INTRODUCTION

> The assessment work herein filed covers 23
> claims in Jessop Township in the Porcupine Mining Division of Ontario.

The 23 claims, totalling 920 acres are
numbered as follows:

P 82924-P82943 incl. = 20 clairs recorded on May 3, 1965.

P92417-P92419 incl. = 3 claims recorded on December 12,1966 .

The 23 claims cover lots 7 - 10 in Concession VI of Jessop Township as shown on the appended key map.

GEOLOGY

No outcrops are known to occur within the area covered by this claim group. Close to 100 feet of overburden was encountered in diamond drill holes. It may however be inferred (O.D.M. Map No. 2046 - 1964) that

Sheridan Geophysics Limited

- 2 -
the property is underlain by Precambrian rock types consisting mainly of Keewatin-type volcanics intruded by ultrabasic and acid rock types.

ELECTROMAGNETIC SURVEY

Line cutting was carried out in January 1966 , covering the 20 claim group, the grid consisting of a E:W. base line and $32 \mathrm{~N}: \mathrm{S}$. cross lines spaced at 300 foot intervals.

The electromagnetic survey was carried out under the supervision of E. Basinet, P. Eng. during the same time along these established picket lines.

The electromagnetic survey employed the SheridanKelk Dual Frequency Magniphase Electromagnetic Instrument (Instrument No. 18) operated in the horizontal coil configuration with a transmitter-receiver separation of 300 feet. The instrument which has an output of 1.5 watts may be operated at either 800 or 2,400 cycles per second. In general, readings of the amplitude and phase of the resultant field at the high frequency (2,400 c.p.s.) were recorded at

Sheridan Geophysics Limited

station intervals of 100 feet. In anomalous areas the station interval was reduced to 50 feet and readings at both the high and low frequencies (800 c.p.s.) were recorded.

Plotted on the maps at the scale of $1^{\prime \prime}=200$ feet are the high frequency phase profiles. In anomalous areas the high frequency amplitude is also plotted. The scale of the phase and amplitude profiles equal 50 units to the inch. A total of 1450 amplitude-phase measurements were recorded along the North-South picket lines.

CONDUCTIVITY DETERMINATIONS

The ratio "RH" (RX) refers to the ratio of the high frequency amplitude response to the high frequency phase response. When significant conductors are detected the ratio increases as the conductivity of the detected conductor increases and a ratio greater than 1.0 is considered to represent a good conductor, 0.6 to 1.0 a moderate conductor, and less than 0.6 a poor conductor.

Sheridan Geophysics Limited

These ratios are completely independent of the absolute size of the conductor, length, depth of burial, etc., and are dependent solely on the material comprising the conductor.

Results of Survey

Several minor indications located by this survey were attributed to overburden effects. The only anomaly of interest was located in the East portion of the claim group (claim No. 82937). It was therefore decided to cover this area with more detailed elect :omagnetic and magnetic survey.

DETAILED SURVEYS - Claims $\begin{array}{r}92417+92418 \\ 82937-82938\end{array}$
A detailed survey was carried out along a line grid consisting of a NE-SW base line (3000 feet) with 10 NW-SE crosslines spaced at 300 feet.

The electromagnetic method and field technique previously described was employed. A total of 180 amplitude and phase readings were recorded. In addition

Sheridan Geophysics Limited

The area was surveyed using an Askania Torsion Balance Magnetometer with a scale constant of 2.36 gammas per scale division. The magnetic responses as plotted on the accompanying map, are corrected for diurnal variations and instrument drift.

Readings were taken generally at 100 foot intervals with 25 or 50 foot stations in anomalous areas. A total of 195 readings were recorded.

INTERPRETATION OF RESULTS

The survey located 2 parallel conductors striking NE-SW for a distance of approximately 2,000 feet. The conductivity of these 2 conductors is medium to high (RX . $65-1.00$).

The results of the magnetometer survey contoured at 200 gammas interval indicate that the conductors are associated with a magnetic intensity high in the order of approximately 500 gammas above background. In addition a magnetic intensity high in the order of 4,000 gammas above background was located on the 0 crossline.

Taking into consideration the results oi the

Sheridan Geophysics $\mathcal{L i m i t e d}$

geophysical survey, it was decided to further investigate these 2 conductors by means of diamond drilling. A hole previously drilled on one of the conductors by Lake Expanse is believed to have overshot the target, particularly since the overburden is in the order of 90 feet.

DIAMOND DRILLING
The 2 holes drilled in March 1967 are as follows: (shown in red on the accompanying maps)

Hole No.l on claim No. 82937 at 45° to a depth or 405 Hole No. 2 on claim No. 92418 at 45° to a de ts of

The core was logged by E.W. Basinet, P. Eng. and detailed diamond drill records are appended.

Both conductors as well as the magnetic intensity high can now be explained by the presence of disseminated and massive sulphides (up to 50%) as well as graphite (mainly in hole No.1).

Since no sulphides of economic value were encountered, the drilling was discontinued.

ALL OF WHICH IS RESPECTFULLY SUBMITTED,

April 20th, 1967.

WHITE STAR COPPER MINES LTD.
Jessop Twp.
Sheridan-Kelk Magniphase Suruey 1 inch $=200$ feet
... Phase linch $=50$ units
$\times \cdots$ Amplitude \quad linch $=50$ units
$R_{x}=0.75=$ Ratio $\frac{\text { Lowfequency }}{\text { high frecpuasency }}$ phase
Sapanation $=300$ feet
Date: Feb 1967
peate Cishe

WHITE STAR COPPER MINES LTD．
Jessop Twp．
Askania Magnctometer Survey
1 incin $=200$ feet
Contour ？Eterval－ 200 gummas
Date：Feb． 1967 benpe tith

$$
-14 N
$$

$$
535
$$

$$
.406
$$

$$
\begin{array}{ll}
.451 & .4 \\
.554 & .4
\end{array}
$$

$$
-12 \mathrm{~N}
$$

$$
\begin{array}{ll}
.564 & .458 \\
.547 & .478
\end{array}
$$

$$
-10 N
$$

$$
\begin{aligned}
& .43 \\
& .518
\end{aligned}
$$

$\cdot 516$
$\frac{3 a 5 e}{417 e} \cdot 485$ 526

\qquad 721

1
w
σ
w
山
山

3	3	3		ω	س	山	W	ш	$山$
0	6	M	O	N	\bigcirc	σ	\sim	n	0

\square

Diamond Drilling

Township of JẸSSOP

Report №: 19
Work performed by: White Star Copper Mines

Claim No	Hole NO	Footage	Date	Note
P 82937	1	405.0^{\prime}	Mar/67	
P 92418	2	569.0^{\prime}	Mar/67	

Notes:

Collar. 520^{\prime} South and 70^{\prime} of Post th, Claim ann??
est
DIAMOND RILL RECORD
property white Star Copper - Jessop Two (Former moray later Claims)

SHEET NUMBER
Latitude 840 : $\left\{\begin{array}{l}\text { Base Line } Z \\ 45^{\circ}\end{array}\right.$
DEPARTURE \qquad
elevation \qquad

SECTION FROM \qquad TO \qquad
DATUM \qquad
BEARING Grid North or $\mathrm{N}_{4} 5^{\circ}$; DIP

STARTED \qquad March 10, 1re7 COMPLETED March 14, 1967 ULTIMATE DEPTH 405' PROPOSED DEPTH 400'

VAMOND DRILL RECORD

WHMOND DRILL RECORD

DIANORER URER IRCORD

PROPRRTY
HOLE NO.

DIAMOND DRILL RECORB

Collar 1090' South and 80' East of Post :2, …… nomp

DIAFACHD DRILL RECORD

PROPERTY
HOLE NO.
2

DIAMOND DEILL RECORD

DIAMOND DRILL RECORD

			10LE			
SHEET NUMBER	SECTION FROM __TO		STARTED			
LATITUDE	DATUM		COMPLETED			
DEPARTURE	BEARING		ULTIMATE DEPTH			
ELEVATION	DIP		PROPOSED DEPTH			
DRPTM FEET	FORMATION	sample no.	or ${ }_{\text {WIDTH }}$	00LD:	364pat	
	242 to 264: - 60% guartz calcite veining		$2.42-$	Au	Ág.	
	with up to 2% disseminated pyrrhotite	1420	252			
	and pyrite. C.A. $=25^{\circ}$ predom.					
	302:- $\frac{1}{2 \prime \prime}$ massive pyrrhotite at 40°					
	(335.5:- $5^{\prime \prime}$ of 25% pyrrhotite as massive					
	bands at $35^{\circ} \mathrm{C} . \mathrm{A}$.					
	(365.5:-. $4^{\prime \prime}$ of 60\% pyrrhotite as massive					
	bands up to $1^{\prime \prime}$ at $45^{\circ} \mathrm{C.A}$.					
	(368 :- 3^{r} of 75% pyrrhotite as massive					
	bands up to $\frac{1}{4}$ inches					
	bands up to $\frac{1}{4}$ inches					
	E 386:- 1' of 25\% pyrrhotite as massive bands					
	to ${ }^{\prime \prime} C^{\prime \prime} A^{\prime}=450$					
	(e389:- 1^{11} of 25% pyrrhotite as massive bands					
	to $\frac{1}{4 \prime}$ " C.A. $=45^{\circ}$					
	\cdots					
DRILLED BY \qquad ?						

QAMOND DRLLL RECORD

