SUMMARY

OF AN

INDUCED POLARIZATION SURVEY

ON THE

TISDALE TOWNSHIP PROPERTY

FOR

BRIAN ELLIS

Prepared by:

R. J. Meikle August 17, 1988

$$
O M x-6-P-115
$$

TABLE OF CONTENTS
Page
INTRODUCTION 1
LOCATION AND ACCESS 1
PERSONNEL 2
REGIONAL GEOLOGY 2
SURVEY PARAMETERS 2
RESULTS 5
RECOMMENDATIONS 6
LIST OF FIGURES
Figure 1 Location Map
Figure 2 Claim Location Map
LIST OF MAPS
MAP NO. 1 IP Chargeability
MAP NO. 2 IP Resistivity
APPENDICES
APPENDIX A: IPR-8 Induced Polarization Receivers

This summary deals with the results of a "Gradient Array" Induced Polarization survey performed on four patent claims in Tisdale Township for Mr. Brian Ellies. The work was performed on a contract basis by Exsics Exploration Limited, Timmins, Ontario.

The purpose of the I.P. survey was to follow up a previous Magnetometer and VLF-EM survey which indicated two weak conductors in the $S W$ corner of the property.

LOCATION AND ACCESS

The property consists of 4 patented mining claims located vi RCO.
in Lot 12, Concession $\mathbb{H}^{\boldsymbol{W}}$ Tisdale Township, Porcupine Mining Division, Ontario (Figures 1, 2)

Access to the property is excellent as McLean Drive is the west boundary of the property. Thus the property is acccessable year round by going south off of Algonquin Boulevard on to Mountioy Street North which turns into McLean Drive.

No property ownership status has been ascertained by the author.

PERSONNEL

The following personnel were directly involved with the project:

Ray Meikle	Timmins, Ontario
Brad Norman	Timmins, Ontario
Wayne Pearson	Timmins, Ontario
John Grant	Timmins, Ontario

REGIONAL GEOLOGY

The property is believed to be underlain by Precambrian sediments with a mafic volcanic contact to the south. Detailed geology is beyond the scope of this report. A detailed geological description of the area can be found in O.G.S. Miscellaneous Paper 97 by D. R. Pyke, 1981.

SURVEY PARAMETERS

The IP method involves appying voltage across two electrodes in a pulsed manner ie. 2 second on, 2 second off. A second "dipole" or electrode pair measures the residual potential or voltage between them after the voltage is shut off or during the 2 second off cycle. The potential is recorded at different times after the shut off. If, for
example, there is sulphide mineralization within the measuring dipoles, they will be polarized or charges set up in the sulphide particles. This polarization gives the zone a capacitor effect, thereby blocking the current delay giving a higher chargeability reading.

A typical signature for many gold showings would be a chargeability high, resistivity high and magnetic low. This would be characteristic of mineralized, highly altered carbonitized and/or silicified zone. However, this is by no means the only geological setting for gold, therefore every IP profile should be looked at individually and correlated with all other geophysical-geological data.

The "gradient electrode array" was chosen for the survey. It was felt that this array would yield the most cost effective data to cover the majority of the grid on a reconaissance basis to outline any drill targets.

In this array, two electrodes (C1 and C2) are placed a fixed distance off each end of a survey line. A voltage is applied across these two electrodes and a continuous 2 second on 2 second off pulse is maintained. A receiver dipole of 25 meters is moved along the Cl C2 line as well as parallel lines. Only the middle third section is surveyed to ensure
that neither Cl or C (influence the dipole. The ploting point is in the middle of the receiver dipole. This array generates one chargeability reading and one apparent resistivity reading every 25 M along the l ines surveyed. A conductive sulphide zone would yield a high chargeability - low resistivity while a disseminated, silicified altered sulphide zone would have a high chargeability and a high resistivity.

The survey was conducted using the following parameters:

Method	- Time Domain
Electrode Array	- Gradient
C1 - 1200S/400E	C2 - 800N/OE
"a" spacing	- 25 meters
Pulse Duration	- 2 seconds on, 2 seconds off
Delay Time	- 900 ms
Integration Time	- 450 ms
Receiver	- Scintrex IPR-8
Transmitter	- Scintrex IPC-7 2.5 kw

RESULTS

Portions of lines $1 E$ to $7 E$ were surveyed with the Gradient Array IP method. Generally, a sufficient signal was obtained throughout the survey. Potential contacts were excellent due to the wet nature of the area.

The survey outlined three areas of increased chargeability readings described as follows:

1. This anomaly runs from LIE/3+37S to L3E/2+25S. It is open at both ends but does not appear to extend as far as L5E. The anomaly lies in an area of elevated chargeability background in contrast to the NW part of the property. The resistivities are relatively flat except for a resistivity high centered on LIE/237S where the chargeability decreases somewhat.

While this anomaly appears to be within a geological or "rock type" change, there is a definite E-NE trend with the peak response on L2E/250S. This response is coincident with a VLF conductor located in a previous survey which appears to be a shallow, steeply dipping bedrock conductor. There is no coincident magnetic response. The IP anomaly appears to be 25

- 50M wide on this section.

2. This anomaly is parallel to and 50 M north of anomaly \#1. It is similar to 1 and lies within the same elevated chargeability envelope. The peak response is on LlE/187S which is on the north flank of the previously mentioned resistivity high.
3. This anomaly was detected on LSE and 7E but is open on L6E and both ends. It appears to be a broad NW striking feature with a strong chargeability and very low (conductive) resistivities. It lies in the vicinity but not directly coincident with a broad weakly magnetic high on the eastern part of the property. The IP response is probably coincident with a cluster of Airborne EM anomalies shown on Ontario Geological Survey Map 81079.

RECOMMENDAT IONS

The following recommendations are based on the results of the current I.P. survey:

1. A geological compilation should be done to try to explain the various IP anomalies.
2. Because of the lack of previous work on the property it may be necessary to diamond drill the anomalies to explain them.
3. The priority anomaly would be $\#$. A drill hole is recommended collared at L2E/275S, azimuth 360 Degrees, Dip -45 Degrees, length approximately 70 meters. It should be kept in mind that the hole may collar in the anomaly and therefore any interesting results would dictate stepping back with a second drill hole.
4. Based on the results of recommendation 3, anomaly \#2 should be explained by drilling and or trenching.
5. Anomaly 5 is not well defined by the present survey. Also, it is in a concuctive horizon and may be caused by graphitic sediments. Drilling of this anomaly would be dictated by budget restraints.

Yours Truly,
R. J. Meikle

CERTIFICATION

I, Raymond Meikle of Timmins, Ontario hereby certify that:

1. I hold a three year Technologist Diploma from the Haileybury School of Mines, Haileybury, Ontario obtained in 1975.
2. I have been practising my profession since 1973 in Ontario, Quebec, NWT, Manitoba, New Brunswick, Nova Scotia for Peck Exploration Ltd., Metallgesilschaft Canada Ltd., Rayon Exploration., Sabina Industries Ltd., and most recently Exsics Exploration Ltd.
3. I have based conclusions and recommendations contained in this report on knowledge of the area, my previous experience, and on the results of the field work conducted on the property during December 1987 to Jan 1988 which was carried out under my overall supervision.
4. I hold no interest, directly or indirectly in this property other than professional fees, nor do I expect to receive any interest in the property or in any companies with an interest in the properties.

Dated this 17 th day of August, 1988 at Timmins, Ontario

APPENDIX A

 nowepean mie co roerlus
$\begin{array}{r}7 \\ { }_{3} 8 \\ 8 \\ \hline\end{array}$

8

 remes cerlue. osvescoul wn

lernes el dautres caractéristiques． ajurisisal an seinsau 20 ajocjos ＇scaruvoiljoles voisincul．p sฮual

 $\boldsymbol{\Omega}$ 02 วno iusine נunno ined nouәwa p voliels andius 8 wodsued 21 unod uns äleisul ise auobolljolp 2cnoso

 19 sel ajuva siuewasedse spuejd 20 291 ise วanale ajuessind aun no uolt 100 le901 iso MA St／L－Sal 2lepou 37

90＾OLZ！ 70 ise unwixem vois sortie maximum de coufant est de 1山ly 10 sendiucejbocol＇sendiskucoad io eo selpiden seouejo ap suzo sena
inod asifin iuewejewjou ise ino inei ＇auuokow asuessind 20 ＇sed̉esn sal isks un ise Mx s＇Zu－Od शppow 27 －20 А 058 30 ise wnuxxew uoisuel Dour te carotrage de trous de sondrg se II Luns alare vontiuoulle oun no
 نun acuejô zun hunoi inad if＇uoliba 150 M OSZ8－Cd dnellowa．l ond ni comme alimenialions． －seanos6 sep iuesilin sluessind snid His xnep se and sjole selabedideujaj pou eq ！ueueanjoases Mx SWL－Sd s＇ZIL－Od＇M 0รZR－Cd sewwou luos 10 MA §＇Z＇M OSZ 20 artuluou aHOS
 Saintrex IPC sont coneus pour une ul scual ap auswod ue sunollawa sa7

CLENT: BRIAN ELLIES		
PROPERTY: Tisdale Township		
DRILL HOLE SECTIONS EL-F88, EL-2-88, EL-3-88		
Date: Dec. 1988	Scale: $\mathrm{r}^{\prime \prime}=40^{\circ}$	NTS:
Drawn: P.G.	interp: C.M.	Job No.

HIdsa assodoyd

					1
				दr) : Kq pob607	
				.22 370H 10 ON3	
	9dd 2	${ }^{19}{ }^{\circ}$	360902	36090L Jldwes 1Ll - G'91	
					22-95
				大ETJ - पנpJnqJJto	91-0
488780	- 6700	${ }^{37 \text { Hutaim }}$	-on 27awve	NOI	1334 \% ${ }^{\text {\% }}$ (30

乙Z FILdGa BlVWILIn

170H

										($\cdot 1 \cdot 007.09$		
S475 27b ws + 1 270 "9						$100{ }^{\circ}$	$0 \cdot 2$	951	t51			
$\cdot^{R_{d}}+$										896-001		
						$160{ }^{\circ}$	$0 \cdot 1$	c.0¢	5621	(710spe ग7l1P041-6W)		
						100°	0.1	121	021			
										- Sa86ujazs		
$i_{\text {d }}$ SSIP + S $225 \mathrm{~S}^{276}$ ws ε						100	$0 \cdot 2$	28	08			
K_{d} Ssip +												
S 37527 b ws 2 e7/גa才up $+\mathrm{K}_{\mathrm{d}}$						100	0.6	9. 29	9'19			
SSIP Xe-2 प7]m 7ipsp						$100{ }^{\circ}$	$0 \cdot 1$	15	09	(07119041-6W) -7		
											581	9.95
										T3T1गण		
peapeus गt7						100°	5.1	9'2t	-		9•它	If
						-2ed					T6	0
otdurs jo uotadprosed						nv	47Pis	04	u0xid		O4	moxs
¢¢¢¢ dio t-88 :									d	บMOI	ช.7xa	

140 U！5ג7s 27b ws ε	180	0.1	912	¢12	Sd7s 27b OU－ 266 － 581 W0dy		
						992	581
					PJIIIS PUP e7RU0qder		
	100°	$0 \cdot 2$	S＜1	\＆くl			
					$\mathrm{K}_{\mathrm{d}} \mathbf{S S I p}$		
	100°	0＇1	ELb	－ 261			
					ou－eqpuoqars jo spredu7 2uIt		
	$100{ }^{\circ}$	0.1	¢91	ع91			
					Redo पsinia 8＜6－856		
					＇V＇J		
					07 009 07 ogl 78 Sd75 27b ws＇V＇0		
2ldues to volfdilasao	$-/ / 20$	47PIM	01	W0』」	volfdidesoo	01	ש0d
2 2bed \quad－888 $\cdot \mathrm{ON} 310 \mathrm{H}$				37V0S	1 dIHSNMOL	173	3d0yd

325 s

300 s

275 s

250 s

200 s

175 s

150 s

125 ,
$\prod_{0,10100)}$
100 ;

75 s

50 ,

位 0

