- Viewers swank 6 3, 1965
- ragnetcmeti sidney in $1965 /$ deferent Instrumerst।

> MFR ADDISON MINES LIMITED MOUNTJOY PROJECT "O-11" ASSESSMENT WORK REPORT.

Introduction

W. A. Jones, former chief geologist of Hollinger Consolidated Cold Mines Limited in a report dated October 1973, recommended a program of exploration to cover this part of Mountjoy Township where geologic conditions nomoorad to be similar to those known in the Timmins gold area, the center of interest being the small rock exposures in the north west corner of claim 38]6]1, which comprises the northeast quarter, south half lot 8 , Concession IV, Mountioy Township and the rock exposures extending northward for 700 feet into the north half of lot 8.

The project ares covers the north halves of lots 5 to $\$$ inclusive, the north quarter of lot 10 , Concession III, lots 5 to 10 inclusive, the south half of the north half of lot 11, Concession IV, the south quarter of lot 5, Jots 6 to Q inclusive, and part of lot 10 , Concession V, and part of lot 7, Concession VI, the whole area covering approximately 3500 acres, out of which 3000 acres wren optioned from formers and land holders owing both mineral and surface rights and 560 acres of mineral rights acquired through staking, and bering the following numbers:

> 391610 to 381613 inclusive, South Half, Loti 8 , Concession IV 3916.14 to 391617 inclusive, South Half, Lot 8 , Concession V 391618 to 391621 inclusive, South Half, Lot 6 , Concession V 381622 and 381623 , South Half of South Half, Lot 5, Concession V All the project ares was covered with basal till geochem sampling, more or less, the south half of the project ares was covered with line cutting
and detailed magnetfc surveying, followed by 13 diamond drill holes.
The results to-date are negative and no further work is recommended.

Location and Access

The center of the project area is 6 to 7 miles northwest of the City of Timmins. The project area is locally farmed and is easily accessible through wall kept roads running north from highway 101, and the Sandy Falls road which transgresses the project area in an east-west direction.

Previous Work
In the narly 1930 's Mineral Fstates made geophysical surveys in Mountjoy Townshin and completed four short drill holes in the north half of the northenst ouarter, south half lot 8 , Concession IV. Carbonatized lava, slaty preywacke and ouartz feldspar porphyry were intersected. In 1964 Hollingar Mines staked the mineral rights of the south half lot 8, Concession IV, the surface rights being patented. Two holes, totalling about 800 feet were drilled and four veor's work were recordnd. Slaty greywacke and grey nuartz feldsnar porphyry wore intersected with some gurtz stringers and small amounts of prrite in places but no gold values were obtained.

The claims were re-staked in December, 1972, by Claude Lamothe of Val d'Or, Guabec but an abstract of ownership has not been obtained. It is probable that the pround was transferred to a company.

Rogions] Geology
With the excention of the northwest corner and part of the rast boundary, Mountioy Townshin consists of flat farm land through which the Matthgami River moanders in a preat onsterly bow.

Northeasterly trending pillow lava and uniform textured andesite outcrop in the northwest corner of the township. From the southwest corner a zone of volcanic rocks trends east to northeasterly across the south and southeast quarter of the township. These lavas are bounded on the south and southeast by an extensive endimentary trough. Between the two areas of volcanic rocks there are a few widely spaced outcrops of slate and greywacke which strike northeasterly and dip steeply to the northwest or southeast. At least three small bodies of auartz feldspar porphyry can be seen intruding prowacke nt Snndy Falls on the Mattagami River. The schistosity in the outcrons of carbonated grperwacke in lot $\%$, Concession IV, also strikes northenaterly. Thn peneral rapional trend therefore suggests a possible zone of carbonated rocks striking northensterly through the central part of the townshin and bounded on the northwest and southerst by extensive areas of slate and preywacke.

The Mattagami River fault strikes in a northerly direction a short distrner west of the wst boundary of the township. Thus the massive andesite in the southerst part of Godfrey Township cannot be correlated with the nossible zone of volcanics in Mountjoy Township.

Lecsl Genlogy

The main area of outcron has a north-south length of about 550 feet across a width of about 150 feet. Most of the exposures are in the northwest corner of claim 391611 (northeast quarter of south half lot 8 , Concession IV) but they extend for sbout 180 feet north of the claim boundary into the north half of lot 8 , Concession IV. Two other small areas of outcrop occur in the north half of lot 9 at 400 fret and 700 fert north of the boundary of claim
381611. A third outcrop is located about 150 feet north of the latter olaim and 250 feet past of the north end of the largest area of exposure. a small area of slightly schistose groy quartz feldspar porphyry lies about 50 feet east of the main outcrop of carbonated greywacke on claim 391611. This rock exhibits $1 /{ }^{\prime \prime}$ grains of white feldspar and small oxidized pits derived from weatherad carbonate grains. Quartz is not conspicuous on the surface. All other exposures mentioned consist of uniform textured medium grained carbonotad aranacke. A northessterly trending schistosity was noted in a few localities.

The most intens ankeritization was seen on the greywacke outcrop in the nerth half of lot a, about $70 n$ fent north of the boundary of claim 3×1611 but no significant amount of ģuartz stringers or pyrite mineralization Whs evident. A fow irreqular martz stringers containing small amounts of pyrite were observed in greywacke in the northwest corner of claim 381611 but grab samples did not vield ny gold values.

A small outcron of rusty weathering green carbonate and irregular quartz stringers located a short distance south of the north boundary of Int 8 , Concrssion IV showed no sign of work. Although only a few square feet were exposed the miterinl resombled the zones which occur along contacts betwen laves and sediments or along foult zones in voleanic rocks. Thus it seems oossible that the width of the cerbonated grewwacke horison in lot 8 , Concession IV, might be double the 1000 foot width which is indicated by the outcrons in the vicinity of the northwest corner of claim 381611. A small grab samnle from the green carbonate outcron did not contain any gold.

In the early 1930 's Mineral Fstates drilled four short exploratory holes which cut porphyry and sediments under and adjacent to the outcrops in
the northwest corner of claim 3R1611. Hole 1 cut a short section of pyritised greywacke which gave assays of $.02, .06$ and .08 oz. of gold per ton. Hole 4 gave assays of .02 and .04 oz . of gold per ton in short sections of slaty greywacke. Holes ? and 3 did not yield any gold values.

In 1965 Hollinger Mines drilled two holes, totalling about 800 feet, on claim 301611. Hole MI I was collared on an carbonated greywacke outcrop only 160 feet southeast of the mumber 4 post. After 40 feet of casing, the hole was in greywacke to a donth of 210 feet after which porphyry extended to a denth of $4 P 0$ fert. Hole MT ? with a length of 410 feet, was collared in 40 fant of overbirden fan feet southeart of the first hole. Porphyry and grevwacke wre interancted. Althnugh some cuartz stringers containing small pmounts of nvritn wern intorsfeted in both holes no gold values were obtained.

Glncial Stratigranhy

The bedrock tonogranhy appears to have affected in the project area, the distribution of various till layers. Two troughs are found, the first one in lots 6 to a nid the second in lots 10 and 11 seperated by a hill, with the top locntad in lot 8 , Cnncession IV. In the wnst trough, lots 10 and 11 , the glacial stratipraphy consists of a clay jover, gravel and clay, gravel, sometimos nreceeded or followed by a sand laynr, followed by a layer of gravel immadiately above bedrock. In this arra, few holes intersected immediately above badrock, a semi-consolidated layer of rusty gravel, commonly called hardpan, consisting of an oxidized zone of decomposed bedrock mixed with gravel that could bo the result of preglacial weathering.

Ovar the hill aren, lots 8 and 9 , the stratigraphy consists of mostly clay followed by a thin layer of gravel, in places mixed with clay, found above bedrock. The same stratigranhy is found to extend east of this
hill in lot 7 with the exception of lot 8 near the north boundary of the project area where thick sand units were intersected.

In the southeast corner of the project area, several holes intersected several units of gravel, clay and gravel, clay, and minor sand, and in the two most southeasterly holes, these units preceeded a $10-15$ foot thick clay layer before a thin gravel unit above bedrock. It is not know if the nonr surface clay units in this area would belong to the clayey Cochrane till.

Anilifrss are numprous in the project area, and the one intersected in hole IV-8-?, had a masitive whter pressure of 12 feet above surface.

Work Dnne
a) Basal Till Samnling, 87 holes at $\frac{1}{4}$ mile center, 6041.0 feet
b) Line Cutting, 102.0 miles
c) Detailed Manetic Surveying, 92.5 miles
d) Dinmond Drilling, 7173.0 feet

a) Bassl Tjil Sampling

The proinct arno was covernd with basal till sampling with holes at every $\frac{1}{4}$ mile center. The method used is similar to the one pioneered by the Geological Survey of Canada and deseribed by Skinner (1972).

One dual tube, reverse circulation, tri-cone-fitted rotary drill, mounted on a flexible track-equipped Nodwell, sunplied under contract by Bradley Brothers, was used to sample the glacial deposits as well as bedrock in the project area. Approximately 193 samples,yere collected and processed.

A simplified illustration of the durl tube system is shown in Figure 1. Water is pumped down between the outer and inner tubes and exits

Figure 1 Simplified version of Dual Tube Drillink System.
near the cones on the bit. If the contact is tight between the outer tube and the hole wall, and if the sediment being drilled is not porus, the water and dislodged matorial can only escape up the center tube. This water and sediment mixture is delivered through a hose to the sampling station on the drill nlatform. When drilling cohesive units such as clayey or silty till or clay, chunks of sediment are returned intact after having been washed up the tube. These chunks are caucht on a 00 -mesh sieve placed over a bucket which catches nyything finer than $20-m p s h$ although some very fine sediment is carried off in susnension when the bucket overflows. In this manner both chunk and bucket solits are retained for a sample interval.

Somnles worr taken at four-foot intervals. This was a convenient intervel becnuse the drill's chuck-stroke is two feet. After nvery two twofoot advaner of the drill, buckets wre changed and samnles taken. In general, where the texture changed, the buckets were changed, regardless of smmpling interval.

Fnch holn went into bedrock at least two feet or until it was certain that bedrack was being drilled. Samples of bedrock were also treated as described sbove. Only the smmples splits of the two semples above bedrock and the bedrock splits wnere retained. Usually only the fine split of the samples, (-20 mesh) wern sent for analysis.

The gssay work was done by Bondar-Clegg \& Company Limited, of Ottawh. The fine splits of the bnsal till and of the badrock samples were treated as follows:

Bass1 Til1 Samples
Procedure

1. Sample to be dried.
2. If over ? lbs., samplo will be split.
3. 2 1b. split (or total) to be sieved to separate. $-10+$ m mesh fraction.
4. This fraction to be subjected to heavy liquid separation using acetylene tetrabromide (specific gravity 2.96 requested by Dr. Gleeson).
5. Heavy fraction to be split; small portion to Dr. Glenson for mineral identification.
6. Major portion of hegvy fraction to be pulverized to -100 mesh and 7. anolysed for copper, zinc, arsenic \& gold by colnrimetric atomic absorption method after hot $\mathrm{HNO}_{3}-\mathrm{HCl}$ extraction for copper, zinc and gold; and hot $\mathrm{HNO}_{3}-\mathrm{HClO}_{4}$ extraction for arsenic.

NOTF - If insufficient honvy froction is obtained from 2 lb . split, a further snlit will be processed.

Rock Sqmplos
Procedure 1. Sample to be crushed if necessary.
2. Sampie to be snlit to about 1 lb.
3. This snlit to be pulverized to -100 mesh.
4. Analysis for copner, zinc, arsente and pold by same nrocrss as above.

The results arn shown on the mans at $2^{\prime \prime}-\frac{1}{4}$ mile enclosed with this renort.

The results show threshold values, of 30, 120,250 p.p.m. and 30 p.p.b. respectively for arsenic, connor, zinc and gold in basal till and 10, 50, 100 p.n.m. and 10 n.p.b. in bedrock, which wore usnd to determine onomalous levels. The volues pstablisher as background in this basal till survey are high as a.ll samples warn subjected to hoavy media soperation before bring analysed. This procedire improves the contrast between background and anomalous levels.

The low pold values nbtained in basal till and bedrock over the project aron are intripuing and it is susnected that the henve medin senaration using acetylene totrabromide could have diluted the samnle as it has been
demonstrated that under certain conditions gold is mobile as gold halides. The gold distribution in basal till and bedrock exhibits a weakly coincident anomaly, "A", which follows more or less the Sandy Falls road. The anomaly appears to have a weak center which coincides approximately with the hill mentioned above. Values seem to have migrated away from the hill and accumulated in the deaper basins of the bedrock surface. Away from the hill, the nattern of the anomaly reflects the bedrock topography. The anomaly has A wenklv coincident arsenic and copper response in basal till and bedrock which arpears to be closer to the source. Zinc is not coincident. The high gold value in the bedrock of hole $3-6-8$ is associated with pyrite, chalcopyrite snd ouartz-carbonate identified in the rock chips.

The arsenic distribution in basal till, besjdes the above mentioned weak association with gold, has a close association with the zinc and copper distribution nattern in basal till and bedrock. The anomaly found near the southenst boundary of the project area, anomaly ${ }^{H C N}$, lies on a western gentiy sloping brorock hill. The high values in basal till in hole IV-7-2 are found in a tonogranhic basin as is the case of the anomaly "D", in hole IV-10-8. Arsenic values obtained in bedrock are relatively low with an average value of less than 20 p.p.m. These values are consistent with previously established background in other areas and are not considered anomalous.

The copper distribution in basal till, besides the above mentioned association, shows a warped anomaly, "B", opened to the north with a weak association with copper in bedrock. This anomaly has coincident anomalous arsenic and zinc values in basal till and copper values in bedrock along the east limb of the anomaly. There is no definite bedrock topogranhic pattern associated with the anomaly.

Anomaly

Strength of Association		
"A"	"C"	

Basal Till

Au	Good	Weak?	Good	None
As	Medium	Medium	Good	Medium
Cu	Weak, W. Side	Good	Good	Good
Zn	None	Good	Good	Good

Bedrock

Au	Weak	Weak?	Weak	?
As	Woak	None	None	None
Cu	Nrdium	Weak	Weak?	None
Zn	Weak	Weak?	Good	None

The rock chios, i.e., the coarse split, were identified under power binoculars by the uriter and field assistants and the fine splits were subjected to an amphibole, pyroxene, garnet, epidote, magnetite, biotite, carbonate, zircon and pyrite count under microscope bv Dr. C. F. Gleeson, of Ottawa, who acted as consultant on all phases of the program.

From the grologic information available, a tentative geological map was draftad and it is anparent from the diamnd drill results that most of the samples identified os volcanic rocks were in renjity altered sedimentary rocks.

b) Line Cutting

Fast-west base lines were established at every $\frac{1}{2}$ mile. North-south striking lines wore turned off at $9 n^{\circ}$ to the base lines and cut using a compass and chained with the fnotage marked on red flagging. Total mileage cut involves 102.0 miles.
c) Magnetic Surveying

The line grid was covered using an Askania Gfa torsion macnetometer,
measuring the vertical component of the earth's magnetic field. Sensitivity is one scale division, or approximately 2 pammas.

Readings wre taken at every 100 feet along the lines in background areas and every 50 fent over anomalous areas.

The results are shown on the maps at $1^{\prime \prime}-200$ feet attached to this renort.

The survev has outlined numerous north-south striking diabase dikes ond due to their interferonce, it was not nossible as planned, to outpine any nther penlogical contrets.
d) Dimmond Drijling

Thirtonn diamond drilj holes wore drilled to test the prochem anomalirs outlinen be the basal. till survey.

Hoin No .	Incation	Dip	Strike		Iencth
]	$\begin{array}{cc} 0-70 \% & 900 \mathrm{~N} \\ N, & \operatorname{lot} 8, \text { IV } \end{array}$	-500	S 270	F	600.0^{\prime}
2		-500	S 270	E	600.0^{\prime}
4	KBRE: 1680 N St, lot 8, IV	-510	S.9\%	F	600.0^{1}
5		-570	S 29	F	700.0^{\prime}
6	2500. $73 \times 0 \mathrm{~N}$ St $\frac{1}{2}$, lnt 7, IV	$-5{ }^{\circ}$	S 270	F	6no. 0^{\prime}
7	$\begin{aligned} & 3720 \mathrm{~F} \\ & \text { St }{ }^{850 \mathrm{~N}}, \operatorname{lot} 7 \text {, IV } \end{aligned}$	-500	S 2×0	F	$6 \mathrm{nn} .0^{1}$
8	$\begin{gathered} { }^{2} 10 \cap 5 \quad \begin{array}{l} 2 \cap 5 \cap N \\ \text { St. } \\ \text { lot 7, IV } \end{array} \end{gathered}$	-50°	S 270	F	600.0^{1}
9		-50°	S 270	F	497.0^{1}
10	$\begin{array}{cc} 1670^{\circ} \\ & \begin{array}{l} 4420 N \\ \text { Not } \\ \text { Jot } \end{array} \end{array}$	-0°	5970	?	$600.0{ }^{\circ}$

Hole No.		Location	Djn	Strike		Length
11	$5{ }^{\circ} 0^{\circ} \times$	$\begin{aligned} & 74,50 \mathrm{~N} \\ & \mathrm{St}, \operatorname{lot} 6, \mathrm{~V} \end{aligned}$	-50°	S 270	F	$207.0{ }^{\prime}$
12	56? 05	$\begin{gathered} 780 \mathrm{~N} \\ \text { st, } 10 \mathrm{t}, \mathrm{~K}, \mathrm{v} \end{gathered}$	-50°	S 270	F	569.0^{\prime}
13	69005	ISON St, int 6, IV	-50°	S 270	E	600.01
14	70705	1360 N Sth, $\operatorname{lot} 6$, IV	$-50{ }^{\circ}$	S 270	E	600.0^{\prime}
				Tota		7173.0^{\prime}

Holes 1 nnd 3 to 8 worn drilled in the south halves of lots $?$ and 9 . Cancession $3 V$, to tret $9 n 9 m^{n}$ Iy ${ }^{\prime \prime n}$.

Holes a nind in, drilled in the morth half of lnt R, Concession IV,
 monned os carbonotad volennic rocks and sadimentory rocks.

Holes 17 and 12, ?ncoted in the sonth half of lot. 6 , Concession V, tented the nat limb of nnomaly "B".

Holes 1^{2} and 14 , drillad in the smath half of Int 6 , Conenssion IV, testred the high zinc valun aconciated with anomely "C".

A17 nesev resilts were negetive. The most nromising section in holn no. 7, from 370.7 to $20 n$. n was aunrtrene nat chrek nssaved. The results wero extromely hifh and the snires susnected to be rxtraneous. A crreful chrek of the mins revenled that mortz and a fluorescent mineral, nrobably schenlitn, together with fron gold, had bren added to the sample. A check of the remaining core in the boy shown under on ultraviolet light that foreign minerple had bean addad to the core at the bottom of the core tray and nasted also on the cors with whito plue. Subsonuently, selectrd unconteminoted nieors of core umen nalysed and foiled to return any valus.

Conclusions
The magnetic survey outlined several diabase dikes but it failed to outline any significant geological contacts due to too much interference from the numerous highly magnetic dikes.

The basal till prorhemical survey ann roach in such an area of heave clay overburden was successful and it annenrs that the major gold anomaly could be attributed to the weakly nyritized gold bearing zone intersretod in Minnmel retota's hole mumble $]$.

The niterons ford neman the kantar of lot a , Concession IV, perviously manned as carbonated volcanic rocks and also the volcanic rocks dnseribad in Mineral Fasten's hols numbers 1 and 3 are probably carbonated sedimentary racks.

The demon of metamornhism found in the area and particularity in the nornhuries in not of a high grade tron as found in the Pearl Lake nornhere or other gold associated nornheries.

The lack of a volcanic horizon in the project ara would suggest that the down faulted movement along the west side or the Mottapmi River fall t was of o front vertical extent and that a repeat of a geologic environmont, similar to the timmins gold aron would be found at a much prentar dent than presentivexnosed on surfer.

December 1971:
'sup leal

Reformers:
 ines, W. A., 1974

G. J. Hins

Resident Geologist

```
Rrfernnens: (continund)
    Skimmer, R.G. . 107?
        Drift Prospecting in the Abitibi Clay Belt, Overburden
        Drililing Program, Mathods and Costs, Geological Survey
        of Canndn, Oran File No, 116
Ferpuson, S.., Hurst. M. P. , 1957 Whintioy Townshin Compilation Man, Ontario Denartment of Minos, Proliminary Man P. ??
```


KPRR ADDISON MTNFS LIMITTMD

BASAL TILL DRILLING AND GEOCHEM

TOTAL FXPFNDITURES

Overburden Drilling - Bradlev Bros. Ltd.
\$24,817.27
Assasing - Bonder-Clegg and Assayers Ltd.
Room and Board
\$ 1,920.00

- 847.38

Wages - Drill Supervision \& Samnler

P. Jeansonne	39 deys (8)\$35.0n/dsy	\$1,330.00
M. Plante	43 devs (e) $\$ 3.00 / \mathrm{dsy}$	\$ 1,505.00
T. Jones	6 dovs @ \$45.00/day	\$ 270.00
Office Work		
S. Wichtacz	15 dnvese \$35.00/day	\$ 525.00
Goolopist		
G. Hins.	8 days © \$10n.0n/day	\$ 800.00

Other Fixpenses - Gasoline, oil, sampling equipment, shipring of samples, renairs to land owners fances, etc.
\$ 359.98
$\$ 32,374.63$

Total footape drilled: 6,041.0 feet
Cost ner foot drilled: \$5.36

KFRP ADDISON MINFS LIMITLD

 DIAMOND DRILLINGTOTAL EYPFNOITURES

Diamond Drilling - Bradley Bros. Ltd.
\$53,383.90
Poom and Board
Assaying - 367 core \& sludpe samples © $\$ 1.00$

- 759.72
(assayed at Kerr Addison Mines lab)
Diamon Drill - Corn Grabber
P. Jeansonne - 79 dovs © \$35.00/day
* 367.00
(2,730.00
Sunervision, Offien Work

Other Fxmansns - Gosoline, nil, shimping, telephone, cmnle b-as, corr trevs
\$ 800.00
$\$ \quad 873.85$
$\$ 58,914.47$

KFRR ADDISON MINES LIMITED

MAGNETIC SURVEY

TOTAL EXPENDITURFS
Wages - Line Cutting

Phil Blaze Reg'd.
B. Macies - 82 days © $\$ 40.00 / \mathrm{day}$
M. Plante - 9 days © $\$ 35.00 /$ day
T. Jones - 10 days @ \$45.00/day
P. Lrduc - 50 days @ \$30.0n/day
J. Wing - 17 davs e \$3n.00/day

Wages - Magnatic Surver
T. Jomes - 29 dove © \$45.00/day
P. Jonnsonne - 21 days © $\$ 25.00 /$ day
B. Maciot - r davs @ \$40.0n/day

Wrpes - Office Work - Sunarvision
G. Hinsr - 9 darg © \$700.00/day
S. Wichtecz -4 days $@ \$ 35.00 / \mathrm{day}$

Room and Board
$1,202.50$
$3,280.00$
315.00
$\$ 150.00$
$1,500.00$
$\$ 310.00$
\$1,710.00
$\$ 1,085.00$

- 200.00
$\$ 800.00$
\$ 140.00
\$ 2,357.08
Other Fxnonses - Gasnline, oil, hvdro, shipping, vehicle rental, telephone, renairs to mapnetometer, vehicle and skidoo maintenance, tape for chaining lines, flagging tope, nicknts, etc.
\$1,731.29
$\$ 15,280.87$

MOUNTJOY TOWNSHLP PROJECT

" 0 - 12

Chip Sample Log

3-6-1 Sediments, highly altered, almost a biotite schist, quartz grains, carbonated, pyrite.

3-6-2 Sediments, highly altered, biotite rich, very fine grained, carbonated.
3-6-7 As above, finer grained.
3-6-8 As above, not as much biotite, lots of quartz-carbonate, pyrite, chalcopyrite.

3-7-1 Basic volcanic, carbonated, pyrite, fine grained volcanic texture.
3-7-2 Sediments, more carbonated than 6-1 to 6-4, very fine grained, no sulphides.

3-7-7 Sediments, carbonated, sugary texture, iron stained, specks of tourmaline? associated with sulphides.

3-7-8 Quartz-diabase, magnetic, pyrite.
3-8-1 Sediments, carbonated, little quartz, biotite, sugary, very fine grained pyrite.

3-8-2 Porphyry, quartz eyes, 5% biotite, pyrite, not carbonated, 30% quartz, slightly sheared?

3-8-7 Sediments, carbonated, fractured.
3-8-8 Sediments, granular, pyrite, quartz grains, carbonated.
3-9-1 Sediments, grey-green, slightly carbonated.
3-9-2 Sediments, black, slaty.
3-9-7 Sediments, slightly carbonated, lots of granular quartz, iron stains.
3-9-8 Sediments, slightly carbonated, pyrite, black-green.
3-10-1 Sediments, granular, carbonated, biotite, magnetic grains?
3-10-8 Sediments, granular, much quartz, pyrite, carbonated, well bedded, biotite.

4-6-1 Sediments, granular, carbonated, pyrite, quartz eyes.
4-6-2 Sediments, granular, loose quartz grains.

4-6-3 Porphyry, siliceous chips looks like volcanic, little carbonate.
4-6-4 Sediments, lots of quartz, bedded, pyrite.
4-6-5 Sediments, granular.
4-6-6 Sediments or volcanics, not carbonated, some rusty quartz, very fine grained.

4-6-7 Sediments, carbonated, pyrite, more than usual, grains of quartz.
4-6-8 Tuff or gneiss, as 3-6-1, not carbonated, lots of rusty spots or maybe alteration halo.

4-7-1 Volcanic? carbonated due to clay?
4-7-2 Silicified sediments or volcanics, pyrite.
4-7-3 Silicified sediments or volcanics, carbonated.
4-7-4 Sediments or volcanics, carbonated, tourmaline in quartz?
4-7-5 Sediments, carbonated.
4-7-6 Volcanics, carbonated.
4-7-7 Volcanics, carbonated.
4-7-8 Porphyry, quartz eyes, carbonated.
4-8-1 Forphyry, pyrite, carbonated.
4-8-2 Sediments and volcanic chips, lots of quartz.
4-8-3 Volcanics, tuffaceous.
4-8-4 Porphyry.
4-8-5 Carbonated sediments.
4-8-6 Carbonated sediments.
4-8-7 Basic volcanics.
4-8-8 Silicified volcanics, pyrite, weak carbonate.
4-9-1 Volcanics, slightly carbonated, pyrite.
4-9-2 Volcanics, weak carbonate, pieces of quartz.
4-9-3 Volcanics, carbonated, pyrite.

4-9-4 Volcanics, weak carbonate.
4-9-5 Sediments, weak carbonate.
4-9-6 Porphyry, pyrite, carbonated.
4-9-7 Porphyry, pyrite, medium carbonate, more biotite than above, slightly sheared.

4-9-8 Silicified volcanic or sheared porphyry, carbonated, lots of pyrite.
4-10-1 Cherty, very fine grained, with stringers of pyrite, weak carbonate.
4-10-2 Silicified volcanics, slightly sheared, carbonated.
4-10-3 Volcanics, very fine grained.
4-10-4 Sediments, weak carbonate.
4-10-5 Volcanics.
4-10-6 Sediments, carbonated.
4-10-7 Silicified volcanics, garnet?
4-10-8 Sediments, sheared, carbonated.
4-11-2 Silicified volcanics, weak carbonate, pyrite.
4-11-7 Sheared volcanics or sediments, carbonated.
5-6-2 Slaty sediments, slightly carbonated, black.
5-6-3 Sediments, slightly carbonated, pyrite, greenish.
5-6-4 Sediments, highly carbonated, almost 50\%.
5-6-5 Sediments, oxidized, slightly rusty, not carbonated, greenish.
5-6-6 As 5-6-3, slightly carbonated, quartz eyes, pyrite.
5-6-7 Sediments, chloritized, black, not carbonated.
5-6-8 Sediments, black slaty, not carbonated.
5-7-1 Sediments, slightly carbonated, pyrite, greenish.
5-7-2 Sediments, black slaty, slightly carbonated.
5-7-3 Sediments, not carbonated, grey.
-7-4 Sediments, slaty black, some quartz, slightly carbonated.
5-7-5 Porphyry, pyrite.
5-7-6 Porphyry, quartz, slightly carbonated, pyrite.
5-7-7 Sediments, slaty black, not carbonated.
5-7-8 Porphyry, highly carbonated, quartz eyes.
5-8-1 Sediments, non-carbonated, dark grey.
5-8-2 Sediments, slightly carbonated, granular.
5-8-3 Sediments, slaty black, non-carbonated.
5-8-4 Sediments, slaty black, non-carbonated.
5-8-5 Porphyry, highly carbonated.
5-8-6 Sediments, slaty black.
5-8-7 Sediments, non-carbonated.
5-8-8 Sediments, granular, slightly carbonated.
5-10-3 Sediments, carbonated.
5-10-4 Sediments, carbonated.
5-10-5 Sediments, non-carbonated.
6-7-4 Sediments, quartz eyes, pyrite, slightly carbonated.

CHIP SAMPLE 10 O

March 25, 1974

MOUNTJOY TOWNSHIP PROJECI
 (0-11)

3-6-1
3-6-2
3-6-7
3-6-8
3-7-1
3-7-2
3-7-7
3-7-8
3-8-1
3-8-2
3-8-7
3-8-8
3-10-1
3-10-8
4-6-1
4-6-2
4-6-3
4-6-4
4- 6-5
4-6-6
4- 6-7
4-6-8
4-7-1
4-7-2
4-7-3
4-7-4
4-7-5
4-7-6
4-7-7
4-7-8
4-8-1
4-8-2
4-8-3
4-8-4
4-8-5
4-8-6
4-8-7
4-8-8
4-9-1
4-9-2
4-9-3
4-9-4
4-9-5
4-9-6

Graywacke, slightly sericitic, trace pyrlte, some quartz. Graywacke, greenish color.
Graywacke (?), slightly sericitic. Graywacke (?), slightly sericitic. Some quartz veining, trace pyrite, CPy.
Andesite, dark green, slightly schistose.
Graywacke, light gray, slightly sericitic.
Diabase. Mid grained amphibole, dark. Pyrite 2-3\%. Magnetic.
Graywacke, light gray, faint sericite.
Graywacke (?). Much quartz. Fine sample, difficult to identify.
Porphyry. Very white, sericitic.
Graywacke. Greenish color, blt of carbonate.
Possible Dacite - quartz eyes. Slightly sericitlc.
Dacite (?). A few quartz eyes. Slightly sericltic.
Graywacke. Light gray color. Much quartz., some pyrite.
Graywacke. Some sericite, pyrite.
Graywacke (?), chloritic with much quartz. Very fine somple.
Graywacke. Gray, siliceous.
Graywacke, much quartz. Fine sample.
Graywacke, considerable quartz.
Graywacke, sericitic. Bit of rusty quartz.
Graywacke, note grains of pyrite.
Andesite, sheared, carbonated.
Cherty gray rock, possible porphyry.
Probably porphyry. Sheared. Note red flecks.
Cherty gray rock. Bit of Po, trace Py. sheared.
Cherty gray rock.
Graywacke, sheared, gray color.
Graywacke, gray color.
Porphyry - cherty gray rock, mineralized with Po, Py.
Porphyry, gray, cherty. Some Po, much quartz.
Porphyry. Carbonate, sheared, highly siliceous. Possible Aspy, Au.
Probably porphyry. Cherty gray rock. Quartz 50%.
Andesite. Green color, sheared, some quartz.
Porphyry, sheared, silicifled. Sericitic with carbonate, trace pyrite.
Graywacke, sericitic. Note - fine sample.
Andesite, silicified \& chloritic. Sheared, trace pyrite.
Andesite, Some pyrite.
Porphyry. Sillcified. Traces of pyrite and red granular mineral.
Dacite or silicified andesite.
Dacite or sllicified andesite. Quartz and traces of pyrite.
Sericitized porphyry or dacite. Soft rock with some Po, Py. Dacite (?). Green gray rock. Fine sample, Trace of pyrite. Graywacke. Gray with fine sericite. Porphyry. Sillceous, light gray in color.

MOUNTJOY TOWNSHIP PROJECI

4-9-7 Porphyry. Sheared, slightly sericitic. Troces pyrite.
4-9-8 Graywacke. Silicified.
4-10-1 Graywacke. Silicified, trace Po.
4-10-2 Probable graywacke, very siliceous.
4-10-3 Andesite.
4-10-4 Dacite. Quartz eyes. Gray color, traces pyrite.
4-10-5 Graywacke. Slightly sericitic, darker gray, quartz common.
4-10-6 Graywacke. Quartz common.
4-10-7 Graywacke. Fine quartz veins.
4-10-8 Graywacke. Sheared, weakly silicified.
4-11-2 Graywacke. Darker gray varlety than normal.
4-11-7 Graywacke. Dark variety. Note blt of epidote.
5-10-3 Graywacke. Slightly sericitic, some quartz, trace pyrite.
5-10-4 Graywacke. Some carbonate, quartz, trace pyrite.

$\sin +{ }^{2} E N O$	bogelorbele	Mprauenc	Thuces	Coichote	Magnelite	birkik	Cickute	Zirose	Pyric	$\text { Page } 2$
60	35	\cdots	5	\square	20	20	15		<1	
62	70		15	5	5	5	\%	t	τ	
64	55		20	5	5	10			t	
66	55	15	15	t		5		t	5	Baniti a
68	60		10	5	20	3			2	
70	40	10	15	10	5	10	10	E	<1	
71	45	20	15	10	5	5	<1	th	ta	-
73	60	15	10	10	5				<1	
75	45	15	20	10	5		5	E	<1	-
77	55		5		5	15	15		5	1
79	. 45	15	15	10	10	5			<1	
81	40	15	15	5	10	10			5	Cp(ter
84	65	5	5	10	10	5		\hbar	<1	Smay 0erge ctar
85	55		5		10	15	15	t	<1	
87	60	5	5	10	10	4	5	t	1	centis 8'3 ry-geray
89	. 60		5	10	5	5	5	<1	10	freshogriet.
91	64	5	10	5	10	5	\hbar	t	1	
93	60		5	10	15	10	t		t	-
95	55		10	10	10	5			<1	
97	65		5	10	5	t	10	E	5	Contw grew angh al achiat frape.
99	65	t	10	5	5	5	10	L	4	
101	70		10	10	5	5		G	t	
102	70		10	10	5	5	t	E	<1	
104	35		10	15	5	5			E	$\begin{aligned} & 30 \% \text { che och norex } \\ & \text { oxid cons) equa } \\ & \hline \end{aligned}$
106	45	E	5	10	- 10	5	10	t	E	
108	60	5	5	5	5	5	5		E	ChonE 10% acher
110	55		10	15	5	5		t	t	Chlnile sch-103\%
112	60	5	10	10	5	5	E		$\angle 1$	chinile sech 5\%
114	40	5	2.0	20	5	5.	5	t	E	Bariela.
116	85		5	5	1	4	te		E	
118	65		15	.	5	5	$!$	1 ;	<1	Xhizite roq V. finchacid pander

ssimetad	Hopheble	Miraene	Sanoet	Goichre	Magpredicte	biskit	Coikxar	Zircos-	Pyric	Piege 3
.120	$\because 55$	720	5	$\bigcirc 5$	05	t	55		41	
122	60	5	10	10	5	te	\%		5	
124	60	5	15	10	5	5	L	E	41	Wher zerdy
126	55	5	10	5	5	5	10	t	5	Amgh che weh fag
128	90		2		3	h	5			toats the botioch quamh ech ẁoone centh
129	40		15	5	5			t	20	Culauier 15%
131	60				40					
132	40			15	<1	10	15		20	प/2 py oxidized.
134	65		10	5	10	5	5		5	Angh-CLI DCh 15% si peyile. cunt in achuch pare
136	45	10	5	5	10	10	10		5	
138	45	10	5	10	20	5	5	t	5	
139	30	10	20	5	10	15	5	E	5	talc.susen E ppheme a.
141	30	25	15	5	5	5	5	E	5	Che och 5%
143	55	5	10	5	5	10	5	t	5	
145	55	10	10	15	10	5	5	a	t	
146	50	$t 5$	15	15	5.	E	5	t	5	ephene 5%.
148	60		10	5	10	5	5	t	5	
149	60		10	10	5	5	5	t	5	mutal contam
151	55	5	10	10	5	5	5	t	5	pi-och
153	45	5	10	10	10	5	5	tr	10	
154	5	90	L	th	5	t	t		t	Bedrach(?):
156	55	10	10	10	5	5	5	E	<1	calesch ù pyun
157	60	5	10	10	5	5	G	t	5	fal bch 4 1%
159	50	5	15	10	5	5	5	t	5	Pyrr.t
161	60	5	10	15	5	t	5	t	L	E.chetchupy.
163	65	5	10	15	<5	5	t	E	t	
165	40	15	5	5	10	10	5	t	<1	BariC 5
167	60	5	15	5	5	5	5	E	<1	Gtely cester\% Proth
169	50	10	15	10	5	5	5	上	<1	CMe-sen-seh 100%
171	60	15	t	10	5	t	10		$\leqslant 1$	Pyrrith
173	140	$\cdots 5$	1.15	5	110	15	: \quad S	t	5	$1 \times 1+1$

MOUNTJOY TOWNSHIP PROJBCT

" 0 - 121

ASSAY SAMPLE SHEET

Sample \#	Hole \#	Footage	$\frac{\mathrm{Au}}{\mathrm{ppb}}$	$\frac{\mathrm{As}}{\mathrm{pam}}$	$\frac{\mathrm{Cu}_{y}}{\mathrm{prm}}$	$\frac{\mathrm{Zn}}{\mathrm{pmm}}$
1	IV-10-6	52-58	40	5	70	337
2	IV-10-6	58-60 bdrk.	25	N.D.	40	72
3	IV-10-3	75-79	20	11	80	625
4	IV-10-3	79-83	200	5	55	300
5	IV-10-3	83-86	30	1	110	130
6	IV-10-3	86-88 bdrk.	10	N. D.	183	94
7	IV-9-6	33-37	60	3	73	85
8	IV-9-6	37-40 bdrk.	10	N. D.	8	33
9	IV-9-3	29-33	40	45	80	92
10	IV-9-3	33-35 bdrk.	5	1	41	63
11	IV-8-6	24-25	80	20	105	218
12	IV-8-6	25-27 bdrk.	10	13	50	88
13	IV-8-3	42-46	75	20	50	78
14	IV-8-3	46-48 bdrk.	10	14	46	96
15	IV-8-4	45-47	50	17	65	59
16	IV-8-4	47-49 bdrk.	5	N. D.	8	66
17	IV-7-5	81-83	190	45	105	175
18	IV-7-5	83-87 bdrk.	15	11	38	74
19	IV-7-6	63-64	30	1.4	108	163
20	IV-7-6	64-66 bdrk.	10	19	63	165
21	IV-7-3	100-106	80	24	70	108
22	IV-7-3	106-108 bdrk.	. 5	7	36	72

Sample\#	Hole\#	Footage	$\frac{\mathrm{Au}}{\mathrm{ppb}}$	$\frac{\mathrm{As}}{\mathrm{ppm}}$	$\frac{\mathrm{Cu}_{u}}{\mathrm{ppm}}$	$\frac{\mathrm{Zn}_{n}}{\mathrm{pEm}}$
23	IV-7-4	62.5-64.5	60	20	110	138
24	IV-7-4	64.5-66.5 bdrk.	20	5	43	66
25	IV-6-5	90-93.5	100	58	112	525
26	IV-6-5	93.5-96.5 bdrk.	10	4	38	69
27	IV-6-4	67-71	55	3	60	63
28	IV-6-4	71-74	35	20	74	155
29	IV-6-4	74-77 bdrk.	10	5	45	58
30	IV-6-3	65-69	60	124	320	575
31	IV-6-3	69-70	N. D.	233	440	1150
32	IV-6-3	70-72 bdrk.	<5	4	94	2730
33	IV-6-6	87-90	N. D.	81	275	475
34	IV-6-6	90-91	I.S.	47	310	2500
35	IV-6-6	91-93 bdrk.	< 5	5	82	188
36	IV-6-7	60-64	N. D.	25	110	55
37	IV-6-7	64-66 bdrk.	5	14	56	63
38	IV-6-2	69-73	45	28	109	1000
39	IV-6-2	73-75 bdrk.	5	13	42	81
40	IV-6-1	64-68	25	6	84	110
41	IV-6-1	68-72	10	031	220	280
42	IV-6-1	72-74 bdrk.	5	8	40	76
43	IV-6-8	62-66	20	13	106	90
44	IV-6-8	66-67.5	N. D.	26	132	207
45	IV-6-8	67.5-69 bdrk.	5	1	29	68
46	IV-7-1	80-83	10	21	240	193
47	IV-7-1	83-85 bdrk.	<5	11	32	65

Sample \#	Hole \#	Footage	$\frac{\mathrm{Au}}{\mathrm{ppb}}$	$\frac{\mathrm{A}_{\mathrm{g}}}{\mathrm{ppm}}$	$\frac{\mathrm{Cu}_{\mathrm{p}}}{\mathrm{ppm}}$	$\frac{\mathrm{zn}}{\mathrm{ppm}}$
48	IV-7-2	114-115	45	81	108	150
49	IV-7-2	115-117 bdrk.	<5	3	26.	61
50	IV-7-7	76-78	40	25	124	110
51	IV-7-7	78-80 bdrk.	<5	2	37	76
52	IV-7-8	60-84	I.S.	I.S.	236	670
53	IV-7-8	84-86 bdrk.	10	N. D.	31	63
54	IV-8-1	47-51	40	11	90	110
55	IV-8-1	51-54 bdrk.	<5	N. D.	4	35
56	IV-8-8	38-40 bdrk.	5	N. D.	3	40
57	IV-8-7	40-43	25	63	100	100
58	IV-8-7	43-45 bdrk.	< 5	18	124	114
59	IV-8-2	55.5-60 bdrk.	<5	4	15	27
60	IV-9-2	40-53.5	40	23	190	115
61	IV-9-2	56-58 bdrk.	<5	11	44	79
62	IV-9-1	64-68	N. D.	17	80	65
63	IV-9-I	68-70 bdrk.	5	10	40	103
64	V-10-4	72-76	N. D.	5	85	95
65	V-10-4	76-78 bdrk.	<5	2	82	75
66	$V-10-3$	36-40	30	5	118	635
67	V-10-3	40-42 bdrk.	<5	8	34	84
68	IV-9-8	30-34	25	16	200	215
69	IV-9-8	34-36 bdrk.	<5	4	43	71
70	III-6-7	99-103	N.D.	9	100	185
71	III-6-7	103-104	N. D.	17	112	155
72	III-6-7	104-107 bdrk.	45	2	9	58

Sample \#	Hole \#	- Footage	$\frac{A u}{p p b}$	$\frac{A_{B}}{p p m}$	$\frac{\mathrm{Cu}_{4}}{\mathrm{ppm}}$	$\frac{\mathrm{Zn}_{n}}{\mathrm{gm}_{\mathrm{m}}}$
73	III-6-2	80-90	N. D.	17	100	218
74	III-6-2	90-92 bdrk.	5	2	34	202
75	III-6-1	81-87	25	9	65	110
76	III-6-1	87-89 bdrk.	<5	8	28	62
77	III-6-8	93-104	50	118	100	180
78	III-6-8	104-107	170	6	29	57
79	III-7-1	105-116	<5	18	208	185
80	III-7-1	116-122 bdrk.	5	2	13	130
81	III-7-2	$92-102$	N. D.	77	355	3080
82	III-7-2	102-104 bdrk.	5	6	32	60
83	III-7-7	90-92 bdrk.	5	N. D.	54	55
84	III-7-8	0-29	I.S.	47	244	360
85	III-7-8	29-30	10	10	130	132
86	III-7-8	30-32 bdrk.	5	5	138	79
87	III-8-2	109-113	N. D.	11	90	265
88	III-8-2	113-117 bdrk.	N.D.	N.D.	6	36
89	III-8-7	41-54	150	33	72	80
90	11I-8-7	54-57 bdrk.	N.D.	2	42	76
91	III-8-1	44-45	N. D.	8	90	90
92	III-8-1	45-47 bdrk.	10	5	49	103
93	III-8-8	21-30	10	9	90	135
94	III-8-8	30-32 bdrk.	N.D.	3	32	65
95	IV-9-5	37-39	N.D.	4	100	58
96	IV-8-5	39-41 bdrk.	N. D.	3	31	94
97	IV-9-4	17-17.5	N. D.	13	65	58

Sample \#	Hole \#	Footage	$\frac{\mathrm{An}}{\mathrm{ppb}}$	$\frac{\mathrm{As}}{\mathrm{ppm}}$	$\frac{\mathrm{Cu}}{\mathrm{pmp}}$	$\frac{\mathrm{Zn}_{n}}{\mathrm{pm} m}$
98	IV-9-4	17.5-19.5 bdrk.	N. D.	2	43	58
99	IV-9-5	53-59	10	26	75	86
100	IV-9-5	59-61.5 bdrk.	<5	2	36	195
101	IV-10-4	49-55	N. D.	4	45	48
102	IV-10-4	55-59	N. D.	10	83	75
103	IV-10-4	59-63 bdrk.	<5	3	50	60
104	III-10-1	49.5-59.5	N.D.	5	60	270
105	III-10-1	59.5-62.5 bdrk.	<5	2	20	53
106	III-10-8	106-116	50	1	78	78
107	III-10-8	116-118 bdrk.	5	1	32	53
108	IV-10-5	88-96	55	1	32	55
109	IV-10-5	96-98 bdrk.	<5	3	36	84
110	IV-10-1	59-63.5	15	7	90	76
121	IV-10-1	63.5-65.5 bdrk.	55	5	45	49
112	IV-9-7	4)-43	20	20	55	60
113	IV-9-7	43-45 bdrk.	10	6	26	93
214	IV-10-2	81-83	60	3	125	65
115	IV-10-2	83-85 bdrk.	5	6	34	200
116	IV-10-7	88-91	N. D.	N. D.	110	58
117	IV-10-7	91-93 bdrk.	N. D.	11	63	40
218	IV-10-8	106-109	I.S.	93	500	510
119	IV-10-8	109-111 bdrk.	< 5	11	26	60
120	IV-II-2	99.5-100	5	3	50	78
121	IV-11-2	100-102 bdrk.	15	7	18	78
122	IV-11-7	37-39.5	10	17	74	240

Sample\#	Hole\#\#	Footage	$\frac{\mathrm{Au}}{\mathrm{ppb}}$	$\frac{\mathrm{A}_{\mathrm{s}}}{\mathrm{ppm}}$	$\frac{\mathrm{Cu}}{\mathrm{pmm}}$	$\frac{2 n}{n o m}$
123	IV-11-7	39.5-41.5 bdrk.	<5	12	48	68
124	V-8-5	65-68	20	3	48	45
125	V-8-5	68-70 bdrk.	<5	2	8	43
126	V-8-6	46-50	10	18	150	90
127	V-8-6	50-52 bdrk.	15	3	16	36
128	V-8-3	79.5-84	10	14	25	110
129	v-8-3	88-92	50	75	90	80
130	V-8-3	92-93 bdrk.	< 5	1	8	92
131	V-8-4	60-70	I.S.			
132	V-8-4	73-76	I.S.	I.S.	639	119
133	V-8-4	76-78 bdrk.	15	3	42	65
134	V-7-5	44-46.5	10	17	100	220
135	v-7-5	46.5-48.5 bdrk.	N. D.	1	2	24
136	V-7-6	58-58.5	10	24	163	240
137	v-7-6	58.5-60.5 bdrk.	<5	5	4	53
138	V-7-3	60.5-64	45	5	110	78
139	v-7-3	64-66	30	19	120	118
240	V-7-3	66-69 bdrk.	45	6	38	146
141	V-7-4	73.5-77.5	15	51	177	228
142	V-7-4	77.5-80 bdrk.	-5	13	47	60
143	v-6-5	60-64	10	22	167	391
144	V-6-5	64-66 bdrk.	N. D.	2	46	192
145	v-6-4	41-44	25	15	141	130
146	V-6-4	44-46	10	23	270	212
147	$v-6-4$	46-48 bdrk.	N. D.	9	33	77

Sample \#	Hole \#	Footage	$\frac{A u}{p p b}$	$\frac{A_{s}}{p_{p m}}$	$\frac{\mathrm{Cu}}{\operatorname{prm}}$	$\frac{\mathrm{Zn}}{\mathrm{pm} m}$
148	V-6-3	47-50	15	26	115	135
149	V-6-3	50-51	25	17	245	198
150	V-6-3	51-53 bdrk.	<5	6	40	62
151	V-6-6	47-51	15	90	92	900
152	V-6-6	54-56 bdrk.	<5	9	46	102
153	V-6-7	48-52	20	45	185	1180
154	V-6-7	52-53	10	2	150	158
155	V-6-7	56-58 bark.	- 5	4	163	96
256	V-6-2	32-36	25	25	63	74
157	v-6-2	36-37	N.D.	11	112	598
158	V-6-2	38-41 bdrk.	50	14	52	88
159	$\mathrm{V}-6-8$	$5 ?-55$	20	31	100	107
160	V-6-8	55-57 bdrk.	<5	10	46	92
161	VI-7-4	41-43	20	8	95	88
162	VI-7-4	43-45 bdrk.	$\leqslant 5$	5	45	85
163	V-7-1	73-76	15	2	83	29
164	V-7-1	76-78 bdrk.	- 5	7	42	70
165	V-7-2	67-71	10	31	90	75
166	V-7-2	76-78 bdrk.	5	9	48	86
167	V-7-7	60-64	10	27	96	128
168	V-7-7	66-68 bdrk.	<5	18	36	74
169	v-7-8	40-43	25	8	110	78
170	V-7-8	48-52 bdrk.	N.D.	1	3	34
171	V-8-1	96-100	10	7	112	446
172	V-8-1	100-102 bdrk.	<5	13	20	99

Sample \#	Hole \#	Footage	Au	As	Gu	2n
			ppb	ppm	ppm	ppm
173	V-8-2	89-93	10	72	162	150
174	V-8-2	93-94	10	21	191	72
175	V-8-2	94-96 bdrk.	<5	4	59	66
176	v-8-7	74-78	15	8	151	250
177	V-8-7	78-79	N.D.	12	71	125
178	V-8-7	79-81 bdrk.	<5	3	39	87
179	III-9-1	20-33	I.S.			
180	111-9-1	33-35 bdrk.	< 5	13	40	85
181	III-9-8	3n-38	5	2	150	70
182	III-9-8	39-40	- 5	2	157	58
183	III-9-8	40-43 bdrk.	<5	4	34	72
184	III-9-7	$64-68$	10	3	146	62
185	III-9-7	68-69	25	14	185	122
186	III-9-7	69 - 71 bdrk.	N. D.	9	36	73
187	III-9-2	52-56	15	15	64	80
188	III-9-2	56-59 bdrk.	10	3	32.	97
189	V-8-8	99-92	10	4	68	50
190	V-8-8	92-94 birk.	< 5	2	18	53
191	V-10-5	50-54	$\checkmark 5$	22	74	66
192	V-10-5	54-55	10	31	167	403
193	V-10-5	55-57 bdrk.	<5	5	28	69

MOUNTJOY PROJECT "O - IIF"

BASAL TILL SAMPLING

CHRONOLOGICAL LOG OF OVERBURDEN

February 26, 1974
8:00 A. M. Moving to drill site.
9:30 A.M. Getting ready.
12: 30 P.M. Ready to start.

1:20 P.M.	
3:15 Paiting for water	
4:05 F.M.	
Drilling	
4:30 P.M.	Writing for water
5:25 P.M.	Frilling
Fuse broken	

February 27, 1974

8:00 A.M. Repair muskeg at shop 9:00 A.M. Getting water 9:45 A.M. Ready to drill

1:10 P.M. Moving

2:45 P.M. Drilling

4:30 P.M. Moving
. Hole III-6-2

$69.0-72.0$	Gravel and clay
$72.0-76.0$	Gravel, boulders
$78.0-80.0$	Gravel water
$90.0-91.0$	Gravel and clay
$91.0-103.0$	Clay
$103.0-103.5$	Gravel
$103.5-107.0$	Bedrock

$0.0-58.0$	Clay
$58.0-61.0$	Gravel
$61.0-68.0$	Gravel
$68.0-71.0$	Clay and gravel
$71.0-75.0$	Gravel
$75.0-79.5$	Clay
$79.5-84.0$	Clay and gravel
$84.0-88.0$	Clay and gravel
$88.0-90.0$	Clay, gravel and boulders
$90.0-92.0$	Bedrock

February 27, 1974
5:20 P.M. Start drilling

February 28, 1974

		$\begin{aligned} & 43.0-47.0 \\ & 47.0-51.0 \\ & 51.0-55.0 \\ & 55.0-59.0 \end{aligned}$	Gravel and boulders Gravel and clay Gravel and clay Lost water Gravel and clay
$\begin{aligned} & \text { 9:15 A.M. } \\ & \text { 9:40 A.M. } \end{aligned}$	Delay for water Drilling	$\begin{aligned} & 59.0-63.0 \\ & 63.0-67.0 \\ & 67.0-71.0 \end{aligned}$	Gravel Lost water, no rejects Clay and gravel Lost water, no rejects
$\begin{aligned} & \text { 9:55 A.M. } \\ & \text { 10:30 A.N. } \end{aligned}$	No water Start drilling	$\begin{aligned} & 71.0-73.0 \\ & 73.0-77.0 \\ & 77.0-81.0 \\ & 81.0-83.0 \end{aligned}$	Gravel, boulder, clay No return, no rejects Boulders, clay, sand (till) Lost water Boulders, clay, gravel (till?) Boulders, gravel, clay
$\begin{aligned} & 11: 45 \text { A.M. } \\ & 12: 15 \text { P.M. } \end{aligned}$	No water Drilling	$\begin{aligned} & 83.0-86.5 \\ & 86.5-89.0 \\ & \text { Hole III-6-8 } \end{aligned}$	Clay, gravel, boulders (till) Bedrock
1:30 F.M.	Drilling	$\begin{aligned} & 0.0-29.0 \\ & 29.0-33.0 \\ & 33.0-45.0 \\ & 45.0-47.0 \\ & 47.0-48.0 \\ & 49.0-52.0 \\ & 52.0-55.0 \\ & 55.0-59.0 \\ & 59.0-67.0 \\ & 67.0-75.0 \\ & 75.0-79.0 \\ & 79.0-80.0 \end{aligned}$	Clay Gravel Clay and gravel Gravel One boulder Gravel Gravel (well sorted, granitic) Gravel Lost water Gravel Clay and gravel Clay Clay and gravel
$\begin{aligned} & \text { 4:15 P.M. } \\ & \text { 5:10 P.M. } \end{aligned}$	Lost water Drilling	80.0-91.5	Clay and gravel

March 1, 1974
91.5-93.0 One boulder 93.0-97.0 Clay, gravel
97.0-98.0 Clay, boulder, gravel
98.0-100.5 Clay, gravel, boulder

10:10 A.M. No water

10:30 A.M. Drilling

12:25 P.M. Start drilling

2: 30 P.M. Fnd of hole III-7-1

3:25 P.M. Start drilling

March 2, 1974
8:00 A.M. Change bit
9:00 A.M. Ctart drijling

11: 30 A.M. Fnd of hole 1II-7-2
Hole III-7-7
1:30 P.M. Start orilling
3:15 P.M. End of hole III-7-7
6:00 P.M. Setting up on hole III-7-8
March 4, 1974
9:20 A.M. Water at drill
start drilling

10:35 A.M. End of hole III-7-8

11: 35 A. M. Start drilling
100.5-104.0 Boulder, gravel
104.0-107.0 Bedrock

Hole III-7-1
0.0-92.0 Clay
92.0-100.5 Sand
100.5-116.0 Gravel
116.0-120.0 Bedrock?
120.0-122.0 Bedrock

Hole III-7-2

$$
\begin{array}{ll}
0.0-81.0 & \text { Clay } \\
81.0-89.0 & \text { Gravel } \\
86.0-91.0 & \text { Lost water } \\
89.0-92.0 & \text { Gravel }
\end{array}
$$

92.0-96.0 Broken boulders Lost water 96.0 - 96.0
$95.0-100.0$ Lost water, boulders, gravel 100.0-102.0 Boulders, gravel 102.0-104.0 Bedrock

Hole III-7-8
0.0-90.0 Clay
90.0-92.0 Bedrock

$0.0-20.0$	Clay
$29.0-30.0$	Gravel
$30.0-32.0$	Bedrock

Hole III-8-2

$0.0-74.0$	Clay
$74.0-87.0$	Clay
$87.0-95.0$	Gravel
$95.0-99.0$	Clay
$99.0-107.0$	Clay and gravel

1:05 P.M. End of hole III-8-2

1:30 P.M. Start drilling

2:20 P.M. End of hole III-8-7

3:00 F.M. Start drilling

4:00 P.M. End of hole III-3-1

4:30 P.M. Start drilling

5:00 F.M. End of hole III-8-8
107.0-109.0 Sand and clay 109.0-113.0 Gravel and clay 113.0 - 117.0 Bedrock

Hole III-8-7
0.0-41.0 Clay 41.0-54.0 Gravel 54.0 - 57.0 Bedrock

Hole III-8-1
0.0-44.0 \quad Clay
44.0-45.0 Gravel 45.0 - 47.0 Bedrock

Hole III-8-8
0.0-21.0 Clay
21.0-30.0 Clay and gravel 30.0 - 32.0 Bedrock

Hole IV-8-5
5:30 P.M. Set up
March 5, 1974
8:50 A.M. Start drilling

9:30 A.M. Find of hole IV-9-5

10:05 A.M. Start drilling

11:25 A.M. Start drilling

12:05 P.M. End of hole IV-9-5

$0.0-37.0$	Clay
$37.0-39.0$	Gravel
$39.0-41.0$	Bedrock

Hole IV-9-4

$0.0-17.0$	Clay
$17.0-17.5$	Gravel
$17.5-19.5$	Bedrock
Hole IV-9-5	

$0.0-49.0$	Clay
$49.0-57.0$	Gravel
$57.0-59.0$	Boulder and gravel
$59.0-61.5$	Bedrock

Hole IV-10-4

12:40 P.M.	Start drilling
2:05 P.M.	Delay for water 2:50 P.M. 3:15 P.M.
Start drilling End of hole IV-10-4	
3:45 P.M.	Start drilling
5:00 P.M.	

$0.0-41.0$	Clay
$41.0-55.0$	Gravel
$55.0-59.0$	Boulders, gravel
	lost water

59.0-63.0 Bedrock, lost water

Hole III-10-1

$0.0-37.0$	Clay
$37.0-41.0$	Clay, no rejects
$41.0-47.5$	Gravel
$47.5-49.5$	One boulder
$49.5-59.5$	Clay and gravel
$59.5-62.5$	Bedrock, lost water

Hole III-10-8
5:30 P.M. Setting up
March 6, 1974

8:25 A.M. Start drilling

1:30 P.M. End of hole III-10-8

1:40 P.M. Start drjlling

4:30 P.M. End of hole IV-10-5

5:00 P.M. Start drilling

$0.0-34.0$	Clay
$34.0-93.5$	Gravel
$93.5-104.5$	Clay and gravel
$104.5-105.8$	Gravel and boulders
$105.9-110.0$	Rusty gravel
$110.0-116.0$	Gravel
$116.0-118.0$	Bedrock

Hole IV-10-5

$0.0-24.0$	Clay
$24.0-44.0$	Gravel
$44.0-52.0$	Gravel and boulders
$52.0-60.0$	Gravel
$60.0-64.0$	Gravel, boulders, clay
$64.0-68.0$	Gravel, boulders
$69.0-72.0$	Gravel, clay
$72.0-96.0$	Gravel
$96.0-99.0$	Bedrock

Hole IV-10-6

$0.0-18.0$	Clay
$18.0-42.0$	Gravel

March 7, 1974

8: 30 A.M. Start drilling

9:00 A.M. End of hole IV-10-6

10:00 A.M. Start drilling

12:45 P.M. End of hole IV-10-3

1:25 P.M. Start drilling

2:05 P.M. End of hole IV-9-6

2:30 P.M. Start drilling

3:15 P.M. Fnd of hole IV-9-3

4:00 P. M. Start drilling

4:30 P.M. End of hole IV-8-6

5:00 P.M. Start drilling

5:45 P.M. End of hole IV-8-3
March 8, 1974
8:00 A.M. Move to hole IV-8-4 9:15 A.M. Start drilling

$42.0-52.0$	Gravel and clay
$52.0-58.0$	Till
$58.0-60.0$	Bedrock

Hole IV-10-3

$0.0-26.0$	Clay
$26.0-34.0$	Clay and gravel
$34.0-63.0$	Coarse gravel
$63.0-67.0$	Clay and sand
$67.0-71.0$	Clay and sand
$71.0-86.0$	Till
$86.0-88.0$	Bedrock

Hole IV-9-6

$0.0-29.0$	Clay
$29.0-37.0$	Clay and gravel
$37.0-40.0$	Bedrock

Hole IV-9-3

$0.0-29.0$	Clay
$29.0-33.0$	Gravel
$33.0-35.0$	Bedrock

Hole IV-8-6

$0.0-24.0$	Clay
$24.0-25.0$	Gravel
$25.0-27.0$	Bedrock

Hole IV-8-3

$0.0-26.0$	Clay
$26.0-37.0$	Gravel
$37.0-46.0$	Clay and gravel
$46.0-48.0$	Bedrock

Hole IV-8-4
$\begin{array}{ll}\text { 0.0-45.0 } & \text { Clay } \\ \text { 45.0-47.0 } & \text { Gravel (clean) }\end{array}$

9:45 A.M. End of hole IV-8-4

47.0-49.0 Bedrock

Hole IV-7-5

$0.0-81.0$	Clay
$81.0-83.0$	Till, lost water
$83.0-87.0$	Bedrock

Hole IV-7-6
Move to hole IV-7-6
Clean water tubs
12:05 P.M. Start drilling

12:45 P.M. Fnd of hole IV-7-6

1:05 P.M. Start drilling

2:45 P.M. End of hole IV-7-3

3:15 P.M. Start drilling

4:55 P.M. End of hole IV-7-4
March 9, 1974
8:00 A.M. Move to set up hole IV-6-5
9:00 A.M. Frozen pipes - delay
9:30 A.M. Start drilling

2:00 P.M. End of hole IV-6-5

Hole IV-6-2

3:45 P.M. Start drilling

5:30 P.M. End of hole IV-6-2
March 12, 1974
8:00 A.M. Thaw drill, get water 9:00 A.M. Start drilling

11:10 A.M. End of hole IV-6-1

11:30 A.M. Start drilling

1:15 P.M. End of hole IV-6-8

2:10 P.M. Start drilling,

3:15 P.M. End of hole IV-7-1

3:45 P.M. Start drilling

5:30 P.M. End of hole IV-7-2
March 13, 1974
8:00 A.M. Move to hole IV-7-7
9:30 A.M. Start drilling

$0.0-26.0$	Clay
$26.0-38.0$	Gravel and clay
$38.0-54.0$	Gravel
$54.0-65.0$	Glay and gravel
$65.0-73.0$	Tid1
$73.0-75.0$	Bedrook

Hole IV-6-1

$0.0-24.0$	Clay
$24.0-34.0$	Clay and gravel
$34.0-38.0$	Gravel
$39.0-42.0$	Gravel (coarse)
$42.0-44.0$	Boulder
$44.0-60.0$	Gravel
$60.0-72.0$	Till
$72.0-74.0$	Bedrock

Hole IV-6-8

$0.0-42.0$	Clay
$42.0-50.0$	Gravel
$50.0-62.0$	Coarse gravel
$62.0-66.0$	Gravel
$66.0-67.5$	Clay
$67.5-68.0$	Bedrock?
$68.0-69.0$	Bedrock

Hole IV-7-1
0.0-78.0 Clay
78.0-83.0 Till
83.0-85.0 Bedrock

Hole IV-7-2

$0.0-96.0$	Clay
$96.0-114.0$	Gravel and clay
$114.0-115.0$	Till
$115.0-117.0$	Bedrock.

Hole IV-7-7
0.0-72.0 Clay 72.0-76.0 Gravel
$\begin{array}{ll}76.0-78.0 & \text { T111 } \\ 78.0-80.0 & \text { Bedrock }\end{array}$

Hole IV 7 7-8

$\begin{array}{ll}0.0-84.0 & \text { Clay } \\ 84.0-86.0 & \text { Bedrook }\end{array}$

Hole IV-8-1

$0.0-47.0$	Clay
$47.0-51.0$	Gravel
$51.0-54.0$	Bedrock

Hole IV-8-8
0.0-37.5 Clay 37.5-39.5 Bedrock

Hole IV-8-7

$0.0-40.0$	Clay
$40.0-43.0$	Till
$43.0-45.0$	Bedrock

Hole IV-8-2

$$
\begin{array}{ll}
0.0-51.0 & \text { Clay } \\
51.0-56.0 & \text { lost water }
\end{array}
$$

56.0-60.0 Bedrock

Hole IV-9-2

```
0.0-40.0 Clay
40.0-53.5 Silt, lost water (3rd time)
53.5-56.0 Bedrock, lost chips because of
                                    blocked rods
56.0-5%.0 Bedrock
```

2:30 P.M. End of hole IV-9-2

Hole TV-9-1

3:50 P.M. Start drililing

4:30 P.M. End of hole IV-9-1
March 16, 1974
8:00 A.M. Move to hole V-10-4 9:30 A.M. Start drilling

11:45 A.M. End of hole V-10-4

11:45 A.M. to 1:15 F.M. Moving to V-10-3 1:15 P.M. Start drilling

2:20 P.M. End of hole V-10-3

3:45 P.M. Start drilling

March 18, 1974
8:00 A.M. Start to thaw machinery
8:30 A.M. Start drilling

10:00 A.M. End of hole IV-10-1

11:00 A.M. Start drilling

11: 30 A.M. End of hole IV-9-7

$0.0-56.0$	Clay
$56.0-64.0$	Fine sand
$64.0-68.0$	Clay and gravel
$68.0-70.0$	Bedrock

Hole V-10-4
0.0-12.0 Clay
12.0-20.0 Clay and gravel
20.0-44.0 Clay and gravel
44.0-76.0 Gravel (coarse)
76.0-78.0 Bedrock

Hole V-10-3
0.0-14.0 Clay
14.0-28.0 Gravel and clay
28.0-40.0 Coarse gravel
40.0-42.0 Bedrock

Hole IV-9-8

$0.0-20.0$	Clay
$20.0-30.0$	Clay and gravel
$30.0-34.0$	Till
$34.0-36.0$	Bedrock

Hole IV-10-1

$0.0-15.0$	Clay
$15.0-44.0$	Clay and gravel
$44.0-59.0$	Coarse gravel
$59.0-63.5$	Clay and gravel
$63.5-65.5$	Bedrock

Hole IV-9-7

$0.0-40.0$	Clay
$40.0-43.0$	Gravel
$43.0-45.0$	Bedrock

12:00 Noon Start drilling

1:55 P.M. Fnd of hole IV-10-2

2:25 P.M. Start drilling

March 19, 1974
8:00 A.M. Move to hole IV-10-8
9:10 A.M. Start drilling

Hole IV-10-2

```
0.0 - 20.0 Clay
20.0-46.0 Gravel and clay
46.0-77.0 Gravel and clay (til1)
77.0-81.0 Gravel and clay
81.0-83.0 T121
83.0-85.0 Bedrock
```

Hole IV-10-7

$0.0-8.0$	Clay
$8.0-12.0$	Gravel
$12.0-40.0$	Gravel and clay
$40.0-49.0$	Clay
$49.0-53.0$	Gravel
$53.0-61.0$	Clay and gravel
$61.0-65.0$	Cemented clay
$65.0-69.0$	Clay and gravel (cemented)
$69.0-80.0$	Cemented clay and gravel
$80.0-82.0$	Fine sand
$82.0-91.0$	Coarse gravel
$91.0-93.0$	Bedrock

Hole IV-10-8

$0.0-14.0$	Clay
$14.0-18.0$	Gravel
$18.0-26.0$	Clay and gravel
$26.0-34.0$	Clay
$34.0-42.0$	Gravel
$42.0-50.0$	Coarse gravel
$50.0-70.0$	Clay and gravel
$70.0-80.0$	Clay and fine sand
$80.0-82.0$	Sand and fine gravel
$82.0-90.0$	Clay and fine sand
$90.0-93.0$	Clay

$93.0-99.0$	Clay
$99.0-102.0$	Till

102.0-104.5 One boulder
104.5 - 106.0 Boulders
106.0-109.0 Till
109.0 - 111.0 Bedrock

5:30 P.M. End of hole IV-10-8

March 20, 1974
Hole IV-11-2

8:00 A.M.	Repair muskeg
9:45 A.M.	Move to hole
10:00 A.M.	Prepare to drill
10:30 A.K.	Delay - broken oil pipe
12:00 Noon	Start drilling

1:30 P.M.	Lost water 1:50 P.M.
Start drilling	
2:30 P.M.	Start drilling again
4:15 P.M.	End of hole IV-11-2
5:00 P.M.	Start drilling
5:30 P.M.	End of hole IV-11-7

March 21, 1974
8:00 A.M. Move to hole V-8-5
9:00 A.M. Get water with nodwell
9:30 A.M. Start drilling

10:30 A.M. End of hole V-8-5
10:30 A.M. to 3:00 P.M. Nodwell broken
March 23, 1974
Hole V-8-6
$\begin{array}{ll}\text { 8:00 A.M. } & \text { Get ready with new muskeg, } \\ \text { 9:30 A.M. } & \text { get water } \\ \text { Start drilling }\end{array}$

10:45 A.M. End of hole V-8-6

11:10 A.M. Start drilling

12: 20 P. M. Stop drilling
22:45 P.M. Start drilling

$0.0-46.0$	Clay
$46.0-50.0$	Gravel
$50.0-52.0$	Bedrock

Hole V-8-3
0.0-79.5 Clay
79.5-84.0 Gravel
84.0-88.0 Lost water in coarse gravel, barely no rejects
88.0-92.0 Lost water

1:00 P.M.	Start drilling
1:20 P.M.	Stop drilling
1:30 P.M.	Start drilijing
1:35 P.M.	End of Hole V-8-3

2:10 P.M. Start drilling
3:00 P.M. to 3:05 P.M. Delay for water

3:20 P.M. Fnd of hole V-8-4
4:00 P.M. Start drilling
4:55 P.M. End of hole V-7-5

March 25, 1974
8:00 A.M. Change tank on small muskeg 9:30 A.M. Start drilling

10:30 A.M. End of hole V-7-6

11:15 A.M. Start drilling

12:20 P.M. End of hole V-7-3

12:50 P.M. Start drilling

3:00 P.M. End of hole V-7-4

3:30 P.M. Start drilling
88.0-92.0 Broken bedrock or till?
92.0-93.0 Bedrook

Hole V-8-4

$0.0-70.0$	Clay
$70.0-73.0$	No vater, lost vator,
$73.0-76.0$	Brojects
$76.0-78.0$	Bedrock bedrock

Hole V-7-5
0.0-40.0 Clay
40.0-46.5 Gravel
46.5-48.5 Bedrock

Hole V-7-6

$0.0-58.0$	Clay
$58.0-58.5$	Gravel
$59.5-60.5$	Bedrock

Hole V-7-3

$0.0-52.0$	Clay
$52.0-58.5$	Gravel
$58.5-60.5$	Boulder
$60.5-64.0$	Gravel
$64.0-66.0$	Broken bedrock and gravel
$66.0-69.0$	Bedrock

Hole V-7-4
0.0-40.0 Clay
40.0-44.0 Gravel
44.0-56.0 Well sorted gravel
56.0-68.0 Clay
68.0-77.5 Till
77.5-80.0 Bedrock

Hole $V-6-5$
0.0-54.0 Clay
54.0-64.0 Gravel

4:40 P.M. End of hole V-6-5
$64.0-66.0$. Bedrook
$4: 40$ P.M. to 5:30 P.M. Move to hole V-6-4
March 26, 1974 Hole V-6-4

8:00 A.M.	Get ready to drill Start drilling, had to go to shop for new shell		
9:00 A.M.			
9:30 A.M.	Start drilling	0.0-28.0	Clay
		28.0-44.0	Gravel
		44.0-46.0	$T 111$
		46.0-49.0	Bedrock

10:40 A.M. End of hole V-6-4

Hole V-6-3

$\begin{array}{ll}\text { 10: } 45 \mathrm{~A} . \mathrm{M} . & \text { Change flat tire } \\ \text { 11:15 A.M. } & \text { Move to hole V-6-3 } \\ \text { 11:45 A.M. } & \text { Repair press hose } \\ \text { 12:00 Noon } & \text { Start drilling } \\ & \\ \text { 1:20 P.M. } & \text { End of hole V-6-3 }\end{array}$

2: 30 P.M.
2:50 P.M.
3:00 P.M.
Start drilling
End of hole V-6-6
Hole V-6-6

$0.0-38.0$	Clay
$38.0-51.0$	Gravel
$51.0-54.0$	Lost water, no rejects
$54.0-56.0$	Bedrock

Hole V-6-7

4:40 P.M. Start drilling

$0.0-51.0$	Clay
$51.0-55.0$	Gravel
$55.0-$	Lost water

5:45 P.M. Stop drilling
March 27, 1974
8:00 A.M. Delay for water
9:15 A. M. Start drilling

$$
\begin{array}{ll}
55.0-57.0 & \text { Lost water, no rejects } \\
57.0-58.0 & \text { No rejects, lost water } \\
58.0-59.0 & \begin{array}{l}
\text { Lost water, no rejects, but } \\
\text { we are in bedrock }
\end{array}
\end{array}
$$

12:00 Noon Start drilling
12:45 P.M. End of hole V-6-7

1:20 P.M. Start drililing

2:15 P.M. End of hole V-6-2

3:10 P.M. Start drilling

3:55 P.M. End of hole V-6-8
4:50 P.M. Start drilling
5:45 P.M. End of hole VI-7-4
March 28, 1974
8:00 A.M. Move to hole V-7-1
8: 45 A.M. Start drilling

11:35 A.M. End of hole V-7-1

12:00 Noon Start drilling
1:00 P.M. to $1: 45$ P.M.
1:45 P.M. to 2:10 P.M.
2:10 P.M. to 2:30 P.M.
2:50 P.M. End of hole V-7-2

3:30 P.M. Start drilling

$$
\begin{aligned}
& 0.0-48.0 \\
& 48.0-53.0 \\
& 53.0-56.0 \\
& 56.0-58.0 \\
& \text { Hole } 7-6-2
\end{aligned}
$$

$$
53.0-56.0 \text { Iost water, no rejects }
$$

$$
56.0-58.0 \quad \text { Bedrock }
$$

$$
\begin{array}{ll}
0.0-28.0 & \text { Clay } \\
28.0-36.0 & \text { Gravel } \\
36.0-37.0 & \text { T111 } \\
37.0-38.0 & \text { Lost water, no rejects } \\
38.0-41.0 & \text { Bedrock }
\end{array}
$$

Hole V-6-8

$0.0-49.0$	Clay
$49.0-52.0$	Gravel
$52.0-55.0$	Till
$55.0-57.0$	Bedrock

Hole VI-7-4

$0.0-41.0$	Clay
$41.0-43.0$	Fine sand
$43.0-45.0$	Bedrock

Hole V-7-1

$0.0-40.0$	Clay
$40.0-65.0$	Gravel
$65.0-76.0$	Clay and gravel
$76.0-78.0$	Bedrock

Hole V-7-2

0.0-63.0	Clay
$63.0-71.0$	Gravel
$71.0-72.0$	Lost water
$71.0-74.0$	Lost water and rejects
$71.0-76.0$	Lost water and rejects
$76.0-78.0$	Bedrock

Hole V-7-7

$0.0-60.0$	Clay
$60.0-64.0$	Gravel
$64.0-66.0$	Lost water, no rejects
$66.0-68.0$	Bedrock

4:30 P.M. End of hole V-7-7

5:00 P.M. Start drilling
5:45 P.M. Stop drilling, no vater
March 29, 1974

8:00 A.M.	Wait for water
9:00 A.M.	Drilling
9:30 A.M.	Start drilling
10:20 A.M.	End of hole V-7-8
10:50 A.M.	Start drilling
12:00 Noon	Stop drilling, no water

12:20 P.M. to 12:35 P.M. Wait for water 1:20 P.M. Lost water from 97.0 to 99.0
1:20 P.M. to 2:00 P.M. Check bit
2:00 P.M. Start drilling

2:20 P.M. End of hole V-8-1
2:45 P.M. Start drilling
3:50 P.M. End of hole V-8-2

4:10 P.M. Start drilling

5:45 P.M. End of hole V-8-7
March 30, 1974
8:00 A.M. Move to hole III-9-1
9:00 A.M. Start drilling

HoP 1

$$
0.0-10.6
$$

$40.0-430$
45.0-46.0 Lost al1 wator $43.0-48.0 \quad$ Lost vator, no rejects 48.0-49.0 Lost vater, vaiting for vator 48.0-52.0 Bedrock

Hole V-8-1	
$0.0-88.0$	Clay and fine sand $88.0-90.0$
Lost water, no rejects	
$88.0-96.0$	Fine sand, lost water, barely no rejects
$96.0-97.0$	Lost water, boulder

96.0-100.0	Lost water in fine sand, boulder
100.0-102.0	Bedrock

Hole V-8-2

$0.0-60.0$	Clay and fine sand
$60.0-89.0$	Clay and fine sand
$89.0-93.0$	Gravel
$93.0-94.0$	Broken gravel
$94.0-96.0$	Bedrock

Hole V-8-7
0.0-42.0 Clay and fine sand 42.0-59.0 Clay and gravel
58.0-62.0 Gravel
62.0-78.0 Clay and gravel
78.0-79.0 Gravel
79.0-81.0 Bedrock

Hole III-9-2
0.0-33.0 Clay

9:30 A. M. End of hole III-9-1

9:55 A.M.

11:00 A.M.
11:20 A.M.

12:40 Prilling
12.M.
$33.0-35.0$

$0.0-28.0$
$28.0-34.0$
$34.0-38.0$
$38.0-40.0$
$40.0-43.0$

Bodrook

Clay
Clay and gravel
Olean gravel
Clean gravel
Iost water, bedrock

Hole III-9-7

$0.0-52.0$	Clay
$52.0-69.0$	Clay and gravel
$69.0-71.0$	Bedrock

Hole III-9-2

3:20 P.M. Start drilling

4:00 P.M. End of hole III-9-2
April 1, 1974
8:00 A.M. Get ready on hole V-8-8 9:00 A.M. Start drilling

10:30 A.M. to 11: 30 A.M. Bit blocked at 77.0-79.0

1: 30 P.M. End of hole V-8-8
$\begin{array}{ll}\text { 3:45 P.M. } & \text { Start drilling } \\ \text { 4:00 P.M. } & \text { Break one head by dolic hose }\end{array}$
$0.0-26.0$
26.0-34.0 Gravel
34.0-40.0 Clay and gravel
40.0-50.0 Gravel, lost water from

5:45 P.M. Stop drilling

$0.0-48.0$	Clay
$48.0-56.0$	Clean gravel
$56.0-57.0$	Broken bedrock? till?
$57.0-59.0$	Bedrock

Hole V-8-8

$0.0-10.0$	Clay
$10.0-40.0$	Sand
$40.0-60.0$	Sand (quicksand)
$60.0-65.0$	Sand
$65.0-77.0$	Clay and gravel
$77.0-81.0$	Clay
$81.0-85.0$	Clay
$85.0-89.0$	Clay and fine sand
$89.0-92.0$	Coarse gravel
$92.0-94.0$	Bedrock

Hole V-10-5

48.0 to 49.0

Clay

$$
x_{23}^{2} 5^{9}
$$

4.5

$\pi-11-7$
${ }_{23}^{22} 54$.
41.5

1
e!

$\Delta u \Delta$
50 \qquad
\qquad 102^{\prime}

\qquad
ΔU \qquad
$\therefore=2 \quad 25$
$200-$
x
Euc 2 $\quad 100$

$-1.0 .3$	－
－10．3	N－102
T	\square
，	1
clay	cloy
	－
－	
cioy	

IVIV

$$
a^{a}=20
$$

z nowners	－
ご吅	－ $9 \times$
WA cor	∞
－	022
51	1031
$\therefore=$	63°

co

三－

$$
2
$$

\qquad
\qquad
\qquad A
p．e．

8
 $16000-1$ 8000 $200-1$ 8 8

102 105

lat
－cia
${ }^{-} \mathrm{cich}$ ar
T

IIT-9-1

$$
\begin{aligned}
& \text { t Bedrok } \\
& \text { nometuen }
\end{aligned}
$$

$58{ }^{\circ}$

V-9-1

clay

$\Delta 4 \Delta \quad-\quad 50$
$\Delta s=\frac{1}{0}=25 \quad$ is

\qquad

ND
$\Delta u \wedge$ ($\quad 50 \cdots$
D

Δ U ND 50 ND ND...............

Δu a . - - 50

G. thuse

A. 1 \qquad

Recorded Holder	Kerr Addison Mines Li

Mount joy Township

- BASAL TILL SAMPLING -

Location of (12) Drill Holes:

Mining Claims - P. 381610 to 21 inclusive

Amount spent on this part of programme $=\$ 3,650.16$

Total assessment days credit allowed $=243.4$

The above 12 mining claims may be grouped under Section $85(6)$ of The Mining Act, for the purposes of recording the work credits of 243.4 days.

Approved - June 9, 1975

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geological - 40; Geochemical - 40;

Ministry of
Natural Resources

Lands Administration Branch

Projects

 UnitTechnical Assessment Work Credits

Kerr Addison Mines Limited

Recorded Holder
Township or Area Mountjoy Township

Type of survey and number of Assessment days credit per claim	Mining Claims
Geophysical Electromagnetic \qquad days Magnetometer \qquad 40 days Radiometric \qquad days Induced polarization \qquad days Section 86 (18) \qquad days Geological \qquad days Geochemical \qquad days \square Airborne \square Special provision \square	P. 381610 to 13 inclusive
Notice of Intent to be issued: Credits have been reduced because of partial coverage of claims. Credits have been reduced because of corrections to work dates and figures of applicant. No credits have been allowed for the following mining claims as they were not sufficiently covered by the survey:	

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geological - 40; Geochemical - 40;
Jessop Twp.

THE TOWASHIP
of 2.1689 MOUNTJOY

DISTRICT OF COCHRANE

PORCUPINE
MINING DIVISION
SCALE: I-INCH=40 CHAINS
LEGEND
PATENTED LAND
CROWN LAND SALE
LEASES LACATED LAND
LOCCUTION
LICENSE OF OCUPAI
MINING RIGHTS ONLY
SURFACE RIGHTS ONLY
ROADS
IMPROVED ROADS
KINGS HIGHWAYS
RAILWAYS
POWER LINES
MARSH OR MUSKEG
MINES
GEODECTIC STATION
WATER FOWER LEASE

NOTES

400° Surface rights reservation around all iakes \& rivers.
This township lies within the Municipality
of CITY of TIMMINS.
der TIMMINS show
thus: ,
now within the city of timmins
L.O. 6613 shown thus.

Areas withdrawn from staking under Section
43 of the Mining Act (r.s. 0.1970)

MINING LANDS:
DATE OF ISSUE
APR 231975
MINIITRY
OF NATURAL RESOURCES

PLAN NO.-M 302
ONTARIO
MINISTRY OF NATURAL RESOURCES

