

This report contains our interpretation of the results of an airborne electromagnetic survey flown in the Jamieson Township Area, Ontario, on April 29 and May 2, 1975. A brief description of the survey procedure together with recommendations for ground follow-up is included.

The survey totalled 265 line miles and was performed by Questor Surveys Limited. The survey aircraft was a skyvan C-FQSL and the operating base was Timmins, Ontario.

The area outline is shown on a $1: 250,000$ map at the end of this report. This is part of the National Topographic Series sheet number 42A.

## MAP COMPIIATION

The base map is an uncontrolled mosaic constructed from Ontario Department of Lands \& Forests $1^{\prime \prime}=\frac{1}{4} \mathrm{mile}$ photographs. The mosaic was reproduced at a scale of $1^{\prime \prime}$ equals 1320 feet on stable transparent film from which white prints can be made.

Flight path recovery was accomplished by comparison of the prints of the 35 mm film with the mosaic in order to locate the fiducial points. These points are approximately 4000 feet apart.

## SURVEY PROCEDURE

Terrain clearance was maintained as close to 400 feet as possible, with the E.M. Bird at approximately 150 feet above the ground. A normal S-pattern flight path using approximately one mile turns was used. The equipment operator logged the flight details and monitored the instruments.

A line spacing of 660 feet was used.

INTERPRETATION AND RECOMMENDATIONS
A number of anomalous areas were located as a result of the INPUT survey. However, most of them can be attributed to the presence of conductive overburden. These areas display broad, fast decaying E.M. responses.

The following geological and aeromagnetic maps were available to the author to assist in a geological-geophysical interpretation.
P. 633 Kamiskotia - Whitesides Area
P. 677 Jamieson Township
P. 695 Jamieson Township
P. 696 Loveland Township
P. 697 MacDiarmid Township

Aeromagnetic Map 2300 G
AREAS 1 to 3 are all very weak and probably are due to conductive overburden. No further work is warranted.

A grid was set up covering AREA 4 by Mespi Mines Limited. Three drill holes, indicated on Preliminary Geological Map No. P. 677, were put down in a south-westerly direction. The weak anomalies appear to be correlating with a peridotite plug. The mineralization, if any, is not known to the author.

AREA 5 correlates with an area that was worked on by Chance Mining and Exploration Co. They did not intercept these two anomalies on the ground. The rocktypes appear to be mafic and ultramafic intrusive rocks ( $P$, 695). The anomalies are quite weak but they do have direct magnetic correlation, the latter, of course, being due to the ultramafic rocks. Disseminated sulphides could be the cause of the E. M. responses. The zone should be treated as a low priority target.

The anomalies in AREAS 6, 7 and 8 are very poor, displaying fast decay rates. They appear to be overburden responses and, as such, no further work is suggested.

The only anomaly that looks like a bedrock conductor is intercept 66A. Unfortunately, it appears that this anomaly has been drilled. Referring to Map P. 677, Terra Nova Explorations set up a grid over this ground and put the drill hole down on the zone. The mineralization intercepted is not known to the author. A little further to the west, Mespi Mines Limited put. down a drill hole and intercepted pyrite and pyrrhotite. The geology in the vicinity of intercept 66A has been described as bsing tufi and agglomerate.

Report by:
Endorsed by:


## EQUIPMENT

The aircraft are equipped with Mark VI INPUT (R) airborne E.M. systems and Barringer AM-104 or AM-101A proton precession magnetometers. Radar altimeters are used for vertical control. The outputs of these instruments together with fiducial timing marks are recorded by means of galvanometer type recorders using light sensitive paper. Thirty-five millimeter continuous strip cameras are used to record the actual flight path.
(I) BARRINGER/QUESTOR MARK VI INPUT (R) SYSTEM

The Induced Pulse Transient (INPUT) system is particularly well suited to the problems of overburden penetration. Currents are induced into the ground by means of a pulsed primary electromagnetic field which is generated in a transmitting loop around the aircraft. By using half sine wave current pulses and a loop of large turns-area, the high output power needed for deep penetration is achieved.

The induced current in a conductor produces a secondary electromagnetic field which is detected and measured after the termination of each primary pulse. Detection is accomplished by means of a receiving coil towed behind the aircraft on four hundred feet of cable,
and the received signal is processed and recorded by equipment in the aircraft. Since the measurements are in the time domain rather than the frequency domain common to continuous wave systems, interference effects of the primary transmitted field are eliminated. The secondary field is in the form of a decaying voltage transient originating in time at the termination of the transmitted pulse. The amplitude of the transient is, of course, proportional to the amount of current induced into the conductor and, in turn, this current is proportional to the dimensions, the conductivity and the depth beneath the aircraft.

The rate of decay of the transient is inversely proportional to conductivity. By sampling the decay curve at six different time intervals, and recording the amplitude of each sample, an estimate of the relative conductivity can be obtained. By this means, it is possible to discriminate between the effects due to conductive near-surface materials such as swamps and lake bottom silts, and those due to genuine bedrock sources. The transients due to strong conductors such as sulphides exhibit long decay curves and are therefore commonly recorded on all six channels. Sheet-like surface materials, on the other hand, have short decay curves and will normally only show a response in the first two or three channels.

The samples, or gates, are positioned at 260,480 , 755, 1100 , 1575 and 2100 micro-seconds after the cessation of the pulse. The widths of the gates are $225,225,320$, 410, 500 and 540 micro-seconds respectively.

For homogeneous conditions, the transient decay will be exponential and the time constant of decay is equal to the time difference at two successive sampling points divided by the $\log$ ratio of the amplitudes at these points.
(II) BARRINGER AM-104 OR AM-101A PROTON PRECESSION MAGNETOMETER

The magnetometers which measure the total magnetic field have a sensitivity of 5 gammas and a range from 20,000 gammas to 100,000 gammas.

Because of the high intensity field produced by the INPUT transmitter, the magnetometer results are recorded on a time-sharing basis. The magnetometer head is energized while the transmitter is on, but the read-out is obtained during a short period when the transmitter is off. Using this technique, the head is energized for 1.15 seconds and then the transmitter is switched off for 0.15 seconds while the precession frequency is being recorded and converted to gammas. Thus a magnetic reading is taken every 1.3 seconds.

## DATA PRESENTATION

The symbols used to designate the anomalies are shown in the legend on each map sheet, and the anomalies on each line are lettered in alphabetical order in the direction of flight. Their locations are plotted with reference to the fiducial numbers on the analog record.

A sample record is included to indicate the method used for correcting the position of the E.M. Bird and to identify the parameters that are recorded.

All the anomaly locations, magnetic correlations, conductivity-thickness values and the amplitudes of channel number 2 are listed on the data sheets accompanying the final maps.

## GENERAL INTERPRETATION

The INPUT system will respond to conductive overr burden and near-surface horizontal conducting layers in addition to bedrock conductors. Differentiation is based on the rate of transient decay, magnetic correlation and the anomaly shape together with the conductor pattern and topography.

Power lines sometimes produce spurious anomalies but these can be identified by reference to the monitor channel.

Railroad and pipeline responses are recognized by studying the film strips.

Graphite or carbonaceous material exhibits a wide range of conductivity. When long conductors without magnetic correlation are located on or parallel to known faults or photographic linears, graphite is most likely the cause.

Contact zones can often be predicted when anomaly trends coincide'with the lines of maximum gradient along a flanking magnetic anomaly. It is unfortunate that graphite can also occur as relatively short conductors and produce attractive looking anomalies. With no other information than the airborne results, these must be examined on the ground.

Serpentinized peridotites often produce anomalies with a character that is fairly easy to recognize. The conductivity which is probably caused in part by magnetite, is fairly low so that the anomalies often have a fairly large response on channel \#1; they decay rapidly, and they have strong magnetic correlation. INPUT E. M. anomalies over massive magnetites show a relationship to the total Fe content. Below 25 - 30\%, very little or no response at all is obtained, but as the percentage increases the anomalies become quite strong with a characteristic rate of decay which is usually greater than that produced by massive sulphides.
(vi)

Commercial sulphide ore bodies are rare, and those that respond to airborne survey methods usually have medium to high conductivity. Limited lateral dimensions are to be expected and many have magnetic correlation caused by magnetite or pyrrhotite. Provided that the ore bodies do not occur within formational conductive zones as mentioned above, the anomalies caused by them will usually be recognized on an E.M. map as priority targets.


| ANOM* | F10 | CHS | $\begin{gathered} \text { CH2-AMP } \\ \text { PPM } \end{gathered}$ | MHOS | MAG | VALUE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 A | 57.70 | 4 | 1700 | 1 | 57.60 | 800 |
| 2 A | 19.42 | 4 | 1525 | 1 | 819.45 | 620 |
| 2B | R24.24 | 3 | 175 | 1 | 824.35 | 75 |
| 3A | 69.15 | 3 | 150 | 1 | 68.95 | 100 |
| 4 A | 82.10 | 2 | 150 | NC | 81.90 | 110 |
| 4 B | 86.90 | 4 | 2000 | 1 | 86.70 | 40 |
| 5 A | 75.60 | 4 | 1325 | 1 | 75.75 | 25 |
| 5B | 76.10 | 4 | 2550 | 1 | 76.30 | 35 |
| SC | 80.75 | 3 | 200 | 1 | 80.90 | 95 |
| 6A | 107.57 | 4 | 2050 | 1 | 107.40 | 100 |
| 68 | 107.68 | 4 | 1500 | 1 | 0.00 | 0 |
| 7 A | 117.12 | $?$ | 100 | NC | 117.20 | 70 |
| 7 B | 121.70 | 4 | 1550 | 1 | 121.50 | 120 |
| 8A | 93.24 | 4 | 750 | 1 | 99.35 | 110 |
| 8 B | 99.40 | 3 | 800 | 1 | 0.00 | 0 |
| 9 A | 524.4? | 5 | 550 | 6 | 524.40 | 20 |
| 10 A | 538.40 | 4 | 500 | 3 | 538.50 | 20 |
| 12 A | 556.15 | 3 | 275 | 1 | 556.15 | 55 |
| 13 A | 523.63 | 4 | 300 | 4 | 523.45 | 20 |
| 14 A | 568.73 | 2 | 100 | NC | 568.70 | 90 |
| 14 B | 569.10 | 3 | 275 | 1 | 569.15 | 35 |
| 14 C | 573.00 | 4 | 525 | 1 | 572.95 | 250 |
| 15 A | 5.33 .10 | 4 | 1000 | 1 | 533.05 | 230 |
| $15 B$ | 537.90 | 3 | 300 | 1 | 537.80 | 30 |
| 16 A | 583.00 | 3 | 200 | 3 | 583.00 | 90 |
| 16 B | 583.27 | 3 | 200 | 1 | 583.25 | 20 |
| 16 C | 588.42 | 4 | 1700 | 1 | 588.50 | 185 |
| 17 A | 551.42 | 3 | 125 | 1 | 551.55 | 90 |
| 18 A | 602.40 | 5 | 1900 | 1 | 60?.45 | 200 |
| 204 | 616.04 | 4 | 1575 | 1 | 616.10 | 200 |
| 22 A | 624.60 | 4 | 800 | 1 | 0.00 | 0 |
| 228 | $625 \cdot 10$ | 4 | 1150 | 1 | 624.95 | 350 |
| $2.2 C$ | 627.22 | 4 | 1300 | 1 | 627.30 | 190 |
| 23 A | 589.64 | 4 | 1100 | 1 | 589.85 | 170 |
| 24 A | 661.03 | 3 | 925 | 1 | 661.05 | 100 |
| 31 A | 543.97 | 3 | 450 | 1 | $644 \cdot 10$ | 40 |
| 33 A | 712.05 | 3 | 225 | 1 | 711.95 | 40 |
| 35 A | 836.70 | 3 | 325 | 2 | 836.55 | 35 |
| 36 A | 828.47 | 3 | 300 | 2 | 828.25 | 20 |
| 36 B | 830.29 | 3 | 325 | 2 | 0.00 | 0 |
| 37 A | 848.01 | 3 | 175 | 1 | 848.10 | 70 |
| 38 A | 861.41 | 3 | 200 | 3 | 861.60 | 25 |
| 40 A | 372.49 | 3 | 650 | 1 | 872.60 | 50 |
| 41 A | 885.42 | 3 | 600 | 1 | 0.00 | 0 |
| 41 B | 885.70 | 3 | 575 | 1 | 0.00 | 0 |
| 41 C | 886.10 | 3 | 475 | 1 | 0.00 | 0 |
| 42A | 857.79 | 3 | 700 | 1 | 857.65 | 130 |
| 45A | 921.80 | 3 | 825 | 1 | 0.00 | 0 |
| 46 A | 883.43 | 4 | 950 | 1 | 883.70 | 45 |
| 47 A | 936.85 | 2 | 100 | NC | 936.95 | 110 |
| 4BA | 995.03 | 2 | 100 | NC | 894.95 | 45 |
| 50A | 913.34 | 4 | 800 | 1 | 913.55 | 155 |
| 51A | 963.76 | 3 | 775 | 1 | 963.90 | 170 |
| 52A | 929.90 | 3 | 1000 | 1 | 0.00 | 0 |
| 528 | $930 \cdot 12$ | 4 | 725 | 3 | 930.15 | 320 |
| 52 C | 930.45 | 4 | 1225 | 1 | 0.00 | 0 |
| 53 A | 974.10 | 4 | 700 | 1 | 0.00 | 0 |
| 54 A | 938.64 | 3 | 300 | 1 | 938.75 | 140 |


 Ne. 2.1887 ELEM YE
900

## TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT

 TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.Type of Survey Airborne EM \& Mag, = combined

Township or Area Kob, Jamieson, Loveland, MacDlarmid Claim holder (s) Robson Mines Ltd, MINING CLAIMS TRAVERSED



AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) Magnetometer See attached schedules,

Radiometric $\qquad$
DATE: 13 AMy 75 signature:


| PROJECTS SECTION | $\angle 1 D \cdot 18 \cdot, 259$, |
| :--- | :---: |
| Res. Geol. | Qualifications $2 \cdot 2$, |


$\qquad$
$\qquad$
Previous Surveys
 .....................
$\qquad$


$\qquad$ 116 shams Pith 80 days 27 ciafisivith 40, days.


| Checked by | _date__ |
| :--- | :--- |
| GEOLOGICAL BRANCH |  |
| Approved by | _date |
| GEOLOGICAL BRANCH |  |

Show instrument technical data in each space for type of survey submitted or indicate "not applicable"

## GEOPHYSICAL TECHNICAL DATA

## GROUND SURVEYS

Number of Stations $\qquad$ Number of Readings
Station interval $\qquad$ art

Line spacing
Profile scale or Contour intervals
(epecify for each type of (urve) (specify for each type of survey)

## MAGNETIC

Instrument $\qquad$ enta

Accuracy - Scale constant $\qquad$
Diurnal correction method $\qquad$
Base station location $\qquad$

ELECTROMAGNETIC
Instrument $\qquad$
Coil configuration
Coil separation $\qquad$

|  | 1 |
| :--- | :--- | :--- |
| Accuracy |  |
| Method: $\quad \square$ Fixed transmitter $\quad \square$ Shoot back $\quad \square$ In line $\square$ Parallel line |  |


| Frequency | (zpecify V.L.F. station) |
| :--- | :---: |
| Parameters measured |  |
| GRAVITY |  |
| Instrument |  |
| Scale constant |  |
| Corrections made |  |
| Base station value and location |  |


|  |  |
| :--- | :--- |
|  |  |
| Elevation accuracy__ |  |
| INDUCED POLARIZATION | RESISTIVITY |
| Instrument |  |
| Time domain |  |
| Frequency- |  |
| Powequency domain |  |
| Electrode array | Range |

Electrode spacing
Type of electrode

## SELF POTENTIAL

Instrument
Range
Survey Method $\qquad$

Corrections made $\qquad$

RADIOMETRIC
Instrument
Values measured


Energy windows (levels) $\qquad$
Height of instrument $\qquad$ Background Count
Size of detector $\qquad$ (type, depth - include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey
Instrument
$\qquad$

Accuracy
Parameters measured

Additional information (for understanding results)

## AIRBORNE SURVEYS

Type of survey (s) Airborne_ EM and_magnetics combined

# Instrument (s) Barringer/Questor Mark VI, Input System \& Barringer AM-LO4 Proton Precession (specify for each type of survey) Magnetometer. <br> Accuracy Magnetometer: <br> $\pm 5$ gammas: EM system: 

 Epnepant pres ce, tore(specify for each type of survey)

## Aircraft used Skyvan C-FQSL

Sensor altitude 150 feet
Navigation and flight path recovery method Visual Navigation from Photomosalc
Recovery by comparison of prints of 35 mm film with mosaic to 10 cate fiducial points.
Aircraft altitude 400 feet
Miles flown over total area_ 265
Line Spacing
660 feet
Over claims only $\square$ $(13.5-16.5)$

Numbers of claims from which samples taken
WTVTITITT


| CLAIM NUMBER | DAYS CREDIT FOR AEM | $\begin{gathered} \text { DAYS CREDIT } \\ \text { FOR AMAG } \end{gathered}$ | TOTAL CREDIT CLAIMED |
| :---: | :---: | :---: | :---: |
|  |  |  | $\cdots$ |
| P 372386 | 40 | 40 | 80 |
| P 372387 | 40 | 40 | 80 |
| P 372388 | 40 | 40 | 80 |
| P 372389 | 40 | 40 | 80 |
| P 372390 | 40 | 40 | 80 |
| P 372391 | 40 | 40 | 80 |
| P 372392 | 40 | 40 | 80 |
| P 372393 | 40 | 40 | 80 |
| P 372394 | 40 | 40 | 80 |
| P 372395 | 40 | 40 | 80 |
| P 372396 | 40 | 40 | 80 |
| P 372397 | 40 | 40 | 80 |
| P 372398 | 40 | 40 | 80 |
| P 372399 | 40 | 40 | 80 |
| P 372400 | 40 | 40 | 80 |
| P 372401 | 40 | 40 | 80 |
| P 372402 | 40 | 40 | 80 |
| P 372403 | 40 | 40 | 80 |
| P 372417 | 20 | 20 | 40 |
| P 372418 | 20 | 20 | 40 |
| P 372419 | 20 | 20 | 40 |
| P 372420 | 20 | 20 | 40 |
| P 372421 | 20 | 20 | 40 |
| P 372422 | 20 | 20 | 40 |
| P 372423 | 20 | 20 | 40 |
| P 372424 | 20 | 20 | 40 |
| P 372425 | 20 | 20 | 40 |
| P 372426 | 20 | 20 | 40 |
| P 372427 | 20 | 20 | 40 |
| P 372428 | 20 | 20 | 40 |
| P 41.3099 | 40 | 40 | 80 |
| P 413100 | 40 | 40 | 80 |
| P 413101 | 40 | 40 | 80 |


| CLATM NUMBER | DAYS CREDIT <br> _LOR AEM | DAYS CREDIT <br> FOR AMAG | TOTAL CREDIT CLAIMED |
| :---: | :---: | :---: | :---: |
| P 372339 | 40 | 40 | $80^{\circ}$ |
| P 372340 | 40 | 40 | 80 |
| P 372341 | 40 | 40 | 80 |
| P 372342 | 40 | 40 | 80 |
| P 372343 | 40 | 40 | 80 |
| P 372344 | 40 | 40 | 80 |
| P 372345 | 40 | 40 | 80 |
| P 372346 | 40 | 40 | 80 |
| P 372347 | 40 | 40 | 80 |
| P 372348 | 40 | 40 | 80 |
| P 372349 | 40 | 40 | 80 |
| P 372350 | 40 | 40 | 80 |
| P 372351 | 40 | 40 | 80 |
| P 372352 | 40 | 40 | 80 |
| P 372353 | 40 | 40 | 80 |
| P 372354 | 40 | 40 | 80 |
| P 372355 | 40 | 40 | 80 |
| P 372356 | 40 | 40 | 80 |
| P 372357 | 40 | 40 | 80 |
| P 372358 | 40 | 40 | 80 |
| P 372359 | 40 | 40 | 80 |
| P 372360 | 40 | 40 | 80 |
| P 372361 | 40 | 40 | 80 |
| P 372362 | 40 | 40 | 80 |
| P 372363 | 40 | 40 | 80 |
| P 372364 | 40 | 40 | 80 |
| P 372365 | 40 | 40 | 80 |
| P 372376 | 20 | 20 | 40 |
| P 372377 | 20 | 20 | 40 |
| P 372378 | 20 | 20 | 40 |
| P 372379 | 20 | 20 | 40 |
| P 372380 | 40 | 40 | 80 |
| P 372381 | 40 | 40 | 80 |
| P 372382 | 40 | 40 | 80 |
| P 372383 | 40 | 40 | 80 |
| P 372384 | 40 | 40 | 80 |
| P 372385 | $40^{\circ}$ | 40 | 80 |

## CLATM NUMBER



TOTAL CREDIT CLAIMED 40 40 20 40 40 40 40 40 40 40 40 40 80 80 80

| 40 | 80 |
| :--- | :--- |
| 40 | 80 |

$40 \quad 80$ 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80

| 40 | 80 |
| :--- | :--- |
| 40 | 80 |

40 ..... 80
P 372300 ..... 40
P 372301 ..... 40

CLATM NUMBER


P 372303
P 372305
P 372306
P 372307
P 372308
P 372309
P 372310
P 372311
P 372312
P 372313
P 372314
P 372315
P 372316
P 372317
P 372318
P 372319
P 372320
P 372321
P 372322
P 372323
P 372324
P 372325
P 372326
P 372327
P 372328
P 372329
P 372330
P 372331
P 372332
P 372333
P 372334
P 372335
P 372336
P 372337
P 372338

DAYS CREDIT FOR AEM

DAYS CREDIT FOR AMAG
$\qquad$

TOTAL CREDIT CLAIMED


80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80



REID TWP - M. 575


## THF TOWNSHIP <br> 2.1887 <br> MACDIARMID

nISTRICT OF COCHRANE

PORCUPINE
MINING DIVISION
SCALE: I-INCH 40 CHAINS

LEGEND
paifnted land
LROWN
tocared ianu
licinse or occupation
mining righis oni.y
surtace rilihis oni
HOADS
improved roads;
KAII WAYS
RAIT WAYS
powf R IIN
MARSH OR MUSKf
mines
dancflled


NOTES
400'surfoce rights reservation along the shores of all lakes and river

Flooding rights to oreas along Motlagami
River reserved to HEPC -107085
This townenip
this Cownhip Iles within the Municlpality
CITY of TIMMINS. of CITY of TIMMINS.

- MINING LANDS:

DATE OFISS
AUG 151975
MINISTRY
OF NATURAL RESOURCES

ран по $\quad$. 294
(1N11RIW
MINISTRY OF NATURAL RESOURCES
SURVEYS AND MAPPING BRANCH

LOVELAND TP. M. 293


OFE TOWNSHIP 2.1887
ROBB
DISTRICT OF
COCHRANE
PORCUPINE
MINING DIVISION
SCALE: $1-\mathrm{INCH}=40 \mathrm{CHAINS}$
LEGEND
PATENTED LAND
CROWN LAND SALE
LEASES
LOCATED LAND
LICENSE OF OCCUPATION
MINING RIGHTS ONLY
SURFACE RIGHTS ONLY
ROADS
IMPROVED ROADS
KING HIGHWAYS
RAIL WAYS
POWER LINES
MARSH OR MUSKEG
MINES
CANCELLED

ONTARIO
MINISTRY OF NATURAL RESOURCES
SURVEYS AND MAPPING BRANCH




