

GEOPHYSICAL REPORT EOR THE MAXMIN (HLEM) SURVEY over the JESSOP TWP. PROPERTY TIMMINS, ONIARIO
on behalf of

UNITED REEE PEIROLEUMS LID. TORONIO, ONTARIO

REGEUED
4082:1989
MIWING LANDS SECTION

Toronto, Canada
March, 1989
QCI Project: C-130

John W. Kieley, Dipl. Geoph. David J.W. Dawson, B.8c.-2ual Quantech Consulting Inc.

TABLE OE CONTENIS		
		page
Summary		
1.0	Introduction	1
2.0	Location and Access	1
3.0	Technical Specifications and Survey Parameters	3
	3.1 Apex Maxmin II/I Rx with the KTP-84	3
	3.2 Computer Hardware and Software	3
	3.3 Survey Personnel	3
4.0	Results and Interpretation	4
5.0	Conclusions and Recommendations	5
	Certificate - John Kieley	
	Certificate - David Dawson	
	Appendix A Instrumentation Specifications	
	Appendix B Data Listings	

LIST OF MAPS

Map 1 Location Map, Jessop Township Property, Scale 1:250,000
Map 2 Interpretation Overlay - West Sheet, Scale 1:2500
Map 3 Interpretation Overlay - Center Sheet, Scale 1:2500
Map 4 Interpretation Overlay - East Sheet, Scale 1:2500
Map 5a 1777 Hz . Frequency - West Sheet, Scale 1:2500
Map 5b 1777 Hz . Frequency - Center Sheet, Scale 1:2500
Map 5c 1777 Hz . Frequency - East Sheet, Scale 1:2500
Map 6a 444 Hz . Frequency - West Sheet, Scale 1:2500
Map 6b 444 Hz . Frequency - Center Sheet, Scale 1:2500
Map 6c $\quad 444 \mathrm{~Hz}$. Frequency - East Sheet, Scale 1:2500
Map 7a 3520 Hz . Frequency - West Sheet: 100 m coils, Scale 1:2500

1.0 INTRODUCTION

During the period September 9, 1988 to October 9, 1988 and the period from February 14, 1989 to February 26, 1989, Quantech Consulting Inc. of Toronto, Canada conducted a horizontal loop electramagnetic (Maxmin) survey on behalf of United Reef Petroleums Ltd., Toronto, Canada. The survey grid extended over their Jessop Township Property, located six miles northwest of Timmins, Ontario.

A total of 90.1 line kilometers was surveyed using a coil separation of 150 meters, a station interval of 25 meters and frequencies 444 Hz . and 1777 Hz . To isolate areas of interest detected by this reconnaissance survey, 9.475 line kilometers were resurveyed using a coil separation of 100 meters, a station interval of 25 meters, and frequencies $444 \mathrm{~Hz} ., 1777 \mathrm{~Hz}$. and 3520 Hz .

2.0 LOCATION AND ACCESS

The Jessop Township Property is located in the northwestern section of Jessop Township, latitude 48 degrees 36 minutes, longitude 81 degrees 26 minutes, approximately 6 miles from the city center of Timmins, Ontario. (Map 1)

The grid has excellent winter access by a) snow machine, a 30 minute ride from the intersection of Sandy Falls Road and Airport Road, or b) winter road access from Hwy. 655 at Bigwater Lake, a 35 minute drive to the eastern portion of the property.
\square

Map 7b $\quad 3520 \mathrm{~Hz}$. Frequency - East Sheet: 100 m coils, Scale 1:2500 Map 8a 1777 Hz . Frequency - West Sheet: 100 m coils, Scale 1:2500 Map 8b 1777 Hz . Frequency - East Sheet: 100 m coils, scale 1:2500 Map 9a 444 Hz . Frequency - West Sheet: 100 m coils, Scale 1:2500 Map 9b 444 Hz . Frequency - East Sheet: 100 m coils, Scale 1:2500 Map 103 Frequencies Detail - Line 1000E; 100 m coils, Scale 1:2500 Map 11444 Hz . Frequency - 150 m coil separation, Scale 1:5000 Map $12 \quad 1777 \mathrm{~Hz}$. Frequency - 150 m coil separation, Scale 1:5000 Map $13 \quad 444 \mathrm{~Hz}$. Frequency - 100 m coil separation, Scale 1:2500

Map $14 \quad 1777 \mathrm{~Hz}$. Frequency - 100 m coil separation, Scale 1:2500
Map $15 \quad 3520 \mathrm{~Hz}$. Frequency - 100 m coil separation, Scale 1:2500

3.0 TECHNICAL SPECIFICATIONS AND SURVEY PARAMETERS

3.1 Apex Maxmin II/I Rx with the KTP-84

The portion of the survey completed in October, 1988 utilized an Apex Maxmin I, seven freguency receiver and the KTP-84 data logger. The remainder of the survey, completed March, 1989 utilized the Apex Maxmin II, five frequency receiver with the KTP-84 data logger.

The reconnaissance survey entailed a coil separation of 150 meters and two frequencies, 440 Hz , and 1777 Hz. . For detailing zones of interest the parameters were modified to a coil separation of 100 meters and three frequencies, 444 $\mathrm{Hz} ., 1777 \mathrm{~Hz}$., and 3520 Hz .

3.2 Computer Hardware and Software

The data was uploaded from the KTP-84 to a Compag Portable II computer using software supplied by Apex Parameterics Ltd., converted into standard XYZ format using QCI inhouse software, and finally presented in stacked profile plan using Geosoft.

3.3 Survey Personnel

The project was supervised by John Kieley Dipl.Geoph., the field survey was performed and supervised by David Dawson, B.Sc., with David Pavlin, Geophysical Technician.

4.0 RESULTS AND INTERPRETATION

For exact zone locations, please refer to Maps 2,3 , and 4 , the Interpretation Overlays for the Jessop Township Property.

Zone A
Zone A is the longest zone delineated by the survey extending from $2+25 \mathrm{~N}$ on Line 1000 E to $2+25 \mathrm{~N}$ on Line 2100 E . This zone is characterized by the response found on Line 1000 W at $2+25 \mathrm{~N}$ and reveals a qualitatively narrow and deep vertical zone. There is a slight indication of a steep southerly dip intermittently along the strike of the zone noting that dip is indicated steep north on Lines 1400E through 1600E. Calculations with Strangway Characteristic Curves for Horizontal-loop systems over dip angles of 90 degrees indicate a conductivity thickness of 23 mhos at $444 \mathrm{~Hz} .$, and a depth to coil separation ratio of 0.30 . Considering this information, the expected depth of this target would be approximately 50 meters. We see that the response weakens through Lines 100 W to 600 E likely an indication of increased overburden thickness in that area. It is interesting that the smooth and continuous nature of zone A is disrupted at Line 1800 E where an abrupt left handed jog separates the final three lines of the anomaly. Two reasonable explanations for this occurrence would be that this tail end of the zone has been severed from the original structure or that this apparently offset portion is an independent anomaly.

Zone B
Zone B extends from $1+25$ S on Line 1100 W through $0+25 \mathrm{~N}$ on Line 1600 W and continues off the property to grid north west. Again this zone appears as a deep, narrow sheet with steep (vertical) dip. Further calculations indicate a conductivity thickness of 41 mhos at $0+25 \mathrm{~N}$ on Line 1600 W for 444 Hz . Depth estimates suggest that the depth to coil separation ratio is approximately 0.35 , depth of 55 meters. Once again the target seems to deepen in the center of the zone.

Zone C
Zone C is a discontinuous zone located at $2+25 S$ on Line 400 W and may be traced to approximately $5+00 \mathrm{~S}$ on Line 1600 W . The response from the lower frequency falls off dramatically (indicating less conductivity) on Line 1400 W and cannot be followed to Line 1600 W . The zone is discontinuous on Lines 1100 W through 900W but reappears near $2+50 \mathrm{~S}$ on Line 800 W . Calculations for Line 700 W at $2+75 \mathrm{~S}$ show a conductivity thickness of 12 mhos for 444 Hz . Calculations also suggest that the source for this zone on Line 1200 W would be approximately 50 meters.

Zone D
Zone D, defined from $4+00 \mathrm{~N}$ on Line 500 W to $7+25 \mathrm{~N}$ on Line 1200 W , indicates the presence of a compound rather than a single source. The reconnaissance survey isolated two distinct zones on line 1100 W near $7+50 \mathrm{~N}$ through Line 900 W near $6+25 \mathrm{~N}$. This area was subsequently surveyed using a 100 meter coil separation and three frequencies, 440,

1777, and 3520 Hz. , with the intent of further resolving this zone. Unfortunately the information gathered offers little new insight due to the obvious depth of the target (s), $1>50 \mathrm{~m}$ and the inability of the HLEM system to resolve closely spaced zones at these depths. It also appears that the existing grid orientation cuts this zone at a slightly obtuse angle, perhaps an explanation for the distorted southern shoulder of Zone D on Lines 1000 W through 800 W .

Zone E

Zone E is a continuous zone striking grid east from $5+75 \mathrm{~N}$ on Line 1000 E to $6+00 \mathrm{~N}$ on Line 2100 E . Again this response indicates a narrow, vertical, moderately deep, ($>50 \mathrm{~m})$ zone. It should be noted that zone E may be traced by intermittent and weak responses along strike to Line 200W at $6+50 \mathrm{~N}$.

Miscellaneous Areas and Anomalies
An area situated within Lines 3200 E to 2900 E from the baseline to the northern extent of each line. This area was resurveyed with both the reconnaissance and the detail parameters to determine the validity of the original response with the reconnaissance parameters. The positive quadrature shoulder at $3+00 \mathrm{~N}$ on Line 3100 E repeated well under the reconnaissance parameters and was more accurately located at $3+25 \mathrm{~N}$ under the detail parameters. This positive peak in the quadrature suggests a relative high in the bedrock topography.

Survey coverage was to be extended to examine a large response building to the north of the existing grid at Lines 2700E to 2900E north of $10+00 \mathrm{~N}$, but the quality of the bush in the area made chaining without cut lines impossible.

Line 1600 E near $13+00 \mathrm{~N}$ offers a broad response and this may be followed to a similar response near $13+50 \mathrm{~N}$ on Line 1100 E but little evidence of a continuous zone exists.

On Line 1300 E near $2+75$ S another broad zone which may be followed into Line 1200 E indicates a deep isolated source.

On Line $3200 \mathrm{E}, 3+25 \mathrm{~N}$, a moderate response may be related to Line $3300 \mathrm{E}, 3+75 \mathrm{~N}$.

A one-line response is evident on Line 2800E, BL which does not appear to be continuous.

Map 10 presents the area resurveyed on Line 1000 E about $0+25 \mathrm{~S}$ to determine the exact nature of the apparent double zone detected by the 150 m survey. Again we see that due to the depth of the target, the zone could not be definitively resolved.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The horizontal loop electromagnetic (Maxmin) survey performed on the Jessop Township Property, Timmins, Ontario on behalf of United Reef Petroleums outlined five separate conductive zones. Four of these zones, Zones A, B, C, and E appear as moderately deep, narrow, continuous structures interpreted as conductive fault structures. The fifth zone, zone D presents as a double source conductive zone, again both being narrow and moderately deep ($>50 \mathrm{~m}$).

Detailing at a 100 meter coil separation did not significantly separate the two zones comprising Zone D due to the depth of the source.

To more fully delineate Zone D, it is suggested that a detailed VLF-EM be performed over the extent of Zone D, Line 1300W from 6+00N to $10+00 \mathrm{~N}$ through Line 700 W from $3+00 \mathrm{~N}$ to $6+00 \mathrm{~N}$, at a station interval of 12.5 meters. It is also suggested that this VLF-EM survey be executed at a new grid orientation perpendicular to zone D.

Respectfully submitted,

David Dawson, B.Sc.

John Kieley, Dip1. Geoph.

I, John Kieley, hereby declare that:

1. I am a geophysicist with residence in Hanover, Ontario and am presently employed in this capacity and as a director with Quantech Consulting Inc. of Toronto, Ontario.
2. I am a graduate of Cambrian College, Sudbury, Ontario, in 1974, with an Honours Diploma of Geophysical Engineering Technology.
3. I have practiced my profession in North America, South America, Central America, Europe, and Africa continuously since graduation.
4. I am a member of the Canadian Exploration Geophysicists Society, a member of the European Association of Exploration Geophysicists, a member of the Prospectors and Developers Association, and a past member of the Society of Exploration Geophysicists.
5. I have no interest nor do I expect to receive any interest, direct or indirect, in the properties or securities of United Reef Petroleums Limited.
6. The statements made by me in this report represent my best opinion and judgement based on the information available to me at the time of writing of this report.

Toronto, Canada
March, 1989
Nohlelen
John Kieley, Dipl.Geoph.
Geophysicist

CERTIFICATE

I, David J.W. Dawson of Timmins, Ontario hereby certify that:

1. I am a graduate of Lakehead University, Thunder Bay, Ontario with a Bachelor of Science Degree (Geology) and have completed the reguirements of the Bachelor of Science Degree (Geophysics) at the University of Western Ontario, London, Ontario.
2. I have practiced my profession in North America, continuously since graduation.
3. I am a member of the Canadian Exploration Geophysicists Society (KEGS).
4. I am currently employed as a Geophysicist by Quantech Consulting Inc., Toronto, Canada.
5. The statements made by me in this report represent by best opinion and judgment.
6. I have no interest either direct or indirect, nor do I expect to receive any, in the properties or securities of United Reef Petroleums Limited or any of its subsidiary companies.

Toronto, Canada
March, 1989

David J.W. Dawson, B.Sc.

The MaxMin I ground EM System is designed for mineral and water exploration and for geoengineering applications. It is an expansion of the highly popular MaxMin II and III EM System concepts. The frequency range is extended to seven octaves from four. The ranges and numbers of coil separations are increased and new operating modes are added. The receiver can also be used independently for measurements with powerline sources. The advanced spheric and powerline noise rejection is further improved, resulting in faster and more accurate surveys, particularly at larger coil separations. Several receivers may be operated along a single raference cable.

Mating plug in data acquisition computer and cassette unit are available for use with the MaxMin I for automatic digital data acquisition and processing. These units are covered in separate data sheet.

RAKNHUU I SPECIFICATIONS:
Frequencies
inches:

Esill separetions:

1:rameters
ヤ~! ! imer:
+ffrinte:

Finies sot
Pexricuts:

110, 220, 440, 880, 1760, 3520, 7040 and 14080 Hz , plus $50 / 60 \mathrm{~Hz}$ powerline frequency (receiver only).

MAX 1 : Horizontal loop mode (Trensmitter and receiver coil planes horizontal and coplanar].
MAX 2: Vertical coplanar loop mode [Transmitter and receiver coil planes vertical and coplanar).
MAX 3: Vertical coaxial loop mode [Transmitter and receiver coil planes vertical and coaxiall.
MIN 1: Perpendicular loop mode 1 [Transmitter coil plane horizontal and receiver coil plane vertical].
MIN 2: Perpendicular loop mode 2 [Transmitter coil plane vertical and receiver coil plane horizontal].
12.5, 25. 50. 75. 100, 125. 150, 200, 250, 300, \& 400 metres (standard].
10, 20, 40, 60, 80, 100, 120, 160, $200,240 \& 320$ metres [selected with grid switch inside of receiver].
$50,100,200,300,400,500,600$, 800. 1000 . $1200 \& 1600$ feet [selected with grid switch inside of receiver].

In-Phase and quadrature components of the secondary magnetic field, in \% of primery (trensmitted) field.
Field amplitude and/or tilt of $50 / 60 \mathrm{~Hz}$ powerline field.

Anslog direct readouts on edgewise panel meters for in-phase, quadrature end tilt, and for $50 / 60 \mathrm{~Hz}$ amplitude. [Additional digital LED reedouts when using the DAC, for which interfecing and controls are provided for plugin).
Analog in-phase and quadrature scales: $0 \pm 4 \%, 0 \pm 20 \%, 0 \pm 100 \%$, switch activated. Analog tilt scale: $0 \pm 75 \%$ grade. (Digital in-phase and quad. $0 \pm 102.4 \%$].

Analog in-phase and quadrature 0.05% to 0.5%, analog tilt 1% grade. (Digital in-phase and quadrature 0.1%].
$\pm 0.05 \%$ to $\pm 1 \%$ normally, depending on frequency, coil separation \& conditions.

Sianal filtering:

Warning
lights:
Survey depth:

Trensmitter
dipele
moments:
\vdots
Reterence cathe:
ntercom:

Receiver power
supply:

Transmitee,
power
supply:

Transmitzer
battery
charger:

Operating temp:
Receiver weight:

Transmitzer weitht:

Shipping
weight:

Etanderc:
spares:

Powerline comb filter, continuous spherics noise clipping, autoadjusting time constant and other filtering.

Receiver signal and reference warning lights to indicate potential errors.

From surface down to 1.5 times coil separation used.
$110 \mathrm{~Hz}: 220 \mathrm{Atm}^{2} \quad 1760 \mathrm{~Hz}: 160 \mathrm{Atm}^{2}$ $220 \mathrm{~Hz}: 215 \mathrm{Atm}^{2} \quad 3520 \mathrm{~Hz}: 80 \mathrm{Atm}^{2}$ $440 \mathrm{~Hz}: 210 \mathrm{Atm}^{2} \quad 7040 \mathrm{~Hz}: 40 \mathrm{Atm}{ }^{2}$ $880 \mathrm{~Hz}: 200 \mathrm{Atm}^{2} 14080 \mathrm{~Hz}: 20 \mathrm{Atm}^{2}$

Light weight unshielded $4 / 2$ conductor tafion cable for maximum temperature range and for minimum friction. Please specify cable lengths required.

Voice communication link provided for operators via the refarence cable.

Four standard 9 V batteries (0.5 Ah , alkaline). Life 30 hrs continuous duty, less in cold waather. Rechargeable battery and charger option available.
Rechargeable sealed gel type lead acid $12 \mathrm{~V}-13 \mathrm{Ah}$ batteries ($4 \times 6 \mathrm{~V}-61 / 2 \mathrm{Ah}$) in canvas belt. Optional 12 V -BAh light duty belt pack available.

For 110-120/220-240VAC, 50/60/ 400 Hz and 12-15VDC supply operation, automatic float charge mode, three charge status indicator lights. Output 14.4V-1.25A nom.
-40 to +60 deg.C.
8 kg , including the two integral ferrite cored antennas (9 kg with data acq. comp.]

16 kg with stendard 12V-1 3Ah battery pack.
14 kg with light duty 12 V -BAh pack.
59 kg plus weight of reference cables at 2.5 kg per 100 metres plus other optional items if eny.

One spare transmitter battery pack, one spare transmitter battery charger, two spare transmitter retractile connecting cords, one spare set receiver batteries.

Specifications subject to chenge without notification.

HAND HELD COMPUTER KTP-84

For automatic and manual data acquisition in the field. Versatile and independent of the measuring instruments used.

Robust and reliable in different environments.

RAUTARUUKKI OY

TECHNICAL SPECIFICATION

Size:
Weight:
Temperature range:
Construction:
Operational time: With one battery charge: normal use 10-80 h
automatic measurement controlled by an intern clock as long as 4 months (battery operated more than one year)
memory maintenance more than 7 days with run-down batteries
Technology:
RAM memory: 48 kbytes
Display:
Keyboard: $\quad 39$ keys, waterproof
Connectors: 2 bayonet type, designed to MIL-C-26482 (19 contacts)
Standard interfaces:
$24 \times 9 \times 4 \mathrm{~cm}$
$1,0 / 1,3 \mathrm{~kg}$ depending on battery
$-30^{\circ} \mathrm{C}-+60^{\circ} \mathrm{C}$
Waterproof and shockresisting aluminium case

CMOS (processor, RAM, ROM, logics)

Alphanumerical, 32 characters

1 RS-232 C serial

* 1 CMOS serial
* 1 fast 5 decade pulse counter
* 4 analog channels, 12 bit A/D converter
* 2 CMOS registers for serial data transfer
* 8 CMOS-inputs
* 4 HCMOS-outputs
* Recharge connections

Standard software:

* General sophisticated form programs
* Data collection and scan programs
* Communication programs for data and form transfer
* Computer terminal functions
* Real time programs
* Optimization of power consumption
* Automatic cassette unit handling programs
Application
programs:
* Programs for various ore prospecting equipment (MaxMin slingram, proton magnetometers, Jalander fluxgate magnetometer etc.)
* Interface programs for customer-specified analog and digital measuring equipment
* Programs for forestry
* Programs for time study

Accessories: * Recharge unit

* Data transfer cable
* Manuals

Options: * Cassette unit (KTP-CU)

* Drill hole interface (KTP-DHI)
* Interfaces for various measuring instruments
* Interface cables
* Data receiving programs for PC-XT (DOS 2.1) and HP 9845

900
Ontario
Ministry of
Northern Development
and Mines
Ministère du
Développement du Nord
et des Mines
Mining Lands Section
3rd Floor, Bay Street
Toronto, Ontario
M5S 128
Telephone: (416) 965-4888

September 8, 1989

Mining Recorder
Ministry of Northern Development and Mines
60 Wilson Avenue
Timmins, Ontario
P4N $2 S 7$

Dear Sir:
Attached is a revised final approval that is linked to Report of Work W8906-253. Please disregard the previous final approval dated May 11, 1989 and correct the appropriate record sheets to reflect the assessment credits approved on the attached document.

The revised final approval has resulted from the claim holder submitting additional documentation to this office to prove that recutting of grid lines was required on the said claims. The recutting of the grid lines should have been noted on

Report of Work \#W8906-253 at the time the report was submitted to your office, however, the claim holder did not do so.

This office has reviewed the additional documentation and has determined that additional assessment credits should be awarded for the recutting. Hence, the revised final approval. A new Report of Work requesting the recutting is not required.

I am advising the claim holder, via this letter of my decision and will suggest that they contact your office to determine the affect of this decision on the said claims.

Yours sincerely,
W.R. Cowan

Provincial Manager, Mining Lands
Mines \& Minerals Division
RM: eb
Enclosure
cc: Canhorn Mining Corporation Toronto, Ontario

ONTARIO GEOLOCICAL SURVEY ASSESSMENT FILES OFFICE

StP 201989

RECEIVED

Technical Assessment
Work Credits

REVISED

Recorded Holder	CANHORN MINING CORPORATION
Township or Aree	JESSOP TOWNSHIP.

Special credits under section 77 (16) for the following mining claims
30 days Electromagnetic
P 919605, 919627, 919629-630, 919656, 919661
20 days Electromagnetic P919615

No credits have been allowed for the following mining elaimsnot sulficiently covered by the survey
\square intulficient sechnical data filed

Mining Lands Section

 3rd Floor, 880 Bay Street Toronto, Ontario M5S 128Telephone: (416) 965-4888

June 14, 1989
Your file: W8906-253
Our file: 2.12394
Mining Recorder
Ministry of Northern Development and Mines
60 Wilson Avenue
Timmins, Ontario
P4N 2 S7
Dear Sir:
Re: Notice of Intent dated May 11, 1989 for Geophysical (Electromagnetic) Survey submitted on Mining Claims P 919601 et al in Jessop Township.

The assessment work credits, as Tisted with the above-mentioned Notice of Intent. have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,

W.R. Cowan

Provincial Manager, Mining Lands Mines \& Minerals Division

RM:eb
ONTARIO GEOLOGICAL SUAVEV
ASSESSMENT FILES
OFFICE
JUN IR 1989
RECEIVED

Enclosure

cc: Mr. G.H. Ferguson	Resident Geologist
Mining and Lands Comissioner	Timmins, Ontario
Toronto, Ontario	
	Paul Sukman
	Toronto, Ontario
	Canhorn Mining Corp.
	Toronto, Ontario

Ministry of Northern Development and Mines

Technical Assessment
Work Credits

| Dote | |
| :---: | :---: | :---: |
| May $11, ~$ | Flle
 2.12394 |

Recorded holder	
Township or Area	CANHORN MINING CORPORATION
	JESSOP TOWNSHIP

Special credits under section 77 (16) for the following mining claims

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment devs recorded on each ciaim does not exceed the maximum allowed as tollows: Geophyical - 80; Geologocel - 40; Geochemical - 40; Section 77(19) - 60.

Ministry of Natural Hesources
Oriang

Report of Work
(Geophysical, Geological, Geochemical and Expenditures)

Instructions: - Please type or print.

- If number of mining claims traversed exceeds space on this form, attach a list.
Note: - Only days credits calculated in the "Expenditures" section may be entered
Page 2 of 2
of Survey(s)

GEOPHYSICAL SURVEY-MAXMIN
Claim Holder(s)
CANHORN MINING CORPORATION
CANHORN MINING CORPORATION

JESSOP TWP.
Prospector'z Licence No. $T-1733$

67 YONGE STREET, SUITE 400, TORONTO, ONTARIO, M5E 1J8
Survey Company
Quantech Consulting Inc.
Name and Address of Author (of Geo-Technical report)
J. Kieley-Quantech Consulting Inc. Suite 1050, 595 Bay Street, Toronto, Ontario, M5G 2C2 Credits Requested per Each Claim in Columns at right

Special Provisions For first survey: Enter 40 days. (This includes line cutting)	Geophysical	Days per Claim
	- Electromagnetic	708
	- Magnetometer	
For each additional survey: using the same grid: Enter 20 days (for each)	- Radiometric	
	- Other	
	Geological	
	Geochemical	
Man Days Complete reverse side and enter total(s) here	Geophysical	Days per Clisim
	- Magnetometer	
	- Radiometric	
	- Other	
	Geological	
	Geochemical	
Airborne Credits Note: Special provisions credits do not apply to Airborne Surveys.		Davs per Claim
	Electromagnetic	
	Magnetometer	
	Radiometric	

Expenditures (excludes power stripping)

Instructions
Mining Claims Traversed (List in numerical sequence)

Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

For Office Use Only	
Total Oavs Cr. Oate Recorded Recorded	
	Mate Approved as Recorded
	Branch Director Recorder

Certification Verifying Report of Work

[^0]Report of Work
\{Geophysical, Geological. Geochemical and Expenditures)
DOCUMENT NO.
$8906 \cdot 23$

Instructions: - Please type or print.

- If number of mining claims traversed exceeds space on this form, atyack a list.
Note: - Only days credits calculated in the "Expenditures" section may be entered in the "Expend. Days Cr." columns. Page 1 of 2,0420 The Mining Act puge lof $2, \quad \begin{aligned} & \text { in the "Expend. Days Cr. } \\ & \text { Do not use shaded breas below. }\end{aligned}$
TYpe Jurvey(s)
GEOPHYSICAL SURVEY -MAXMIN
Claim Holder(s)

Township or Area JESSOP TWP.

CANHORN MINING CORPORATION
Prospectors Licenceno.
Address
SUITE 400, 67 YONGE STREET, TORONTO, ONTARIO, MSE 1J8

Survey Company
QUANTECH CONSULTING INC.
Name and Address of Author (of Geo-Technical report)
J. Kieley-Suite 1050,595 Bay Street
Credits Requested per Each Claim in Columns at right

Expenditures (exc if(es power stripping)

Instructions
Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Date April 20, 1989

Mining Claims Traversed (List in numerical sequence)

		report of work.
For Office Use Only		11
Total Days Cr. fecorded 1.10		
	Date Approved as Recorded Sce Renesed	

Certification Verifying Report of Work
I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.
Name and Postal Address of Person Certilying
 M5E $1 J 8$

[^0]: I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.
 Name and Postal Addross of Person Certifying
 Paul Sukman, c/o Canhorn Mining Corporation, Suite 400, 67 Yonge Streef 7 Toronto, Ontario M5E 1J8

