	<u> </u>	
0		Casing - overburden						· · ·		
					,				`	<b> </b>
11.0	24,5	Mafic Volcanic						ļ		<b>}</b> !
		- dark green colour	DT7949	17.0	18.5	1.5	Tr		<u>-</u>	
		- medium grained	ļ						<u></u>	
		- massive					ļ		_	
		- chloritic, carbonatized - calcite								
		- many calcite veinlets throughout								
		- 11.0 - 20.5 blocky, broken, weathered			ļ					
							· .			
					<u> </u>					4
24.5	39.5	Mafic Volcanic								
	1	- pale green colour	7950	33.5	35.0	1.5	Tr			
		- fine to medium grained				_				
	1	- pillowed, pillow breccia	7951	38.0	39.5	1.5	Tr			4
		- fresh Mg Tholeiite				· ·				
		- selvage zones are calcite, chl, py rich				_				
		- 35.0 - 39.5 carbonatized - calcite							-1-76	X/
						_			$\mathcal{V}^{\mathcal{C}}$	¥
		jje							1	

	- <del>]</del> -	DRILL HOLE LOG					iore inu	L	GT-85-	
FROM	TO	DESCRIPTION		SAMPLE METERS NUMBER FROM		CORE	(gm/tonne)		ASSAY	
39.5			NUMBER	FROM	ТО	LGTH	<u>Au</u>	<b> </b>		
59.5	62.0	Intermediate Volcanic	7952	39.5	41.0_	1.5	<u>Tr</u>			·
		- grey colour	7953	41.0	42.5	1.5	Tr	<u> </u>		
		- medium grained	7954	42.5	44.0	1.5	0.07			
		- pillowed	7955	44.0	45.5	1.5	0.07			
		- sericitic, carbonatized - calcite	7956	45.5	46.0	0.5	Tr			
	1	- pillow selvages are chlorite, calcite rich	7957	46.0	47.0	1.0	Tr			
							····			
	·			· .						
	l				· ·					
	· · · · · · · · · · · · · · · · · · ·									
		·								
		``````````````````````````````````````	j							
					· · · · · · · · · · · · · · · · · · ·			~~~~		
				••••••		· · · · · · · /				
						-				
										. <u></u>
		· · · · · · · · · · · · · · · · · · ·								
							· · · ·			······
				•	<b>-</b>					
*****						· <b></b> -				
										;
	<u> </u>									
		1								
l	I						1	ļ	}	

GT-85-128

Hole Number

Page.² . . .

# DRILL HOLE LOG

		DRILL HOLE LOG									
FROM	(TO)	DESCRIPTION	SAMPLE NUMBER		TERS	CORE LGTH	(gm)	ionne)	ASSAY		
		44.5 - 45.5 fault zone		47.0		1.5	T				+
		45.5 - 46.0 quartz vein with chloritic							+		+-
		fragments and stringers	DT7959	51.5	53.0	1.5	Tr				+-
											Ţ
		46.1 - 3cm qtz vein	7960	56.0	57.5	1.5	0.21			<u> </u>	+-
				60.5	62:0	1.5	Tr				+-
											1
	62.0	End of Hole									
			· · · · · · · · · · · · · · · · · · ·								
									ļ	ļ	_
			· · · · · · · · · · · · · · · · · · ·								
		 		) <del>,</del>			ļ		[!]		+
			Hend	W					<u> </u>	<u> </u>	+
			/	I				 			+-
			·						<u> </u>		+
									<b> </b>		+
									1	[	+
·				· ·							
•											<b></b> _
									<b> </b>		<b>_</b>
									┟────┤		+
		÷₩									+-
		/						,	<b>├</b>		+
									I	1	,

Page...3...:

GT-85-128

Hole Number

		. [	Dip. Tests
Page 1	GETTY MINES, LIMITED DRILL HOLE LOG	Hole Number	GT-85-129

	TISDALE 2048 (Timmins, Ont.)	
Latitude	Mine Grid 9891.8 N 10108.2 E	

Core Size
Bearing90°
Length
Horiz. Trace
Vert. Trace153.75 m

Starting Date .May 24, 1985 Completion Date May 26, 1985

Sperry Sun

Angle Depth Actual Read (m) 90 Collar 246° 50 88 100 231 86 154 221°Az 84

<b>BBO</b> 1	/ ma	TO DESCRIPTION	SAMPLE	METRES		CORE	ASSAY (gm/tonne)				
FROM (m)	то (m)		NUMBER	FROM	TO	LGTH	Au	Au metal	Au check		
0.00	3.3	CASING	1.								
			<u> </u>								
3.3	11.25	INTERMEDIATE VOLCANIC: Sericitized, carbonated									
		medium grey-green colour, massive; moderately									
		sericitized moderately carbonated-predominently			· ·						
	'	ferro-dolomite; 2% microfractures filled with									
	/	quartz carbonate; massive									
			•								
		3.40 - 1 cm quartz - carb - chlorite vein, 70°	DT8001	3.3	4.0	0.7	0.55			••	
. <u> </u>	· · · · · · · · · · · · · · · · · · ·	to c.a.	DT8002	4.0	4.5	0.5	Tr				
		4.77 - 4.86: guartz vein: 65° to c.a.	DT8003	4.5	5.0	0.5	Tr				h,
	· · · · · · · · · · · · · · · · · · ·		DT8004	5.0	5.5	0.5	Tr				K

## DRILL HOLE LOG

Hole Number

GT-85-129

FROM	то	DESCRIPTION	SAMPLE	METRES		CORE	ASSAY (gm/tonne)					
(m)	(m)	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au	Au metal	Au check			
		5.62 - 5.96: guartz - tourmaline vein; 3% pyrite	; DT8005	5.5	6.0	0.5	Tr					
		2% chalcopytite; 60° to C.A.	DT8006	6.0	6.5	0.5	0.07					
			DT8007	6.5	7.5	1.0	Tr					
		7.52 - 1 cm quartz carbonate vein; 70° to C.A.	DT8008	7.5	8.0	0.5	_0.07					
		8.28 - 1 cm quartz carbonate vein; 65° to C.A.	DT8009	8.0	8.5	0.5	Tr					
		10.90 - 2 cm quartz vein; 75° to C.A.	DT8010	10.5	11.0	0.5	0.07					
11.25	34.30	MAFIC VOLCANIC: Chloritized; carbonated										
	·	medium to dark green colour; massive; medium										
		grained; 1% disseminated pyrite; 1% quartz						ļ				
		carbonate stringers less then 1 cm thick normall	Y									
		with 2% medium size pyrite crystals									ļ	
		17.40 - 23.83; moderate to strong hematite										
		alteration; well disseminated throughout					:				<u>_</u>	
		coarse chlorite blebs 3-5 mm in diameter								1	4	

2 Page ..

# DRILL HOLE LOG

Hole Number

GT-85-129

Page .....3

FROM	то	DESCRIPTION	SAMPLE	METRES		CORE	ASSAY (gm/tonne)					
(m)	(m)	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au	Au metal	Au check			
		30.5 - 34.3; Poor - Fair ROD, 3 - 10 cm zones					 					
		of crumbly rock; with hematite									·	
		stained seams										
34.3	38.0	Intermediate Volcanic; sericitized; carbonated										
		- medium grey green colour; medium grained;	•				 					
		massive; moderately sericitized and										
		carbonated weakly chloritized; 1% coarse					[ 					
		grained disseminated pyrite; 1% quartz										
		carbonate veinlets less then 1 cm thick.										
			4 ₆									
		34.46; 2 cm quartz vein; 80° to C.A.	DT8011	34.2	34.7	0.5	Tr					
		37.15 - 1.5 cm quartz vein 80° to C.A.										
38.0	61.60	Mafic Volcanic - carbonated (pillowed?)										
		- medium-dark green colour; fine to medium										
i 		grained; massive; moderately carbonated;	·								<u>K</u>	
		locally vesicular, possible pillow selvages	·							/		

# DRILL HOLE LOG

Hole Number

GT-85-129

FROM	то	DESCRIPTION	SAMPLE	ME	TRES	CORE		1	ASSAY (g	m/tonne	)
(m)	(m)	DESCRIPTION	NUMBER	FROM	то	LGTH	Au	Au metal	Au check		
		at low angle to C.A.; fine radial fractures									
	<u> </u>										
		45.0 - 45.72 - Interflow material?									
		- light green; fine grained; silica rich;	DT8012	45.0	46.0	1.0_	0.07	<u> </u>			
		moderately carbonated									
61.60	69.20	Intermediate Volcanic; sericitized; carbonated									
		(Fe) - medium to light grey colour; fine-									
		medium grain;									
		- massive; 15% healed quartz-cb micro-									
		fractures; anastomizing									
		- gradational contacts									
		65.05 - 65.11; quartz vein; 75° to C.A.	DT8013	65.0	66.0	1.0	Tr	-			
		66.2 - 66.8; 1 cm quartz carbonate vein;	DT8014	66.0	67.0	1.0	0.07				
		10° to C.A,	DT8015	67.0	68.0	1.0	0.07				
69,20	92,20	Mafic Volcanic; Carbonated; chloritized; pillowe	.a				•				p
		medium green colour; fine to medium grained									K
L		weak to moderate fabric associated with		<u> </u>						/	

4 Page .....4

### DRILL HOLE LOG

CORE ASSAY (qm/tonne) METRES SAMPLE FROM DESCRIPTION TO LGTH NUMBER FROM TO Au metal Aucheck (m) (m) Au pillow shape (radial); weakly amygdular with carbonate carbonate: 2% pyrite as medium grained cubes associated with selvages as with chlorite 71.64; 1 cm quartz carbonate vein; 45° to C.A. DT8016 71.5 72.5 1.0 Tr 72.77; 1.5 cm quartz carbonate vein; selvage? 30° to C.A. DT8017 72.5 73.5 1.0 0.07 . 82.56 - 82.67; quartz carbonate vein; 70°to C.A. DT8018 82.5 83.0 0.5 Tr 84.90 - 3 cm quartz vein bx; selvage 30° to C.A.DT8019 84.5 85.5 1.0 0.07 92.20 145.06 INTERMEDIATE VOLCANIC, Sericitized, carbonated, DT8020 92.0 92.5 0.5 0.55 - light grey to buff colour; pillowed fine ÷ grained. - 1-2% coarse disseminated pyrite; well

fragmented pillow rims with chlorite alteration

Page .....⁵.....

Hole Number

GT-85-129

## DRILL HOLE LOG

Hole Number

GT-85-129

Page ...

6

• •

FROM	то	DESCRIPTION	SAMPLE		TRES	CORE		A	SSAY (9	m/tonne	)
(m)	(m)		NUMBER	FROM	то	LGTH	Au	Au metal	Au check		
		+coarse pyrite ; 2% quartz carb. veins, 4 mm				,					
		thick, 80-90° to C.A., spaced 30 cm apart									
		(joints 5° to C.A. occurrenct every 30 m);									
		carbonate predominently ferro-dolomite									
		101.5; pillow salvage; 15° to C.A.	DT8021	101.0	102.0	1.0	Tr			<u></u>	
		106.8; 2 cm quartz carbonate selvage;	DT8022	106.5	107.0	0.5	Tr				
		45° to C.A.									<u> </u>
						-					
		120.65 - 2 cm quartz vein; 70° to c.a.	DT8023	120.0	121.0	1.0	Tr				
		123.16 - 123.25; quartz vein; 75° to C.A.	DT8024	123.0	123.5	0.5	Tr				
			DT8185	124.5	125,5	1.0	Tr				
		125.74 - 2 cm quartz vein; 75° to C.A.	DT8025	125.5	126.0	0.5	1.78		1.78		<u> </u>
			DT8186	126.0	127.0	1.0	Tr				 
		130.83 - 130.92; quartz vein; 60° to C.A.	DT8026	130.5	131.0	0.5	Tr				<u> </u>
			,				•				P.
		135.2; 1.5 cm guartz vein, 30° to C.A.	DT8027	135.0	135.5	0.5	Tr			1	17

### DRILL HOLE LOG

ASSAY (gm/tonne) METRES CORE SAMPLE FROM DESCRIPTION TO FROM NUMBER TO LGTH Au Au (m) (m) metal check Au 138.15 - 138.57; guartz tourmaline vein. 138.0 139.0 1.0 DT8028 0.14 140.15; 1 cm quartz - pyrite vein, 70° to C.A. DT8029 140.0 140.5 0.5 0.75 DT8030 144.0 145.0 1.0 0.07 145.06 QUARTZ VEIN SYSTEM - Weak (15% quartz) 149.66 - Wall rock sericitized and ferro-dolomite; 2% coarse pyrite cubes, up to 2 cm x 2 cm - Veins generally cross cutting host rock - Fair-poor R.Q.D. . 145.06 - 1 cm quartz pyrite vein; trace chalcopyrite 145.17 - 2 cm quartz vein; pyrite along contacts 40° to C.A. DT8031 145.0 145.5 0.5 0.75 145.53 - 2 cm quartz vein; pyrite along contacts 40° to C.A. . 145.70 - 1 cm quartz vein; 70° to C.A.



:

# Hole Number

GT-85-129

### DRILL HOLE LOG

ASSAY (gm/tonne) CORE SAMPLE METRES FROM TO DESCRIPTION FROM LGTH NUMBER TO Aч Au Au Au metal check avq 145.82 - 1.5 cm quartz vein; coarse pyrite along contacts; 70° to C.A. 145.5 146.0 DT8032 0.5 0.96 0.96 146.8 - 1 cm quartz pyrite vein; 70° to C.A. 146.49 - 1 cm quartz vein; 15% pyrite; 50° to C.A. DT8033 146.0 146.5 0.5 0.21 146.56 - 2 cm quartz vein 10% pyrite; 50° to C.A. 146.68 - 3 cm quartz vein; 15% coarse pyrite; 50° to C.A. DT8034 146.5 147.0 0.5 2.86 1.85 1.96 147.41 - 1 cm quartz vein; 70° to C.A. DT8035 147.0 147.5 0.5 0.48 . . 147.55 - 1 cm quartz vein 147.5 148.0 DT8036 0.5 0.75 DT8037 148.0 148.5 0.5 Tr 148.54 - 3 cm quartz vein; 5% pyrite; 55° to C.A. DT8038 148.5 149.0 0.5 0.07 149.28 - 3 cm quartz vein; 5% pyrite; 40° to C.A DT8039 149.0 149.4 4.94 0.4 4.46 4.70

Hole Number

GT-85-129

.

Page ......8

· · ·

### DRILL HOLE LOG

FROM

149.66

ASSAY (gm/tonne) SAMPLE METRES CORE DESCRIPTION TO FROM NUMBER TO LGTH Au Au metal check Au 149.45 - 6 flecks visible gold 1 mm diameter -1 cm away from quartz vein, within a 2 cm zone 149.47 - 149.65 - quartz vein; 10% coarse pyrite along contacts; 20% assimulated host rock along lower contact. 149.62 - 1 fleck visible gold; 1 mm diameter DT8040 149.4 149.7 0.3 1.10 0.89 1.00 along contact of quartz and raft of host rock. DT8041 149.7 150.5 154.0 INTERMEDIATE VOLCANIC, Sericitized, carbonated 0.8 Tr - medium to light grey colour, fine grained -•* - massive, carbonate predominently ferro-dolomite 154.0 End of Hole

Hole Number

GT-85-129

9 Page .....9

Page 1	GETTY MINES, LIMITED	Hole Number	GT	-85-130
	DKINI NODE HOG		D	lp Tests
Property	Core SizeBQ	Starting Date .May 27, 1985		Angle
Location Timmins, Ontario	Elev. Collar	Completion Date May 31, 1985	Depth	Read Actual
GridMine Grid	Bearing -90° Dip	Date Logged May 28 - June 1	Collar	-90°
Latitude	Length	Logged By	29	-89°
Departure 10,120,1 E	Horiz. Trace	John K da	59	-88°
	Vert. Trace	Sperry Sun 50 m -88 266° Sperry Sun 100 m -86 243°	89	_88°
		Sperry Sun 100 m -86 243°	119	-87°
		Sperry Sun	149	186° -84°

FROM	то	DESCRIPTION	SAMPLE	ME	TRES	CORE			SSAY (gr		
			NUMBER	FROM	TO	LGTH	Au	Au metal	Au check		
0.0	2.4	CASING	DT								
2.4	12.0	INTERMEDIATE VOLCANIC, Sericitized, Carbonated									
		<ul> <li>medium grey colour, medium grained; mass</li> </ul>									
		- 5% quartz carbonate veinlets 5 mm thick,									
		anastomizing			_						
		<ul> <li>carbonate predominently ferro dolomite</li> </ul>									
		- joints sub parallel to core axis, spaced 2 m.apa	rt								
		- fair - good RQD								·.	
		2.4 - 6.5 - average solid core length 8 cm with									
		hematite stained fractures.									

## DRILL HOLE LOG

Hole Number

GT-85-130

Page .....2

FROM	то	DESCRIPTION	SAMPLE		TRES	CORE	Į	2	ASSAY (g	m/tonne)	)
r ROM	10	DESCRIPTION	NUMBER DT-	FROM	TO	LGTH	Au	Au metal	Au check		
		7.66 - 8.0: guartz carbonate vein; 2% pyrite;	7976	6.5	7.5	1.0	0.07				
		70° to C.A.	7977	7.5	8.0	0.5	Tr				
			7978	8.0	9.0	1.0	Tr				
		9.02: 1.3 cm quartz vein; 45° to C.A.	7979	9.0	9.5	0.5	0.07				
		9.22: 1.5 cm quartz carbonate veins 70° to C.A.									
		9.58: 1.2 cm quartz vein; 80° to C.A.	7980	9,5_	10.0	0.5	Tr				
		10.63: crumbly core; possible fault	7981	10.0	11.5	1.5	Ţr.				
		11.83: 2 cm quartz tourmaline vein; 35° to C.A.	7982	11.5	12.0	0.5	Tr				
12.0	21.6	MAFIC VOLCANIC; Carbonated, chloritized									
		- medium green colour; medium grained; massive									
		- 4 mm quartz carbonate veins; 90-80° to C.A.;									
		30 cm apart					]				
		- local areas with 3 mm carbonate amygdules									
		12.4 - 13.2; fair to good R.Q.D.									
		13.1 - 10 cm zone of crumbly core - poor to fair								1/	K_
		R.Q.D.	·							· ·	

## DRILL HOLE LOG

Hole Number

GT-85-130

Page .....

3

• •

FROM	то	DESCRIPTION	SAMPLE		TRES	CORE		1	ASSAY (9	m/tonne)	)
			NUMBER DT-	FROM	то	LGTH	Au	Au metal	Au check		
21.6	38.53	INTERMEDIATE '/OLCANIC: Sericitized; carbonated									
		- medium to light grey colour; fine grained;									
		massive - predominently ferro-dolomite									
		- 8% quartz filled microfracture, 2 mm wide									
		- 2% coarse pyrite crystals, normally centered									
		on microfractures									
, , , , , , , , , , , , , , , , ,		28.2: 1 cm quartz vein; hematite hole; 80° to C.A	7983	28.0	28.5	0.5	Tr				
	]	28.55 - 2876; quartz carbonate vein; 50° to C.A	. 7984	28.5	29.0	0.5	Tr				
			7985	29.0	29.5	0.5	Tr				
				,							
			7986	32.0	33.0	1.0	Tr				
-											
			7987	35.0	36.0	1.0	Tr				
		36.64, 36.87, 37.10: 2 cm quartz chlorite	7988	36,5	37.5	1.0	Tr				
		carbonate veins 40° - 50° to C.A.					·				
											?.k
					1				1	1	

# DRILL HOLE LOG

Hole Number

GT-85-130

FROM	то	DESCRIPTION	SAMPLE		TRES	CORE	Į	1	ASSAY (g	m/tonne	)
ТКОМ	10	DESCRIPTION	NUMBER DT-	FROM	TO	LGTH	Au	Au metal	Au check		•
38.53	52.45	MAFIC VOLCANIC: Chloritized, carbonated, pillowed									
		- medium green colour; fine grained; apparent	•								
		fabric due to pillow selvages					-				
		- 2% disseminated pyrite 2 mm x 2 m average S2	·								
<u></u>		normally concentrated along pillow selvage					··				
		- carbonate amygdule, 2 mm diameter									
		- excellent R.Q.D.								 	
		49.24 - carbonate chlorite quartz selvage									
		45° to C.A.	7989	49.0	50.0	1.0	0.07				
52.45	73.00	INTERMEDIATE VOLCANIC; sericitized, carbonated									
		- light to medium grey colour; fine grained									
		massive;		· · ·							
		- 1% finely disseminated pyrite	· .								
		- 2% quartz carbonate veins, 5 mm thick;									
		80° - 90° to C.A.		_							
		- gradational upper and lower contact.				_					C
							ļ				

4

Page ...

# DRILL HOLE LOG

Hole	Number
------	--------

GT-85-130

. . . .

Page .....⁵.

FROM	то	DESCRIPTION	SAMPLE		RES	CORE	Į	i	ASSAY (g	m/tonne	)
FROM	10	DESCRIPTION	NUMBER DT-	FROM	TO	LGTH	Au	Au metal	Au check		
		58.86 - 59.40; quartz carbonate vein;	7990	58.5	59.5	1.0	Tr				
		20° to core ax									
		61.15 - 61.27; quartz carbonate vein; trace	7991	60.85	61.35	0.5	Tr				
		pyrite									
		61.44 - 61.75; quartz carbonate vein;	7992	61.35	61.85	0.5	Tr				 
ľ		20° to C.A.									
		65.83 - 65.92; quartz carbonate vein	7993	65.5	66.0	0.5	0.21	<u> </u>			
73.00	98.50	MAFIC VOLCANIC; Carbonated, chloritized, pillow	ed								
		- medium grey to green colour; fine grained;	•								
		weak fabric 20° to 40° to C.A. due to pillow									
		structures.									
		- 5% carbonate amygdules up to 3 mm in diameter									
		- 10 cm breccia zones caused by selvage zone,									
		chloritized, carbonated matrix					·				
		- 2% quartz carbonate veins 5 mm thick									 
		- gradational contacts	7994	77.5	78.5	1.0	Tr				

# DRILL HOLE LOG

Hole Number

GT-85-130

Page .

7

FROM	то	DESCRIPTION	SAMPLE		RES	CORE		7	ASSAY (g	m/tonne)	,
			NUMBER DT-	FROM	TO	LGTH	Au	Au metal	Au check	% quartz	:
		110.90 - 2 cm quartz carbonate chlorite vein;	7999	110.5	111.0	0.5	Tr				
		30° to C.A.									
		112.64 - 1 cm quartz vein; 70° to C.A.	8000	112.5	113.0	0.5	Tr				
			×.								
		112.11 - 1 cm quartz vein; 70° to C.A.	8042	121.1	121.5	0.5	0.07				
			8043	121.5	122.25	_0.75_	Tr.				
,,		122.53 - 1.5 cm quartz vein; pyrite rich	8044	122.25	122.75	0.50	0.14				
		contacts; 75° to C.A.	8045	122.75	123.50	0.75	_Tr				
<u> </u>		123.62 - 1.5 cm quartz, tourmaline, pyrite	8046	123.50	124.0	0.50	0.27				
		vein; 50° to C.A.	8047	124.0	124.5	0,5	Tr				
·····	·	124.88: 1.5 cm quartz vein; 70° to C.A.	8048	124.5	125.0	0.5	0.41				
		131.40 - 132.5 - Fair R.Q.D.									
			8058	133.0	134.0	0.5	Tr				
134.03	137.80	STRONG QUARTZ VEIN SYSTEM (90%)	8049	134.0	134.5	0.5	0.34			100	
		- 5% tourmaline, 2% pyrite; veins appears	8050	134.5	135.0	0.5	Ťr			40	
		oriented 30° to C.A.	8051	135.0	135.5	0.5	0.48			70	
			8052	135.5	136.0	0.5	0.41			90	

## DRILL HOLE LOG

Hole Number

GT-85-130

FROM	то	DESCRIPTION	SAMPLE		TRES	CORE	Į	1	ASSAY (9	n/tonne	)
I KOM	10		NUMBER DT-	FROM	TO	LGTH	Au	Au metal	Au check		
		85.80 - 86.03: quartz carbonate tourmaline	7995	85.5	86.5	1.0	Tr			·	
		vein; 60° to C.A.									
		91.94 - 92.20; quartz carbonate vein;	7996	91.5	92.5	1.0	Tr				
		50° to C.A. possible interflow s	ed.					-			-
······		98.25 - 98.5; quartz carbonate vein;	7997	98.0	98.5	0.5	Tr_				
<del></del>		35° to C.A.						_			
		· · · · · · · · · · · · · · · · · · ·	<u> </u>								
98.50	134.03	INTERMEDIATE VOLCANIC; Sericitized, carbonated, pillowed.									
		- light grey to buff colour; fine grained;		·							
		massive		_							
		- pillow selvages oriented 30° to C.A.									<u> </u>
		- chloritic rich rims / matrix					<u> </u>	_		·	<u> </u>
		- 2% medium to coarse size pyrite crystals	 					_			
		104.1 - 104.2; quartz carbonate-chlorite vein;	7998	105.0	105.5	0.5	Ťr				
		30° to C.A.									ļ,
		109.1 - 134.03; ferro-dolomite	l .								

Page .....⁶....

## DRILL HOLE LOG

Hole Number

GT-85-130

Page .....

8

. .

FROM	то	DESCRIPTION	SAMPLE		RES	CORE		P	SSAY (g	m/tonne)
T KOM	10		NUMBER DT-	FROM	то	LGTH	Au	Au metal	Au check	% _guartz
			8053	136.0	136.5	0.5	0.82	<u> </u>		_100
		136.2 - Trace Chalcopyrite	8054	136.5	137.0	0.5	0.41			100
			8055	137.0	137.5	0.5	0.69			70
37.80	149.0	INTERMEDIATE VOLCANIC; Sericitized, carbonated,	8056	137.5	138.0	0.5	0.07			90
		tuffaceous	8057	138.0	138.5	0.5	0.55			0
		- medium to light grey colour, fine grained;								
		moderate fabric 35° to C.A bedding of					:			
		tuffaceous material								
		- 2% coarse grained pyrite,								
<u></u>		- carbonate mainly ferro-dolomite								
				•						
		138.54 - 143.65: Weak Quartz Vein System (22% g	uartz)							
	l 	137.54 - 138.67; quartz carbonate vein;								
		30° to C.A.	8059	138.5	139.0	0.5	2.61		2.85	30
		138.91; 1.5 cm quartz vein; 60° to C.A.	8060	139.0	139.5	0.5	Tr			8
		139.37 - 139.46; quartz vein; 30° to C.A.	8061	139.5	140.0	0.5	Ťr			40
·		139.52 - 139.73; quartz vein; 50° to C.A.	8062	140.0	140.5	0.5	0.07			5

# DRILL HOLE LOG

Hole Number

....

GT-85-130

9

Page .....

FROM	то	DESCRIPTION	SAMPLE NUMBER DT-	METRES		CORE	ASSAY (gm/tonne)			
				FROM	TO	LGTH	Au	Au metal	Au check	% guartz
		140.00 - 140.04; quartz vein; 60° to C.A.	8063	140.5	141.0	0.5	0.07			
		141.20 - 141.50; quartz vein; 45° to C.A.	8064	141.0	141.5	0.5	0.41			60
		141.58 - 141.96; quartz vein; 60° to C.A.	8065	141.5	142.0	0.5	Tr			75
		142.45 - 142.55; quartz vein; 65° to C.A.	8066	142.0	142.5	0.5	Tr			10
		142.76 - 143.00; quartz vein; 60° to C.A.	8067	142.5	143.0	0.5	0.07			58
		· · · · · · · · · · · · · · · · · · ·	8068	143.0	143.5	0.5	0.07			0
		143.60 - 143.66; quartz vein; 75° to C.A.	8069	143.5	144.0	0.5	0.69			8
			8070	144.0	145.0	0.5	Tr			
		144.3 - 147.5; Joints every 30 cm along core								
		length; 60° to C.A.								
		147.83 - 2 cm quartz carbonate vein; 60° to C.A.	8071	147.5	148,5	1.0	0.27			
		148.37 - 2 cm quartz veins; 60° to core axis								
							_			
	149.0	END OF HOLE							<u> </u>	
		John Kito								
										<u> </u>
										ļ
						E E				

### DRILL HOLE LOG

Property TISDALE Location Timmins, Ontario
Grid Mine Grid Latitude 9,923.6N Latitude 10,128.0E Departure

	BQ 304.8 m
Bearing	 _90°
	149.0 m
	7.5 m
Vert. Trace	148.5 m

Starting Date June 2, 1985. Completion Date June 4, 1985

Date Logged June 3 - 5 Logged By ... John Kita

Dip Tests Angle Depth Read Actual Collar - 90 ° -32 - 90 ° 65 -88° 95 -85° 125 - 85° 79°oz - 83° 149

GT-85-131

Sperry Sun

Hole Number

FROM	то	DESCRIPTION	SAMPLE NUMBER	METRES		CORE	ASSAY (gm/tonne)				
				FROM	ТО	LGTH	Au	Au metal	Au check	* quartz	<u></u>
0.0	1.5	CASING .	DT								
1.5	18.7	INTERMEDIATE VOLCANIC; Sericitized; Carbonated									
		- light grey colour; medium grained; massive									
		- mainly ferro-dolomite;									
		- fair RQD, Joints 20° to C.A. at 1.5 m intervals	•								
		- l% medium size pyrite crystal.									
		- Lower contact gradational over .5 metres									
			,								
		3.07 - 3.57: Broken up quartz carbonate vein;								••	
		80° to C.A.	8072	3.0	4.0	1.0	0.41				
		4.30 - 3 cm hematite carbonate stain; 70° to C.A.									
		÷									
		4.72-3 cm quartz carbonate-hematite vein 70° -C.A.	8073	4.0	5.0	1.0	Tr				

Page 1

### DRILL HOLE LOG

Hole Number

GT-85-131

FROM	то	DESCRIPTION	SAMPLE	MET		CORE		7	SSAY (9	m/tonne)	
TROM	10	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au	Au metal	Au check	- guartz	
		6.57 - 3 cm hematite carbonate stain 70° to C.A.									
		9.42, 9.52 - 2 cm hematite carbonate stain, 30°/60° to C.	A.								
······		10.57 - 2 cm quartz vein; 80° to C.A.	8074	10.5	11.0	0.5	Tr				
		14.92 - 1.5 cm quartz vein; 80° to C.A.	8075	14.5	15.0	0.5	0.07	i			
		16.54 - 2.0 cm quartz carbonate vein; 80° to C.A.	8076	16.5	17.0	0.5	Tr				
. <u>.</u>						·		<u> </u>			
18.7	34.35	MAFIC VOLCANIC; chloritized, (Intrusive?)						<u> </u>			
	_	- dark green colour; medium to coarse grain; massive		· .	· ·		ļ	ļ			
		- 1% quartz carbonate veins, 4 mm thick, 30°-70° to C.A.						Ì			
		- Good R.Q.D.									
		23.5, 23.66: 4 mm carbonate, graphite; 60° to C.A.	8077	23.25	23.75	0.5	Tr				
			· .								
		24.63 - 25.0- joint 15° to C.A., hematite stained									
											Ĺ
							1				

Page .....².....

· • • • •

#### DRILL HOLE LOG

ASSAY (gm/tonne) SAMPLE METRES CORE FROM TO DESCRIPTION FROM NUMBER TO LGTH Au Au 8 check quartz DT-Au metal 34.35 38.75 MAFIC VOLCANIC; chloritized carbonated - medium grey/green color; fine grained; massive 38,75 43.60 INTERMEDIATE VOLCANIC; Sericitized; carbonated - medium grey colour; medium grained; massive - predominently ferro-dolomite; weakly sericitized - 1% finely disseminated pyrite 39.64 - 2 cm quartz vein; 80° to C.A. 8078 39.50 40.0 0.5 Tr 40.27 - 40.75: strongly silicified zone; interflow sediment 8079 41.0 40.0 1.0 Tr 2% finely disseminated pyrite 43.60 57.60 MAFIC VOLCANIC; Chloritized; carbonated - medium to dark green colour; medium grained; massive - good R.Q.D. 49.76 - 49.88: Quartz Chlorite Vein; 70° to C.A. 8080 49.50 50.0 0.5 Tr

Hole Number

GT-85-131

3 Page .....

.

.

.

### DRILL HOLE LOG

ASSAY (gm/tonne) CORE SAMPLE METRES FROM TO DESCRIPTION FROM NUMBER TO LGTH Au Au 8 DTcheck quartz Au metal 57.50 60,96 INTERMEDIATE VOLCANIC; Sericitized; carbonated - medium grey colour; medium grained; massive . - ferro dolomite 8081 57.5 58.0 0.5 Tr 58.36: 2 cm silicified zone; 45° to C.A. 8082 58.0 58.5 0.5 Tr 60.72 - 60.80: silicified zone; 60° to C.A. 8083 60.50 61.0 0.5 Tr MAFIC VOLCANIC: Chloritized; carbonated 60.96 71.28 - medium green colour; medium grained; massive - weakly to modreately carbonated . - 2% quartz chlorite veins 5 mm wide; 66.0: 1 cm quartz vein 80° to C.A. 68.90 - 69.0: quartz carbonate vein with red stain; 8084 68.50 69.50 1.0 Tr 30° to C.A. .

Page .......

GT-85-131

Hole Number

#### DRILL HOLE LOG

ASSAY (qm/tonne) SAMPLE METRES CORE TO DESCRIPTION FROM NUMBER TO LGTH Au Au 8 DT-Au metal check quartz 71.70 FAULT: Crumbly core; average size 2 cm 80.52 INTERMEDIATE VOLCANIC: Sericitized: carbonated - light to medium grey colour; medium grained; moderate fabric 30° to C.A. in localized areas - carbonate mainly ferro dolomite. - 1% medium to coarse sized pyrite crystals 79.83: 1.5 cm quartz vein; 80° to core axis 8085 79.5 80.5 1.0 Tr 83.15 MODERATE QUARTZ VEIN SYSTEM (60%) - Sericitized, ferro-dolomite alterred wall rock - 3% disseminated coarse pyrite crystals - Fair to poor Q.Q.D.

8086

8087

80.5

81.0

81.0

81.5

0.5

0.5

0.07

Tr

Page .....⁵

GT-85-131

Hole Number

80.52 - 80.73: quartz tourmaline vein; 70° to core axis

81.60 - 82.55: quartz tourmaline vein with 20% host rock

80.23: quartz pyrite vein; 70° to core axis

FROM

71.28

71.70

80.52

### DRILL HOLE LOG

Hole Number

GT-85-131

/

FROM	то	DESCRIPTION	SAMPLE		TRES	CORE		P	SSAY (	m/tonne)	)
ГКОН	10	DEBCRIFTION	NUMBER DT-	FROM	TO	LGTH	Au	Au metal	Au check	* quartz	•
		82.28: 4 flecks visible gold adjacent to assimulated	8088	81.5	82.0	0.5	1.10				
		wall rock	* 8089	82.0	82.5	0,5	17.35		17.55		
			8090	82.5	83.0	0.5	Tr				
		83.00 - 83.10: quartz tourmaline vein; 70° to C.A.	8091	83.0	83.5	0.5	6,45		6.03		
83.15	114.95	INFERMEDIATE VOLCANIC: sericitized; carbonated	8092	83.5	84.5	1.0	Tr				
		- medium grey colour; medium grained; weak fabric (primary texture?) 30° to core axis			 						
		- primarily ferro dolomite alteration									
		- 1% disseminated pyrite crystals 2 mm x 2 mm								ļ	
		86.63 - 86.90: Silicified zone; 50° to core axis	8093	86.50	87.0	0.5	Tr				
		89.22 - 89.32: quartz vein; 60° to core axis	8094	89.0	89.5	0.5	Tr				
		89.98 : 3 cm quartz vein; 70° to core axis	8095	89.5	90.0	0.5	Tr				
						_					
						-	1				
											K

6 Page .....6



### DRILL HOLE LOG

Page ....7

#### Hole Number

GT-85-131

FROM	то	DESCRIPTION	SAMPLE	METRES		CORE	ASSAY (gm/tonne)				
			NUMBER DT-	FROM	TO	LGTH	Au	Au metal	Au check	* quartz	
114.95	127.2	INTERMEDIATE VOLCANIC, Sericitized, carbonated, tuffaceou	3								
		- light to medium grey colour; medium grained									
		- good fabric 30° to core axis, tuffaceous appearance									
		with streched fragments, some darker colours									
		- 2% localized disseminated coarse pyrite crystals									
		- good to excellent R.Q.D.							1		
		- carbonate primarily ferro-dolomite									
		115.00 - 126.42 Weak Quartz Vn System (7% quartz)	· <u>···············</u> ····················				1				
			•								
	·	115.0 115.90; Quartz vein; 45° to C.A. cross cutting fabric	8096	115.0	115.5	0.5	1.92		1.78	20	
		115.9; 1 cm quartz vein; 50° to C.A.	8097	115.5	116.5	1.0	0.62			0	
			8098	116.5	118.0	1.5	0.07			0	
			8099	118.0	118.5	0,5	Tr			0	
		118.87 - 119.39; 70% quartz veining; 4% pyrite,	8100	118.5	119.0	0,5	0.69			26	
		30°-60° to core axis	8101	119.0	119.5	0.5	0.34			60	
		119.84, 120.37; 4 mm quartz carbonate veins; 30° to C.A.	8102	119.5	121.0	1.5	Tr			3	
			8103	121.0	122.0	1.0	Tr			0	
				1							1

### DRILL HOLE LOG

Hole Number

GT-85-131

ROM	то	DESCRIPTION	SAMPLE		TRES	CORE	ASSAY (gm/tonne)				
			NUMBER DT-	FROM	TO	LGTH	Au	Au metal	Au check	° _quartz.	
	· · · · · ·	122.48; 1.5 cm quartz carbonate vein; 30° to core axis	8104	122.0	122.5	0.5	0.21	ļ		7	
		·	8105	122.5	124.0	1.5	Tr		ļ	0	
		124.46; 3 cm quartz vein 80° to C.A.	8106	124.0	124.5	0.5	0.07			3	
			8107	124.5	125.0	0.5	0.07			6	
		125.16 - 125.25; quartz vein; 1 fleck visible gold									
		along upper and another along lower contact; 35° to C.A.	8108*	125.0	125.5	0.5	1.51		1.58	30	-
		125.48 - 2 cm quartz bleb									
			8109	125,5	126.0	0.5	Tr			0	
		126.42 - 2 cm quartz pyrite vein; 30° to C.A.	8110	126.0	126.5	0.5	0.96			4	
127.20	133.46	STRONG QUARTZ VEIN SYSTEM (90° Quartz)	8111	126.5	127.0	0.5	Tr				
		- 4% coarse pyrite crystals along contacts with wall rock	*.								
		- minor tourmaline, sericite, carbonate									
			8112	127	127.5	0.5	0.21			45	
		127.68 - 127.80: Intermediate Volcanic; Sericitized,	8113	127.5	128.0	0.5	0.41			100	
		carbonated; 30° to C.A.	8114	128.0	128.5	0.5	Tr			100	
		128.60 - 128.12: Intermediate Volcanic; 15° to C.A.	8115	128.5	129.0	0.5	7.13		7.71	20	
			8116	129.0	129.5	0.5	0.07			90	
			8117	129.5	130.0	0.5	0.27	1		100	

Page .....⁸.....

. . .

1.11

#### DRILL HOLE LOG

SAMPLE CORE ASSAY (gm/tonne) METRES FROM TO DESCRIPTION FROM TO NUMBER LGTH Au Au 8 DT-Au metal check quartz 130.07-130.30, 130.52-130.80, 131.15-131.30, 133.0-133.37 8118 130.0 130.5 0.5 3.77 3.70 80 Intermediate Volcanic; sericitized, ferro dolomite 8119 130.5 131.0 0.5 0.21 70 strongly developed fabric 30° to C.A. 8120 131.0 131.5 0.5 3.02 2.88 90 8121 131.5 132.0 0.5 Tr 100 130.46: 4 flecks chalcopyrite 8122 132.0 132.5 0.5 0.21 100 8123 132.5 133.0 0.5 Tr 100 8124 133.0 133.5 0.5 8.98 8.78 40 133.46 149.0 INTERMEDIATE VOLCANIC; sericitized; carbonated - medium grey colour; medium grained; good fabric - 1% coarse pyrite crystals - carbonate predominently ferro dolomite 8125 133.5 134.0 0.5 0.14 - tuffaceous fragments - streched 134.18: 4 cm quartz vein; 80° to C.A. 8126 134.0 134.5 0.5 1.30 136.45 - 1.5 cm quartz carbonate vein; 60° to C.A. 8127 136.0 137.0 1.0 0.62 137.0 - 142.33 ; Weak Quartz Vein System (13% quartz)

Hole Number

GT-85-131

Page ......⁹....

### DRILL HOLE LOG

Hole Number

GT-85-131

FROM	TO	DESCRIPTION	SAMPLE	METRES		CORE		ASSAY (gm/tonne)				
I KOM		DEDCRIFTION	NUMBER DT-	FROM	TO	LGTH	Au	Au metal	Au check	aquartz		
		137.0-137.2: Quartz tourmaline vein	8128	137.0	137.5	0.5	Tr			40		
		137.83-1.5 cm quartz carbonate vein; 55° to C.A.	8129	137.5	138.5	1.0	0.07			2		
		138.69-138.74: quartz vein with visible gold along										
		pyrite; 1 fleck 70° to C.A.	8130*	138.5	139.0	0.5	8.50	-	8.23	10		
		139.06-139.19; quartz vein; 60° to C.A.										
		139.32 - 1 cm quartz pyrite vein; 60° to C.A.	8131	139.0	139.5	0.5	2.54		2.33	28		
		139.53 - 3 cm quartz vein; 60° to core axis	8132	139.5	140.0	0.5	0.89			6		
			8133	140.0	141.0	1.0	0.75			0		
		141.02: 1 cm quartz chlorite vein; 50° to C.A.	8134	141.0	141.5	0.5	Tr			2		
		141.88-144.06: 2 cm quartz vein: 25° to C.A.	8135	141.5	142.0	0.5	44.64		48.84	4		
		144.07-144.20: quartz vein; 25° to C.A.	8136	142.0	142.5	0.5	0.75			30		
			,					]				
		148.23: 1.5 cm quartz vein; 70° to C.A.	•									
		148.61: 1.5 cm quartz vein; 70° to C.A.	8137	148.0	149.0	1.0	0.27					
		·										
	149.0	END OF HOLE										
		Chen Kito										
			· · ·									
	1				1		-			A		

Page .....10



### DRILL HOLE LOG

Hole Number

GT-85-132

D:	ip Tes	sts									
Denth	Angle										
Depth	Read	Actual									
Collar		-90°									
32		-90°									
62		<u>_88°</u>									
92		<u>-88°</u>									
122		-88°									
140		-86°									

Property Location	DAVIDSON-TISDALE TIMMINS, ONTARIO
Latitude	MINE GRID 9,916.5 N
Departure	10,140,4°.E

Page l

Elev. Collar	BQ 306.2 m
	-90°
	140.0 m
•	3.0 m
Vert. Trace	139.75. <b>.</b>

Starting Date ...June 5, 1985...... Completion Date .June 7, 1985.....

Date Logged ...June 7, 1985..... Logged By ....John Kita Sperry Sun 50 m 266° -88°

Sperry Sun 100 m 241° -87°

John Kiti

-		DECONTRACIÓ	SAMPLE	METRES		CORE	ASSAY (gm/tonne)					
FROM (m)	TO (m)	DESCRIPTION	NUMBER	FROM	то	LGTH	Au					
0.0	2.0	CASING										
2.0	8.0	INTERMEDIATE VOLCANIC; Sericitized; Carbonated										
		- medium to light grey colour; medium grained; massive										
		- carbonate predominantly ferro dolomite										
		- fair RQD										
		- 1% finely disseminated pyrite										
		3.20: 1.3 cm quartz carbonate vein	DT-8138	3.0	4.0			,				
		3.88 - 3.94: quartz carbonate vein; 40° to C.A.	D1-0130		4.0	1.0	Tr					
		4.10 - 4.20: quartz carbonate vein; 70° to C.A.	DT-8139	4.0	5.0	1.0	0.07					
		5.83: 1 cm quartz carbonate vein; brown stain halo;										
		70° to Core Axis			,							

### DRILL HOLE LOG

Hole Number

GT-85-132

FROM	то	DESCRIPTION	SAMPLE	METRES		CORE		ASSAY	(gm/tonne	)
(m)	(m)		NUMBER	FROM	TO	LGTH	Au			
8.0	12.60	MAFIC VOLCANIC: Carbonated								
·		- medium green colour; medium grained; massive								
		- 2% carbonate quartz veinlets 5 mm thick,								
		spaced 10 m apart, 75° to Core Axis								
		- excellent RQD	٠.							
		9.40 - 1.2 cm quartz chlorite vein; 70° to Core Axis								
12.60	25.10	INTERMEDIATE VOLCANIC: Sericitized; carbonated								
		- medium to light grey colour; medium grained; massive								
		- carbonate as ferro-dolomite								
		- fair RQD								
		20.81 - 21.04: quartz vein; 80° to Core Axis	DT8140	20.5	21.5	1.0	0.14			
25.10	44.17	MAFIC VOLCANIC; Chloritized; carbonated (Intrusive?)							-	
		- medium green colour; medium grained; massive								
		- 2% carbonate chlorite vein; 8 mm, 70-80° to C.A.								
		- excellent RQD; weakly to moderately carbonated								
		- 1% disseminated pyrite								_
		32.44: 1 cm quartz vein; 70° to Core Axis								Z

Page .....2

• •



### DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE		TRES	CORE		ASSAY	(gm/tonne)	)
(m)	(m)		NUMBER	FROM	TO	LGTH	Au			
44.17	61.40	INTERMEDIATE VOLCANIC: Sericitized; carbonated	·.							
		medium to light grey colour; medium grained; weak								
		fabric 30° to Core Axis.	4							
		- 1-2% medium pyrite crystals								
		- carbonate as ferro-dolomite								
		- good RQD								
		44.18 - 44.24: quartz carbonate vein; 60° to Core Axis	DT-8141	44.0	44.5	0.5	0.07			
		44.30 - 44.40: quartz tourmaline vein; 30° to Core Axis								
		53.14 - fault seam; 1 cm thick; 30° to Core Axis	DT-8142	53.5	54.5	1.0	0.07			
		53.80 - 1 cm quartz vein; 30° to Core Axis								
		54.17 - 3 cm quartz carbonate chlorite vein; 40° to C.A.								
		59.76 - 61.0 - highly silicified zone	DT-8143	59.5	60.5	1.0	0.21			
			DT-8144	60.5	61.5	1.0	0.07			
				1	1		<del> </del>			

Page .

Hole Number

GT-85-132

1.1

#### DRILL HOLE LOG

SAMPLE ASSAY (gm/tonne) METRES CORE FROM то DESCRIPTION NUMBER FROM TO LGTH Au Au (m) (m) Check Quartz Au Metal 61.40 69.50 MAFIC VOLCANIC; Chloritized; carbonated - medium green colour; medium greined; massive - 1% disseminated pyrite - 1% carbonate chlorite veins 1 cm thick; 80° to Core Axis 69.50 81.35 INTERMEDIATE VOLCANIC: Sericitized; carbonated - medium to light grey colour; medium grained; 1 . weak fabric; 30° to Core Axis - 2% disseminated pyrite - qood ROD - 4 cm silicified zones within first 5 metres of unit DT-8145 72.5 74.0 1.5 Tr 75.5 - Poor RQD for 10 cm, crumbled core; fault DT-8146 80.0 81.0 1.0 Tr 1 DT-8147 81.0 81.5 0.5 0.07 20 MODERATE QUARTZ VEIN SYSTEM (50% Quartz) 81.35 88.27 81.35 - 82.21: 1 cm quartz vein; 2% pyrite; 1% chalcopyrite, subparallel with C.A.

DT-8148

81.5

82.5

1.0

Tr

82.21 - 82.63: quartz vein; 60° to Core Axis

GT-85-132

Hole Number

## DRILL HOLE LOG

Hole Number

GT-85-132

Page .....

FROM	то	DESCRIPTION	SAMPLE	METRES		CORE			ASSAY (	ym/tonne	)
<u>(m)</u>	(m)		NUMBER	FROM	TO	LGTH	Au	Au Metal	Au Check	8 Ouartz	
		83.22 - 84.0 : quartz vein; 45° to Core Axis	DT-8149	82.5	83.5	1.0	0.07	ļ <u> </u>		50	ļ
·	_	84.26 - 84.40: quartz vein: 70° to Core Axis	DT-8150	83.5	84.5	1.0	0.07			75	ļ
,		84.52 - 84.78: guartz vein 40° to Core Axis									
		85.06 - 2 cm quartz vein; 45° to Core Axis									
	······································	85.35 - 2 cm quartz vein; 80° to Core Axis	DT-8151	84.5		1.0	Tr				
		85,52 - 85,70: quartz tourmaline vein; 40° to Core Axis				_				 	
			DT-8152	85.5	86.5	1.0	1.23			40	
·		86.17 - 86.78; quartz tourmaline vein; 55° to Core Axis	DT8153	86.5	87.5	1.0	0.14			30	
		87.87 - 88.25: quartz vein; 50° to Core Axis									
		88.27 - 1.5 cm quartz vein; 70° to Core Axis	DT-8154	87.5	88.5	1.0	0.41			40	
88.27	115.88	INTERMEDIATE VOLCANIC: Carbonated; sericitized									
		- medium to light grey colour; medium grained									
		- weak fabric 30° to Core Axis							 		
		- carbonate is ferro dolomite									
		- good RQD									
			·								$\overline{\mathcal{A}}$
		88.27 - 94.0 - 3% disseminated coarse pyrite crystals				_	<u> </u>			4	4
			÷.,								

### DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE		TRES	CORE				m/tonne	)
(m)	(m)		NUMBER	FROM	TO	LGTH	Au	Au Metal	Au Check	* Quartz	
		89.0 - 89.05: quartz vein; 80° to C.A.	DT-8155	.88.5	89.5	1.0	0.07			4	
<u> </u>		89.67;: 1 cm quartz vein; 70° to C.A.								]	
		90.22 - 90.36: quartz vein; 45° to C.A.	DT-8156	89.5	90.5	1.0	0.41			15	
		90.70: 1.5 cm quartz vein; 70° to C.A.									
		93.83: 2 cm quartz vein; 70° to Core Axis	DT-8158	93.5	94.0	0.5	0.34				
		106.32 - 109.30: Weak - Moderate Quartz Vein System									
		(27% Quartz)									
		106.32 - 106.60: quartz vein; 60 ° to C.A.	DT-8159	106.25	106.75	0.5	0.07			60	
		107.18 - 107.26: quartz vein; 80° to C.A.	DT-8160	106.75	107.25	1.0	Tr			16	
		108.63 - 1.5 cm Quartz vein; 40° to C.A.	DT-8161	107.25	108.25	1.0	Tr			0	
		109.0 - 109.3: quartz tourmaline vein; 30° to C.A.	DT-8162	108.25	108.75	0.5	Tr			5	
			DT-8163	108.75	109.25	0.5	Tr			60	
		····	DT-8164	109.25	109.75	0.5	Tr			20	
		111.75 - 115.88: tuffaceous appearance; 20° to C.A.									
			DT-8165	114.5	115.5	1.0	0.69			0	
	1										í

Page ....⁶...

. . .



Hole Number

GT-85-132

____

-----·----_____

> -----.....

## DRILL HOLE LOG

Hole Number

GT-85-132

FROM	то	DESCRIPTION	SAMPLE		TRES	CORE			ASSAY (	m/tonne)	1
F ROM (m)	(m)	DESCRIPTION	NUMBER	FROM '	TO	LGTH	Au	Au Metal	Au Check	* Quartz	
115.88	124.00	STRONG QUARTZ VEIN SYSTEM (98% Quartz)		ļ					ļ		
	ļ	- 2% tourmaline		<u> </u>				<u> </u>			i
		- 1% pyrite	<u>·</u>					<u> </u>			
ļ		- traœ chalcopyrite	DT-8166	115.5	116.0	0.5	. 8.64		8.98	5	
		- upper contact; 45° to C.A. as is lower	DT-8167	116.0	116.5	0.5	Tr	<u> </u>		100	
·				<u> </u>					<b>_</b>		
		116.94 - 117.40: 20% Intermediate Volcanic									
		116.97: 1 fleck visible gold; 5 mm diameter;	DT-8168*	116.5	117.0	0.5	17.90		17.62	95	
		along contact									
		117.23: 2 flecks chalcopyrite	DT-8169	117.0	117.5	0.5	Tr			95	
			DT-8170	117.5	118.5	1.0	Tr			100	
		118.87 - 119.00: 20% Intermediate Volcanic	DT-8171	118.5	119.0	0.5	0.07			95	
			DT-8172	119.0	120.5	1.5	TE			100	
	-	121.0 - 124.0: 20% Intermediate Volcanic	DT-8173	120.5	121.0	0.5	Tr			100	
		121.89 : 4 flecks - Visible Gold along quartz/	DT-8174	121.0	121.5	0,5	8,43		7.82	80	
		volcanic contact	DT-8175*	121.5	122,0	0.5	72.07		73.44	80	
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>											
											11
	-									1/	

7 Page .....

• • • • • • • • •

### DRILL HOLE LOG

Hole Number

GT-85-132

FROM	то	DESCRIPTION	SAMPLE		TRES	CORE	l	i	ASSAY (9	m/tonne)
(m)	(m)		NUMBER	FROM	TO	LGTH	Au	Au Metal	Au Check	% Ouartz
		122.25 - 3 mm cluster of Visible Gold; along micro-	DT-8176*	122,0	122.5	0.5	62.88		62.61	80
		fracture in Quartz	<u></u>							
		122.98 - 3 mm cluster of Visible Gold; within quartz	·DT-8177*	122,5	123.0	0.5	_23.66		23.73	80
		123.02 - 1 mm fleck of Visible Gold; within quartz	DT-8178*	123.0	123.5	0.5	4.53		<u> </u>	_80
			DT-8179	123.5	134.0	0.5	5.83		5.52	80
124.0	140.0	INTERMEDIATE VOLCANIC; Sericitized; carbonated; pillowed	DT-8180	124.0	125.0	1.0	1.03			
		- medium grey colour; medium grained; good fabric	DT-8192	125.0	126.5	1.5	Tr			
		20° to C.A.								
		- 1% coarse grained pyrite crystals;	DT-8193	126.5	128.0	1.5	Tr			<u> </u>
		- carbonate as ferro dolomite							<u> </u>	
		124.62: 2.5 cm quartz vein 70° to C.A.	€				1			
		129.14: 2 cm quartz vein, 70° to Core Axis	DT-8187	128.0	129.0	0.5	Tr			
			DT-8181	129.0	129.5	0.5	2.19		1.92	
		132.36, 132.38, 132.45, 132.60: 1 cm quartz veins;	DT-8188	129.5	131.0	0.5	0.07			
		80° to Core Axis	DT-8189	131.0	132.25	1.25	Tr			
, <u>, , , , , , , , , , , , , , , , , , </u>		133.50 - 133.82: 1 cm quartz vein; 20° to C.A.	DT-8182	132.25	132.75	0.5	1.71		1.65	
			DT-8190	132.75	133.5	0.75	Tr			

8 Page ...

• •

.

### DRILL HOLE LOG

• • ASSAY (gm/tonne) CORE METRES SAMPLE FROM то DESCRIPTION Au Check * Quartz NUMBER FROM TO LGTH Au (m) (m) Au Metal 137.0 - 2 cm quartz vein; 70° to C.A. 3.63 DT-8183 133.5 134.0 0.5 3.84 DT-8191 134.0 0.27 135.0 1.0 136.75 137.25 DT-8184 0.5 Tr 140.0 END OF HOLE • • .

Page ....9

Hole Number GT-8

GT-85-132

	• چران مید است. میدی میشم ا ۲۰۰۰ ا	·····			• 				
Page 1			GEI	TY MINES,	LIMITED	Hole Number	GT-	85-05-	-01
TISDALE ·		Core Size	<u>р</u> В	RILL HOLE	LOG	Starting Date Sept. 6 1985	D	pip Te	sts Angle
Location TIMMINS, ON	ARIO	Elev. Coll	ar 157.42 M		• • • •	Starting Date Sept. 6 1985 Completion Date Sept. 7 1985	Depth	Read	Actual
Grid Mine Grip Latitude 9914.85		Dip			• • • •	Date Logged J.Kita B.Westhaver Logged By	Collar		
Departure .10094.37	· • • • • • • • • • • •	Length Horiz. Tra Vert. Trac	10 EO M		••••	John Kto			

			SAMPLE	ME	TRES	CORE		ASSAY	(gm/tonne)	)
FROM	то	DESCRIPTION	NUMBER	FROM	то	LGTH	Au orig.	Au chak.	Au met.	Au a
0.00	18.59	Host Rock: Intermediate Volcanic, massive to	DT-							
		fragmental texture 40° to core axis, sericitized,	8501	0.00	1.50	1.50	Tr.			
		ferro dolomite, light grey to buff colour,								
		2% locally concentrated coarse pyrite crystals	8502	1.50	2.50	1.00	Tr.			
		2.64-2.75: quartz tourmoline vein ; 60°/30° to c.a.								
		2.86-2.95: quartz tourmoline vein ; 70° to c.a.	8503	2.50	3.00	0:5	Tr.			
		3.05-3.14: quartz vein: 30% intermediate volcanic								
		30° to c.a.	8504	3.0	3.5	0.5	Tr			
	•	3.63-3cm guartz carbonate vein:25° to c.a.	8505	3.5	4.0	0.5	0.96			
		4.33-4.69: quartz vein 3% pyrite along contacts:								
,		10° to c.a.	8506	4.0	4.5	0.5	0.27			
		4.80-5.42: quartz vein;4% tourmoline 5% Intermediat Volcanic 3% pyrite	e 8507	4.5	5.5	1.0	0.69			

### DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE		TRES	CORE		ASSA	Y (gm/tonr	ne)
			NUMBER DT-	FROM	TO	LGTH	Au orig.	Auck.	Au met.	Au a
		5.71-6.36; quartz vein; 30% intermediate volcanic 2% pyr-							!	
		ite, 30° to c.a.	8508	5.5	6.5	1.0	Tr.			
		6.74-7.11: quartz tourmoline vein 80° to core axis,	 							
		7-11-7.33: 8mm quartz vein coming off above quartz vein							ļ	
		10° to c.a.	8509	6.5	7.5	1.0	Tr.			
		7.81-9.00: quartz vein;2% tourmoline 40° to c.a.	8510	7.5	8.0	0.5	Tr.			
			8511	8.0	9.0	1.0	Tr.			
		9.0-11.0: Intermediate Volcanic; fragmental appearance								
		30-50° to c.a.; fragments strongly sericitized	8512	9.0	10.0	1.0	1.92	1.82		1.87
		11.00-11.80:quartz tourmoline vein; 10% raft material	8513	10.0	11.0	1.0	0.62			
		contacts 70° to core axis	8514	11.0 .	11.5	0.5	13.58	13.10		13.34
	<u>.</u>	11.86-12.03: quartz vein; 5% coarse pyrite cystals;								
		50% raft material; veins approx.1 cm thick								
		46°-50° to c.a.								
		11.87 visible gold in quartz bleb less than or								
		equal to 1 mm								
		11.92-2 flecks visible gold, 1 along contact, one	8515	11.5	12.0	0.5	1.78	1.71	TR	1.7
		along microfractures in raft material less than or							$\Lambda$	12
		equal to 1 mm							1	$\leq$

GT-85-05-01

Page .....

Hole Number

T.TMTTED

### DRILL HOLE LOG

Hole Number

GT-85-05-01

3

Page

FROM	то	DESCRIPTION	SAMPLE		TRES	CORE	Au gm/	tonne A	SSAY (	m/tonne	)
			NUMBER DT-	FROM	TO	LGTH	Au orig		met.		Avg.
			8516	12.0	12.5	0.5	Tr				
		12.18-2 cm quartz vein with 5% coarse pyrite									
		12.82-13.25 quartz veins; 50% intermediate volcanic;									
		10% coarse pyrite crystals;20-30° to c.a.	8517	12.5	13.0	0.5	0.75				
		13.08 - v.g. 1 fleck along contact							L		
		13.09 - v.g. within 1mm x 2mm zone along contact									
		13.14 - flecks of v.g. within 2mm x 2mm zone in									
		volcanics adjecent to quarz veins	8518	13.0	13.5	0.5	206.74	201.94	1.37		204.34
		13.76-14.08- quartz tourmoline vein; 25° to c.a.	8519	13.5	14.0	0.5	0.55				
		14.42-14.80- 8mm quartz carbonate vein parallel to c.a.	8520	14.0	15.0	1.0	1.17				
		15.34-17.06- quartz tourmoline vein; 35° to c.a.	8521	15.0	15.5	0.5	Tr.				
			8522	15.5	17.0	1.5	Tr.				
			8523	17.0	17.5	0.5	Tr.				
			8524	17.5	18.59	1.09	Tr.				
		21: 21									
	1859	E.O.H. John Kt	-								
						·				$\square$	K
······································			,								

#### DRILL HOLE LOG

. .

#### Hole Number

### GT-85-05-02

D	ip Tes	sts
Depth	1	Angle
Depth	Read	Actual
Collar		

PropertyTISDALE	Co
Location TIMMINS, ONTARIO	Ele
	Bea
Grid Mine Grid	Dij
Latitude9920.15	Lei
Departure	Hor

Page 1

Core Size
Elev. Collar 157.80 m
Bearing
DipHorizontal
Length
Horiz. Trace
Vert. Trace 0.00 m

Starting Date Sept. 8, 1985 Completion Date Sept. 9, 1985

John Kito

FROM	TO	DESCRIPTION	SAMPLE NUMBER	ME FROM	ETRES	CORE LGTH	Au	<u>A</u>	.SSAY (g	gm/tonne)	4
0.00	20.42	Intermediate Volcanic, ferro dolomite, sericitized	DT		1		<u>├</u> ──- <del> </del>			<u>}</u>	+
		massive to fragmental light grey to buff colored;	l		1	1		1	1		
<u></u>		3% coarse pyrite cubes locally concentrated, and along	1		1			1	· ['	+	
<u> </u>		contacts.						 	'	<u> </u>	F
		0.33 - 2cm quartz vein; 30° to c.a.	8525	0.0	1.0	1.0	Tr		'		<u> </u>
		1.06 - 1.17 : quartz vein ; 45° to c.a.	1		1	1		' 	· ['	<b>  </b>	$\int$
		1.41 : 1 cm quartz vein ; 40° to c.a.	8526	1.0	2.0	1.0	Tr	! 1		<u>├</u> +	$\left[ \right]$
		1.83-2.21:quartz tourmaline vein:2% coarse crystals 70° to c.a.	1. 8527	2.0	2.5	0.5	0.34	·	<i>!</i>		$\int$
		2.44-6.25:quartz tourmoline vein ; 5% raft material	8528	2.5	3.5	1.0	0.34	<b>!</b> i	· []		<u> </u>
		2% coarse pyrite ; 1% chalcopyrite	8529	3.5	4.5	1.0	Tr	f	+	+	1
<u> </u>		6.50-6.77:quartz tourmaline vein 70° to c.a.	8530	4.5	5.5	1.0	Tr		<b> </b> +		1
		6.91-7.57: quartz tourmoline vein; 20° to c.a.	8531	5.5	6.5	1.0	0.27		t1	<u>├</u> ────┼	(

#### DRILL HOLE LOG

METRES ASSAY (gm/tonne) SAMPLE CORE FROM Au TO DESCRIPTION FROM NUMBER TO LGTH check met Avg DT-0.00 20.42 7.68-,7.81: 1cm quartz veins, 70° to c.a. 8532 6.5 7.0 0.5 0.41 7.89-8.60: quartz tourmoline vein 50° to c.a. 8533 7.0 7.5 0.5 Tr 8.57:visible gold along contact 1 fleck less than 1 mm 8534 7.5 12.0 12.93 8.0 0.5 12.47 8535 8.0 8.5 0.5 0.27 8.60-11.38: volcanic rock moderately sheared 55° to c.a. 8536 0.10 57.94 8.5 9.0 58.97 56.91 0.5 8537 9.5 0.5 9.0 Tr 9.42-10.05: quartz tourmoline vein; 70° to c.a. 8538 9.5 10.0 0.5 0.07 10.21,10.26 1.5cm quartz carbonate veins 70° to c.a. 8539 10.0 10.5 0.5 4.39 4.15 3.91 10.36-10.54: quartz tourmoline vein 30°/60° contacts coarse 0.41 8540 10.5 11.0 0.5 pyrite crystals along contacts 8541 11.0 11.5 0.5 3.02 3.02 10.98: 1.5cm quartz pyrite vein; 70° to c.a. '、 11.25: 1cm quartz vein; 80° to c.a. 11.58,11.63; 8mm quartz veins ; 70° to c.a. 8542 11.5 13.0 1.5 Tr · 8543 13.0 14.5 1.5 0.07 . . 8544 14.5 15.0 0.5 Tr 15.36,15.43: 1cm quartz veins ; 70° to c.a. 8545 15.0 15.5 0.5 Tr . 15.60-15.86:quartz tourmoline vein;10% coarse pyrite 8546 15.5 16.0 0.5 1.37 dirty appearance; 70° to c.a.

Page ....².....

Hole Number

GT-85-05-02

#### DRILL HOLE LOG

SAMPLE METRES ASSAY (gm/tonne) CORE Au FROM то DESCRIPTION NUMBER FROM TO LGTH DT-0.00 20.42 8547 16.0 17.5 1.5 Tr 1.5 8548 17.5 19.0 Tr 20,42 1,42 8549 19.0 Tr 20.42 E.O.H. . • . . .

Hole Number

GT-85-05-02

Page ......

### DRILL HOLE LOG

### Hole Number

GT-85-05-03

D:	ip Tes	sts						
Angle Depth								
Depch	Read	Actual						
Collar								

	TISDALE TIMMINS, ONTARIO
Latitude	MINE GRIP 9926.51 10100.42

Dip	0° 20.12 m
Horiz. Trace .	20.12 m
Vert. Trace	0.0 m

Starting Date Sept. 10, 1985 Completion Date Sept. 11, 1985

Sept. 12, 1985 Date Logged ....J. Kita.....

John Kito

5501	-			METRES		CORE	ASSAY (gm/tonne)					
FROM (m)	ТО (m)	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au	Au check	Au met		Au ave	
0.0	20.12	Intermediate Volcanic, sericitized; ferro dolomite	DT-									
		;massive to sheared										
	1	;light grey to buff grey colour										
		;fine to medium grained										
		;3% coarse pyrite crystals							ļ			
		0.68-0.76;quartz vein ; 50° to c.a.	8550	0.0	1.0	1.0	0.69			) 		
		1.06-2.12; quartz tourmaline vein 5% host rock; 70° to c.a.	8551	1.0	1.5	0.5	0.14					
		1.72: visible gold along quartz wall rock contact less than	8552	1.5	2.0	0.5	61.02	62.40	0.10	·•	61.71	
		or equal to 1mm in size										
		2.38-4.14:quartz tourmaline vein;20% raft material;	8553	2.0	2.5	0.5	3.50	3.12			3.31	
		5% coarse pyrite-crystals associated with raft material;										
		65° to c.a.	8554	2.5	3.0	0.5	TR					

Page l

### DRILL HOLE LOG

Hole Number

GT-85-05-03

Page .....².....

FROM	то	DESCRIPTION	SAMPLE	MBER FROM TO		CORE	ASSAY (gm/tonne)					
(m)	(m)		NUMBER DT-			LGTH	Au	Au Check	Au met		Au ave	
0.0	20.12	Flecks of visible gold $\leq$ 1mm in size along contacts	8555	3.0	3.5	0.5	3.22	3.50	Tr		3.36	
		of raft material	8556	3.5	4.0	0.5	25.03	26.06	Tr		25,55	
		3.46, 3.47, 3.57, 3.58, 3.59										
			8557	4.0	4.5	0.5	6.17	5.35			5.76	
		4.42-5.20-quartz tourmaline vein; 5% raft material	8558	4.5	5.0	0.5	Tr					
		50° to c.a.	8559	5.0	5.5	0.5	0.34					
		5.27-5.33: quartz vein; 55° to c.a.										
		5.38-5.58: quartz vein; 75° to c.a.										
		5.75: 1cm quartz vein; 75° to c.a.	· · · · · · · · · · · · · · · · · · ·								uł i w a i .	
		5.85-6.33: quartz tourmaline vein; 10% wall rock; 45° to c.a.	8560	5,5	6.0	0.5	0.34					
		6.40-6.74: quartz tourmaline vein;5% wall rock;2% pyrite	8561	6.0	6.5	0.5	4.11	3.77			3.9	
		contacts at 70°/30° to c.a.										
		7.47-10.12:Intermediate volcanic strongly foliated/sheared	8562	6.5	7.0	0.5	Tr					
		70° to c.a.	8563	7.0	7.5	0.5	Tr					
		7.78-8.59:quartz tourmaline vein;5% host rocks;	8564	7.5	8.0	0.5	Tr					
		2% coarse pyrite ; 45° to c.a.	8565	8.0	8.5	0.5	3.36	3.74			3.5	
		8.90:2cm quartz vein ; 30° to c.a.	8566	8.5	9.0	0.5	14.54	14.13	D.	1/	14.3	

. ,

#### DRILL HOLE LOG

ASSAY (gm/tonne) SAMPLE METRES CORE FROM TΟ DESCRIPTION NUMBER FROM TO LGTH Aucheck Au met Au (m) (m) DT-Au 9.14-9.34: quartz vein:20% wall rock;5% pyrite 55° to c.a. 0.0 20.12 8567 9.0 9.5 14.67 13.75 0.5 14.21 9.45, 9.85, 10.12; 1cm quartz veins 70° to c.a. 8568 9.5 10.0 0.5 0.75 10.35-10.60 ; quartz tourmaline vein ; 70° to c.a. 8569 10.0 10.5 0.5 0.14 8570 10.5 11.0 0.5 8.16 8.09 8.13 8571 11.0 12.5 1.5 0.14 8572 12.5 13.0 0.5 Tr 13.38:1cm quartz vein;5% pyrite along contacts;25° to c.a. 8573 13.0 13.5 0.5 0.34 (flat system) 13.87: 3cm quartz vein ; 40° to c.a. 8574 13.5 14.0 0.5 2.26 1.75 2.00 14.58-14.85: 1cm quartz vein ; 5° to c.a. 8575 14.0 14.5 0.5 0.14 14.77 : 1 fleck visible gold, 1mm x 1mm within quartz 8576 14.5 15.0 0.5 1.85 1.92 Tr 1.89 8577 15.0 16.5 1.5 Tr 8578 16.5 18.0 1.5 Tr 8579 18.0 19.5 1.5 Tr 8580 19.5 20.12 0.62 Tr 20.12 End of Hole

GT-85-05-03

Hole Number

• ;

	 •					
•		· .				
			•			
			GETTY	MINES,	LIMITED	
			דתת		TOC	

DRILL HOLE LOG

Property TISDALE Property Contario
Grid MINE GRID Latitude 9,931.12 Departure 10,103.31

Core Size	В		•								•
Elev. Collar!	57.29 M	••	•		•	•	•	•	•	•	••
BearingS	59° 58°E	• •	•		•		•	•		•	•
Dip FLAT							•	•	,	•	•
Length	20.12 m	••									
Horiz. Trace											
Vert. Trace			-		-					-	-
vert. made		••	•	•••	•	•	•	•	•	•	•

Date Logged Sept. 13, 1985 Logged By John Kita

John Kito

Hole Number

Dip Tests Angle Depth Read Actual Collar

GT-85-05-04

3001	то	DECODEDUTON	SAMPLE	ME	ETRES	CORE				gm/tonne)	1
FROM     TO     DESCRIPTION       (m)     (m)		DESCRIPTION	NUMBER	FROM	то	LGTH	Au	Au metal	Au check	Au VAvg	1
0.00	20.12	INTERMEDIATE VOLCANIC; Sericitized; ferro-dolomite	DT-								$\bot$
	//	- massive to sheared						`		ļ'	1_
	′	- light grey to weak buff colour	8581	0.0	0.5	0,5	Tr			_ <b>_</b> '	1
		- 2% coarse pyrite crystals				_				ļ!	$\bot$
~ <u>~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			8582	0.5	1.0	0.5	1.23			·	1
<u>.                                    </u>		0.92-3.19: quartz tourmaline veins; major contacts	8583	1.0	1.5	0.5	Tr	<u> </u>		ļ'	1_
		70° to C.A.								ļ'	1
	'	- 60% raft host rocks with 5% coarse pyrite	8584	1.5	2.0	0.5	Tr			ļ'	1
	'	2.42: 1 mm gold fleck along quartz/raft contact	8585	2.0	2.5	0.5	25.23	24.82	0.55	25.03	
		2.57: 1 mm gold fleck in tourmaline/pyrite stringer	8586	2.5	3.0	0.5	8.16	8.16	0.14	8.16	1
	'	in quartz						· · · · · · · · · · · · · · · · · · ·		<u> </u>	1
AF-11	·	3.08: 1 mm gold fleck along quartz raft contact	8587	3.0	3.5	0.5	1.71	1.58	Tr	1.65	
	·   ·									[ '	Ĩ

Page 1

•

### DRILL HOLE LOG

ASSAY (gm/tonne) METRES SAMPLE CORE FROM то DESCRIPTION FROM NUMBER TO LGTH Au Au Aù (m) (m) DT-Au metal check Avg. 3.32-3.80: quartz tourmaline vein; 70° to core axis 8588 3.5 4.0 0.5 Tr 30% raft volcanics 3.92-4.01: quartz vein, 20% volcanics; 5% pyritic 8589 4.0 4.5 0.5 ጥ 50° to C.A. 4.74: 1 cm quartz vein, 55° to C.A. 8590 4.5 5.0 0,5 0.41 8591 5.0 5.5 0.5 Tr 5.54-5.61: quartz vein, 20% volcanics; 70° to C.A. 8592 5.5 6.0 0.5 0.07 7.0-11.78: wall rock moderately foliated/sheared; 8593 7.0 1.0 Tr 6.0 75° to C.A. 8594 7.0 8.0 1.0 Tr 8595 8.0 8.5 0.5 Tr 8.79-8.85: quartz vein; 45° to C.A. 8596 8.5 9.0 0.5 Tr 9.25: quartz/pyrite vein; variable orientation 8597 9.0 9.5 0.5 8.91 9.19 9.05 · · 9.75-9.77: quartz vein; 5% pyrite along microfractures; 8598 9.5 10.0 0.5 3.63 4.15 3.89 8599 10.0 10.5 0.5 0.75 10.72, 10.77: 1 cm quartz viens; 50° to C.A. 8600 10.5 11.0 0.5 7.27 7.44 8601 11.0 11.5 0.5 0.96 11.78-11.95: quartz tourmaline vein; 50° to C.A. 8602 11.5 0.5 12.0 2.19 1.92

Page .....2

Hole Number

GT-85-05-04

### DRILL HOLE LOG

.

Hole Number

GT-85-05-04

Page

FROM	то	DESCRIPTION	SAMPLE	METRES		CORE	ASSAY (gm/tonne)					
(m)	(m)		NUMBER DT-	FROM	то	LGTH	Au	Au metal	Au check	Au Avg.		
		12.13: 1 cm quartz pyrite vein; 55° to C.A.	8603	12.0	13.0	1.0	0.75					
			8604	13.0	14.0	1.0	0.69					
		14.13: 6 mm quartz vein; 70° to C.A.	8605	14.0	15.0	1.0	0.07					
			8606	15.0	16.0	1.0	0,69					
		17.38, 18.51, 19.20, 20.1: 6 mm quartz veinlets	8607	16.0	17.0	1.0	1.37					
			8608	17.0	18.0	1.0	0.82					
		· · · · · · · · · · · · · · · · · · ·	8609	18.0	19.0	1.0	0.07					
	20.12	END OF HOLE	8610	19.0	20.12	1.12	0.07					
		John Kito										
								}				
										1		
				1								
			·	1								
		·					· ·			1		
								1	<b> </b>		,	
		······································		1		-	<u> </u>					

### DRILL HOLE LOG

### Hole Number

GT-85-05-05

Dip Tests					
Depth	1	Angle			
	Read	Actual			
Collar					
-#					
<u> </u>					

Property Location	TISDALE TIMMINS, ONTARIO	
Latitude	Mine Grid 9935.80 10107.91	

Core Size Elev. Collar . Bearing	B 157.19.m 559.58 E
Dip	.Fląt. .27.13.m
Horiz. Trace .	27.13 m
Vert. Trace	0.0 m

Starting Date . Sept. 12, 1985 Completion Date Sept. 13, 1985

John Kita

FROM	то	DESCRIPTION	SAMPLE	MF	ETRES	CORE		ASSAY (gm/tonne)				
(m)	(m)		NUMBER	FROM	TO	LGTH	Au	Metal.	. Au check	Au Avg.		
0.0	27,13	Intermediate Volcanic; sericitized, ferro dolomite	DT-									
	_	light grey and buff colour ; massive to fragmental										
·		appearance ; 2% coarse pyrite crystals ; fabric							1			
		in rock 70° to core axis.										
		0.0-0.86 : quartz tourmaline vein;15% volcanics 2-3cm size	8611	0.0	0.5	0.5	Tr					
		with 5% coarse pyrite; contacts 75° to c.a.	B612	0.5	1.0	0.5	Tr		<u> </u>			
		1.04-1.30: quartz tourmaline vein; 75° to c.a.	8613	1.0	1.5	0.5	10.22		9.81	10.01		
		1.75-2.28: quartz tourmaline vein	8614	1.5	2.0	0.5	4.66		4.63	4.65		
	_	2.53-3.00: quartz tourmaline vein	8615	2.0	2.5	0.5	1.23					
, <del></del>			8616	2.5	3.0	0.5	0.34					
		3.28-4.10: quartz tourmaline vein; 30% volcanics with pyrite	8617	3.0	3.5	0.5	1.17					
		contacts 50° to core axis	8618	3.5	4.0	0.5	0.07					

Page 1

### DRILL HOLE LOG

Hole Number

GT-85-05-05

FROM	то	DESCRIPTION	SAMPLE NUMBER DT-	METRES		CORE	ASSAY (gm/tonne)				
(m)	(m)			FROM	TO	LGTH	Au	Au Metall.	Au check	Au Avg	
0.0	27.13	4.24-4.28: quartz vein ; 70° to c.a.									
		4.36-4.43; quartz tourmaline vein ; 70° to core axis									
		4.43: 1 fleck visible gold; _ 1mm in size along lower fact	. 8619	4.0	4.5	0.5	6.58	0.21	6.99	6.79	
			8620	4.5	5.0	0.5	0.07				
			8621	5.0	5,5	0.5	0.07				
		5.76-5.91: quartz vein ; 45° to c.a.	8622	5.5	6.0	0.5	39.77		39.77		
			8623	6.0	6.5	0.5	0.75				
		6.53-6.93: 1cm quartz calcite vein : 20° to c.a.	• 8624	6.5	7.0	0.5	1.71		2.19	1.95	
	-		8625	7.0	8.5	1.5	0.07				
		8.85: 1cm x 4cm quartz bleb	8626	8.5	9.0	0.5	Tr				
	·	9.40: 1cm x 3cm quartz bleb	8627	9.0	9.5	0.5	Tr				
			8628	9.5	10.0	0.5	Tr				
		10.18 : 2cm x 3cm quartz bleb	8629	10.0	10.5	0.5	Tr				
		11.71 : joint: 90° to c.a.: chlorite filled; poor RQD									
		12.91-13.0 : 1cm x 2cm quartz bleb	8630	12.5	13.5	1.0	Tr				
			8631	13.5	15.0	1.5	Tr				
		· · · · · · · · · · · · · · · · · · ·				_	:				
	1					-					
					1	-				K	

Page ......

. .

#### DRILL HOLE LOG

ASSAY (gm/tonne) METRES CORE SAMPLE FROM TO DESCRIPTION FROM NUMBER TÖ LGTH Au Au Au DT-Au metal check Avq. 15.50-15.80: slip/joint; 20° to core axis: poor RQD 8632 15.0 16.0 1.0 2.61 2.40 2.5 : some quartz veining material . . 18.8, 19.0, 20.0 - joints 20° to C.A. . 20.39 - 20.75 - flat joint; poor RQD; some quartz pieces 8633 20.0 21.0 1.0 0.55 21.25: 1 cm sucrosic quartz vein; 70° to C.A. 8634 24.5 25.5 1.0 Tr 25.57-26.00 - silicified volcanic, quratz tourmaline 8635 25.5 26.0 0.5 Tr zone; possible interflow sediment; highly contorted, 8636 26.0 1.13 27.13 Tr brown and green colour . , . END OF HOLE 27.13m .

Page ......³

Hole Number

GT-85-05-05

•		•	
,			
		· .	
· · · · · · · · · · · · · · · · · · ·			

Page 1

Property TISDALE

Grid MINE GRID

Departure 10,107.87

#### GETTY MINES, LIMITED

#### DRILL HOLE LOG

Horiz. Trace 27.3 M Vert. Trace .15.2 m

Hole Number

GI	-85-05	-06
D:	ip Tes	sts
epth	1	Angle
epcii	Read	Actual
101104		·

Date Logged Sept. 18, 1985
Logged ByJohn Kita
$\gamma \gamma $
John Roled

- -

- - - -

Starting Date Sept. 13, 1985

Completion Date Sept. 15, 1985

D Collar

FROM (m) 0.0	ТО (m)	DESCRIPTION	SAMPLE	METRES		CORE		A	ASSAY (gm/tonne)		
			NUMBER	FROM	TO	LGTH	Au	Au metal	Au _check		
0.0	31.39	INTERMEDIATE VOLCANIC; sericitized; ferro dolomite	DT								
		- light grey colour								·	
		- massive to sheared 10-25° to core axis									
		- 3% coarse pyrite crystals									
		- fair R.Q.D.									
		· · · · · · · · · · · · · · · · · · ·			1	-		1			
		0.0 - 1.08: quartz tourmaline vein; 80° to core axis	8637	0.0	0.5	0.5	9,87		9.29	9.58	
		20% volcanic fragments	•								
		0.66, 0.69, 0.72, 0.73:flecks of visible gold 1 mm in sig	8638	0.5	1.0	0.5	13.10	0.34	12.69	12,90	
		1.10; 3 cm quartz vein; 70° to C.A.	*****								
		1.23 - 1.62; quartz tourmaline vein; 20% mafics;	·								
		indisernable contacts	8639	1.0	1.5	0.5	22.49		21.60	22.04	
						1					

1.1

#### DRILL HOLE LOG

ASSAY (gm/tonne) SAMPLE METRES CORE FROM TO DESCRIPTION NUMBER FROM TO LGTH Au Au Au Avq. DT-Au metal. check 1.67, 1.76, 1.81: 1 cm quartz veins 1.86-2.14: quartz tourmaline vein; 25° to core axis 8640 1.5 2.0 0.5 Tr 2.34-2.72: quartz tourmaline vein; 30° to core axis 8641 2.0 2.5 0.5 1.37 2.72-3.37; fragmental appearance 8642 2.5 3.0 0.5 0.34 3.37-3.59; quartz tourmaline vein; 20% volcanic; 50° to core axis 3.56: 1 fleck visible gold; 1 mm; within mafic 8643 3.0 3.5 0.5 0.34 3.80-4.28; quartz tourmaline vein; 20% volcanics; 45° to C.A. 8644* 3.5 4.0 0.5 3.46 0.34 2.98 3.22 4.55-5.70: quartz tourmaline vein; 20% volcanics; 30° to C.A. 8645 4.0 4.5 0.5 0.55 6.51: 1 cm quartz vein; 80° to core axis 8646 4.5 5.5 1.0 0.82 6.64-7.15: quartz tourmaline vein; 20% volcanics; 8647 5.5 6.0 0.5 Tr 55° to C.A. 8648 6.0 6,5 0.5 0.07 8649 6.5 7.0 0.5 Tr 7.30-7.40: quartz tourmaline vein, 55° to core axis 8650 7.0 7.5 0.5 0.21 . 7.40-12.08: fragmental appearance; fabric 20° to C.A. 8651 7:5 8.5 1.0 Tr

8652

9.5

9.5

1.0

1.17

9.0 - 4 cm zone of ground rock with quartz vein material

GT-85-05-06

Hole Number

Page .....



### DRILL HOLE LOG

Hole Number

GT-95-05-06

- I

FROM	то	TO DESCRIPTION	SAMPLE	METRES		CORE	ASSAY (gm/tonne)				
	10		NUMBER DT-	FROM	TO	LGTH	Au	Au metal	Au check	Au Avg	
		9.70-11.40: quartz tourmaline vein; 10% volcanics;	8653	9.5	10.5	1.0	0.75				
		50°/80° to Core Axis									
		12.10-12.30: quartz tourmaline vein; 40° to C.A.	8654	10.5	11.5	1.0	0.14				
		12.60-12.70: crumbly core	8655	11.5	12.0	0.5	0.27				
			[·] 8656	12.0	12.5	0.5	25.51		26.19	25.8	
		13.62-13.72: quartz tourmaline vein; 80° to core axis	8657	12.5	13.5	1.0	0.55				
_		13.80: 2 cm quartz vein; 50° to C.A.	8658	13.5	14.0	0.5	1.71		1.78	1.75	
			8659	14.0	15.0	1.0	1.10				
		15.0-15.65: quartz vein; 45° to core axis	8660	15.0	16.0	1.0	0.82		-		
		15.83-16.50: quartz tourmaline vein; 70° to C.A.	8661	16.0	16.5	0.5	Tr				
		16.91-17.00: poor R.Q.D.	. 8662	16.5	17.0	0.5	1.44				
		17.00-17.20: quartz vein; 52° to C.A.	8663	17.0	17.5	0.5	1.37				
		17.30-17.46: quartz tourmaline vein; 30% volcanics:	8664	17.5	18.0	0.5	2.40		2.37	2.39	
		50° to C.A.									
		17.76-19.25: quartz tourmaline vein; 20% volcanics;	8665	18.0	19.0	1.0	0.21				
		50° to C.A.	8666	19.0	19.5	0.5	1.03				
		19.25-31.39: well foliated to sheared 20°/40° to core axis									
		fair R.Q.D.									
		19.64-20.20: 50% coarse pyrite crystals; poor R.Q.D.								1A	

# .

#### DRILL HOLE LOG

SAMPLE CORE ASSAY (qm/tonne) METRES FROM DESCRIPTION TΟ NUMBER FROM TO LGTH Au Au Au DTcheck Au metal Avg. 19.72, 20.0, 20.21; 3 cm quartz tourmaline veins; 26.59 26.21 8667 19.5 20 0 0.5 25_82 20° to C.A.; parallel with shearing 8668 20.0 20.5 0.5 2.06 1.95 2.00 20.65-20.88: quartz tourmaline vein; 20% volcanics; 8669 20.5 21.0 0.5 0.69 35° to C.A. 21.34-21.46: guartz vein; 30°/60° to C.A. 8670 21.0 21.5 0.5 0.69 21.59: 1 cm quartz vein: 20° to C.A. 21.81-22.06: quartz tourmaline vein; 30% volcanics; 8671 21.5 22.0 0.5 4.32 4.42 50° to C.A. 22.20-22.30: quartz vein; 33° to C.A. 8672 22.0 22.5 0.5 6.65 6.85 23.10: 2 cm quartz vein; 35° to C.A. 8673 22.5 23.0 0.5 0.21 23.48-23.72: guartz material; 60% volcanics; 8674 23.0 24.0 1.0 2.67 2.43 brecciated appearance 23.81,23.88, 23.97: 1 cm quartz veins; 30° to C.A. 24.18: 2 cm quartz vein; 80° to C.A.; crosscutting foliation 24.40-24.87: quartz tourmaline vein; 30% volcanics; 8675 24.0 25,0 1.0 0.89 47° to C.A. 8676 25.0 26.0 1.0 Tr 8677 26.0 27.0 1.0 Tr 8678 27.0 28.5 1.5 Tr

Hole Number

GT-85-05-06

.

the second second second second second second second second second second second second second second second se

: . .

1.

. .

•

#### DRILL HOLE LOG

ASSAY (gm/tonne) SAMPLE METRES CORE FROM TO DESCRIPTION FROM NUMBER TO LGTH Au Au Au DT-Au metal check Avq. 28.64: 2 cm quartz tourmaline vein; 40° to core axis 8679 28.5 29.0 0 5 0.89 28.73-29.43: poor R.Q.D. 8680 29.0 30.5 1.5 Tr 31.28: 2 cm quartz vein; 50° to C.A. 8681 30.5 31.39 0.89 0,27 31.39 λð END OF HOLE m , .

Hole Number

· · · · ·

.

GT-85-05-06

DRILL HOLE LOG

#### Hole Number

Starting Date Sept. 15, 1985. Completion Date Sept. 16, 1985....

Joh Kito

Date Logged Sept. 21, 1985 Logged By John Kita

# GT-85-05-07

D.	ip Tes	sts	
Depth	1	Angle	
Depth	Read	Actual	
Collar			
		·	
		· · · · · · · · · · · · · · · · · · ·	_
		<b>]</b> .	1

Grid MINE GRID Latitude9;947.78 Departure .10;123.92	Property TISDALE Location TIMMINS, ONTARIO	
	Latitude	

Page 1

Core Size	В
Elev. Collar	156.32 m
Bearing	S60° 09°E
Dip	HORIZONTAL
Length	19.20 m
-	19.20 m
	0,0 m
VOLUE ILLUGG	

-		DEGODEDETON	SAMPLE	ME	TRES	CORE		А	SSAY (g	m/tonne)	
FROM (m)	ТО (m)	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au	Au metal	Au check		
0.00	19.20	INTERMEDIATE VOLCANIC: Sericitized; ferro dolomite;	DT-								
		- massive to weakly foliated 55° to C.A.									
		- 5% massive pyrite									
		- good R.Q.D.									
		0.0-0.72: Poor R.Q.D.: 2 cm pieces	8682	0.0	0.5	0.5	1.85				
		0.33: quartz tourmaline material	8683	0.5	1.5	1.0	0.27				
	 					,			ļ		· .
			8684	1.5	3.0	1.5	0.14			·•	
			8685	3.0	4.5	1.5	Tr				
			8686	4.5	6.0	1.5	Tr				
			8687	6.0	7.0	1.0	0.82				
								1			

# DRILL HOLE LOG

Hole Number

GT-85-05-07

Page

FROM	то	DESCRIPTION	SAMPLE		TRES	CORE	l	P	SSAY (	m/tonne	)
(m)	(m)		NUMBER DT-	FROM	TO	LGTH	Au	Au metal	Au check	Au Avq	
		7.00-7.26: quartz vein; 10° to C.A.; flat	8688	7.0	7.5	0.5	0.75				
		7.53: 2 cm: carbonate chlorite vien; 50° to C.A.	8689	7.5	8.0	0.5	0.55				
		8.07: 1 cm: quartz carbonate vein; 35° to C.A.	8690	8.0	8.5	0.5	7.95		7.20	7.58	
			8691	8.5	9.0	0.5	0.41				
		9.27-9.78: quartz tourmaline vein; parallel to core axis									
		quartz wall; 1-3 cm thickness?			<u> </u>						
		9.43 - 2 flecks visible gold 1 mm x 2 mm	8692	9.00	9.50	0.5	29.66	3.02	32.67	_31.16	
		0.63, 9.76- flecks of visible gold 1 mm in size	8693	9.50	10.0	0.5	10.90	2.88	13.78	12.34	
			8694	10.0	10.5	0.5	0.55				
<u></u>		10.75-10.88: quartz vein; 20% volcanics; 40° to C.A.	8695	10.5	11.0	0.5	Tr				
		11.80-19.20: Intermediate volcanic has fragmental	8696	13.5	14.0	0.5	3.09		3.22		
		to pillowed texture towards the end of the	8697	14.0	14.5	0.5	0.41		5122		
		hole also has about 4% quartz bleb less	8698	14.5	15.0	0.5	0.34				
		the 2 cm in size qhich are discontinuous	8699	15,0	16.0	1.0	0.07				
			· 8700	16.0	17.0	1.0	0.34				
	19.20	END OF HOLE					:			,	9-,
											K

#### DRILL HOLE LOG

## Property TISDALE Location TIMMINS, ONTARIO Grid MINE GRID Latitude 9,949.60 Latitude 10,121.40 Departure

Core Size	B
Elev. Collar	156.29 59° 58°W
BearingN	59° 58°W
DipH	ORIZONTAL
	2.19 m
	2.19 m
	0.00

Starting Date Sept. 16, 1985 Completion Date Sept. 17, 1985

Date Logged Sept. 21, 22, 1985 Logged By John Kita

Dip Tests Angle Depth Read Actual Collar

GT-85-05-08

FROM	то	DESCRIPTION	SAMPLE	ME	TRES	CORE			SSAY (g	m/tonne)	,
(m)	(m)		NUMBER	FROM	TO	LGTH	Au	Au metal	Au check	Au Avg	
0.00	12.19	INTERMEDIATE VOLCANIC: Sericitized; ferro dolomite	DT								
		- light grey colour .									$\left[ \right]$
		- massive to weakly foliated									
		- 4% coarse pyrite crystals	•								
		0.0-5.80: poor R.Q.D., 3 cm average core length			· · · · · · · · · · · · · · · · · · ·					, , ,	
		0.05: 3 cm quartz tourmaline vein; 80° to C.A.	8701	0.0	0.5	0.5	0.48				
		0.50-0.70: quartz tourmaline vein; 45° to C.A.	8702	0.5	1.0	0.5	1.44		1	· .	<u> </u>
		1.07-: 3 cm quartz vein; 60° to core axis	8703	1.0	1.5	0.5	0.82				
		1.40: 1 cm quartz vein; 20° to core axis	8704	1.5	2.0	0.5	1.37				 I
		2.45: 2 cm quartz vein; 45° to core axis	8705	2.0	2.5	0.5	1.78				 I
							1				

#### Page 1

# Hole Number

#### DRILL HOLE LOG

ASSAY (gm/tonne) SAMPLE METRES CORE FROM TO DESCRIPTION NUMBER FROM TO LGTH Au Au Au Avg. (m) (m) DT-Au metal check 3.00: possible fault, core 2 mm in size; 1 cm thick 8706 2.5 3.0 0.5 1.23 3.24-3.36: quartz tourmaline vein ; 50° to core axis 8707 3.0 3.5 0.5 1.37 3.36: possible fault; core 2 mm in size; 2 cm thick? 3.95-4.14: guartz tourmaline vein 30° to C.A. 8708 3.5 4.0 0.5 45.34 41.14 42.34 4.70: 3 mm guartz vein; 50° to C.A. 8709 4.0 4.5 0.5 1.71 1.78 8710 4.5 5.5 1.0 0.75 8711 5.5 6.5 1.0 Tr 6.60-6.90; quartz tourmaline vein; 70° to core axis 8712 6.50 7.00 0.5 0.69 8713 7.0 8.0 1.0 Tr ٠ 8714 8.0 9.5 1.5 Tr 10.28: 1 cm quartz vein; 20° to core axis 8715 9.5 11.0 1.5 Tr 8716 11.0 12.19 1.19 Tr 12.19 END OF HOLE -Ai .

Hole Number

GT-85-05-08

Page ....2

# , . •

•					
Page 1	GETTY MINES, LIMITED	Hole Number	GT	-85-05	-09
	DRILL HOLE LOG		D	ip Te	sts
Property TISDALE Location TIMMINS, ONTARIO	Core SizeB Elev. Collar156.980	Starting Date .Oct. 4, 1985 Completion Date .Oct. 16, 1985	Depth	Read	Angle Act

Grid MINE GRID
Latitude9,936.40
Departure .10,064.98

Core Size	
Elev. Collar156.980	
Bearing S49° 30°W	
Dip78°	
74.67 m	
Horiz. Trace 15.3 m	
Vert. Trace	

i

. . .

Completion Date
Date Logged
Logged ByD. Titaro
John K.Tu

jle ctual Collar

FROM	то	DECORTONION	SAMPLE	ME	TRES	CORE		A		m/tonne)	)
(m)	(m)	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au	Au metal	Au check	Au Avq	
0.00	18.30	Mg. Tholeiitic Basalt	DT-								
		- Fine grained, green, massive basalt - Interstitial calcite throughout with calcite stringers	9001	3.0	4.0	1.0	Tr				
		and veinlets (<1%)	9002	9.0	10.0	1.0	Tr				
		-<1% sulphides									
		- foliation weakly developed and only observed	9003	15.0	16.0	1.0	Tr				
		locally≈10-20° to core axis	,								
		- minor sericitization within this unit									
		- lower contact very gradational								·-	
		- core recovery and R.Q.D.'s good			<u> </u>						
······											
											1
	1	· · · · · · · · · · · · · · · · · · ·			}						

۰.

### DRILL HOLE LOG

0000 ACCAN (om/tonne)

Hole Number

FROM	то	DESCRIPTION	SAMPLE		ŢRES	CORE		1	ASSAY (	m/tonne	)
(m)	(m)		NUMBER DT-	FROM	то	LGTH	Au	Au metal	Au check	Au Avg	
18.30	74.67	Mg Tholeiitic Basalt									
		- Fine grained, pale green to locally buff green basalt									
		- Appears to be dominently massive basalt with weakly									
		developed foliation 10-20° to C.A.									
		- locally appears to exhibit pillow selvages?	DT 9004	19.0	19.5	0.5	Tr				
		and pillow breccias? ie. 47.24 m	PT 9005	19.5	20.0	0.5	0.82				
		- quartz vein at 19.86-19.99 m -U/C 60° to C.A.;	OT 9006	20.0	20.5	0.5	0.07				
-		L/C 80° to C.A.	Ň				l				
		- this unit contains finer and less distributed calcite									
	1	± Fe dolomite (locally concentrated) plus	OT 9007	25.0	26.0	1.0	Tr				
		sericite (giving to local buff color)	PT 9008	29.0	30.0	1.0	Tr				
			0009 TO	39.0	40.0	1.0	Tr				
		- 1% pyrite mineralization throughout	OT 9010	44.0	45.0	1.0	Tr				
		locally concentrated	PT 9011	47.0	48.0	1.0	Tr				
		quartz veins at	OT 9012	52.0	52.5	0.5	0.89				
			1								
										$\square$	K
	1				1						

2 Page ...

GT-85-05-09

#### DRILL HOLE LOG

Hole Number

GT-85-05-09

FROM	TO	DESCRIPTION	SAMPLE		TRES	CORE			ASSAY (	gm/tonne	)
(m)	(m)		NUMBER DT-	FROM	то	LGTH	Au	Au metal	Au check	Au Avq.	
		20.73: water seam 8-12 gal/minute	DT 9013	52.5	53.0	0.5	Tr				
· · · ·		54.15 m to 54.25 m - bull white vein	OT 9014	53.0	53,5	0.5	0.62				
		70° to core axis	DT 9015	53.5	54.0	0,5	0,55				
		56.61 m to 56.75 m - 45° to core axis	DT 9016	54.0	54.5	0.5	0.62				
			OT 9017	54.5	55.0	0.5	0.96				
		59.33 m to 59.37 m - 90° to core axis	OT 9018	55.0	55.5	0.5	1.17				
			<b>۵</b> ۳9019	55.5	56.0	0.5	0.07				
		61.04 m to 61.18 m - 70° to core axis	OT 9020	56.0	56.5	0.5	Tr				
			OT 9021	56.5	57.0	0.5	0.75				
		- broken up core at 35.37 m, 37.70 m, 56.25 m,	OT 9022	57.0	57.5	0.5	Tr				
		- Fault Zone from 66.65 m to E.O.H.	OT 9023	59.0	59.5	0.5	Tr				
			DT 9024	59.5	60.0	0.5	Tr				
	74.67	END OF HOLE									
······································		John Kito									

3 Page



#### DRILL HOLE LOG

#### 

Core Size	B
Elev. Collar .	156.9 m
	035° ~66°
	7.31 m
	3.0 m
	6.6 m

Starting Date .Oct. 16, 1985..... Completion Date .Oct. 16, 1985.....

Dip Tests Angle Depth Read Actual Collar

FROM	то	DESCRIPTION	SAMPLE	1	TRES	CORE	 A	SSAY (gi	n/tonne)	
(m)	(m)		NUMBER	FROM	то	LGTH	 			
0.00	7.31	Mg Tholeiitic Basalt					 			
		- pale green, fine grained, weakly foliated basalt					 			
		- calcite ± sericite alteration					 			
		- foliation 20-30° to C.A.								
	7.31	END OF HOLE				-	 			
		NOTE : Hole Stoped and Changed to GT-85-05-10B								
									· •	
							 ·			

Page 1

Hole Number

GT-85-05-10A

GETTY	MINES,	LIMITED

#### DRILL HOLE LOG

#### Hole Number

#### GT-85-5-10B

D:	ip Tes	sts
Depth	7	ngle
Depth	Read	Actual
Collar		· ·
	·	

Property DAVIDSON-TISDALE Location TIMMINS, ONTARIO	
GridMINE GRID Latitude .9936.81 Departure .10065.60	

Page l

Core Size	В
Elev. Collar	156.971
Bearing	.88°.00'E
	-72°
•	70.10 m
	66.6 m
Vert. Trace	21.7 m

Starting Date . Oct. 16, 1985 Completion Date . Oct. 20, 1985

John

FROM	то	DESCRIPTION	SAMPLE	ME	TRES	CORE	_	AS	SAY (gm	/tonne)	
(m)	(m)		NUMBER	FROM	то	LGTH	Au				
0.00	22.06	Mg Tholeiitic Basalt	•.								
		- Fine grained, pale green, massive basalt	DT9531	5.0	6.0	1.0	Tr				
		- weakly developed foliation 30° to core axis	DT9532	9.5	10.5	1.0	Tr				Í
		- alteration is calcite t sericite	\$.								
			DT9533	16.0	16.5	0.5	Tr				
		- quartz vein from 16.84 m to 17.01 m	DT9534	16.5	17.0	0.5	1.03				
		- bullwhite vein	DT9535	17.0	17.5	0.5	0.21				
		- upper contact 60° to C.A.	DT9536	17.5	18.0	0.5	Tr				
		- lower contact 45° to C.A.	•					•		·•	
		- rock unit becomes paler in color downhole									
		- fair to good RQD's									
		- lower contact is very gradational									

#### DRILL HOLE LOG

٩.

Hole Number

GT-85-5-10B

FROM	то	DESCRIPTION	SAMPLE		TRES	CORE	[	ASSAY (	m/tonne	)
(m)	(m)		NUMBER	FROM	TO	LGTH	Au			
22.06	33.00	Mg Tholeiitic Basalt								
		- fine grained, buff green, massive basalt	•							
		- foliation ranges 10° to 20° to core axis								
		- alteration assemblage of quartz-sericite-Fe dolomite								
		- calcite stringers throughout	DT9537	23.0	24.0	1.0	Tr			
		<1% sulphides throughout								
			DT9538	28.5	29.0	0.5	Tr			
		- quartz veins at 29.62 m to 29.68 m -45° to	DT9539	29.0	29.5	0.5	Tr			
		Core Axis	DT9540	29.5	30.0	0.5	1.10			
		31.65 m to 31.70 m -80° to Core Axis	DT9541	30.0	30.5	0.5	Tr			
			DT9542	30.5	31.0	0.5	Tr			
		- good RQD'S	DT9543	31.0	31.5	0.5	Tr			
		- lower contact of unit is gradational	DT9544	31.5	32.0	0.5	Tr			
·····			DT9545	32.0	32.5	0.5	Tr			
33.0	38.0	Mg Tholeiitic Basalt	DT9546	32.5	33.0	0.5	Tr			
		- as above except that the unit is dominantly								
		a pale green color & no longer buff	DT9547	36.5	37.5	1.0	Tr	 		
										2K

Page ....².....

. .

. . .

- RQD's GOOD - lower contact very gradational

#### DRILL HOLE LOG

ASSAY (gm/tonne) SAMPLE METRES CORE FROM TO DESCRIPTION NUMBER FROM 10 LGTH Au - alteration assemblage is dominantly quartz calcite ± sericite - broken up core from 35.90 m to 36.27 m 38.0 38.8 m Fault Zone - talcose, broken up rock DT9548 38.5 39.5 1.0 Tr - contact ? 38.80 53.15 m Mg Tholeiitic Basalt - as above except that the unit is a dark green color with 5% calcite stringers (randomly DT9549 47.0 48.0 1.0 Tr orientated) throughout - local concentrations of pyrite (1-2%) 1 - alteration assemblage is chlorite-calcite - foliations very weakly developed perhaps 20° to C.A.

DT9550

52.5

53.5

1.0

Tr

Hole Number

GT-85-5-10B

#### DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE		TRES	CORE		1	ASSAY (	gm/tonne	;)
			NUMBER	FROM	то	LGTH	Au			1	
53.15	64.92 m	Mg Tholeiitic Basalt									
		- as above except for alteration assemblage	DT9551	59.5	60.5	1.0	Tr				
		which is chlorite-Fe dolomite + calcite as stringers									
		- the Fe dolomite occurs as small blebs throughout	<b></b> QT9552	61.5	62.5	1.0	Tr				
		- lower contact is gradational									
		- RQD's good	•								
										1	
64.92	70.10 m	Mg Tholeiitic Basalt									
		- as above except for alteration assemblage									
		which is primarily calcite t chlorite t sericite									
		- calcite occurs as blebs and stringers	DT9553	68.0	69.0	1.0	Tr				
		- RQD's fair to good									
		- possible minor faulting at 67.10 m to 67.30 m -						• • • • • •			
		rock is fairly competent but talcose along fractures									
		20° to core axis also from 65,0 to 65.83 m.									
	70.10 m	END OF HOLE John Kit	· · · · · · · · · · · · · · · · · · ·							1	

Page ..

Hole Number

GT-85-5-10B

				•
Page 1	GETTY MINES, LIMITED	2 Hole Number	GT-	85-5-11
	DRILL HOLE LOG		L	p Tests
Property DAVIDSON-TISDALE Location TIMMINS, ONTARIO	Core Size	Starting Date Oct. 21, 1985 Completion Date Oct. 22, 1985	Di	·····
	Core Size	Starting Date Oct. 21, 1985	Di	p Tests Angle

	1		SAMPLE	ME	TRES	CORE		A	SSAY (g	n/tonne)	
FROM (m)	TO (m)	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au				
0.0	20.70	Mg Tholeiitic Basalt									
		- Pale green to Buff colored, Fine to medium grained,									
		highly foliated and contored Basalt.									
										·	
		-≈1% sulphides									
			<u> </u>								
		- Foliations -0° -10° to core axis						<u> </u>			
		- foliations are folded and contored	'								
		- unit becoming more massive downhole from 14.40 m						·		·-	
		- alteration is primarily Fe-dolomite + sericite									
		- calcite along fractures									
-											
)											

### DRILL HOLE LOG

Hole Number

GT-85-5-11

FROM	то	DESCRIPTION	SAMPLE	METRES		CORE	ASSAY (gm/tonne)				
			NUMBER	FROM	TO	LGTH	Au				
		- Silica sweets from approx. 6.2 m to 7.7 m	DT9554	6.5	7.0	0.5	Tr				
			DT9555	7.0	7.5	0.5	Tr				
		much of the core is talcose and highly broken up	DT9556	7.5	8.0	0.5	Tr				
			DT9557	8.0	8.5	0.5	Tr				
		i.e. 5.75 - 6.10 m									
		10.50 - 14.32 m									
		16.46 - 18.70 m									
		* - Appears as if hole was drilled adjacent to a	DT9558	15.5	16.5	1.0	Tr				
		parallel. Fault Zone									
		- highly sericitized section from 10.40 m to 15.0 m									
		- lower contact is gradational.									
		RQD'S within this unit are Poor to fair.									
										6	K
									-		

Page .....2....

· .

.

#### DRILL HOLE LOG

Hole Number

GT-85-5-11

SAMPLE ASSAY (gm/tonne) METRES CORE FROM TO DESCRIPTION NUMBER FROM TO LGTH (m) (m) Au 20.70 31.39 Mg Tholeiitic Basalt - Pale grey green - dark green, massive basalt DT9559 24.0 25.0 1.0 Tr - little to no sericite alteration - calcite is interstitial and along fractures forming veinlets. - downhole from 30.0 m the unit is dark green and appears to be fresh Mg Tholeiitic basalt - the calcite in this portion of the unit is disseminated throughout as pinhead size blebs. - highly broken core from 20.73 m to 21.50 m (50% core recovery) - likely part of above fault zone. - RQD'S in this section fatr DT9560 29.0 30.0 1.0 Tr 31.39 END OF HOLE

3 Page .....

Page 1	GETTY MINES, LIMITED	Hole Number	GT	-85-5-1	2
	DRILL HOLE LOG		D.	ip Tes	sts
Property DAVIDSON - TISDALE Location TIMMINS, ONTARIO	B         B           Elev. Collar158.777            Bearing	Starting DateOct. 24, 1985 Completion Date Oct. 25, 1985	Depth	7 Read	Angle Actual
GridMINE.GRID Latitude9858,779	0° Length43.68 m	Date Logged Oct. 27, 1985 Logged ByD. Titaro	Collar		
Departure	Horiz. Trace	John Kits			

FROM	то	DESCRIPTION	SAMPLE		METRES			A:	SSAY (gi	m/tonne)	
(m)	(m)		NUMBER	FROM	10	LGTH	Au				
2.0	5,80	Mg Tholeiitic Basalt				<u> </u>					
		- Pale green to buff, fine to medium grained	DT9561	4.0	5.0	1.0	<u> </u>				
	1	foliated basalt									
		- foliation 0 - 20° to core axis (folded and contorted)			ļ			ļ			
		- RQD'S - Poor									
		- This unit appears as if it is adjacent to a parallel									
		fault zone.									
		- silica sweets locally concentrated ie: 4.35 m	,			-					
		- alteration assemblage is Fe Dolomite + sericite.									

۰.

#### DRILL HOLE LOG

Hole Number

a seconda

GT-85-5-12

FROM	то	DESCRIPTION	SAMPLE NUMBER	METRES		CORE	ASSAY (gm/tonn			n/tonne	)
(m)	(m)			FROM	TO	LGTH	Au				
5.80	38.90	Mg Tholeiitic Basalt									
		- Fine to medium grained, pale to dark green	DT9562	11.0	12.0	1.0	Tr				
		massive basalt 1% sulphides	DT9563	17.0	18.0	1.0	Tr				
											Γ
		- From 5.80 to 9.60 m - broken up talcose core									Γ
		- part of <u>fault zone</u> observed in above unit									
		- actual fault gauge at 7.41 m 70° to core axis	۰.								
		- this portion of the rock unit is a pale green									
		color and high in calcite.									
		- Downhole from 9.60 m to 20.73 this portion of the									
		unit is high in calcite and is a light grey green									
		color - RQD'S - Good									
		- Downhole from 20.73 m to 38.90 m this portion of the	DT9564	23.0	24.0	1.0	Tr				
		unit is dark green in color and high in calcite									
		likely fresh	DT9565	28.0	29.0	1.0	Tr				
		Mg Tholeiitic basalt				]					
		- RQD'S fair to good	DT9566	33.0	34.0	1.0	Tr			1/1	Ŕ

Page .....².....



. .

#### DRILL HOLE LOG

Page ....³.....

Hole Number

GT-85-5-12

ASSAY (gm/tonne) SAMPLE METRES CORE FROM TO DESCRIPTION NUMBER FROM TO LGTH (m) (m) Au DT9567 38.0 38.5 0.5 Tr - Fault Gauge from 38.71 m to 38.81 m 38.90 41.95 Mg Tholeiitic Basalt -Sericite - Fe dolomite ± calcite DT9568 41.0 41.5 0.5 Tr altered rock DT9569 41.5 41.95 0.45 Tr 41.95 43.68 Quartz Vein (Strong) DT9570 41.95 42.67 0.75 Tr . - Bull white 100% quartz DT9571 42.67 43.68 1.01 Tr . - no measurable upper contact - hole lost at 43.68 m due to water seam at 43.68 m . 43.68 END OF HOLE

### DRILL HOLE LOG

Hole Number

GT-85-5-13

ip Tes	sts							
Angle								
Read	Actual							

Property Davidson-Tisdale Location Timmins, Ontario
Grid Mine Grid Latitude 9858.701 Departure 10070.766

Elev. Collar	B 159.090 56° 30"W
Dip+1	2°
Horiz. Trace!	57.4 m 12.2 m

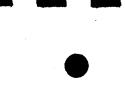
Starting Date .Oct. .22, .1985..... Completion Date 955.....

Date Logged ... October. 27. 1985.. Logged By .... Dino Titaro

John Kito

FROM TO		DECONTRACT	SAMPLE	METRES		CORE	ASSAY (gm/tonne)				
FROM (m)	(m)	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au				
0.00	31.30	Mg Tholeiitic Basalt	<u>.</u>								
		- Pale green to buff colored, fine grained basalt	DT9572	5.5	6.5	1.0	Tr				
	1	- Slight to moderate calcite± Fe dolomite -									
		sericite alteration assemblage	DT9573	7.0	8.0	1.0	Tr				
		- Very poor RQD's from 0.00 to 19.69 m	· •	· .							
		- likely fault zone as observed in core holes	DT9574	14.32	15.85	1.53	Tr				
		GT-85-05-11 & 12									
		- silica sweets locally distributed within									
		this area	DT9575	20.5	21.5	1.0	Tr				
		- foliations within this area 30-35° to							1		
		core axis	DT9576	28.0	29.0	1.0	Tr				
		- much of the rock in this area is talcose.							1		
			1	1	1	1			1		

Page 1


#### DRILL HOLE LOG

Hole Number

GT-85-5-13

FROM	то	DESCRIPTION	SAMPLE	METRES				CORE					
(m)	(m)	DESCRIPTION	NUMBER	FROM	TO	LGTH	Au						
		- Rock unit is much more compotent from 19.69m											
		to 31.30 m - good RQD.											
		- Unit becoming more calcitic downhole and			, , , , , , , , , , , , , , , , , , ,								
		darker in color.											
*******		- Calcite also occurs as veinlets and in	-										
		fractures											
· · · · · · · · · · · · · · · · · · ·		- Lower contact is gradational.	DT9577	30.5	31.5	1.0	0.07						
31.30	42.00	Dark green Fresh Mg Tholeiitic Basalts											
		- massive basalt, much interstitial calcite I	DT9578	33.0	34.0	1.0	Tr						
		chlorite as wisps and stringers.	· .										
			DT9579	40.0	41,0	1.0	Tr						
		- downhole the unit is becoming pales in											
		color with calcite content decreasing											
<b></b>		- RQD's good							_	<u> </u>			
							· .						
		- lower contact gradational											
	1		1 -	4									

Page .....2



#### DRILL HOLE LOG

ASSAY (gm/tonne) SAMPLE METRES CORE FROM TO DESCRIPTION NUMBER FROM TO LGTH (m) (m) Au 42.00 58.52 Mg Tholeiitic Basalt Pale green to budd colored basalt DT9580 44.5 45.5. 1.0 Tr Fe dolomite - calcite (slight0 - sericite DT9581 50.5 51.5 1.0 Tr alteration assemblage DT9582 56.5 57.5 1.0 Tr - calcite also occurs as thin veinlets - thin veinlets of silica sweets - unit appears to be primarily massive . - RQD's - fair to good. 58.52 END OF HOLE

•: .

.

Hole Number

GT-85-5-13

### APPENDIX B

# 1985 SUMMARY REPORT

### FOR THE

# GETTY-DAVIDSON TISDALE JOINT VENTURE

# TISDALE PROJECT

### CORE HOLE ASSAY SUMMARY

HOLE NO	57-8	5-119	<b>.</b>			E	ASCAV	e		Poge
ROJECT ABIT						TISD				•
ssay No.	From (m.)	To (m.)	Width (m.)	Piu ym Hoan						REMARKS
DT 7601	517	67	1.5	1,					 	
7602	85	10.0	1.5	0.07						
	11 -									
76.03	11.5	12.5		0.07					 	
<u>7607</u>	12.5	14.0	1.5	Tr					 	
7605	14.0			0.07						
7606		17.0		0.07						
7607.		1815	1.5	Tr.					 	
7608	135	19.0		T-	•					
7109	19.2	14.5		1-						
7610	19.5	20.0		T.						
7611	20.0	20.5	0.5	1,		'n				
7612	20,5	21.0	0.5	T.						
7613	21.0	21.5	0.5	T.						
7614	215	22.0	0.5	1.						
76.15	25.0	·	0.5	T-						
7616	22.5	23,0	0.5	1.						
7617	23.0	23,5	0.5	0.07						
76.8	2315	24.0	0.5	Tr	4					
76,9	2710	24.5	0.5	Tr						
7670	27.5	25.0	0.5	0.07		•				

HOLE NC		5-11	9		DRILL	CCE	ASSAY	S			Poge 20 3
PROJECT ABIT	<u>IBI</u>				PROPERTY _	TISD	TISDALE				Date
Assay No.	From (m.)	To (m.)	Width (m.)	Au gm/tonne	Til						REMARKS
057621	250	25.5	0.5	1r							
7622	25.5	26-0	0.5	Tr							
7623	26.0	26.5	0.5	0.07							
7624	26.5	270	0.5	1.							
7625	27.0	27.5	0.5	Tr		2	1999 <b>-</b>	e e e			
7676	27.5	280	0.5	0.07							V.g. in.box
7677	28 0	28.5	0.5	tu					-		
7628	28.5	24.0	0.5	1r							
7679	24.0	24.5	0.5	6.82			24				
7630	2.4.5	30.0	0.5	T-			·				
7631	300	36.5	0.5	Tr			÷				
7632	30.5	31.0	0.5	1r			с. А.				
7633	3110	3/15	0.5	1.							
7634	31.5	The second second second second second second second second second second second second second second second se	0.5	T.							
7635	320			T.							
7636	32.5	330		Tr		•					
7637	33.2-	33.5	0.5	T-							
+638		34.0		0.07							
76 34	3410	34.5		tr							
7640	34.5			4.18	4.35						
7641		35.5		0.07					-		
7642	355	360	0.5	Tr		•					1

HOLE NO	6т-	85 119			DRILL	C E	ASSAY	S.		Poge 3 3
PROJECT ABIT	181			. I		-				Bota
Assoy No.	From (m.)	To (m.)	Width (m.)	Au gn Hom						REMARKS
DT 7642	36.0	36.5	0.5	0.48				-		
76494	36.5	370	0.5	Tr				5,	· · · · · · · · · · · · · · · · · · ·	
7645	37.0	375	0.5	0.27						
7645	37.5	380	0.5	0.34						
7647	38.0	385	0.5	ナー	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
764 9,	38.5	39.0	0.5	1.65						
7679	39.0	39.5	0.5	0.75						
7640	34.0	40.0	0.5	tr						
7651	40.0	40.5	0.5	Τ.						
7652	40.5	41.0	0.5	0.14						
7653	1	41.5	0.5	0.07						
7654				Tr						
				11	4					
7655	427	4315	0.8	0.07						
7657	43.5	450	1.5	0.14						
76585	4-5.0	160	1.0	1.37						
7654	760	47.0	1.0	0.27						 
								-		 
7650	485	500	1.5	0.27						· · · · · · · · · · · · · · · · · · ·
				l						· · · · · · · · · · · · · · · · · · ·
						•		:		
· · · · · · · · · · · · · · · · · · ·				•				· · · · · · · · · · · · · · · · · · ·		 •

HOLE NO 6	T-85	-120			DRILL	C( 2	ASSAY	S		Poge
PROJECT _ABIT	IBI		•		PROPERTY _	TISD	ALE			Page Date
Assay No.	From (m.)	To (m.)	Width (m.)	Mu gm/Honne						REMARKS
057661	8.0	9.5	1.5	0.21						
7632	12.5		. 5						 	
	1615	14:0	1.5	Tr		· · · · · · · · · · · · · · · · · · ·				
7663	15.5	12.0	1.5	1-					·····	
7664				1/						
7665				11	T					· · · · · · · · · · · · · · · · · · ·
7666				1/						
7667				1-						
7663				0.07						
7670	2110 21.5			<u>0.07</u> 0.07	·					
	22.0			1,						
7672	22.5			Tr						
7673	23.0	24.5		0.48	<u></u>					
76-74	26.0	27.5	1.5	T-						
76/5	2010	2.5							 	
760	29.0	30.5	1,5	Tr					 	
76765	32.0	33.0	1.0	Ír					 	· · · · · · · · · · · · · · · · · · ·
		27.	<u>v</u>			• .			 	
								ļ		

HOLE NO. 6		5-120	]		DRILL	co : TISD	I	Poge 2 2 Date <u>Feln 4/85</u>		
Assay No.	From (m.)	To (m.)	Width (m.)	Ar your Home				н.		REMARKS
DT #17	33,5	34.5	1.0	0.07				-		
76#78	34.5	35.0	0.5	tr						
76 77====	40.0	41.0	1.0	0.07						
7680	41.0	42.0	1,0	1.					 	
7681	420	43.5	1.5	T.					 	
7682	43.5	45.0	1.5	0.07						
7683		460	÷	Tr	· .					
7684	46.0	470	1.0	T.						
7685	47.0	48.0	1.0	1.						
76.86	48.0	49.0	1.0	T-						
7687	44.0	50.0	1.0	1						
7688	50.0	51.0	1.0	1,						
7689	51.0	520	1,0	1	٩					
7690		53.0		1.	<u>i</u>					
7691	53.0	54.0	1.0							
7692	54.0	55.0	1.0	the second			-			
7693	55.6	56.0	1.0	1-						
76 94		57.5	1.5	Tr						
	¥		ļ							· · · · · · · · · · · · · · · · · · ·
NT7695	59.0	60.5	1.5	Tr						
				I	[	•				

н	DLE NC 6	57-8	5-121	<u>_</u>		DRILL	C)E	ASSAY	S			Page of Date
PROJ	ABIT	IBI			1	PROPERTY _	TISD	ALE				Date Tel. S/85
Asso 	y No.	From (m.)	To (m.)	Width (m.)	Au gultone							REMARKS
<u>D7</u>	7646	4.5	55	$f_{ij} \neq i$	Tr							
						-						
-	7697	27.5	260		0.07							
	76 5 5	260	26.5	0.5	0.07							
	7699	2.7.7	28:2	C.5	0.07							
	<u> </u>	<i>c-1</i> ,7	<u></u>	(	0.07							· · · · · · · · · · · · · · · · · · ·
	7700	2.4.0	305	1.5	Tr						,	
s	7701	30.5	31.5	1.0	0.07							
	7702	31.5	32.5	1.0	- Tr							
	7703	32.5	33.5	1.3	0.34		· · · ·					
·.	77 04	33.8	3415	0.7	0.21	٦						
	7705	34.5	35.0	0.5	.C.14	÷			•			
	7706	35.0	35.5	0.5	2.81				· ·			
	77:57	35.5	36.0	0.5	0.14							
	77:05	36.0	36.5	0.5	Tr	-			•			
· ·····	77 (.9	36.5.	37.0.	0.5	7-					· · ·		
-	7710	370	37.5	0.5	ゴー							
	11 FF	37.5	38:0	0.5	0.55							
	77/2-	38.0	34.0	1.0	Tr							
•	771-	39.0	34.5	0.5	T-							
	77/11	34.5	40.0	0.5	1r							

HOLE NO. $CF-25-121$ DRILL CC E ASSAYS       Page L of L         NO.       From       To       Midth $P^{+}/meth$ REMARKS         Say No.       From       To       Width $P^{+}/meth$ REMARKS         77.15       ( $no)$ ( $no)$ $P^{+}/meth$ REMARKS         77.15       ( $no)$ $0.5$ 1 $0.6$ $0.5$ 77.15       ( $no)$ $0.5$ $1$ $0.6$ $0.5$ $1$ 77.15       ( $no)$ $0.5$ $1$ $0.5$ $1$ $0.6$ $0.6$ 77.15       ( $no)$ $0.5$ $1$ $0.5$ $1$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ <												
stay No.       From (m)       To width (m) $\frac{4}{7}$ REMARKS $77.15$ $466$ $0.5$ $1    77.16$ $465$ $0.5$ $1    77.16$ $465$ $9.6$ $1    77.16$ $465$ $9.6$ $1    77.17$ $476$ $91.5$ $0.5$ $1    77.17$ $476$ $91.5$ $0.5$ $1     77.17$ $476$ $91.5$ $0.5$ $1     77.27$ $42.5$ $0.6$ $1      77.27$ $42.6$ $94.6$ $1.6$ $0.077$ $    77.28$ $57.6$ $57.6$ $1.0$ $7.21$ $    77.28$ $57.6$ $57.6$ $1.0$ $7.21$ $   -$ <th>HOLE NO. (</th> <th>37-85</th> <th>5-121</th> <th>]</th> <th></th> <th>DRILL</th> <th>ເຼີະ</th> <th>ASSAY</th> <th>S</th> <th></th> <th>,</th> <th>Page L of L</th>	HOLE NO. (	37-85	5-121	]		DRILL	ເຼີະ	ASSAY	S		,	Page L of L
stay No.       From (m)       To width (m) $\frac{4}{7}$ REMARKS $77.15$ $466$ $0.5$ $1    77.16$ $465$ $0.5$ $1    77.16$ $465$ $9.6$ $1    77.16$ $465$ $9.6$ $1    77.17$ $476$ $91.5$ $0.5$ $1    77.17$ $476$ $91.5$ $0.5$ $1     77.17$ $476$ $91.5$ $0.5$ $1     77.27$ $42.5$ $0.6$ $1      77.27$ $42.6$ $94.6$ $1.6$ $0.077$ $    77.28$ $57.6$ $57.6$ $1.0$ $7.21$ $    77.28$ $57.6$ $57.6$ $1.0$ $7.21$ $   -$ <th>ROJECT ABIT</th> <th>IBI</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>Date F-l- 5/85</th>	ROJECT ABIT	IBI									-	Date F-l- 5/85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ssay No.								· · · · ·			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7715	40.0	40.5	0.5	T-							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7716	40.5	4100	0.5	1.				· .			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	77,7	41.0	41.5		1.		-		·			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		41.5	42.0					-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		f			Tr							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		42.5	43.4	0.9	0.07	4						•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7721	43.4	45.0	1.6	0,07							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7722	48.0	44.0	1.0	1, ¹							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				 								· ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1720	50.0	5/10	1.0	(.21							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<b></b>	510	Eu.		017	-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		17:0	77.0	1.0	0.27		· · ·					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7775	550	50.00									
$\frac{7725}{7725} \frac{650}{695} \frac{665}{15} \frac{15}{15} \frac{0.07}{15}$	/10/	177	100	1.0								
$\frac{7725}{7725} \frac{650}{695} \frac{665}{15} \frac{15}{15} \frac{0.07}{15}$	7726	59.00	60.5	15	10							
7774 6915 710 1.5 T-			667	1.5								
7774 6915 710 1.5 T-	77 27	65.6	66.5	1.5	0.07							
		<b> </b>	<u> </u>									
	77-28	69,5	File	1.5	T-							· · · · · · · · · · · · · · · · · · ·
				EÓ	4 7	69.1	•					

HOLE NC C	GT-8	5-12	2		DRILL	CCE	ASSAY	S			Page 1 at 2
PROJECT ABIT	BI			. 1	PROPERTY _	TISD	ALE		M		Poge of Date E. 6. [55-
Assoy No.	From (m.)	To (m.)	Width (m.)	Au gm /tonne							REMARKS
DT 7729	15.5	17.0	1.5	Tr							
7730		30.5		Tr.				2			
77.31		32.0		0.07							
<u> </u>		33,5		<i>t</i> ,							
77.33	33.5	35.0	1.5	T.		•					·
7734	35.0		1.5	Tr							
77 35		380	1.5	7-							
7736	380	34.0	1.0	0.07							
7737	34.0			Tr	۳						17
7738	39.5	40.0	0.5	0.07				a.			
7739	40.0			Tr	-						Ata Usi
77 40	40.5	41.0		0.07							Satin
7741	41.0			0.07							Aty Users, Systers, - murdin to
7742		42.0	0.5	0.62							/
7743		42.5		0.41							
77 44		43.2		0.21	<b>J</b>						
77 45	43.2		{	Tr							
77%	44.7	460	1.3	Tu			i.				
4-22											
DT 7747	49.5	51.0	1.5	11							
						• • •					
			• 					<del> </del>	<b>a</b> .	Ŧ	

HOLE NO G	<b>r</b> - 8)	5-122		9999 1		C(E		S		•	Page 2 of 2 Date Feli 6/85
Assay No.	From (m.)	To (m.)	Width (m.)	Au yn/low	PROPERTY _	TISD	466		-		REMARKS
NT 7748	53.0		ισ	tr							
DT 7749	56.0	520	10	0.41							
						. 8					
· · · · · · · · · · · · · · · · · · ·											
							-				
	· · · · · · · · · · · · · · · · · · ·										
	•										······
											· · · · · · · · · · · · · · · · · · ·
						• • •					

HOLE NO. G		123-			DRILL	COPT	ASSAYS	S		P	090 0; 4	<u> </u>
PROJECT ABIT	BI			. 1	PROPERTY _	•				D	ote	
Assay No.	From (m.)	To (m.)	Width (m.)	Au gm/tonno							REMARKS	
DT7750	17.0	18:5	1.5	Tr								;
7751	220	230	1.0	<i>t-</i>							••••••••••••••••••••••••••••••••••••••	
7752	23.0			T,			С. (1)				!	
7753		752	1.2	T.					5.			
7754	25.2	260	0.8	7.							•	
7755	260	270	1.0	T_							; .	
7756	27.0	28:0	1.0	1-				,				
7757	28.6			T-				•				_
7755	240	30,5	1.5	1-								
7754	30.5	32.0	. 1.5	Tr								
7760	32.0		1.5	1 Tr				, 				
77()	33.5		1.0	0.41							,	
7762	3415	a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		2.40	٣							
7763		35.5		0.82						· ·	11:	
776.4	35.5	36.0	0.5	0.14							Vera	
7765	36.0	36.5	0.5	T-		•					System	
7766	36.5	37.0	0.5	T-		-		н.				
776.7	370		0.5	Tr							······································	
7768	37.5		0.5	0.07								
776.4	380			1,								
7720	38.5	3900	0.5	1.	ļ <u> </u>	•			ļ		· · · · · · · · · · · · · · · · · · ·	
	ļ l		1		1			<b>I</b>		]	•	

-

HOLE NO	5 T- 85	5-123			DRILL	COP-	ASSAY	S		1	Page 2 of 4
PROJECT ABITI	BI				PROPERTY _	•					Date
Assay No.	From (m)	To (m.)	Width (m.)	Au ym Honne							REMARKS
NT 7771		3915	0.5	1.			n giðar annar Leista			1	· · · · · · · · · · · · · · · · · · ·
			0.6	Tr	<b>b</b>						
7773	40.1	41.0	0.9	7-							
24											1
77 // 二字	42.5	4410	1.5	0.14		· · ·					
											•
_77.75 强				0.27							;
7776 77	47.0	48.0	1.0	7-			5. 				
							~				
7777 考	5 1.5	53.0	1.5	1.							
7784			1.0	Tr							
TT. 1 The	560	57.1	1.1	0.27							
77.80百	63.5	64.5	1.0	T-							
775151	15.5						х. Т				
7781 54	67.7	66.5	1.0	tr							1
7782 1	100	105	1.5	0.7							
T+ DX 55.	68.0	69.5	1.2	0.07				·			· · · · · · · · · · · · · · · · · · ·
7783 +	21.0	22.0		T	,,						
7784 55	270	72 ~		1/							
	760	750	1.0		·	•••			{		· 

											NAMES OF STREET
HOLE NO.	67-8	35-12	Ş		DRILL	C0^7	ASSAY	S		,	20ge <u>3</u> ( <u>4</u>
ROJECT ABIT	BI				PROPERTY _	TISD	ALE				Date
lssoy No.	From (m.)	To (m.)	Width (m.)	Au gm Hom							REMARKS
778546	73.0	7400	1.0	Tr				•			
77 50	7410	75.7	1.7	7-							
77 87		76.5		T.	7						
77 58				Tr							
7731				Tr							
7790		78.6		T,	·						
7791	78.0	78.5		T,							•
7792			0.5	T-							······································
7793			1.0	T-						· · · · ·	
7797		81.0	1.0	Tr							· · · · · · · · · · · · · · · · · · ·
<b>77</b> 95	1	82.0	1.0	7-			-				
7746		13.0	1.0	1.10							
77 97		84.0	1.0	1.03				•			
<b>77</b> 95	84.6	550	1.0	C.85							
7779			1.0	0.27						•	
7800	86.0	1	1.0	0.34	·						
7501	87.0		1.0	0.07							
2860	880	1	1.0	0,41				•			
7345		40.5	1.5	0.48							
7804	1	92.0	1.5	Tr							· · · · · · · · · · · · · · · · · · ·
- <del>Fill ( in</del> )		<b> </b>	ļ		ļ						
7805	94.5	101.0	1.5	<u>1'</u>		• • •	•				
		l	I	<u> </u>	Į	1	1	1	1		/

HOLE NO		-123-	_]		DRILL	C⊂E TISD		'S		Poge 4
isay No.	From (m.)	To (m.)	Width (m.)	Au gn Home	T			~		REMARKS
7506	102.5	103.5	1.0	1.						
										· · · · · · · · · · · · · · · · · · ·
7807	1818.5	110.0	· · · · · · · · · · · · · · · · · · ·	The second second second second second second second second second second second second second second second se						
7809 7809	110.0	111.5	1.5	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s						
+001	(11.5	1/3.0	1.5	Tr.						
7810	122.0	13.5	1.5	1						· · · · · · · · · · · · · · · · · · ·
	·								 	
						- 				
										· · · · · · · · · · · · · · · · · · ·
							•			
						• • •				

	HOLE NO,	T U	<u> </u>							, <b>1</b>			
* *	PROJECT ABIT		<u>) 77</u>			DRILL	• •	ASSAY: Ale	S .		1	Page or 2 Date Fel: 8/8	5
	Assay No.	From (m.)	To (m.)	Width (m.)	Au t-House							REMARKS	,
	PT 7311	11.0	120	1.0	Tr								
	7812	17.0	13.0	10	Tr								
	······································								· _			•	
	75 13	14:0	15.5	15	Ť-				<b>.</b>			ſ	
			·										
	75 14				Tr							· · · · · · · · · · · · · · · · · · ·	
	7815	25.0	26.5	1.5	0.07	,						; 	
	7816	1			Tr								
4	7917				0.07		•						
	7818				T.								
	7419				T.								
	7820				0.07					l			
	7821		the second second second second second second second second second second second second second second second s		0.07								
	79 22												
	78 23	35.8	36.3	0.5	6.38	6.45	4				6.42	, 1	
	7934				0.27							-	, , ,
	2825			1	0.07		<u> </u>						i
	7426	1	38.5	1	0.27							·	
	7927	38.5	46.0	1.5	Tr					<b> </b>			
	7.428	40.0	41.0	1.0	0.75								·
	79.24		42.5		0.64	ļ	]	ļ <u>.</u>			ļ		
	7530	46.)	44.0	1.5	11		•			<b> </b>		· · · · · · · · · · · · · · · · · · ·	
		]		1	1 · · ·	1	8 .	1	1	1	<u> </u>	•	

.

HOLE NO.		5-12.4				جرم TISD	S .		F	Dogo 2 of 3
Assay No.	From (m.)	To (m.)	Width (m.)	pri Itorna	,	Ry ; check				REMARKS
DT7831	49.0	50.0	1.0	1-						· · · · · · · · · · · · · · · · · · ·
7832	56.5	57.5	1.0	0.07						
7933	1	74.0		T-						•
<u>7334</u> 7335		75.3 760		T- 0.07						; 
7836	760	76.5 770	0.5	T-						
7838	+7.0	775	0.5	1,		•				G.U.S. Stany
7839 7840	775 78.0	28.0 78.5	0.5							
7341 7842	78.5 79.0	74.0	05							
743 43	74.5	80.0	6.5	0.89	· · · · · · · · · · · · · · · · · · ·					
75 44 75 45	800 845	81.0				3,50			3.54	
75 46	81.0	81.5	0.5			3.15			3.41	
74 48 78 49	820 82.8	82.8	0.5	1.44						
/ D //	02.9	83.5	0.7	<u>+0.07</u>		•	 1			

HOLE NO 6	ST-85	-12.4	]		DRILL	~0~-	ASSAY	, S		Prove $\mathcal{F} \subset \mathcal{F}$
PROJECTABIT	IBI					TISD				Page 3 3 Date Fel. 1185
Assoy No.	From (m.)	To (m.)	Width (m.)	A. your Home						REMARKS
NT7850	83.5	85.0	1.5	0.07						•
7851-	87.5	89.0	1.5	T_				-	 	
										1
7853	90.5	92.0	1.5	0.07					 	
										•
<del></del>										, 
					•					
					· · · · · · · · · · · · ·				 	·
				•		,		-		i
										, <b>1</b>
										······································
			·							
			·	4		• - 2	•			· · · · · · · · · · · · · · · · · · ·
										`

HOLE NO	7-85	-125		•	DRILL	COF	ASSAY	S	• P	ogo 3	-
PROJECT ABITI	BI			<b>.</b> 1		TISD	ALE			010	
Assay No.	From (m.)	To (m.)	Width (m.)	Au gon Home						REMARKS	1999 - Tong and a start of the second second second second second second second second second second second se
017853	5.0	6.0	1.0	Tr							
7854	6.0	20	1.0	0.07		(g	2. 				
78 <i>55</i>	70	8.0	1.0	0.21						· · · · · · · · · · · · · · · · · · ·	
7856	8.0	9.0	1.0	<u> </u>						ł	
7857	9.0	10.0	1.0	0:07							
7858	10.0	11:0	1.0	0.07						•	
7859	11.0	12.0		0.07				1		\$	
7860		13.0		0.07			Р 				
7861	13.0	14.0	1.0	1,		-	š.,		 		
7862	44.0	45.5	1.5	Ť-							
	47.0			C, C, T						•	
	48.5			T:					 		
7865		5115		<u>t-</u>					 .	i 	
7866	51.5	53.0		Tr						· · · · · · · · · · · · · · · · · · ·	
7867	53.0	54.5	1	1,					 	: •	
7865	5415			0.07							
7869	55.3				•						
7870	35.8	56.3		1-					 		
7871		56.8	the second second second second second second second second second second second second second second second s	1,					 		
7872	56.5	67.3	0.5	Tr		•	[		 		

					DRILL	COR.	ASSAY	S			Page _ 2	01 3	
PROJECT	-85-	-125			PROPERTY _				·		Date		
DRILL HOLE NO.	From (m.)	To (m.)	Width	Au ym Honn		Auch							
01 1873.	57.3	58.0	0.7	Tr			T						
7874	58.0	54.0	1.0	0.07									
7875	54.0	600	1.0	Tr									
7870	60.0	61.0	1.0	T-									
7877	61.0	600	1.0	0.21									
7878	620	650	1.0	11.:24		10.77				11.01			
7874	63.0	64.0	1.0	1.68		1.78	a.			1.73			
78.80	64.0	65.0	1.0	0.69									
1881	450	66.0	1.0	T-									
78.82	66.0	67.0	1.0	T		·							
7883	67.0	68.0	1.0	0.55									
78.84	68.0	640	<i>1.</i> e	T-		2							
78.85	64.0	614	1.6	0.07									
7886	696	71.0	1.4	T-				-					
		ļ	ļ										
78.87	72.5	73:5	1,0	Tr									
		ļ	<u> </u>										
7885	24:0	25.5	1.5	0.07									
			ļ	ļ,			<u> </u>						
7884	24.0	80. V	1.0	1.		<b> </b>	· ·						
		ļ					1.	· · · · ·				 	
1:1 7890	15415	86.0	11.5	11	<u> </u>			1			<u> </u>	<u> </u>	

and while some some such that the

.

 ÷

.

• .					DRILL	L COL ASSAYS					og• <u>}</u>	<u> </u>	-
OJECT 6 1	1-85	-12	5	•	PROPERTY _					D	010		
NLL HOLE NO.	From (m.)	To (m.)	Width (m.)	Au gn/ton	5								
								talan dari Man					
11 7591	92.5	93.5	1.0	0.07									
7892-	43.5	95.0	1.5	1.	à								
7893	101.0	1025	1.5	1-									
7894	114.0	115.5	1.5	0.07		1997 - A. 19							
7895	116.0	117.5	1.5	Tr				an an an an an an an an an an an an an a					
7896	12.5.0	124.6	1.6	T-								· · · ·	
		ļ			<u> </u>								
7.897	1560	157.5	1.5	11	l								
	<u> </u>		ļ								· · · · ·		
	1			<b>_</b>									
<u>.</u>		<u> </u>					1						
						.							
								! i	<u> </u>				
					- <u> </u>								
													<b> </b>

HOLE NC		5-12	6		DRILL	C :E	ASSAY	S		i	Poge
PROJECT ABIT	IBI				PROPERTY _	TISD	ALE				Poge Dote
Assay No.	From (m.)	To (m.)	Width (m.)	Au ym Home							REMARKS
DT7898	6.5	8.0	1.5	0.07							
7899	8.0	9.5	1.5	Tr					-		
7960	9.5	11.0	1.5	1-							
7901	11.0	12.0	.1.0	0.07							
7902	120	13.0	1.0	1-		·					
7903	13.0	14.0	1.0	1-							·
7904	14.0	15.5	1.5	0.07							
7905	15.5	12.0	1.5	1-							
7906	12.0	18.5	1.5	Tr							· · · · · · · · · · · · · · · · · · ·
7907	18.5	20.0	1.5	Tr							
7908	20.0	21.5	1.5	1-							
·······											······································
7909	23.0	24.5	1.5	1-							
7410	35.0	36.0	1.0	T.							
7411	54,5.	56.0	1.5	0.07							
79 12	57.0	58.0	1.6	1,							
7913	58.0	592	1.0	Tr			. :				
7914	60.0	61.0	1.0	1.		•					

HOLE NO 6		-126			DRILL	CCE	ASSAY	'S		Poge 2
PROJECT ABIT	181			AJ	PROPERTY _	TISD	ALE	•		 Dote _ Feb 12/85
Assoy No.	From (m.)	To (m.)	Width (m.)	gr /tom						REMARKS
DT 7815	62.0	63.0	1.0	1.						 
7916	63.0	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	the second second second second second second second second second second second second second second second s	Tr						
7917		650		0.07	7					 
79.18		65.5		the second second second second second second second second second second second second second second second se	$\geq$	2. 2. 3.				
7919		66.2								
7420		67.0		0.27						
7921		68.0		1-						 
7922		6415	The second second second second second second second second second second second second second second second se	0.07			1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 10000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -			
7923		71.0		1.71						
7924				T-						
7925	725	The second second second second second second second second second second second second second second second s		0.07			÷			
7926	74.0	75.5	1.5	Tr						
	80.0		1.5	Tr						
7828	81.5	83.0	1.5	<u> </u>						
									•	
						•				

HOLE NO G	T-85	-127			DRILL	CCE	ASSAY	'S		Poge
PROJECT ABIT	<u>IBI</u>			-	PROPERTY _					-
Assay No.	From (m.)	To (m.)	Width (m.)	Au gu/Homa						REMARKS
DT 7929	12.8	185	1.5	0.21					-	 
7462	20 0 22.0	21.5	15	T- T-			20	•		
7930	340	35.0	1.0	Tr					•	· · · ·
7931	350	36.5	1.5	0.41						
7932	36.5		1.5	0.34			n an			
7933	38:0			0.69						
7934	39.4	_	0.6	0.27	)	-				
7934	40.0			T-						
7930	40.5	413	0.8	T-						
7932	41.3	425		T-						
7938-	4.2.5			1.						
7939		45.5	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	T		$\mathbf{x}_{i}$ $\mathbf{y}_{i}^{k}$ , $\mathbf{y}_{i}^{k}$ , $\mathbf{x}_{i}^{k}$ , $\mathbf{x}^{k}$ , $\mathbf{x}^{k}$ , $\mathbf{x}^{k}$ , $\mathbf{x}^{k}$ , $\mathbf{x}^{k}$ , $\mathbf{x}$				
79 \$6	45.5	47.0	1.5	0.07						
	1.0.0									
79 41				T-						
79 12	50:5		1.0	T-				-		
70 43	545	53.0	1.5	0.07		• · ·				
79 44	53.5	5.7.7		Ĩ-						
77 77	1)17	54.5	1.0	1-						
79 -5	56.0	57.5	1.5		· · · · · · · · · · · · · · · · · · ·					
	76.00		1.5	<u> </u>						
						•				

HOLE NC		-127	]		DRILL	C⊂ E TISD	 S			Page
Assay No.	From (m.)	To (m.)	Width (m.)	A- yn/tan				-		REMARKS
DT 7946	54.0	60.0	1.0	0.14						
7947	60.5	62.0	1.5	T,				· · ·		
7947	620	63.5	1.5	T/						
										·
								:		
									·	
	. 									
······································										
	1					•	 			

				-						
HOLE NO		5-125	3		DRILL		'S			Poge of
Assay No.	From (m.)	To (m.)	Width (m.)	Ar youthouse						REMARKS
DT7949	17.0	18:5	1.5	T.						
7950	33.5	35.0	1.5	T-		<u>, , , , , , , , , , , , , , , , , , , </u>				
		39.5		Tr				ť		
79-7		the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in the second distance in		1/	1					
79-1	41.0 42.5			<i>T_</i> 0.07						
74-56		45.5		C.C7					-	
79		47.0	1.5	<u> </u>			 			
79	47.0	48.5	1.5	Tr						
79:0	51.5	53.0	1.5	T-						
79.,	560	57.5	1,5	0.21						
74 7	60.5	620	1.5	T-		5				
				/						

HOLE NO S	ويعتبنين وشياري ومقولات	129			DRILL	C( E	ASSAY	(S			
PROJECT ABIT	IBI			-	PROPERTY _		·	U			Poge 3
Assay No. DT-	From (m.)	To (m.)	Width (m.)	Au ym Honn							REMARKS
8001	3.3	4.0	6.7	0.5			1				
8002	4.0	4.5	0.5	1.							
8003	4.5	50	0.5	Tr						<u> </u>	
8004	5.0	55	0.5	Tr				-		<u> </u>	
8005	5.5	6.0	0.5	1,							
8006	6.0	6.5	0.5	0.07	·						
8007	6.5	7.5	1.0	Tir			1	-			·
8008	7.5	8.0	0.5	0.07				1	· ·		```
8009	80	8.5	0.5	Tr							
·											
8010	10.5	11.0	0,5	0.07							
<del></del>											
8011	34.2	34.7	0.5	T,							
8012	45.0	46.0	1.0	0.07							
						_					
_8013	65.0	66.0	1.0	T-						· ·	
8014	66.0	67.0	1.0	0.07							
8015	67.0	680	1.0	0.07							
8016	71.5	72.5		Tr							
_8017	72.5	73.5	1.0	FU 0		•	•	=			
										L	

HOLE NO.		5-129			DRILL	COPT	ASSAY	S		Dage 2 of 3	
ROJECT ABIT	IBI			•	PROPERTY _	۰ <b>۱</b>				Date <u>Max 1985</u>	
issay No. DT-	From (m.)	To (m.)	Width (m.)	Au gne /tonne		Ay check				REMARKS	
8018	82.5	83.0	0.5	Tr					 	, , , , , , , , , , , , , , , , , , ,	
8019	84.5	85.5	1.0	Ú.07							
8020	92.0	92.5	0.5	0.55					 	۱ 	
8021	101.0	102.0	1.0	T-						• •	
8022	106.5	107.0	0.5	T-							
8023	120.0	121.0	1.0	T-		•					
8024	123.0	1235	0.5	1-							
8185	124.5			11							
8025 BIBG	125.5 126.0	126.0	0.5	1.73 T/		1.78					رور بر المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع
8026	130.5	131.0	0.5	T-							
	1350	135.5	0.5	T-						****	<u> </u>
8028	138.0	139.0	1.0	0.14						· · · · ·	•
					•	• • •	-		 		

HOLE NC- 6	<u>T-85</u>	-129			DRILL	C E	ASSAY	S			Poge 3 of 3
PROJECT ABIT	I B I			•	PROPERTY _		•	•			Dote MAY 1985
Assay No. DT-	From (m.)	To (m.)	Width (m.)	As yn Acae		Ay check.		Ay Aver		% guorte	REMARKS
8029	140.0	140.5	0.5	C.75						4 une	
8030	1440	145.0	1.0	0.07						< 1%	
8031	145.0	145.5	0.5	0.75			<ul> <li>More than the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec</li></ul>		۲.,	6	TWEAK
<u> </u>	145.5	146.0	0.5	C.96		0.96		0.96		6	Q+z
8033	146.0	146.5	0.5	0.21		и				4	Vr.
80 34	146.5	147.0	0.5	2.05		1.85		1.96		10	STGTEM
8035	147.0	147.5	0.5	C:48					1.01	2	
60 36	147.5	146.0	0.5	0.75					4.7.	41	() :
80 37	148.0	148.5	0.5	Ir						6	
8038	148.5	149.0	0.5	0.07						10	
80 39	149.D	149.4	0.4	4.904		4.46		4.70		60	
80 40	149.4	144.7	0.3	1.00	*	0.89		1.00	5	410	v * visible gold
80 41	149.7	150.5	0.8	T-							ju
								-		·	
	•										
								•			
						• · •					

HOLE NC - G	<b>T- 85</b> -	129	<b>•••</b>				ASSAY				
PROJECT ABITI	BI			. (	PROPERTY _	~					Date Nos/19/85
Assay No.	From (m.)	To (m.)	Width (m.)	Au gr /tonne	Au cheik	Au metul		•		Hu ave	REMARKS
4851	145.0	145.5	.5	Tr			12				
52	145.5	146.0	ۍ.	3.57	3.29					3.43	
53	146.0	146.5	:5	4,94	5.14					5.04	
54	146.5	147.0	ى	1.37	1.71				•	1.54	
	147.0			1.03							
i	147.5			0.69							;
	148.0	•		7-							
	148.5			Tr Tr	· · · · · · · · · · · · · · · · · · ·			-			
4 860*	149.0	149.4									
7000F	147.4	1411		100.05	99.74	0.31				99.91	V.G.
-			, 					•			
				-							
				·						•	
											· · ·
						•					```······

HOLE NO G	T- 85	- 130	<b></b>			C∩E				
PROJECT ABIT	IBI						8			Page of Date 1985
Assay No. DT-	From (m)	To (m.)	Width (m.)	Au ym /tone						REMARKS
7976	6.5	7.5	1.0	0.07						
7977	7.5	8.0	0.5	T.			1.14			
7978	8.0	9.0	1.0	T.,						
7979	9.0	9.5	0.5	0.07				1		
7980	9.5	10.0	0.5	Tr						
7981	10.0	11.5	1.5	5-						
7982	11.5	(12.0) 0.5	0.5	T,						
	28.0	28.5	0.5	1.						
79.84	28.5	29.0	0.5	T-						
7985	29.0	29.5	0.5	T'r			 	<b> </b>		
7486	32.0	33.0	1.0	T.						
7987	35.0	36.0	1.0	T-			· · · · · · · · · · · · · · · · · · ·			
7988	36.5.	37.5	1.0	T,						
7989	49.0	50.0	1.0	6.07	4					
7990	58.5	59.5	1.0	T-						
						•				
· ]	i							<u> </u>		

HOLE NO 16		130			DRILL	C RE	ASSAY	(S			Poge 2 of 4
PROJECT ABIT			·	the second second second second second second second second second second second second second second second s	PROPERTY _	TISD	ALE			-	Date MAY, 1985
Assay No. DT	From (m.)	To (m)	Width (m.)	Ar gn /tonne							REMARKS
7991	60.85	61.35	0.5	T,							
7992	61.35	61.85	0.5	T-	•						
											· · · · · · · · · · · · · · · · · · ·
7993	65.5	66.0	0.5	0.21							
· · · · · · · · · · · · · · · · · · ·										1	
7994	77,5	78.5	1.0	T-							
7995	85.5	86.5	1.0	T-							
7001	91.5	20 5									
7996	41.5	92.5	1.0	T-							
7997	98.0	98.5	55	· Tr							
· ·	10.0	10.5	0.5	17							
7998	105.0	105.5	05	T-							
	3.0		0.5					-			
7999	110.5	111.0	0.5	T1							
8000	112.5	113.5	0.5	Tr			·				
							й. А				· · · · · · · · · · · · · · · · · · ·
											· · · · · · · · · · · · · · · · · · ·
	]										
. I	}										

	<b>I III IIII IIII</b>											
	HOLE NO G	T-85-	130	]		DRILL	CſĒ	899A)				
	ROJECT ABIT	181			_		TISD					Poge 3 of 4
	issay No. DT	From (m.)	To (m.)	Width (m.)	Au gm /tonu	1	Auchera			T	% qte	Date MAY 1985
	8042	121.0	121.5	0.50	0.07						1	REMARKS
	80 43	121.5	122.25	0.75	7-	5.		[				
	80 44	122,25	122.75	0.50	0.14							
· .	80 45		1235		1-							
	80 46	123.50	124.0	0.50	0.27	*				<u> </u>		
	80 47	124.0	124.5	0.50	1-		-					
	8048	124.5	125.0	0.50	0.41						<u> </u>	
									1			
•	<u> </u>	133.0	134.0	1.0	Ír							
	80 49	134.0	134.5	0.5	0.34						0	*
	80 50	134,5	135.0	0.5	Tr					<b> </b>	100	
	8051	1350	135.5	0.5	0.48						40	
•	8052	135.5	136.0	0.5	0.41				с		70	
•	8053	136.0	136.5	0.5	0.82					,	90	Q.v.5
	8054	136.5	137.0	0.5	0.41						100	Strony
۰	8055		137.5	0.5	0.69						<u>100</u> 70	
-	<i>no</i>	137.5			0.07					,		
•		138.0	138.5	0.5	0.55						30	
-	8059	138.5		0.5	2.61		2.85		- 46	4	0	Τ
-		139.0	139.5	0.5	Tr						<u> </u>	
-	8061		140,0	0.5	Tr						40	W Q.V.S
-	8062	140.0	140,5	0.5	0.07		•				5	
		<u> </u>	1				· T					¥

HOLE NO 6		130			DRILL	CCE	ASSAY	′S			Page 4 at 4 a
PROJECT ABIT	IBI				PROPERTY .	TISD	ALE				Poge 4 of 4 Date June, 1985
Assay No. DT	From (m)	To (m.)	Width (m.)	A. yn Home						%. qtz	REMARKS
8063	140.5	141.0	0.5	0.07						1	A A
8064	141.0	141.5	0.5	0.41				1		0	
8045	141.5	142.0		Tr				1		75	
8066	1420	142.5	0.5	Tr						10	w Q.v.e
8067	142.5	143.0	0.5	0.07					<u> </u>	58	
8069	143.0	143.5	0,5	0.07			1			0	
8069	143.5	144.0	0.5	0.69						8	· · · · · · · · · · · · · · · · · · ·
8070	144.0	145.0	1.0	Tr						0	
							-				
8071	1475	148.5	1.0	0.27					· ·	0	
									,		
							•				
						•					
·	1					, <b>I</b>			1		<b>J</b>

ί¥.,

HOLE NO G		30			DRILL	CAR	ASSAY	S .		:	Poge 11
PROJECT	BI			. 1	PROPERTY _	TISD	ALE				Page II Date
Assay No.	From (m.)	To {m.)	Width (m.)	Au gn /tam	H. chart			·		Au are	REMARKS
4861	134.0	134:5	ۍ.	Tr							
62	134.5	135.0	·5	T-							
63	135.0	13.5.5	.5	Tr		1. 1.				:	
64	135.5	136.0	.5	Ţr							
65	136.0	136.5	.5	0.07				.i.el			
	136:5	137.0	-5	1.30							:
67	137.0	137.5	•5	0.07							
	137.5	138.0	-5-	Tr	·						
		138:5		0.07							
4870	138.5	1.39.0	.5	0.21		•					
7/	139.0	139.5	.5.	0.34							
	139.5		.5	Tr							
	140.0	1	5	T-				•			
	140.5		<u>ى</u>	Tr.							
		141.5		T-						•	
		142.0		T-							
77	1 1 a	142.5		0.07							
		143.0		1.30							
		143.5	9	0.14	[			-			
4880	1435	144.0	.5	0.27							
				]		•					
	-	-	l.	<b>1</b>	•			3	•		•

										nin mar san inge
HOLE NO		5-131	]		DRILL		ASSAY:	S		Poge of Dote 6 1985
Assay No. DT-	From (m)	To (m.)	Width (m.)	Au ym Itenne						REMARKS
8072	3.0	4.0	1.0	0.4						
: 8073	4.0	5.0	1.0	Tr						
8074	10.5	11.0	0.5	4r						
8075	14.5	15.0	0.5	0.07						
8076	16.5	17.0	05	T-						
8077	23.25	23,75	0.6	Tr						
8073	39.5	40.0	0.5	T						
8079	40.0	410	1.0	T-						
8080	49.5	50.0	0.5	1-						
8081	57.5	58.0	0.5	1,						
9.082	58.0	58.5	0.5	Ţ.						
8083	60.5	61.0	0.5	11						
8094	63.5	69.5	1.0	Ţ1		•				· · · · · · · · · · · · · · · · · · ·

HOLE NO 6		- 131	]	-		C( E TISD		(S		Page of Date 6 1985
Assay No. DT	From (m.)	To (m.)	Width (m.)	Au ym Home	-	Au check		Au Aue	v/c quartz	
8085	79.5	80,5	1.0	T-						
8086	80.5	81.0	0.5	0.07					42	T
80 87	81.0	81.5	0.5	Tr					3	madarate R.V.S
80 <i>2</i> B	81.5	82.0	0.5	1.10		A.			90	Micharate (X. V.D
80 89 *	82.0	.82.5	0.5	17.35		17.55		17.45	90	
8090	82.5	83.0	0.5	Tr					0	visible get
80 91	83.0	83.5	0.5	6.45		6.03		6.24	20	
60 92	83.5	84.5	1.0	1-						
<b></b>										
8093	86.50	87.0	0.5	In						
	<u> </u>									
8094	39.0	89.5	0.5	Tr						
2095	89.5	90.0	0.5	Tr						
<b></b>										
3096	115.0	115.5	0.5	1.92		1.78		1.85	20	Т
8097	115.5	i16.5	1.0	0.62			-		0	
8098	116.5.	118.0	1.5	0.07					0	
3099	118.0	118.5	0.5	T-					 0	
81.00	118.5	119.0	05	0.69					26	w Qus
8101	119.0	119.5	05	0.34					60	
BI 02	19.5	1210	1.5	Tr					3	· · · · · · · · · · · · · · · · · · ·
B103	121.0	122.0	1.0	1-		• .			0	
					[			++		

HOLE NO G	T- 85-	-131			DRILL	C( F	ASSAY	/9			2 4
PROJECT ABIT	<u>IBI</u>				PROPERTY _			13			Poge 3 st 4 Date June 6, 1985
Assay No. DT-	From (m.)	To (m.)	Width (m.)	Au gma Home		Aucheck		Au	41 ¹	10 que Te	Date <u>June</u> 6, 1985
8104	122.0	122.5	0.5	0.21		theck		Ave		·	
8105	122.5	124.0	1.5	Tu			<u> </u>			7	w QH2 Vr Sys
8106	124.0	124 5	0.5	0.07						0	
* 8107	124 5	125.0	0.5	0.07						3	
<u>8108 *</u>	1250	125.5	0.5	1.51		1.58		1.55		6	
8109	125.5	126.0	0.5	Tr				1.55		30	Visible Gold
8/ 10	126.0	126.5	0.7				· · · ·		<u> </u>	0	
8111	126.5	1270	0.5	Tn						4	<u>Y.</u>
8112	1270	127.5		0.21					<u> </u>	0	
3113	122.5	1280	0.5	0.41						45	F
3114		1.28.5		Tr						100	
81 15	128.5	129.0	0.5	7.13		7.71		7.42		100	
8116	1290	129.5	0.5	0.07				1.12		20	
8117	129.5	130.0	0.5	0.27						90	
81 18	130.0	130.5	0.5	3.77		3.70		3.74		100	
8119	130.5	310	0.5	0.21						70	
<u>B120</u>		131.5		3.03		2.88		245	2.95	90	<i>·</i>
<u>BI21</u>	131.5	1.320	0.5	Ir				I UPIC		100	
81 22		1325		0.21						100	
8123		1.33.0		Tr						100	
81 24		133.5		8.98		8.78		8.88		40	× ·
81 25	133.5	134.0	0,5	0.14		•					-

												NGO NANG UNING UNING
	HOLE NO		-131			DRILL	C IE	ASSAY	S		;	Poge 4 of 4 Date June 6, 1985
1	PROJECT ABIT		r			PROPERTY_		ALE				Date June 6 1955
	Assay No. DT	From (m)	To (m.)	Width (m.)	Au gu /tonne	. 5	Au check		Au Ave		% yte Vas	REMARKS
•	8126	134.0	134.5	0.5	1.30						P C Vas	
•	8127	136.0	137.0	1.0	0.62							
	8128		137.5	0.5	Tr.						40	T
<i>*</i> .	8124	137.5	133.5	1.0	0.07						2	
	81 30 *	138.5	139.0	0,5	8.50		8.23		8.37		10	wQ.vg.
	81 31	139.0	139.5	0.5	2.54		2.33		2.44		28	
	81 32	139.5	140.0		0.89						6	
	8133	1400	1410	1.0	0.75						0	
	81 34	141.0	141.5		Tr.						2	
	8135	141.5	142.0		44.64		48.84		46.74		4	
-	8136	142.0	142.5	0.5	0.75						30	
	8137	149.0	149.0	1.0	0.27							
											•	
						[				-		
												· · · · · · · · · · · · · · · · · · ·
		L					•	. !				
					1							

HOLE NO. G		3/	]	. 1		CPRE TISD		S			Page
Assay No.	From (m.)	To (m.)	Width (m.)	A- y-/tar	n- check	Au metalic		•		A. ore	REMARKS
4881	80.5	81.0	.5	T,							
82	81.0	81.5	.5	Tr							
	81.5	82.0	.5	0.69							
	82.0	82.5	-5	93.77	93.77	1.54			<u>, </u> , è	93.72	V.G.
	825	83.0	.5	5.42	5.55				 	5.49	
86	<u>83</u> .0	835	5	8.64	9.81			· .	 	9.23	
87	115.0	115.5	.5	4.18	.4.56					4.37	
88	115.5	116.5	1.0	2.61	2.54					2.58	
4889			1.5	Tr							
48 90	118.0	118.5	.5	0.07					ļ		
	118.5	119.0	:5	0.07							
92		119.5	.5	Tr				•	ļ		
93_	119.5	121.0	15	Tr	ļ	ļ					
<u> </u>	121.0			Tr		·			ļ	· ·	
<u> </u>		122.5		1.					<b> </b>		
<u> </u>	1	124.0		1,		<u> </u>			<b> </b>		· · · · · · · · · · · · · · · · · · ·
<u>97</u> 98	1 ace	1245		T- T-							
		125.0									
4900	125.0			1.40 T-	1.54	0.03	•			1.47	V.G.
4901		126.0 126.5		1-		• • •	•				· · ·
	1260	126.5		¹						+	

						. <b> </b>					
HOLE NO. GT		3/			DRILL	CPRE	ASSAYS	5			Poge H3
ROJECT ABIT	BI	•		•	PROPERTY	TISD	ALE			-	Date
lssoy No.	From (m.)	To (m.)	Width (m.)	Au gu lithne	A- check	÷		•		A. are	REMARKS
4 902	127.0	127.5	.5	T							
03	127.5	128.0	:5	T-							
04	128:0	128.5	.5	T,							
	128.5	129.0	.5	Tr				-			
06	129.0	129.5	15	3.64	3.22					3.43	
07	129:5	130.0	5	0.82							:
08	130.0	130.5	.5	0.34							
<u> </u>	130.5	131.0	.5	1.71	.1.78					1.75	
4910	131.0		•5	0.48							
1		132.0	.5	3.84	4.18					4.01	
	132.0		.5	0.07							
		133.0	.5	1.23							
14	13.3.0	133:5	:5	31.54	32.50			•		32.02	
4915	137.0	137.5	.5	1.92	1.92					1.92	
	137.5	138.5	1.0	Tr				-			
	138.5	139.0	.5	8.16	8.85	7-				8.51	V.G.
	1.39.0	1395	5	3.84	3.43					3.64	
	1395	140.0	.5	2.54	2.61				<b> </b>	2.58	
20	140.0	1410	1.0	0.55	<b> </b>						
2/	141.0	141.5	5	Ir					ļ		
4922	141.5	142.0	5	9.12	8.71	•				8.92	

											an unio antos da
HOLE NO. 37	- 85-1	3/			DRILL	CPPE	ASSAY	S		(	Poge 1
PROJECT ABIT	<u>1BI</u>			•	PROPERTY _					I	Page <u>3</u> 1 <u>3</u> Date
lssay No.	From (m)	To (m.)	Width (m.)	A. gn /tan			÷				REMARKS
4923	1420	142.5	.5	0.07							
					ų.						
		·····									
						·					÷
		·									•
				<u> </u>	· · · · · · · · · · · · · · · · · · ·					······	
						•					
						-					
							2	•			
			<b> </b>	1							
				[					-		
								·			· · · · · · · · · · · · · · · · · · ·
			·								
			ļ				•				
	ļ	<b></b>	ļ			• • •		-			
	I .		I	1	1				1	1	

ļ												
	HOLE N 6	T-:85-	- 132	]		DRILL	C ₹E	ASSAY	S		P	oge
1	ROJECT ABITI	BI				PROPERTY _	TISD	ALE				
	ssay No. DT	From (m.)	To (m.)	Width (m.)	Au ym/tonne						% quarte	REMARKS
	8138	3.0	4.0	1.0	Tr			-				
	8139	4.0	5.0	1.0	0.07							
	8140	20.5		1.0	0.14							
÷.	8141	44.0	•	0.5	70.0							
	8142	53.5	54.5	1.0	0.07							
-												:
	8143	59.6	<u> </u>		0.21							
	8144	60.5	61.5	1.0	0.07							
							•					
. •	8145	72.5	74.0	1.5	Tr							
5												
•	8146	80.0	81.0	1.0	Tr				47 		1	
	8147	81.0	81.5	0.5	0.07				•		20	
•	8148			1.0	Tr						50	
. •	8149		83.5		0.07						50	
•	8150	835	84.5		0.07						75	
	8151	84.5		• •	Tr						20	
•	8153	85.5	86.5		1:23					-	40	
•	8154	86.5	87.5 88.5	1.0	0.14						30	
'	8155	87.5 88.5	89.5	1.0	0.41			·	· · · · · · · · · · · · · · · · · · ·		40	
•	81 56	00.5 89.5	90.5	1.0	0.41		•				- 4	
		- 1.7	10.5						ļ	ļ		

				, -1					•	• •		
	HOLE N 6		132			DRILL	( RE	ASSAY	S	·	ı	Page 2 3
P	ROJECT ABIT	BI				PROPERTY _	TISD	ALE			1	Date
7	ssay No. DT	From (m.)	To (m.)	Width (m.)	Au y=/tone		Aucheck		Au overage		% y.verte	REMARKS
-	8157	90.5	91.5	1.0	0.41						3	
	8158	93.5	<u>94.</u> 0	0.5	0.34							·
-	8159		106.75		0.07		*				60	
-	8160		107.25		1-						16	
-	8161		108.25		T,						0	
-	8162		108.75		1.			: 			5	
	<u>B163</u>		104.25		1, 1,						60	
-	8164	109.25	109.75	0.9			• •		, , , , , , , , , , , , , , , , , , ,	<u> </u>	20.	
-	8165	114.5	115.5	1.0	0.69						0	
-	8166	115.5	116.0	0.5	8.64		8.98		. 8.81		5	
-	8167	1160	116.5	0.5	1.						100 -	
•	8168		117.0	0.5	17.90		17.62		17.76		95	VISIBLE Gold
-	8169	· · ·	117.5		· · · · · ·						95	
•	<u>B170</u> B171	117.5		10	<u>1r</u>						100	
	8172	118.5	120.5		0.07 Tr		<u> </u>				95	
•	8173	120.5	1		Tr						100 100	
-	8174		121.5		8.43		7.82		8.13		80	
	6175	121.5		· · · · · · · · · · · · · · · · · · ·	72.07		•73.44	•	72.76	·	90	VISIBLE GOLD

and the seal that the same and the same and the same and the same and the same

1

(						-	•	•	•		6	
HOLE Nº 6		132	_		DRILL	C :E	ASSAY	S			Poge 3	3
PROJECT ABIT	IBI				PROPERTY _		ALE				Dote	
lssay No. DT	From (m.)	To (m.)	Width (m.)	Au gm Honne		Ai check		. Au Averege	2. P N	% yvartz	REMAR	KS
8176	122.0	122.5	0.5	62.88		62.61		62.75	*	80	VISIBLE	Gold
8177	122.5	123.0	0.5	23.66		23.73		23.70	4	80	VISIBLE	6.10
8178	123.0	123.5	0.5					4,53	¥	80	VISIBLE	GOLD
: \$179	123.5	124.0	0.5	5.83		5.52		5.68	· - ¥	80		
8 1 80	124.0	125.0	1.0	1.03				ч <i>а</i> Х				
8192	125.0	126.5	1.5	1-						/	:	
8193	126.5	128.0	1.5	1r						/	:	
8187	1280	129.0	1.0	Ir								
81 81	129.0	129.5	0.5	2.19		1.92		2.06				
8188	129.5	131.0	1.5	0.07								
8189	131.0	132.25	1.25	Ir								
8182	132.25	132.75	0.5	1.71		1.65		1.68				
8190	132.75	133.5	0.75	Ir								
8183	133.5	134.0	0.5	3.84		3.63		3.74				
8191	134.0	135.0	1.0	0.27			·					
9184	136.75	137.25	0.5	tr								
			· · ·									
												·
						• •	•					
-	1		1	J	1	1	J	· · · · · · · · · · · · · · · · · · ·				

nin san and											
HOLE NO. GT	- 85-1	132	]		DRILL	CPTE	ASSAYS		1		Pace / at 2
PROJECT ABIT				. 1		TISD					Page 1 21 2 Date Noufra 185
Assoy No.	From (m.)	To (m.)	Width (m.)	Au gn/tour	Aucherk	A. etl		•		A.	REMARKS
4924	81.50	82.5	1.0	0.41		mener					
/	82.5	83.5	1.0	0.41			-				
26	83.5	84.5	1.0	1.13							
27	84.5	855	1.0	1.23			·		•		
*28	85.5	86.5	1.0	1.10				~			
29	86.5	87.5	1.0	0.34							:
4930	87.5	88.5	1.0	0.69	) 						
31	106:25	106.75	.5	Tr							
	106.75	107:25	5	1-							
· .		108.25		T.							
		108.75		T.							
35	108.75	109.25	5	Tr				•			
		116.0		2.89	2.95					2.92	
		116.5		Tr							
	116.5	1	-5	40.39	41.08	1.99				40.74	V.G.
		117.5		0.07							
<u> </u>				Tr							
	118.5	119.0	.5	0.82 T-						<b> </b>	·
4943		120.5	<u>1.5</u> .5	Tr							
	1203	121.0	<u> </u>							<b> </b>	· · · · · · · · · · · · · · · · · · ·

											ini unu suut (
HOLE NO.		-132			DRILL	CPPE	ASSAY	S .			Page 1
ROJECT ABIT					PROPERTY _	TISD	ALE				Page 1
ssay No.	From (m.)	To (m.)	Width (m.)	Au gn/daar	Au check	A	a do ang ang ang ang ang ang ang ang ang ang ang ang ang ang ang ang ang ang ang ang	•		A. Ave	REMARKS
4944	1210	121.5	:5	3.70	3.77				х.	3.74	
45 1	121.5	122.0	.5	74.57	74.57	10-11				74.57	V.G.
	122.0	1225	5	33.98	31.79	0.86				32.89	V.G.
47 4	122.5	123.0	.5	138.74	138.07	15.67			•	138.41	V.G.
48 *	123:0	123.5	.5	4.32	4.73	0.07	Ċ			4.53	V. G.
<u> </u>	123.5	124.0		5.14	5.01					5.08	:
									a de la compañía de l		
······································											
						•					
	· .		<u>`</u>								
	ļ						1				
			l					•			
						*					
	ļ										
,	·										· ·
									-		
		ļ								1	
										1	
	ļ								•		
	<u> </u>					•				1	
	l	1	1	1	1		[	1	1	1	

HOLE NC G		05-01			DRILL	cć :	ASSAY	S	· · · · ·		Page C R	
PROJECT ABIT	IBI				PROPERTY _	TISD	ALE	<u>.</u>			Date Sem 1985	_
Assay No. DT	From (m.)	To (m.)	Width (m.)	Au gn /tonne		Au check	Motolic Regulture			A. H.e	REMARKS	
8501	0.0	1.5	1.5	Τ,								<u> </u>
8507	1.5	2.5	1.0	T-								
8503	2.5	3.0	0.5	T-							1	
8504	3.0	3.5	0.5	Tr		· ·						
* <u>8505</u>	3.5	4.0	0.5	.96								
8506	40	4.5	0.5	.27							0.20/6.50	
8507	4.5	5.5	1.0	.69								
8508	5,5	6.5	1.0	T.					· · · ·			•=====•
8509	6.5	7.5	1.0	T-		-						
8510	7.5	8.0	0.5	T-		ć						······
8511	<b>१</b> .()	9.0	1.0	Tr							$\checkmark$	
6512	9.0	10.0	1.0	1.92		1.82				1.87		
8513	10.0	110	1.0	.62								
8514	11.0	11.5	0.5	.13.58		13.10	-			13.34	$\Lambda$	
8515 1	11.5	12.0	0.5	1.75		1.71	Tr.			1.7.3	V.q.	
8516	12.0	12.5	0.6	T-								
8517	12.5	13.0	0.5	.75							18.80 / 6.0	
8516 0	13.0	13.5	0.5	206.74		201.94	1.37			204.34	v.q.	
8519	13.5	14.0	0.5	.55								
85 20	14.0	15.0	1.0	1.17.								
25 21	15.0	15.5	0.5	T-								
8522	15.5	17.0	1.5	Tr		•	. ,				L V	

nan han nan han han dan nan han han han han han han h

<b>ilinin quint inin</b>										NAME WING SAID UNDE
HOLE NI GT		5-01			DRILL	с <i>С :</i>	ASSAY	′S	·	Page
PROJECT ABIT	IBI			-	PROPERTY .					Date Ser 85
Assay No. DT	From (m.)	To (m.)	Width (m.)	Au g-Home						REMARKS
8523	17.0	17.5	0.5	T.						
8524	17.5	18.59	1.09	T-						
· · · · · · · · · · · · · · · · · · ·			ļ							,
· · · · · · · · · · · · · · · · · · ·			ļ							
<del>8</del>			<b> </b>	 			•			,
· · · · · · · · · · · · · · · · · · ·										
•			ļ							
·							·			
······										 
					·	· · · · · ·				

HOLE NO G	<u> 7-85-</u> 0 ВІ	05-01	]		DRILL					f 	Dage 2 ( 2 Date Nov 14/83
Assay No.	From ( m.)	To (m.)	Width (m.)	Ru gran	Au sheek						REMARKS
8773	17.0	17.5	0.5								
8774	17.5	18:59	1.09	t R							
											·
		<u> </u>	<b> </b>	· ·				· · ·			•
		ļ		<b> </b>							
,					<u>.</u>		•				-
		<b> </b>							· · ·		
			<del> </del>								
				<u> </u>							
							:				
<i>"</i>		<u> </u>									
<u></u>				· · · · ·							
	{	1	1	<u> </u>	1						
											· ····
	1			1		1					
<u>,</u>		1	· ·								
<u></u>								1			
							1				
		]		T	]	• • •	ŀ				

HOLE NO. T		5-01			DRILL	00	ASSAY	S			Page 0: Date 1 14 / 85
PROJECT ABIT	BI				PROPERTY _	TISD	ALE		×		Dote Nev: 114/85
Assay No.	From (m.)	To (m.)	Width (m.)	Au gear	Aucheck	netallic Au g <b>A</b> AM	1				REMARKS
8751	0.00	1.50	1.50	± R	· .						
52	1.50	2.50	1.00	tR							
53	2.50	3.00	0.50	t.R.							
54	3.00	3.50	0.50	•34							
*55	3.50	4.0	0.50	tR_							
56	4.0	4.50	0.50	1.92	2.13					2.03	·
57	4.5	5.50	1.00	.48			•				:
58	5.50	6.50	1.00	ÉR							
59	6.50	7.5	1.00	±R_	ļ						
8760	7.5	8.1	0.50	t R							
61	8.0	9.0	1.00	ÉR	ļ						
62	9.0	10.0	1.00	.69							
8763	10.0	11.0	1.00	.89				<u> </u>			
64	11.2	11:5	0.5	ÉR							
65	11.5	12.0	0.5	2.88	3.22	t.r.				3.05	V.G.
66	12.0	12.5	0.5	.07				•			
	12.5	13.0	0.5	1.30							
68	13.0	13.5	0.5	591.44	587.72	7.68		ļ		591.44	V.G.
1,9	13.5	14.0	0.5	t R							
8770	14.0	15.0	1.00	.07							
71	15.0	15.5	0.5	ÉR							
72	15.5	17.0	1.5	ÉR	·	•					

HOLE NI GT	- 85 - 05	-02		·	DRILL	CE	ASSAY	′S			Page	2
PROJECT ABIT	IBI			_	PROPERTY _	TISD	ALE				Date <u>St</u> PT	85
Assay No. DT	From (m.)	To (m.)	Width (m.)	Au gm /tome		Au check	motily			Au Auc	REMARK	
8525	0.0	1.0	1.0	Τ.	-							
8526	1.0	2.0	1.0	T-								
8527	2.0	2.5	0.5	.34								<u>入</u>
8528	2.5	3.5	1.0	. 34								
8529	3.5	4.5	1.0	T.	N 1		•					
85 30	4.5	55	1.0	Tr								
85 31	5.5	6.5	1.0	.27					1		:	4.23/1.50
3,5 32	6.5	7.0	0.5	.41								
85 33	7.0	7.5	0.5	Tr								
95 34	7.5	8.0	0.5	12.0		12.93	-		1	12.47		
8535	8.c	8.5	0.5	.27						1		
<u> </u>	8.5	9.0	0.5	58.97		56.91	,10			57.94	v.g.	
85 37	9.C	9.5	0.5	T-					1			
85 38	9.5	10.0	05	.07								
85 39	10.0	10.5	0.5	4.39		3.91				4.15		
85 40	10.5	11.0	0.5	.41	•							
8541	110	1.5	0.5	3.02		3.02				3.02		V
8642	11.5	13.0	1.5	Tr								
8543	13.0	14.5	1.5	.07								
8544	14.5	15.0	0.5	T-								
85 45	15.0	155	0.5	Tr								
8546	15.5	16.0	0.5	1.37		•	•					

- The same and same same same same same same and and same same same same

- (

:

HOLENG		5.02			DRILL	с⊂ ,е	ASSAY	ís í	·		Page 2 u1 2 Date 5EPT 85
PROJECT ABIT				•	PROPERTY	TISD	ALE			_	Date SEPT 85
Assay No. DT	from (m.)	To (m.)	Width (m.)	As yn An							REMARKS
8547	16.0	17.5	1.5	Tr				1			
85 48	17.5	R.O	1.5	T-							
. 8549	19.0	20.42	1.42	T							· · · · · · · · · · · · · · · · · · ·
						-					
						ана стана А					
							·				

HOLE NC G	T-85-	05-02	7		DRILL	CO :	ASSAY	S		- - Pi		
PROJECT ABIT	BI	· · · · · · · · · · · · · · · · · · ·		. 1		TISD				D	oge & ate	
Assay No. 🗠	From (m.)	To (m.)	Width (m.)	Au gram	Ay check	Mctallic Au grad	-				REMARKS 1	
8775	0.0	1.0	1.0	t.R.								
8726	1.0	2.0	1.0	•41								ورجعت فالمتحدث والتك
27	2.0	2.5	05	.48								
25	2.5	3.5	1.0	.27							1	
		4.5	1.0	t.R.							£	
8730	1	5.5	1.0	ŧR	· · · ·						•	
3/	55	6:5	1.0	£R.							<u>}</u>	
32	6.5	7.0	0.5	t R	· •			· · ·			·	
	7.0	7.5		<u> </u>								
	7.5	8.0	1	6.10	6.45	·			· · ·	6.28		
35		8.5							1		11:0	
	8.5	9.0	0.5		63.77	-86				63.43	V.G.	
	9.0	9.5		21				·			•	•
	9.5	10.0	1	1								
	10.0						1		1	10.01	· •	
	10.5 11.0		1	1	18.72	1	l	-		18.21	l	
42	1	13.0	0.5	$\frac{tR}{tR}$								
4-10-00-00-00-00-00-00-00-00-00-00-00-00-	13.0			t R				1				
	13.0			ER ER					1			•
	15.0	1	1	tR tR	<b> </b>						······································	<b></b>
	155					•		1	1			
				1	<del> `</del>	1	1	-	<u> </u>	<u> </u>		

nan sing sing tank thin with the sing time sing time time time

1

ABIT		05-0L			DRILL			-		Poge
y No.	From (m.)	To (m.)	Width (m.)	Au gran	Av chark					REMARKS
9747	16.0	17.5	1.5	tR						
	17.5	1 ·	1	0.07						
8749	19.0	20.42	1.42	0.07						
										:
					1					·
	<u> </u>	· .			-					
									· · · · · · · · · · · · · · · · · · ·	 
······										
	ļ	<b> </b>								 
							5 ²			 
	ļ			<u> </u>			ŀ	•		 
	ļ			· · · · · · · · · · · · · · · · · · ·					 	 
	ļ									
	ļ			ļ						 
				·		÷ .				
	<b> </b>	<b> </b>								 
		ļ	···							
	<b> </b>	<u> </u>					•			 
	<b> </b>	<b> </b>				•				

HOLE N GT-	-85-05-	03			DRILL	CE	ASSAY	S .	•		Poge	- 2	
PROJECT ABIT	<u>IBI</u>				PROPERTY _	TISD	ALE		·····	•	Date SEA	PT 1985	
Assay No. DT	From (m.)	To (m.)	Width (m.)	Au gn/tonne		Ay check	njetu in Kine	· · · · · · · · · · · · · · · · · · ·		Au ane	REN	ARKS	
8550	0.0	1.0	1.0	.69									
8551	1.0	1.5	0.5	. 14					ļ			<b></b>	$\mathbf{A}$
. 8552 @	1.5	2.0	0.5	61.02		62.40	•10			61.71	v.g.		
8553	2.0	2.5	0.5	3.50		3.12				3.31	V		
8554	2.5	3.0	0.5	T-									
8555 8	3.0	3.5	0.5	3.22		3.50	T-			3.36	v.g.		<b>—</b>
8556 •	3.5	4.0	0.5	25.03		26.06	T-			25.55	v.g	9.50/ 6.6	
8557	4.0	4.5	0.5	6.17		5.35				5.76			
8558	4.5	5.0	0.5	T-									
8559	5.0	5.5	0.5	.34									7.28
8560	5.5	6.0	0.5	.34									
8561	6.0	6.5	0.5	4.17		3.77				3.94_		Y	T
8562	6.5	7.0	0.5	T-				-			104.45		<b>—</b>
8563	7.0	7.5	0.5	T									
8564	7.5	8.0	0.5	TL									T
8565	8.0	8.5	0.5	336		3.74				3.55			
8566	8.5	90	0.5	14.54		14.13				14.34			
85 67	9.0	9.5	0.5	14.67		13.75				14.21		6.85/3.0	
85 68	9.5	10.0	0.5	.75									
85 69	10.0	10.5	0.5	.14									
8570	10.5	11.0	0.5	8.16		8.09				8.13		V ·	¥
4571	11.0	12.5	1.5	14		•	•	-					

÷

HOLE NC GT	- 85-0	5-03					ASSAY				
PROJECT ABIT		<u> </u>			DRILL			S	· · · · · · · · · · · · · · · · · · ·		Page
Assay No. DT	From (m.)	To (m.)	Width (m.)	Au guro I home	•	A. check	- Ru metallic				REMARKS
8572	12.5	13.0	0.5	Tr							
8573	13.0	13.5	0.5	0.34							
8574	13.5			2.26		1.75				2.01	· · · · · · · · · · · · · · · · · · ·
8575	14.0	14.5	0.5	0,14		-					
85760	14.5	15.0	0.5	1.85		1.92	T-			1.89	V.q.
8577	15.0	16.5	1.5	Tr	•						
85 78	16.5	18.0	1.5	Tr							
8579	18.0	19.5	1.5	Τ,							
8580	19.5	20.12	-1.55	T/_							
			0.62	'							· · · · · · · · · · · · · · · · · · ·
				-							
				-							
									·		
			· ·								
	[										

HULE NC 27	- 85 -	05-03	·]		DRILL	C	ASSAY	S		P	000
ROJECT ABITI				. (	PROPERTY _	TISDA	LE			C	ate Nev /14/185
ssay No.	From (m.)	To (m.)	Width (m.)	Au gran	check	Metallic Sold gram		•		Au Me	REMARKS
	0	1.0		5.90	5.83					5.87	
77	1.0	1.5		T٢							
* 78	1.5	2.0		26.64	27.47	0.38		-		27.06	
79	2.0	2.5		0.21					_		
41.80	2.5	3.0		0.48							
+ 81	3.0	3.5	2.	2.47	2.40	tR				2.44	;
+ 82	3.5	4.0		19.41	19.06	1.17				19.24	•
	40	4.5		2.47	2.67	·				2.57	
84	4.5	5.0		t R							
85	5.0	5:5-		t R							
86	5.5	6.0	· · · · ·	0.34							
87	6.0	6.5		1.37				•			
88	6.5	7.0		2.40	2.13			•		2.27	
	7.0	7.5		1.71	1.51					1.61	
4190	7.5	8.0		Tr				٠		•	
9/	8.0	.8.5		0.89							
92	0.5	9.0		23.86	24.48					24.17	
93	9.0	9.5		26.26	27.01					26.64	
94	9.5	10.0	·								
95	10.0	10.5	1								
96	10.5			11.31	12.27					11.79	
4197	11.0	12.5	1	0.34		•	•				
		ł 		1		۹ 			•	1	

HOLE N G	T-85-	05-03			DRILL	CCE	ASSAY	, . S		1	Poge
OJECT ABIT	BI			-		TISD				1	Date
say No.	From (m)	To (m.)	Width (m.)	Au gran	Au check	Metallic Bu gran					REMARKS
4198	12.5	13.0		0.14							
99	13.0	13:5		1.10				-			
4200	13.5	14.0		0.96							
4201	14.0	14:5		0.07					· ·		
* 02	14:5	15.0		7 <u>5.77</u>	80.57	2.98				78.17	
0.3	15.0	16.5		tr							•
····· · · · · · · · · · · · · · · · ·	16.5			Tr							
	18.0	1	ļ	Tr							
8750	19.5	20.12		ÉR			-				·
				·							
<b></b>				ļ							
				<u> </u>	· · ·						
		<u> </u>	,								
		<b> </b>					2				
									<b> </b>		
<u> </u>											
<u> </u>		<u> </u>	<u> </u>								
										<b> </b>	·
			<b> </b>							ļ	

.

	HOLE NI 67	-85-0	05-04	t ·		DRILL	сCе	ASSAY	ís.		1	oge2	
	PROJECT ABIT	IBI			-		TISD					Date <u>SEPT 198</u>	
	Assay No. DT	From (m.)	To (m.)	Width (m.)	A. gn/tone	Au check	Au met				Au Ave	REMARKS	<u> </u>
-	8581	0.0	0.5	0.5	T.					-		· · · · · · · · · · · · · · · · · · ·	
	8582	0.5	1.0	0.5	1.23								
	8583	1.0	1.5	0.5	Tu							木	
•	8584	1.5	2.0	0.5	T								5.81
	8585 8	2.0	2.5	0.5	25.23	24.82	•55				25.03		3.00
	8586 8	2.5	3.0	0.5	8.16	8.16	.14				8.16		
	8587 @	30	3.5	0.5	1.71	1.58	Tr				1.65		
	8588	35	4.0	0.5	T.								
	8589	4.0	4.5	0.5	T-								
	8590	4.5	5.0	0.5	0.41							· · · · · · · · · · · · · · · · · · ·	
	8591	5.0	5.5	0.5	T-	·			<i>c</i> .				
	8592	5.5	6.0	0.5	0.07	÷							
	8593	6.0	7.0	1.0	T-								
	8594	7.0	8.0	1.0	Τ,								
	8595	8.0	8.5	0.5	1,								
	8596	8.5	9.0	0.5	Τ.								
	85 97	9.0	9.5	0.5	8.91 .	9.19					9.05	<b>下</b>	
	8598	9.5	10.0	0.5	3.63 -	4.15					3.89		
	8599	10.0	10.5	0.5	·75 .			• <b>- •</b> •		1			·····
	8600	10.5	11.0	0.5	7.27	7.44					7.36		
	8601	11.0	11.5	0.5	.96 -						for the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		
	8602	11.5	12.0	0.5	2.19	1.92	•	•			2.06		

1

HOLE N 67		05-0	4	-	DRILL		ASSAY	′S			Poge 2 2 Date <u>SEPT 1985</u>
issay No. DT	From (m.)	To (m.)	Width (m.)	Au : gm/tone				Ţ			REMARKS
8603	12.0	13.0	1.0	0.75		·					
8604	13.0	14.0	1.0	0.69							
8605	14.0	.15.0	1.0	0.07			,				
8606	15.0	16.0	1.0	0.69							
8607	16.0	17.0	1.0	1.37							
8608	17.0	18.0	1.0	0.82							
8609	18.0	19.0	1.0	0.07							·
8610	19.0	20.12	1.12	0.07		~			·		
								ļ			
· ····································								-			
							· · · · · · · · · · · · · · · · · · ·			·	
								, , , , , , , , , , , , , , , , , , ,			
					,						·
											· · · · · · · · · · · · · · · · · · ·
										·	· · · · · · · · · · · · · · · · · · ·
						•					

													and the second second
	ΗΟΙ	ENGG	T-85-0	05-04	]		DRILL	C E	ASSAY	S		P	loge
	ROJEC	ABIT	IBI			•	PROPERTY _	TISD	ALE				Date
- - -	ssay	No.	From ( <u>m.</u> )	To (m.)	Width (m.)			Metallic					REMARKS
		4206	0.0	0.5		tR.							
		07	05	1.0		.62							
		08	1.0	1.5		-21							
		09	1.5	2.0		tR							
	*	4210	2.0	2.5		15.2.2	15.98	.38				15.60	
ţ.	<u>*</u>		2.5	3.0		30.17	29.49	.79				29.83	
	*		3.0	3.5		2.67	2.74	ŧR				2.71	
		13	3.5	4.0		·07	·						
			4.0	4.5		t.							·····
		15	4.5	5.0	 	tr							
		16	5.0.	5.5		.07					1		
			5.5	6.0		th_							
				7.0		t.R.				·			
			T	8.0		t _R	<b> </b>						
	. <u></u>	4220		8.5		t.R_							
			8.5	9.0		t.R_							
			9.0	9.5		1.30							
		24		10.0	· ·	2.6/	2.81					2.71	
		25	10.0	10.5	<b> </b>	tR 1.44			-				
			10.5	11.0		1.44	-1.51					1.48	
		27	11.5	12.0		-27 ER	<u> </u>	• •					
			11-2	12.0	<u> </u>	LX_	<b> </b>		.* 	ļ	ļ	Į	·

HOLE NC G	T- 05-		7								
PROJECT ABIT	<u>IBI</u>	05 04			DRILL		ASSAY	S .			Poge 2 112
Assay No.	From (m.)	To (m.)	Width (m.)		Au check						REMARKS
4278	12.0	13.0		.14							
	1.3.0	14.0		07							
42.30	14.0	15.0		tR							
31		,		.07	<u>-</u>						
	16.0			tR Tr							
		18.0		7.20	6.79					7.00	•
	18.0	19.0 20.12		.07				<u>.</u>			
	110	20.12		ER.							
				1							
						· · · · ·					
									· · ·		
								•			
			ļ								
			· ·								
								· · · · · · · · · · · · · · · · · · ·	· ·		
				1			t				·····
						•	•				
			l 	1		an an an Arite an Arite an Arite and Arite and Arite and Arite and Arite and Arite and Arite and Arite and Arite and Arite and Ar			+	<u>↓</u>	

HOLE NE G		-05.05	5			CCE TISD		S	-		Page <u>2 . 2</u> Dote <u>SEPT 1985</u>
Assay No. DT	From (m.)	To (m.)	Width (m.)	Au ym/ton						Au	REMARKS
8630	12.5	13.5	1.0	, T.			· · · · · · · · · · · · · · · · · · ·				
8631	13.5			Īr							
8632	15.0	16.0	1.0	2.61	2.40					2.51	
8633	20.0	21.0	1.0	0.55							
					· · · · · · · · · · · · · · · · · · ·						
8634	24.5	25.5	1.0	Tr							· · · · · · · · · · · · · · · · · · ·
8635	25.5										
8636	26.0	27.13	1.13	11							
						•					

and the first that had she and the first the

HOLE NO G	-T-85-	05-05	]		DRILL	C E	ASSAY	S		ł	Pog. 2 2
PROJECT ABIT	IBI	·		1	PROPERTY _					l	Date Nou/18/85
Assoy No.	From (m.)	To (m.)	Width (m.)	A. gon Home							REMARKS
4273		21.0									
	24.5	25.5	1.0	0.07					<u>.</u>		
42.75	25.5	26.0	10.5	T-			8				
				Tr					-		
-											
<b></b>											i
	<u> </u>										
							4 L				
	ļ										
	<u> </u>	ļ			·						
	<u> </u>										
	ļ										
					· .						
	<b> </b>					•					
·	<u> </u>	[	1					1		1	

and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t

	HOLE NC 6	T- 85-	05-0	2		DRILL	с( г	ASSAY	′S		1	Page2	
	PROJECT ABIT	IBI				PROPERTY _	TISD	ALE				Date <u>Sept</u> 1	185
	Assay No. DT	From (m.)	To (m.)	Width (m.)	Au yn Ame	Au chack	Au motel				Au Aue	REMARKS	
	8611	0.0	0.5	0.5	T-							1	
	8612	0.5	1.0	0.5	Tr								
	8613	1.0	1.5	0.5	10.22	9.81					10.02		
	8614	1.5	2.0	0.5	4,66	4.63			-		4.65		
	8615	2.0	2.5	0.5	1.23								
· .	8616	2.5	3.0	0.5	0.34				~			•	
	8617	3.0	35	0,5	1.17							:	5.35 6.0
<i>.</i>	8618	3.5	4.0	0.5	0.07								
	8619 @	4.0	4.5	0,5	6.58	6.99	0.21				6.79	unible Gold	
	8620	4.5	5.0	0.5	0.07		· · · ·			<u> </u>			
	8621	5.0	5.5	0.6	0.07								
	8622	5.5	6.0	0.5	39.77	39.77					39.77		<u> </u>
	8623	60	6.5	0.5	075								
	8624	6.5	7.0	0.5	1.71	2.19					1.95		
	8625	7.0	8.5		0.07				· · · · · · · · · · · · · · · · · · ·				
	8626	8.5	9.0		Τ,								
	8627	9.0	9.5	0.5	٦,								
	8628	9.5	10.0	0.5	T,							······	
	8629	10.0	10.5	0.5	<u> </u>								
1													
-							••••						

1

ing and the time the time and the sec

HOLE NO G	T- 85-	05 -0s	-		DRILL	C IE	ASSAY	S .			Page
PROJECT ABIT	IBI			. 1	PROPERTY _	TISD	ALE				Date Noutre
Assay No.	From (m.)	To (m.)	Width (m.)	Au gr Hone	A check					Ru	REMARKS
4251	0	•5	.5	Tr							
52	.5	1.0	.5	0.07							
53	1.0	1.5	.5	10.01	9.53					9.77	
54	1.5	2.0	•5	0.55							
55	2.0	2.5	.5	0.96					i		
	2.5	3.0	^ى ـ	0.34							•
	3.0	3.5	.5	1.23							·
	3.5	4.0	•5	1.10	· · · · · · · · · · · · · · · · · · ·	·					
	4.0	4.5	. 5	1.17							V.G.
48.60		5.0	.ح	0.07							
6/		5.5	.5	Tr							
	5.5	6.0	.5	Tr			··		i		
	6.0 6.5	6.5	<u>، ج</u> مح	9.33	10.09					9.71	
		8.5	1	0.96 T-		-					
	7.0	9.0	1.5	T-						, ,	
	9.0	95	.5	T.		4.5 4.5					
	9.5	10.0		T,	•					·	
	10.0	10.5	1	T,							
	12.5			1-							
	13:5	1		Tr							······································
72				1.06		•					
	ł							<b> </b>		[	<b>+</b>

HOLE NO.		5-06		-		CORE TISD		Ś			Page at
Assay No. DT	From (m)	To (m.)	Width (m.)	Au ym Home Bell White	A. cheel	A. medill.c				Au	RENIEKS
8637	0.0	0.5	0.5	9.87	9.29					9,58	/
8638	0.5	1.0	0.5	13.10	12.69	0.34				12.90	* v.g.
8639	1.0	1.5	0.5	22.49	21.60					22.05	
8640	1.5	2.0	0.5	Tr							3.48 /7.5
8641	2.0	2.5	05	1.37		<u> </u>					
8642	2.5	3.0	0.5	Q34							
8643	3.0	3.5	0.5	0.34							
8644 *	3.5	4.0	0.5	3.46	2.98	0.34	1			3.22	visible Gold
8645	4.0	4.5	0.5	0.55			•				
8646	4.5	5.5	1.0	0.82							
8647	5.5	6.0	0.5	Τ.							
86 48	6.0	6.5	0.5	.07							
8649	6.5	7.0	0.5	T-							
86 50	7.0	7.5	1	0.21							
8651	7.5	8.5	1.0	Τ.							
8652	8.5	9.5	1.0	1.17							
8653	9.5	10.5	1.0	,75							
86 54	10.5	11.5	1.0	Q14							
8655	11.5	12.0		0.27							·
86 56	12.0	12.5	0.5	25.51	26.19					25.85	
86 57	12.5		1.0	0.55							
41, 68	13.5	14.0	n.5	1.71	178	1.		1	·I	1-1-	

	·		<i>.</i>							1	
HOLE NO. , 57		5-06			DRILL	COhc	ASSAY	S	l	Poge of3_	
PROJECT ABIT	IBI		<u> </u>		PROPERTY _	TISD	ALE		l	Dote 198	5
Assay No. DT	From (m.)	To (m.)	9 cth (#.)	A. gn/tonne	Au				А. Рле	REMARKS	
86 59	14.0	15.6	1.0	1.10		-					
8660	15. <b>0</b>	16.0	1.0.	0.82							
8661	16.0	16.5	0.5	7.							
8662	16.5	17.0	0.5	1.44							
- 8663	17.0	17.5	0.5	1.37							
8614	17.5	18.0	0.5	2.40	2.37				2.39	•	
8665	18.0	19.0	1.0	0.21							
961010	19.0	19.5	0.5	1.03							
	19.5	20.0	0.5	25.82	26.59		•		26.21		Y
8668	20.0	20.5	0.5	2.06	1.95				2.01		$\overline{\mathbf{h}}$
8669	20.5	21.0	0.5	0.69							
8670	21.0	21.5	0.5	0.69				. •		2.47/4.00	
86 71	21.5	22.0	6.5	4.32	4.42				4.37		
8672	22.0	22.5	0.5	6.65	6.85				6.75	14.3	
9673	22.5	23.0	0.5	0.21							
8674	23.0	24.0	1.0	2.67	2.43	~	· · · ·		2.55	1.55	$\mathbf{V}$
	24.0	25.0	1.0	.89							
8676	25.0	26.0	1.0	Tr.							
8677		27.0	1.0	Tr							
8678		28.5		T-							
8679		29.0		0.89							
. 8608D	29.0	30.5	1.5	Tr		• • •	l ·				

.

HOLE NO.		5-06	]				ASSAY	S			Poge 3 of 3
say No. DT	From (m)	To (m)	Width (m.)	A. unlin	PROPERTY _	1150	ALE				Dole SEPT 1985
8681	30.5	31.39	0.89	0.27				6			
	<b></b>	<b> </b>									
									144 1		
								<u>.</u>			·
	<u>+</u>										· · · · · · · · · · · · · · · · · · ·
	1							: .			
		1	1								
								•			
	<u> </u>							•			
	<b>_</b>	ļ			 						
		<b> </b>	<b> </b>							·	
									· ·		
		<u> </u>							ļ		
		†	<u> </u>								
	1	1					·				

PROJECT         ABITIBI         PROPERTY         TISDALE         Date           Assay No.         Image: Construction of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o	HOLE NO G	-T-85-0	05-06	]		DRILL	Cr E	ASSAY	<b></b> s			Pog
Assoy No.       Image: Term of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of the matrix of	PROJECT ABIT	<u>IBI</u>				PROPERTY _	TISD	ALE				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Assay No.					check				14		REMARKS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3777	0	•5	.5	4.94	5.14		ý			5.04	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* 78	•5	1.0		17.28	16.53					16.91	V.G.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.0	1.5	.5	9.26	9.39					9.33	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80	1.5	2.0	.5	0.07	-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	81	2.0	2.5	.5	0.69					- 		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.5	3.0	.5	0.21							
	83	3.0	3.5	.5	0.07							
			4.0	.5	1.37	1.37					1.37	V.G.
	85	4.0	4.5	5	0.82							
Image: Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of th	86	4.5	5.5	1.0	3.29	3.36	•				3.33	
Image: Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of th												
Image: Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of th							L					
Image: Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of th			<b> </b>						•	•		
Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	<b></b>	ļ						<u>Harris</u>				
				ļ				-				
		<u> </u>	<b> </b>									· · · · ·
			ļ	ļ				đ				
			<b> </b>	<b> </b>								
			<b> </b>	<b> </b>					<b>*</b>			
		<u> </u>		<b> </b>			• • •					

HOLE NO G	T. 0					сС.е					
PROJECT ABIT		05-06						S			Poge to
Assay No.	From (m.)	To (m.)	Width (m.)	A 4 gr Home	PROPERTY _	1150				Au Au	REMARKS
3787	5.5	6.0	.5	0.07	· · ·						******
88	6.0	6.5	.5	Tr		2					· · · · · · · · · · · · · · · · · · ·
89	6.5	7.0	.5	0.14							
3790	7.0	7.5	.5	Τ-							
	7.5	8.5	1.0	Tr							
92	8.5	9.5	1.0	1.17	•						i
93		10.5	1.0	1.65	1.37		an an an an an an an an an an an an an a			1,51	3. <u>1</u> .
94	10.5	11.5	1.0	1.23							
95		12.0	.5	Tr							
96		12.5	.5	0.41							
97	12.5	13.5		0.07		· · · · ·				,	
98	13.5	14.0	.5	Tr							
	14.0		1.0	7.06	6.86			. 		6.96	
	15.0	16.0		5.83	6.17		-			6.00	
4776	16.0	16.5		1.58	1.44					1.51	
	16.5	17.0	.5	0.55							
	17.0	17.5		1.23							
•	17.5	1	.5	1.78	1.71			<b> </b>		1.75	
4780	18.0	19.0	1.0	0.55							
	19.0	19.5	.5	0.34							
82		20.0	.5	1.37							
4783	20.0	20.5	.5	3.43	3.63	•				3.53	

HOLE NC G	7- <i>85</i> - IBI	05-06			DRILL	C.(E		′S		Page of
ssoy No.	From (m.)	To (m.)	Width (m.)	A., g. /ta	check				Au Aue	REMARKS
4784		21.0	.5	1.71	2.06				1.89	: ~ 7
	21.0	21.5		1.44					 	
	21.5	220	•5	7.20	7.89				7.55	, -
	22.0			1.65	1.51				1.58	16
	22.5		-5-	1.71	1.99				1.85	· 7 0
		24.0	1.0	1.85	2.06			ļ	 1.96	5 1 1
•	24.0 25.0		1:0	2.19	1.92				 2.06	4 1 1
	26.0	26.0 27.0	1.0	0.27 Tr			-	1	 	
		28:5	1.0 1.5	7-						
	28.5		.5	0.34		•			 	
95	29.0	30.5	1.5					-		
4796	30.5	31:39	.89							
						24				
					,					
						•			 	
						•				

			-								
HOLE NC 6		05-07			DRILL	CC :	ASSAYS	5		(	Page 0/
PROJECT ABIT	IBI			[	PROPERTY _	TISD	a mitter of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	,			Date
Assay No. D7	From (m.)	To (m.)	Width (m.)	A. gn/tome	,	A. Leck	metal			A. Ave	REMARKS
8682	0.0	0.5	0.5	1.95							
8683	0.5	1.5	1.0	0.27							
8684	1.5	3.0	1.5	0.14				tarih tarih tarih tarih dari			
8685	3.0	4.5	1.5	Ţ,							·
8686	4.5	6.0	1.5	1,							
8697	6.0	7.0	1.0	0.82							
8689	7.0	7.5	0.5	0.75				*			:
8689	7.5	9.0	0.5	0.55							•
8690	8.0	8.5	0.5	7.95		7.20				7.58	
8691	8.5	4.0	0.5	0.41							
8692 +	9.0	9.5	0.5	29.64		32.67	3.02		<b> </b>	62.31.1	7
8693 *	9.5	10.0	0.5	10.90		13.78	2.88		ļ	24.68	12.34
86 94	10.0	10.5	0.5	0.55					ļ		
66 95	10.5	11.0	0.5	Tim							
	ļ									· .	· . •
8696	13.5		0.5	3.09		3.22				3.15	
8697	14.0	14.5	0.5	0.41							
8698	14.5	15.0	0.5	0.34							
8699	15.0	16.0	1.0	0.07	ļ						
\$700	160	17.0	1.0	0.34	<u> </u>				l		· · · · · · · · · · · · · · · · · · ·
<del>- 19</del>		ļ		<b> </b>	· .	]					
	<b> </b>		<b> </b>			• • •					· · ·
		•				1		7	1	1	

HOLE N' GT	- 85-0	5-07	י			( RE	ASSAY	<u> </u>			
PROJECT ABIT				<b>;</b>	PROPERTY _						Page ot Date Nov 18/85
Assoy No.	From (m.)	To (m.)	Width (m.)	Mu gu Hunr	Au chak			. 		A. Ave.	REMARKS
4797	0	.5	.5	0.41							
98	.5	1.5	1.0	T۳							
99	1.5	3.0	1.5	0.07							
4 800	3.0	4.5	1.5	T-					· ·		
4801	4.5	6.0	1.5	·T-							
02	6.0	7.0	1.0	1.37		1.					÷
03	7.0	7.5	.5	0.69							
64	7.5	8.0	.5	0.75	· · · · · · · · · · · · · · · · · · ·						
05	8.0	8:5	:5	0.07					·		
06	8.5	9.0	:5	T-	-						
* 07	9.0	9.5	:5	6.17	6.31	· · · · · · · · · · · · · · · · · · ·				6.24	V.G.
	\$9.5	1	:5	3.02	3.22					3.12	V.G.
69	10.0	10.5		τ-				<u> ·</u>			
4810	10.5	11.0		Tr							
	13:5		-	3.09	2.81					1:95	., <i>0</i>
-	14.0	1	1				<u> </u>				
		15.0	.5	0.07							
	15.0		1.0	0.82							
48 15	16.0	17.0	1.0	Tr							
	<u> </u>						? •				
							•				
	{		<b> </b>			•	-		<b></b>	+	

					·	C	~		•	<i>(</i>
HOLE NC , G		23-6	8		DRILL	CONC	ASSAY	S		Page of
PROJECT ABIT	IBI		·	-	PROPERTY _		ALE			Dete SEPT. 25, 1985
Assay No. DT	From (m.)	To (m.)	Wicth (m.)	Au gm/tonne		p. Jul		3		REMARKS
8701	0.0	0.5	0.5	0.48						
8702	0.5	1.0	0.5	1.44					:	
. 87.03	1.0	1.5	0.5	0.82						
8704	1.5	2.0	0.5	1.37						
8705	2.0	2.5	0.5	1.78						
8706	2.5	3.0	0.5	1.23			•		-	
8707	30	3.5	0.5	1.37						
8708	3.5	4.0	0.5	43.54		41.14				
87.09	4.0	4.5	0.5	1.71		1.78	•			
8710	4.5	5.5	1.0	0.75				-		
8711	5.5	6.5	1.0	1-						
8712	6.5	7.0	0.5	0.64						
8713	7.0	8.6	1.0	11						
8714	8.0	9.5	1.5	11		-				
87 15	9.5	11.0	1.5	11						
8716	11.0	12.19	1.19	11						
		<b> </b>								
	ļ									
			· .							
			<u> </u>							
• ,	<u>í</u>			<u> </u>		•				ļ

and there there were start

HOLE NC GT		5-08	]		DRILL	C RE		S	2		Page I Date Nev /19 /85
Assoy No.	From (m.)	To (m.)	Width (m.)	nu gm tane	che.t					A.	REMARKS
4816	0	.5	.5	0.21					-		
17	5	1.0	•5	1.03				-			
18	1.0	1.5	.5	0.75							
	15	2.0	:5	Tr					•		
4 820	2.0	25	•5	0.62							
21	2.5	3.0	.5	3.77	4.11					3.94	:
22	3.0	3.5	.5	1.30							•
23	35	4.0	.5	13.30	.12.75		-			13.03	
24	4.0	4.5	.5	0.48							
25		-55	1.0	0.41							
26	5.5 .	65	1.0.	Tr							
	6.5	7.0	5	0.07							
28	7.0	8.0	1.0	0.07				•			
29		95	1.5	1-						 	
4830		11.0	1.5	T.							
4831	11.0	12.19	1.19	T,						· ·	
	· · · · ·					ļ					· · · · · · · · · · · · · · · · · · ·
	· · ·		<u> </u>				·			]	
	<b> </b>	<b> </b>	· · · · · · · · · · · · · · · · · · ·		·						
	<b> </b>					<u> </u>					· .
						<u> </u>				Į	
		<u> </u>	<u> </u>	<b> </b>		•					· .

			<b>, 1000</b>								
HOLE NO. 6		-04			DRILL	CORE	ASSAYS	5			Pogo 1
ROJECT ABIT				And in case of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the loc		TISD	ALE	••••••••••••••••••••••••••••••••••••••			Dote Jan 1986
ssay No. DT	From (m)	To (m)	Width (m.)	Au gr Hane				• •			REMARKS
9001	3.0	4.0	1.0	1.							
9002	4.0	10.0	1.0	T.							
1003	15.0	16.0	1.0	1-							
9004	19.0	19.5	0.5	· T-							
9005	19.5	20.0	(1.5	6.82							
9006	20.0	20.5	0.5	0.07							:
9007	25.0	26.0	1.0	1,			<u>م</u>				•
4008	290	30.0	1.0	T,							
9009	39.0	40.0	1.0	1,	•						
9010	44.0	45.0	1.0	1							
9011	47.0	48.0	1.0	1/							
. 9012	52.0	52.5	0.5	0.89				·			,
<u> </u>	52.5	53.0	0.5	-1/				•			
9014	53,0	53.5	0.5	0.62				-			
9015	53.5	57.0	0.5	0.55		х.					
9016	54.0	54.5		0.62	\						
9017	54.5	55.0		0.96						<b> </b>	
9018	550	55.5	0.5	1.17							
9019	55.5	56.0	0.5							<b> </b>	
4020	56.0	56.5	0.5	1-	[						
4021	56.5	57.0	0.5	0.75	Ī						<u> </u>
9022	57.0	57.6	0.5	1-		• .	·			1	
	1	1	1	(	1	<b>I</b> .	1		t	1	

HOLE NO.		5-09			DRILL	CORE	ASSAYS	S		1	Page <u>2</u> of <u>2</u>
ROJECT AL.T					PROPERTY _	TISD	ALE		<b></b>		Date 198
ssay No. DT	From (m)	To (m.)	Width (m.)	Au yu /tre				•			REMARKS
9023	54.0	54.5	0.5	1,							
9024	59.5	60.0	0.5	Tr							
9025	60.0	60.5	0.5	11							
4026	60.5	610	0.5	T,							
9027	61.0	61.5	0.5	1.			in an				
9028	65.5	66.0	0.6	T,							:
9029	66.0	66.5		1,							•
4030	72.5	73.0	0.5	V							
<		· ·									· ·
	· ·										
											+
••••••••••••••••••••••••••••••••••••••				<b> </b>				•			
	1										
						м					
								-			
			<u> </u>								
					<u> </u>						
· · · · · · · · · · · · · · · · · · ·		<b></b>									
		<u> </u>	<u> </u>								
		<b> </b>		<u> </u>	<u> </u>	•					
. •			-	-	-	•	•	) 	l	l	

HOLE NO.	<b>6</b> 7-65-	<b>1</b>									
PROJECT ADIT			3		DRILL	CARE		S			Poge of Date / 2 /1
Assay No. DT	From (m.)	To (m.)	Width (m.)	Au yn Home							REMARKS
9531	5.0	6.0	1.0	1.							
9532	9.5	10.5	1.0	1,							
4533	16.0	16.5	0.5	1-					•		
45 34	16.5	17.0	0.5	1.03	4						:
1535	170	17.5	0.5	0.21							·
4536	17.5	18.0	0.5	1-	·		•				
9537	23.0	24.0	1.0	11							
9538	28.5	290	0.5	T,							
4534		29.5	0.5	1-				•			
9540	24.5	30.0	0,5	1.10							
9541		30.5		T-	ļ			<b> </b>		· .	
9542 9543		31.0		T.				<u> </u>		<b> </b>	
95 44	<u>31.0</u> 31.5	32.0	1	<u> </u>				1	<b> </b>		· · · · · · · · · · · · · · · · · · ·
9545	32.0			1,	+						+
9546	32.5			1.							
					1		· ·	1			· · · · ·
9547	36.5	37.5	1.0	1/		•	ŀ	1		1	· .
	1	1	1	1	<u> </u>	1.	1		1	1	1 .

HOLE NO.		05-108	>		CARE		S		Poge 2 of 2
Assay No. DT	From (m.)	To (m)	Width (m.)	H. gu Itaa	TISD				REMARKS
9548	38.5	34.5	1. C	1-					
9549	47.0	48.0	1.0	1,					
4550	52.5	53.5	1.0	T-					
4551	59.5	60.5	1.0	1,					
9552	61.5	62.5	1.0	1.					
9553	68.0.	69.0	1.0	T-					
							•		·
					 			 •	
			·					 	
		ŀ							
					 •	•			

HOLE NO. 6	<b>1-</b> 85 -0	<b>5-</b> 11									
PROJECT ABITI				. (	DRILL	CARE		<b>S</b> .			Poge of Date 19
Assay No. DT	From (m.)	To (m)	Width (m.)	Au yn Hone				•			REMARKS
9554	6.5	7.0	0.5				-				
9555	7.0	7.5	0.5	T							
9556	75	8.0	0.5	1,							
45 57	8.0	8.5	0.5	T-			4		-		
9558	15.5	16.5	1.0	Tr							:
											·
95 59	24.0	25.0	1.0	T-							
1511											
95.60	29.0	30.0	1.0	T,							
2			·								
											1
·								•			
				· · ·							
										•	
			 ·								
							•				· .
						•	•				
		1	1	1					<u> </u>		

HOLE NO. 6		05-12			DRILL	CORE	ASSAY	S			Poge of
PROJECT ALIT	IBI				PROPERTY _	TISD	ALE				Date 1 . 06
Assay No. DT	From (m)	To (m)	Width (m.)	Au y-s /tom				•			REMARKS
9561	५.०	র্ড.০	1.0	1.							
-											
9562	11.0	12.0	1.0	11							
		······									
9563	17.0	18.0	1.0	1.			-				
								-			:
9564	23.0	24.0	1.0	1,				9	·		•
9565	28.0	29.0	1.0	1.			7				
9566	330.					•	-				
	910.	34.0	1.0	1,							
9567	34.0	38.5	0.5	1-							, 
		201-5	0.3	1-				•	-		
95 68	410	41.5	0,5	T.							· · · · · · · · · · · · · · · · · · ·
9569	41.5	41.95	1	Ĩ						·	
95 70	41.95	42.67	0.75	T.							
9571	42.67	43,68	1.01	1-						<b> </b>	······
· · · · · · · · · · · · · · · · · · ·			·								
			<u> </u>				•			[	
	<b> </b>		ļ			۰.,	·				· .
		•	•				J		Γ	1	

and Jupp. Taxa											a and and and a
HOLE NO. 6		5-13			DRILL	CORE	ASSAY	S		l	Pose
PROJECT ABIT	BI				PROPERTY _					1	Date
issay No. DT	From (m)	To (m.)	Width (m.)	Au 9-14-				•	•		REMARKS
4572	5.5	6.5	1.0	1,							
9573	7.0	8.0	1.0	·T,							
9574	14.32	15.85	1.53	1,							
9575	20.5	21.50	1.0	Tr							:
9576	28.0	29.0	1.0	F		•				· · ·	
9577	30.5	31.5	1.0	0.07							
9578	33.0	34.0	1.0	F				•			
9579	40.0	41.0	1.0	Tr						•	
95 80	44.5	45,5	1.0	Ţ-							
9581	50.5	51.5	<i>i</i> .o	Īr							
9582	56.5	57.5	1.0	1'							· · · · · · · · · · · · · · · · · · ·
	}	<b>}</b>	}			•••					·

# APPENDIX C

### 1985 SUMMARY REPORT

#### FOR THE

## **GETTY-DAVIDSON TISDALE JOINT VENTURE**

### **TISDALE PROJECT**

### HALF CORE ASSAY COMPARISON

HOLE NI		29			DRILL	CL .E	ASSAY	S.			Poge of
ROJECT ABI	<u>   B </u>		r		and the second second second second second second second second second second second second second second second	TISD	ALE	· · · · · · · · · · · · · · · · · · ·			Dote
ssay No.	From (m.)	To (m.)	Width (m.)	DAIDINAL Ve core	Au Interime Ave	gm/ orner Ve core	tonne Interner Mine		Ave. Torm.	Rue	REMARKS
	145.0	145.5	0.5	0.75		1r	1		0.38	INTERVAL	
	145.5	146.0	0.5	0.96		3.43			2.20		
	146.0	1465	0.5	0.21		5.04	444		2.63	-	
``````````````````````````````````````	146.5	147.0	0.5	1.96	1	1.54	* 02		1.75	१५२६	
	147.0	147.5	0.5	0.48		1.03	c.f 31.20		0.76		· · · · · · · · · · · · · · · · · · ·
	147.5	148.0	0.5	0.75	1.1	0.UA	יש אין גער אין גער אין		0.72	1 1 1	
	148.0	148.5	0,5	Tr		1.	27E		tu		
	148.5	149.0	0,5	0.07		T,	H- 4		0.04	1.32	
	149.0	149 4	0.4	4.70		T-			2.35	т т	
	149.4	149,7	0.3	1.00	T J	99.91			50.46		visible gold
					<b></b>		<b>-</b>		100.10	<b>}</b> ───¥	Visible gold
					1			•		†	
					1					ł	
					1					1	
					1					1	
				1	1		1		1	1	
					1		1			1	
					<b>1</b> ,		1		1	1	
					1		1			1	
				]	1		t		1	1	
					1		1			1	
······		J	1 .	]	1	<u> </u>	ł	[		ł	

HOLE N		1.30				C. RE		S	_	Page of
Assay No.	From (m.)	To (m.)	Width (m.)	BRIDIAAL Ve core	Au Inverine Ave	gm/ errier Ve core	tonne Intracione Mire	Ave. Torn.		REMARKS
	134.0	134.5	0.5	0.34		1.	1	0.17	INTERVAL	
	134.5	135.0	0.5	1.	]   .	1.		1-		
	135.0	135.5	0.5	0.48		Tr		0.24		
	135.5	136.0	0.5	0.41		1.		0.2		· · · · · · · · · · · · · · · · · · ·
	136.0	136.5	0.5	0.82		0.07		0.45		
	136.5	137.0	0.5	0.41		1.30		0.86	<b>1</b>	
	137.0	137.5	0.5	0.69		0.07		0.38	<b>T</b>   '	<b>İ</b>
	137.5	135.0	0.5	0.07		Ir.		0.04	<b>]</b>   '	
	138.0	138.5	0.5	0.55	1	0.07		0.3		
	136.5	139.0	0.5	2.73		0.21	0.38	1.47	0.59	
	139.0	139.5	0.5	Tr	0.79	0.34	U D	0.17	] ó º	
	134.5	140.0	0.5	Tr	1	T-				
<del></del>	140.0	140.5		0.07	4	1.		0.04		
	140.5	141.0	0.5	0.07	4	1,		0.04		
	141.0		0.5	0.41	4	Tr		0.21	4   .	
	141.5	142.0		1,		T,			4   .	
·	142.0.	1	0.5	1,	4	0.07		0.04	4	
	142.5	143.0		0.07	4	1.30		0.69	4	
	143.0	143.5		0.07	4	0.14		0.11	4	
	143.6	144.0	0.5	0.69	- <u>¥</u>	0.27	¥	0.48		
					-				-	
		<u> </u>	<u> </u>	<u> </u>	1	•	]		1	1

	67-85	-131			DRILL	C.RE	ASSAY	S		Poge of		
ROJECT ABI	TIBI				PROPERTY _	TISD	ALE				Dote 186	
ssay No.	From	То	Width		Au	gm/	tonne					
	(m.)	(m.)		Va core .	Interne Ave	DTHER YR COTL	lurus val. Hve		ANI TOTAL CYLE	AVE INTERVAL	REMARKS	
	80.5	81.0	0.5	0.07		11			0.04			
	81.0	81.5	0.5	1r		11			Tr	<b>_</b>		
	81.5	82.0	0.5			0.96		·	1.03			
	82.0	82.5		17.45		93.77			55.6	]	visible gold	
	82.5	\$3.0	0.5	1r	ļ	5.49			2.75	ļ		
	83.0	83.5	0.5	6.24	l	9.23			7.74			
										Ţ		
	115.0	115.5	0.5	1.85		4.37			3.11	1	1	
	115.5	116.5	1.0	0.62	1	2.58			1.60	<b>†</b>		
	116.5	118.0	1.5	0.07	1	1.	-		0.04	1		
	118.0	118.5	0.5	Tr	1	0.07			0.04	1		
	118.5	119.0	0.5	0.69	1	0.07			0.38	† '		
	119.0	119.5	0.5	0.34	1	1.		} !-	0.17	1 '		
	119.5	121.0	1.5	1,	1	1,			1.	1 '		
	121.0	122.0		11	1	11			- Tr	1		
	122.0	122.5		0.21	1	1.	· .		0.11	1		
	122.5			1r	1	1,			11	†		
	124.0			0.07	1	1/		+	0.04	†		
	124.6	125.0	1	007	1	1			0.04	1		
	125.0	125.5		1.55	1	1.47			1.51	1		
	125.5	126.0		Tr	1	1.77	ł		1.51	1	Visible gold	
	126.0	176.5		0.96	1	1/			0.48	ł		

HOLE NC		- 13	_]	-		CC.E		S			Poge _2 of _3
say No.	From (m.)	To (m.)	Width (m.)	DRIGHAL Ke core	Au Interine Ave	gm/ other Vr. core	tonne Interne		Are. Torn.	A	REMARKS
	127.0	127.5	0.5	0.21	- AVE	T-	Ave		0.11	INTERMIL	
	127.5	1280	0.5	0.41		1.			0.21		
	128.0	128.5	0.5	T-		1.			Tr		
	128.5	129.0	0.5	7.42		1-			3.71		
	129.0	129.5	0.5	0.07		3.43			1.75		
	129.5	130.0	0.5	0.27		0.82			0.50		·····
	130.0	130.5	0.5	3.74	1	0.34			2.04		
	130.5	131.0	0.5	0.21	1	1.75			0.98		
	131.0	131.5	0.5	2.95	1	0.48			1.72		
	131.5	132.0	0.5	T-	1	4.01 .			2.01		
	132.0	1325	0.5	0.21	1	0.07			0.14		
	132.5	133.0	0.5	T-	1	1.23			0.62		
	133.0	153.5	0.5	8.88		32.02		·	20.45		
	137.0	137.5	0.5	Tr		1.92			0.96		
	137.5	138.5	1.0	0.07	1	T-			0.04		
	138.5	1390	0.5	8.37	1	8.51			8.44	ł	
	139.0	139.5	0.5	2.44	1	3.64			3.04	ţ	
	139.5	140.0	0.5	0.89	<b>]</b> .	2.58			1.74	t	
	140.0	141.0	1.0	0.75		0.55			0.65	İ	· · · · ·
	141.0	141.5	0.5	Tr	]	T-			Tr	İ	
	141.5	142.0	0.5	46.74	1	.8,92			27.83	t	

HOLE NC 6	T-85-17	31	7		וופח	CĹ E	ACOAN	<b>C</b>			2
OJECT ABIT								5		I	Poge 3 J1 3 Date Jan 1986
OJECT		r		- 1	ومفتقا والمتقار والمتحفة فالبالا التقار	TISD					Date <u>Jan 1986</u>
isay No.	From (m.)	To (m.)	Width	Phisings . Ne core	Au		Tonne		AN. TOTAL		
= <del></del>		1			biterine Ave	OTASA VR COTL	Ave		Grae	ANE INTERMOL	REMARKS
<del> </del>	142.0	142.5	0.5	0.75	-	0.07			0.4		
					1						
						-					
										t l	
					1					<b>}</b>	
					4						·
				<b> </b>	4						
				ļ	1						
	_									1	
										1 1	
					1					† †	
					1				· · · · · · · · · · · · · · · · · · ·	╉╴┥	
					4						
	+				┥			,			
					ł						
		[			ļ						
				1							
•										1 1	
					1				1	† †	
	1			<u> </u>	1					+	
			<u> </u>		┨					<b>∤</b> ∤	l
		<b> </b>			4					4	
					4						
	}		}	1	1	•				I I	

-

HOLE N	6t- 85 - TIBI	132				C ≀E TISD		S		I	Poge of
,	From	То	Width	- 	Au	gm/	tonne			·	Dote <u>Jan 1986</u>
ssay No.	(m.)	(m.)	(m.)	PRIMAL .	Interme Ave	YE COTE	Turpaval. Ave		AN. TOTAL CULE	ANE	REMARKS
	81.5	82.5	1.0	1.		0.41			0.21	CHIER ONL	
	82.5	83.5	1.0	0.07		0.41			0.24		
	83.5	84.5	1.0	0.07		1.13	n de la constante 1210 - Constante 1410 - Constante		0.60		
	84.5	85.5	1.0	Tr	r.	1.23			0.62		
	85.5	86.5	1.0	1.23	]	1.10			1.17		
	86.5	87.5	1.0	0.14		0.34			0.24		
	87.5	88.5	1.0	0.41		0.69			0.55		· · · · · · · · · · · · · · · · · · ·
	106.25	106.75	0.5	0.07	]	1.			0.04		
	106.75	107.25	0.5	1.		1.			1.		
	107.25	108.25	1.0	1.	I .	1.			1.	. ·	
	108.25	108.75	0.5	1.		1,			11		
	108.75	109.25	0.5	Ţ,	I	T		•	TI		
										Į ,	
	115.50	116.0	0.5	8.81	l .	2.92	i en en en en en en en en en en en en en		5,87	-	
	116.06	116.5	0.5	Tr	ļ	- Tr			Tr	[	
	116.50	117.0	0.5	17.76		40.74			29.25	[	visible gold
	117.0	117.5	0.5	Tr	ļ	0.07			0.04	ŀ	
	117.5	118.5	1.0	Tr		1.			Tr	<b>]</b> . i	
	118.5	1/9.0	0.5	0.07		0.82	•		0.45	ľ	
	119.0	120.5	1.5	1.		hi			1.		
	120.5	121.0	0.6	1.		. 11			11	Ĭ	

HOLE NC		5 - 13;	2			C(ିE TISD		S			Pogo 21 12 Date Jan 1986
ssay No.	From (m.)	To (m.)	Width (m.)	ORIGINAL Va core '	Au Interink Ave	gm/ orner Va core	tonne	1	A Torn	A.	REMARKS
	121.0	121.5			<u>Ave</u>	3.74	Ave		5.94	IMBAML	
	121.5	122.0	1	72.76	<b>1</b>	74.57			73.67	+	
<u></u>	122.0	122.5		62.75		32.89			47.82	1	visible gold
	122.5	123.0		2370	1	138.41			81.06		virible gelv
	123.0	123.5	1	4.53	1	4.53			4.53	1	visible gold visible gold visible gold
	123.5	124.0		5.68	1 1	5.08	•		5.38	1	VIDIPLE gold
						0.00	· ·			†	
					1					†	
			1		ц.			<u> </u>		1	
			1	1	1					t ·	
				1	1	•			1	1	
					1					1	
				1	1				1	1	
		1		1	1		. •			1	
				1	† ·					1	
				1						1	
· · · · ·	•									1	
		1	1		1					1	
			1	1	1					†	
			1		1		· · ·			†	
		1	1	1	1		ţ			1	· · · · · · · · · · · · · · · · · · ·
		<b> </b>	1	1	1	•				1	
		t	1	· <del> </del>	4	ł	ł	ļ		4	<b></b>

HOLE N	T-85-0	95-01	]		DRILL	C. E	ASSAY	S			Poge of2
ROJECT ABIT	IBI				PROPERTY _	TISD	ALE				Dote
ssay No.	From	То	Width		Au	gm /	tonne	·····		·	
	(m.)	(m.)	(m.)	BRIDIARL K.	Interme Ave	OTHER VR COTE	liter val Mue		AN. TOTAL GULE	AVE	REMARKS
	0.0	1,5	1.5	Tr		1.			Tr		
	1.5	2.5	1.0	T-		To			Tr	<u> </u>	
	2.5	3.0	0.5	T-		1-			Tr	l î	
	3.0	3.5	0.5	Tr		0.34			0.17		
	3.5	4.0	0.5	0.96		Tr			0.48	20	
	4.0	4.5	0.5	0.27	۶. ۲0	2.03	6.50		1.15	ف	
	4.5	5.5	1.0	0.69		0.48			0.59	53	
	5.5	6.5	1.0	Tr	0.20	T	0.26		Tr	N O	
	6.5	7.5	1.0	Tr		1.			T.	<b>†</b>	
	7.5	8.0	0.5	Tr	I	1.			Tr	<b>i</b>	
	8.0	9.0	1.0	T-	I	1r			Ír		 S
	9.0	10.0	1.0	1.87		0.69			1.28		
	10.0	11.0	1.0	0.62	Ī	0.89	1		0.76	1	
	11.0	11.5	0.5	13.34		- Tr	· ·		6.67		ي ب
	11.5	12.0	0.5	1.73	1	3.05			2.39	BLOC K	visible gold
	12.0	12.5	0.5	Tr	1	0.07	1		0.04	1	
	12.5	13.0	0.5	0.75		1.30	0		1.03	° 0	F
	13.0	13.5	0.5	204.34	ف	591.44	/ 6.0		397.89	1 I X	
	13.5	14.0	0.5	0.55	1	1r	<b>n</b>		0.28	<b>H</b> •	e visible gold
	14.0	15.0	1.0	1.17	18.5	0.07	19.91		0.62	34	
	150	15.5	0.5	Tr	1 1	1.04 1.	1		1.02 1.		<del>г</del>
	15.5	1		T.r	4	. 11	┫ ┃.		1r	Block	ν

HOLEN	GT-85-0	5-01	ך			C.E	ACCAVE				Poge 2 01 2
ROJECT ABI						TISD		2			
ROJECT ADI											Dote
ssay No.	From (m.)	To (m.)	Width (m.)	DAIDINAL Va core	Au Interime Ave	em/ Ve core	Torne Tateral Ave		AND TOTAL	Ave Interval	REMARKS
	17.0	17.5	0.5	1.		0.07			0.04		
	17.5	18.59	1.09	1.		Tr			1.		
						-					
<u></u>		 			1		· · · · · ·				
					1			· · · · · · · · · · · · · · · · · · ·		ţ	
					]					I	
	_				4					4	
	_				4				<b> </b>	4	
					4					4	
					4			•		ł	
			1							1.	
					]					1	
			<b>_</b>		4					4	
					4		<b> </b> ,		· .	╡	
					-		4			4	
					-{		<b>-</b>			┫	
<u></u>		+			-1		1			-{	

HOLE NO.	T-85-05	5-02	]		DRILL	co( :	ASSAY	S				Poge		
ROJECT ABI						TISD						Dote		
ssoy No.	From (m.)	To (m.)	Width (m.)	ORIGINAL Ke core -	Au Interine Ave	gm/ orriver Ve core	tonne Interne Ave	·····	Ave. Torn. Guae	Ave	La.me	REM	ARKS	
	0.0	1.0	1.0	Ir		In	,		Ir	LIFT	A VAL		·····	
	1.0	2.0	1.0	1.		0.41			0.21		Ч			-+-
	2.0	2.5	0.5	0.34		0.48		· ·	0.41		k 31			
	2.5	3.5	1.0	0.34	]   .	0.27			0.31		BLOCK			<u> </u>
	3.5	4.5	1.0	Tr		Ir			1.		<b>P</b>			
	4.5	5.5	1.0	Tr		Tr			1-		Bloci			
	5.5	6.5	1.0	0.27	1	11			0.14		h		- 	·····
	6.5	7.0	05	0.41		1.			0.21	20	t X			
	7.0	7.5	0.5	1.	1	1.	8		Tr	5	BLOCK	· · ·		
	7.5	8.0	0.5	12.47	1.20	6.28 .	~		9.38				····	
<u>,</u>	8.0	8.5	05	0.27		Tr			0.14		<u>.</u> 1			
	8.5	9.0	05	57.94	15	63.43	4.4		60.69	4.50	X 3 5.63	VISIBLE	60LD	
	9.0	9.5	0.5	Tr	Ţŗ	0.21	1 7		0.11		BLOCI	VISIOLIL	6020	
,	9.5	10.0	0.5	0.07	<b>1</b> .	0.07			0.07		"L		· · //···	
	10.0		1	4.15	1	1.23			2.69	<b>†</b>	ľ		<u></u>	
	10.5	11.0	0.5	0.41	1	18.21			9.31	<b>†</b>	8		3,25	
•	11.0	11.5	0.5	3.02	1	1-			1.51		0.K		<b>~</b> ••	
	11.5	13.0	1.5	1.		1,	]		1.	† <u>~</u> *	679	1	<u> </u>	
	13.0	14.5	1.5	0.07	]	11			0.04	1	L.,	1		
	14.5	15.0	0.5	T.	1	51			1.	1		1		
-	15.0	15.5	0.5	T-	]	11	]		T.,	1				
	15.5	16.0	0.5	1.37	1	· 0.55	1		0.96	1		<u> </u>		

HOLE NO.	GT-85-	05 - 0î	2		DRILL	co; _	ASSAY	S			Page 2 vr 2
PROJECT ABIT	ГІВІ					TISD					Date
Assay No.	From	То	Width	PAIGINAL	Au	gm/	Tonne	1	Are. Tora		
	(m.)	(m)		DAIDINAL Ve core	biterine Ave	OTHER VE COTE	Ave		whe -	A.L. INTERM	REMARKS
	16.0	17.5	1.50	T.	4	Tr			Tr		
•	17.5	19.0	1.5	Τ.	4	0.07			0.04	ļ	
	19.0	20.42	1.42	Tr	4	0.07			0.04	1	
·····						· · · · · ·					
										1	
							•			1	
		1	1	1	1		ана (така) Стала (така) Стала (така)	· · · · ·			
<b></b>	-	1			1		İ			†	
		1			1		i en estas		-	1	
• <del>••••••</del> •••••••••••••••••••••••••••••				1		·	1.			+	
					4				-	┫	
					4		<b>]</b>			4	
					-		4			╡	
		1			4		4			4	
					4		4			4	
······		ļ	<b> </b>		4		4			4	
		<b> </b>			4	ļ	1			1	
			ļ		4		1			1	
										Ţ	
					7					1	
	7	1	1	1	1	•	1			1	
		1	+	+	-1		4	ļ		_	<b>J</b>

HOLE NO		5-03	]		DRILL	CC. 2	ASSAY	S.	P	ogo
PROJECT ABI	TIBI				PROPERTY	TISD	ALE			oote
Assoy No.	From (m.)	To (m.)	Width (m.)	Philoman Ve core	Au Interime Ave	gm/ orrise Ve core	tonne Terrevel Mue	An. Tora.	An	REMARKS
<u> </u>	0.0	1.0	1.0	0.69		5.87		<u> </u>	INTERVIL	
	1.0	1.5	0.5	0.14		Tr		0.07	4 4 0	
	1.5	2.0	0.5	61.71	1	27.06		44.39	101	**************************************
	2.0	2.5	0.5	3.31	]	0.21		1.76	9 0 8	· · · · · · · · · · · · · · · · · · ·
	2.5	3.0	0.5	1.	<u>ы</u>	0.48		0.24	<b>1</b>     <b>1</b>	, <u>, , , , , , , , , , , , , , , , , , </u>
	3.0	3.5	0.5	3.36	2.5	2.44	<b>S.5</b>	2.90		•
	3.5	4.0	0.5	25.55	] 05	19.24	8	22.40	B 19 1	<u> </u>
	4.0	4.5	0.5	5.76	<b>e</b>	2.57	т I	* 4.17		
<u></u>	4.5	5.0	0.5	1r		1.	]	t,	TI H	
	5.0	5.5	0.5	0.34	0.01	Tr.		0.17		
	5.5	6.0	0.5	0.34		0.34		0.34	Block	
	6.0	6.5	0.5	3.94	178	1.37		2.66		
	6.5	7.0	0.5	1.1	<b> </b>	2.27		1.14	N-	
	7.0	7.5	0.5	Т.	4	1.61		0.81	BLOCK	
	7.5	8.0	0.5	1.		Tr		Tr	Ā	
,	8.0	8.5	0.5	3.55		0.89		2.22		
	8.5 -	9.0	0.5	14.34	ю. •	24.17	1	19.26		
	9.0	9.5	0.5	14.21		26.64	1	20.43	<b>_</b>	
	9.5	10.0	0,5	0.75	6.85		1	0.75		
	10.0	10.5	0.5	0.14				0.14		
	10.5	110	0.5	8.13		11.79	1	9.96		
	11.0	12.5	1.5	0.14		· 0.34		0.24		

HOLE NC		5 - 03						S		. 1	Poge 2 J1 2
1	From	То	Width		PROPERTY _ Au	-1150 gm/	tonne			·	Dote
ssoy No.	(m.)	(m.)	(m.)	ORIGINAL Va core	bitsame Ave	PTHER YE COTL	later and		AN. TOTAL GULE	Ave INTERMOL	REMARKS
	12.5	13.0	0.5	Tr		0.14			0.07		
	13.0	13.5	0.5	0.34		1.10			0.72		
	13.5	14.0	0.5	2.01		0.96			1.49		
· · · · · · · · · · · · · · · · · · ·	14.0	14.5	0.5	0.14		0.07			0.11		
	14.5	15.0	0.5	1.89		78.17			40.03		visible gold
	15.0	16.5	1.5	1-		T,			1,		
<u></u>	16.5	18.0	1.5	T		Tr			Τ.	T I	
	18.0	19.5	1.5	T-	l	Tr			Tr	<b>1</b>	
	19.5	20.12	0.62	1-	1	Tr			Tr	<b>†</b> [†]	
			ļ	1	1					Ī	
							•			I '	
		ļ			1					I '	· · ·
			ļ		1					Ī	
		<u> </u>			1					1 .	
					ļ		]			1.	
										Ţ.	
							]		1	1	1
		<u> </u>			1					1	
									1	1	
					1		I		1	1	
					]		I		1	1	
					]	•	I		1	1	

HOLE NO.		5-04			DRILL PROPERTY		Poge 2				
ssay No.	From (m.)	To (m.)	Width (m.)	PRIDINAL Ve core	Au Interime Ave	gm/ orrang Ve core	tonne. Interne		AM. TOTAL	A.,	REMARKS
• <del>••••••••••••••••••••••••••••••••••••</del>	0.0	0.5	0.5	1- 1-	CV6	In			fore T-	INTERNEL	
	0.5	1.0	0.5	1.23	1	0.62			0.93	Q	
	1.0	1.5	0.5	T.		0.21			0.11	BLOCK	
	1.5	2.0	0.5	Tr		Tr			Tr	0	
	2.0	2.5	0.5	25.03	]?[	15.60	0 %	1 - E	20.32		visible gold
	2.5	3.0	0.5	8.16	2	29.83	F O.		19.00	4 X X X	
	3.0	3.5	0.5	1.65	_ v	2.71	80		2.18	6.41 Block 10.38	visible gold
	3.5	4.0	0.5	T-		0.07			0.04	┇ ┝	
······································	4.0	4.5	0.5	T-		Tr			Tr	- <u>1</u>	
	4.5	5.0	0.5	0.41		T,			0.21	1	
	5.0	5.5	0.5	T-	1	0.07			0.04	BLOCK	5
<b></b>	5.5	6.0	0.5	0.07		Tr	i -		0.04		
	6.0	7.0	1.0	Tr	1	1,			T,	<u> </u>	<u> </u>
	7.0	8.0	1.0	T-	4	1,			T,	- ²	
	8.0	8.5	0.5	T-		T-	-		Tr	┫┯╸╴┊	
	8.5	9.6	0.5	Tr	4	T-			Tr	<b> </b>   <b> </b>	
	9.0-	9.5	0.5	9.05	4	1.30			5.18	BLOCK 14	<u>k</u>
Par	9.5	10.0	0.5	3.89	5.20	2.71	3.5		3.30	2 3 3 S	
	10.0	10.5	0.5	0.75	ㅋ왜	1-	68.		0.38	- <u>-</u> 2	
	10.5	11.0	0.5	7.36	- *	1.48	lo l		4.42		
	11.0	11.5	0.5	0.96	-1	0.27			0.62	4	<b> </b>
	11.5	12.0	0.5	2.06		· .1/			1.03		

HOLE NC	ويستقدمون البرينية بالمتناط المتعا	5-04	]		DRILĹ	ເດີະ	ASSAY	S		P	000 2 1 2	
ROJECT ABI	TIBI					TISD				Dole		
Ssoy No.	From (m.)	To (m.)	Width (m.)	BAIDINAL Ke core	Au Interne Ave	gm/ orneg Ve core	tonne Intración		Are. Torn.	An	REMARKS	
	12.0	13.0	1.0	0.75	<u> </u>	0.14	Ave		644e 0.45	IMBAML		
	13.0	14.0	1.0	0.69		0.07			0.38			
	14.0	15.0	1.0	0.07		Tr			0.04			
	15.0	16.0	1.0	0.69		0.07	•		0.38			
	16.0	17.0	1.0	1.37	1	Tr			0.69		· · · · · · · · · · · · · · · · · · ·	
	17.0	18.0	1.0	0.82		7.00			3.91	1 1	•	
	18.0		1.0	0.07		0.07			0.07			
	19.0	20.12	1.12	0.07	•	Tr		·	0.04	† †	· · · · · · · · · · · · · · · · · · ·	
					1					† †		
					Ţ					1 1		
					I					t 1		
					I		•			1 1		
			ļ					•				
					ļ					I ]	· · · ·	
			<u> </u>	ļ	1					] ]		
		<u> </u>	<u> </u>							] ]		
				<u> </u>	4							
		<u> </u>	ļ		1							
we		<u> </u>	<u> </u>		4				<u> </u>	ļ		
			<b> </b>		-					ļ		
					-				ļ	] ]		
	{		ł	l	<b>.</b> .	<u> </u>						

HOLE NO		5-05			DRILL	cé z	DRILL CC & ASSAYS							
OJECT ABI	1181		7			TISD		Dote						
say No.	From (m.)	To (m.)	Width (m.)	PRIVINAL YE COVE	Au Interine Ave	gm/ Va core	tonne Interne Mue		ANI. TOTAL EVILE	Ave	REMARKS			
	0.0	0.5	0.5	T.,		Tr.			1r	INTERVAL				
	0.5	1.0	0.5	1-		0.07			0.04	S.				
	1.0	1.5	0.5	10.02		9.77			9.90	BLock 2.91				
·	1.5	2.0	0.5	4.65		0.55			2.60					
	2.0	2.5	0.5	1.23		0.96				0 -				
	2.5	3.0	0.5	0.34		0.34	6.0		0.34	$\mathbf{N}$				
	3.0	3.5	0.5	1.17	0	1.23	x			3.31 Block 11	· · ·			
	3.5	4.0	0.5	0.07	5	1.10	à. 1		0.59	BIO				
• • • • • • • • • • • • • • • • • • •	4.0	4.5	0.5	6.79	2	1.17			3.98	<b>t</b>   L	visible gold			
	4.5	5.0	6.5	0.07		0.07.			0.07	T !	<u> </u>			
	5.0	5.5	0.5	0.07		Tr			0.04					
<u></u>	5.5	6.0	1.5	39.77		1.			19.89	ŢŢ .				
	6.0	6.5	0.5	0.75		9.71		:	5.23	· ·				
	6.5	7.0	0.5	1.95		0.96			1.46	Ī				
	7,0	8.5	1.5	0.07		Tr			0.04	Ī				
	8.5	9.0	0.5	T-		1.			1.	Ī				
·	9.0 -	9.5	0.5	1.	ļ	Ţ.			1,	Ī				
	9.5	10.0	0.5	T,	ļ	<u> </u>			11	Ι				
	10.0	10.5	0.5	F		11			11					
	<u> </u>		<b> </b>							ļ				
		<b> </b>								ļ				
						·			1					

HOLE NO.		-05-0	77	-		co.́.≟ TISD/		S			Poge _2 _1 2
ssay No.	From (m.)	To (m.)	Width (m.)	DRIGINAL Ve core	Au bitsaine Ave	gm/ otrack Va core	tonne Interne	· -	Ave. Torn.	Ave	REMARKS
<u></u>	12.5	135	1.0	he care	Ave	Ve core	Ave		<u>Cure</u>	INTERMIL	
	13.5	15.0	1.5	1-	1						
	15.0	16.0	1.0	2.51		-					
<u></u>							*				
	20.0	21.0	1.0	0.55		0.48				ł	
	24.5	25.5	1.0	Ke		0.07			·	1	
	25.5	26.0	0.5	Tr		1.				†	
<u> </u>	26.0	27.13	1.13	Tr	1	T-				]	
<u></u>				ļ	4					ļ	
					4					1	
		<u> </u>			4					ļ	
			·		4			, 		4	
			_		┥				-		
······					╡					4	
					4					┫	
					1					4	
					1					†	
					1					†	
					1		ļ			1	
		}			]	•••	I		1	1	

-

.

HOLE NO	GT-85-0	05-06			DRILL	CC.Z	ASSAY	S .			
PROJECT ABIT	ГІВІ				PROPERTY _						
Assay No.	From	То	Width		Au	gm /	tonne				Dote 1984
	(m.)	(m.)	(m.)	Re core	INTERINE Ave	VR LOTL	later val Noe		AN. TOTAL	Ave Interval	REMARKS
•	0.0	0.5	0.5	1.58		5.04			7.31	7	
<b>P</b>	0.5	1.0	0.5	12.90		16.91			14.91		viuble you
<b></b>	1.0	1.5	Û. 5	22.05		9.33		·	15.69		<u>_</u>
	1.5	2.0	0.5	<u>t-</u>		0.07			0.04		
	2.0	2.5	0.5	1.37		0.69			1.03		
	2.5	3.0	0.5	0.34		0.21			0.2.8		
	3.0	3.5	0.5	0.34		0.07			0.21		
	3.5	4.0	0.5	3.22		1.37			2.30		visible no le
	4.0	4.5	6.5	0.55		0.82			0.69		
	4.5	5.5	1.0	0.82		3.33			2.08		
	5.5	6.0	0.5	Tr		0.07			0.04		
	6.0	6.5	0.5	0.07		Tr			0.04		
	6.5	7.0	0.5	Tr	1	0.14			0.07		
·	7.0	7.5	0.5	0.21	1	1r			0.11		
	7.5	8.5	1.0	1-		. 1r			1-	ĺ	0
	8.5	9.5	1.0	1.17		1.17			1.17		P
	9.5.	10.5	1.0	0.75	ļ	1.51			1.13		~
	10.5	11.5	1.0	0.14	l	1.23			0.69	[ ·	
	11.5	12.0	0.5	0.27	1	1-			0.14	·	
	12.0	12.5	0.5	25.85	ļ	0.41	I		13.13		0
	12.5	13.5	1.0	0.55	1 ·	<b>F</b> 0.0			0.31	ŗ	(
	13.5	14.0	0.5	1.75		· 1r			().88	ŀ	·

HOLE NO 6	T-85-	05-06	,]		DRILI	co. :	Veeva	C			2 . 3
PROJECT ABIT						TISD					
	From	То	Width	· ·	Au	gm/	tonne				Dote Jan 1986
Assoy No.	(m.)	(m.)	2 .	PRISINAL YE COVE	INTERME Ave	WE COTE	INTREVAL Ave		ANI. 10710. CURE	Ave Interver	REMARKS
	14.0	15.0	1.0	1.10		6.96			4.03		1
	15.0	16.0	1.0	0.82		6.00			3.41		:
<b></b>	16.0	16.5	0.5	11		1.51			0.76		
	16.5	17.0	0.5	1.44		0.55			1.00		τ.
* <del></del>	17.0	17.5	0.5	1.37		1.23			1.300		:
	17.5	18.0	0.5	2.39		1.75			2.07		ب ،
· · · · · · · · · · · · · · · · · · ·	18.0	19.0	1.0	0.21		0.55			0.38		
••••••	19.0	19.5	0.5	1.03		0.34		-	0.69		•.
	19.5	20.0	0.5	26.21		1.37			13.79		
<u></u>	20.0	20.5	0.5	2.01		3.53			2.77		-
	20.5	21.0	0.5	0.69		1.89			1.29		
	21.0	21.5	0.5	0.69		1.44			1.07		0
	21.5	22.0	0.5	4.37	4	7.55	. 34	,	5.96		L
	22.0	22.5	0.5	6.75	1	1.58			4.17		4
	22.5	23.0	0.5	0.21	1	1.85			1.03		
	23.0	1	1.0	2.55	· ·	1.96			2.26		·
	24.0		1.0	0.89	ļ	2.06			1.48	,	
	25.0		1.0	11	4	0.27			0.14	ļ	
	26.0	27.0	1.0	1.	4	1,			T.	ļ	
	270	28.5	1.5	1,	4	Tr			11	ļ	
	28.5	290	0.5	0.89	4	0.34			0.62	l	
	29.0	30.5	1.5	Tr	<u> </u>	· .Tr			1-	1	

HOLE NO.		05-06		-		Poge 3 01 3 Date Jan 1486					
<u>.</u>		Γ	T	- T		Date Ver 1906					
ssay No.	From (m.)	To (m.)	Width (m.)	PRISINAL .	Au biterine Ave	gm/ orneg Ve core	THTELVEL Hue		AN. TOTAL	An	REMARKS
	30.5	31.39	0.89	0.27		0.27			0.27	INTERME	
					1				<u></u>		
							·				
										1	
· · · · · · · · · · · · · · · · · · ·					1						
										ļ	
		ļ	<u> </u>		4		]				
					]						
							]			1	
							1			† '	
							1		· ·	ŧ ·	
			1		1	•				ł ·	
		<u> </u>			┫		4			4.	
					4					l .	
					4		1			l .	
					1						
										Ī	
					1					1	
······································		1	1		1					1	
		1	1	1	1		1			ł	
		1		+	1		1	<b> </b>		ł	
					- ·		1			ł	
					-					ļ	
		ļ			4						
		<u> </u>	1	<u> </u>							

HOLE NO.	GT-85-	05-0	7								
PROJECT ABI			<u> </u>	DRILL CO. : ASSAYS							Poge uf
Assay No.	From (m.)	To (m.)	Width	Au gm/tonne						An	
- <u></u>	(m.) 0.0	0.5		onioinal.	hrsame Ave	THER YE COTL	Ave		Grae	Impany	REMARKS
<u> </u>	0.5	1.5	0.5	1.85		0.41 1r			1.13		
	1.5	3.0	1.0	0.27		0.07		· · · · ·	0.14		۰ 
	3.0	4.5	1.5	0.14 Tr		1.			0.11		
	4.5	6.0	1.5	11		1/			1.		
	6.0	7.0	1.0	0.82	1		 	*			
	7.0	7.5	0.5	0.75	1	<u> </u>			1.10	$\mathbf{f}$	•
	7.5	8.0	0.5	0.55		0.09			0.72		
	8.0	8.5	0.5	7.58	1	0.75			0.65		
	8.5	9.0	0.5	0.41	1	Tr .			0.21	• ·	
	9.0	9.5	0.5	31.17	1	6.24			18.71	t.	visible you!
1949 - 197 <u>9 - 1979 - 1979 - 1979 - 1979 - 1979 - 19</u> 79 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1970 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 -	9.5	10.0	0.5	12.34	1	3.12			7.73	<b>†</b> . •	
	10.0	10.5	0.5	0.55	1	1-		•	0.28	† ·	visible gali
	10.5	11.0	0.5	1-	1	11			1.1.	† ·	
		<u> </u>		<b> </b>	1					† ·	
	13.5	14.0	0.5	3.15	1	2.95			3.05	† ·	
	14.0 .	14.5	0.5	0.41	1	0.27	• •		0.34	+ ·	
	14.5	15.0	0.5	0.34	]	0.07	<b>1</b> ,		0.21	† [.]	
	15.0	16.0	1.0	0.07	]	0.82			0.45	1	
	16.0	17.0	1.0	0.34	]	11	I		0.17	1	
					]		I a			1	
					]	• •	I			1	

HOLE NO.		05-08	]		DRILL	co	ASSAY	S		1	Poge
PROJECT ABI	TIBI				PROPERTY _	TISD	ALE				Dote Jan 1986
Assay No.	From (m.)	To (m.)	Width (m.)	PRIVINAL Te core .	A LA INTERIME AVE	gm/ orner Va core	tonne lateral		Ave. Tora.	An.	REMARKS
	0.0	0.5	0.5	0.48	<u> </u>	0.21	Ave		0.35	INTRAVEL	
	0.5	1.0	0.5	1.44		1.03			1.24		
	1.0	1.5	0.5	0.82		0.75		-	0.79		
	1.5	2.0	0.5	1.37		1.			0.69		
	2.0	2.5	0.5	1.78		0.62	•		1.20		
	2.5	3.0	0.5	1.23	41	3.94			2.59		
	3.0	3.5	0.5	1.37	r L	1.30			1.34		•
	3.5	4.0	0.5	42.34		13.03			27.69	-	
	4.0	4.5	0.5	1.75		0.48			1.12		· · · · · · · · · · · · · · · · · · ·
	4.5	5.5	1.0	0.75		0.41			0.58	-	
	5.5	6.5	1.0	Ar		· 1-			1-		
	6.5	7.0	0.5	0.69	ĺ	0.07	~		0.38	-	
	7.0	8.0	1.0	Kr		0.07	An Diana ang Ang Ang Ang Ang Ang Ang Ang Ang Ang Ang Ang	•	0.04		· · · · · · · · · · · · · · · · · · ·
	8.0	4.5	1.5	h,		1.			1-	-	
	9.5	11.0	1.5	K,		1.			T.		
	11.0	12.19	1.19	1.		1.			T,		
									<u> </u>		
				<b></b>							
				1		• •			<u> </u>	ł	

3 of 4

# 63.4734

APPENDIX D

1985 SUMMARY REPORT

FOR THE

# GETTY - DAVIDSON TISDALE JOINT VENTURE

TISDALE PROJECT

OM84-337

REHABILITATION AND UNDERGROUND EXPLORATION

## 1985 SUMMARY REPORT

#### FOR THE

## GETTY-DAVIDSON TISDALE JOINT VENTURE

# TISDALE PROJECT

TIMMINS, ONTARIO

## PART I

#### REHABILITATION AND UNDERGROUND

#### EXPLORATION

January 15, 1986

Charles G. Pitcher, P. Eng. Project Manager TABLE OF CONTENTS

I

Ì,

Į

	TABLE OF CONTENTS	Page No.
1.0	Summary	1
2.0	Introduction	4 1
3.0	Historical Summary	3
4.0	Exploration Programs - Pre 1985	6
5.0	Exploration Program Alternatives - Phase 2: - 1985	.9
6.0	Proposed Work Program - 1985 6.1 Site Preparation 6.2 Mine Access 6.3 Work Plan Objectives 6.4 Rehabilitation 6.5 Exploration 6.6 Geological Evaluation	11 11 12 12 15 15 16
7.0	Work Contracts 7.1 Contract Award	16 22
8.0	Contractors Work Plan & Schedule	27
9.0	<ul> <li>Work Plan Execution - Summary Description</li> <li>9.1 Site Mobilization and Equipment</li> <li>9.2 Mine Dewatering</li> <li>9.3 No. 1 Shaft &amp; Winze Rehabilitation</li> <li>9.4 No. 2 Slope Shaft Rehabilitation</li> <li>9.5 Survey Control</li> <li>9.6 Headframe and Hoist House</li> <li>9.7 Dumping Arrangement</li> <li>9.8 Underground Loading Pocket</li> <li>9.9 Shaft Station</li> <li>9.10 5th Level Waste Drive</li> <li>9.11 Mine Rehabilitation</li> <li>9.12 Raising</li> <li>9.13 Bulk Level Sampling</li> <li>9.14 Demobilization</li> </ul>	39 40 42 45 45 45 46 48 48 48 48 48 49 49 50 50
10.0	Contract Execution	53
11.0	Project Administration	54
12.0	Project Costs	56

## 1.0 Summary

The 1985 exploration program was the 2nd of a 3 phase exploration program by Getty Canadian Metals, Limited on the Davidson-Tisdale property. This 2nd phase concentrated on the surface and underground diamond drilling and mine rehabilitation required to procure a bulk mineralized sample of approximately 2000 tonnes in order to obtain validation and cutting procedures for diamond drill core grades.

The program required rehabilitation of three shafts to a depth of 200 metres, mine dewatering of 60,000,000 litres, the driving of a 65 m drift in waste, installation of hoisting facilities, headframe, an underground station and loading pocket, and a complete underground survey.

The site program commenced during the 1st week of June and was completed on the last day of October with all of the program objectives achieved and in some instances exceeded. The program's budgeted expense of \$1,628,000 for direct site activities was exceeded by 7% for a total cost of \$1,728,000.

The results of the diamond drilling, bulk sampling, and the geological assessment is the subject of a separate report.

# 2.0 Introduction

The Tisdale Project properties are located in Tisdale Township, District of Cochrane, approximately 12 km northeast of the City of Timmins and approximately 3 km northeast and along strike from the Hollinger-McIntyre-Coniaurum ore bodies. Ready access is provided to the south claim group by a 4.0 km gravel road north of highway 101 in South Porcupine. South Porcupine is located approximately 8.0 km east of Timmins. The north claim group can be reached by a good gravel road which begins on Highway 655 in Murphy Township.

The property consists of 9 patented mining claims in two blocks in Tisdale Township, Ontario, comprising 356 acres.

The Tisdale Project is a joint venture between Getty Canadian Metals, Limited and Davidson Tisdale Mines, Limited, which became effective January 1, 1984. On March 1, 1984 Getty became operator of the project following approval of the joint venture by Davidson Tisdale Mines shareholders. Getty has been assigned a 50% interest in the property and will fund 100% of expenditures up to a total of \$6,000,000 Cdn. to maintain this interest.

In order to confirm its 50% interest, Getty must make 100% of the following expenditures on the property:

#### Phase 1 - \$2,000,000 Cdn. by December 31, 1984;

Phase 2 - Additional \$2,000,000 Cdn. within one year of Phase 1; Phase 3 - Additional \$2,000,000 Cdn. within one year of Phase 2. After completion of Phase 3 work, in order to maintain its 50% interest, Getty would have to exercise its option to purchase 500,000 common shares in the capitalization of DTM for a cash payment of \$4,000,000 Cdn.

Phase 1 was completed as scheduled and this report summarizes the major part of the work program for Phase 2.

The objectives of the Phase 2, 1985 work program were in the following areas:

Ĵ

- 1) Exploration drilling
- 2) Underground rehabilitation and exploration development
- 3) Underground sampling
- 4) Geostatistical and metallurgical assessment

The joint venture controls both the mining surface rights to the properties.

# 3.0 Historical Summary

The following is an extracted and précied historical summary compiled from the 1983 and 1984 project reports.

The first Timmins staking rush began in 1909 after the presence of gold in the area had been demonstrated in 1907 in the Night Hawk Lake area to the east, and in 1908 at the Hunter Mine at the east end of Porcupine Lake, about 3 1/2 miles (7 km) southeast of the Davidson property. In 1909 the great gold deposits in the area were found: Dome, Hollinger and McIntyre. That same year other deposits were found, including the Davidson Mine which was staked by William Davidson, a prospector who had been grubstaked by a 3 man syndicate from Haileybury, Ontario. That same year the ground was sold to Hugh H. Sutherland, who was associated with it for the rest of his life, and controlled the ground until his death in 1972.

In 1911 the small (exploration?) shaft was begun by <u>Davidson Gold Mines</u>, with exploration drifts opened up on the first level in 1913 and on the second level in 1914.

The third level was reached in late 1916 and simultaneous exploration and development took place on all levels in 1917, including the sinking of the winze to the fifth level in 1917. A 10 stamp mill was put in place in 1918 and production continued until the milling and mining operations stopped

in 1920. In 1919 the company was re-formed as <u>Davidson Consolidated</u> <u>Gold Mines Limited</u> so as to include several other blocks of land under the same corporation. At that time both underground and deep diamond drilling was begun so as to locate more ore at depth, notably holes 1, 2, 3 and 4, which were put down so as to intersect the ore-bearing structure which was in the minds of the engineers at that time, below the mine workings.

During the producing life of the mine 9,371 tons of ore grading .260 ounces of gold and .026 ounces of silver to the ton are reported to have been milled. (In metric terms this would be 8,501 tonnes grading 8.91 grams of gold and 0.55 grams of silver). There is reason to suspect that a higher tonnage and a higher grade were both put through the mill, for numbers accumulated by Hart in 1978 indicate that in a 10 month period in 1919 greater tonnage and higher grade are indicated in mill reports than was given in the figures supplied to shareholders for the 12 month period in that same year.

In 1921 Porcupine Davidson Mines Limited was formed as a 50:50 Canadian-British partnership making use of English money to explore and develop the considerable tonnage that was felt to exist at depth below and on strike from the old mine workings. A series of drill holes lettered A through N were put down both from underground and from surface between early 1922 and 1923, with good intersections of ore-grade material reported at depths up to 1,750 feet (533 metres) along a strike length in excess of 1,000 feet (300 metres). On the basis of these results coupled with extensive underground sampling and assaying, an incline shaft was put down some 600 feet (182.88 metres) west of the old mine shaft with a planned depth of 1,000 feet (304.8 metres). As this was being sunk, in August, 1924, two English engineers named Bullen and Kee dewatered the mine workings, extensively resampled them, reviewed the drilling, and concluded that the large tonnages that had been predicted for the potential mine were not warranted by the drilling results, largely - 5 -

because the drill holes were too few and too far apart to permit correlation of their results. The British withdrew their funds and threatened legal action to get back their investment. The net result was an out-of-court settlement whereby the British received most of the treasury of the company and the Canadians received the property.

In 1933 the property was optioned to Ventures Limited who geologically mapped the ground in 1934 and 1935, but did nothing until 1945 when they drilled 11 holes into the old mine workings and below them. They also wedged several of the old lettered drill holes from 1922-23 and failed to verify the old assays. They gave the property up in 1945, to Davidson Tisdale Mines Limited, the present owner of the ground.

After Mr. Sutherland's death in 1972 the control passed to his son, Hugh H. Sutherland, himself a consultant geologist, who also made efforts to option or work the ground, but a depleted treasury and the apparent elimination of the property by Ventures' drilling, combined to make the property unworkable by the management and uninteresting to the investor. As the price of gold rose in the late 1970's, some interest appeared. Noranda Exploration examined (and rejected) the ground in 1977, and Pamour Mines (a Noranda subsidiary) bought the tailings from the old minesite. E.A. Hart wrote a geological appraisal in 1977, Hugh Sutherland, Jr. wrote a feasibility study in 1978 and John Kirwin examined the data and gave a positive report of the old mine's potential in 1979.

Dome Mines Limited optioned the property and conducted a program of surface diamond drilling and sampling in 1981 and 1982. Of the 11 drill holes put down, only one was put down in the vicinity of the old mine workings, and that was a very deep hole underneath them, and the indications are that Dome regarded the <u>old</u> mine as exhausted, as shown by the Ventures geologists in 1945.

# 4.0 Exploration Programs - Pre 1985

The south claim group was explored by surface drilling and underground development during the period 1911 to 1924. Thirteen surface holes totalling 4,070 metres were completed between 1919 and 1922. In 1916 a two-compartment, vertical shaft (Main Shaft) was put down by Davidson Gold Mines to a depth of 95 metres. A second shaft, known as the South Shaft, was sunk to a depth of 15 metres. Levels at 30, 60, and 90 metres were established from the Main Shaft with approximately 700 metres of lateral workings done from the levels. In 1918 to 1919 a vertical winze was sunk 67 metres from the 90 metre level with new levels established at 150, 167 and 183 metres, with a total of 490 metres of drifting and crosscutting. A limited amount of underground drilling was done during the mine operation.

In 1918 electrical power was brought to the site along with a ten-stamp mill that operated at approximately 30 tons per day until it burned down in 1924. Gold was recovered in the mill by a mercury amalgamation process.

In 1923 to 1924 a three-compartment shaft, known as the Horseshoe Shaft was sunk at a site 180 metres west of the Main Shaft. The shaft was inclined at an angle of 72° to the northwest with the objective of sinking it to a depth of 300 metres in order to develop a deeper auriferous vein zone previously encountered from drilling. The shaft was stopped at 247 metres owing to withdrawal of financial support from the company's English backers in late 1924. Stations were established on the incline at a depth of 60, 120 and 167 metres.

In 1945, Ventures Limited carried out a diamond drill program in an attempt to locate the extension of the veins found in the workings and to check high gold content of assays of cores from previous drilling. Eleven holes for 1,290 metres were drilled along with 267.0 metres of wedging in

old core holes. The results failed to prove to Ventures' satisfaction the presence of sufficient ore to warrant reactivating the old mine.

In 1981 Dome Mines optioned the property, drilled 10 holes totalling 3,895 feet and in 1982 dropped their option. It is believed that Dome dropped the option because of other corporate financial obligations.

In early 1983 Davidson Tisdale Mines Limited came under the control of a new group who carried out an extensive surface and underground exploration program.

During 1983 the following work was completed:

- A north-oriented grid consisting of lines spaced at 100 foot intervals and picketed at 50 foot intervals was established over the North and South claim gorups.
- 2) Ground geophysical surveys were carried out on the grids:
  - a) Magnetic and VLF-EM surveys on the south claim group
  - b) Magnetic, VLF-EM, Maxmin II HEM, and Pulse EM on the north claim group.
- 3) Kirwan (1983) completed a thorough compilation of all available data on the property up to and including the geophysical surveys completed early in 1983.
  - a) Extensive stripping in the Main Shaft, Smith Vet and South Shaft areas and in the T Zone area where a new gold showing was discovered by the stripping program.
  - b) Extensive percussion drill sampling of the stripped area around the Main Shaft and the T Zone area to test the open pit potential.

- c) Twenty-three holes totalling approximately 2,125.0 metres were completed in the Main Shaft area.
- d) The underground working were unwatered and rehabilitated, extensive sampling and assaying was carried out, and geological mapping was initiated. No underground drilling was completed.

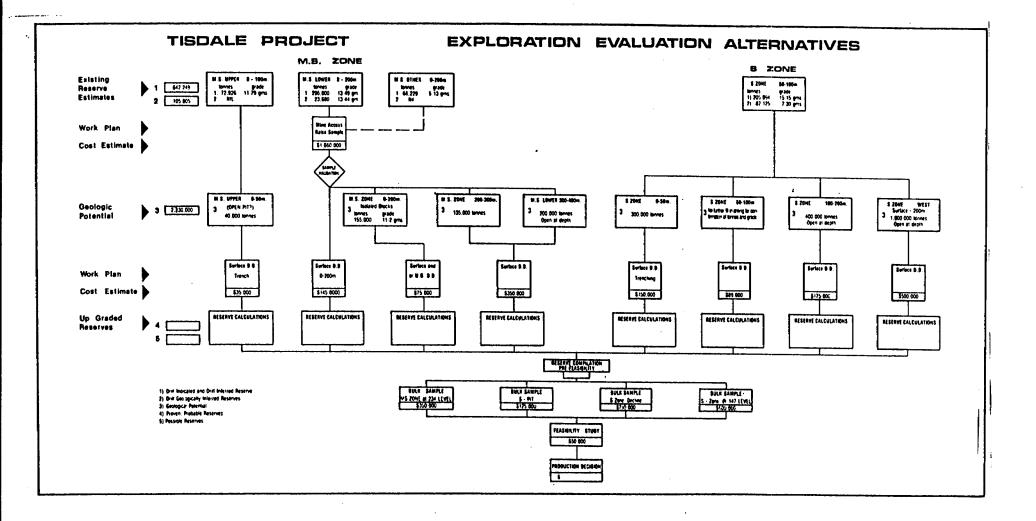
On March 1, 1984 Getty became operator of the Tisdale Project Joint Venture. During 1984 Getty carried out a surface diamond drill program, detailed surface geological mapping, surveyed the boundary of the south claim group and surveyed drill hole and shaft collar locations. Additionally, all previous data was compiled and converted from imperial to metric units and integrated with the results from the 1984 drill program. All of the 1984 exploration work was centred on the south claim group.

The exploration program planned by Getty for Phase I had the following objectives:

- 1) To drill indicate the tonnage potential of the Main Shaft vein zones and to establish the inferred continuation of these veins to the southwest (along a total strike length of 700 metres and to a maximum depth of 230 metres) in order to assess the potential of the property to host a medium sized ore body (1 to 3 million tons).
- 2) To assess the potential for additional auriferous vein zones.
- 3) To outline sufficient tonnage to justify a program of underground exploration and development.
- 4) To complete detailed geological and structural mapping of the property.

- 5) To initiate drill testing of gold-bearing sedimentary units known to occur on the property.
- 6) To complete a land survey of the property boundary and tie in all existing shafts and drill holes to the mine grid.

#### 5.0 Exploration Program Alternatives - Phase 2: 1985


In order to prepare a work program for the Phase 2 for 1985, the short and long term geological objectives were detailed within the budget and time constraints of the venture agreement. The principle objective was to establish both the required work and the required results in order to make a production decision by the end of the Phase 3 program.

Order of magnitude capital and operating costs for conceptual mining methods were established to enable sensitivity analysis to be generated for required geological mining tonnages and grade. The design criteria established that, for a viable operation, the required reserve was estimated to be 700,000 tonnes at a mill feed grade of 0.21 oz/tonne at a mining rate of 175,000 tonne per year.

At this point the long term exploration program now required grade validation and reserve upgrading. It was decided that '85 program would be grade validation followed in '86 by reserve up-grading.

The attached flow chart indicates the steps set out for the process required for the eventual production decision.

- 9 -



 $\rightarrow$ 

#### 6.0 Proposed Work Plan - 1985

The work plan options for the 1985 program centered around minimizing costs to achieve the geological objectives of grade validation and ore reserve up-grading from an underground exploration effort. The infrastructure required for these efforts of diamond drilling and bulk sampling were:

- 1) Site preparation
- 2) Mine access
- 3) Underground Exploration

#### 6.1 Site Preparation

The major items in this category were road upgrading, power transmission and substation, and site buildings. The optional power source of diesel generation was selected for two reasons; the first was the availability of switch gear for the permanent power which would not have made the facility available until mid-way into the '85 program; the second reason was to use the estimated 1985 cost savings of diesel power of \$100,000 for direct underground exploration work.

From previous programs on site, three permanent buildings were on site. The buildings were all being used for storage of drill core and samples. The buildings are Butler type with concrete floors. Renovations were undertaken to convert the main building into the principle engineering and administrative office for the project. Insulation, heating, water, and temporary power have been added to make the facilities functional on a year round basis.

# 6.2 Mine Access

The options for mine access centred on utilizing either the Horseshoe shaft or the Main shaft. The use of the Main shaft required the use of the underground winze and double hoisting and transfer of mine muck along with excessive utility installations. The alternative option was the use of the Horseshoe shaft which extends below the existing bottom level of the mine. This slope shaft access required rehabilitation of timber and collar foundation, a hoist base foundation, and a headframe. The headframe selection would be one for exploration service and muck hositing only. It was recommended that the mine contractor select and install the headframe to be used with the owner paying the purchase and erection cost. The mine hoist would not be purchased for the '85 program.

# 6.3 Work Plan Objectives

The main objective was to improve the geological information in the following areas:

- A) Below 147 m level
  - Target drilling for ore continuity at depth
- B) Reserve upgrading
  - Underground diamond drilling 178 m level to 147 m level
  - Underground diamond drilling 87 m level to 26 m level
- C) Bulk grade confirmation by lateral and vertical excavations

• 147 m level to 87 m level

These priorities should be obtained by minimizing the amount of rehabilitation and underground excavation. Where underground

excavation is required, it would tie in with future mine development and production work.

The budget for the overall program included costs for:

- 1. Geological and geostatistical assessment
- 2. Metallurgical assessment
- 3. Mine rehabilitation
- 4. Mine exploration
- 5. Diamond drilling
- 6. Bulk sampling

The mine exploration budget was to be split between rehabilitation, development, drilling and sampling with the drilling and sampling requiring priorities. As a result it was important that both rehabilitation and development be kept at minimum expenditures to achieve the drilling and sampling targets. The work plan schedule for the objectives are outlined in the attached exploration schedule.

# EXPLORATION SCHEDULE



14

Getty Canadian Metals, Ltd.

÷

Activity	Quantity	Duration (Weeks)	Cost (S S)	April	May	June	July	Aug.	Sept.	Oci.	Nov.	Dec.	Jan.	Feb.	Mar.	April	Мау
A Preliminary — Geostatistics		6	15.000							ł		<u> </u>	ł				ļ
B. Preliminary - Metallurgical		6	15.000							1		1					
Site															1		
1. Road	L.S.	3	175.000			<u> </u>						<del> </del>	ł				
2. Communications	L.S.	8 - 10	30.000		*******							1	1				
3. Offices & Misc.	L.S.	2	25.000									t	1				
U/G																	
4. Mobilization	L.S.								ļ	<b> </b>							
5. Dewater	L.S.									<u> </u>		<del> </del>		<u> </u>			<u> </u>
6. Rehab. & Headirame	L.S.									<u>                                      </u>		<del> </del>		<u> </u>			
7. Hoist & Conveyance	L.S.									<u> </u>			<u> </u>	ł			
B. Contract Survey						1								<u> </u>			
9. Station Development		[				1				t	l	<u> </u>	·				
10. Drifting & Services						1				1		<u> </u>			<b> </b>		l
11. F/W Drift & Sample						1						<b> </b>	<u> </u>	<u> </u>	<u> </u>		t
12. Raise & Sample						1						<u> </u>	<u> </u>				<b>├</b> ────
13. Subdrift						<u> </u>						<u> </u>	ł				<b> </b>
		[								}		+					<b> </b>
14. S - Zone - Drift Exploration	300 m?	10?	400,000				·····			<u> </u>		<u> </u>					<u> </u>
@ 147 & Sample									•••••	<b></b>	•••••	?					1
15. S - Zone - Raise Exploration	200 m?	10?	200.000			<u> </u>							<u> </u>				
@ 147 & Sample					-					1	•••••	••••••	?		1		1
										}							<u> </u>
16. MS - Zone - Shalt & Stn. Dev. @ 234	L.S.	6	100,000		· · · · · · · · · · · · · · · · · · ·												
17. MS - Zone - Drift & Exploration	200 m	10	250.000	[]										ļ			
@ 234 & D.D.	200 111		230.000													?	
18. Underground geological												1	·	1	-		<u> </u>
Mapping and Sampling.						•••					5						1
Surface																	
19. S - Zone D.D. 0-50 m	1600 m	4	80,000														
20. S - Zone D.D. 50-100 m	3000 m	6	150,000									ł		+	ļ		<b> </b>
21. S - Zone D.D. 100-200 m	3500 m	10	175,000								<u> </u>	<u> </u>		<u> </u>			
22. MS - Zone Trench & D.D. 0-50 m	200 m	3	25,000										<u> </u>	<u> </u>			
23. MS - Zone D.D. 0-200 m	1500 m	3	75.000			i			· · · ·			<u> </u>		<u> </u>			
24. MS - Zone D.D. 200-400 m	7000 m	12	350,000							<u> </u>		•		<u> </u>			<b> </b>
25. Geological Mapping & Sampling														<u> </u>			
26. Geostats Review - S · Zone	·····	i										<u> </u>	<u> </u>				
27. Geoslats Review — MS - Zone		1				i							l				
28. S - Zone - Irench & Pit		16	125,000						******			••		<b> </b>			
29. Preleasibility - Mines		6	50,000										<u> </u>				
30. Feasibility - Mill & Mine		8	75,000														
31. Production Decision		t														3	
32. Permanent Power		10	250.000									h	<b>'</b>	<u> </u>		=r	

= 1985 Basic Program

= Program Extension ********* ?

= Minimum Quantity

= Decilision Point

### 6.4 <u>Rehabilitation</u>

In the 1985 work plan rehabilitation work would consist of:

- mine dewatering
- foundation and headframe for slope shaft
- ground support and manway access for slope shaft
- ground support and manway access for main shaft
- ground support and manway access for winze
- installation of air and water and ventilation facilities
- installation of rail ties, track, ballast on the 5th (147 m) level

Due to the extent of exploration work below the 87 metre level, the size restriction for hoisting in the main shaft, and the requirement of double handling of muck, it was recommended that the major effort be concentrated through the rehabilitation of the slope shaft. The exploration development would be carried out from a connection between the slope shaft and winze at the 147 m level (5th level). This effort would require only modest rehab. work on the main shaft and winze. The most cost sensitive areas would be for the slope shaft facility for the foundation, headframe, conveyance, and loading facility at the 147 m level.

### 6.5 Exploration

The options of lateral development from the 147 m or the 178 m depth of the slope shaft were considered. The option of selecting the 147 m level was more advantageous. The 147 m level:

- connected the slope shaft to the lowest mine level at the winze
- . minimized the exploration requirements

- permitted access for diamond drilling at depth
- . minimized mine service and utility requirements

An exploration drift connection between the shaft and winze on the 147 m level was considered a conservative approach for its requirements as an exploration drift for target diamond drilling for ore at depth. The 147 m level connection also provides secondary access to the mine proper and a source of ventilation. The alternatives would be diamond drilling from surface or sump cleanout of the slope shaft to the bottom at 234 m level and driving an exploration drift from that level with diamond drilling to follow. For the time and budget available for the '85 work plan this latter plan was deferred.

### 6.6 Geological Evaluation

It was felt that reserve up-grading by underground diamond drilling could be achieved from drilling from existing undergound excavations. A connection from the 87 m and 147 m levels to the slope shaft for the purpose of establishing D.D. stations was considered to be discretionary, although it could be incorporated into a mining plan.

Bulk sampling from drift and raising was considered between the 147 m and 87 m level from existing excavations with ore handling through a new raise and a drift connection to the 147 m slope shaft level loading pocket.

#### 7.0 Work Contracts

In May 1985, an appraisal of mining contractors was undertaken with a view of preparing a bidders list. Discussions were held with 12 mining contractors for input into excavation methods and costs for the proposed

work plan. Six contractors were invited to submit bids for the work under a contract document prepared by Getty.

The scope of the work contract was stated by Getty as follows:

Under the terms of this agreement, the Contractor will perform, in a good and workmanlike manner, and will be responsible for all phases of the Work from mobilization through to completion of the programme and will supply general supervision, labour, material, equipment and site facilities as herein specified to the Tisdale property, located in Tisdale Township, Timmins, Ontario. Included in the Work, but not so as to limit the generality of the foregoing, the Contractor shall within the Contract Prices:

- a) Mobilize the crew, equipment, buildings and supplies as necessary for the execution of the programme.
- b) Prepare the Work site including, levelling and excavation as necessary for implementation of the Work.
- c) Dewater all underground openings which are accessed from:
  - i) the slope shaft
  - ii) the main vertical shaft
  - iii) the winze

and maintain mine dewatering during the course of the programme.

d) Rehabilitate the slope entry shaft to the 180 m. level as the principal entry for the work program. Work is to include timber, ladder replacement and rock bolts as necessary, along with the installation of services to include pipe for 6" water discharge, 4" compressed air, and 2" water, required to complete the underground work program.

- e) Make repairs to the main shaft entry and internal winze including ladders, landings, and installation of services for shaft, winze and lateral connection. Services are to include:
  - i) 2" air line
  - ii) 4" discharge water line
- f) Select, transport, erect, and obtain any and all required government certification of an open type exploration headframe for the slope shaft. The specifications for the headframe should be such as to match the requirment of the hoist and conveyance selected by the Contractor to hoist a minimum of 100 tons per 8 hour shift. The headframe shall become the property of the Company upon installation, certification, and Company acceptance.
- g) Select, transport, erect, and obtain any and all required government certification for a muck conveyance for the slope shaft. The specifications for the conveyance should be such as to match the Contractors arrangement for muck transfer and the Company's muck hoisting requirements as stated above. The conveyance shall become the property of the Company upon installation, certification, and Company acceptance.
- h) Undertake station excavation and ground support at the 147 m.
   level. It is uncertain at the time of contract bidding whether or not a station presently exists at this approximate location.
- i) Establish a muck loading facility at the 147 m. level. This facility must complement the hoist, headframe and conveyance arrangement to be installed and utilized by the Contractor for the work.

- j) Undertake exploration at locations indicated on the 147 m. level drawings consisting of:
  - i) Waste drive  $1.8 \text{ m} \times 2.15 \text{ m}$ .
  - ii) Installation of service connections through the old workings.
  - Drift on vein to include loading, transportation and segregation on surface of each drift round for sampling.

Services under this subclause (j) are to include:

2" Air 1" water Tie, track, ballast & switches Ventilation Drainage

- k) Drive raises between the 147 and 87 m. levels.
  - Raises will be driven on the footwall contact of the vein or as directed by the Company geologist. It is anticipated that the inclination of the raises will be less than 45°.
  - Secondary raises (knuckle backs) shall be driven from the primary raise to the hanging wall at 10 m centers or as directed by the Company geologist.

Raises and knuckle backs will provide bulk validation of drill indicated reserves and, therefore, the work will include:

- o Sludge hole sampling each raise round
- Loading, transport and segregation on surface of each raise round for sampling.
- 1) Do underground BQ diamond drilling prior to driving on vein material at locations, direction and lengths as indicated on the plans and sections.
- m) Drive a subdrift on vein material connecting the raises.
- n) Install rock bolts, or other means of ground support as required.
- Dispose of U/G waste and store vein material on surface in locations designated by Company engineer.
- p) Provide a surface crushing facility for primary crushing to 1/4" and a surface sampling tower incorporating roll crushing to 1/10", with design to meet Company's approval.
- q) Operate crushing facility and surface sampling tower.
- r) Provide electric power for the Work including 20 kilowatts per hour for Company use.

### Additional Work

Depending on timely results of the work program to be undertaken under Article 2.0 the Company may elect to do further exploration work as an extension to the Work. As a result, the unit quantities mentioned in Appendix I (Contract Prices) are for bid comparisons only. Actual quantities may increase or decrease but unit costs will remain in effect for 6 months.

# Facilites, Equipment and Supplies Provided by Contractor

The Contractor agrees that, in connection with the Work and within the Contract Prices, the Work shall include the purchase, erection, building, installation, supply, servicing, operation and maintenance of all that is necessary to perform the Work and shall provide a temporary shaft house, hoist, hoistroom, surface sampling facility, mine dry, and offices and shop as required. All equipment and supplies shall be subject to Company approval.

### Services Provided by Contractor

The Contractor shall, within the Contract Prices:

- a) Provide the complete work force as may be required for the Work listed in Article 2.0.
- b) Do all maintenance work, both preventative and corrective on its own and Company equipment used in the Work and supply compressed air, water and ventilation in sufficient quantities for the Work.
- c) Provide adequate daily supervision for the proper direction of the efforts of the work force.
- d) Supply, install, operate and maintain any shop and office furnishings and equipment that the Contractor requires for the performance of the Work.
- e) Supply all sanitation services and supplies required for Contractor's and Company's personnel working under this Agreement.

f) Provide on day shift for the Company geologist a clean, washed face and back to expose the previous 24-hours advance and arrange a mutually convenient time for the mapping and sampling by the Company geologist.

#### 7.1 Contract Award

Due to uncertainties of shaft and underground water conditions at the time of contractor evaluation, a management decision was taken to permit only the larger or "national" contractors as the prime contractor for the work. This decision was based on the premise that this class of contractor would be better prepared for any contingencies encountered.

Six contractors were invited to submit bids for the underground rehabilitation and exploration work. Five bids were received, the sixth bidder (Canadian Mine Development) declined as a result of potential bonding problems. The five bidders were the following:

- 1) Aurora
- 2) Dynatec
- 3) Harrison
- 4) Mining Corp.
- 5) Redpath

For the bids received, Getty applied contingency quantities to the contractors unit prices and also estimated a supply cost for rehabilitation materials. In addition, indirect or contractor costs, adjustments and qualifications were assessed in order to make more direct comparison of job costs for specific areas of work. Table 1 summarizes the Mining Corp. and Redpath bids. Table 2 details the comparison of all 5 bids.

Both Mining Corp. and Redpath were invited to orally present their bid proposal and to incorporate clarifications requested by Getty. After the presentations final cost adjustments were tabulated and the performance, schedule, equipment and personnel evaluated. Table 2 summarizes the final cost comparisons and the ranking of the contractors based on their overall bid presentation.

Should Redpath be awarded the job it was felt that the job would be on schedule with little concern from Getty but at a price of constant negotiations to avoid standby charges and with Getty required to assume risk for contract delays. Invoicing and breakdown of payments between job items would be difficult if not impossible to verify with the contractor's qualifications.

Should Mining Corporation be awarded the job it was feit that maintaining their projected schedule should be Getty's major concern. The schedule for shaft rehabilitation appeared relatively short. This, along with higher than average daily costs for extended time for this item would be very costly. In addition if the program extends beyond October, the headframe will require enclosing and sampling tower operations more difficult. Getty must be permitted to enforce a change in crew scheduling and staff changes should it felt to be required. Overall, the cost savings available in Mining Corporations bid offset the potential cost overruns during the rehab. work.

It was recommended that the contract for mine rehabilitation and exploration work be awarded to Mining Corporation.

The evaluation of their proposal brought the estimated job cost to approximately \$895,000. The nearest bidder was J.S. Redpath who for identical work items was evaluated at \$1,118,000. The difference in favour of Mining Corporation was \$223,000. Any extension of the quantities or standby times to that outlined in the existing program also favoured Mining Corporation by 50 to 100% in unit cost reductions.

- 24 -

The concern with the Mining Corporation centers primarily on the short schedule for rehabilitation work, headframe erection, and job superintendance. These concerns would have to be monitored closely on site.

	TABLE IL TISDALE PRO	JECT UNDERGROUND BID I	EVALUATION - MAY 198	5	Page 1 of 1
	AURORA	DYNATECH	HARRISON	MINING CORP.	REDPATH
COST COMPARISON 1) Lump Sum 2) Excavations 3) Structures 4) Contingencies 5) Rehabilitation 6) Adjustment	262,983 435,714 104,290 99,930 193,714 75,000	278,500 492,113 149,325 70,125 238,487 75,000	275,521 567,841 132,194 78,651 199,296 75,000	111,719 326,375 114,200 83,770 183,584 75,000	158,655 489,504 126,055 79,403 189,425 75,000
TOTALS	1,171,631	\$1,303,550	\$1,328,503	\$ 894,648	\$1,118,042
BID RANKING					
Description         (Max. 49 points)           Schedule         (2,4,6,8,10)           Rehabilitation         (2,4,6,3,10)           Structures         (2,4,6,8,10)           Conveyance         (2,4,6,8,10)	6 10 2 6	2 2 4 2	4 4 8 . 4	8 6 10	10 8 10 8
Cest Items (Max. 60 points)Lump Sum(2,4,6,8,10)Excavations(3,6,9,12,15)Structures(3,6,9,12,15)Contingencies(1,2,3,4,5)Rehabilitation(2,4,6,8,10)	6 12 15 1 6	2 6 3 5 2	4 3 6 4 4	10 15 12 2 10	
TOTALS	64	28	41	. 79	73

, ' · .

•

.

s , , •

Table I

Item	Mining Corp. (1)	<u>Redpath</u> (2)	<u>Diff.</u> (1-2)	Explanation
Lump sum	\$ 111,719	\$ 158,655	\$ -46,936	No. 1 is located closer to the site.
Excavations	326,375	489,504	-163,129	No. 1 assumes more risk. No. 1 with used materials. No. 1 closer to site.
Structures	114,200	126,055	-11,855	No. 2 has new conveyance. No. 1 has used conveyance.
Contingencies	83,770	⁶ 79,403	+4,367	No. 1 has higher overbreak costs.
Rehabilitation	183,584	189,425	-5,841	(*)
Rehab. Supplies	75,000	75,000	0	
•	\$894,648	\$1,118,042	\$-223,394	•

* No. 1 schedule appears short. Additional cost in slope shaft = 2734/shift. Additional cost in main = 2330/shift

No. 2 schedule appears long. Additional costs in slope shaft = 2000/shift Potential saving in main shaft = 1350/shift.

### 8.0 Contractors Work Plan & Schedule

Mining Corporation of Canada Ltd. of South Porcupine, Ontario were awarded the contract on the basis of the lowest bid after contingency adjustments were evaluated for all contractor bids and work plans. The following is a description of the selected contractors proposed work plan and schedule.

### <u>A-1: (Set Up)</u>

The work site will be levelled, and excavated as required to carry out the installation. Surface structures will consist of the hoistroom and repair shop. The temporary hoist shall be a  $42" \times 36"$ , 60 H.P., Ingersoll Rand, with a 7/8" rope with a maximum pull of 8,800 lbs. The compressor, generator, warehouse trailer and office will be mobile units.

Workers will change clothes at the Hallnor dry, located at Mining Corporation's site, fifteen minutes from the job site and they will be bussed to the project.

Compressed air will be supplied by two Rollair 650 electrically driven compressors.

A head tank will be installed on surface for supply of underground wash water and site water.

A-2: Listed below are prices of the various headframes as detailed in the accompanying prints.

a)	Mining Corporation	40 ft.	\$47,400
ь)	R.W. Mining & Milling Ltd.	50 ft.	\$78,500

- c) R.W. Mining & Milling Ltd. 70 ft. \$90,500 All are timbered structures of B.C. fir.
- A-3: The conveyance will be a 2-ton Kimberley-type skip equipped with automatic "dogs" running over 4" x 6" guides. Pneumatic rubber tires will be installed to facilitate using this vehicle which will be permitted to hoist and lower men and equipment as well as ore and waste.
- <u>A-4</u>: A Cat-3412, 500 KW generator will be set up in a trailer to provide power for all phases of the project.
- A-5: The portable crusher and sampling tower will be set up in the flat area adjacent to the slope shaft, close to the ore stockpile. They will be serviced by a Caterpillar 930 loader, handling the ore from the stockpile to the crusher.
- <u>B-1</u>: The mine workings will be dewatered by a Pleuger model P-8211 pump in the main shaft, and a Flygt B-2001 in the winze, pumping water over to the main shaft. If required, a pump will be installed in the slope shaft also.
- <u>B-2</u>: The unit price per day will include the services of a pumpman, fuel for the generator, and maintenance labour and materilas during the period when all other activities are being carried out.

## C-1: Slope Shaft Rehabilitation

All manway landings, lining, service lines and ladders will be replaced. Guides will be installed (4"  $\times$  6"). Shaft timber sets will be changed as required.

A crew of fifteen will perform the work, comprised of three supervisors, two hoistmen, two deckmen, six shaftmen, one mechanic, and one electrician. They will work a <u>two shift per day</u>, five day week schedule.

All old timber and scrap will be hoisted to surface in the conveyance.

Air-operated tuggers will be employed in the shaft to shift materials into or from the conveyance.

Scaling and rockbolting will be carried out in the shaft as required.

A four inch compressed air line, a six inch water discharge line and a two inch water line, shaft signals, blasting line, lighting, and a telephone line will also be installed.

Ventilating air will be pumped down the shaft by a Joy 30 H.P. series 1000 fan, through 24" ducting. Natural ventilation will be established also when breakthrough occurs into the old workings.

# C-2: Rehabilitation of the Main Shaft and Winze

The main shaft will be pumped out using the existing tri-pod set up, with a Pleuger model P-8211 pump being lowered down. A Flygt model B-2201 pump will be used to pump out the winze. Four inch and two inch pipes will be installed in the shaft.

<u>D-1</u>: Once the elevation is established in the shaft, a small cut will be taken from the hanging wall. The existing timber will be covered to ensure minimal damage. When the cut is established, all further blasting will be aimed away from the timber. A Cavo-310 loader will be utilized for station mucking.

- <u>D-2</u>: A lip pocket will be cut in the centre compartment and be compatible to the skip loading.
- E:1: Lateral excavation in waste at level 147 will be driven by three 2man crews using hand-held jackleg drills, blasting with ammonium nitrate explosives initiated with CIL "Cilgel" high explosives, and tape fuse. Ventilation will be through 15-inch plastic ventilation ducting with fresh air boosted by compressed air-driven fans.

Mucking will be by an Eimco 12-B compressed air-driven loader mounted on 30 lb. rail at 24" gauge. Tramming will be in a 1 1/2-ton rocker-dump cars dumped by hand into the station lip pocket. These cars will be pulled by a battery-powered 1 1/2-ton Mancha locomotive. The charger for the battery will be installed in the shaft station.

Service lines will be 4" air and 2" water victaulic connected pipe with tee-headers installed where required. All service lines and track will become the property of Getty Canadian Metals, Limited.

- E-2: These workings will be scaled and cleaned and the necessary services installed as in E-1.
- E-3: Underground B-Q diamond drilling will be carried out by our subcontractor, Morrissette Diamond Drilling Ltd., who have undertaken similar contracts throughout Canada. Every effort will be made to continue other work underground during this phase of the project.
- <u>E-4</u>: As in E-1 above. It is hoped that the extra faces available in this program will permit higher productivities during this phase of the project. However, all rounds will be mucked and hoisted individually to be stockpiled individually on surface.

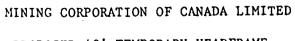
<u>F-1</u>: Raising in the dimension 1.5 m x 2.0 m will be carried out by a 2man crew using hand-held stopers (or jacklegs in flatter raises) staging up with round lagging and planks utilizing brackets to hold the staging firmly in place. In flatter grades, a 30-H.P. electrically driven slusher or a 15-H.P. air driven slusher will be used to excavate broken rock, which will be mucked and trammed as in E-1. Service lines will be 2" air and 1" water connected by victaulic fittings. All services will become the property of Getty Canadian Metals, Limited.

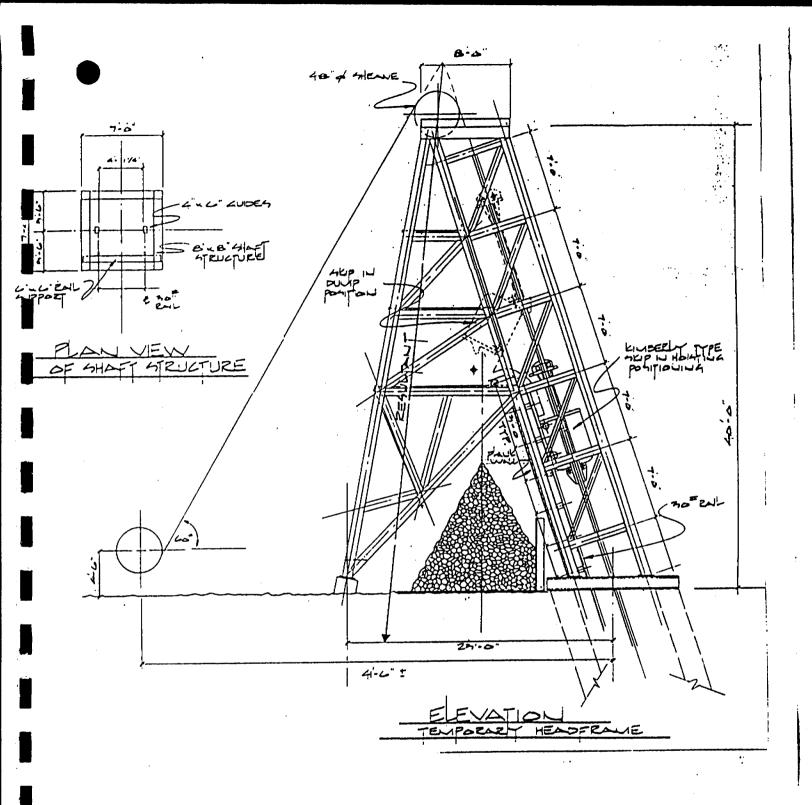
This work will be carried out on a 3-shift basis unless ventilation conditions restirct operations. If so, a 2-shift day with four hours of ventilation time between each shift will be required.

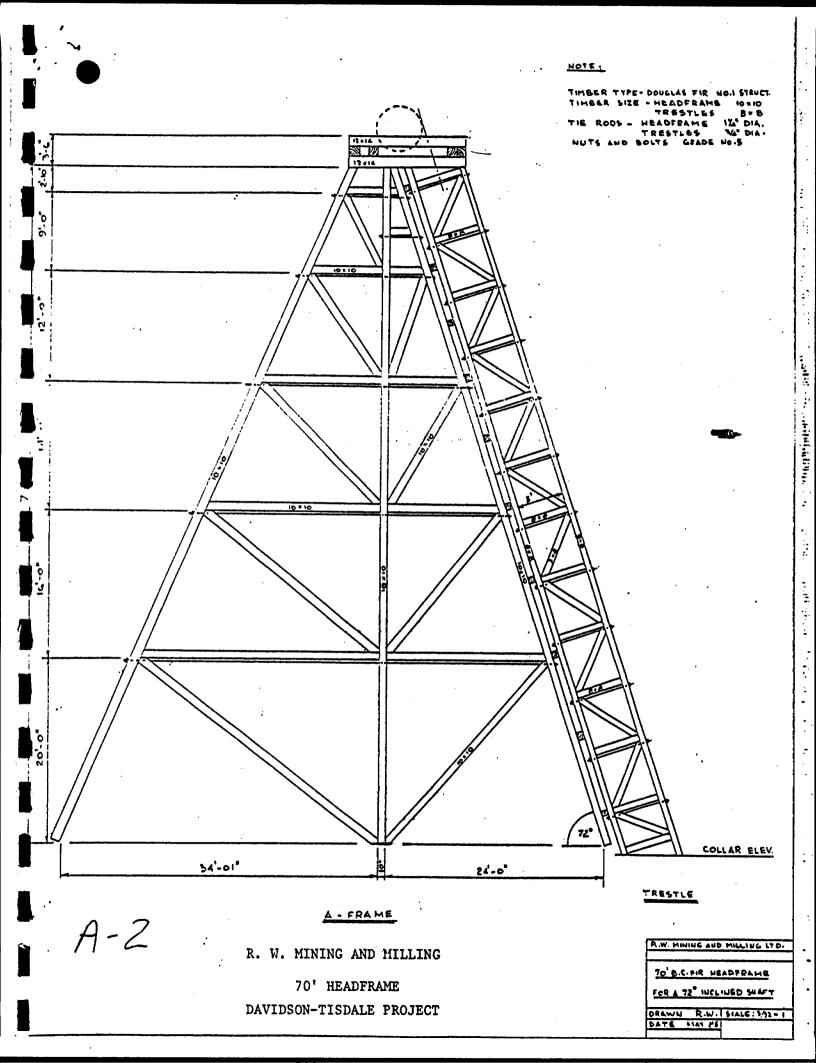
#### F-2: deleted

- F-3: Raising in the dimension 1.5 m x 3.5 m will be carried out by a 2 or 3 man crew as in F-1, on a 2 or 3 shift basis. A 3-man crew may be required, depending on the hardness of the vein material and on the possibility of timber being required.
- <u>F-4</u>: This work will be carried out on a 3-shift basis if ventilation conditions permit, utilizing a 2-man crew. Muck from the sub-drift will be handled by air-driven slusher from the sub-drift and slushed down the raise as in F-1. Individual rounds will be mucked and hoisted to surface.

#### Miscellaneous


<u>H-1</u>: Mechanical rockbolts are of the bail-type expansion socket to be fitted into  $1 \frac{1}{4}$  holes. The bolts are  $\frac{5}{8}$  in diameter and have a left-hand thread to enable them to be tightened by rockdrills.


- H-2: All plant and equipment will be standing by for a rate of \$712.00 per day. This assumes no personnel are involved and that security is provided by Getty Canadian Metals, Limited.
- H-3: See attached.
- H-4: All overbreak shall be mucked, trammed to the pocket and hoisted to surface to be piled as directed by the Owner's engineer.
- Note: All plant and mining equipment will remain the property of the Contractor. The headframe and conveyance will become the property of Getty Canadian Metals, Limited.


GETTY MINERALS PROJECT

A-Z

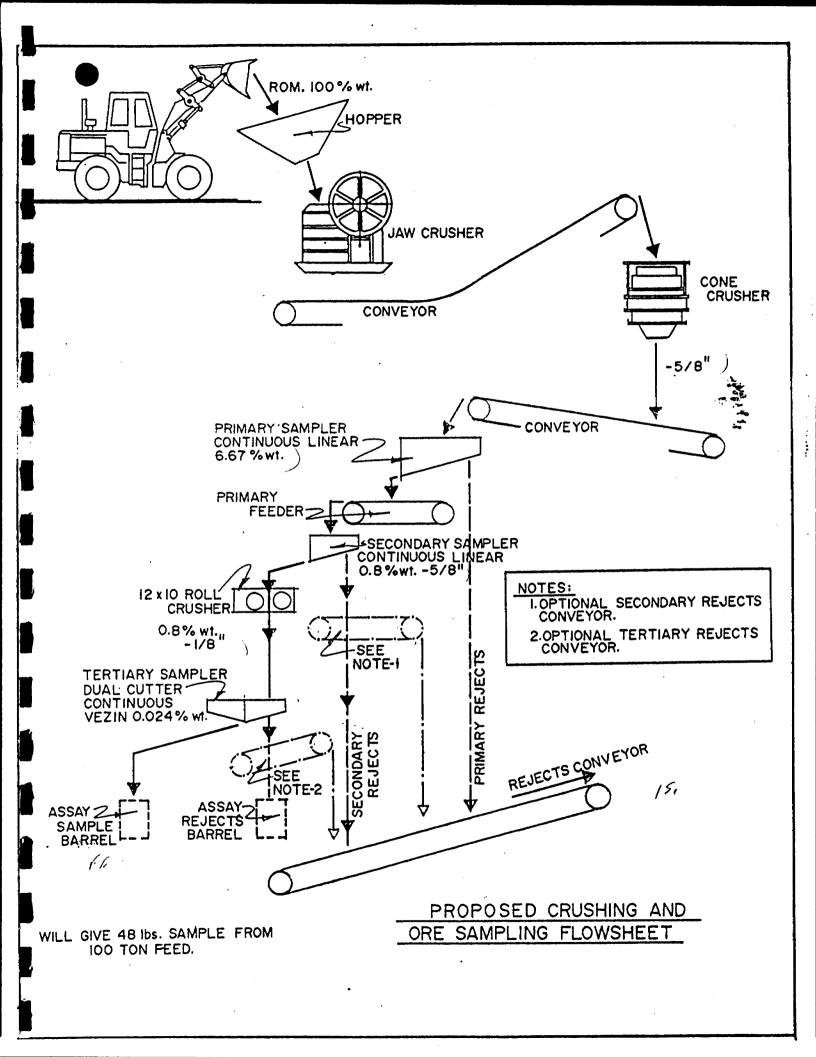
PROPOSED 40' TEMPORARY HEADFRAME

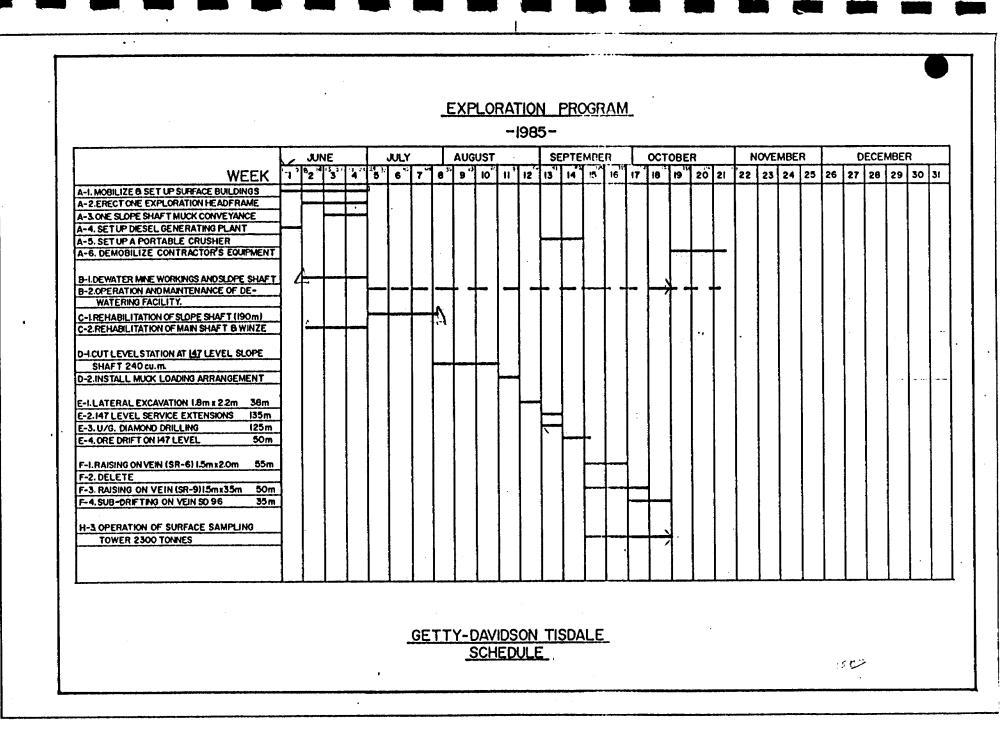






# Sample Preparation Procedure Description A-5


Run of mine muck from underground shall be transported from the headframe dump area to the primary crushing, secondary crushing and sample tower area. A front-end loader shall be employed to load run of mine muck directly into a feed hopper. A vibrating grizzly type feeder (or similar) shall move material directly into a portable primary jaw crusher.


Minus 3 inch crushed material from the primary jaw shall be further reduced in size by secondary crushing. A portable hammermill or cone crusher shall be used to reduce the crushed material size to minus 5/8 of an inch.

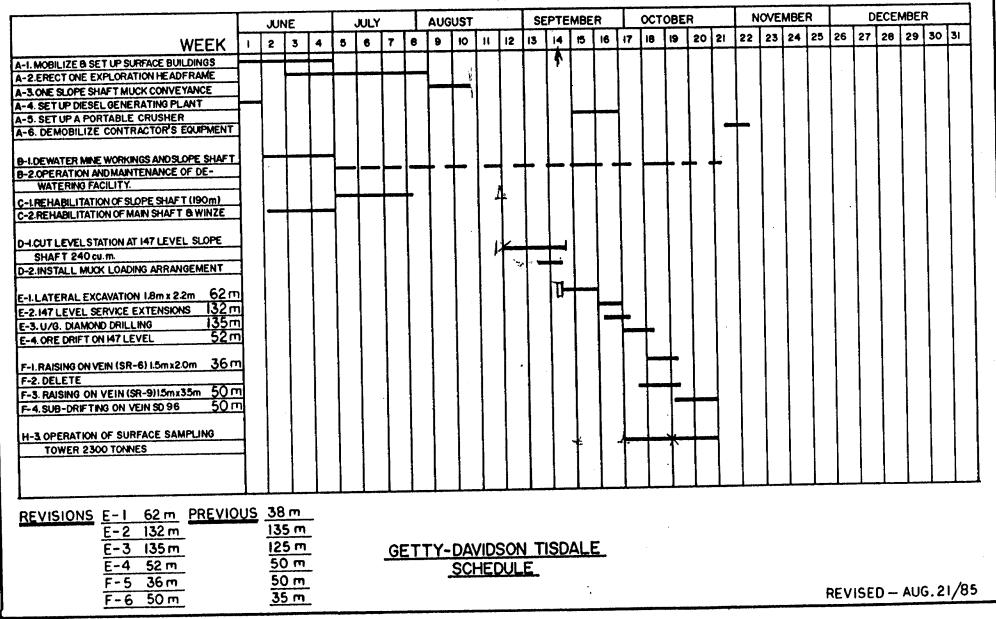
Minus 5/8" material shall be conveyed to the top of a sample tower and discharged into a primary sampler. This primary sampler shall be of the continuous linear type with a cutter opening of 2 inches making a total of 20 cuts per minute for a sample recovery of 6.67%. Primary sample rejects shall be discharged onto a "rejects" conveyor. The "cut" primary sample shall be fed into a secondary continuous linear type sampler having a 2 inch cutter opening and making 19 cuts per minute for a sample recovery of 0.8%. Secondary primary sample rejects shall be discharged onto the rejects conveyor.

Secondary samples of -5/8" material shall be discharged into a 12" x 10" rolls crusher. Crusher discharge shall consist of -1/8" material and shall be fed into a tertiary sampler. The tertiary sampler shall be a dual cutter continuous vezin type having a cutter opening of 1 inch producing 0.02% sample recovery.

This final sample is contained within a drum ready for assaying.






The second second second to second process and second second second second second second by the process of the second second second second second second second second second second second second second second second second second second second second second second second second second s

-

£1

## EXPLORATION PROGRAM

-1985-



# 9.0 Work Plan Execution - Summary Description

The contractor mobilized on June 6, 1986. In June dewatering commenced on the No. 1 Main Shaft. Dewatering and rehabilitation were carried on concurrently and completed without incident on July 5th.

Work on the dewatering and rehabilitation of the No. 2 slope shaft began on June 25th and was completed without incident to the 178 m (8th level) on July 30th. At this time a complete underground survey was completed.

Concurrent with this rehabilitation work was headframe erection, hoist installation and surface diamond drilling.

A six week delay was encountered due to electrical-mechanical deficiencies in the hoist commissioning. The hoist, conveyance, and dumping arrangement was completed on Aug. 25th.

Station and loading pocket arrangements were completed in two weeks and the waste drive connection to the 5th level of the lower mineralized zone was started. completion of this 60 metre drive took 15 days. Upon completion the mine rehabilitation of the level was undertaken.

Exploration diamond drilling was concurrent with the waste drive excavation and level rehabilitation.

Getty geological personnel undertook the implementation, direction and supervision of the removal and sampling of the bulk samples from the level. This program commenced Sept. 28th and was completed on Nov. 3rd. - 40 -

The contractor pulled the mine dewatering pumps on Oct. 30th and began demobilization which completed its contract.

All physical and technical objectives of the underground rehabilitation and exploration development work completed without major incident. The programmed diamond drilling of 135 metres had been increased to 455 metres and the bulk sample increased from 2,100 tonnes to 2,885 tonnes.

### 9.1 Site Mobilization and Equipment

The contract for undergound rehabilitation and underground exploration development was awarded June 4, 1985. On this day the contractor began bringing equipment and supplies to the site. The contractors head office and equipment yard and shops were located approximately 8 km from the site. As a result:

- No miners change rooms or washing facilities were required on site.
- Equipment maintenance and repair was carried out in the contractors shops
- Failed equipment was readily replaceable
- No site storage was required for major supplies
- Supplies were readily available from the contractors warehouse
- Engineering, safety, office services were readily accessible to the contractor and owner.

Each of these items proved to be advantageous to the project except possibly for the availability of on site engineering and project planning.

The following list is the equipment brought on site and used during the contract:

### Equipment List

Turmac 16" model 2110226 Air Fan Woods electric model 19J-24 H.P. Air Fan 200 ft.³ Air Receiver Loco battery charger I.C.E. model 20 DR-3-325 Powder machine 15,000 lb. capacity Eimco 12B - 18" gauge Mucking machine Cavo 310 model 13E Mucking machine Underground flat cars Secan Model S-240 Stoper drills Pickrose size "0" Tugger Jenckes 24" Air hosit Pickrose size "2" Tugger Model Hu40 C.I.R. Tugger C.D. Slusher JDT 426 Truck Flygt Model 2125 13 H.P. Pump (4) Pump (3) Flygt Model B2102 58 H.P. Phone (U/G) (4) Pager Mark III Air Compressor 650 cfm 150 H.P. Electric Worthington Air Compressor G.D. 750 portable diesel Air Compressor Sullair 750 portable diesel Generator CAT 3412 Gen. set 500 kw Generator CAT 3408 Gen. set 300 kw

230 amp Weldor Truck 4 x 4 Blazer Crew Cab Truck First Air 12 x 16 Trailer Office 8 x 30 ATCO model KDS Trailer Fuel Tank 5,000 gal. Ambulance Ford E-150 Truck D-6 Cat Tractor 30 cu. ft. Mine Cars (4) Powder 1/2 ton Truck Secan model S-240 Jacklegs (3) Hoist C.I.R. 42" x 30" CAT 930 Loader Loco Mancha 1 1/2 ton model M 335 C.I.R. 2-piston air model S.S.R. Hoist

### 9.2 Mine Dewatering

Early mine reports regarding mine water inflow were not available prior to the start of the program. From underground dewatering and exploration in 1983 it was estimated that the mine was making between 50 and 75 U.S. G.P.M., with most of this coming from the 5th mine level closest to the No. 2 slope shaft.

Prior to dewatering the estimated volume of underground openings was  $455,000 \text{ ft}^3$  or  $12,900 \text{ m}^3$ . This had now been revised as a result of an underground survey to  $516,000 \text{ ft}.^3$  or  $14,600 \text{ m}^3$ . The water level at the No. 1 shaft was at the collar prior to dewatering. In this shaft a 58 H.P. Flyght pump was used down to the 3rd level (280 ft. head). Although this pump size should have been adequate to handle this head in a single lift the pump was replaced twice with the final solution of placing a compressed air assist lift midway to the level.

- 43 -

A sump of approximately 10-15 ft. is supposed to exist at the bottom of the No. 1 shaft, the fact was not verified. A 4" and 2" schedule 40 pipe line with victaulic coupling exists between the collar and the bottom of the No. 1 shaft. The 4" was used for mine water discharge and the 2" for compressed mine air to the level. The 58 H.P. Flyght and the air lift assist were left in place for the entire program.

Pumping of the mine opening below the 3rd level required piping for a distance of 1,200 ft. horizontal in order to access the No. 1 winze for access to the 5th and 6th level and the 550 sub level. Due to the drift slope on the 3rd level of - 1% from the winze to the No. 1 shaft, only a 2" line was connected, this line continued the compressed air line. The mine discharge water from below the collar of the winze was permitted to gravity flow to the pump at the bottom of the No. 1 shaft. A pump failure at No. 1 shaft would result in 3.4 ft. of water in the 3rd level shaft station.

Mine dewatering through the winze to the 6th level was uneventful. At the time of unwatering on the 5th level the peak water inflow from drill holes connected to the No. 2 slope shaft was estimated at 60 to 75 U.S.G.P.M. This water was being drained from the slope shaft. It was later discovered that 60 G.P.M. was the net water inflow into this shaft.

Upon completion of mine dewatering of the workings off the No. 1 shaft and winze, the 6th level and 550 sub level were mapped and surveyed and the water level allowed to rise to the 550 sub level. At this point a 58 H.P. Flyght was used to pump water to the collar of the winze.

At the start of dewatering on the No. 1 shaft the water level in the No. 2 slope shaft was 60 ft. below the collar. Dewatering on the No.

2 shaft was not started until July 8th at which time the level was 160 ft. below the collar as a result of drainage into the workings from diamond drill holes at the fifth level.

In the No. 2 shaft a 6", 4", and 2" pipe line were brought from the shaft collar to the 5th level station. The 6" was used for compressed air. The 4" for water discharge and the 2" for drill water. Dewatering of the shaft was done with a 58 H.P. Flyght pump in a "stone boat" riding on the footwall timbers of the centre compartment. As the rehab. proceeded and the water level receded the flexible discharge hose was connected to the permanent discharge pipe.

Two sumps, each with a holding capacity of 12,500 gallons were discovered beside the shaft during rehabilitation. The upper sump itself was catching 60 G.P.M. from an open joint surrounding the sump.

Upon completion of the rehabilitation work the mine water was discharged from below the 5th level loading chute at el. 135 m with a 56 H.P. Flyght to the lower sump at el. 212 m and from this sump to surface with a similar pump. The water in the sump at el. 264 m was handled directly to surface with another 56 H.P. pump.

Mine dewatering statistics:

Pumping period

July 1st to Oct. 31st

Average G.P.M. during unwatering	=	155 G.P.M.
Average G.P.M. during core taking	=	175 G.P.M.
Time for mine to refill	=	78 Hrs.
Dewatering Equipment	=	Flyght 13 H.P. (3)
		Flyght 58 H.P. (5)

## 9.3 No. 1 Main Shaft & Winze Rehabilitation

Rehabilitation started on June 12th and was completed on July 5th without major incident. This shaft and winze had been rehabilitated in 1983. At this effort the guides were improved and a cross-head and bucket utilized in both the shaft and winze. An air tugger was used on the No. 1 shaft for materials. For the winze another air tugger was used.

### 9.4 No. 2 Slope Shaft Rehabilitation

Rehabilitation started on June 17th and was essentially completed to the 5th level station on July 26th. Incidents of note were the discovery of two sumps and an existing station, all of which required some extra time in clean up. Approximately 120 ft. below collar the shaft alignment is out over a length of 3 sets (18 ft.). This condition was repaired as a temporary measure and will require additional work for more sustained hoisting.

### 9.5 Survey Control

Early in the program it was decided to have a complete underground survey completed prior to establishment of a station off the No. 2 slope shaft and the starting of the drive from this shaft to the 5th

- 45 -

level main workings. The survey was undertaken by the company of Endlemann & Holder of Sudbury.

Upon completion of the No. 1 shaft and winze rehabilitation the survey was carried out for all the levels and workings. The prime area of interest was to establish elevation and coordinates for the 5th level breakthrough from the slope shaft. All underground traversing surveying was carried out using the results of Gyro-Theodolite azimuths.

The results of the survey were very surprising. It appears that an original error in surveying off the winze at the 5th level placed a 6° error in azimuth for the openings closest to the No. 2 slope shaft. In addition, an elevation difference of 6.32 ft. was found between the old slope shaft station and the required elevation for a connection.

From the base line survey done by Endlemann & Holder on each mine level the contract staff of Getty completed the survey with the establishment of offsets and elevation points. From this the past geological mapping and sampling points were replotted.

The surface survey done previously by Rody T.E. Ltd. Ontario Land Surveyors was tied into the underground survey by Endelmann & Holder. All original survey data is kept at the project site.

# 9.6 Headframe and Hoist House

For the '85 work program a headframe was required. This headframe could have been rented by the contractor to the project or purchased by Getty. The decision to purchase was based on economy. The 72 ft. scope shaft required a special arrangement facility. Discussions with contractors indicated that the rental cost on a contractor supplied headframe would be based on full recovery

oast g€

of its cost during the contract period. The headframe bid by all but one contractor was that provided by Gilrow Resources as a sub contract price. This 72 ft. B.C. fir headframe was based on an original design for the structure planned for erection on the collar in 1922. In addition the footings already in place from site work 6 years ago were a match for this headframe. The "Gilrow" headrame was selected and erected by Gilrow Resources as a sub contract to Mining Corporation.

The timber for the headframe was cut to size and pre-assembled on site. During this time, No. 2 shaft rehabilitation was proceeding utilizing a 12 ft. high steel pipe tripod mounted on the shaft collar.

Inspection of the existing footings led to reinforcing 4 out of 6. This was primarily due to misalignment of the original footings and anchor bolts.

During the course of the program the prime contractor expressed concern over delays caused to him by delays due to headframe erection. This was followed closely by Getty personnel and found no basis for the expression of concern.

The centre line survey of the headframe was found to be acceptable and within 2". The contractor was requested to align the N.W. foreleg which required pulling to the east by approximately 6".

The three shaft compartments are matched in the headframe; manway, skip, and spare. During the program the spare compartment in the headframe was used to contain the ventilation fan.

### 9.7 Dumping Arrangement

As with the pecularities and costs of a sloped headframe the same dilemma occurred with the rental or purchase of a dump schroll and convexance. The contractor was required to purchase and install for the project an arrangement which would be compatible with his headframe and underground loading set-up. Getty would purchase the skip upon installation and would consider purchase of the schroll arrangement if it could be utilized in future exploration, development or production.

### 9.8 Underground Loading Pocket

In the contractor's work proposal the station loading arrangement was to be a "lip pocket". This was modified upon discovery of an existing station at the level and an alternate arrangement was proposed by the contractor and accepted by Getty. The arrangement contains a 40 tonne storage with feed control by means of a guillotine gate. The piston for the gate has been removed and placed in the shaft house.

### 9.9 Shaft Station

The existance of a shaft station at the 5th level off the slope shaft was apparently addressed in early reports which were unseen by Getty until after the discovery of the station during the '85 rehabilitation. Upon dewatering of the station a survey was completed for azimuth and elevation. The actual station was found to be approximately 8 feet higher than required for a connection to the closest (200 ft.) mine workings on the 5th level off the No. 1 winze. The cost of modifications and excavations were calculated to be \$20,000 in excess of placing in a new station as bid by the contractor. A new station was excavated by the contractor at his bid price.

### 9.10 5th Level Waste Drive

In a preliminary work plan alternates to the actual waste drive location were considered. One alternate was to drive directly east to an existing diamond drilling drive since the drive would allow the establishment of diamond drill stations for underground drilling. Another alterante was to drive to the north to connect the end of zone. Economy and practicality prevailed and the shortest route to the bulk sample area was selected.

The required minimum dimensions for the waste drive was 1.5 m in width by 2.0 m in height. This size matached the existing underground drift sizes. The contractor elected to widen the opening to a minimum of 2.0 m in order to accommodate a trackless drilling operation for the 60 metre long connection.

Jackleg drills were used with Anfo explosives and electric delays. Rock bolting requirements were mineable.

Upon completion of the drive 30 lb. rail on 24" gauge was put in place.

### 9.11 Mine Rehabilitation

The entire work program of bulk sampling was centred on a

mineralized block on the 5th level. The level itself contained 8 lb. rail throughout which required removal in order to maintain a workable height after placing 30 lb. rail on the level. No ground support had been previously placed in the drifts. Rock bolting was undertaken and in one area the drift required posting.

The old mine rail was not removed from the mine but stored in redundant cross-cuts. The immediate area of the No. 1 winze station on the 5th level was not rehabilitated other than to place a barricade and walkway for direct access to the '86 workings. The ground in the shaft area is the remnant of an old stope. This ground contains open fractures that could readily lead to a failure in the station brow and stope back. Before any further work programs are carried out on the level or where access to the station is required, a major rehabilitation job should be carried out.

No mine rehabilitation was carried out on any other levels or stopes other than on the 3rd level drift connection for the No. 1 shaft to No. 1 winze where a 2" air service was connected.

### 9.12 Raising

As part of the underground bulk sampling program two raises were initially planned. Time and cost restraints led to the placement of a single raise to expose structure and vertical continuity of the vein system. The raise, 2 m x 2 m, was driven at  $45^{\circ}$ . Drilling was with stopers. No ground support i.e. rock bolts were required over the 56.0 metre length.

### 9.13 Bulk Level Slashing

The bulk sampling on the level was not formulated until midway in the program and then as a result of contract delay times but more so as a result of surface drilling results in the area of the two proposed raises. It was felt that better geological definition and grade validation would be obtained from slashing a level from hanging wall to footwall rather than raising and subdrifting.

This change, had it come about sooner in the program would have permitted a trackless excavation plan although a cost savings is questionable.

The technical details of diamond drilling on the level and the sectioning for excavation of the sample is covered under separate cover in a geological report.

The excavation itself was drilled with jacklegs on a drift and slash system. Double mucking was required. A rubber tired CAVO 310 model 13E with a 25 yd³ bucket brought the muck from the face to a draw point for remucking with the Eimco 12-B track mucking machine to 1 tonne cars for transport to the ore/waste pass.

Tonnages removed from the level were as follows:

Rehab. loose muck	168.0	
Waste Excavations	2,031.5	
Mineralized sample	2,885.0	
	5,084.5	tonnes

### 9.14 Demobilization

The contractor pulled the mine pumps on November 1st and completed removal of his mobile and temporary facilities within a week. Other contractor supplied equipment, supplies and buildings were left on site with the view of their sale to the project. Getty proposed a purchase option for major items to be optioned for by April 30, 1986. The option details are currently under negotiation. Project site inventory and the status as of December 30, 1985 is as follows:

Buildings	Value	Salvage
Office	60,000	20,000
Garage	5,000	3,000
Core Shack	2,000	1,000
2 Stand Along Core Rack	2,000	500
Open Core Racks	7,000	4,000
<b>F</b> 1 and		
Equipment	15 000	7,500
Furnishing & Equipment	15,000	5,000
Generator 1 @ 2.500 KVA	1,000	1,000
Generator 1 @ 1.500 KVA	500	500
Generator 1 @ 1.000 KVA 15	500	500
Generator 1 @ .700 KVA	200	200
Structures		
Headframe 70' B.C. Fir	70,000	20,000
Materials		
Underground Raise Ladders		1,500
30 lb. Steel Rail		3,000
Installed Underground Material	S	10,000
		14,500
Optioned Items		
Shaft House		15,000
Sheave		11,000
Schrolls & Chute		23,500
Muck Box (surface)		2,350
Surface & Underground Electric	cal	6,250
		58,100

Execution of the contract in the field by the contractor, Mining Corporation of Canada Ltd. was for the most part severely deficient in project management until a revocation and default in their contract was threatened in mid-August. The problem from Getty's viewpoint was a lack of engineering direction, support, and follow-up for field supervision.

The schedule began to fall apart in early July as a result of mechanical/electrical difficulties in assembling a single drum hoist for the project. The hoist should have been field erected within 10 days whereas it required 6 weeks. As a result of the delay the contractor, instead of laying off his mining crews, continued the job of questionable rehabilitation on the slope shaft until the hoist was serviceable. The "Rehabilitation" done during this period would be work required for a more permanent use of the shaft such as replacing footwall timber lagging and tight lining parts of the shaft. This practise led to an overall negotiated price for the work done on the shaft. The work that was done, however, would have been required in a subsequent mine exploration effort requiring the use of this shaft, in fact a monetary and time allowance should be allocated for further shaft rehabilitation in the next underground program.

Underground rock excavations was carried out with a "miner-like" quality and quantity but certainly short of that to be expected from a professional and international contractor. Examples of short-comings on the execution of the rock work occurred in all four of the major rock work undertaken.

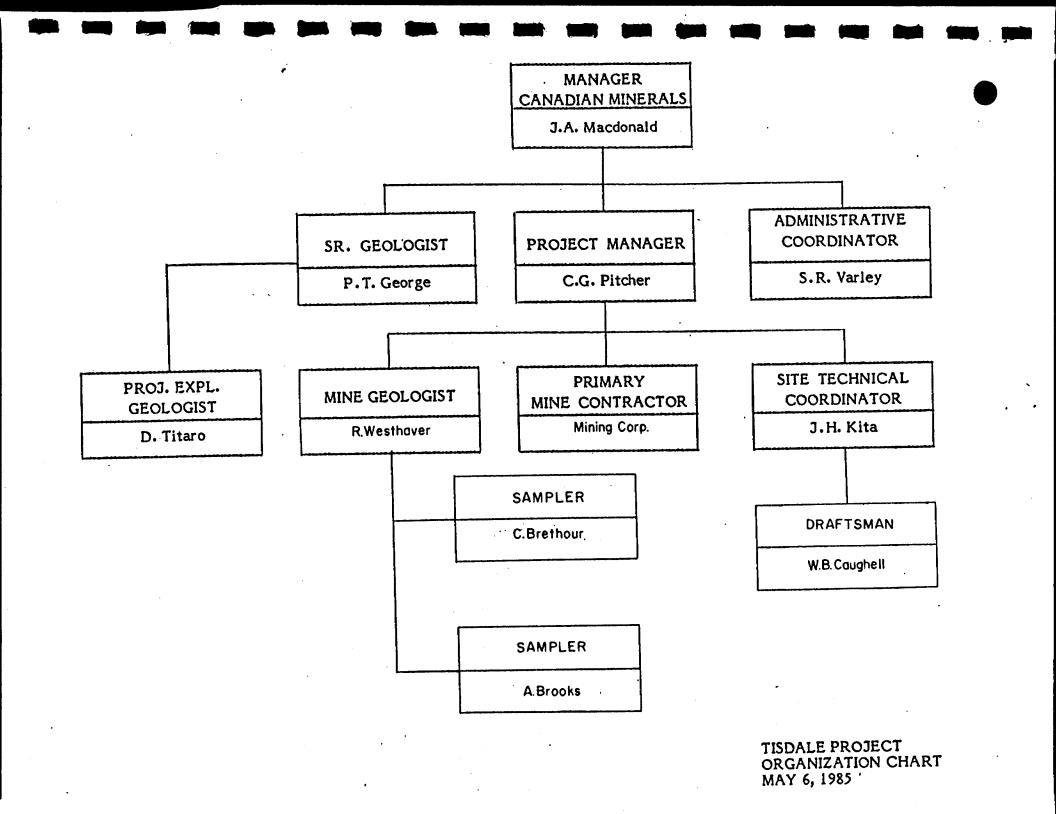
### Item 1:

Ore pass excavation: Excavation plans by the contractor called for a transitional knuckle of  $45^{\circ}$  to  $60^{\circ}$  to  $90^{\circ}$  for rock impact. The result was a near vertical drop into the chute itself and the chute located 6 feet below the planned installation.

Station excavations: The excavation plan of the contractor and the actual excavation had absolutely no similarity. For the station as well as the ore pass it was a clear breakdown of engineering and operations communications at the expense of the owner.

### Item 3:

Sample Slashing: Maximum excavation heights were to be 2.2 metres. Height distances are erratic but in the order of 2.6 metres which required extra ground support.


### Item 4:

The raise excavation was given line and grade by Getty and contractor surveyors. The line, grade and size was such that the excavation could be eventually used for an ore/waste transfer raise. The excavated raise in fact meanders  $\pm$  1.0 m off line and grade for its length of 56.0 metres.

### 11.0 Project Administration

The organization for the management of the project was established prior to the start of the site program. No functional problems were encountered during the program with the organization as established. The principal reason for this is felt to be the close relationship of geological and mining responsibilities and the role played by the site technical coordinator interfacing with Getty head office and site geology and with the mine contractors technical and accounting staff.

The Project Manager undertook all responsibilities associated with the mine contractors implementation of his approved work plan up until the actual excavation of the bulk sample in drift slashing and raise driving. In these areas the responsibility was shared with the mine geologist due to the geological control placed on the excavations.



### 12.0 Project Costs

It became apparent during the formation of the Phase 2 underground work program that a total fixed price contract would not be possible. The tender document was prepared with contingency methods and costs for items that could not be bid as lump sum or unit price. Items of concern on job cost overruns which had potential for seriously jeopardizing the completion of the project objectives were:

- 1. Mine water in-flow and possibility of grouting
- 2. Slope shaft rehabilitation; condition of timber and shaft alignment
- 3. Underground mining conditions; ground support

The budget and actual cost for the project for the 1985 program was as follows:

	ITEM	BUDGET	ACTUAL
1.0	Geology, drilling, sampling	\$ 234,850	\$ 190,000
2.0	Mining	887,950	888,000
3.0	Metallurgy	10,000	10,000
4.0	Site services & maintenance	54,500	62,000
5.0	General project services	56,500	77,000
6.0	Contract Personnel	183,400	220,000
7.0	Power	28,000	15,000
8.0	Fuel	44,000	10,000
9.0	Communications	10,500	13,000
10.0	Transportation	4,500	-
11.0	Equipment rentals	30,000	39,000
12.0	Travel, accommodation	26,000	22,000
13.0	Office supplies	22,800	23,000
14.0	Project Management	97,000	97,000
15.0	Miscellaneous		50,000
	Total	<u>\$1,639,693</u>	\$1,716,000

.

The budget and actual cost for the underground exploration portion of the '85 program was as follows:

ITEM	BUDGET	ACTUAL	
Mobilization	\$ 60,615	\$ 61,506	
Headframe	90,500	90,500	
Muck Conveyance	23,700	23,700	
Dewatering	29,000	46,545	
Maintain dewatering	60,200	83,866	
Rehab. No. 1	41,165	27,808	
Rehab. No. 2	109,559	170,309	
Station excavation	53,760	63,323	
Loading arrangment	12,542	27,000	
Waste drive	39,900	65,100	
5th Level services	33,750	16,500	
Diamond drilling	8,450	13,234	
Vein drifting	51,250	86,631	
Raise SR 6	42,130	22,421	
Raise SR 9	51,250	-	
Sub Drift SD 96	45,885	-	
Demobilization	22,300	22,300	
Contingency & Miscellaneous	45,425	67,257	
Total	<u>\$ 837,643</u>	<u>\$ 888,000</u>	

SITE PROGRESS REPORTS FOR THE PERIOD JUNE 1 - NOVEMBER 15, 1985

> Charles G. Pitcher Project Manager

## GETTY-DAVIDSON TISDALE J.V.

### TISDALE PROJECT

SITE PROGRESS REPORT FOR THE PERIOD JUNE 1 - 15, 1985

August 26, 1985

CHARLES G. PITCHER PROJECT MANAGER

Alter Prime

## SITE PROGRESS REPORT

## TABLE OF CONTENTS

SUMMARY 1.0 SITE FACILITIES 2.0 UNDERGROUND CONTRACT 3.0 CONTRACT CHANGES 4.0 CONTRACT ADMINISTRATION 5.0 TECHNICAL SERVICES 6.0 SECURITY AND SAFETY 7.0 VISITORS 8.0 PROJECT COSTS 9.0

### SUMMARY

.0

This period is the first full period of site activity relative to the 1985 Work Program. The contract for the work was awarded to Mining Corporation. Job mobilization, mine dewatering and No. 1 shaft rehabilition commenced during the period. Site access roads and site offices, including the security installation, were completed for period.

### 2.0 SITE FACILITIES

### 2.1 Buildings

The permanent building consists of:

- (i) core storage
- (ii) core pulp storage
- (iii) core storage
- (iv) garage

Renovations were completed on (iii). This entailed removal of the core racks to outside field storage and extensive interior renovations including partitioning and insulation and heating for the following offices:

- (i) project manager
- (ii) site technical
- (iii) underground geologist
- (iv) drafting and geology area
- (v) utility room
- (vi) washroom
- (vii) change room and shower
- (viii) lunchroom
- (ix) core logging area

The Getty office in Timmins was closed down on June 13th. Equipment, supplies and personnel are now located at the Tisdale Project Site.

### 2.2 Roads

Road rerouting and upgrading was completed for the 3.2 km distance from the public road (P.R.) connection to the site office. The road is in fair condition for the most part with future improvements required at the T zone and in the low lying swamp area in the vicinity of the hydro transmission lines.

### 2.3 Communications

Two radio telephones were installed in the site offices by Northern Telecom. A 50 foot tower was also installed. The telphones are on a party line with Gail Resources. Staff have been advised that confidential information should not be transmitted from or to the site office by telephone due to the nature of the service. A telephone has been installed at the residence of the project manager for such conversations.



#### Power

Power for the site office is currently being provided by a 2.8 KVA Honda gas generator owned by Getty. The prime contract call for the contractor, Mining Corporation (M.C.) to provide up to 20 KVA.

### 3.0 UNDERGROUND CONTRACT

### 3.1 Mobilization

On Tuesday, June 4th the Mining Corporation superintendent, Ken Burnley, was on site to review site and facilities. During the period the following equipment was delivered on site:

- (i) office trailer
- (ii) first aid trailer
- (iii) air compressor (750 c.f.m)
- (iv) diesel generator
- (v) utility hoist
- (vi) mine pumps
- (vii) fuel tank

### 3.2 Mine Dewatering

Pumping tests on No. 1 shaft were completed on June 8th and mine dewatering started on June 10th. At the end of the period dewatering was completed to the brow of the 3rd (87 m) level. The contractor is beginning to experience mechanical difficulty with the pumps.

### 3.3 Mine Rehabilitation

Rehabilitation started on the No. 1 shaft on June 10th and proceeded in conjunction with the dewatering. Minor rehabilitation was required to date. The contractor has provided standby ventilation and fabricated a crosshead and bucket for material and equipment transfer.

### 4.0 ADDITIONAL WORK AND CONTRACT CHANGES

None for the period.

### 5.0 CONTRACT ADMINISTRATION

The contract for the underground rehabilitation and underground exploration work was awarded to Mining Corporation on June 3rd.

Project cost estimates and budgets were reconciled and accounting procedures established between the contract, site and head office.

Initial meetings were held with Mining Corporation concerning invoicing procedures and work scheduling.

Project staff on site:

Project Manager: C.G. Pitcher Site Technical Coordinator: J.H. Kita Draftsman: W.B. Coghill

### 6.0 TECHNICAL SERVICES

### 6.1 Geology

Assay results for drill holes GT-85-131 and GT-85-132 have been received from Bell White Labs along with results for fill-in sampling. Result assay summaries are shown on Table 1. The drill program was highly successful in that all four holes intersected the quartz vein system, three of the holes contained visible gold within the quartz vein system.

### 6.2 Drafting

Original mylars for the project were reviewed from Toronto head office and project files updated. Work project schedule and shaft cross sections started. Master mylars for mining and geological plans are being developed with grid coordinates and metric scales of 1:250; 1:500 and 1:1000.

### 6.3 Mining

Investigations are underway to relocate the waste drive connection between No. 2 shaft (slope) and the 147 m (5th) level. In addition, the geology department has been requested to evaluate the potential value of surface investigations in the area of CAL's Dome for possible bulk sampling efforts concurrent with the underground bulk sample run.

### 7.0 SECURITY AND SAFETY

#### 7.1 Security

On June 6th Northland Security took over site security. The east access road to the site has been closed and the only maintained road access is from the newly constructed south entrance road. A gate and security house is installed on the property boundary. Communications between security and site office is through FM mobile radios. Security is maintained on site 24 hours per day.

### 7.2 Safety

No accidents reported.

### 8.0 **VISITORS**

D. Broughton: student geologist on surficial mapping for the period. K. Kent: V.P. Operations, Davidson Tisdale; June 11th.

### 9.0 PROJECT COSTS

No invoices or service contracts issued for the period.

- 3 -

### SITE PROGRESS REPORT

### TABLE OF CONTENTS

- 1.0 SUMMARY
- 2.0 SITE FACILITIES
- 3.0 UNDERGROUND CONTRACT
- 4.0 CONTRACT CHANGES
- 5.0 CONTRACT ADMINISTRATION
- 6.0 TECHNICAL SERVICES
- 7.0 SECURITY AND SAFETY
- 8.0 VISITORS
- 9.0 PROJECT COSTS

### SUMMARY

.0

- o Dewatering and rehabilitation was completed to the 147 m level off No. 1 winze with no major difficulties.
- o Collar rehab is completed on No. 2 shaft.
- o The headframe is being preassembled.

### 2.0 SITE FACILITIES

#### 2.1 Buildings

The office building is in full operation except for completion of plumbing facilities and electrical connection from Mining Corporation as per contract. Janitorial services are provided 2 days per week @ 4 hours/day through R.W. Mining.

### 2.2 Roads

Road maintenance is being done on a 4 hour per week basis with a grader. Three additional culverts will eventually be required on the road. A parking site has been cleared within 700 ft of site office for private vehicles.

#### 2.3 Power

Mining Corporation have provided a temporary portable power generator for office use until their main generator is available.

### 3.0 UNDERGROUND CONTRACT

#### 3.1 Mobilization

Main diesel generator is in final modifications at contractors yard (5 miles) for delivery to site. Hoist and conveyance are also in varying developments of refurbishing for delivery to site.

### 3.2 Dewatering and Rehabilitation

### 3.2.1 No. 1 Shaft and Winze

Both activities are going on concurrently on No. 1 shaft. At the end of the period the dewatering and rehabilitation were completed to the 147 metre level. Two stage pumping is in progress. Water below 87 m in the winze is pumped and ditched along the 87 m level to the sump below No. 1 shaft on the same level. From here the water is pumped to surface. Pumping difficulties are being encountered with the 58 HP Flyght submersible pumps being required to pump this 87 m head of water. An air lift has been installed at the 75 m depth of the No. 1 shaft to assist in pumping. Required rehab work has been minor.

### 3.2.2 No. 2 Shaft Slope

Rehabilitation commenced on June 18th. During the period four (4) old sets were replaced in the collar area. A temporary utility hoist was installed for rehabilitation and dewatering work. The water level in the shaft has dropped in

## GETTY-DAVIDSON TISDALE J.V.

TISDALE PROJECT

SITE PROGRESS REPORT FOR THE PERIOD JUNE 16 - 30, 1985

August 26, 1985

CHARLES G. PITCHER PROJECT MANAGER excess of 150 feet as a result of a possible connection between the 147 m level off No. 1 winze and No. 2 shaft station at 147 m level. No pumps were installed in the shaft for the period.

### 3.3 Head Frame

B.C. Fir timber arrived on site June 20th. RW Mining has a subcontract with Mining Corporation for fabrication and erection. "A" frame, back stays and tressle were cut and refabricated during the period. Original headframe footings were surveyed and adjustments made on foreleg foundations.

### 4.0 ADDITIONAL WORK AND CONTRACT CHANGES

Mining Corporation were authorized to fence in four (4) surface raises and/or pits.

### 5.0 CONTRACT ADMINISTRATION

Two meetings were held with Sylvid Bertrand, safety officer of Mining Corporation regarding general site safety including fire protection and explosives magazine location. The contractor was informed by Getty to use B.C. Fir as replacement sets for shaft timber. No. 2 shaft piping will be installed in 10 ft sections to facilitate installation.

A review and approvals of June invoicing was done on June 27th with G. Macdonald and J. Graham of Mining Corporation.

Don Endlemann of Endlemann & Holder, U/G Surveyors of Sudbury visited the site for an evaluation of his scope of work for the U/G Survey.

### 6.0 TECHNICAL SERVICES

#### 6.1 Geology

Bob Westhaver was hired as underground geologist on June 18th. Initially he familiarized himself with the host rock lithology, alteration types and characteristics of the quartz vein systems. This was accomplished by relogging diamond drill holes DT-83-20, GT-84-107, 116 GT-85-129, 130, 131 and GT-85-132. All of these holes are located in the vicinity of the proposed bulk sample.

A sampler, Cliff Brethour was hired and is scheduled to start July 15, 1985.

A proposed sampling program and procedure report for the various headings was drafted out and is contained in a separate report.

A Sperry-Sun down hole surveys were taken in diamond drill holes, GT-84-28, 31, GT-85-129 and GT-85-130. This survey program is 50% completed.

### Drafting

6.2

Master mylars for plans and sections for mining and geology are in progress. Priority has been given to the 1:250 scale drawings. The work plan schedule was completed and interoffice forms were drafted.

### 7.0 SECURITY

Northland Security Services is providing 24 hour per day security service.

### 8.0 **VISITORS**

D. Broughton, working on his Masters Thesis was on site most of the reporting period. His work has been confined to geologically and structurally mapping rock exposures on the property. Dr. G. Roberts, his thesis supervisor, was on site for one day.

The following Getty personnel were on site during this reporting period:

J.A. Macdonald, Exploration Manager - 2 days P. George, Eastern Canada Manager - 3 days D. Titaru, Senior Project Geologist - 4 days

#### 9.0 PROJECT COSTS

### 9.1 Mining Corporation

Mining Corporation has submitted invoices covering work done during the reporting period. The following is a summarization:

1 / 971. 50

33%	Mobilization	\$ 16,774.50
100%	Headframe	81,450.00
25%	Conveyance	5,332.50
100%	Gen-Set Mob	4,230.00
75%	Dewatering	19,575.00
	Barricades	1,960.00
		\$ 129,322.00

#### 9.2 Other

Other invoices have been received from various companies and are summarized in the attached Monthly Expenditures Summary.

# GETTY-DAVIDSON TISDALE J.V.

### TISDALE PROJECT

SITE PROGRESS REPORT FOR THE PERIOD JULY 1 - 15, 1985

August 26, 1985

CHARLES G. PITCHER PROJECT MANAGER

### SITE PROGRESS REPORT

## TABLE OF CONTENTS

1.0	SUMMARY
2.0	SITE FACILITIES
3.0	UNDERGROUND CONTRACT
4.0	CONTRACT CHANGES
5.0	CONTRACT ADMINISTRATION
6.0	TECHNICAL SERVICES
7.0	SECURITY AND SAFETY
8.0	VISITORS
9.0	PROJECT COSTS

### SUMMARY

0.

- o Dewatering and rehabilitation completed on No. 1 shaft and winze July 5th.
- o Dewatering and rehabilitation on No. 2 shaft is at 110 m and 77 m, respectively.
- o Unanticipated mine water was encountered in No. 2 shaft.
- o Headframe is 60% complete.
- o Contract surveying completed for No. 1 shaft and winze.

### 2.0 SITE FACILITIES

#### 2.1 Buildings

The office building requires completion of plumbing facilities and electrical connection from Mining Corporation as per contract. A water well was drilled by Longstreet Drilling. The well, centred on DDH GT-84-86, was drilled to a depth of 100 feet with a 6 inch diameter bit. Water tests indicate an inflow of 5 gal/minute. Initial water level was 32 feet below collar. By the end of the reporting period it was within 8 metres of the collar.

#### 2.2 Roads

Excessive rain in July is having an adverse effect on the site access road, especially in the swamp area in the vicinity of the hydro lines. A sand source has been located on the property and a major effort is planned for utilizing this product for road upgrading and contract site levelling.

### 3.0 UNDERGROUND CONTRACT

#### 3.1 Mobilization

Hoist and conveyance remain at Mining Corporation shop where alterations, assembly and inspection are underway.

### 3.2 Dewatering and Rehabilitation

### 3.2.1 No. 1 Shaft and Winze

Both activities were going on concurrently in the No. 1 shaft and winze. The dewatering and rehabilitation work was completed on July 5th. No major difficulties were encountered during the entire process apart from contractor equipment failures. The Flygt pumps used were rated at pumping 150 gpm at a depth of 300 ft. It was found that an air lift was required to assist this depth of lift in order to achieve a dewatering rate of a maximum of 100 gpm.

• •

#### 3.2.2 No. 2 Shaft

Both activities were going on concurrently on a two shift per day basis. At the end of the period a pumping station was being utilized at El. 260 (56 m below the collar). This station was excavated during original shaft sinking and has a capacity of 22,000 gallons. Water is flowing into this sump at a rate of between 30 - 50 gpm. Shaft dewatering started on July 6th at the insistance of Getty. Up to this time the shaft had been dewatering by gravity through Diamond drill

- 1 -

hole connection between No. 2 shaft and the 147 m level off the No. 1 winze. The following measurements are the slope distances from the shaft collar for the various activities at the end of the period:

Ladders - 84 m Pipe - 70 m Temporary Guides - 77 m Water - 110 m

At approximately 37 metres below the collar a shaft misalignment is evident over a distance of 10 metres. This section will require replacement and realignment of approximately 3 - 4 sets at the time of permanent guide installation.

The condition of the original timber in the shaft is excellent. The rehabilitation has had to include continuous washing down of the timber, ladders and rock due to a block sludge coating. It is believed that this material is the result of timber ash which entered the shaft when the original headfram and collar sets burned.

### 3.3 Head Frame

The 'A' frame and cross bracing were set on the foundations on July 10 with a 60 ton crane. Cross bracing continued for the period. The headframe work was carried out on day shift with the underground dewatering and rehabilitation work being done on afternoon and night shift.

### 3.4 Contract Surveying

Between July 8 and July 12, the surveying company of Endlemann Holder from Sudbury were on site. The surface coordinates and elevations were verified with the tie in to the No. 2 shaft and No. 1 shaft. Gyro theodolite azimuths were established on the 1st, 2nd, 3rd and 5th levels. A traverse was completed on these levels giving mine gride coordinate and elevations. The 550 aand 6th level were not surveyed during this period due to excess water flowing through the shaft. These levels will be completed upon the surveyors return for the No. 2 slope shaft work.

## 4.0 ADDITIONAL WORK AND CONTRACT CHANGES

An underground miner was required from Mining Corporation during the period for 64 hours to assist the surveying contractor in the No. 1 shaft and winze.

Due to the required bearing capacity for the shaft conveyance, the contractor has opted for larger guides (6" x 6" vs 3" x 5"). The alternative would have required 3" x 5" guides for side travel and 30 lb rail on the footwall for bearing loads.

Approval for approximately \$1,000 for headframe pier foundation reinforcement was given to R.W. Mining directly at the request of Mining Corporation.

### 6.0 CONTRACT ADMINISTRATION

On July 4th an underground inspection was made of all the openings accessed through No. 1 shaft and winze. Mining Corporation were represented by G. Cooper, G. Macdonald, Ken Buanley; Getty personnel were represented by C. Pitcher, J. Kita, R. Westhaver. Access to the 6th level was not possible due to dewatering and rehabilitation work in progress. Note worthy items of interest included the requirement for barricading on the 5th level due to bad ground in the station area and the drainage of water from No. 2 shaft through D.D. holes at the rate of between 50 - 75 gpm. Getty will prioritize mapping and sampling on teh 6th level in order to permit reflooding of the level. This will assist the contractor in minimizing costs for maintaining the dewatering facility.

It is evident that water inflow is in excess of the contract bid quantity of 50 - 100 gpm. Getty are monitoring inflows.

### 6.0 TECHNICAL SERVICES

### 6.1 Geology

The majority of the time was spent with the contrat surveyors establishing survey control points on surface and underground. The underground geological mapping began during the latter part of the period. The mapping and the detailed survey will be combined starting at the 183 m level and working up towards surface.

A visit to Owl Creek and Hoyle Pond was made on July 10 to gather information on the procedure they used on treating are through the sample tower. A separate report will follow regarding this field trip.

The Sperry Sun down hole surveys were continued during this period, however, the survey was terminated due to the Sperry Sun Rods were jammed within D.D. H. GT-85-131. New rods have been ordered.

### 6.2 Drafting

Mylar base maps for 1:250 scale sections and plans, for geology and mining, are currently being drafted. These base maps are currently about 10% comleted. Each section and plan map has the mine grid drafted onto it to avoid the stretch associated with dylar copies of mylar original base maps. Priority has been given to 1:250 scale maps. No further work has been done on the 1:500 or 1:100 scaled maps.

### 7.0 SECURITY AND SAFETY

Northland Security is providing 24 hour security on the mine property. A forth man has been added to provide insider security on a random basis for a total time of 40 hours per week. He will be conducting inspections at the collars and underground.

There have been no lost time accidents reported during the report period.

- 3 -

### VISITORS

.0

D. Broughton completed his surface mapping of the property and was taken down the No. 1 shaft and winze by Bob Westhaver.

J. Kirwin was on the site for an hour visiting J. Kita at the site office.

Dare Fowler, Longyear Diamond Drilling was on site to check diamond drilling equipment which is on site.

The following Getty personnel were on site during this reporting period:

J.A. Macdonald - 2 days J. Steers - 1 day P. George - 2 days

### 9.0 PROJECT COSTS

No major invoices were received during the reporting period. Cost summaries will be proviced during the next reporting period.

. – . .

### GETTY-DAVIDSON TISDALE J.V.

### **TISDALE PROJECT**

SITE PROGRESS REPORT FOR THE PERIOD JULY 16 - 31, 1985

August 26, 1985

CHARLES G. PITCHER PROJECT MANAGER

### SITE PROGRESS REPORT

### TABLE OF CONTENTS

- 1.0 SUMMARY
- 2.0 SITE FACILITIES
- 3.0 UNDERGROUND CONTRACT
- 4.0 CONTRACT CHANGES
- 5.0 CONTRACT ADMINISTRATION
- 6.0 TECHNICAL SERVICES
- 7.0 SECURITY AND SAFETY
- 8.0 VISITORS
- 9.0 PROJECT COSTS

### SUMMARY

0.

- o No. 1 shaft and winze on maintenance.
- o No. 2 shaft dewatering complete.
- o No. 2 rehabilitation is 85% complete.
- o Headframe 95% complete.
- o Survey results indicate a realignment of the waste drive in direction and elevation.

### 2.0 SITE FACILITIES

### 2.1 Buildings

Plumbing and electrical services were completed during the period. A pump house building was constructed over the drilled well approximately 50 metres from the office building. The project generator building has been rebuilt and relocated 10 metres to the north of the office building. This generator building is supplied with a 1000 litre fuel tank and 1.5 kVA portable generator for office maintenance power. A larger generator will be required in the fall.

The hoist building has been completed. Temporary siding of chipboard is in place and a peak roof of metal has been installed. This meets the contractors "temporary" specifications. For fall and winter operations the building will require insulation, metal siding and heating.

### 2.2 Roads and Site

A sand pit has been established along the west boundary of the property. Approximately 2,500 tonnes of material were excavated and placed for road maintenance and repair due to washouts. Installation of 3 additional culverts were also required. The sand pit is also being used by the contractor for site levelling in the area of the hoist building and No. 2 shaft area.

### 3.0 UNDERGROUND CONTRACT

### 3.1 Mobilization

Mobilization was completed during the period with the delivery of the hoist, conveyance, sheave wheel, electric air compressor and start-up of the main electric generator stations.

#### 3.2 Dewatering and Rehabilitation

### 3.2.1 No. 1 Shaft and Winze

This area is completed and daily dewatering being maintained.

### 3.2.2 No. 2 Shaft

The activities were done concurrently. On July 26th the proposed working level at 147 metres was accessed. The slope distance to the existing floor is approximately 167 metres. A bulkhead across the shaft was discovered 5 metres below the level. An existing station cut out at the level was also discovered.

## GETTY-DAVIDSON TISDALE J.V. TISDALE PROJECT

SITE PROGRESS REPORT FOR THE PERIOD AUGUST 1 - 15, 1985

.

September 5, 1985

CHARLES G. PITCHER PROJECT MANAGER ____

Investigations in the shaft were carried out to find a possible ore/waste raise and loading pocket. Dewatering was continued 20 metres below the level with no indication of a raise breakthrough. The timber and nails in the shaft below the shaft bulkhead were found to be in excellent and mint condition.

The rehabilitation work has been completed on the shaft except for installing guides and replacement of a misaligned 7 metre section. It is not Getty's intention to rehabilitate below the 147 m level station until later in the program if at all.

### 3.3 Contract Surveying

The company of Endlemann Holder were on site July 28 and 29. Azimuth was determined by Gyro Theodolite for the No. 2 shaft station at the 147 m level and for the 550 and 6th level off the No. 1 winze. The shaft was chained for elevations and survey station plugs installed at the shaft station. Final survey results have been received for all contract underground surveying and the 5th level plan finalized. New plans and sections indicate that the original mine survey with respect to the No. 2 shaft was off by 6° on Azimuth from No. 1 winze and 2 metres on elevations.

### 3.4 No. 2 Shaft - Station and Lip Pocket

No work was started during the period. Mucking of 200 tons of broken muck in the station will be required along with side slashing for excavation of the lip pocket in the shaft hanging wall.

#### 3.5 Headframe

The tressle and bracing were added to the headframe. The installation is 95% complete. Modifications for the conveyance pumping arrangement have yet to be done.

## 4.0 ADDITIONAL WORK AND CONTRACT CHANGES

An electrician from Mining Corporation was required for 6 hours for office electrical work.

### 5.0 CONTRACT ADMINISTRATION

Most of the period was involved in water inflow assessments and road maintenance. In addition, the progress of the No. 2 slope shaft was monitored in anticipation of discovering an additional sump station, a level station and ore/waste loading pocket. The on-going rebuilding of the shaft conveyance and hoist at the Mining Corporations shop was followed twice weekly.

### 6.0 TECHNICAL SERVICES

### 6.1 Geology

The majority of the time was during this period was spent underground in the No. 1 shaft and winze surveying the underground openings.

The Sperry Sun down hole surveys were completed on the holes in the area of the proposed bulk test. The new survey data will be used to complete the 1:250 scale sections and plan maps of the area of the bulk test.

The No. 2 shaft survey was completed during the latter part of this period. A proposed x-cut was layed out to connect the No. 2 shaft with the No. 1 mine on the 147 m level. Preliminary underground mapping has been completed on all levels.

### 6.2 Drafting

Drafting time was equally split between:

- a) drafting 1:250 bases for sections and plans
- b) drafting sections 62.55, 100.00 and 112.50 all of these are approximately 50% complete
- c) drafting 147 m level plan Base Map

### 7.0 SECURITY AND SAFETY

Northland Security Services is providing 24 hour per day plus an 'inner' security guard for an additional 40 hours per week.

There have been no lost time accidents reported during the report period.

### 8.0 VISITORS

P. George and D. Titaro of Getty Mines, Limited were on site during this reporting period.

### 9.0 PROJECT COSTS

### 9.1 Mining Corporation

No invoices were received from Mining Corporation during this reporting period. Costs were estimated and are included in the summary costs attached.

### SITE PROGRESS REPORT

### TABLE OF CONTENTS

- 1.0 SUMMARY
- 2.0 SITE FACILITIES
- 3.0 UNDERGROUND CONTRACT
- 4.0 ADDITIONAL WORK AND CONTRACT CHANGES
- 5.0 CONTRACT ADMINISTRATION
- 6.0 TECHNICAL SERVICES
- 7.0 SECURITY AND SAFETY
- 8.0 VISITORS
- 9.0 PROJECT COSTS

### SUMMARY

0.

- o The No. 2 shaft house fabrication is underway.
- o Total mine water inflow was approximately 140 gpm.
- o Hoist installation has delayed contract 21 days to date.
- o Station excavation sequence is under review.
- o Underground sampling locations are under review.
- o Brokers and shareholders were given a comprehensive project overview and tour of the site.

### 2.0 SITE FACILITIES

### 2.1 Buildings

The shaft house base slab and shaft house framing was completed. This building measures 48 ft x 21 ft (see Mining Corporation Dwg. A-1).

The explosives magazines were delivered on site and placed to the west of the field core storage racks.

#### 2.2 Roads and Site

Maintenance of roads is continuing to be a problem due to weather and the type of road base material used.

#### 3.0 UNDERGROUND CONTRACT

### 3.1 Dewatering and Rehabilitation

#### 3.1.1 No. 1 Shaft and Winze

On August 1st the 178 m level was allowed to flood. All the surveying and geological work for the season has been completed on the level. The pump for the winze is now located in the winze, 3 metres below the 162 m level and will permit the 162 m level to be used as a sump. Water inflow to No. 1 shaft was measured on August 13th and found to be 24 Imperial gpm. The No. 1 winze was found to be 25 gpm.

#### 3.1.2 No. 2 Shaft

Major rehabilitation was completed on July 26th of last reporting period. Related work since that date included the removal of temporary guides and installation of new large sized 6" x 6" guides. This is due to the conveyance size selected by the contractor. Work has been spasmodic due to hoist adjustments.

Water inflow into the shaft is primarily directly into No. 1 sump through an open joint which during the period was making 68 gpm. The remaining openings below this sump were making approximately 10 to 15 gpm.

### Hoist and Headframe

3.2

The hoist was set for roping on August 1st but delayed until August 7th due to electrical and mechanical modifications required by ministry inspectors. The conveyance was installed in the tressle on August 7th. Mine inspectors stopped hoist for a day on the 14th due to insufficient safety devices.

The dumping arrangement has yet to be installed. Ongoing headframe tightening was conducted during the period.

### 4.0 ADDITIONAL WORK AND CONTRACT CHANGES

None for the period.

### 5.0 CONTRACT ADMINISTRATION

Extra billing due to increased water inflow was settled during the period. In summary, standing mine water before dewatering was estimated by Getty at 7,500 m³ with an inflow of 50 - 100 imperial gpm. Mining Corporation's estimate was  $16,500 \text{ m}^3$  with an inflow of 178 gpm. Getty's reassessment, which has tentatively been accepted, has established 10,350 m³ with an inflow of 140 gpm. On this basis extra water will cost \$39,000 over the bid price of \$89,000. Mining Corporation's claim would have cost \$80,000 over their original bid price.

The slope shaft rehabilitation was bid by the contractor at 13 days over a 23 day schedule for a total of 195 man shifts. Apart from an estimated 15 man shifts on shaft alignment, the rehab work has been uneventful. To date (August 15th), however, the contractor has expended 389 man shifts over a 59 day period. No invoice has been received for any of the rehab work in No. 2 shaft as of August 15th.

The contractor scheduled station excavation for July 24th. For this operation, the hoist, conveyance and dumping arrangement would have had to be in working order. Station access was in fact available on July 26th. As of August 15th the hoist, conveyance arrangement is still not available leaving the contractor 21 days behind schedule.

The station at the slope shaft was required by the contract to have a volume of  $240 \text{ m}^3$  or an approximate area of  $80 \text{ m}^2$ . The station was found to be previously excavated over an area of  $60 \text{ m}^2$  for a volume of  $270 \text{ m}^3$ . Approximately 200 - 300 tonnes of previously broken rock require removal from the station in addition to excavating 0.75 metres to arrive at the final grade requirement. The contractor has been requested to provide a revised cost estimate for this work.

### 6.0 TECHNICAL SERVICES

### 6.1 Geology

During the reporting period the results of the Endleman and Holder Inc. shafts and level surveys were received. Using these results, the 147 m and 87 m levels

- 2 -

have been surveyed and offsets done. Working plans at scales of 1:100 and 1:250 have been completed for the 147 m level.

When comparing the historical and recently surveyed 147 m plans a variable rotational component of between  $15^{\circ}$  to  $20^{\circ}$  is indicated resulting in the shifting of the workings 12 metres to the northeast. The results of the survey has increased the 147 m x-cut from 54 m to 62.5 m.

In general, the geology and interpretations of the 147 m level plan now fit much better with the information provided by the surface diamond drilling program.

### 6.1.1 Diamond Drilling

A total of 9 holes for 135 metres of B.Q. size diamond drilling has been proposed for the 147 m level. The following table summarizes the proposed drill program.

DDH No.	Section	Dip	Azimuth	Length
GT-85-147-01	75.00	00	120	20
GT-85-147-02	75.00	_4 <i>5</i> 0	120	15
GT-85-147-02	62.50	00	120	20
GT-85-147-04	62.50	_4 5°	120	16
GT-85-147-05	50.00	00	120	22
GT-85-147-06	37.50	00	120	05
GT-85-147-07	37.50	00	3000	12
GT-85-147-08	25.00	00	120	10
GT-85-147-09	100.00	00	120	15

### Underground Diamond Drill Program

The purpose of the drill program is two fold. Of primary importance is the drilling on sections 100.00, 75.00 and 62.50. These holes will define the ore/waste contacts for the x-cuts and provide a correlation between drill assay results and the sampling tower muck results. The drilling on section 62.50 will define the footwall contact for the start of the raise. Of secondary importance will be defining the footwall/hanging wall contacts over an 85 metre strike length on the 147 m level.

Initially the drill plan included drilling from the area of survey station 521 located near the southwest drift face. The purpose of this drilling was to delineate the extension of the ore zone to the southwest. Preliminary mapping, however, indicated an east-west fault dipping  $30 - 45^\circ$  towards the north. This fault appears to terminate the ore zone. Drilling for the offset extension of the ore zone has been postponed until a future date.

### 6.1.2 Raises and Crosscuts

The excavation plan for the 147 m level has been slightly modified to account for the changes resulting from the survey. It has been decided to keep the raises on

sections 100.00 and 62.50 (formerly SR-9 and SR-6). The only change to the cross-cuts has been eliminating the 147 - 87.5 cross -cut and the addition of the 147 - 100.00 cross-cut.

Sampling raise (1.5 m x 2.0 m) 147 - 100.00 will be collared on the footwall contact loacted near the south face of Fieldings cross-cut. The contact appears to be near vertical, however, the overall raise angle will be in the order of 350. The drill hole pierce points for the level, drift about 5 m south of the section.

Sampling raise (1.5 m x 2.0 m) 147 - 62.50 will be collared on the footwall contact as defined by the diamond drilling. The raise angle will be in the order of 58°.

Both sampling raises will be driven under geological control, and therefore, the angle of the raises may vary significantly in localized areas.

## 6.2 Drafting

The following forms, plans and sections were completed during the reporting period:

Name	Category	Scale
Proposed D.D.H. GT-85-147-03 & 04	Section	1:250
Proposed D.D.H. GT-85-147-09	Section	1:250
147 m Level Excavation Plan	Plan	1:250
147 m Level	Plan	1:250
Surface D.D.H. Location	Plan	1:250
Proposed Drilling Plan	Plan	1:250
Activity Report Sheet	Form	

## 6.3 Sampling Tower

The sampling tower is 50% fabricated at Gorf Industries. Steve Makuch, Engineer at Gorf, reported that the tower should be completed by August 30.

On August 6, J. Landers, Manager of Bell White Laboratories arrived on the work site. A meeting was held with J. Kita, B. Westhauer and J. Landers. Mr. Landers presented the sample preparation procedures following those done by Kidd Creek. The procedure is included in the Appendix. The cost of preparation will be \$200.00 per sample or less depending on the fragment size of the sample. Mr. S. McTavish, Metallurgical Engineer with Mining Corp., returned prices for new and used 45 gal. barrels and 6 gal. pails. The sample preparation, assay and container costs work out to \$11.00 per tonne (assuming 1 round = 1 sample).

On August 8th J. Kita, B. Westhauer and S. McTavish visited the Maude Lake Property where a Sampling Tower was in operation. After observing the operation and measuring the dimensions of major pieces of equipment, an area was flagged out on the Tisdale Project work site for clearing and levelling for a laydown and equipment area by J. Kita and S. McTavish.

#### 7.0 SECURITY AND SAFETY

Security is maintaining the guidelines as set out by Getty Canadian Metals, Limited personnel. These guidelines were set using Mining Corporation's company policy, which is based on the Occupational Health and Safety Act, 1978. Site inforcement of safety rules by security has been refined to allow for hard hats not be be worn, by the hoistman in the hoistroom and by employees while within the office on site.

There have been no lost time injuries reported during this period.

### 8.0 VISITORS

On August 1st a geological and technical tour of the work site was given by P. George and C. Pitcher. The visitors consisted of 23 people consisting of stockbrokers and major shareholders. Also present were J.A. Macdonald (Getty) and K. Kent (Davidson Tisdale) as well as reporters from the Timmins Daily Press and Northern Miner.

Additional to the above mentioned visitors the following people were also on site during the reporting period:

P. George - Getty, Eastern Exploration Manager - 2 days D. Titaro - Getty, Senior Project Geologist - 1 day J. Landers - Bell White Laboratories, Manager - 1 day

#### 9.0 PROJECT COSTS

Invoices have been received from Mining Corporation dated for July 15. A summary will be included in the next report.

-

<u>.</u>:

# GETTY-DAVIDSON TISDALE J.V. TISDALE PROJECT

SITE PROGRESS REPORT FOR THE PERIOD AUGUST 16 - 31, 1985

September 5, 1985

CHARLES G. PITCHER PROJECT MANAGER

# SITE PROGRESS REPORT

## TABLE OF CONTENTS

SUMMARY 1.0 SITE FACILITIES 2.0 UNDERGROUND CONTRACT 3.0 ADDITIONAL WORK AND CONTRACT CHANGES 4.0 CONTRACT ADMINISTRATION 5.0 TECHNICAL SERVICES 6.0 SECURITY AND SAFETY 7.0 VISITORS 8.0 PROJECT COSTS 9.0

1.0

#### SUMMARY

- o Station excavation was started during the period.
- o Schedules and work programs are being reviewed as a result of significant contractor delays. The review indicats a more comprehensive grade validation program is possible within 10% of budget and schedule.
- o Project cost projections to year end indicate a 5% increase over budget.

#### 2.0 SITE FACILITIES

## 2.1 General

The shaft house was completed during the period. This building is attached to the north side of the No. 2 shaft and measures  $16' \times 32' \times 16'$  and provides inside storage of underground tools and materials along with shop working area for equipment maintenance.

A concrete pad was placed on the south side of the No. 2 shaft and a wood retaining wall built on 3 sides. This arrangement will be used to receive the muck dumped from the conveyance for transfer to the sampling laydown area.

The sample laydown area was selected and is situated 600 ft. to the south of the No. 2 shaft. The area has been stripped and cleaned out. Mine waste will be used for levelling.

#### 3.0 UNDERGROUND CONTRACT

## 3.1 Dewatering and Rehabilitation

#### 3.1.1 No. I Shaft and Winze

This area has been completed and daily dewatering being maintained.

#### 3.1.2 No. 2 Shaft

The dewatering is being maintained 5 metres below the 5th level station. Rehabilitation consisted of replacing the tight lining and sealing the manway to the skip compartment.

#### 3.2 Station and Loading Pocket - 5th Level

The modification required to the existing station were found to be more expensive than the contractors bid price for a new station. As a result, a new station cut out was approved for the original price along with a storage loading pocket rather than a lip loading pocket. This pocket will provide for 30 -40 tonnes of storage. At the end of the period, 3 rounds were blasted out of the station. The advance was halted for 3 days while grouting an inflow of 10 gpm of water was undertaken.

A cut-out has been completed for the loading chute arrangement. The chute has been prefabricated and is on surface awaiting installation.

#### Diamond Drilling

3

Due to the delay in the contract, the contractor has proceeded to install air and water services via the No. 1 winze through the 5th level instead of awaiting the breakthrough from the No. 2 shaft. This will allow diamond drilling to be completed with results in hand before excavations commence in the mineralized areas.

#### 4.0 ADDITIONAL WORK AND CONTRACT CHANGES

The elevations and coordinates for the waste drive connection for the No. 2 shaft connection to the 5th level were given to the contractor. The change is in orientation and length whereby the drive will be to the nearest hanging wall contact of the zone for an increase from 35 m to 62 m.

Additional work valued at \$2,500 was given to the contractor for preparation of a sample lay down area.

#### 5.0 CONTRACT ADMINISTRATION

The period was entirely consumed in tabulating program alternatives due to contractor delays in the work. Poor planning, engineering and management along with mechanical and electrical deficiencies in the hoist have delayed the project by 30 days up to the end of the period. On August 21st the contractor was given verbal notification of default with a list of 8 items to be rectified to Getty's satisfaction. A meeting was held on August 23rd with Mining Corporation Ltd. personnel G. Cooper and G. Macdonald, and Getty personnel, J.A. Macdonald, C. Pitcher and J. Kita. The meeting resulted in assurance of more consistent project management and a revised schedule. Negotiations are currently underway for compensation to Getty for costs incurred as a result of the delays.

#### 6.0 TECHNICAL SERVICES

#### 6.1 Geology

During this period the surveying on the 52 m horizon was completed. The two sumps and the 147 m sation in No. 2 shaft were picked up. The 1:250 sections are 80% complete on print paper. Slashing on the 147 m level was started to allow easier access for diamond drill access. The latest diamond drill plan consists of drilling horizontal holes between sections 50.00 and 87.50 S every 6.25 m along the drift. The total diamond drill footage will be approximately 140 m.

The area to be used for the grade validation of diamond drill hole data has been changed.

The initial work called for 3 cross-cuts, 2 raises and 1 sublevel. The recent data from the surface diamond drill program indicated that raises following footwall contacts would not provide good comparisons for grade validation since neither the raises or sublevel would extend from hanging wall to footwall. It was decided that a better bulk sample for grade validation could be taken by

removing the sample from footwall to hanging wall for a minimum strike length of 35 m on the 5th level.

## 6.2 Drafting

During the reporting period, the following drawings were completed:

Name	Scale
No. 1 & No. 2 Shaft Schematics for pump systems	1:250
3rd Level Plan	1:250
5th Level Drill Plan	1:250
3rd & 5th Level Composite Plan	1:250
5th Level Station/Loading Plan	1:250

Geological sections (1:250) are about 20% completed.

## 7.0 SECURITY AND SAFETY

Security is being maintained.

There have been no lost time accidents reported during the report period.

A procedure list in case of emergency has been initiated. A key to the Getty office has been posted in the hoist house with a list of names and phone numbers of people to contact in case of fire, serious injury or other emergency.

## 8.0 VISITORS

During the reporting period the following personnel visited the Tisdale Project:

No. of Days	Name	Title	Comments
5	D. Titaro	Project Geologist	- Reports, d.d.h. surveys
2	P. George	Eastern Expl. Manager	- d.d.h. surveys
1	D. McCann	Ministry of Labour	- site tour
1	J.A. Macdonald	Getty Cdn Minerals	- meeting with Mining Corp.
1	B. Strap	Expeditor	- general site tour
1	G. Bryant	Geologist	- general site and u/g tour

-----. . PROJECT COSTS

## Project Cost Summary

#### August 31, 1985

Cost Code_	Description	Budget	Projected to Dec. 31, 1985
1.000	Geology	234,850	240,980
2.000	Mining	887,950	980,464
3.000	Metallurgical	10,000	10,000
4.000	Site Services	54,500	52,187
5.000	Project Services	56,500	70,945
6.000	Contract Personnel	183,400	174,414
7.000	Power & Dewatering	28,000	56,250
8.000	Fuel	44,000	37,038
9,000	Communications	10,500	10,242
10.000	Transportation (Ore)	4,500	3,135
11.000	Rentals	30,000	19,473
12.000	Travel, Accommodation	26,000	21,252
13.000	Office Supplies	22,800	14,005
14.000	Environmental		
15.000	Insurance		
16.000	Project Management	97,000	95,828
17.000	Owners Costs		
		F0 757	(96.21/1)
	Contingency	58,757	(96,214)
	Total	1,690,000	1,786,214

Invoices have been received from Mining Corporation dated August 15. Most of these invoices are being negotiated with Mining Corporation, particularly those dealing with No. 2 shaft rehabilitation. However, for this summary, the costs as supplied by Mining Corp. have been used, it is expected that these costs will be reduced. Extra mining costs of about \$10,500 were incurred this month for grouting seam encountered in the 5th level station.

Project costs to the end of the program all but cost catagories will be close to budget. The geology, drilling and sampling (Acct No. 1) projected costs to the end of year will be at least \$6,200 over budget. This is primarily due to the cost of sample preparation of the sample tower material. For each sample, preparation will cost \$200 plus about \$100 in assay costs. Estimated costs will

.0

- 4 -

be refined once the footwall/hanging contacts have been defined by underground drilling.

The project mining costs (Acct No. 2) to the end of the program will be \$76,000 over budget. This is due to a number of factors:

1)	Extra water costs for maintenance	20,000
2)	Extra dewatering costs	22,000
3)	No. 2 rehabilitation extra costs	33,000

Two changes to the Work Plan have taken place which effects the cost estimates.

The first change relates to the station cut and lip pocket. The initial cost was estimated assuming that no station existed. A station was found, however the cost of the work required to use the station was found to be higher than cutting a new station. Therefore, Mining Corp. was given approval to cut a new station. At the same time, approval was given to install a load chute. The following table shows the cost comparison:

Acct No.	Description	As Bid	Actual	Revised
2.410	Station Cut	53,760		53,760
Old Station	Muck Out 57 ³ m @ 155		8,835	
	Slash 150 ³ m @ 187		28,050	
	Benching 104 ³ m @ 187		19,448	
	Taildrift 36 m @ 224		8,064	
2.420	Loading Pocket	12,542	12,542	12,542
	Raise			15,000
	Total	66,302	76,939	81,302

The second work change relates to the bulk test. The initial work called for 3 cross-cuts, 2 raises and 1 sublevel. The recent data from the surface diamond drill program indicated that raises following footwall contacts would not provide good comparisons for grade validation since neither the raises or sublevel would extend from hanging wall to footwall. It was decided that a better bulk sample for grade validation could be taken by removing the sample from footwall to hanging wall for a minimum strike length of 35 m on the 5th level. The following table shows the cost comparison:

<del>.</del> .

Acct No.	Description	As Bid	<u>Actual</u>	Revised	
2.520	Services 135 m/250	33,750	30,000		
	2" air 110 m @ 67.00			7,370	
	1" water 110 m @ 54.00			5,940	
	Rail 39 m @ 145			5,655	
2,540	Ore x-cuts 50 m @ 1025	51,250	51,250	16,400	(6.25 x-cut)
	Ore Drifting 66 m @ 1275			84,150	
2.610		42,130	41,400	41,400	
20010			(36 m @	1150.00)	
2.620	Raise - 9 50 m @ 1025	51,250	52,250		
21020	Ruide Provin Graves	·	(55 m @	950.00)	
2.630	Subdrift 35 m @ 1311	45,885	55,062		
2.050		,	•	a 1311)	
2.430	Slashing 500 ³ m @ 172			86,000	
	Sub-total	224,265	229,962	246,915	
Possibl	le Credits Ore slashing cred	it if 160.00	)	6,000	
	Ore drifting cred			<u>    16,500</u>	
	τοται	224,265	229,962	224,415	

•

TOTAL

•

224,265 229,962 224,415

## TISDALE PROJECT COST ANALYSIS FOR MINING CAT. #2 AUG.30,1985

	AUG.30,				
	DESCRIPT.			ACTUAL COST	REVISED
2.110 2.120 2.130 2.140 2.150 2.160 2.210 2.220	MOBILIZATION HEADFRAME MUCK CONVEYANCE MOB GEN-SET MOB&SET UP TOWER DEMOBILIZATION DEWATER DEWATER MAINTAIN		55915 90500 23700 4700 16262 22300 29000 60200	23700 4700 16262 22300 49300	55915 90500 23700 4700 16262 22300 49300 82253
2.311 2.312 2.313 2.314 2.315	REHAB #2 SHAFT LABOUR SUPERVISION MATERIALS SITE PLANT EQUIPMENT		35191 18863 38475 14755 2275	25080	58201 31197 25080 24403 4638
2.321 2.322 2.323 2.324 2.325	REHAB #1 SHAFT LABOUR SUPERVISION MATERIALS SITE PLANT EQUIPMENT	·	10000 7055 17865 5370 875	10000 7055 7471 5370 875	10000 7055 7471 5370 875
2.410 2.420 2.430 2.510 2.520	STATION CUT LOADING POCKET SLASHING WASTE DRIVE 147 LVL SERVICES	•	53760 12542 39900 33750	64397 12542 3740 65100 30000	53760 27542 89740 65100 18965
2.540 2.610 2.620 2.630 2.710	2.610 RAISE SR-6 2.620 RAISE SR-9 2.630 SUBDRIFT <b>S</b> D-96 2.710 ROCKBOLTS		51250 42130 51250 45885	53300 41400 47500 55062 5313	100550 41400 5313
2.720 2.730 2.740 2.800	STANDBY OPER.TOWER OVERBREAK CONTINGENCY		45425 58757	45425 13449	45425 13449
	SUBTOTAL	-	887950	956448	980464

NOTE: THESE COST ESTIMATES ARE BASED ON THE ASSUMPTION THAT THE PROGRAM WOULD BE COMPLETED BY OCT.15 AND THE WORKINGS ALLOWED TO FLOOD

TO MAINTAIN THE MINE UNWATERING UNTIL THE END OF 1985 WOULD BE AN ADDITIONAL 1250/DAY FOR 45 DAYS FOR A TOTAL COST OF 56250.00

•

.

PAGE 1

TISDALE PROJECT MONTHLY & PROJECTED COSTS

acct #	DESCRIPT	BUDGET	MAY TTD	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
1.101 1.102 1.201 1.202 1.203 1.204 1.205 1.206	D.D.H. S ASSAYS D.D.H. U ASSAYS CHIP SAM CAR SAM SLUDGE S SHIPPING	76000 9750 9300 3250 26000 29900 3250 1000 3900	45661 .7099	30896 2714	1616 77	18	9300 3000 26200 29900 3250 1000 6000	18000			78191 9890 9300 3000 26200 29900 3250 1000 24000
1.301	TWR SAMP CTM MILL	57500					0000	10000	41250		41250
1.401	GEOSTATI	15000		15000							15000
	TOTAL	234850	52760	48609	1693	18	78650	18000	41250	0	240980
2.110 2.120 2.130 2.140	MOBILIZA HEADFRAM MUCK CON MOB.GEN	55915 90500 23700 4700		16775 81450 5333 4230	33549	15998				5592 9050 2370 470	55915 90500 23700 4700
2.150 2.160 2.210	MOB&SET DEMOB. DEWATER	16262 22300 29000		19575	24795	16262		20070		2230 4930	16262 22300 49300
2.220 2.310	DWTR MNT REHAB #2	60200		15575	22200	23825	23055	11550		1623	82253
2.311 2.312 2.313	LABOUR SUPERVIS MATERIAL	35191 18863 38475			36545 19589 22572	15836 8488				5820 3120 2508	58201 31197 25080
2.314 2.315 2.320	SITE PLA EQUIPMEN REHAB #1	14755 2275			15323 3150	6640 1024				2440 464	24403 4638
2.321 2.322 2.323 2.324 2.325	LABOUR SUPERVIS MATERIAL SITE PLA	10000 7055 17865 5370 875			9000 6350 6724 4833 788					1000 706 747 537 88	10000 7055 7471 5370 875

AUG 30 1985 •

			1
AUG	30	1985	•

TISDALE	PROJECT PROJECTED				
riuninli a	PROJECTED				
COSTS					

# PAGE 2

				COSTS	<b>)</b>						
ACCT #	DESCRIPT	BUDGET	MAY TTD	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
2.410 2.420 2.510 2.520	STATÌON LOADING WST DRIV 147 LVL	53760 12542 39900 33750					48384 24788 65100 18965		,	5376	53760 24788 65100 18965
2.530 2.540 2.610 2.620 2.630 2.710	D.D.H. ORE DRIF RAISE 6 RAISE 9 SUBDRIFT ROCKBOLT	51250 42130 51250 45885		•	SI	_ASH	100550 41400 86000				100550 41400 86000 0
2.720 2.730 2.740 2.800	STANDBY OPER.TOW OVERBREA MISCELAN	45425 58757			1960	11489	20441	20441			40882 13449
3.100	- TOTAL METALLUR	887950 10000		127362 5000	207376	99561	428683	52061	0	49069	964112 10000
4.100 4.200 4.300	JANITORI SUPPLIES ELECTRIC	5000 12000		180	458 152	400 50	400 50	200 50	200 50	200 50	2038 402 0
4.400 4.500 4.600 4.700	BUILDING CORE RAC PLUMBING CARPENTR	28000 7000 2500	7015	5065	556 5352					6000	37381 7015 5352 0
	TOTAL	54500	32775	5245	6518	450	450	250	250	6250	52187
5.100 5.200 5.300	ROAD UP ROAD MA SIGNS	4400( 1000( 250(	7500	5628 1163 1320	4627 1557 625	700 20	700	700	700	700	55260 13720 1965
	TOTAL	5650	0 52505	8111	6809	720	700	700	700	700	70945

AUG 30	M	ISDALE P ONTHLY C ROJECTED	OSTS						ΡΑ	GE 3	•
ACCT #	DESCRIPT	BUDGET	MAY TTD	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
6.110 6.120	SECURITY WATCHMAN	73800 1200	27777	4356 1117	7500	7500	7500	7500	5000	5000	72133 1117
6.310 6.410	SHAFT SU DRAFTSMA	10000 40400	8183	4200	14380 4200	4200	4200	4200	4200	4200	14380 37583
6.510 6.610 6.620		2500 22000 5000		2520	5830	6625	6250	6250			0 27475 0
6.630 6.710	CONTRACT	6500	6414								6414 0
6.720		22000			2262	4350	4350	4350			15312
	•	183400	42374	12193	34172	22675	22300	22300	9200	9200	174414
7.200	STDBY PO	28000						9400	9400	9200	28000
8.100 8.210 8.220 8.310	SEC.GAS SEC.PRO ST STD G	3500 2500 1000 30000 1000		146 60	74 40	200 20	100 80	150 150 10000	10000 500	10000 500	1023 670 350 30000 1000
8.320 8.400 8.500 8.600	ST PROP	3000 2000 1000	)	194 45	112	250 165	250 120	1000 120	750 120	750 120	3000 951 45
		44000	1023	445	226	635	550	11420	11370	11370	37039
9.111 9.112 9.121	2 TEL.ST U I TEL.SP I	100	)	793 300 45	45 336	700	700	700	300	100	838 3136 45
9.122 9.210 9.220	D RAD.INST D RAD.USE	1000	)	300- 146 38	600 146 14	700 146 50	700 146 50	700 146 50	146 50	146 50	4897 0 1024 302
9.30	D MAIL/SHI	1050		1622	1142	1596	1596	1596	496	296	10242
		1050	. 1057								

.

,

n dine that this and this and this the time the

•

AUG 30 1985	•	MONT	SDALE PR HLY & PR COSTS	OJECTED				PA	GE 4	
ACCT # DESCRIP	PT BUDGET I		JUN	JUL	AUG	SEP	0CT	NOV	DEC	TOTAL
10.000 ORE TR/	AN 4500							3135		3135
11.210 SEC.TR/ 11.220 TOILET	AI 3200 400		395	275	275	275	275			1495 0
11.300 VEHICLI 11.400 MISC		6888 703	2092 150	1800 150	1348 150	1348 150	1348 150	700 150	700 150	16225 1753
	30000	. 7591	2637	2225	1773	1773	1773	850	850	19473
12.100 MEALS 12.200 ACCOMA 12.300 TRANSP		729 1400 729	55 3280	29 2180	50 2000 1120	50 2000 1120	50 2000 1120	50 500 1120	50 500 1120	1063 13860 6329
	26000	2858	3335	2209	3170	3170	3170	1670	1670	21252
13.100 TIM.OF 13.200 OFF.SU 13.300 SAFETY 13.400 OFF.MO	PL 10000 E 6000	3600 516 647	1200 1355 257 200	1300 330	100 100	1000 300	1000 100	1000	1000	4800 7271 1734 200
	22800	4763	3012	1630	200	1300	1100	1000	1000	14005
16.000 PROJ.M 16.100 WAGE 16.200 TRANSP 16.300 MEALS	80000	26414 3207 3207	7000 1000 1000	9000 1500 1500	9000 1500 1500	9000 1500 1500	4500 750 750	4500 750 750	4500 750 750	0 73914 10957 10957
	97000	32828	9000	12000	12000	12000	6000	6000	600 <b>0</b>	95828
SUBTOTAL	1690000	236374	226572	275999	142799	551173	127771	85321	95605	1741614
G&A O\		52000	12000	10000	10000	12000	10000	12000	12000	130000
	2002000		238572	285999	152799	563173	137771 =======	97321		1871614

. 1

# GETTY-DAVIDSON TISDALE J.V.

## TISDALE PROJECT

SITE PROGRESS REPORT

SEPTEMBER 1 - 15, 1985

September 27, 1985

CHARLES G. PITCHER PROJECT MANAGER

. ب

## SITE PROGRESS REPORT

## TABLE OF CONTENTS

- 1.0 SUMMARY
- 2.0 SITE FACILITIES
- 3.0 UNDERGROUND CONTRACT
- 4.0 ADDITIONAL WORK AND CONTRACT CHANGES
- 5.0 CONTRACT ADMINISTRATION
- 6.0 TECHNICAL SERVICES
- 7.0 SECURITY AND SAFETY
- 8.0 VISITORS
- 9.0 PROJECT COSTS

1.0

#### SUMMARY

- o Station and loading pocket at the No. 2 shaft 147 m level were completed.
- o Grouting at the station was required which shutdown water inflow from 10 g.p.m. to 0.5 g.p.m.
- o The project is on schedule.
- o Underground diamond drilling was completed.

## 2.0 SITE FACILITIES

## 2.1 <u>General</u>

Mine waste is being utilized as the base for the bulk sample laydown area. A concrete base has been poured for the foundation of the sample tower which will be located midway between No. 1 and No. 2 shafts.

## 3.0 UNDERGROUND CONTRACT

## 3.1 Station and Loading Pocket - 5th Level

The station excavation quantity required by Getty in the bid document was  $420 \text{ m}^3$  and was bid by M.C. at  $224/\text{m}^3$  for a total cost of 54,460. A station design consisting of  $185 \text{ m}^3$  was submitted by Mining Corp. with a request for the full price of 54,460. This was agreed to, conditional on benching, mucking and rock bolting the existing station. To date the contractor excavation bears no similarity to his design with a total excavation quantity of  $165 \text{ m}^3$  with no benching or mucking in the old station.

Upon excavation of the new station to grade, Getty will pay for  $165 \text{ m}^3$  for excavation at the unit bid price of  $224/\text{m}^3$  and pay for station bolting at the unit price as bid.

## 3.2 <u>Waste Drive</u>

At the end of the period, 40 metres of the 62 metres in the drive were completed. The drive is being excavated as an  $2.5 \text{ m} \times 2.5 \text{ m} (8' \times 8')$  rather than the 1.8 m x 2.2 m (6' x 7') as bid. This increased size was requested by the contractor in order to facilitate the use of a cavo (trackless) mucking operation. The approval by Getty was conditional on maintaining the same unit cost.

## 3.3 Diamond Drilling

Lateral drilling with the sample block was completed without incident. Two additional holes will be drilled for confirmation of the zone extension to the 7th level which is the proposed working level for the '86 program.

#### 4.0 ADDITIONAL WORK AND CONTRACT CHANGES

None for the period, however, discussions are underway with the contractor for slashing the bulk sample from the 147 m level in lieu of the 2nd raise and subdrift.

## 5.0 CONTRACT ADMINISTRATION

The project is back on track with completion due before the end of October. The rehabilitation costs which have been tabulated by Getty from time sheet data, fall 6 days short (\$30,000) of what is claimed by the contractor. A resolution of this discrepancy is in progress.

## 6.0 <u>TECHNICAL SERVICES</u>

#### 6.1 Geology and Surveying

During the reporting period, the following was accomplished:

 Marked section lines on fifth level, marked slashes for diamond drill set ups, and marked up fore and back sites for diamond drill holes.

- 2) Logged diamond drill holes 67-85-05-01 to 04.
- 3) Split and shipped 98 samples to Bell White Laboratories in Haileybury.
- 4) Surface survey of plan area conducted.
- 5) Survey 550 ore pass.
- 6) Began detail mapping of the fifth level.

## 6.1.1 Diamond Drilling

During the reporting period 5 diamond drill holes were drilled for a total of 106.38 metres. Diamond drill holes GT-85-05-01 to 04 have been geologically logged with holes GT-85-05-01 to 03 having been split and sampled. A total of 98 samples have been sent to Bell White Laboratories in Haileybury. Assay results are still pending.

All five holes were observed to have visible gold within the quartz vein systems. Preliminary interpretations indicate that the occurrences of visible gold may occur in continuous zones. The diamond drill hole collar locations have not been surveyed. However, once surveyed a finalized plan showing the quartz vein system and zones for bulk sampling will be drawn up.

Two additional holes have been added to the drill program. The holes are designed to confirm the ore zone locations oin the 7th level. The drill would be set up in the north cross cut just north of survey station 522.

Hole No.	<u>Az (0)</u>	<u>Dip</u> (0)	Length (m)
GT-85-05-09	228	-78	77
GT-85-05-10	35	-66	55

## **Diamond Drilling Completed**

## September 1 - 15, 1985

D.D.H. No.	Section	Length (m)			
GT-85-05-01	87.50	18.59			
GT-85-05-01	81.25	20.42			
GT-85-05-01	75.00	20.12			
GT-85-05-01	68.75	20.12.			
GT-85-05-01	62.50	27.13			
	Total	106.38			

## 6.2 Drafting

During the reporting period the following drawings were completed or initiated:

0	2nd level Layout	1:250
0	5th Level Layout	1:100
0	Composite Level Plan	1:250
0	62.50 Section - assays	1:250
0	General Arrangement - No. 2 Shaft	1:100
0	5th Level Waste Drive	1:100
0	75.00 Section - assays	1:250

## 7.0 SECURITY AND SAFETY

Northland Security is maintaining security on the Tisdale Project Work Site.

There have been no lost time accidents reported during the past 15 days. The project is accident free since the start of the program.

## 8.0 VISITORS

- 4 -

During the reporting period the following people were on site:

D. McCann - Ministry of Labour - 1 day
K. Lapierre - Geologist, Independent - 1 day
P. George - Getty - 2 days
D. Titaro - Getty - 5 days
B. McFadden - Flygt - 1 day

## 9.0 PROJECT COSTS

There are no extra-ordinary expenses to report for this report. A cost summary will be provided in the next report.

# GETTY-DAVIDSON TISDALE J.V.

## **TISDALE PROJECT**

## SITE PROGRESS REPORT

NO. 8

## FOR THE PERIOD

# SEPTEMBER 15 - 30, 1985

# CHARLES G. PITCHER

PROJECT MANAGER

# SITE PROCRESS REPORT

## TABLE OF CONTENTS

1.0 SUMMARY 2.0 SITE FACILITIES 3.0 UNDERGROUND CONTRACT 4.0 ADDITIONAL WORK AND CONTRACT CHANGES 5.0 CONTRACT ADMINISTRATION 6.0 TECHNICAL SERVICES 7.0 SECURITY AND SAFETY 8.0 VISITORS 9.0 PROJECT COSTS

#### SUMMARY

1.0

- The waste drive connection from the No. 2 slope shaft to the lower vein on the 5th level was completed.
- o The bulk sampling arrangements have been finalized.
- D.D.H. assays results have been received from the 5th level sample pilot holes.
- Cost projections for the '85 program indicate that the project will be within 10% of budget estimates.

## 2.0 SITE FACILITIES

## 2.1 General

The security trailer (rental) has been relocated to within 500 feet of the main office and provided with power facilities. A temporary gate has been installed. At the end of the sampling program the main gate will be put back into use with access to the property by employees and security only.

## 3.0 UNDERGROUND CONTRACT

## 3.1 Waste Drive

The waste drive connection between No. 2 slope shaft and the 5th level was completed during the period. Preliminary survey results indicate a perfect closure on azimuth and elevations. Thirty pound rail was installed and rock bolting completed.

#### 3.2 Mine Rehabilitation

In order to facilitate bulk sampling operations and to permit the contractor the use of trackless mucking for the sampling excavation, the track on the level in the vicinity of the sample area has been removed. In addition, 4" and 2" pipe is now in place between the No. 2 shaft and No. 1 winze.

## 3.3 Underground Sampling

The contractors sequence of excavation for the removal of the sample blocks was approved and the site coordination between Getty geological personnel and contractor mining personnel has been established. The sampling procedure is a subject of a seperate report which will be available October 8th.

## 4.0 ADDITIONAL WORK AND CONTRACT CHANGES

One of the two raises and the sub drift connection between them on the 4th level have been deleted. These items have been replaced by slashing on the 5th level

-1-

through a 3000 tonne block of mineralized material contained within the hanging wall and footwall of the quartz vein system over a strike length of 45 metres. In addition to bringing the project back on sheedule and within budget, the sampling program for D.D.H. grade validation is felt to be enhanced as it will also provide a more representative bulk sample of the lower zone vein and provide greater confidence in estimating grade cut-offs, assay cutting on high values and anticipated mine dilution.

## 5.0 CONTRACT ADMINISTRATION

Invoices were received from Mining Corporation during the period but were returned with a written request to involce separately for each contract item. This request has been requested by Getty verbally on several occasions with verbal agreement by the contractor, but with no compliance. Separate invoicing per contract item allows Getty faster processing in that contract items in dispute does not hold up the approvals for payment for other contract items.

## 6.0 **TECHNICAL SERVICES**

## 6.1 Geology

During the reporting period much of the time was spent on supervising the U.G. drilling program. Drill hole locations were marked and necessary slashes outlined. The drill collar locations were picked up.

The survey of the 550 ore pass and 5.5 level were completed and are being plotted. A survey of the surface site has been initiated and should be completed during the next reporting period.

The underground layout for the bulk sample and raise have been completed. The laydown area for the lower samples was overseen.

The underground procedure for monitoring and supervising the extraction of the sample blocks has been completed and is in effect for the sampling program. Arden Brooks was hired as a sampler to help oversee the sampling program.

## 6.2 Diamond Drilling

Eight holes of a ten hole drill program have been completed to date for a total meterage of 169.16 metres.

Diamond drill holes GT-85-05-01 to GT-85-05-08 were collared to outline the lower vein zone system on the 5th level. The program was highly successful in that the mineralized zone has been outlined for bulk sampling and seven of the eight holes contained visible gold. Table one shows the assay result for GT-85-05-01 to GT-85-06-06. The assays for the final two holes are still pending.

#### TABLE I

	Mine Grid	Collar	Az.	Dia	Depth		ASSAY DATA From To Length Assay				
Hole No.	Location	Elev. (m)				epth Purpose/Traget Description m)		To (m)	Length (m)	Assay (gms/ tonne) UNCU	
GT-85-05-01	9914.85N 10094.37E	3157.42	120*	Flat	18.59	Define quartz vein system contacts : 2.64 m - 9.00, Q.v.s. (m) 11.00 - 17.06 Q.v.s. (m), v.g.	2.50 11.00	9.00 17.00	6.50 6.00	0.20 18.80	
GT-85-05-02	9920.38N 10097.07E	3157.65	120°	Flat	20.42	Define quartz vein system contacts : 1.83-10.54 Q.v.s. (m), v.g.	2.00	11.50	9.50	4.23	
GT-85-05-03	9926.58N 10100.42E		120•	Flat	20.12	Define quartz vein system contacts 11.06 - 10.60 Q.v.s. (m) v.g. 114.77 - v.g. in quartz vein, flat	1.0 14.50	11.00 15.0	10.0	7.28 1.89	
GT-85-05-04	9931.44N 10102.99E		120°	Flat	20.12	Define quartz vein system contacts 1 0.92 - 4.01 Q.v.s. (m) v.g. 1 shed zone	1.00 9.00	4.00 12.00	3.00 3.00	5.81 4.01	
GT-85-05-05	Section 62.50S		120°	Flat	27.13	Define quartz vein system contacts : 0.0 - 4.43, v.g. Q.v.s. (m)	0.00	6.00	6.00	5.35	
GT-85-05-06	Section 62.50		120°	+30°	31.39	Define quartz vein system contacts : 0.0 - 7.40 Q.v.s. (s) v.g. : 9.70 - 24.87 Q.v.s. (w-m)	0.00 9.50 0.00	7.50 25.00 25.00	7.50 15.50 25.00	3.48 2.87 2.87	
GT-85-05-07	Section 43.75		120°	Flat	19.20	Define quartz vein system contacts v.g. in flat vein at 9.50 Assays pending					
GT-85-05-08	Section 43.75		300°	Flat	12.19	Define quartz vein system contacts	Assays per	nding			

#### TISDALE DRILL PROGRAM GETTY CORE HOLE DATA

The remaining two holes to be drilled are collared to outline the lower quartz vein system on the 7th level. These holes should total 132 m and should be completed in October.

## 6.2.0 Drafting

During the reporting period the following drawings were completed:

Name	Scale
Assay Section 87.50S Assay Section 81.25S Bulk Sample Excavation Plan Waste Drive; Bulk Sample Plan	1:100 1:100 1:100 1:100
Section Master for 1:100	1.100

## 7.0 SECURITY AND SAFETY

The Security trailer has been moved to an area between the parking area and Getty site offices. The Security trailer was initially set up at the property line in order to control access to possible laydown areas between the Smith-Vet and T-Zone. These laydown areas will not be used. The new location will do the following:

- only persons need be searched since private vehicles are not allowed beyond the gate, except by written permission. The parking areas is outside the gate.
- allow hourly foot patrol to the sample stockpiles
- power and heat will be provided by electrical hook-up.

There have been no lost time accidents reported to date.

## 8.0 **VISITORS**

During the reporting period the following personnel visited the Tisdale Project.

No. of Days	Name	Title	<u>Comments</u>
9	D. Titaro	Project Geologist	Investigation of outside
2 1	P. George J. Kirwen	Eastern Expl. Mngr. Geol. Consultant	properties Outline sample program Delivered Pre 1980 Rpts re: Tisdale Property

## 9.0 PROJECT COSTS

Table 2 is a summary of the budgeted and projected costs to program completion as of September 30, 1985. For the approximate 5% over expenditure on the budget the following items above the 1985 work program will be achieved.

- Doubling of the underground diamond drilling quantities allowing better assessment for the 1986 work plan on the Lower Zone 7th level and the S Zone 5th level.
- No. 2 slope shaft dewatering below the 7th level. For assessment of future rehabilitation work.
- Bulk sampling of 3000 tonnes rather than 2300 tonnes as budgeted
- The dewatering during the 85 program of a 100% increase in mine water inflow (75 gpm estimated to 150 gpm actual)

Compiled by:

~ · · · · · · · · ·

Project Manager October 8, 1985

# Table 2

## PROJECT COST SUMMARY

# SEPTEMBER 30, 1985

COST			PROJECTED TO	2	% DIFF
CODE	DESCRIPTION	BUDGET	DEC. 31/85	VAR.	B <u>UD TO P</u> R
1.00	Geology	168,050	207,004	38,954	23
2.00	Mining	897,250	986,611	89,361	10
3.00	Metallurgical	67,500	67,500	0	Ō
4.00	Site services	54,500	54,608	108	Õ
5.00	Project services	56,500	78,159	21,659	38
6.00	Contract personnel	183,400	183,222	-178	Ō
7.00	Power & dewatering	28,000	14,000	-14,000	-50
8.00	Fuel	44,000	6,524	-37,476	-85
9.00	Communications	10,500	10,217	-283	-3
10.00	Ore transportation	4,500	4,500	0	Ō
11.00	Rentals	30,000	20,150	-9,850	-33
12.00	Travel, accommodations	26,000	21,254	-4,746	-18
13.00	Office supplies	22,800	13,875	-8,925	-39
14.00	Environmental	,		0	-
15.00	Insurance	-	-	Ō	-
16.00	Project Management	97,000	89,314	-7,686	-8
17.00	Owners costs				
	Total	1,690,000	1,756,938	66,938	. 5
			- Stanlandown		

TABLE	3

and and an and a second a second a second a second a second a second a second a second a second a second a second

				TABLE	<u> </u>						
SEPT 30	1985			ISDALE P THLY & P COST	ROJECTED				PA	GE 1	
ACCT #	DESCRIPT	BUDGET	MAY TTD	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
1.101 1.102 1.201 1.202 1.203 1.204 1.205	DRILL SUR ASSAYS DRILL U/G ASSAYS CHIP SAM CAR SAM SLUDGE S	76000 9750 3250 26000 29900 3250	45661 7099 ** DELE	30896 2714	1616 77	18 162	3232 1125	15000 1000 17000 48600	400		78191 9890 15000 4632 18287 48600
1.206 1.301 1.401	SHIPPING TWR SAMP GEOSTATICS	1000 3900		15000			3305	1000 13100			0 1000 16405 15000
	TOTAL	168050	52760	48609	1693	180	7662	95700	400	0	207004
2.110 2.120 2.130 2.140 2.150 2.160 2.210 2.220	MOBILIZAT HEADFRAME MUCK CON MOB.GEN MOB&SET DEMOB. DEWATER DWTR MNT	I:55915 90500 23700 4700 16262 22300 29000 60200		16775 81450 5333 4230 19575	33549 989 24795 22200	15998 16262 23825	23055	20070 23978	5592 9050 2370 470 2230 4930 1623		55915 91489 23700 4700 16262 22300 49300 94681
2.310 2.311 2.312 2.313 2.313 2.314 2.315	REHAB #2 LABOUR SUPERVIS MATERIAL SITE PLANT EQUIPMENT	35191 18863 38475 14755 2275			48726 26118 28523 20430 3150				5414 2902 2508 2270 350		54140 29020 31031 22700 3500
2.320 2.321 2.322 2.323 2.324 2.325	REHAB #1 LABOUR SUPERVIS MATERIAL SITE PLANT EQUIPMENT	10000 7055 17865 5370 875			9000 6350 6724 4833 788		- - - -		1000 706 747 537 88		10000 7055 7471 5370 875

TABLE 3 Cont'd

SEPT 30	) 1985			TISDALE F NTHLY & F COST	PROJECTED				Ρ	AGE 2	
====== ACCT #	DESCRIPT	BUDGET	MAY TTD	JUN	JUL	AUG	SEP	0CT	======= NOV	======= DEC	TOTAL
2.410 2.420 2.510 2.520 2.530 2.540 2.610	STATION LOADING WST DRIVE 147 LVL D.D.H. ORE DRIFT	33750 9300 51250					32256 22309 63315 14850 11560	36000	3584 2479 7035 1650		35840 24788 70350 16500 11560 36000
2.620 2.630 2.710 2.720	RAISE 6 RAISE 9 SUBDRIFT ROCKBOLT STANDBY	42130 51250 45885			S	LASH	42130 114724 8500				42130 114724 0 8500 0
2.730 2.740 2.800	OPER.TOW OVERBREAK MISCELAN	45425 58757			1960		0000	53325	5925		59250
2.801 2.802 2.803	SHAFT INVI GROUTING DRIFT REH/	ESTIGATI	ONS			11500	9000		10000 5000		10960 10000 11500 5000
	TOTAL	897250	0	127362	238134	67585	341699	133373	78458	0	986611
3.100 1.302	METALLUR CTM MILL	10000 57500	5000	5000						57500	10000 57500
ŕ		67500	5000	5000							67500
4.100 4.200 4.300	JANITORI SUPPLIES ELECTRIC	5000 12000		180	458 152	300	401 20	200 50 1000	200 50	200 50	1939 322 1000
4.400 4.500 4.600 4.700	BUILDING CORE RAC PLUMBING CARPENTR	28000 7000 2500	25760 7015	5065	556 5352	500	1100			6000	38481 7015 5852 0
	TOTAL	54500	32775	5245	6518	800	1521	1250	250	6250	54608
5.100 5.200 5.300	ROAD UP ROAD MA SIGNS	44000 10000 2500	45005 7500	5628 1163 1320	4627 1557 625	234 20	380	700	700	8000 700	63260 12934 1965
	TOTAL	56500	52505	8111	6809	254	380	700	700	8700	78159

SEPT 30	) 1985		MON	E 3 Con ISDALE P THLY & P COST	ROJECT ROJECTED S				P <i>F</i>	NGE 3	
ACCT #	DESCRIPT	BUDGET	MAY TTD	JUN	JUL	AUG	SEP	0CT	NOV	DEC	TOTAL
6.110 6.120 6.310	SECURITY WATCHMAN SHAFT SUR	73800 1200 v 10000	27777	4356 1117	7500 14380	7500	7500	7500	5000	5000	62133 11117
6.410 6.510	DRAFTSMAN SECRETARY	40400	8183	4200	4200	3616	3807	4200	4200	4200	14380 36606
6.610 6.620 6.630	U/G GEOL SUR.GEOL CTT.GEOL	22000 5000	<b>CA4A</b>	2520	6335	5830	4505	6250	6250		0 31690 0
6.710 6.720	CTT.GEOL 6500 CORE GRABBER U/G SAMPLER22000		6414		2262	4350	4700	9570			6414 0 20882
	-	183400	42374	12193	34677	21296	20512	27520	15450	9200	183222
7.200	STDBY POW	ER28000							7000	7000	14000
8.100 8.210 8.220 8.310 8.320 8.400	MISC SEC.GAS SEC.PROPA ST STD GA ST STD PR ST PROPAN	S 30000 OP 1000	1023	146 60	74 40	255 20	275 75	150 150			1023 900 345 0 0
8.500 8.600	VEH FUEL SITE FUEL	2000 2000 1000		194 45	112	225 200	290	1000 290	750 200	750 200	2725 1486 45
		44000	1023	445	226	700	640	1590	950	950	6524
9.111 9.112 9.121 9.122	TEL.ST IN TEL.ST US TEL.SP IN TEL.SP US	E 2100 ST 100	1897	793 300 45 300	636	450 700	700 700	700 700	300	100	793 3186 45 4897
9.210 9.220	RAD.INSTA	LATION 1000		146	146	146	146	146	146	146	0
9.300	MAIL/SHIP	500		38	140	50	20	50	50	146 50	1024 272
		10500	1897	1622	1397	1346	1566	1596	496	296	10217

•

.

and and the second the second the second the second second second second second second second second second se

## GETTY-DAVIDSON TISDALE J.V.

.

## **TISDALE PROJECT**

## SITE PROGRESS REPORT

No. 11

FOR THE PERIOD

November 1-15, 1985

# CHARLES G. PITCHER PROJECT MANAGER

			TA	BLE 3 C	ont'd						
SEPT 30	1985			FISDALE P NTHLY & P COST	ROJECTED	)			P	AGE 4	
ACCT #	DESCRIPT	BUDGET	MAY TTD	JUN	JUL	AUG	SEP	0CT	NOV	DEC	TOTAL
10.000	ORE TRAN	4500	** DELE	TED **			******				0
11.210 11.220	SEC.TRAI TOILET	3200 400		395	294	294	294	294			1572 0
11.300 11.400	VEHICLES MISC	24000 2400	6888 703	2092 150	1800 150	1348 350	1348 350	1348 350	700 150	700 150	16225 2353
	•	30000	7591	2637	2244	1992	1992	1992	850	850	20150
12.100 12.200 12.300	MEALS ACCOMADA TRANSPOR	6500 13000 6500	729 1400 729	55 3280	29 2180	50 2000 1120	52 2000 1120	50 2000 1120	50 500 1120	50 500 1120	1065 13860 6329
	•	26000	2858	3335	2209	3170	3172	3170	1670	1670	21254
13.100 13.200 13.300 13.400	TIM.OFF. OFF.SUPL SAFETY E OFF.MOVE	4800 10000 6000 2000	3600 516 647	1200 1355 257 200	1300 330	110 100	800 360	1000 100	1000	1000	4800 7081 1794 200
	-	22800	4763	3012	1630	210	1160	1100	1000	1000	13875
16.000 16.100 16.200 16.300	PROJ.MAN/ WAGE TRANSPOR MEALS	AGEMENT 8 80000 8500 8500	MINING 17414 600 300	STUDIES 7000 1000	8000 1200 1200	8000 1200 1200	8000 1200 1200	11000 1800 1200	12000 600 600	4000 300 300	75414 7900 6000
	•	97000	18314	8000	10400	10400	10400	14000	13200	4600	89314
TOTAL		1690000	221860	225572	305937	107933	390705	281992	120425	40516	1752440

.

•

فراسي الثقالة المتنا التلبي التلب

_____

# SITE PROGRESS REPORT

## TABLE OF CONTENTS

1.0	SUMMARY
2.0	SITE FACILITIES
3.0	UNDERGROUND CONTRACT
4.0	ADDITIONAL WORK AND CONTRACT CHANGES
5.0	CONTRACT ADMINISTRATION
6.0	TECHNICAL SERVICES
7.0	SECURITY AND SAFETY
8.0	VISITORS
9.0	PROJECT COSTS

#### 2.0 Site Facilities

#### 2.1 **Standby Facilities**

The water supply line to the office has been insulated, heat taped and boxed in. The pump has been lowered an additional 25' down the well. The pump house has been insulated and a heat lamp installed.

A 35KVA generator has been purchased from Sun Rise Rentals and connected by Mining Corporation. Shell in South Porcupine has provided a 500 gallon tank on loan to increase the fuel capacity to 750 gallons. The generator on the average is consuming 35 imperial gallons perday. A maintenance contract has been set up through Mining Corporation.

#### **Gen-Set Fuel Consumption**

Date	Litres	Remarks
November 1	959	top off 250 gal. tank
November 5	2909	top off 250 gal. tank and fill 500 gal. tank
November 15	1542	fill bath tanks

The room/office at the Carabelle Hotel has been closed and the private phone line disconnected. The Ford Bronco II rental has been returned to the Tilden dealer in Timmins.

#### 2.2 Shaft Water

The pumps were shut down at 10:00 a.m., on November 1, 1985. The following table charts the water level:

Date	Time	Remarks	
November 1	10:00 a.m.	up 1 set in the No. 2 shaft	
November 2	11:00 a.m.	at 5th level elevation in No.2 shaft	
November 5	2:00 a.m.	at set 96 No. 2 shaft	
November 8	12:00 a.m.	3 m. below set 90, No. 2 shaft	
November 14	12:00 noon	10m below 1st Level, No. 1 shaft	

#### 3.0 Underground Contact

#### 3.1 General

Mining Corporation has demobilized most of their equipment and materials, and stored company owned equipment and materials on site. The following list summarizes the equipment status;

1) Hoist and hoisthouse still in place, The rope, has been disconected from the conveyance and wound onto the hoistdrum.

- 2) Shafthouse is still in place with the conveyance stored on the concrete floor within the structure
- 3) Sheave wheel, scroll and chute are still in place atop and within the headframe
- 4) Green warehouse building and oil tank are still on site
- 5) No. 1 Shafthouse has been repaired. Both shafthouses have been nailed shut
- 6) The remaining guides on surface were taken down the No. Shaft to the fifth level station and anchored in place prior to flooding the level

#### 4.0 Additional Work and Contract Changes

Additional work was done by Mining Corporation to prepare the worksite for standby status. The work included:

• winterizing the water line

• maintenance contract for the genset

installing additional yard lamps

#### 5.0 Contract Administration

Finalization of contract payments are underway in Toronto by the project manager; discussions are currently underway for the purchase of the buildings, scroll, shute, hoist and sheave wheel.

#### 6.0 Technical Services

## 6.1 Geology

During this period the surveying and geologist mapping of the first and fifth levels were completed.

The 1:00 and 1:250 geology section are currently being sketched out by geology staff.

#### 6.2 Samples

All but seven drums have been shipped to Bell White Labs for gold analysis. Most of the results should be available by the end of the month.

Currently, the other half of all the sampled core holes, drilled during 1985, are being sampled using the same core lengths as the original individual sample intervals. These samples should be shipped to Bell White Labs by the end of the month.

On November 5, forty-six barrels were shipped to the Lakefield Laboratory.

Assay results from the u/g drill program are pending.

## 6.3 Drafting

During this period, the 1:100 fifth level geology plan was being drafted onto mylar. It is currently 30% completed.

The 1:100 and 1:250 geological sections are being outlined by B. Westhaver. These are currently 40% completed.

## 7.0 Security & Safety

Security has been alterred to reflect the standby change in operations. On weekdays security for the dayshift is provided by the Getty Contractors on site. Northland Security is providing afternoon and night security for 16 hours per day and is providing 24 hour security during the weekend. Twenty four hour per day security has been requested for the period of December 23 to January 3. The security office has been moved to the main building.

Ross Connelly, Ministry of Labour, was the only visitor on site during the period.

Compiled by: V. Kita

Date: November 27, 1985

63.4734

#### APPENDIX E

## 1985 SUMMARY REPORT

## FOR THE

## **GETTY - DAVIDSON TISDALE JOINT VENTURE**

## TISDALE PROJECT OM84-337

## **GEOLOGY AND ASSAY PLANS**

Surface D.D.H Location Map

Kriging Standard deviation v.s. grid spacing

U/G drill hole location plan

Section 9700

Section 9800

Section 10,000

5th Level - Pre. 1985 Excavation

5th Level - Drill Hole Geology

5th Level - Geology

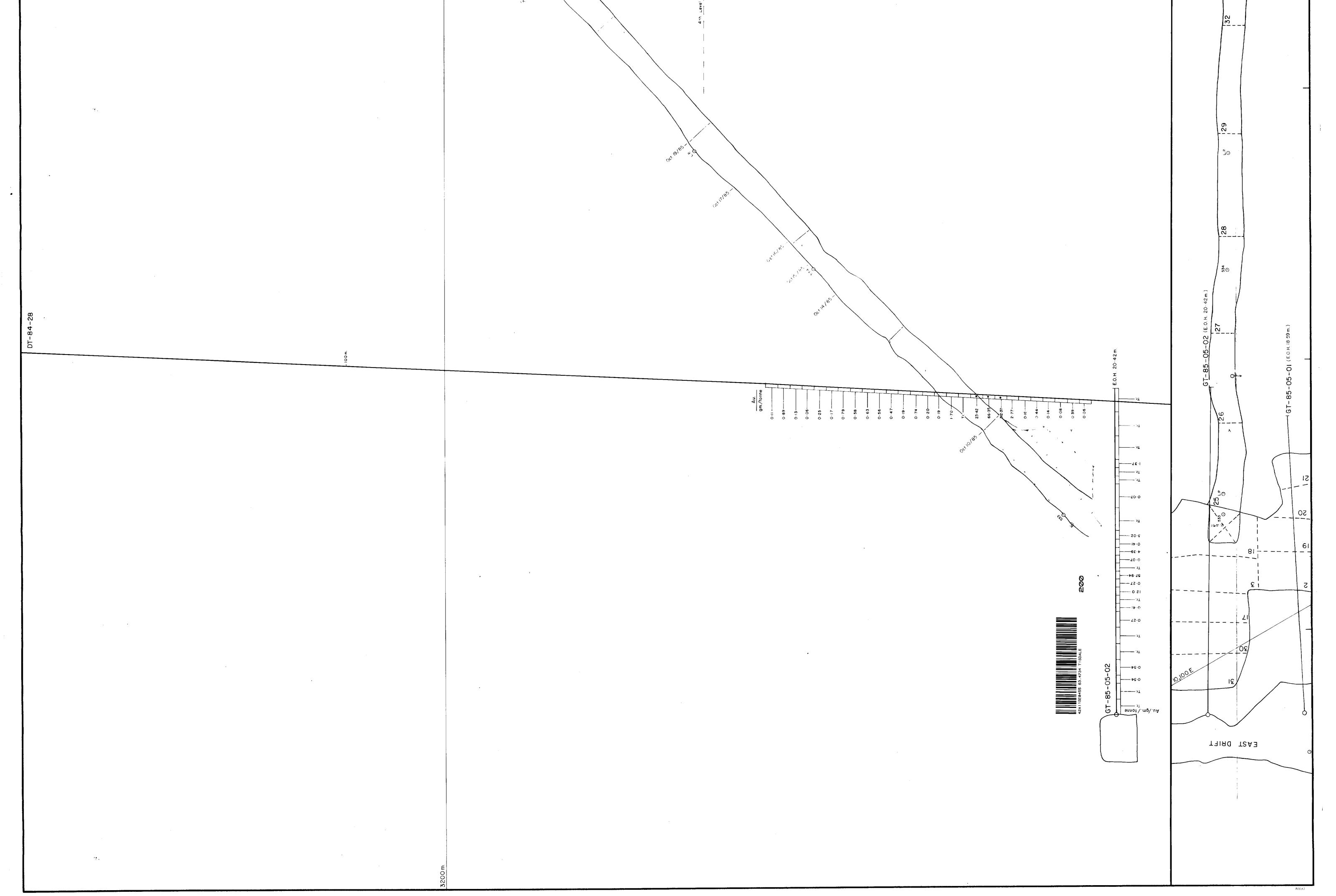
5th Level - Average Block Assay Value

: Using D.D.H. Sample

: Using Panel Sample

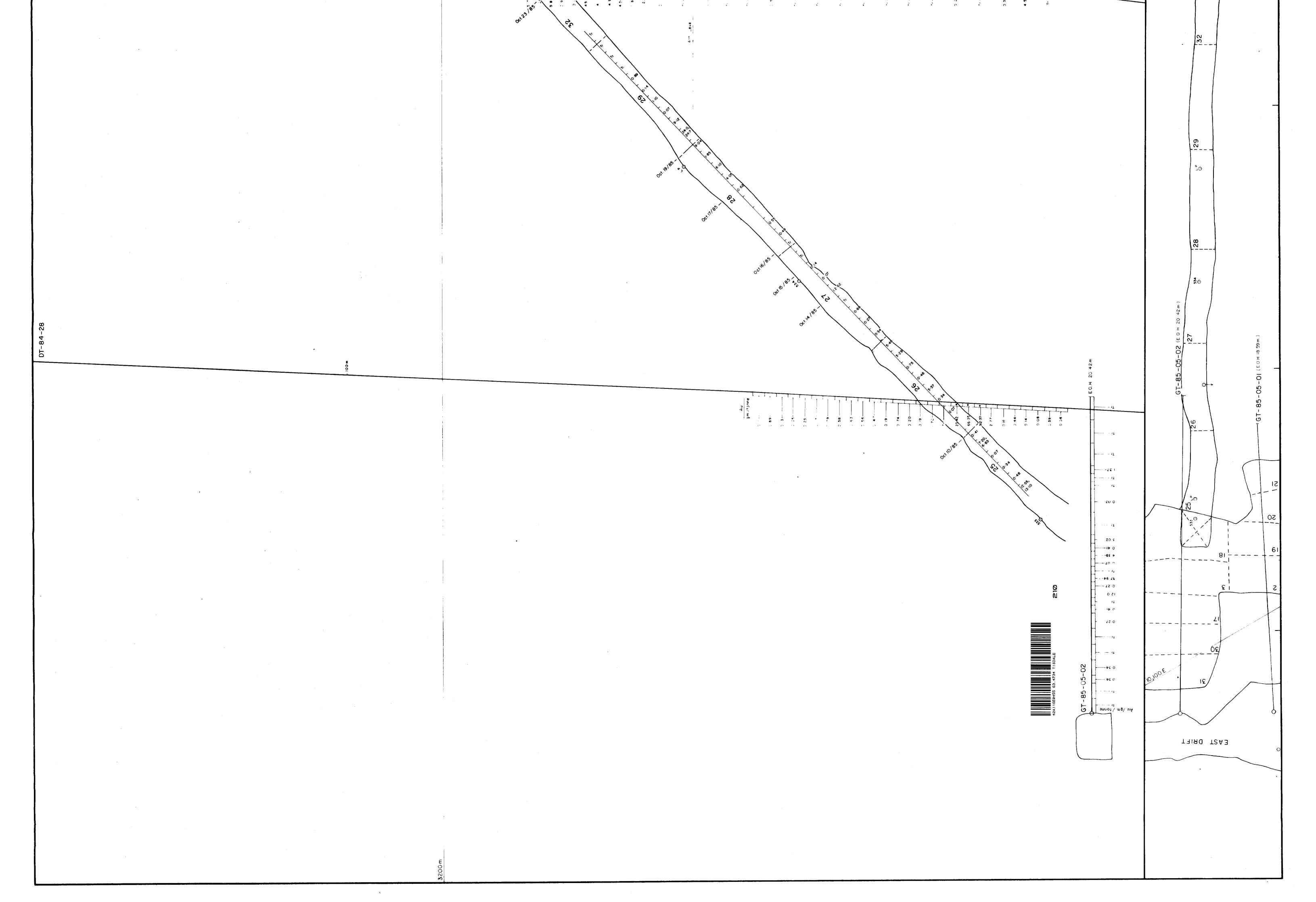
: Using Channel Samples

: Using Muck Samples


: Using Sample Tower Value

## Section 81.25S Raise

: Horizontal Channel Assays


: Vertical Channel Assays

					· · · · · · · · · · · · · · · · · · ·
	3200 <b>m</b> .	1		<b>1</b>	4. DALE J.V. CT 25 S. Ave No ALE, 1100 ALE, 1100
					63.413 Om 84 - 331 AVIDSON TIS AVIDSON br>AVIDSON TIS AVIDSON TIS AVI
			•		Gei Gei
			•		-
E t					i
0.06 99.40 99.40 11.58 0.06 12.58 0.06 12.58 0.06 12.58 0.06 12.58 0.06 12.58 0.06 12.158 0.06 12.158 0.06 12.158 0.06 12.158 0.06 12.158 0.06 12.158 0.06 12.158 0.06 12.158 0.05 12.158 0.05 12.158 0.05 12.158 0.05 12.158 0.05 12.158 0.05 12.158 0.05 12.158 0.05 12.158 0.05 12.158 0.05 12.158 0.05 12.158 0.05 12.158 0.058 0.058 12.158 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058				····	
3:80 0:12 0:12 0:12 0:12 0:02 1:20 0:31 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 0:03 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20 1:20					
			•		
3.4					
			r		
		·			
			·		•
				•	E Q
	555m				
	OC 25, OC I I I I I I I I I I I I I I I I I I				
		eve 			



	3200 ^m		Albertain Contract of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco
	90 40 91 40 92 40 11 99 11 99 12 55 m N of section		

. .....



		O I Z A Meters 0 1 2 4 Meters 0 2 4 3 Meters 0 2 4 3 Meters 0 2 4 3 Meters 0 2 4 3 Meters 0 2 4 3 Meters 0 2 4 3 Meters 0 2 4 3 Meters 0 2 4 3 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 3 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 4 Meters 0 2 4 Meters 0 2 4 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters 0 2 4 Meters
		E OS M
61 - 83 - 17		
Au /9m /10mme T Au /9m /10mme 5 9 9 9 9 9 9 9 9 9 9 9 9 9		

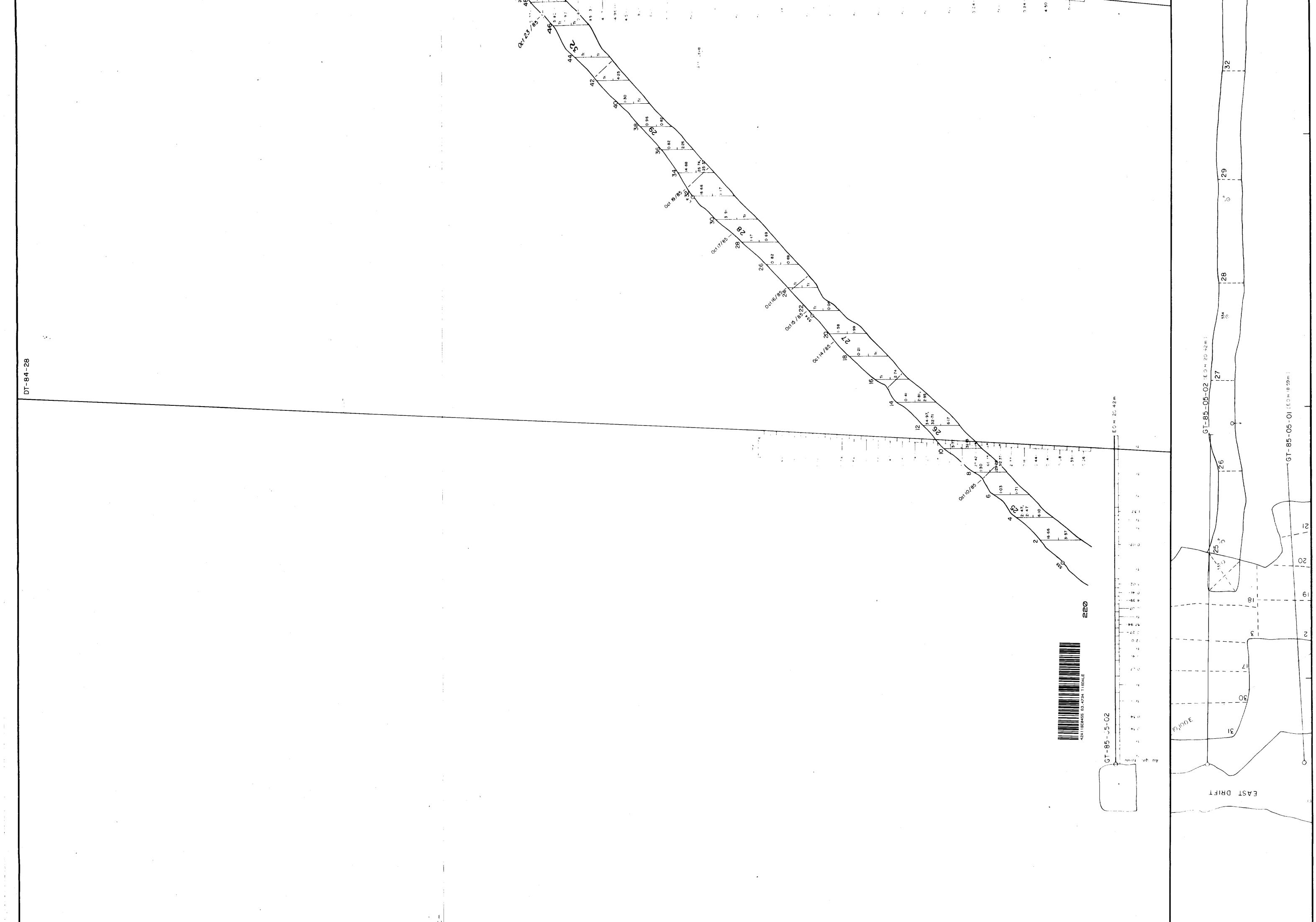
La mandra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la co

------

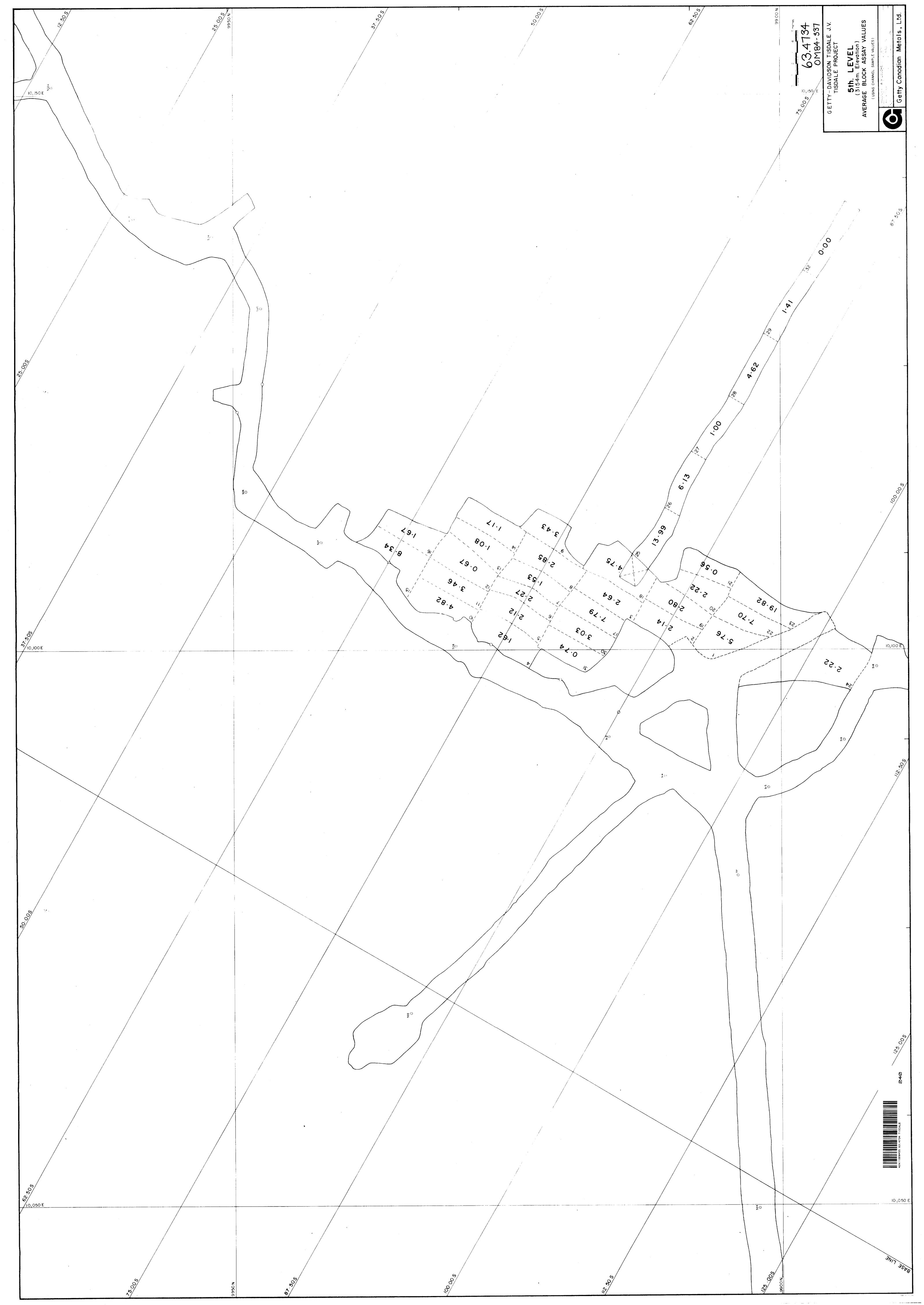
# 

N. • 7

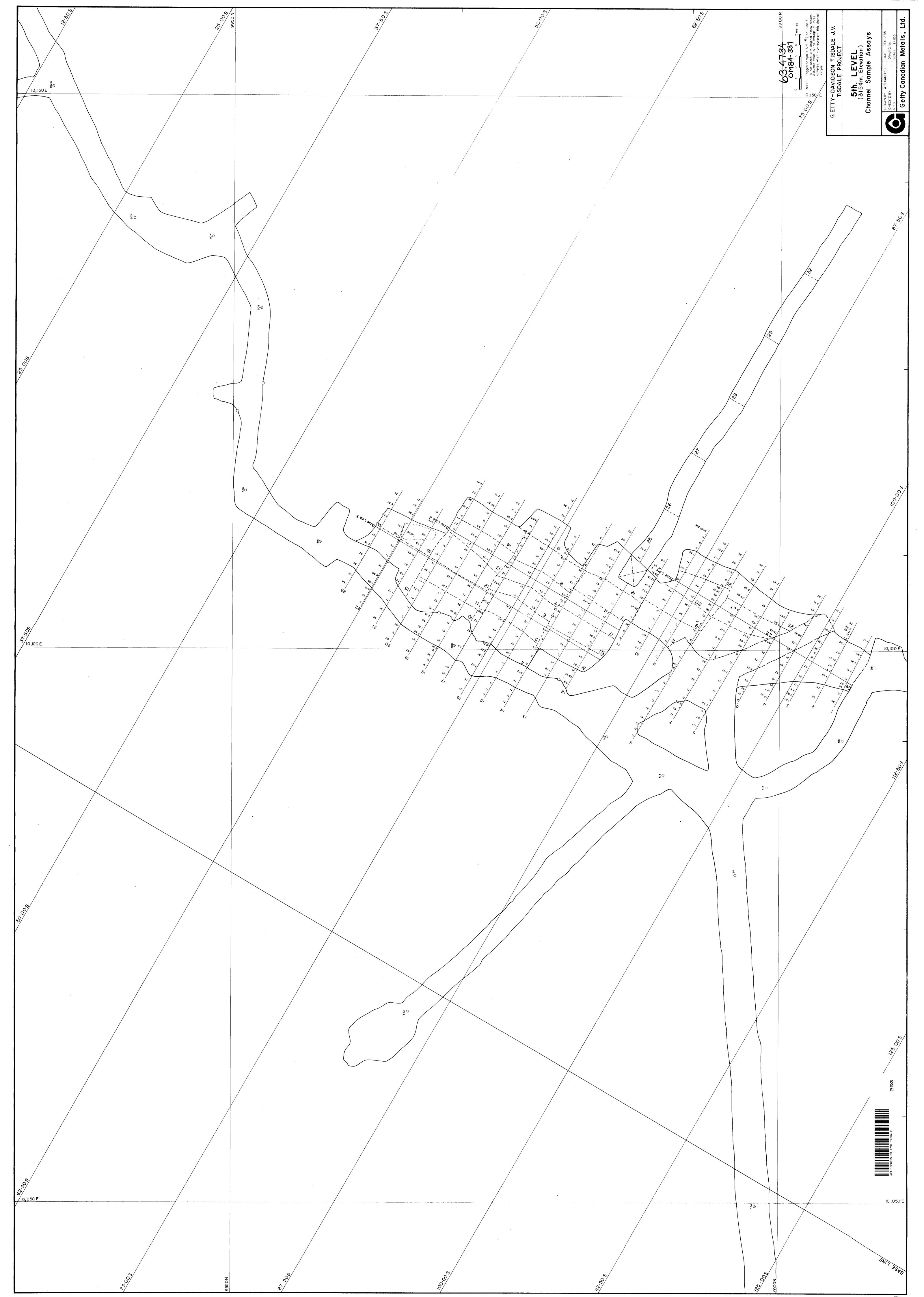
.

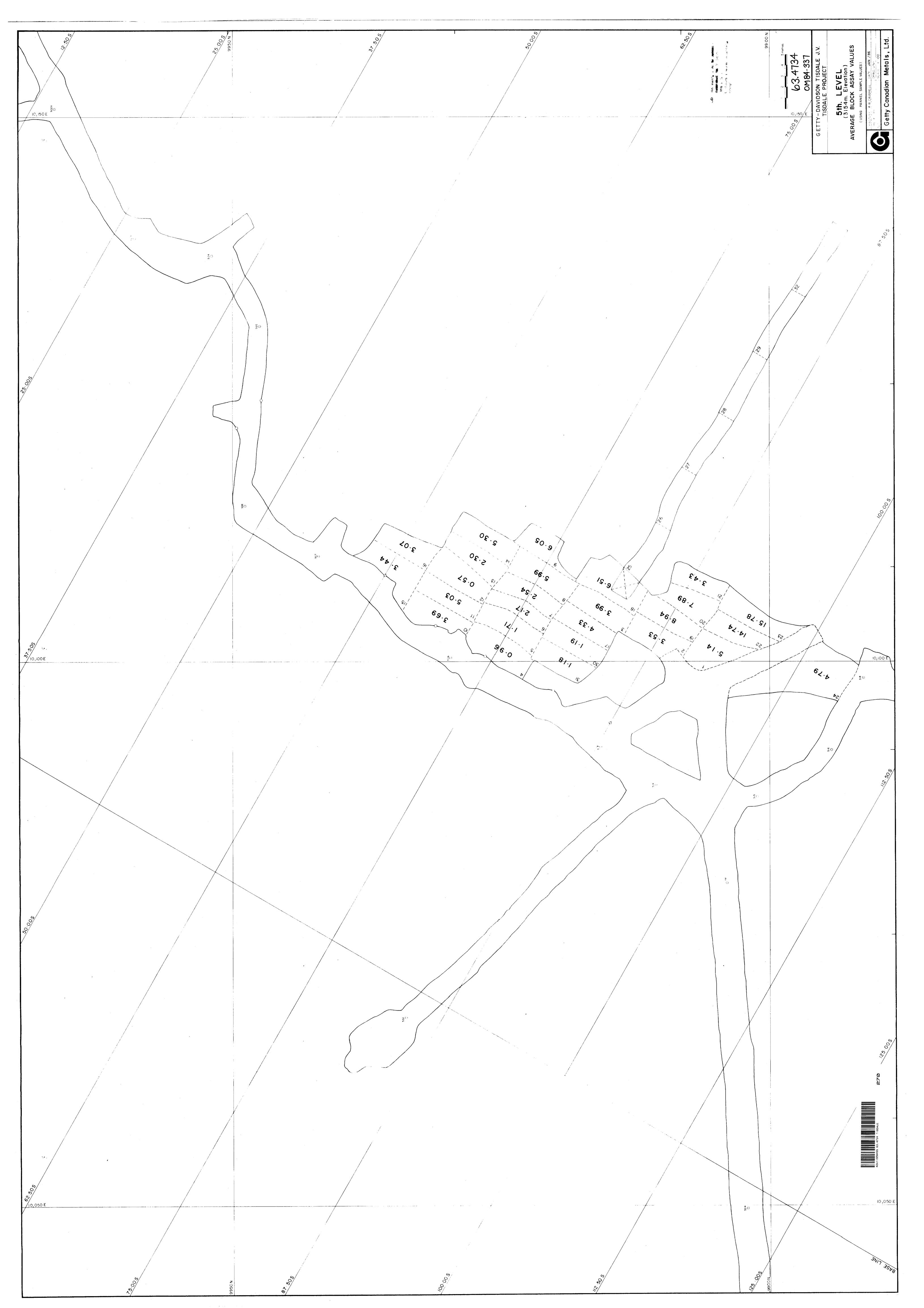

i

. 1


ో

. .

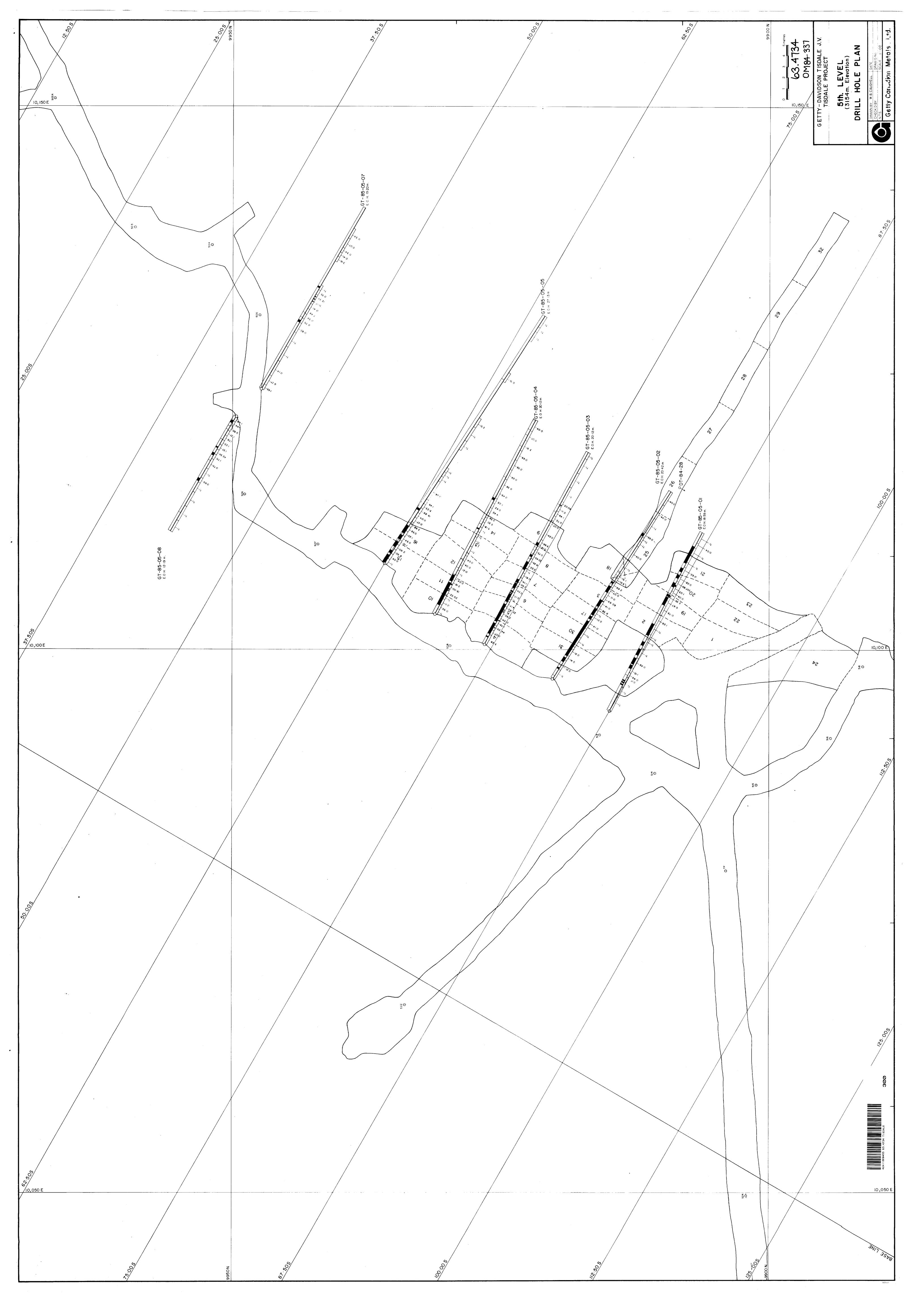

, ,

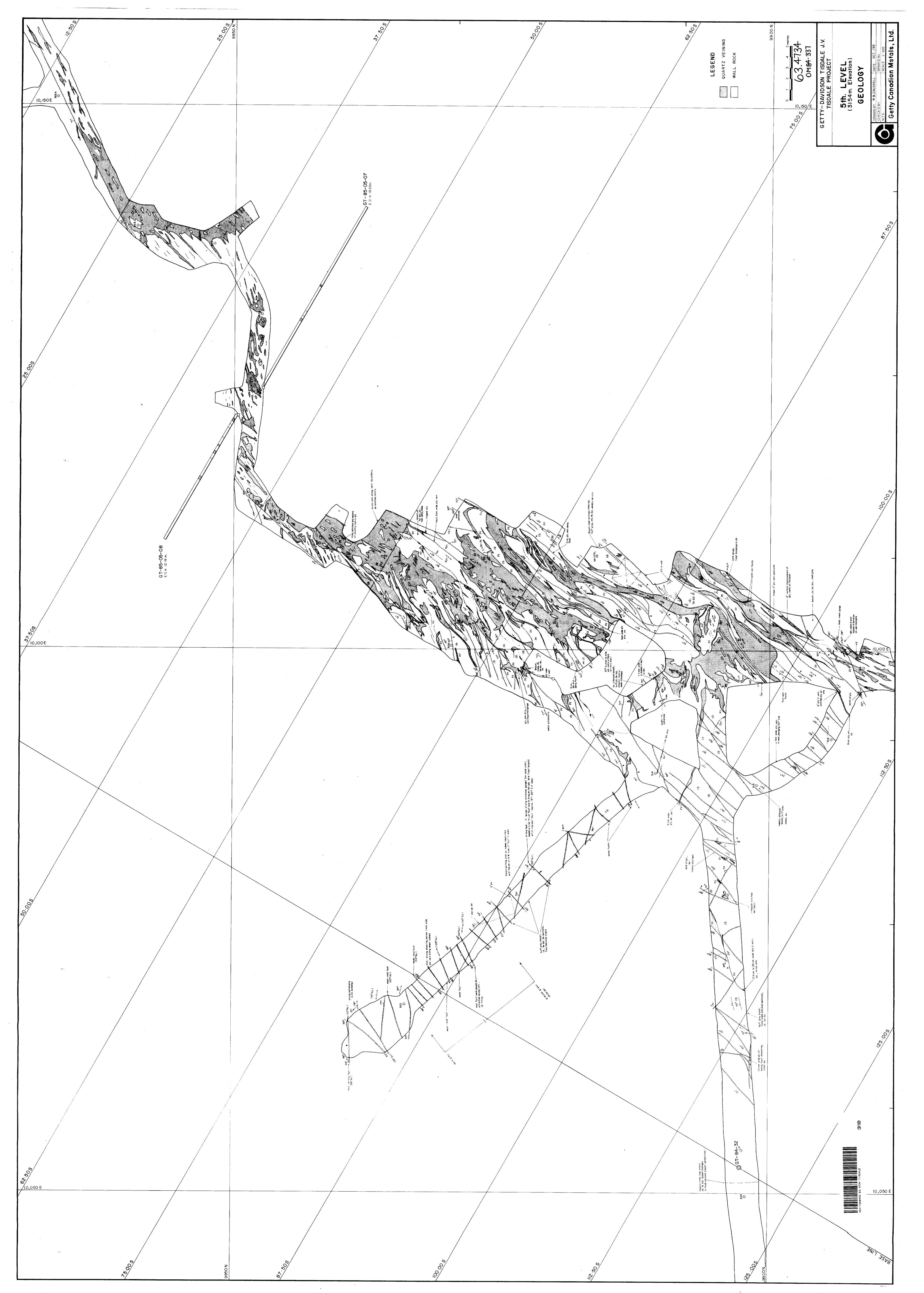








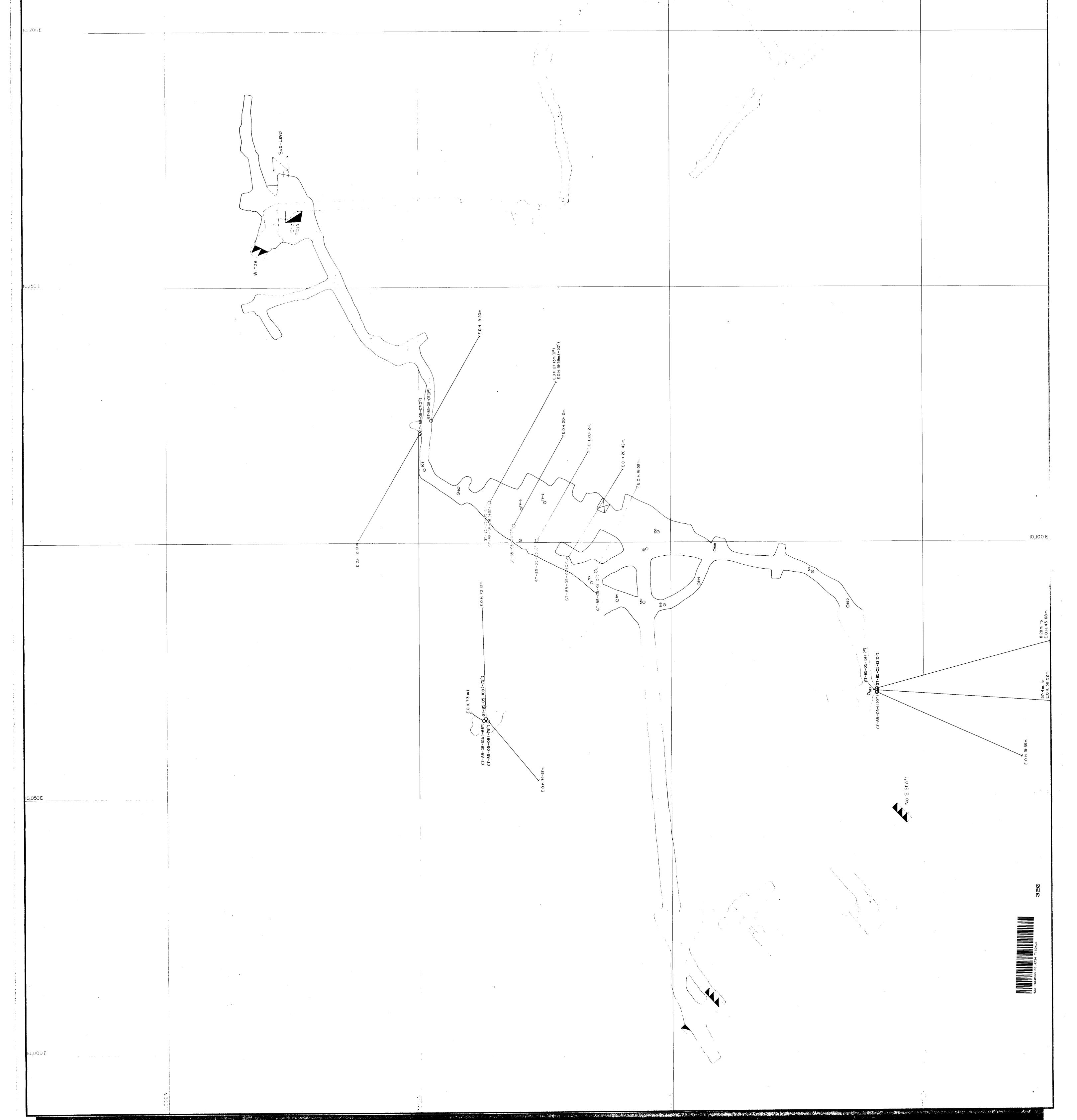







.










,



"最终的最高级的生产。"他说道 1 N N