

REPORT ON GEOPHYSICAL WORK
 GODFREY 45 GODFREY TOWNSHIP

FALCONBRIDGE LIMITED

RECEIVED
MAR $0120:$
OEOSCIEMCE ASSESSMENT Office

$$
\text { 2. } 25036
$$

SUMMARY AND RECOMMENDATIONS

Magnetic and HLEM surveys were carried out over the Godfrey 36 and 45 properties for Falconbridge Limited in December 2000 and February 2001.

The magnetic survey mapped a north-south striking diabase dike and the HLEM survey detected five conductors.

It is recommended that grid lines are cut and surveyed at 600 and 700 North on the Godfrey 45 grid to better define $E M$ anomalies ' C ' and ' D '. It is also recommended that anomaly ' C ', on the Godfrey 45 grid and anomaly ' E ', on the Godfrey 36 grid are tested by diamond drilling.
iii

TABLE OF CONTENTS

page
Summary and Recommendations i
Introduction 1
General Geology 1
Previous Work 3
Survey Descriptions 5
Magnetic Results 6
HLEM Results 8
References 13
APPENDIX A

LIST OF FIGURES

page
1.(a) Location Map 2
(b) Claim Map 2
2. Previous Work, 1960 's, 1970 's 4
3. Previous Work, 1960's, 1970's 5
4. Total Magnetic Field 7
5. HLEM Results, $120 / 160$ metre Coil Separation, 444 Hertz 9
LIST OF TABLES
page

1. Summary of Previous Work 4
2. Anomaly 'A' Interpretation 8
3. Anomaly 'B' Interpretation 10
4. Anomaly 'C' Interpretation 11
5. Anomaly 'D' Interpretation 11
6. Anomaly 'E' Interpretation 12

LIST OF MAPS

1. Magnetic Results (BACK POCKET)
2. HLEM Results, $120 / 160 \mathrm{~m}$ Coil Separation, 444 Hz (BACK POCKET)
3. HLEM Results, $120 / 160 \mathrm{~m}$ Coil Separation, 1777 Hz (BACK POCKET)
4. HLEM Results, 200 m Coil Separation, 444 Hz (BACK POCKET)
5. HLEM Results, 200 m Coil Separation, 1777 Hz (BACK POCKET)

INTRODUCTION

Magnetic and horizontal loop electromagnetic (HLEM) surveys were carried out on the Godfrey 36 and Godfrey 45 properties for Falconbridge Limited. The north half of the Godfrey $\mathbf{4 5}$ grid was surveyed in December 2000 and the Godfrey 36 grid and south half of the Godfrey $\mathbf{4 5}$ grid were surveyed in February 2001.

The grids are located approximately 12 kilometres west of the city of Timmins (Figure 1(a)) in the east central portion of Godfrey Township, Porcupine Mining Division. Highway 576 runs along the southwest edge of the Godfrey 36 grid and through the middle of the Godfrey $\mathbf{4 5}$ grid.

The grids cover parts of a number of patented and unpatented claims in Lots 2, 3 and 4, Concessions II, III and IV (Figure 1(b)). A description of these claims is given in Appendix A.

The magnetic survey was run by the author of this report and the HLEM survey was carried out by R. Daigle and M. Chouinard.

GENERAL GEOLOGY

Godfrey Township is located near the west end of the Abitibi greenstone belt which consists of predominantly east-west striking, steeply dipping Archean sediments and ultramafic to felsic volcanics. These rocks have been intruded by ultramafic to felsic bodies, north-south striking Matachewan diabase dikes and east northeast striking Keweenawan diabase dikes.
. The geology of Godfrey Township is presented on map 2205 at a scale of 1 inch to 4 miles (Pyke, 1973) and on map P3379 at a scale of 1:100,000 (Ayer etal, 1998).

Previous drilling in the vicinity of the Godfrey 36 and Godfrey 45 grids suggest that the area is underlain by east-west striking felsic to mafic volcanics. All of the rocks have been intruded by north northwest striking diabase dikes.

Figure 1(a): Location Map

Figure 1(b): Claim Map

PREVIOUS WORK

The following is a description of previous exploration work carried out in the vicinity of the Godfrey 36 and Godfrey 45 grids (Table 1).

In 1964, Conwest Exploration Company Limited ran magnetic and Turam surveys over seven claims which were centered between the two present grids (Figure 2). The surveys were run on east-west grid lines spaced every 300 feet. The magnetic survey was run with a vertical component, torsion wire magnetometer. No conductors were detected in the EM survey.

YEAR	COMPANY	GEOPHYSICS	DRILL HOLES	AFRI FILE
1964	Conwest Exploration Company Ltd	Mag, Turam		42A11SWO352
$\begin{aligned} & 1968 \\ & 1973 \\ & 1974 \\ & 1974 \end{aligned}$	Hollinger Mines Limited	Mag, VLF, Geol Mag, Turam	G2-3-68 to 38-73 GO4-1-74	42A12SE0426 42A06NW0104 42A11SW0350 42A06NW0500
1992	M. Juby	Mag, VLF		42A12SE0027
$\begin{aligned} & 1995 \\ & 1995 \\ & 1996 \\ & 1997 \\ & 1997 \end{aligned}$	Moneta Porcupine Mines Inc.	Mag, VLF Mag, HLEM IP Mag	G-95-11	42A11SW0134 42A12SE0005 42A06NW0048 42A06NE0046 42A06NE0047

Table 1. Summary of previous assessment work.

In 1968, Hollinger Mines Limited carried out geological, magnetic and VLF surveys over a block of 81 claims which straddled Highway 576 from Concession III to Concession VI. The surveys were conducted on lines spaced every 400 feet on two separate grids oriented at $50^{\circ} \mathrm{Az}$. and $15^{\circ} \mathrm{Az}$. The magnetic survey was run with a torsion wire magnetometer. In 1968 to 1973, at least 38 holes were drilled, many of them in the vicinity of the present survey area (see Figure 4).

In 1974, Hollinger Mines Limited carried out magnetic and Turam surveys over 54 claims located between the Mattagami River and Highway 576 in Concessions IV to VI. These surveys were conducted on

two grids oriented in the same direction as the 1968 grids. The magnetic survey was also run with a torsion wire magnetometer. One hole, GO-1-74, was submitted for assessment credits.

In 1992, M. Juby carried out magnetic and VLF-EM surveys over a block of six claims in Lot 5 , directly to the north of the present Godfrey 45 grid (Figure
3). The grid on these claims consisted of east-west lines spaced every 200 feet. The magnetic survey was conducted with a total field, proton precession magnetometer and Annapolis, Maryland (21.4 kHz) was used as the transmitter station in the VLF survey.

In 1995, Porcupine Moneta Mines Inc conducted magnetic and VLF-EM surveys over a claim block which covered the northeast edge of the present Godfrey 45 survey area. The surveys were run on east-west grid lines spaced every 100 metres. The magnetic readings were taken with a proton precession magnetometer. One drill hole, G-95-11, was filed for assessment credits.

In 1996, Porcupine Moneta Mines Inc ran magnetic and HLEM surveys over 2 claim units, directly to the southeast of the present Godfrey 36 survey area. The survey was run on north-south lines spaced every 100 metres. The magnetic survey was run with a proton precession magnetometer and the HLEM survey was run with a coil separation of 150 metres at frequencies of 444 and 1777 Hz .

In 1996, Porcupine Moneta Mines Inc also carried out magnetic and induced polarization surveys over a block of 26 claim units which covered the southeast corner of the present Godfrey 45 grid and the west half of the Godfrey 36 grid. The surveys were run on grid lines spaced every 200 metres (100 metres in detail

magnetic and EM survey in the Timmins area which included Godfrey (OGS, 1988). This survey was flown along north-south lines spaced approximately every 200 metres.

SURVEY DESCRIPTIONS

The grid on the Godfrey 36 property consists of lines spaced every 100 metres and oriented at $50^{\circ} \mathrm{Az}$. The lines were cut from a central base line designated 0 North and tie lines were established at the end of the lines, at 400 north and 400 South (Figure 1(b)). The grid on the Godfrey 45 property consists of lines spaced every 100 metres and oriented at $40^{\circ} \mathrm{Az}$. Cross lines were cut every 100 metres in the south portion of the area and every 400 metres to the north. All of the lines, on both grids, were picketed every 20 metres.

The magnetic readings were taken every 10 metres with a Scintrex IGS-2/MP-4. This instrument is a proton precession magnetometer which measures the earth's total magnetic field to an accuracy of 0.1 nT . Diurnal variations were monitored every 10 seconds with a Scintrex MP-3 base station magnetometer, located off the grid at 10200 East, 10360 North; the base station value to which all of the readings were levelled is 59237 nT . A total of 938 readings were taken along 9.3 kilometres of line on the Godfrey 36 grid
and 1663 readings were taken along 16.6 kilometres of line on the Godfrey $\mathbf{4 5}$ grid.
The horizontal loop EM survey was carried out with the Apex Parametrics MaxMin I-5. This instrument measures the in-phase and quadrature components of the secondary field as a percentage of the primary field; the depth of penetration is approximately half of the coil separation. Readings were taken every 20 metres using coil separations of 120,160 and 200 metres at frequencies of 444 and 1777 Hertz. A total of 320 stations along 8 kilometres of line were read using a coil separation of 160 metres on the Godfrey 36 grid. On the Godfrey 45 grid, 605 stations along 13.66 kilometres of line were read using a coil separation of 120 metres and 193 stations on 5.7 kilometres of line were read with a coil separation of 200 metres..

MAGNETIC RESULTS

The magnetic results are contoured every 20 nT on map 1 at a scale of 1:5000. They are also presented in Figure 4 at a scale of $1: 15,000$.

A high amplitude magnetic anomaly which strikes north-south to north northwest through the middle of the Godfrey $\mathbf{4 5}$ grid is most likely a diabase dike. This anomaly is interrupted at a linear, west northwest striking magnetic low anomaly in the north half of the property, which may represent an alteration or fault zone. Incomplete magnetic high anomalies along the east and west edges of the Godfrey $\mathbf{4 5}$ grid also appear to reflect diabase dikes.

A linear magnetic high anomaly strikes east-west through the south half of the Godfrey $\mathbf{4 5}$ grid. The source of this anomaly is likely pyrrhotite mineralization. The fact that the central diabase dike changes strike slightly, on either side of this feature, suggests that the source may be located at a geological contact.

The Godfrey 36 grid can be divided into two magnetic domains, separated by a northwest line, coincident with the 59250 nT contour between 0 North on Line 400 East and 200 North on Line 400 West. The domain to the west has a higher magnetic background than the domain to the east. Two high magnetic anomalies within the west domain trend east-west, but do not continue into the east domain, suggesting the boundary is a fault.

Figure 4 : Total Magnetic Field, Godfrey 36/45

The very high, local magnetic anomaly at 300 North on Line 200 East is a metallic object on surface, possibly an old drill collar; this should be checked in the summer.

HLEM RESULTS

The results of the HLEM survey are profiled on maps 2,3 and 4 at a scale of 1:5000; the profile scale used is $\mathbf{1 ~ c m ~}=20 \%$ for both frequencies. The 444 Hertz results are also presented in Figure 5 at a scale of $1: 10,000$.

Anomaly 'A' strikes approximately east-west between 280 South on Line 100 East and 140 South on Line 400 East. The source of the anomaly on Line 200 East is a narrow zone of good conductivity at a depth of 24 metres (Table 3); the dip is very steep to the north. The conductivity decreases to the east and west

This anomaly was the target of a number of holes which were drilled by Hollinger in 1968 to 1970. Holes G2-5-68 and G2-15-69 intersected graphitic tuff with pyrite and pyrrhotite mineralization. There are no

LINE	ANOMALY CENTER	ANOMALY WIDTH (m)	IP $(\%)$	Q $(\%)$	DEPTH (m)	CONDUCTMTY THICKNESS $($ (mhos $)$	COMMENTS
300 S	80 E	$?$	0	-4	$?$	$?$	
100 E	280 S	narrow	0	-3	$?$	$?$	
200 S	180 E	narrow	-8	-14	12	7	
200 E	180 S	narrow	-16	-14	24	20	
300 E	145 S	10	-3	-11	<12	4	
400 E	140 S	narrow	0	-2	$?$	$?$	

Table 2: Anomaly 'A' Interpretation, $444 \mathrm{~Hz}, 120$ metre coil separation.

Figure 5 : HLEM Results, Godfrey 36/45
obvious conductors in the logs for holes G2-16-69, G2-27-69 and G2-30-70, however, there may be conductivity associated disseminated pyrite/pyrrhotite in these holes. Minor chalcopyrite and spalerite were noted in most of the holes.

Anomaly 'B' strikes east-west on the Godfrey 45 grid between 420 North on Line 0 West and 390 North on Line 100 West. The source of the anomaly is good conductivity at a depth of 26 metres on Line 0 and 19 metres on Line 100 West (Table 3). The anomaly is only partially defined because of interference from the power line along the east side of Highway 576. The width and dip of the source can not be determined accurately, however the profile on Line 0 suggests a width of greater than 20 metres. The profiles, from both cale lengths, also suggest the presence of more than one conductor. A very low amplitude anomaly between 480 North on Line 100 East and 540 North on Line 200 East may represent the east extension of conductor ' B '.

LNE	ANOMALY CENTER	ANOMALY WDTH (m)	IP $(\%)$	\mathbf{Q} $(\%)$	DEPTH (m)	CONDUCTINTY THICKNESS $($ mhos $)$	COMMENTS
100 W	390 N	$?$	-12	-15	19	12	
400 N	30 W	$?$	$?$	$?$	$?$	$?$	
0 S	420 N	$?$	-24	-11	26	66	
100 E	480 N	$?$	$?$	$?$	$?$	$?$	
200 E	540 N	$?$	$?$	$?$	$?$	$?$	

Table 3: Anomaly 'B' Interpretation, $444 \mathrm{~Hz}, 120$ metre coil separation.

Anomalies ' C ' and ' D ' are located in the northwest comer of the Godfrey 45 grid on Line 300 West. The source of anomaly ' C ' is very good conductivity at a depth of 49 metres (Table 4) and the source of
anomaly ' D ' is poor conductivity at a depth of less than 12 metres (Table 5). Either of these anomalies can be joined to an anomaly centered at 180 West on Tie Line 800 North, although the slightly higher background along Line 200 West suggests that this anomaly is part of ' C '. The source of the anomaly on the tie line is a narrow zone of fair conductivity at a depth of 32 metres (Table 5); the dip is to the south. Surveys along Lines at 600 and 700 North would help determine the true orientation of these conductors.

LINE	ANOMALY CENTER	ANOMALY WIDTH (m)	$\mathbf{I P}$ $(\%)$	Q $(\%)$	DEPTH (m)	CONDUCTMTY THICKNESS $($ mhos $)$	COMMENTS
300 W	540 N	$?$	-12	-5	49	78	
200 W	750 N	$?$	$?$	$?$	$?$	$?$	
800 N	180 W	narrow	-5	-7	32	8	

Table 4: Anomaly 'C ' Interpretation, $444 \mathrm{~Hz}, 120$ metre coil separation.

Two diamond drill holes have been previously sunk in this area. Hole G-95-11, drilled by Moneta in 1995, intersected graphite within a shearfault zone in mafic volcanics. Hole GO4-1-74, drilled by Hollinger in 1974, intersected a narrow graphitic zone in andesite tuffs. An attempt should be made to locate these holes relative to the present grid.

LINE	ANOMALY CENTER	ANOMALY WDTH (m)	$\mathbf{I P}$ $(\%)$	Q $(\%)$	DEPTH (m)	CONDUCTNTTY THICKNESS (mhOs)	COMMENTS
300 W	750 N	$?$	-1	-5	<12	2	

Table 5: Anomaly ' D ' Interpretation, $444 \mathrm{~Hz}, 120$ metre coil separation.

Anomaly ' E ' is located on Lines 0 North and 0 East on the Godfrey 36 grid. This anomaly represents a narrow zone of poor conductivity at a depth of 24 metres (Table 6).

It likely has the same source as IP anomaly ' C ', which was outlined in the 1997 Moneta survey.

LINE	ANOMALY CENTER	ANOMALY WIDTH (m)	\mathbb{P} $(\%)$	\mathbf{Q} $(\%)$	DEPTH (m)	CONDUCTMTTY THICKNESS $($ mhos $)$	COMMENTS
$0 N$	80 W	narrow	-2	-4	24	5	
$0 E$	70 S	narrow	-2	-4	24	5	

Table 6: Anomaly ' E ' Interpretation, $444 \mathrm{~Hz}, 160$ metre coil separation.

REFERENCES

Ayer, J.A. and Trowell, N.F.
1998: Geological Compilation of the Timmins Area, Abitibi Greenstone Belt; Ontario Geological Survey, Preliminary Map P.3379, scale 1:100,000.

Ontario Geological Survey
1988: Airborne Electromagnetic and Total Intensity Survey, Timmins Area, Macdiarmid Township, Districts of Cochrane and Timiskaming Ontario; by Geoterrex Limited, for Ontario Geological Survey. Geophysical/Geochemical Series Map 81061. Scale 1:20,000. Survey and compilation from March 1987 to October 1987.

Pyke, D.R., Ayres, L.D. and Innes, D.
1973: Timmins-Kirkland Lake Sheet; Ontario Division of Mines, Geological Compilation Series, Map 2205, scale $1^{\prime \prime}=4$ miles.

APPENDIX A

CLAIM \#	\# of UNITS	RECORDING DATE	RECORDED HOLDER	DESCRIPTION	TOWNSHIP
96174	1	leased		NW1/4 N1/2 Lot 2 Con II	Godfrey
96855	1	leased		SW1/4 S1/2 Lot 3 Con III	Godfrey
96859	1	leased		NE1/4 N1/2 Lot 3 Con II	Godfrey
96860	1	leased		SE1/4 S1/2 Lot 3 Con III	Godfrey
97099	1	leased		SW1/4 S1/2 Lot 2 Con III	Godfrey
98609	1	leased		NW1/4 S1/2 Lot 3 Con III	Godfrey
98486		leased		NE1/4 S1/2 Lot 3 Con III	Godfrey
1203953	4	June 30,1995	Moneta Porcupine Mines	N1/2 of S1/2 Lot 2 Con III S1/2 of N1/2 Lot 2 Con III	Godfrey
1236428	2	Aug 19,1999	Moneta Porcupine Mines	SE1/4 S1/2 Lot 2 Con III NE1/4 N1/2 Lot 2 Con II	Godfrey

Table A1: Godfrey 36 Claims

CLAIM \#	\# of UNITS	RECORDING DATE	RECORDED HOLDER	DESCRIPTION	TOWNSHIP
28214	1	leased		NW1/4 N1/2 Lot 4 Con III	Godfrey
96179	1	leased		SW1/4 N1/2 Lot 4 Con III	Godfrey
96847	1	leased		NW1/4 S1/2 Lot 4 Con III	Godfrey
98303	1	leased		NE1/4 N1/2 Lot 4 Con III	Godfrey
99044		leased		SE1/4 N1/2 Lot 4 Con III	Godfrey
889239	1	April 02,1986	Falconbridge Limited	NE1/4 N1/2 Lot 5 Con III	Godfrey
889240	1	April 02,1986	Falconbridge Limited	SE1/4 N1/2 Lot 5 Con III	Godfrey
1176458	1	Mar 06,1991	Moneta Porcupine Mines	NE1/4 S1/2 Lot 5 Con IV	Godfrey
1182830	1	Sept 16,1991	Moneta Porcupine Mines	SE1/4 S1/2 Lot 4 Con IV	Godfrey
1207373	1	April 11,1996	Moneta Porcupine Mines	SW1/4 S1/2 Lot 4 Con V	Godfrey
1207374	1	April 11,1996	Moneta Porcupine Mines	SE1/4 S1/2 Lot 5 Con V	Godfrey
1218808	6	May 30, 1996	Moneta Porcupine Mines	N1/2 Lot 4 ConIV	Godfrey
			N1/2 of S1/2 Lot 4		

Table A2: Godfrey 45 Claims

EAF

EREA COUNP	
	+
Tome nevelopry	
	$\left[\begin{array}{l} \text { fing } \\ (x \rightarrow 0) \end{array}\right.$
Tame	
20090	

 . co herevy canily the I hove perconal kowledpe of the focto set fort in

Noma		$\begin{aligned} & \text { Clifont Number } \\ & 302304 \end{aligned}$
$\text { 4015-4' }{ }^{\text {ST }} \text { SOUTHWEST, }$	8UITE 901	$\begin{aligned} & \text { Tclephone Minnter } \\ & (400) 205-204 \end{aligned}$
CALGARY, ALBERTA	T2R 144	$\begin{array}{\|l\|} \hline \text { Fax funter } \\ (\cos) \\ 282-1421 \end{array}$

RECEIVED

FEB 27 ©

(8) Ontario momion micamex
 Schedule for Declaration of \quad Tmimation Number (onice use) Aasesement Work on Mining Land 100160.00042

Statement of Costs for Aascemment Credit

 Rood, Sudbury, Ontario, PYE $8: 3$

Calculations of Filing Discounts:

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Acsecermert Work.
2. If work is filed after two years and up to five years after performance, it can only be claimed as 50% of the Total Value of Aseasement Work, if this situation applies to your claims, use the calculation below:
TOTAL VALUE OF ASSESSMENT WORK $\quad \times 0.60=\quad$ Total $\$$ value of worked chained.

Note:

- Work older than 5 years is not eligible for credit

- A recorded holder may be required to verity expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/darification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification voctilying costa:

 be determined and the cess were incurred while conducting assescenent work on the lands indicated on the accompanying

Ministry of Northern Development and Mines

Ministère du Développement du Nord et des Mines

April 4, 2001

FALCONBRIDGE LIMITED
SUITE 1200, 95 WELLINGTON STREET WEST
TORONTO, ONTARIO
M5J-2V4

Geoscience Assessment Office 933 Ramsey Lake Road
6th Floor
Sudbury, Ontario
P3E 6B5
Telephone: (888) 415-9845
Fax:
(877) 670-1555

Visit our website at:
www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm
Submission Number: 2.20936
Status
W0160.00042 Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section \#6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact LUCILLE JEROME by e-mail at lucille.jerome@ndm.gov.on.ca or by telephone at (705) 670-5858.

Yours sincerely,

ORIGINAL SIGNED BY
Lucille Jerome
Acting Supervisor, Geoscience Assessment Office
Mining Lands Section

Work Report Assessment Results

