-

VLEM survey report

During the periad Fobruary 16, 1969, to March 10, 1969, an electromagnetic survey was cerried nut ovar a group of 8480 contiguous unpatanted mining claims recorded in the name of Hollingar Minas Limitad, Timmins, Ontario. The gurvey was carriad out by Shisld Geophyaice Limited, 26 Pine Street South, Timmins, Onteria.

The mining claims are dentgnated P98491 to 98504 inclusive, P98521 to 98558 inclusive, P9eg91 to 98598 inclutive, P98610

LOCATION AND ACCESS
The property is located ot the common corner of Loveland, Macdiarmid, Reid and Thorburn Towninips (aca Key. Map).

Accesa undsr winter conditiona is via snow vehiele from highway 576 naar the Kam Kotia Mine in Robb Towninip. From Timins, the distancs is approximately 22 milan via highway and approximataly 10 miles via wintar buah traila.

Access during aumar is via halicppter fram Timmine a distance of approximately 23 milas.

PREVIOUS WORK
Alrborne and ground geaphyaical surveve, galogical mapping and diemond driliing has bean carriad out on varioul parte of the property by pravious nolders.

The Thorburn-Loveland eecter of the property wan hold by Mespi Mines during the marly 1960's. Airhorna magnatameter mad
electromagnetic surveys ware flown in a northametarly direction. Ground follow-up work was carried out and aix dimond drill holea (LT 1, 2, 6, 7, 8 and 9) ware put down in tha Loveland aactor of the property.

Frobex hald the Macdiarmid sector of the property and undertook horizontal loop elactrpmagnatic surveys. Five diamond drill holes (F 1, $4,5,6$ and 7) wera put dawn.

Texas Gulf Sulphur drillad one hola (M-62) in the southcantral part of the MacDiarmid sactor of the proparty.

All of the above mentioned wark is on file with the Ontario Departmant of Minew.

GEOLOGY OF THE PROPERTY
On the basis of the previous work done on the proparty, it can be inferred that much of the proparty ie undarlaln by felaic metavolcanic rocks with mome interbedded mafic voleanic rocks.

The drill hola by Texea Gulf Sulphur interaected graphitic shales in the south part of the Macdiarmid sector of the property.

Conducter axes and limited outcrop dete would Indieate that the rocks strike in on east eo eat-mouthanterly diruction.

North to northouterly striking diabase dikes outcrop on the west part of the proparty.

On the basis of the regional geology, it is highly probable that the Mattagani Rivar Fault System underlies the anst pert of the property.

INSTRUMENT USED AND SURVEY METHCD
The antire vertical loop electromagnatic survey wan conducted using a dual frequency unit manufactured by Crone Geom physics Limited, Port Cradit, Ontario. The unit oparatas 480 and 1800 cyclas per second.

The entire curvey was canductad an raconnaisabnce survey and no attempt was made to detall any of the indicated conductors. A totel of 3869 atatione ware ambalishad.

The instrument usad and survay mathod wre fully dascribed in tha accompanying Appendix.

SURVEY RESULTS AND INTERPRETATIOM
Several Etrang conductive zanee with Pair to good, low to high frequency ratios were indiceted.

Numarous weak croseovery ware obtainad.

In genaral, tup sete of, conductive zonas have mean indicated. Set one apparantly han north itrike and littla or no magnetic expreasion. Usumily the conductive zones with north strike appear to be disaociated with aithar fault or diabase dikis.

Twelve obvious donductive zones are deacribed as followa:

(A) WEST SHEET

Zone 1 is a north to northwaterly striking zanis. The cross-overs are strong and the ratio betwen hinh and low frequancy rasponses is faix. The zone 11 se to the north end ente of an outcrop ares so that the wantarn portion of the profilas are probably attinuated due to edge effecte from the horizontal conductive clay layers.

Zons 2 has a wateriy trike, fais rasponse and fair ratios on one lina. The zone appara to terminate on the east at a diabase diks.

Zone 3 - Vary atrong dip angles frow two at-upa Indicate to a strongly conductive zone with a prabable northerly etrike located on line 64id at 436. This may be previousiy drilled graphitic zone.

Zone 4 appears to occur in a magnatic lowf howaver, the responses have good ratios. The etrongeat croas-over oceure on line 52w.

Zane 5 is a ntrong, one-line filgh frequaney crose-ovar occurring in a magetic lev. The low fraqupaty profile is vary waok and tha ratios are very poor. It if probable that thi etrong dip angles on the southarly part of the profiles are largely due to topographic affacts.

Zone 6 is a zone of waok conductivity with an indapinite magnetic association. Une drill mole in this area praviausiy ancountered a graphitic conductor,

Zons 7 is a zons of wagk conductivity occurring betwein two diabase dikes and is parallel to a postulated northwegterly striking fault. Indicated atrike langth is 800 fest.

Zons 8 is a wakly indicated 20 ne of conductivity on only ons line. The ratio is fair and the cropacovar may be ese sociated with a 100 gamma magnatic anomaly. This zone should be vary carefully checked.
(B) EAST SHEET

Zone 9 has astrike langth of about 800 fent. The response is very strong and the indicatad conductivity is exemilant. The zone appars to be termpinted on the sast by a diabase dike. This zone has probebly baen tasted by Frobex hales F-4 and F-5.

Zons 10 has the etrongest responge recordad on the property. Indicated canductivity is excilifent and the zone appears to be directly coincident with etrong magnetic anamely. There is a atrong probability that thers is at leant ong parallel conductor in this aras as indicated on line 288 at $9+505$.

Zone 11 hes a possible strike length of 2200 feet. Response is fair and the indicatad conductivity on lines 24 and $28 E$ is excellent. The zone appars to be terminated on the sast by the eastern boundery of the Mattagani Rivar Fault. Thie zona may have been tastad by Frobex hole F-6.

Zone 12 is a poorly conductive zons with paor raponas characteristics. It correlates well with postuluted northwieterly gtriking fault zans. Tha indicated strike langth is in oxease of 4800 feet.

Besides the twelve zonas diecusasd above; there are many more one-iline crosemovars and indicated zonas many of which probably have anortherly strike. Any one of thase could be importants however, on a reconnaisequce-typ survey these zonea ara not readily interpretable. Follow-up work would be fequirid to metablish the authentioity of the ramalining indicated zonem, Undoubtediy, some of the indicated zones are tue to tranamittarreceiver misorientetion or topagraphio affecta.

SUMMARY AND CCNCLUSIONS
Twelve separate dafinite zones of conductivity wera indicated on the reconnalasance survey. Numaroua other lays definite zones of conductivity were indiestad.

Some of the atrongest conductive zonat may have previoualy besn drillad; howevar, at least seven of these zonas have not bsen tasted.

In genaral, the zones can be groupad in two classes according to strike direction.

Tha atrongast zonas appar to have wasterly or northwasterly strike while tha weaker, more poorly conductive zonae
have a northerly strike and often appar to be aseociated with the edges of s diabese dike or a postulated fault. The nartheriy striking zones may not be waker ginarally than the other zones but appear to bs waker simply bacaume of poor tranailiter-bonducter coupling and unfavaurable lina direction.

RECDMMENDATIONS

(1) Careful field checke ahould be mede in order to logete all previous arill locetions as accurately as poseible with the prasent grid.
(2) Whare atrike has definitely mean antablishad (Zones 1-12), detail grids should be cut and the zonae detalled slong 200 foot lines oriented perpendicular to atablishad strike.
(3) Vartical loop tranamitter set-ups ahould be made on tha waker indicated 2 anes and saarch squares sun in ordar to astablish the authenticity of the cross-overs and the atrike dirmetion if authentic.
(4) As well as detail vartical loop wark, in-line mothoda ahauld be usad on tha detail gride in an attempt to matablian the atrongest portions of the zonas and the diraction of dip.

Because of the hasvy, conductive ovarburaden eavering most of the srea and the inherent lamitations of vertionl loop reconnaiseanca work evan the ueakest indioations may well have Bignificance.

The recommanded detall and follow-up pragrim will probably entail naarly es much work an the reconnilanance program. Since detail work is alwaye cansidefably mara expansive thin recannaisaance work, $\$ 15,000$ hould be budgeted for the followup detail phase.

It is recommended thint the detill mork be performad during winter in order to take beat edvantaga of the existing grid and minimize the survey costs.

Apr11 25. 1969,
Timmins, Ontario.

Reapectfully aubidtted,
SHIELD BEAPHYSICS LIMITED,
3. E./Stinra,

Consulting Gaplogiat.
BPPENDIX

GURVEY METHOD AND INSTRUMENT DATA

Electromagnetic Survey

Any alternating magnetic field will induce an electrical eddy current in the medium through which the magnetic field paseses. If a Bource of an alternating magnetic field is located near a conductive body, enomalously atrong eddy currenta will be induced In the deposit due to its high alectrical conductivity. Elsctrical currents induced in the conductive body will produce a secondary magnetic fiald proportional to the intenaity of current flow.

A receiver coll tuned to the fraquency of the transmitting device will pick up both the diractiy tranamitted signal and the ebdy current signal.

A Crone VEM electromegnatic unit was used in this survey. The unit consiste of virtually mounted, bettery powered transmitting coil operating at frequencias of 1800 and 480 cps. and a receiving coil tuned to the transmitting fraquency, an inclinometer, an amplifier and a headset.

Throughout the aurvay, the tranamitter and receiver ware seprarated by distances of 400,800 and 1200 feet. The plans of the transmitter coil was oriented 80 that the tranamittar was vertical and pointed towards the receiver. Oriantation was obtained using a platen on which predetermined receiver pasitions were piotted. Statiuns were read at ona hundrad foot intarvalg.

At all times, the receivar "faced" tha tranamittor. Tha reaulte obtained ere dip anglea, masaured in dagraes. The dip anglas art abtained by first orienting the raceiving coil in the plens of the magnatic fiald by rotating tha coil about a vartical axis until a null or minimum aignal is obtelnad, and then roteting the coll about a horizontal axis until a null or minimum signal is obtained. The angle which the magnetic fiald makes with the harizontel is recorded as a "dip" or "tilt" angle. In the absence of a conductor the dip angla will be zero since no secandary field is present. In the presence of a conductor, the axis of the receiver coil points towards the canductor and the plane of the coil may from the conductor. In the presence of a conductor, the secondary magnetic fiald is usually displaced from the primary in phase as well as diraction so that tha total field is eiliptically polarized. Tha receiver cannot then be nulled completaly but a minimum aignal can be obtained, the width of the minimum baing an indication of tha prase displacement.

The tilt anglas are plotted as profiles, the zero or "cross-over" point indicating the focus of the conductor axis.

Unce a conductor axis hes been astablishad, the transmitter 18 set up over the conductor and lines are read on both sides of the transmitter and the conductor axis is traced out by "leap frogging" from "cross-over" to "crose-over".

Specifications
Dperating Frequencies: 480 and 1800 cycles par second

Maximum Range: Up to 2000 foot saparation betwan tranemittar and receivar on high power for $\pm 7^{\circ}$ null width at both 480 and 1800 eps.

Depth of Exploration: Roughly half the diatance betwaen transmitter and receiver under optimum conditions.

Tranbmittar Powar Supply: Rachargabble NiCad battary mounted on a packboard.

Weightg: Packboard mounted batteries 44 lbs.

Transmittar coil
Tranamitter mast
Transmitter control box Receivar

16 lbs
6 lbs.
8 1bs.
13 Lbs.

Mining Claims Travaraed

$$
\begin{aligned}
& \text { P 98491, 98492, 98493, 98494, 98495, 98496, 98497, 98498, 98499, } \\
& \text { 98500, 98501, 98502, 98503, 98504. } \\
& \text { P 98521, 98522, 98523. 98524, 98525, 98526, 98527, 98528, 98529, } \\
& \text { 98530, 98531, 98532, 98533, 98534, 98535, 98536, 98537, 98538, } \\
& \text { 98539, 98540, 98541, 98542, 98543, 98544, 98545, 98546, 98547, } \\
& \text { 98548, 98549, 98550, 98551, 98552, 98553, 98554, 98555, 98556, } \\
& \text { 98557, } 98558 . \\
& \text { P 98591, 98592, 98593, 98594, 98595, 98596, 98597, } 98598 . \\
& \text { f 98610, 98611, 98612, 98613, 98614, 98615, 98616, 58617, 98618, } \\
& \text { 98619, 98620, 98621, 98622, 98623, 98624; 98625, 98626, 98627, } \\
& \text { 98628, } 98629 . \\
& \text {-p } 99140,99141,99142,-99443 .
\end{aligned}
$$

During the period December 21, 1968, to February 21, 1969, a magnetometer survey was carriad out over a group of of 80 contiguous unpatented mining claims recorded in the nams of Hollinger Mines Limited, Timmins, Dnterio. Tha survey was carried out by Shisld Gsophysics Limited, 26 Pine Strest South, Timmins, Untario.

The mining claims are designated P98491 to 98504 inclurgive P98521 to 98558 inclubiva, P98591 to 98598 incluaiva, P98610 to 98629 inclusive, 999440 to 99143 innturive.

LCCATIUN AND ACCESS

The property is loceted at the common corner of Loveland, Macdiarmid, Reid and Thorburn Townahips (ase Kay Map in packat).

Access under winter conditions is vie snow vehicle from Highway 576 near the Kam Kotia Mine in Robb Township. Fram Timmins, the distance 18 epproximately 22 miles via highway and approximately 10 miles via winter bush trails.

Access during summer io vis halicoptar from Timmins, the distance is approximately 23 miles.

PREVIUUS WURKK
Airborne and ground geophysical survays, geological mapping and diamond driliing has been carried out on various parte of the property by previous halders.

The Thorburn-Loveland bector of the property was hald by Mespi Mines during the early 1960's. Alrborne mepnetametar and elactromagnatic surveys ware flown in a northwestisly alrection. Ground follow-up wark was carriad out and eix diamand drill halae (LT 1, 2, 6, 7, 8 and 9) were put down in the Laveland eetor of the proparty.

Frobex hald the Macdiermid sactor of the proporty and undertoak horizontal loop Electromagnotic survaya. Five alamond drill holes (F 1, 4, 5, 6 and 7) were put down.

Texas Gulf Sulphur drilled one hole (M-62) in the southcentral part of the Macdiarmid asctor of the property.

All of the above mentioned wark ie on file with the Untario Dapartmant of Minea.

GEOLGGY OF THE PROPERTY

On the basis of the pravidue work done on the property, it can be infarrad that much of the proparty if underlain by risic metavolcanic rocks with some interbaddad mific valcanic rocke.

The drill hols by Texae Gulf gulphur interaected grephitic shales in the south part of the Madiermid satotor of the property.

Conductor axes and limited outerop data would indicate that the rocks atrike in an esef to east-southaesterly dirastion.

North to northwetarly striking diabase dikue quterop on the west part of the property.

On the basia of the regional guelogy, it is highly probable that the Mattagaml River Fault Systam.undarlies the aast part of the property.

INSTRUMENT USED AND SURVEY METHOD

The magnetometer survey was carried out using a Sharpe M.F.-1-100 magnetometer with a asnaitivity of ± 1 pamma. Readings were taken at 100 foot intervals except in areas of high magnetic gradient whare the atation intarval was Pifty festo.

Base atations for the correction of diurnal variation ware eateblished at 100 foot intervals on all base and tia linas, The M.F.-1-100 unit with a tripad was uaed for geteblishing the base stations. All readings are tiad to station ON on line 32W which was arbitrarily aseigned a value of 1000 gamman.

The survey resulte are presented in coritour form on Maps 1 and 2 (In pocket). A total of 5220 stations were astabllahed.

SURVEY HESULTS AND INTEAPRETATIDN
The magnatic rasulte indicate that the undarlying rocke are atructurally very complex.

Tha maximum magnatic relige is 5132 gamman howaver, the reliaf over most of the property is much lens than this.

The moat obvious Peatures are the numarous northnor thwesterly trending diabase dikes whioh appare to hava been interrupted by at least thres ests of faulte.

In genaral, the central portion of the eatern area has a Lower background than the remainder of the araa. The eastern and weatern boundarias of this araa are probably north atriking faults which form the Mattagami River Fault Syetem.

Two "Bpat highs" are located on the property which are probably not due to bedrock festuras but are more likely to be caused by drlll casing left in the ground or metal object laft behind by drill crew. Thase iaolated highs of quastionable character are as follows:

> line 60 H at 465
> line 20 E et $14+505$

At saveral locations, etrong dipolar effecte ars noted at or very near the adge of autcropa. Thase lacations are as pollows:
line 104w at 555
line 64w at 255
line 60w at 485
ins 60w at 305
11ne BE 日t 185

Two sete of disbasa dikes with parailad strikes appar to be present on the property.

Set one has a distinct anamaly pattern, appreciable width and an apparent staep wasturly dip. This set occaulonaliy outcrops and in general the depth to the top appears to be bout one hundred fast or less.

Set two has vapus broed anomely pattern, narrow width and in generel these dikes appas to be ralatively discontinuous. The apparent dip on most of these dikes is easterly. The anomaly pattarns are so brad, howevar, that it is extremely diffloult to eqparate the narrow dike momelies from the wide dike and northariy trending fault anomalies ao that dip astimations in this eses mut be highly suspect.

It $1 s$ very difficult to uttempt much interpiatation of
 ference in magnatic susceptibility batuan the variour uniti com prising the bulk of the underlying rocke.

It 18 thought that most of the underlying rocks are Intermediate to felsic volcanic socks with thin intercalifed bende of sedimentary rocks.

Whare outcrop and drill hols informasion le oveliable, the individual units epparar to have a onanal waterly atrike, narrow thicknssess and wide range in eompasition, texture and febric.

Several westerly to northuteterly etriking anomalous megnetic features appear to be af immediate interest since sulphide mineralization has bean mpountarad within two of the Peaturas.

The anomelias of intereat ars numbared one to eight in clusive on the accompanying geologieal interpretetion. Fantures one and geven have previously been drilled.

Two "bull's eye" anomalise ocour in the aras. The anomaly paaks are approximately five hundrad gamana above background. Thase anomalle are probably caused by smell diabasic or gabbraic plugs.

The anomalies are locsted on lines 116 wat on the baselins and line 26 ast at $10 N$.

SUMMARY AND CLNCLUSIONS
The magnatic aurvey over this claim group indicatab that the geology of the ares is vary complax.

Two distinct diabase dike marme have northnorthwastarly strike and a staep dip ware outlinad.

Thres separate directions of faiting erw Indicated.

The oldest faulte appar to have s nartheseterly etrike.

The major fault ast having northarly atrike and the set having a northwesterly $8 t r i k e$ appar to be ralatad. It ia likely that the north striking faulte are part of the major Mattagami River fault zone and thet rapaated movement ovar long periods of time have occurrad in this zone.

It is belleved that most of the rocke in the area are intermediate to falaic voleanie facks heving wide textural and compositional variation.

If any strike diraction is predominant within the map ares, the geological strike is approximetely $N 70^{\circ} \mathrm{w}$.

Eight short, lenticular westerly striking momailes warrant careful investigation since sulphide mineralization has been found to be associated with two of share fanturas.

It is recommended that each of the indigeted praylous drill holes be located in the field and tied in to the existing grid system and that careful detailed slectromaphitic shack be carried out over the eight anomalous zones.

Respectfully submitted, SHIELD GEOPHYSICS LIMITED, J. Excel steers. April 25, 1969. Consulting Geologist.

P 98491, 98492, 98493, 98494, 98495, 98496, 98497, 98498, 98499, 98500, 98501, 98502, 98503, 98504.

```
P 98521, 98522, 98523, 98524, 98525, 98526, 98527, 98528, 98529,
    98530, 98531, 98532, 98533, 98534, 98535, 98536, 98537, 98538,
    98539, 98540, 98541, 98542, 98543, 98544, 98545, 98546, 98547,
    9854B, 98549, 98550, 98551, 98552, 98553, 98554, 98555, 98556,
    98557, 98558.
```

F' 98591, 98592, 98593, 98594, 98595, 98596, 98597, 98598.
F 98610, 98611, 98612, 98613, 98614, 98615, 98616, 98617, 98618,
98619, 98620, 98621, 98522, 98623, 98624, 98625, 98626, 98627,
98628, 98629.
P-99440, 99444, 99442, 99443:-

THORBURN

PORCUPINE MINING DIVISION
DISIRICT OF COCHRANE
Scale - 40 Chains $=1 \mathrm{lnch}$

