FALCONBRIDGB LTD.

REPORT
ON
GEOPHYSICAL WORK
WEST MACDIARMID
NTS: 42-A/12 PROJ. \#8172

RECEIVED
 JAN 281988
 MINING LANDS SECTION

SUMMARY AND RECOMMENDATIONS

Magnetic and HLEM suryeys were carried out on the West MacDiarmid property in November 1987.

The magnetic survey mapped a gabbro intrusive and north northwest trending diabase dikes.

The HLEM survey located nine conductors striking southeast on the west half of the property and east on the eastern half. Interpretation of the anomalies is difficult because of either a quadrature inversion due to conductive clay overburden or interference from closely spaced conductors. Anomalies B, D, G, H, and I have been previously tested by diamond drilling, Most offsets in the conductors coincide with the north northwest trending diabase dikes, indicating that there has been movement along these features.

The most interesting of the conductors is represented by Anomaly E. There is a very local magnetic feature of high relief associated with the conductor, indicating the presence of pyrrhotite. Anomalies A, B and G also have a magnetic response on the most easterly lines. Anomaly G has been previously tested in the area of interest. The other anomalies should not be overlooked as potential mineralized zones, but they do not represent the primary targets, The secondary drillholes should be located to test the greatest width within each zone.

It is therefore recommended that Anomaly E be tested between Lines 600 and 700 East, and Anomalies A and B be tested on Line 1800 East.

SUMMARY AND RECOMMENDATIONS . i
\qquad
PREVIOUS WORK . 3
SURVEY DESCRIPTIONS . .. 4
HLEM RESULTS . 5
MAGNETIC RESULTS . 13

TECHNICAL DATA SHEET.......................... APPENDIX A

LIST OF MAPS

1. HLEM RESULTS 444 Hz 1:5000 (BACK POCKET)
2. HLEM RESULTS 1777 Hz 1:5000 (BACK POCKET)
3. HLEM RESULTS TIELINE DATA 444 Hz 1:5000 (BACK POCKET)
4. HLEM RESULTS TIELINE DATA $1777 \mathrm{~Hz} \mathrm{1:5000} \mathrm{(BACK} \mathrm{POCKET)}$
5. MAGNETIC RESULTS 1:5000 (BACK POCKET)
6. MAGNETIC RESULTS TIELINE DATA $1: 5000$ (BACK POCKET)

LIST OF FIGURES

page

1. LOCATION MAP 2

LIST OF TABLES

page

1. ANOMALY A INTERPRETATION 6
2. ANOMALY B INTERPRETATION 7
3. ANOMALY C INTERPRETATION 8
4. ANOMALY D INTERPRETATION 9
5. ANOMALY E INTERPRETATION 9
6. ANOMALY F INTERPRETATION 10
7. ANOMALY G INTERPRETATION 11
8. ANOMALY H INTERPRETATION 11
9. ANOMALY I INTERPRETATION 12
10. ANOMALY J INTERPRETATION 13

Magnetic and HLEM surveys were carried out for Falconbridge Ltd. on their West MacDiarmid property in November 1987.

The property consists of 33 claims located in MacDiarmid Township, approximately 25 kilometres northwest of the city of Timmins, in the Porcupine Mining Division. The claims are numbered as follows:

$$
\begin{aligned}
& P 995387-P 995404 \text { inclusive } \\
& P 995447 \text { - P } 995461 \text { inclusive } \\
& P 996042-P 996051 \text { inclusive }
\end{aligned}
$$

Part of the survey area is patented ground held by Canadian John Manville Co. Ltd. The survey lines were cut on the patented ground with permission of the owner for the purpose of providing a regular grid shape for the linecutters. The outline of the patented ground is shown on all maps.

The east edge of the property is accessible by boat along the Mattagami River.

The survey was carried out by B. Pigeon, S. Olink and J. Eull.

Figure 1: Location map

The area covered by this survey has been active since 1947, when Inco drilled ten holes in search for asbestos within the gabbro intrusive. The next record of previous work occurs in 1964, when Silver Miller Mines, Mistango River Mines, North Rankin Nickel Mines and Silvertown carried out ground magnetic and horizontal loop EM surveys. The only record of diamond drilling is two holes drilled by North Rankin Mines and two holes drilled by Silvertown. The holes drilled by North Rankin Nickel Mines intersected graphite with some minor sulphides. Neither Silvertown hole intersected a conductor.

In 1969, Noranda conducted ground magnetic and HLEM surveys. No drilling was recorded.

In 1970, Hollinger carried out an airborne INPUT survey and followed up with ground magnetic and HLEM surveys. Two holes were drilled in 1973 to test EM anomalies. Altered gabbro and ultrabasics were intersected.

In 1975, Phelps Dodge conducted ground magnetic and HLEM surveys. No drilling was recorded.

In 1977, Geophysical Engineering Ltd. drilled two holes to test a Crone C.E.M. shootback anomaly, Hole P1-1 intersected 555 feet of gabbro. Hole P1-2 intersected rhyolite with some pyhrrotite, and graphite at 216 feet. Assays for base metals, gold and silver show no economic
values.
In 1978, Amax filed geological mapping for a portion of the area covered by this survey.

All holes which tested a conductor are plotted on map 5. Locations are very approximate because most are plotted relative to old claim post locations.

SURVEY DESCRIPTIONS

An east-west base line was established and north-south grid lines were cut every 100 metres and picketed every 20 metres. Tie lines were cut every 400 metres. Both north-south and east-west lines were surveyed.

The magnetic readings were taken with the Scintrex IGS-2/MP-4. This instrument is a proton precession magnetometer which measures the earth's total magnetic field to an accuracy of .1 gammas. The diurnal drift was monitored every 30 seconds with the Scintrex MP-3 base station magnetometer.

The horizontal loop EM survey was carried out with an Apex Parametrics Max Min I. This instrument measures the in-phase and quadrature components of the secondary field as a percentage of the primary field. Accuracy is $+/-1 \%$. Readings were taken at 444 and 1777 Hz with a coil separation of 120 m .

HLEM RESULTS

The horizontal loop results are plotted on maps 1 and 2 at a scale of 1:5000. The tieline data are presented on maps 3 and 4. Nine conductive zones were outlined in the results. The strike of the conductors changes from southeast to east as one moves eastward. Dip is approximately sixty degrees north.

There is an important feature to note on map 2. The background values change drastically at conductor 'G'. The high background in the north indicates conductive overburden, and in this area, it is not possible to determine depth and conductivity thickness parameters for conductors because of the reversal of the quadrature component, even in the low frequency results.

Many of the following tables below list only the anomaly location on each line. This is due to the effect of conductive clays mentioned above or because of interference caused by closely spaced conductors.

Anomalous values at 800 and 1250 South on Line 1100 West are topographic effects due to hills. This effect is also present at the western edge of TL 1400 South.

Anomaly A is obvious only on Lines 1200 to 1400 East. It has been extended in both directions because of high positive values which extend too far north to be the shoulder of Anomaly B. Depth and conductivity thicknesses cannot be determined because Anomaly B, located 60 m to the south, is
much stronger and causes interference. Table 1 lists the approximate location of the anomaly on each line. Based on the strength of the two components, conductor 'A' probably has a moderate conductivity thickness; no depth estimate is possible.

Table 1: HLEM anomaly A, $444 \mathrm{~Hz}, 120 \mathrm{~m}$ coil separation.

Anomaly B strikes southeast and is seen on Lines 200 West to 2000 East. Dip is steep northward on the most westerly lines and becomes shallower as one moves eastward. Width is variable, but averages 30 m on most lines. This anomaly is not as well defined on the high frequency results; the positive shoulders are low to non-existent, and the conductor has no width. Calculations for depth and conductivity cannot be done because there is an inversion of the quadrature response caused by conductive clay overburden.

A lower frequency survey (i.e. 222 Hz) may eliminate the inversion and give a more accurate interpretation. Offsets in the position of the anomaly between Lines 0 and 100 West, 0 and 100 East, 200 and 300 East, and between 500 and 600 East coincide with diabase dikes. This indicates there has been movement along these planes.

LINE	ANOMALY CENTER			ANOMALY (M)	$\underset{(X)}{\text { IP }}$	$\begin{gathered} Q \\ \left(\chi_{1}\right) \end{gathered}$	DEPTH (M)	CONDUCTIVITY THICKNBSS (MHOS)
200 W		1025	N	30	-6	-5		
100 W		960	N	40	-6	-1		
00 E		768	N	4	-5	-2		
100 E		630	N	60	-6	0		
200 E		580	N	20	-6	+2		
300 E		360	N	20	-2	+2	inv	ersion of
400 E		280	N	20	-2	+1		
500 E		220	N	40	-4	+2	quadrat	ure response
600 E		47	N	46	-5	+3		
700 E		12	S	25	-9	+2		
800 E		83	S	34	-6	0		
900 E		150	S	20	-4	-2		
1000 E		210	S	20	-3	-1		
1100 E		252	S	36	-2	-2		
1200 E		S edge	280	$\mathrm{S} \quad$ in	interfe	ence	from 'A'	
1300 E		S edge	340	S in	interfe	nce	from 'A'	
1400 E		S edge	368	S in	interfe	nce	from 'A'	
1500 E		383	S	27	-16	-3		
1600 E		408	S	25	-14	-4		
1700 E		417	S	25	-12	-2		
1800 E		432	S	31	-13	-1		
1900 E		447	S	13	-15	-2		
2000 E		S edge	380	S	-13	-3		
TL 800	N	3	E	20	-7	-1		
TL 400	N	340	E	narrow	-3	+2		
BL 0		665	E	50	-3	+2		
TL 400	S	1600	E to	2000 E	con	uctor	paralle	to line

Table 2: HLEM anomaly $B, 444 \mathrm{~Hz}, 120 \mathrm{~m}$ coil separation.

Anomaly C is a very weak anomaly seen on Lines 100 and 200 East. It is located 240 m south of Anomaly B, making width determinations difficult. Table 3 summarizes the anomaly location, but like Anomaly B, no calculations for depth and conductivity thickness are given due to the effect of conductive clays.

LINE	ANOMALY CENTER	$\begin{aligned} & \text { ANOMALY } \\ & \text { WIDTH } \\ & \text { (M) } \end{aligned}$	$\underset{(\mathcal{X})}{\text { IP }}$	$\begin{gathered} Q \\ (\%) \end{gathered}$	DEPTH (M)	CONDUCTIVITY THICKNESS (MHOS)
100 E	380 N	?	-3	-2	weak	esponse
200 E	250 N	?	-3	+1	quadra	ture inversion

Table 3: HLEM anomaly $C, 444 \mathrm{~Hz}, 120 \mathrm{~m}$ coil separation.

Anomaly D strikes southeast between Lines 500 West and 800 East. The strength and width of the anomaly varies considerably. The average depth of the conductor is 50 m and conductivity is good (Table 4). The profile shape indicates there are two conductors on Lines 100 East and between 400 and 600 East. The depth and conductivity thickness calculations on Line 400 East reflect the north conductor. The source of this anomaly was determined to be graphite and pyrite based on drilling by North Rankin Nickel Mines.

LINE	ANOMALY CENTER	ANOMALY WIDTH (M)	IP $(\%)$	Q $(\%)$	DEPTH (M)	CONDUCTIVITY THICKNESS (MHOS $)$

Table 4: HLEM anomaly D, $444 \mathrm{~Hz}, 120 \mathrm{~m}$ coil separation.

Anomaly E reflects a twenty meter wide conductor on Lines 600 and 700 East. The conductor response is strong, but like anomalies B and C, the conductor appears to be extremely conductive due to the effect of conductive overburden.

LINE	ANOMALY CENTER	ANOMALY WIDTH (M)	IP (X)	Q $(\%)$	DEPTH (M)	CONDUCTIVITY THICKNESS (MHOS)
600 E	540 S	20	-24	-6	max values not in center	
700 E	560 S	20	-15	-4		

Table 5: HLEM anomaly E, $444 \mathrm{~Hz}, 120 \mathrm{~m}$ coil separation.

Anomaly F occurs only on Lines 1200 and 1300 East; it is strong only on Line 1200 East. Depth and conductivity thickness calculations are not valid due to interference from from Anomaly G, located 80 m to the south. The location of the anomaly source is given in Table 6.

LINE	N EDGE ANOMALY	ANOMALY WIDTH (M)	IP $(\%)$	Q $(\%)$	DEPTH (M)
CONDUCTIVITY THICKNBSS (MHOS)					
1200 E	726 N	$?$	-7	-1	conductive clays interference from 'G,

Table 6: HLEM anomaly $F, 444 \mathrm{~Hz}, 120 \mathrm{~m}$ coil separation.

Abstract

Anomaly G strikes east-west between Lines 1200 and 2000 East. The width (up to 35 m) indicates more than one conductor in the zone. The north conductor is the strongest. Large variations in the anomaly strength, position and width suggest faults are located between Lines 1400 and 1500 West, and between Lines 1700 and 1800 West; there is a dike located between Lines 1400 and 1500 West. A third fault between 1100 and 1200 East would explain the westward truncation. There is no high magnetic response at the other two offsets, but north-south survey lines may have failed to locate the north-south features. Calculations in Table 7 assume a dip of sixty degrees north. These calculations indicate a

moderate to good conductor at various depths. The depth variation supports the theory of movement along the diabase dikes. Drilling by Geophysical Engineering Ltd. determined the source of this anomaly to be graphite and pyrrhotite with no ecomonic mineralization.

LINE	ANOMALY CENTER	ANOMALY WIDTH (M)	IP $(\%)$	Q (X)	DRPTH (M)	CONDUCTIVITY THICKNESS (MHOS)
1200	E	810	S	20	$?$	$?$
1300 E	808	S	16	-9	-7	42
1400 E	800	S	14	-8	-5	52
1500 E	863	S	6	-16	-5	42
1600 E	864	S	3	-10	-5	50
1700 E	860	S	narrow	-2	-5	14
1800 E	886	S	27	-5	-10	17
1900	E	882	S	35	-7	-7
2000 E	890	S	20	-2	-4	24

Table 2: HLEM anomaly $G, 444 \mathrm{~Hz}, 120 \mathrm{~m}$ coil separation.

Table 8: HLEM anomaly $\mathrm{H}, 444 \mathrm{~Hz}, 120 \mathrm{~m}$ coil separation.

Anomaly H is a strong anomaly, second only to Anomaly I. It is located 150 m north of I, making depth and conductivity calculations unreliable due to the interference from the south. The north edge of 'H' on each line is tabled below (Table 8). Most of this conductor lies outside the claim boundaries.

Anomaly I is the strongest response. It strikes southeast between Lines 500 West and 100 East. There is interference from Anomaly H to the north and anomaly width cannot be determined on Lines 200 West to 100 East. Depth and conductivity thickness calculations are not reliable because of interference from 'H' on the most easterly lines and conductive clays on the lines in the west (Table 9). There is record of a diamond drillhole into this zone, but no particulars were found except for the location.

LINE		ANOMALY CRNTER		ANOMALY WIDTH (M)	$\begin{array}{r} \text { IP } \\ (\mathbb{X}) \end{array}$	$\begin{gathered} \mathbf{Q} \\ (\boldsymbol{\%}) \end{gathered}$	DEPTH (M)	CONDUCTIVITY THICKNESS (MHOS)
500 W		635 S		5	-23	-2	conductive clays	
400 W		610 S		narrow	-18	-3		
300 W		687 S		narrow	-34	0		
200 W		S edge	884	S ?	-18	0		
100 W		S edge	786	S ?	-36	-2		
00 E		S edge	914	S ?	-41	-8		
100 E		S edge	987	S?	-43	-6		
TL 400	S	E edge	227	W	?	?	interference from 'H'	
TL 1000	S	284 N		8	-22	-8	condu	tive clays

Table 9: HLEM anomaly I, $444 \mathrm{~Hz}, 120 \mathrm{~m}$ coil separation,

Anomaly J, located on Lines 2000 and 2100 East, is very weak, and may be a surficial anomaly. Depth and conductivity values indicate a poor conductor near surface (Table 10).

LINE	ANOMALY CENTER	ANOMALY WIDTH (M)	$\underset{(X)}{\text { IP }}$	$\begin{gathered} Q \\ (\bar{x}) \end{gathered}$	DEPTH (M)	CONDUCTIVITY THICKNESS (MHOS)
2000 E	1140 S	?	-2	-5	14	5
2100 E	1150 S	narrow	0	-3	<10	<1

Table 10: HLEM anomaly J, $444 \mathrm{~Hz}, 120 \mathrm{~m}$ coil separation.

MAGNETIC RESULTS

The magnetic results are plotted on map 5 at a scale of $1: 5000$. The tie line data is presented as profiles in map 6. The major feature is a large southeast trending feature of 5000 gamma relief. This maps a known gabbro intrusion. The profiles of the tieline data locate north northwest tending linear features which map diabase dikes. Most of the numerous discontinuities in the HLEM conductors correlate with the location of these dikes.

Except for Anomaly E, and the east end of Anomalies A, B and G, none of the conductors located by the HLEM survey have any obvious magnetic response. Anomalies D, H and I lie
on the north and south flanks of the magnetic high which maps the gabbro intrusion. None of the other anomalies lie along magnetic trends.

Anomaly E has a very short strike extent and is associated with a very high magnetic feature with equally short strike extent. This probably indicates there is considerable pyrrhotite in the conductive zone.

The east end of anomalies A, B and C also have associated magnetic respones, although not as high as Anomaly E. These zones probably contain some pyrrhotite also.

The tie-line survey located the north-south trending diabase dikes much better than the survey along the north-south lines. Much of the previous work in the area oriented the survey lines northeast, and this survey direction located all diabase dikes. It is recommended that previous magnetic data be reviewed before any drillholes are located to ensure they do not intersect a dike. An east-west line across the proposed drillsite is recommended if previous data is not available.

APPENDIX A

GROLND SURVEYS. If more than ow ancer, iperiiy data for cach type of survey

Instrument __Scintrex 1GS-2/MP-3
Accuracy - Scale constant - 0.1 gammas
Diurnal correction method_b_ base station
Base Station check-in interval (hours) 30 seconds
Base Station location and value 1000 s , 2800W
\ldots base value 58805

Instrument Apex Parametics Max Min I
Coil configuration horizontal loop
Coil separation $\quad 120 \mathrm{~m}$
Accuracy _ $\quad \pm \quad 1 \%$
Method: $\quad \square$ Fixed transmitter $\quad \square$ Shoot back line $\quad \square$ Parallel line
Frequency_ $\quad 444 \mathrm{~Hz}$ and 1777 Hz

(specify V.L.F. station)

Parameters measured in-phase and quadrature components of the secondary field measured as a percentage of the primary field.

Instrument \qquad
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument \qquad
Method \square Time Domain
\square Frequency Domain
Parameters - On time \qquad Frequency \qquad

- Off time \qquad Range \qquad
- Delay time \qquad
- Integration time \qquad
Power
Electrode array
Electrode spacing
Type of electrode \qquad

Ministry of
Northern Development and Mines
Ontario

Report of Work

(Geophysical!, Geological,
Geochemical and Expenditures)

Instructions: - Please type or print.

- If number of mining claims traversed exceeds space on this form, attach a list.
Note: - Only days credits calculated in the "Expenditures" section may be entered in the "Expend. Days Cr." columns. - Do not use shaded areas below.

Type of Survey (s)
Mining Act

Geophysical

Claim Holder (s)
Kidd Creek Mines T-1848

Address

P.O. Box 1140, 571 Monet Avnue, Timmins, Ontario P4N 7H9

Survey Company
Timmins Geophysics Ltd.
Name and Address of Author (of Geo-Technical report)
Date of Survey (from 8 to)
Total Miles of line Cut
 87 79.2 Km Sharon Taylor P.0. Box 1783, 111 Bruce Avenue, South Porcupine, Ontario PON IHO

Credits Requested
Special Provisions

Expenditures (excludes power stripping)

Type of Work Performed	
Performed on Claims)	Total Days Credits
Calculation of Expenditure Days Credits Total Expenditures	

Instructions
Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

\section*{| Date | Recorded Holder or Agent (Signature) |
| :--- | :--- |
 Gan. 20188 Shaw Taylor}

Mining Claims Traversed (List in numerical sequence

Ministry of Northern Development and Mines

Geophysical-Geological-Geochemical Technical Data Statement

File \qquad

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

Res. Geol. \qquad Qualifications
Previous Surveys

[^0]Ministry of
Northern Development and Mines
Ontario

Expenditures (excludes power stripping)
Type of Work Performed
Report of Work
(Geophysical, Geological, DOO
Geochemical and Expenditu ed 81
Minir

Minir

Address

THus
Irmit

42A12NE0509 2. 10774 MACDIARMID
900

Prospector"s Licence No.
A 21647
nue, Timins, Ontario, P4N 7H9
Date of Surver (from \& tol
$7{ }^{\text {Trotal Miles of line Cut }}$
Day Mo. $1 \quad{ }_{\text {Yr. }}$ Day MO. 14

111 Bruce Avenue, South Porcupine, Ontario PON 1 HO Mining Claims Traversed (List in numerical sequence)

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Ministry of Northern Development and Mines
Ontario

Report of Work

 Geophysical, Geologica W8806.020 Geochemical and Expenditures)C
Ciaim Holder(s)

Geophysical

Address	P.
	Survey Company

P.0. Box 1140, 571 Moneta Avnue, Timmins, Ontario P4N 7 H 9

Survey Comp
Name and Ad

Special Provisions	Geophysical	Days per Claim	
For first survey: Enter 40 days. (This includes line cutting)	- Electromagnetic	40	
	- Magnetometer	20	
For each additional survey: using the same grid:	- Radiometric		
Enter 20 days (for each)	- Other		
	Geological		
	Geochemical		
Man Days	Geophysical	Oays per Claim	
Complete reverse side and enter total(s) here	- Electromagnetic		
RECEIVED	- Magnotometer		
MAR 071988	- Radiomatric		
	- Other		
MINING LANDS SECTION ${ }^{\text {Geological }}$			
Airborne Creaits		$\begin{array}{\|c\|} \hline \text { Days per } \\ \text { Claim } \end{array}$	
Note: Special provisions	Electromagnetic		
Expenditares (excludes power stripoingl			
Typepi Work Pertffite61988			
Performed on Claim(s)			
Total Expenditures	$\div 15$	otal Credits	
instructions Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claimselected in columns at right.			

 Certification Verifying Report of Work

[^1]Name and Postal Address of Person Certifving
Dox.LAS LONDRYP.O. BOX 1783 South Porcupine, Ontario PON IHO

Ministry of
Geophysical-Geological-Geochemical
Northern Development and Mines

File \qquad

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) Magnetometer \qquad Electromagnetic \qquad Radiometric (enter days per claim)

Date Gen. 20/88

995400

995401

995402
Res. Geol.
Qualifications \qquad

P 996042	995450
(prefix)	(number)
996043	995451
996044	995452
996045	995453
996046	995454
996047	995455
996049	995457
996050	995458
996051	995459
995397	995460
995398	995461

Previous Surveys			
File No.	Type	Date	Claim Holder
		
...............		
		

995403

995404

995447

995448
.995449

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Number of Stations 3851	Number of ReadingsMag 3851 HLEM 3575
Station interval 20M	Line spacing _100M
Profile scale $\quad 1 \mathrm{~cm}=20 \%$	
Contour interval Varies from 100	

Instrument Apex Parametics Max Min I			
Coil configuration horizontal loop			
Coil separation $\quad 120 \mathrm{~m}$			
Accuracy $\quad \pm 1 \%$			
Method: $\quad \square$ Fixed transmitter	\square Shoot back	In line	\square Parallel line
Frequency_ $\quad 444 \mathrm{~Hz}$ and 1777 Hz			
(specify V.L.F. station)			
Parameters measured in-phase and quadr	components	e seconda	

Instrument \qquad
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument \qquad

Method	\square Time Domain	\square Frequency Domain
Parameters	On time	Frequency
	Off time	Range
	Delay time	

Power
Electrode array
Electrode spacing
Type of electrode \qquad

SELF POTENTIAL

Instrument
Survey Method \qquad

Corrections made \qquad

RADIOMETRIC

Instrument \qquad
Values measured
Energy windows (levels) \qquad
Height of instrument \qquad
Size of detector \qquad
Overburden \qquad (type, depth - include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)

Type of survey
Instrument \qquad
Accuracy
Parameters measured \qquad

Additional information (for understanding results) \qquad
\qquad
\qquad

AIRBORNE SURVEYS

Type of survey(s)
Instrument(s) (specify for each type of survey)

Accuracy
(specify for each type of survey)
Aircraft used \qquad
Sensor altitude \qquad
Navigation and flight path recovery method \qquad

Aircraft altitude Line Spacing Miles flown over total area \qquad Over claims only

GEOCHEMICAL SURVEY - PROCEDURE RECORD

Numbers of claims from which samples taken \qquad

э 008 Э 317
0022 3N17
30092 7N17
ヨ 0052 ヨลเา
ヨ 00ヶて 3 N 17
ョ о08ะ：эni］
3 002 zant
0012 3N1
ヨ 0002 ЭN17
ヨ 006 ！ 3 N17
Э 0081 3NT
30041 ЭN17
30091 ${ }^{3 N 1}$
3 OOS！ 3 N
$300 \downarrow 1$ ヨNIT
3 0081 ヨN17
30021 ヨN17
ヨ 0011 3N1
ョ 000 เ ヨกi

3 006 3Ni］
3 008 ヨN17
Э $00<\mathrm{BNI}$
ヨ 009 ЭN17
ョ 005 ㅋำ 7
$300+3 \mathrm{NI}$
3008 ヨN17
3002 3N17
3001 3N17
0 ヨลเา
M 001 ヨNㄱ

4． 002 3nit
M 008 ヨ mi
n 004 3N17
m oos gnit
M 009 ヨN17
400く 3NIT
008 3N17
M 006 ヨniT
m 0001 ヨN17
M 004 3N17

ヨ 0082 ヨN17

0092 3N17

ق00sz ヨN17

ヨ ootz ヨN17
3 $00 \varepsilon 2$ ᄏni7
ヨ 0082 ヨ 317
30012 ヨヘาา

NTVTrv＝rix．

7，

保

为 － 0

-80而

 ～8 O－0，

$-D D$－

[^0]: $837(85 / 12)$

[^1]: I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

