

010

A Geological Report on the Property of

DAVID J. MEUNIER

Loveland Township Porcupine Mining Division Ontario

By

R.P. Bowen, P.Eng.

RECEIVED

4

4

JUL 1 5 1991

MINING LANDS SECTION

> R.P. BOWEN ENGINEERING INC. P.O. Box 5010, PMS, South Porcupine, Ontario PON 1K0

> > (705) 235-5139

30 May 1991

M-1991-1

42412NE0781 2.14225 LOVELAND

Ø10C

TABLE OF CONTENTS

	Page
SUMMARY	i
INTRODUCTION	1
Location and Access	1
Recorded Holder	1
Submitting Party	1
Claims and Dates of Survey	1
Physiography	
Natural Resources	
Previous Work	4
GENERAL GEOLOGY	
Regional Geology	.8
Property Geology	8
Structural Geology	10
Metamorphism	10
Geochemistry	11
Geophysics	13
CONCLUCTONG AND DECOMBIENDATIONS	15
CONCLUSIONS AND RECOMMENDATIONS	15
REFERENCES	16

FIGURES

Figure	1	-	Regional Location Map	2
Figure	2	-	Claim Map	3
Figure	3	-	Jensen Cation Plot	11
Figure	4		AFM Diagram	12
Figure	5	-	SiO ₂ vs Na ₂ O+K ₂ O Diagram	12

TABLE

APPENDICES

APPENDIX A - Lithoprint ICAP analyses for diamond drill hole LDM-2-90 APPENDIX B - Analyses for OGS Geophysical Reports 1 and 2 APPENDIX C - Report of Work Forms

MAPS

Geological Map 1 (South) Geological Map 2 (Center) Geological Map 3 (North) Geological Map 4 (West) Scale: 1":5,000 (Back Pocket)

SUMMARY

This report presents the results of a geological survey over forty seven claims in Loveland Township, Porcupine Mining Division, Ontario. The claims are held by David J. Meunier and Gabriel Sutherland as part of a larger land package in the township. In September of 1990 a report was filed for assessment credit on six claims in the southern part of the township. These claims are included in this report on the enclosed maps though they are not filed for credit in this report.

Two grids cover the property. An old grid cut by Gulf Minerals Canada Limited was brushed out and utilized where necessary. This grid was cut at azimuth 75° with line spacing of 400 feet. A new grid was cut by Meunier and Sutherland at azimuth 66° with line spacing of 100 meters over part of the claims. Traverses were made over the lines and the character of the land was noted and outcrops encountered were mapped. Assessment file data was consulted along with government reports to assist in completing the report.

The claims are underlain by Precambrian age mafic to felsic metavolcanics and all units have been cut by later age north trending diabase dikes. Glacial till and outwash deposits cover all bed rock on the claims and only these deposits were noted. Large glacial erratics are scattered about the claim group.

Mineral potential will have to be assessed by geophysical methods, UTEM electromagnetic method in particular and any anomalies tested by diamond drilling.

i

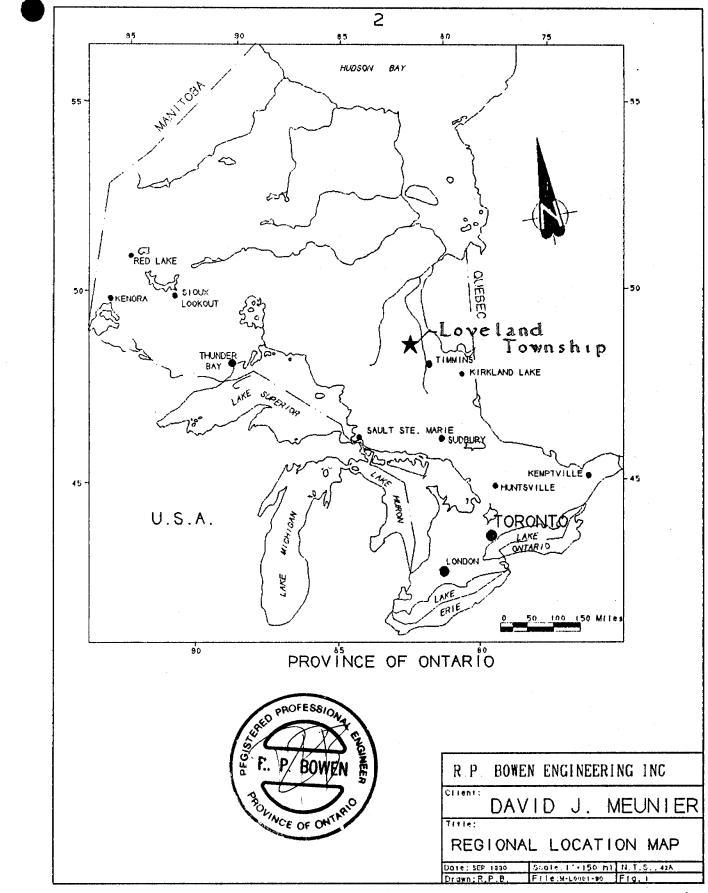
INTRODUCTION

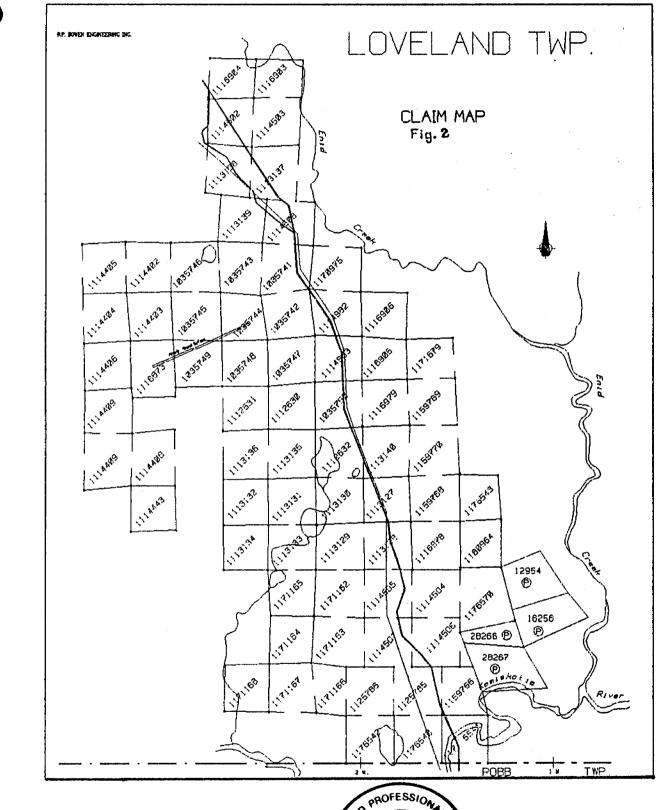
Location and Access

The subject claims are located in southeast to southcentral Loveland Township, Porcupine Mining Division and are accessed by a forest access road extending north from the end of Highway 516. Highway 516 extends about 12 miles northwest from Highway 101 leaving Timmins from the west, Figure 1. This road passes claim post 2 of claim 1125785 and passes south to north across the claim group. Where timber operations have occurred, logging access roads traverse a good portion of the property and make access relatively easy. An airstrip is located in the northern part of the property.

Recorded Holder

David J. Meunier, Licence No. M-17157 of 403 Dome Street, South Porcupine, Ontario and Gabriel Sutherland, Licence No. M20971 of Timmins, Ontario.


Submitting Party


R.P. Bowen Engineering Inc. of South Porcupine, Ontario is the submitting party for this survey.

Claims and Dates of Survey

67 claims were the subject of a geological survey conducted between 1 April 1991 and 30 May 1991. The claims are shown on Figure 2.
The claims are: 1035741 through 1035750 inclusive 1176570 1112630 through 1112632 inclusive 1180964 1112107 through 1112140 inclusion

1113127 through 1112002 inclusive 1113127 through 1113140 inclusive 1114402 through 1114409 inclusive 1114443 1114502 through 1114503 inclusive 1114508 1114982 through 1116906 inclusive 1116903 through 1116906 inclusive 116978 through 1116979 inclusive 1159766 1159768 through 1159770 inclusive 1170975 1171162 through 1171168 inclusive 1171679 1176540 through 1176543 inclusive

Ú

Physiography

The claims are located on relatively flat ground except for several pot holes scattered around the claims that are approximately 10 meters deep. The claims have been clear-cut except for the extreme western claims and those claims close to Enid Creek and several other pot-holes and ponds. Outcrop was discovered on the northeastern claims and overburden was up to 30 meters deep as determined from examining overburden and diamond drilling records. The character of overburden was mostly glacial till and esker derived gravels with lesser outwash sands. Overburden drilling undertaken in previous surveys determined the depth and character of the overburden. The claims are well drained except for the above mentioned pot-hole. Drainage is south into the Kamiskotia River.

Natural Resources

Being that the area has been almost completely clear-cut there is not much in the line of natural resources at present. The clear-cut area has been planted with jack and red pine and in twenty or so years will be ready for harvesting. Smaller logs left behind from the timber operations are presently being cut up by the public for fire wood. The only signs of wildlife besides song birds were bears that were feeding on the blueberries.

Previous Work

The earliest work conducted under government auspices was that done by L.G. Berry in 1944. In 1957 Berry along with S.A. Ferguson specifically mapped Loveland Township. Larger, more regional survey efforts were made by Ginn and Fenwick (1962) and Pyke et al (1972). R.S. Middleton (1974) conducted a complete ground magnetometer survey of Loveland Township and made a geological interpretation of the data. The most recent government effort was the INPUT survey conducted by the Ontario Geological Survey as part of the Timmins release in 1989.

Bombay Explorations (1972) Timmins File T-167

This company conducted ground magnetic and electromagnetic surveys over the southwestern part of the property to the township line. Several shot EM conductors were defined, however, only one right on the township line was tested by diamond drilling.

Cominco Ltd. (1975) Timmins File T-1621

Cominco filed the results of an overburden drilling survey on part of the present property in 1975. The overburden samples were assayed for copper, lead and zinc and the bedrock chips identified as to rock type. Six of the holes filed were drilled on what is now the Meunier property. An airborne magnetometer and electromagnetic survey was also filed by the company over a much larger area. No conductors or significant magnetic responses were noted over the present property.

Falconbridge Nickel Mines Limited (1973-4) Timmins File T-1583

Falconbridge had a claim block covering part of the westernmost claims on the Meunier property. In 1973 and 1974 they conducted a ground magnetometer (Scintrex MF-2) and electromagnetic (McPhar SS15) survey over the property. The diabase dikes were outlined and weak conductors were interpreted to be caused by water along the dike wall-rock contacts. Some detailed follow-up work was recommended, however, there is no evidence that this work was ever done.

Gulf Minerals (1982) Timmins File T-1929

Gulf conducted an overburden drilling survey over most of the claim group and surrounding area to determine the bedrock type. Most of the claims appear to be underlain by felsic metavolcanics with lesser intermediate to mafic metavolcanic units. There is a fairly good correlation between the Gulf drilling and the Middleton geophysical interpretation. Very detailed ground magnetic and Max-Min surveys were conducted but not submitted for assessment credit. Mr. Meunier has these surveys in his possession and a great deal of information has been gleaned from them. Differentiating between mafic and felsic metavolcanic rocks is difficult at overburden depths of 100 feet or more.

Hollinger Mines Limited (1970) Timmins File T-1247

This company conducted a geomagnetic survey over a block of claims along the Robb-Loveland Township boundary in 1970. One diamond drill hole was put down along the Kamiskotia River to a depth of 525 feet. Felsic to intermediate rock types were identified as well as a diabase dike.

MacDonald Mines Ltd. (1964-6) Timmins File T-785

The company had a small claim block in the central part of the claim group. They conducted geological mapping, ground magnetometer and electromagnetic surveys over the property. The magnetics outlined the diabase dikes extremely well, however, it did not provide much other meaningful data. The EM survey indicated a weak conductor and follow-up work was recommended. There is no evidence that this work was done.

Mespi Mines Ltd. (1966) Timmins File T-756

Mespi conducted several large airborne geophysical surveys over the area after the Kidd Creek discovery. Some ground EM follow-up work was conducted and several moderate, though short, conductors were outlined on the present property. No follow-up was done and claims were allowed to lapse. Some short conductors were noted on the property, however, they are best described as subtle, however, deeper penetrating EM methods could help resolve these anomalies.

Mespi Mines Ltd. (1966) Timmins File T-758

This company had a small claim block in the northern part of the property near Enid Creek. An EM survey using a Crone unit utilizing frequencies of 1,800 and 400 Hz with a 300 foot coil separation and readings at every 100 feet was done. Some small anomalies were outlined and follow-up work was recommended with no evidence that it was performed.

David Meunier (1989-90) Timmins File T-3381

Mr. Meunier contracted Lamontagne Geophysics Ltd. to conduct a downhole UTEM probe of Gulf Minerals diamond drill hole R-81-A-3 in 1989. A weak of moderate response was obtained and it was decided to apply for an OPAP grant to deepen this hole. The hole originally ended at 1,424 feet and was deepened to 1,913 feet. Some alteration was noted but no massive sulfides were encountered. In the fall of 1990 a short geological survey was conducted over the southern 6 claims for assessment credit so the claim block could be held. The results of this survey are incorporated into and expanded in this report.

United Macfie Mines Limited (1964) Timmins file T-790

This company held a claim block over ground now covered by the westernmost claims of the present group. A TURAM EM survey was performed by Huntec Limited and five diamond drill holes were drilled, the logs of four are in the assessment files. What was drilled was a diorite-granite contact which appeared as a weak conductor on the TURAM survey.

Windfall Oils and Mines Ltd. (1964) Timmins file T-809

This company held a small block of claims now covered by the subject claim group. A ground magnetometer and electromagnetic survey was conducted. The magnetic surveys highlighted the diabase dikes and the EM survey did define several minor conductors although there was no magnetic correlation. A more detailed survey was recommended with a Ronka unit and an associated soil geochemistry survey. Whether this work was performed is not known.

GENERAL GEOLOGY

Regional Geology

The regional geology underlying the area of Loveland Township is a synformal structure about a southeast trending axis. Felsic to intermediate pyroclastics ranging from breccias to tuffs with lesser flows form the inner portion of the synform with mafic metavolcanic flows on the outer portions of the limbs. The sequence appears to be repeated further out on the limbs. Lesser mafic and felsic hypabbysal intrusives are noted locally. Cherty beds are noted in diamond drill core and mineralization is noted in diamond drilling north and east of the property. metasedimentary rocks were encountered in diamond drilling as well, however, they were a minor percentage. They were often graphitic slates and were often pyritized indicating deposition in a reducing environment. Alteration appears to be mainly chlorite and carbonate with lesser sericite and green mica and sulfides. Minor komatiitic units are indicated by the presence of talc schists. Shearing is described as schistose and other penetrative fabric descriptions. Diabase dikes cut all lithologies.

Property Geology

Most of the property appears to be underlain by a sequence of mafic and felsic metavolcanics with lesser intermediate units. The mafic flows are massive to pillowed in nature. These rocks have been identified in outcrop northeast of the property and from some overburden drilling. Some intermediate metavolcanics appear to be associated with the felsic units and may be a transition between the mafic to felsic sequences. These rocks have been identified from overburden and diamond drilling and in outcrop in the north and east part of the property. The outcrop off the east end of the airstrip (Map 3) shows relatively distinct and well defined contacts with underlying and overlying mafic units. This is not the case with the outcrop on the same map sheet closer to the main forest access road on claims 1036741 and 1114508. The felsic units appear to be intrusive in part or occur as the result of unmixing of lava units. Contacts are very irregular and the foliations are contorted.

The metavolcanic rocks are calc-alkalic to tholeiitic in character as indicated by geochemical plots and they range from rhyolite to basalt.

Table 1 - Table of Lithologic Units on the Meunier Claims

CENOZOIC

QUATERNARY Recent Peat, lake and stream deposits

PLEISTOCENE Till, sand and gravel

PRECAMBRIAN

EARLY TO MIDDLE PRECAMBRIAN LATE MAFIC INTRUSIVE ROCKS Diabase, quartz diabase

INTRUSIVE CONTACT

EARLY PRECAMBRIAN MAFIC INTRUSIVE ROCK Gabbro, thick mafic flow

INTRUSIVE CONTACT

METAVOLCANIC ROCKS FELSIC METAVOLCANIC ROCKS Massive to porphyritic flows and pyroclastics

INTERMEDIATE METAVOLCANIC ROCKS Massive to porphyritic flows and pyroclastics

MAFIC METAVOLCANIC ROCKS

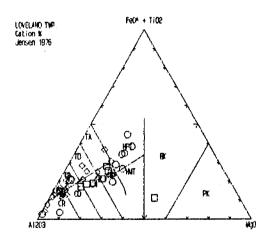
Pillowed to massive medium grained mafic lavas, coarser portions may be synvolcanic sills or dikes or thicker flows Mafic units are composed of chlorite after hornblende and pyroxene and plagiocalse and lesser quartz. The units are dark greenish gray to greenish black and weather greenish gray often with brownish staining where sulfide minerals have oxidized. This is most evident along pillow salvages. Where porphyritic the chlorite and plagiocalse phenocrysts are set in a finer matrix made up of the same minerals and quartz. Plagiocalse, potassic feldspar and quartz with lesser amounts of sericite and chlorite make up the bulk of the intermediate to felsic metavolcanic units. The intermediate units are gray to grayish brown and weather somewhat lighter. Felsic units are white to light gray and weather slightly more dull. Pyrite and magnetite are the primary metallic accessory minerals.

Some coarse grained units were noted in overburden and diamond drilling and were identified as gabbro and diorite although they may be coarse mafic to intermediate flows. Gabbro bodies are known to exist both east and west of the property. The gabbro bodies are largely composed of plagioclase and hornblende. North trending diabase dikes cut all lithologies. These rocks are medium grained and are composed of quartz, hornblende, pyroxene, biotite and ferromagnesian minerals. The diabase is black to dark brown and weathers moderate brown as ferromagnesian and sulfide minerals oxidize.

STRUCTURAL GEOLOGY

The lithology trends southeast across the property and tops face the northeast. Faults have been interpreted from airborne geophysical data, OGS (1988). Structural deformation has not been great as pillows are quite well defined and do not appear to have undergone stretching and gas vesicles along the tops of pillows are not overly flattened. Jointing was noted in all outcrops, however, insufficient measurements were taken to plot a stereonet plot of either joint patters or lineations.

METAMORPHISM


Metamorphic grade is greenschist grade. The metamorphic minerals are predominately chlorite in the mafic units and quartz and sericite in the felsic to intermediate units. Bleached portions were noted in diamond drill core and soda depletion was usually evident at these points.

GEOCHEMISTRY

Thirty two whole rock and trace element analyses were performed on diamond drill core from hole LDM-2-90 drilled as part of an OPAP grant on claim 1114983, Map 2. The analyses were done by Barringer Laboratories using their Lithoprint ICAP method. Oxides of SiO₂, Al₂O₃, Fe₂O₃ MgO, CaO, Na O, KO, TiO PO_3 and LOI were recorded and trace elements Ag, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, V, Zn and Zr. The results of these analyses are recorded as anhydrous values in Appendix A. Iron was reported as total iron Fe₂O₃ and has been recalculated to Fe₂O₃ and FeO with a factor of 0.8998. In addition, the total rock analyses reported by Middleton (1973 & 1974) are also reported as straight weight percents in Appendix B.

All data was entered into a spreadsheet and converted to files for manipulation by Newpet, Clarke (1991).

Figure 4 is a Jensen Cation Plot of all data after Jensen (1976), Figure 5 is an AFM diagram after Irving and Baragar (1971) and Figure 6 is an alkalis-silica plot after Irving and Baragar (1971). Symbols representing various analyses are 0 for samples from Middleton (1973), \Box for samples from Middleton (1974) and \diamondsuit for samples from diamond drill hole LDM-2-90.

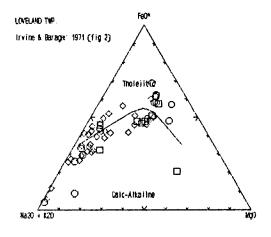


Figure 4 - AFM diagram after Irving and Baragar (1971)

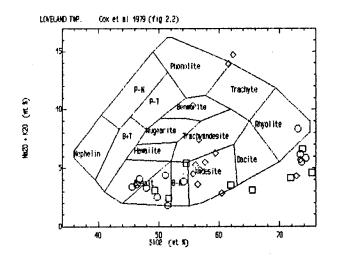


Figure 5 - Alkalies vs silica plot after Cox et al (1979)

As can be seen from the Jensen and AFM plots the units appear to cluster in a linear trend indicating a single volcanic cycle. Those rocks falling outside the trend do so either because they have been altered or are intrusive in nature and may have originated from a different magma chamber. Soda leaching is common.

GEOPHYSICS

Most of the property was covered by ground magnetometer and Max-Min horizontal loop surveys by Gulf Minerals in 1982. This data was not filed for assessment work credit. Mr. Meunier acquired that data from Gulf in 1991 and the author contracted Rayan Exploration Ltd. to reprocess the magnetic data into 25 gamma, 50 gamma and 100 gamma contour plots using Geopak Systems software. The 25 gamma contour data was used in conjunction with Gulf's overburden bedrock chip sample data, diamond drill data and the Meunier diamond drill data to assist in the interpretation of the geology on the property. Whether or not this reprocessed data will find it's way into the assessment files will be predicated on obtaining assessment credit for the reprocessed data. Diabase dikes and faults were most prominent and a considerable amount of information was interpreted from the magnetics about the metavolcanic units. The 25 gamma contour data was much more helpful than the 50 or 100 gamma contour data.

Middleton (1974) prepared a geophysical report for the Ontario Geological Survey. This report consisted of fluxgate magnetic data obtained by compass and chain traverses over unstaked and unsurveyed ground and tying in magnetic surveys that had been submitted for assessment credit. Due to the coarse contour interval used in presenting the data the only reliable data was that of the diabase dike pattern. The same can be said for the 1 inch to 1 mile aeromagnetic data presented on Map 299G by GSC (1956).

In 1987 the OGS contracted Geoterrex to fly the Timmins area with their INPUT and total intensity magnetic system, OGS (1988). These maps are presented on a township by township basis at a 1:20,000 scale on an airphoto mosaic. Diabase dikes and linear faults stand out clearly as do mafic intrusions. Some discrimination of the metavolcanic units can be made and if outcrop coverage is sufficient for field checks a fairly accurate geological map may be prepared. If diabase dike swarms are prevalent the general metavolcanic trend becomes obscured and outcrop control becomes necessary for a proper interpretation. Flightline data from the OGS may be obtained for entry into commercially available computer data manipulation packages for output as shaded , filtered, derivative and shadow maps. These maps, while costly, can provide a considerable amount of data. It must be remembered however that one still doesn't know the character or identity of the underlying rock units until he visits the field to view and sample the rocks first hand. Where overburden is thick diamond drilling must be resorted to.

It is the author's opinion that the rocks west of the Mattagami River fault as identified by Middleton (1974) represent units lower in the system than those to the east. The reason for this thinking is that the density of diabase dikes increases west of the Mattagami River and that this fact indicates the roots of the diabase feeder system. Further to this gold deposition is epithermal and higher in the system and has been much more prevalent east of the river while base metal deposition is usually more of a meso or telethermal origin and is more common west of the river.

CONCLUSIONS AND RECOMMENDATIONS

This property is covered with a deep mantle of glacial overburden and a comprehensive program of deep penetrating electromagnetic surveys followed up in selected areas with induced polarization/resistivity surveys will be the most cost effective way to map the underlying geology. Any targets should then be tested by diamond drilling.

This property will most likely provide base metal targets although one should be on the alert for gold mineralization.

REFERENCES

Berry, L.G.	
1944:	Geology of the Robb-Jamieson Area; Ontario Department of Mines, Vol. 53, Pt. 4, p. 1–16 (published 1946). Accompanied by Map 53c, scale 1 inch to $\frac{1}{2}$ mile.
Berry, L.G. and F 1957:	erguson, S.A. Loveland Township, District of Cochrane; Ontario Department of Mines Preliminary Map P.25, scale 1 inch to ½ mile (published 1959).
Clarke, Daryl et a 1991:	Newpet, a geochemical data handling and graphics presentation software package; Memorial University of Newfoundland.
Cox, K.G., Bell, J.I 1979:	D., and Pankhurst, R.J. The Interpretation of Igneous Rocks; George Allen and Unwin, London.
GSC 1956:	Aeromagnetic Maps: Kamiskotia Lake 299G; Pamour 298G, scale 1 inch to 1 mile.
Irving, T.N. and H 1971:	Baragar, W.R.A. A Guide to the Chemical Classification of the Common Volcanic Rocks; Canadian Journal of Earth Science, Vol. 8, p. 523–548.
Jensen, L.S. 1976:	A New Cation Plot for Classifying Subalkalic Volcanic Rocks; Ontario Division of Mines, MP 66, 22 p.
Middleton, R.S.	
1973:	Magnetic Survey of Robb and Jamieson Townships, District of Cochrane; Ontario Division of Mines, GPR1, 56 p. Accompanied by Map 2255, scale 1 inch to ½ mile.
Middleton, R.S.	
1974:	Magnetic Survey of Loveland and Macdiarmid Townships, District of Cochrane; Ontario Division of Mines, GPR2, 26 p. Accompanied by Map 2288, scale 1 inch to $\frac{1}{2}$ mile.
OGS	
1988:	Airborne Electromagnetic and Total Intensity Magnetic Survey, Timmins Area, Loveland Township, Districts of Cochrane and Timiskaming; by Geoterrex Ltd. for the Ontario Geological Survey, Map 81060 Geophysical/Geochemical Series, Scale 1:20,000. Survey and Compilation March 1987 to October 1987.
Pyke, D.R. et al	
1973:	Timmins-Kirkland Lake Sheet, Map 2205, Ontario division of Mines, Ministry of Mines and Northern Affairs, scale 1:253,440.

ASSESSMENT WORK FILES

Bombay Explorations (1972) Timmins File T-167

Cominco Ltd. (1975) Timmins File T-1621

Falconbridge Nickel Mines Limited (1973-74) Timmins File T-1583

Gulf Minerals (1982) Timmins File T-1929

Hollinger Mines Limited (1970) Timmins File T-1247

MacDonald Mines Ltd. (1964-66) Timmins File T-785

Mespi Mines Ltd. (1966) Timmins File T-756 & T-758

David J. Meunier (1990) Timmins File T-3381

United Macfie Mines Limited (1964) Timmins File T-790

Windfall Oils and Minerals Ltd. (1964) Timmins File T-809

CERTIFICATION

I, R.P. Bowen, P.Eng., of 142 Eric Crescent, Porcupine, Province of Ontario, certify as follows concerning my report on the Loveland Township, Ontario property of David Meunier and Gabriel Sutherland dated 30 May 1991.

- 1) I am a member in good standing of:
 - a) The Association of Professional Engineers of the Province of Ontario
 - b) The Canadian Institute of Mining and Metallurgy
 - c) The Society of Mining Engineers of the A.I.M.E.
 - d) The American Society of Photogrammetry and Remote Sensing
- 2) I am a graduate of Michigan Technological University, Houghton, Michigan with a B.S. degree in Geological Engineering obtained in 1970 and a B.S. degree in Engineering Administration obtained in 1971.
- 3) I am a graduate of Mc Gill University, Montreal, Quebec with a Diploma in Geological Sciences obtained in 1972 and a M.Sc. (Applied) in Minerals Exploration obtained in 1973.
- 4) I have been practising my profession in Canada and the United States for the past 23 years.
- 5) I have no direct interest in the properties, leases, or securities of David Meunier or Gabriel Sutherland nor do I expect to receive any.
- 6) The attached report is the product of:
 - a) Data listed in the references.
 - b) Assessment work files Timmins Resident Geologist's Office and the Toronto Assessment Records Office.
 - c) Discussions with colleagues who have worked in the area.
 - d) My personal acquaintance with the Timmins geology and other properties in the area, some of which I have examined and worked on for other companies.
 - e) Personal visits to the property between 8 July 1990 and 30 May 1991.

day of Dated Base of C

APPENDIX A

Lithoprint ICAP analyses for diamond drill hole LDM-2-90

)7-04-1991 Samp	S-1	S-2	8-3	S-4	S-5	S-6	6 S-1	S-	8 S-9	S-10	S
S-12					500						
lorthing 574.8	188.5 708.7	353 833.3	256.7 861.4	267.4	288	321.5	343.5	355.5	406.5	449	512.3
lasting	193.5	356	258.3	273	293	326.5	348.5	360	411.5	454	517.3
579 1 ymbol	708.5	838.3 14	866.4	14	14	14	14	14	14	14	14
14 ym Colour	14 1	14 1	14 1	1	1	1	1	1	1	1	1
l ock Type	1 Core	1 CORE	1 CORB	CORB	CORB						
CORE nhyd Calc	CORB 0.99963	CORB 0.99974	CORB 0.99956	0.99911	0.99962	0.99921	0.99968	0.99978	0.99969	0.99980	0.99
0.99895	0.99900	0.99974	0.99967	0,33311	0.33302	0.33361	V.33300	V.33310	V133303	0133300	0.33
i01	77.00	78.93	76.48	57.70	76.07	59.40	76.09	62.32	78.47	79.58	56.
55.69 101	56.44 0.20	79.01 0.14	$77.61 \\ 0.12$	0.84	0.16	0.87	0.15	0.18	0.15	0.12	0,
0.84 1:01	0.82 11.29	0.13 10.96	0.13 11.16	16.90	11.96	16.83	12.03	17.81	11.92	10.56	16.
16.27	16.16	10.79	10.37								•
e203 1.05	0.37 0.99	0.26 0.26	0.45 0.33	0.88	0.37	0.80	0.33	0.22	0.31	0.21	1.
e0	3.01	2.07	3.65	7.13	2.98	6.43	2.66	1.75	2.47	1.70	8.
8.48 g0	$7.97 \\ 0.69$	2.07 0.19	2.70 0.39	3.92	0.29	3.72	0.37	0.13	0.27	0.13	5.
5.51	5.22	0.57	0.62	6.97	3.59	5.53	5.62	2.86	1.47	2.26	6.
10 7.52	3.47 8.62	1.41 1.33	2.63 4.21	0.31			5.04		1.441		
a20 4.15	$0.82 \\ 3.10$	2.68 4.32	3.93 0.64	4.72	0.96	4.80	0.60	0.34	0.48	0.36	3.
0	3.06	3.35	1.17	0.77	3.61	1.46	2.07	14.37	4.44	5.05	1.
0.33 105	0.53 0.07	1.51 0.02	3.36 0.02	0.16	0.02	0.16	0.07	0.02	0.02	0.02	0.
0.16	0.17	0.02	0.02							100 00	
otal 100.00	100.00 100.00	100.00 100.00	100.00 100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.
][2.10	0.55	0.75	1.20	0.80	1.30	0.75	1.05	1.65	0.75	1.
1.75	1.50	0.65	2.40								
g 🕴	26.90	13.00	14.67	46.81	13.58	48.15	18.21	10.77	15.16	10.98	52.
51.03	51.23	30.61	26.93								· .
1	175	340	339	142	228	73	247	90	11	201	1
160 i	148 31	266 30	184 30	82	30	51	31	30	31	30	
91	93	30	31							30	
30	31 31	30 30	30 31	31	30	31	31	30	31	30	
171	9	5	5	158	5	151	9	27	5	5	1
171	171 21	5 16	5 93	50	134	19	30	20	24	15	
54	50	43	40	62	131	31	123	51	102	80	
b 51	81 41	101 90	121 112								
n 86	53 79	345 53	20 93	105	77	95	26	25	100	74	
i 5.05	5.09 5.18	5.07 4. <i>99</i>	5.02 5.09	5.15	5.02	5.13	5.14	5.06	5.10	5.00	5.

•

съ	3.0	3.1 3.1	s.u 3.0	5.U 3.1	j.1	J.V	4. i	3.i	j.V	ન્ડે ક ક્રે	પ્રે + 0	J.U
K		25417	27792	9678	6416	29946	12094	17158	119259	36885	41924	12605
Ba		4230 261	12532	27385 365	192	577	275	265	1679	847	1006	, 353
Sr	69 156	113 37 164	311 58 48	479 92 42	149	96	172	172	84	28	133	124
Zr	150	315	345	332	144	422	164	422	486	387	322	131
Ti	131	135 1220	310 815	346 723	5041	946	5210	924	1061	892	723	4905
	4977	4737	791	785								
Dens	sity 2.59	2.37 2.59	2.33 2.33	2.37 2.37	2.54	2.37	2.51	2.38	2.35	2.34	2.33	2.57

anp on	S-16				S-20	8-21	S-22	S-23	S-24	S-25	S
orthing	S-28 880.5	S-29 913.4	S-30 976.8	1019.4	1046.6	1218.1	176	227	232	309	337
360 asting	366.5 882.1	369 918.4	403 981.7	1024.4	1051.3	1221.8	178	228	234	310	339
362 ymbol	368 14	371 14	405 14	14	14	14	14	14	14	14	14
14 ym Colour	14 1	14 1	14 1	1	1	1	1	1	1	1	1
l ock Type	1 CORE	1 CORE	1 CORE	CORE	CORB	CORB	CORB	CORE	CORB	CORB	CORE
CORB	CORE	CORE	CORB								
nhyd Calc 1.00000	0.99974 0.99896	0.99972 0.99957	0.99970 0.99962	0.99967	0.99972	0.99951	0.99974	0.99902	0.99964	0.99886	0.99
iO2 61.55	77.20 55.65	77.49 72.78	78.69	78.28	78.64	73.42	77.97	56.85	17.37	60.41	78.0
102	0.14	0.14	0.13	0.13	0.13	0.42	0.27	1.12	0.14	1.04	0.
0.24 1203	0.62 11.39	0.22 11.68	0.12 10.92	11.30	11.31	11.17	13.72	16.24	3.16	12.97	10.
17.76 2203	17.64 0.27	11.16 0.28	9.23 0.32	0.31	0.27	0.50	0.27	0.96	0.35	1.14	0.
0.10 e0	1.03 2.17	$0.44 \\ 2.30$	0.38 2.57	2.47	2.21	4.04	2.17	7.72	2.82	9.21	3.
0.78	8.35 0.61	3.53 0.84	3.05 0.59	0.60	0.52	1.40	0.79	3.40	0.65	3.93	D.
(0 0.23	2.28	1.28	0.46								
10 5.37	3.50 3.98	2.59 6.24	2.08	2.14	1.38	3.27	0.17	8.66	13.65	8.24	1.
1.10	0.24 2.68	0.60 1.95	0.81 0.32	0.82	3.74	3.97	0.11	3.87	0.54	1.87	4.
0	4.46 7.66	4.05 2.33	3.87 3.17	3.95	1.77	1.75	4.50	1.01	1.23	0.99	0.
05	0.02	0.02	0.02	0.02	0.02	0.07	0.02	0.18	0.08	0.18	0.
0.07 otal	0.11	0.07	0.02	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.
100.01	100.00	100.00	100.00								
)I 3.65	$2.35 \\ 2.00$	1.95	1.80 1.80	3.50	1.35	2.20	2.15	1.35	7.60	1.30	0.
: #	31.08	36.98	26.83	27.95	27.53	35.75	36.85	41.40	27.15	40.64	11.
31.79	30.47	36.69	19.41								
58	188 108	173 112	208 134	219	206	139	78	200	238	136	3
. 31	31 51	30 32	30 31	31	31	30	31	102	111	30	
)	31	30	30	31	31	30	31	30	44	30	
31	30 5	32 5	31 5	5	5	56	7	191	17	163	
48	103 15	20 22	5 9	8	28	84	22	76	329	69	5
6	96 71	31 81	75 81	84	113	61	31	30	100	30	
31	41 98	86 71	163 107	123	54	49	27	1167	699	98	
28	76	64	44		* •		•				
i	5.09	5.08	5.06	5.23	5.14	5.08	5.20	5.08	14.43	5.07	5.

	3.1	3.0	3.U 3.2	5.0 3.1	J.i	j.1	5.V	3. 1	វ.ប	بأ ه مَّ	રા . છું	J.L
K	1	36434 62692	33113 18006	31785 25890	31286	14274	14271	35936	8210	9211	8126	1991
Ba	1508	727 1439	713 691	492 672	511	268	358	528	148	174	297	50
Sr	91	36 101	73 65	58 18	62	42	83	8	133	29	131	70
Zr	589	376 426	366 311	334 285	356	350	274	353	132	33	193	310
Ti	1409	821	809 1216	749 689	749	767	2457	1559	6589	767	62	713
Dens	ity 2.36	2.35 2.51	2.35 2.41	2.35 2.35	2.35	2.34	2.39	2.34	2.56	2.43	2.58	2.36

.

File Name D:\NEWPET\DATA\LOVE32C.ROC Anhydrous 07-04-1991 17:03:27

17:03:27	
S-31	S-32
421	1030
423	1031
14	14
1	1
	CORE
	0.99895
77.31	56.66
0.14	0.92
11.69	16.74
0.32	1.05
2.56	8.52
0.10	1.38
3.91	7.18
0.34	6.33
3.61	1.06
0.02	0.15
100.00	100.00
0.80	3.85
5.95	20.68
172	187
30	97
30	32
5	175
29	378
81	247
96	5409
5.04	13.95
3.0	3.2
	-
29710	9465
463	223
139	126
383	140
	6587
	S-31 421 423 14 1 CORB 0.99968 77.31 0.14 11.69 0.32 2.56 0.10 3.91 0.34 3.61 0.02 100.00 0.80 5.95 172 30 5.95 172 30 5 29 81 96 5.04 3.0 29710 463

Density 2.36 2.54

APPENDIX B

Ξ.

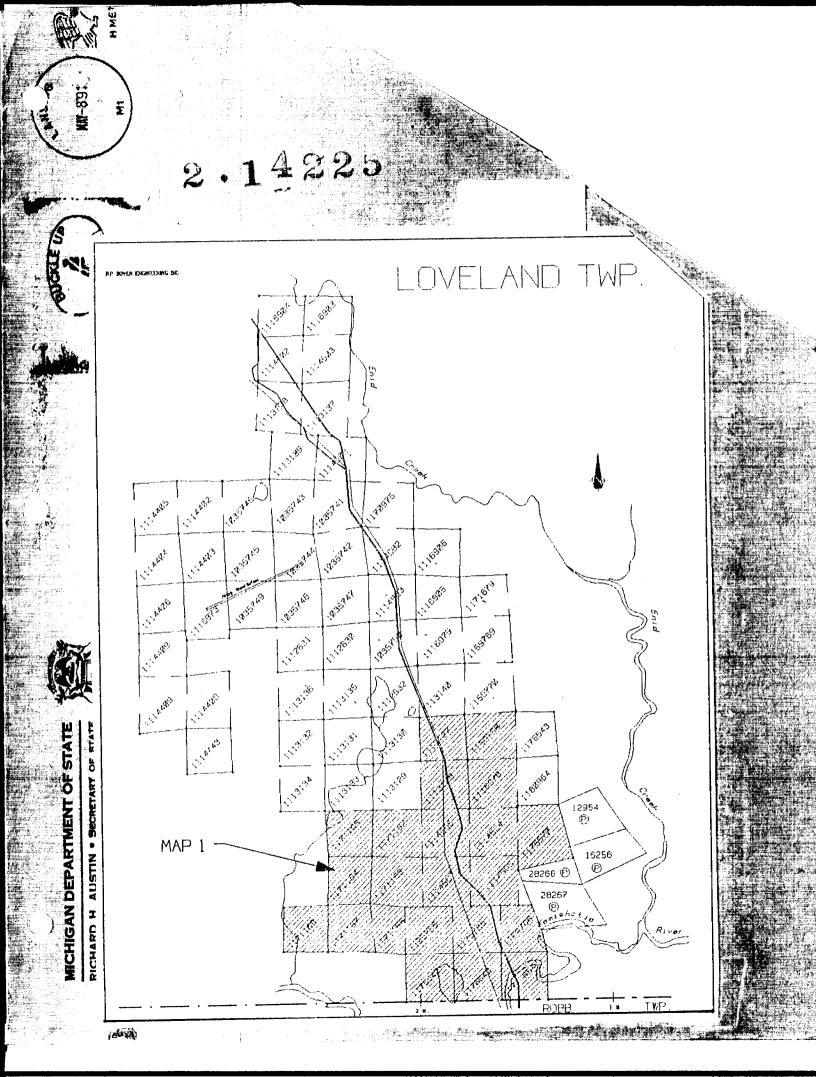
Analyses for OGS Geophysical Reports 1 and 2 by R.S. Middleton (1973 & 1974)

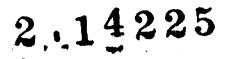
0.0 = 7.1 = 1.2.2.1	D:\NEWPET\D 12:32:48	ATA\RSMGR1.	ROC							
Sar	68-629	68-664	68-805	68-753	68-789	68-64	68-316	68-351	68-394	68-474
Northing	17648425	17653450	17650250	17657850	17652600	17672650	17657450	17647000	17648200	17655250
Rasting	865250	869450	869450	858600	860000	868200	859200	857800	858450	871050
Symbol	3	3	3	3	3	15	3	15	15	15
Sym Colour		1	1	1	1	1	1	1	1	1
Rock Type		RHYOLITE-G	RHYOLITE-P	WELDBD TUF			BASALT DIR	GABBRO	GABBRO	ANORTHOSIT
Si02	51.20	78.00	71.00	73.40	76.80	41.00	45.40	44.20	44.50	49.30
TiO ₂	2.38	0.18	0.28	0.39	0.06	0.84	1.16*	2.58	1.76	0.29
Al203	12.90	12.30	12.80	13.10	12.50	15.30	14.20	12.00	12.50	17.50
Fe20;	2.84	-	1.64	1.09	•	2.25	4.06	6.68	3.59	3.35
FeO	10.50	0.33	1.53	3.93	0.67	10.00	11.30	12.90	13.70	5.70
Mn0	0.24	0.01	0.09	0.10	0.04	0.23	0.27	0.31	0.27	0.17
MgO	5.70	0.10	0.55	0.81	0.98	5.50	5.81	5.31	6.78	4.77
CaO	4.71	0.90	1.22	1.34	1.10	10.00	9.30	9.30	7.68	11.10
Naz O	2.69	0.30	0.77	3.45	5.50	2.72	2.90	3.10	3.59	4.04
R2 0	D.95	7.12	7.34	2.05	0.37	0.45	0.24	0.19	0.28	0.19
P2 05	0.47	0.02	0.05	0.05	0.01	0.13	0.03	0.35	0.38	0.03
Total	94.58	99.26	97.27	99.71	98.03	88.43	94.67	96.92	95.03	96.44
H2 0	4.43	0.20	0.88	2.30	0.40	4.59	3.09	2.28	2.87	2.22
CO2	1.37	0.43	0.96	0.40	1.74	7.02	0.50	0.12	0.12	0.18
Kg ₽	43.76	35.06	24.59	22.72	72.27	44.89	40.91	33.35	41.64	49.38
8	1400.00	100.00	5700.00	700.00	100.00	1100.00	5300.00	1300.00	1000.00	300.00
K	7886	59105	60932	17018	3071	3736	1992	1577	2324	1577
				2338	360	5036	6954	15467	10551	

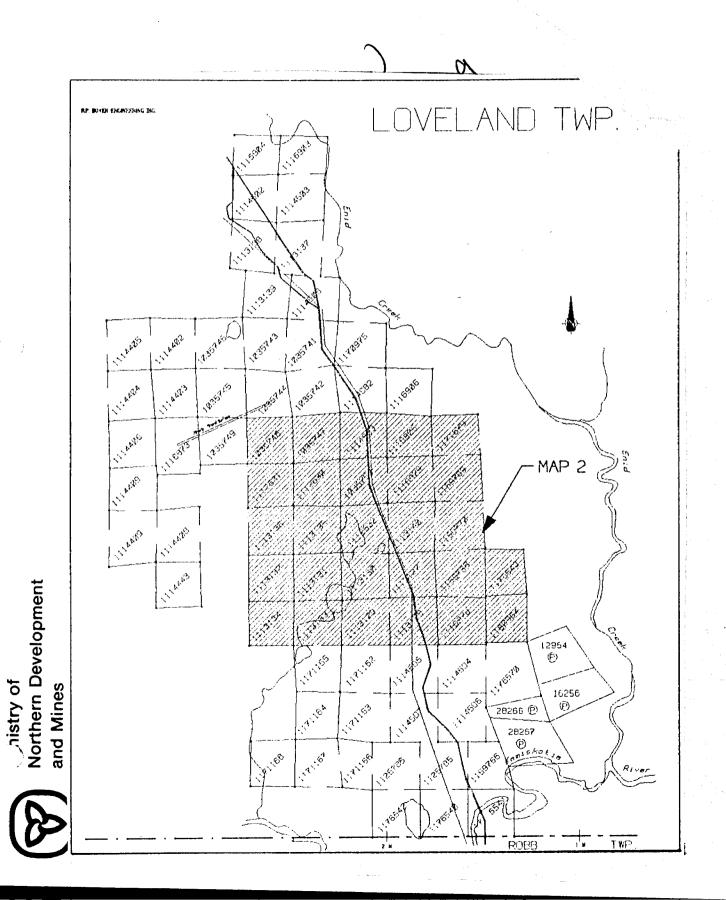
.

File Name		ATA\RSMGR1.E	ROC	
05-27-1991 Sai		69-1491	68-153	69-1549
Northing	17650450	17645450	17648400	17649200
Basting	840800	839000	865800	824200
Symbol	15	15	15	15
Sym Colour	1	1	1	1
Rock Type		BASALT POR		
SiO ₂	. 49.80	50.00	71.00	71.60
Ti0:	0.86	0.85	0.27	0.29
Al:0;	18.30	14.90	12.40	14.20
Fe: 0;	1.31	2.85	0.95	1.05
FeO	7.30	8.60	2.07	1.80
MnO	0.16	0.23	0.05	0.08
Mg0	6.68	6.67	0.36	0.63
Ca0	13.00	11.20	2.83	1.81
Na ₂ O	2.37	1.44	4.41	4.53
R2 0	0.17	0.28	1.17	1.48
P2 05	0.12	0.06	0.03	0.06
Total	100.07	97.08	95.54	97.53
H2 0	1.32	2.27	0.58	0.89
CO2	0.12	0.32	2.25	0.35
Mg ‡	58.40	51.56	17.99	29.03
S	1800.00	1200.00	200.00	100.00
K	1411	2324	9713	12286
Ti	5156	5096	1619	1739

Density 2.66 2.67 2.36

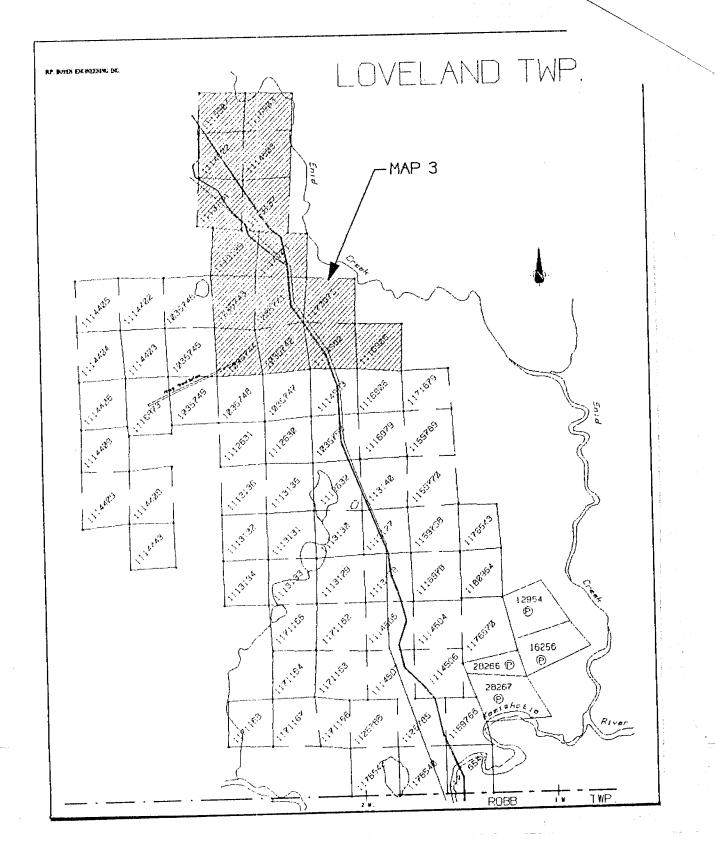


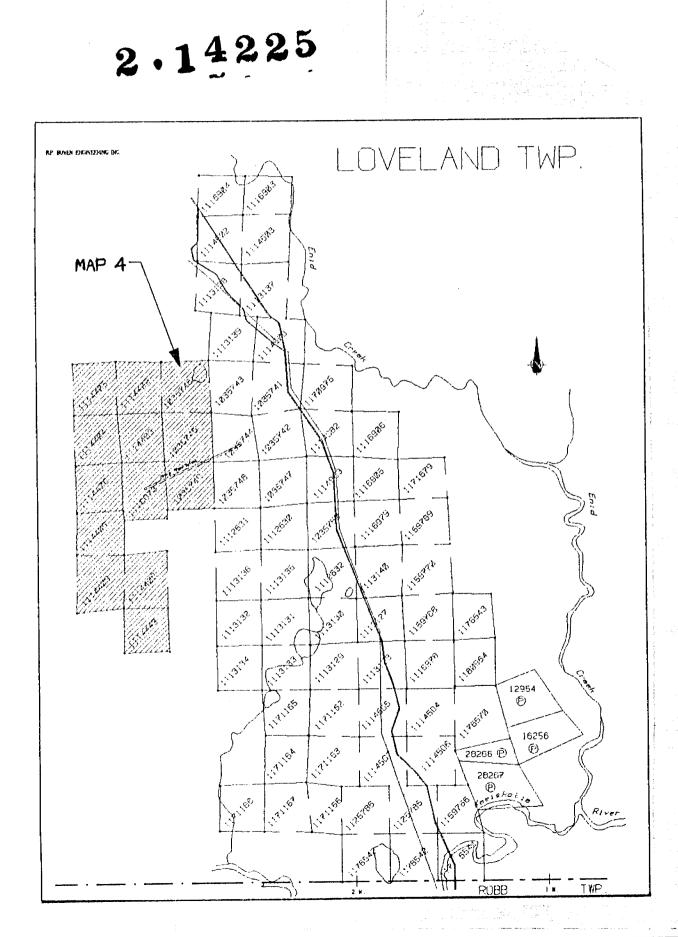

2.36


Sa	12:34:10 74-866	70-946	70-52	70-172	70-174	70-179	70-180	70-211	70-351
Northing	1769740	1769700	1769700	1767920	1769040	1768785	1768785	1768600	1768360
Basting	829900	843000	843000	850600	829440	842000	842000	829460	838600
Symbol	15	3	3	3	3	.3	3	3	3
Sym Colour	1	1	1	1	1 1	1	1	1	· 1
Rock Type		-	ANDESITE-D			RHYOLITB	ANDESITE	DACITE	RHYOLITE
Si01	74.60	11.80	59.50	50.60	47.70	69.30	52.70	65.40	78.00
ľi0 <u>:</u>	0.31	0.70	0.65	0.80	1.11	0.36	0.86	0.80	0.36
11:0:	11.80	16.10	15.10	15.70	19.10	11.50	16.20	15.00	10.40
7e101	2.76	3.30	6.37	12.00	13.10	4.03	10.80	5.60	4.22
fe0	1.88	4.63	-	-	-	-	-	-	•
in0	0.07	0.13	0.11	0.19	0.15	0.06	0.15	0.10	0.08
lg0	0.62	4.22	3.12	4.28	5.72	1.50	5.41	2.40	10.20
Ca0	2.42	10.80	8,42	13.10	7.96	1.35	6.23	7.95	1.24
la21)	3.55	2.49	2.69	2.18	2.33	4.37	2.69	2.41	2.88
(<u>1</u> 0	1.00	0.65	0.72	0.20	0.66	1.83	2.55	0.70	1.62
205	0.04	0.13	-	-	-	•	-	•	-
lotal	99.05	54.95	96.68	99.05	97.83	94.30	97.59	100.36	109.00
120	1.03	1.55	-	-	-	-	•	-	-
01	0.10	0.10	-	-	-	-	•	-	•
lg ‡	20.20	49.74	49.24	41.40	46.37	42.43	49.80	45.91	82.72
r	-	80	200	250	150	200	40	300	100
1	15	200	100	200	100	15	150	100	10
}	0.01	0.02	-	-		-		-	-
l	8301	5396	5977	1660	5479	15191	21168	5811	13448
a	400	150	150	-	200	400	-	200	-
r	200	100	150 60	100	100	40	10	150	40
1	600	100	vv	100	100	10	10	100	10
r	500	300	100	200	250	500	500	200	400
ì	1858	4197	3897			2158		4796	2158
	100	-	30	30	40	100	-		150
lensity	2.37	2.89	2.47	2.57	2.57	2.35	2.51	2.44	2.41

APPENDIX C

Copies of Reports of Work filed 30 May 1991





2.14225

}

No No	nistry of orthern Developme id Mines		0160.		<u>.</u>				
Omajo	_	Report of Worl	4		42A12NE0781	2 1422E			000
М	lin 💭 Act	(Geophysical, Geol		Geochemi		2.14223	LOVELAND		900
Type of Surv	vey(s) Geal	ogical			ining Division	1	ownship or Area	L	
Recorded Ho	older(s)		<u> </u>			MINING	3 LANDS SEC	F & Licence	No.
Dav Address	1.'L J. M	leunier 4	Gabo	य ३	utherkind	•	Telephone	1715	57 Fl
403	Dome	St., South	Porcu	pine	,ON PON	J A (- 5426
Survey Corps	P. Bowe	in Engine	orine	Inc.	21	472	25		
	ddress of Author (of	Gen Technical Depart				• • • •	Date of S	urvey (froi	
K	.P. ISome				h Parcup:ne				30 05 9 1 Dey Mo. Yr.
Special Prov		ch Claim in Column	Days per	Provide Statements	lining Claim		Mining Claim	the second s	Mining Claim
For first surv	vey:	Geophysical	Claim	Prefix	Number	Prefix	Number	Prefix	Number
Enter 40 d	days. (This includes	- Electromagnetic		Ρ	1035741	Р	111 3 3 1	P	1114407
line cutting	0)	- Magnetometer			1035742		111 3132		1114408
For each ad using the sa	lditional survey: ame grid:	- Other			1035743	•	1113133		1114409
Enter 20 d	days (for each)	Geological	40		1035744	•	11+3134		1114443
		Geochemical			1035745		1113135		1114502
Man Days		Geophysical	Days per Claim		1035746		1113136		1114503
Complete re enter total(s)	verse side and) here	- Electromagnetic			1035747		1113137		1114508
		- Magnetometer			1035748		1113138		1114982
	•	- Other			103 57 49		1113139		111 49 83
		Geological			1035750		1113140		111 5873
		Geochemical			1112630		1114402		1116903
Airborne Cr	redits		Days per Claim		1112631		1114403		1116904
	ecial provisions dits do not	Electromagnetic			1112632		1114404		1116905
app	ply to Airborne rveys.	Magnetometer			1113127		1114405		1116906
		Other			1113128		1114406		1116978
Total mile	es flown over cl	aim(s).			1113129		•		······································
Date	Re	corded Holder or Agent	(Signature)		1113130		Total number o mining claims o		47
Certificatio	on Verifying Rep	ort of Work]	L		I	by this report of This P		L
I hereby cer	rtify that I have a per	rsonal and intimate knowle	edge of the fact	s set forth in	this Report of Work, h	aving perfo			e during and/or
after its com	npletion and annexed Address of Person C	d report is true.					,,,,		
	R.P. Bowen an above								
Telephone No. (705)235-5139 Date 29 May 1991 Certified By (Signature)									
	For Office Use Only								
Total Days Cr. Recorde	" HAY 30		leçorder	Suil	MAY 3	û 199 '		MAY 30	1991
260	Date Approved	EE REVISED WOR	al Manager. Mir	•		<u></u>	ذ ا	; 60	
1362 (89/06)									

Ministry of Northern Developme and Mines	ont					Refer to Se	e or print. action 77, th		for assessn	nent work requiremen
ntario	Report of Work	(if number attach a li	of mining dist.	•	sed exceed	pe. ds space on this forr hould be submitted :
Miles Act	(Geophysical, Geol		Ge	ochemic	al Surveys)	Mining La	inds Section	n, Mineral D	evelopment	and Lands Branch:
ype of Survey(s) Geolc	ogical			Ī	lining Division			ovela		
ecorded Holder(s) Dar: I.J. Meun	ier & Gabi	rel S	تح	therl	and 2.1	422	25	Prospector M - I M - Telephone	's Licence 7157 2097	No. .)
403 Domes	H., South?	Porcuj	<u>، ر</u>	سه, 0	N PONI	HO				5+26
R.P. Bowen E	ingineering	Inc.	•					Date of Si	irvey (fron	n & to)
ame and Address of Author (ol R.P. Bowen, P.O.			<u>~</u>	h to	rupine, ON	PON	1160	Day M	8. 1 Yr.	30 05 9, 0ay Mo. 9,
redits Requested per Ea	ch Claim in Columns	at right	 1		laims Traversed (Aining Claim		Umerical Mining Clair	Sequence	<u>ין</u>	dining Claim
ipecial Provisions	Geophysical	Days per Claim		Prefix	Number	Prefix		mber	Prefix	Number
For first survey:	- Electromagnetic			Ρ	1116979	P	117	6543		
Enter 40 days. (This includes line cutting)	- Magnetometer				1159766			6570		
for each additional survey: using the same grid:	- Other				1159768		119	30964		
Enter 20 days (for each)	Geological	40		· · · · · · · · · · · · · · · · · · ·	1159769		ļ	•		
	Geochemical				1159770					
Man Days	Geophysical	Days per Claim			1170975					
Complete reverse side and enter total(s) here	- Electromagnetic				1171162					
	- Magnetometer				1171163	ļ	1			
	Other				1171164		+			
	Geological				1171165				· · · ·	
Airborne Credits	Geochemical	Days per		·						
Note: Special provisions		Claim			1171167		+			
credits do not apply to Airborne	Electromagnetic				1171679)				
Surveys.	Other				1176540	1				
Total miles flown over c				 	1176541	1		······	<u></u>	······································
	ecorded Holder or Agent	(Signature)			1176542		mir	al number o ning claims (this report o	covered	67
Certification Verifying Re				·····		-		TOTA	<u>L</u>	
I hereby certify that I have a particular and annexi	ersonal and intimate knowl ed report is true.	edge of the f	acts	set forth in	n this Report of Work,	having per	formed the	work or witr	lessed sam	ne during and/or
Name and Address of Person						<u> </u>				
R.P. Bowen		Telep	ohon	10 NO.	Date 70	Mayp	91	Certified	er isnin	turat AAI
		90	2)	235-5	Received				H	STANE -
For Office Use Only	y					·		RE	GEI	VED
Total Days Date Recorded	Mining	Recorder						1	NY 90	tan 🖌
Cr. Recorded								12	γ	
Date Approved	as Recorded Provinc	ial Manager.	Min	ing Lands						
	"SEE REVISED WO	RK STAT	EM	ENT"						

1362 (89/06)

Ministry of Northern Development and Mines

Geophysical-Geological-Geochemical Technical Data Statement

File 2. 14225

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) Geological	
Township or Area Loveland	MINING CLAIMS TRAVERSED
Claim Holder(s) David Meunier & Gabriel Sutherland	List numerically
	1035741 - 1035750 incl.
Survey Company R.P. Bowen Engineering Inc.	1112630 - 1112632 incl.
Author of Report R.P. Bowen	11131(2047ix)- 1113140(number). 1114402 - 1114409 incl.
Address of Author P.O. Box 5010, PMS, Porcupine, ON	1114443
Covering Dates of Survey <u>1 April 1991 - 30 May 1991</u> (linecutting to office)	<u>1114502 - 1114503 incl.</u> 1114508
(linecutting to office) Total Miles of Line Cut <u>About 129 miles</u>	<u>1114982 - 1114983 incl.</u>
Total Miles of Line Cut_Robut 12.9 milles	1116873
	<u>1116903 - 1116906 incl.</u> 1116978 - 1116979 incl.
SPECIAL PROVISIONS DAYS CREDITS REQUESTED Coophysical Per claim	1159766
Geophysical	1159768 - 1159770 incl. 1170975
ENTER 40 days (includes ––Electromagnetic	1171162 - 1171168 incl.
line cutting) for first	1171679 1176540 - 1176543 incl.
survey. –Radiometric.	
ENTER 20 days for each	1180964
additional survey using Geological 40	
Geochemical	
AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)	
Magnetometer Electromagnetic Radiometric	
(enter days per challer)	
DATE: 30 May 1991 SIGNATURE:	
and y report of Agent	
Res. GeolQualifications 2.2257	
Previous Surveys	
File No. Type Date - Claim Holder	
	TOTAL CLAIMS67
837 (85/12)	

•

OFFICE USE ONLY

GEOPHYSICAL TECHNICAL DATA

Ν	umber of Stations	Number o	f Readings	······································
	ation interval			
	ofile scale	-	-	
C	ontour interval			
	Instrument			
MAGNETIC	Accuracy – Scale constant			
N	Diurnal correction method			
MAC	Base Station check-in interval (hours)			
~4	Base Station location and value			
2	Instrument			
ELECTROMAGNETIC	Coil configuration			
SC SC	Coil separation			
WC	Accuracy			
TR	Method:	Shoot back	🗔 In line	🗖 Parallel line
<u>CEC</u>	Frequency	(anacify VI E cardina)		
ଲ	Parameters measured			
	Instrument			
	Scale constant	·····		
<u>YTI</u>	Corrections made			
GRAVII	Base station value and location			
	Elevation accuracy		· · · · · · · · · · · · · · · · · · ·	
	Instrument			
	Method	🗀 Fr	equency Domain	
	Parameters – On time	Fr	equency	
Z	– Off time		inge	
IVI	Delay time			
IST	— Integration time			
RESISTIVITY	Power	·····		
7	Electrode array		·	<u> </u>
	Electrode spacing			
	Type of electrode			

INDUCED POLARIZATION

SELF POTENTIAL

Instrument	Range
Survey Method	
Corrections made	

RADIOMETRIC

Instrument						
Values measured						
Energy windows (levels)						
	Background Count					
Size of detector						
Overburden (type, depth - include outcrop map)						
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)						
Type of survey						
Instrument						
Accuracy						
Parameters measured						

Additional information (for understanding results)

AIRBORNE SURVEYS

Type of survey(s)						
Instrument(s)	(specify for each type of survey)					
Accuracy						
Navigation and flight path recovery metho	d					
Aircraft altitude	Line Spacing					
	Over claims only					

GEOCHEMICAL SURVEY - PROCEDURE RECORD

,

Numbers of claims from which samples taken_____

Total Number of Samples	ANALYTICA	L METHOD	S			
Type of Sample(Nature of Material)		per cent				
Average Sample Weight		p. p. m. p. p. b.				
Method of Collection		թ. թ. թ.				
	Cu, Pb, Zn, Ni, Co,	Ag, Mo,	As,-(circle)			
Soil Horizon Sampled	Others					
Horizon Development	Field Analysis (tests)			
Sample Depth	Extraction Method					
Terrain	Analytical Method		·····			
	Reagents Used					
Drainage Development	Field Laboratory Analysis					
Estimated Range of Overburden Thickness	No. (tests)			
	Extraction Method					
	Analytical Method					
	Reagents Used					
SAMPLE PREPARATION	Commercial Laboratory (_		tects)			
(Includes drying, screening, crushing, ashing)	Name of Laboratory		,			
Mesh size of fraction used for analysis	Name of Laboratory Extraction Method					
	Analytical Method					
	Reagents Used					
			-//-///			
	General					
General		- · · · · · · · · · · · · · · · · · · ·				

-	
Ordente	

۰.

.

Northern Development and Minee Work Credits

Dete		
July	25,	1991

2.14225 Mala Reserved Report of W.9160.00185

Loveland		
Type of survey and number of Assessment days credit per claim	Mining Claims Accessed	
ophysical		
Electromegnetic devi		
	1112630 to 632 incl.	
Asgnetometer dev		
Rediometric dev	1114402 to 409 incl.	
	1114443	
Induced polerization day	1114502-503	
	1114000	
Other dey	1114982-985	
The second s		
ction 77 (19) See "Mining Claims Assessed" column	1116978-979	
35.8	1159766	
	1150768 to 770 incl.	
eochemicalder	1170975	
Mus data 🗔 Airborne [-1171162 to 168 incl	
Men deys 🗋 Airborne L	1171679	
Special provision] 1176540 to 543 incl.	
	1176570	
Credits have been reduced because of pertial coverage of claims.	1180964	
Credits have been reduced because of corrections to work detes and figures of applicant.		
ecial credits under section 77 (16) for the follow	ving mining claims	
o credits have been allowed for the following m	ining dalme	
not sufficiently covered by the survey	Insufficient technical data filed	

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geologocal - 40; Geochemical - 40; Section 77(19) - 80.

Ministry of Mining Lands Section Northern Development 159 Cedar Street, 4th Floor and Mines Sudbury, Ontario P3E 6A5 Ministère du Développement du Nord Toll Free: 1-800-465-3880 5) 670-, 91:00000185 • 2256 ARIO GEOLOGIC et des Mines Telephone: (705) 670-7264 (705) 670-7262 Fax: Your File: W. Our File: 2.1 ASEESEMENT August 25, 1991 Mining Recorder Ministry of Northern Development and Mines 60 Wilson Avenue Timmins, Ontario P4N 2S7 Dear Sir/Madam: Notice of Intent dated July 25, 1991 for Geological RE: Survey on mining claims P. 1035741 et al. in the Township of Loveland.

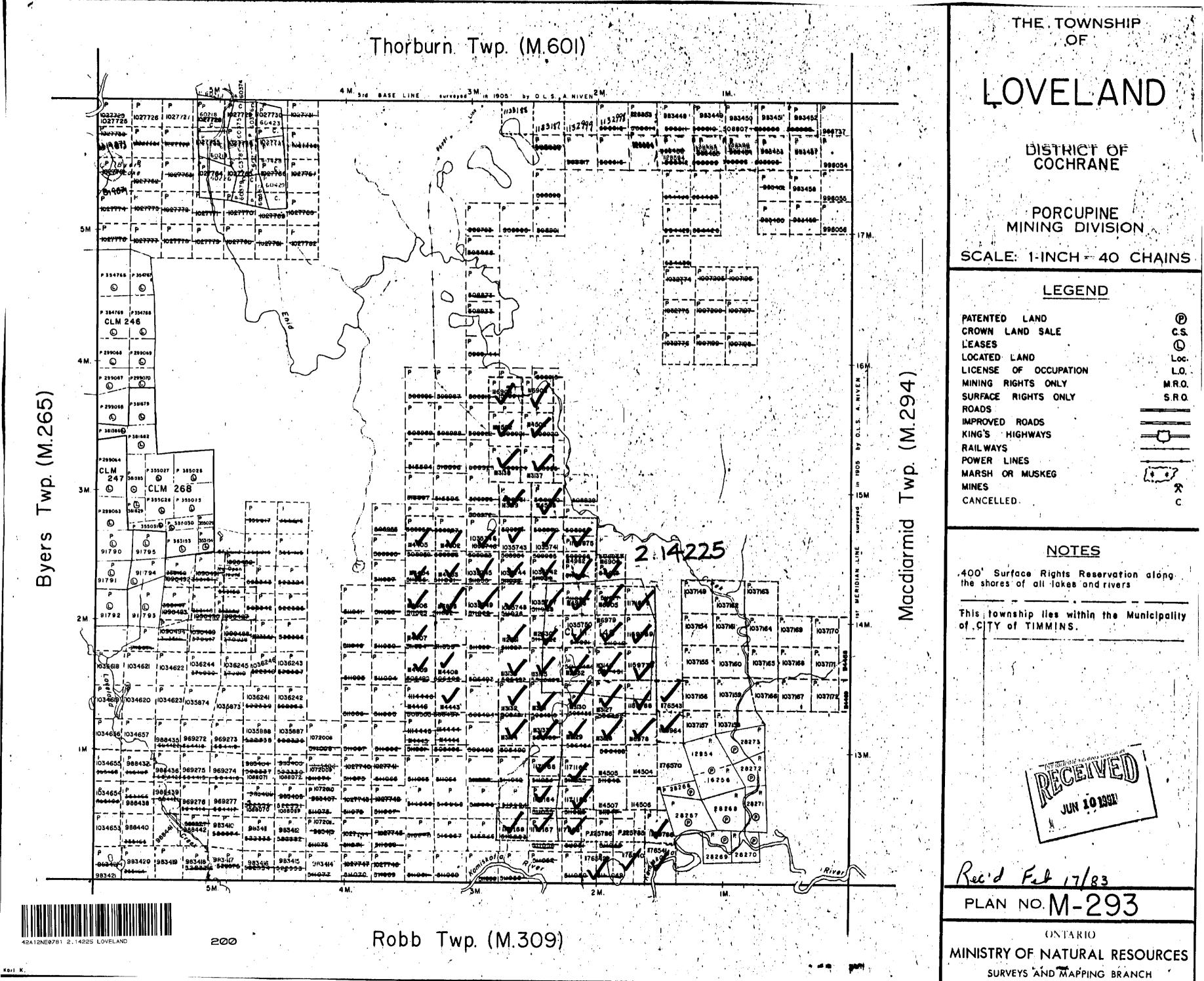
The assessment work credits, as listed with the above-mentioned Notice of Intent have been approved as of the above date.

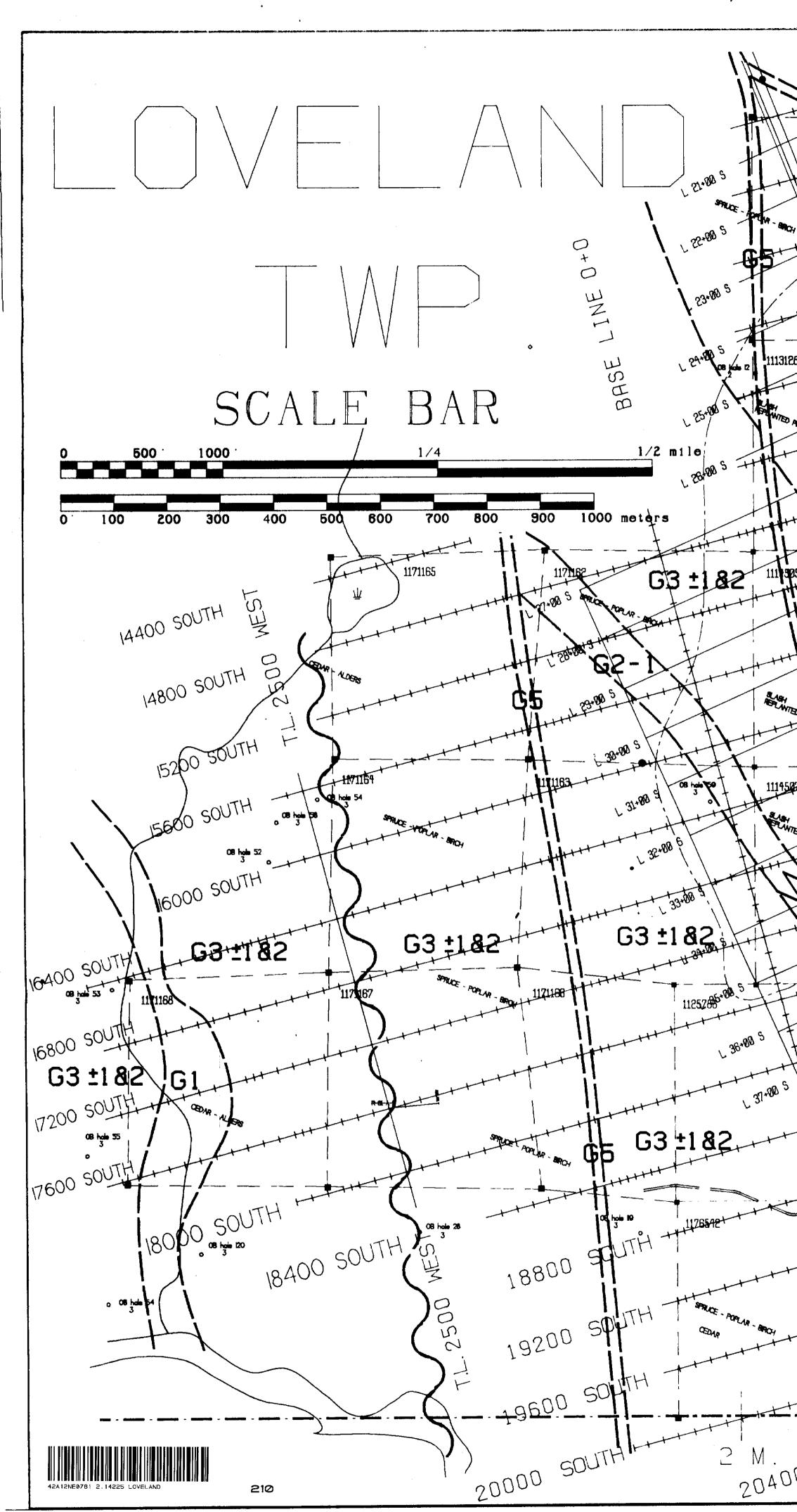
Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,

Lan Coak

Ron. C. Gashinski, Provincial Manager, Mining Lands Mines & Minerals Division () CDS/jl Enclosure:

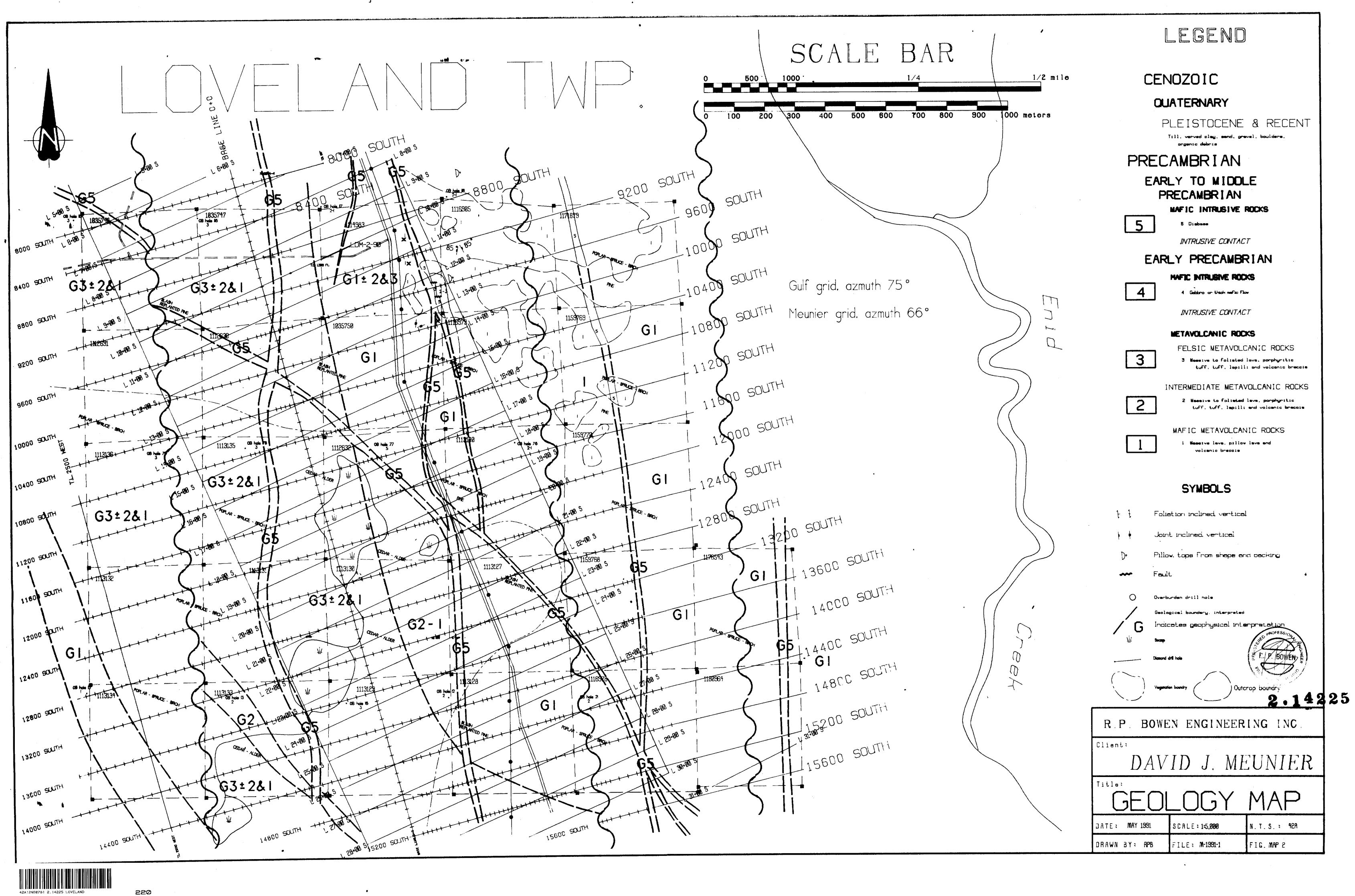

cc: Mr. David J. Meunier South Porcupine, Ontario


> Mr. R. P. Bowen South Porcupine, Ontario

Assessment Files Office Toronto, Ontario Gabriel Sutherland South Porcupine, Ontario

Resident Geologist Timmins, Ontario

Thorburn Twp. (M.601)

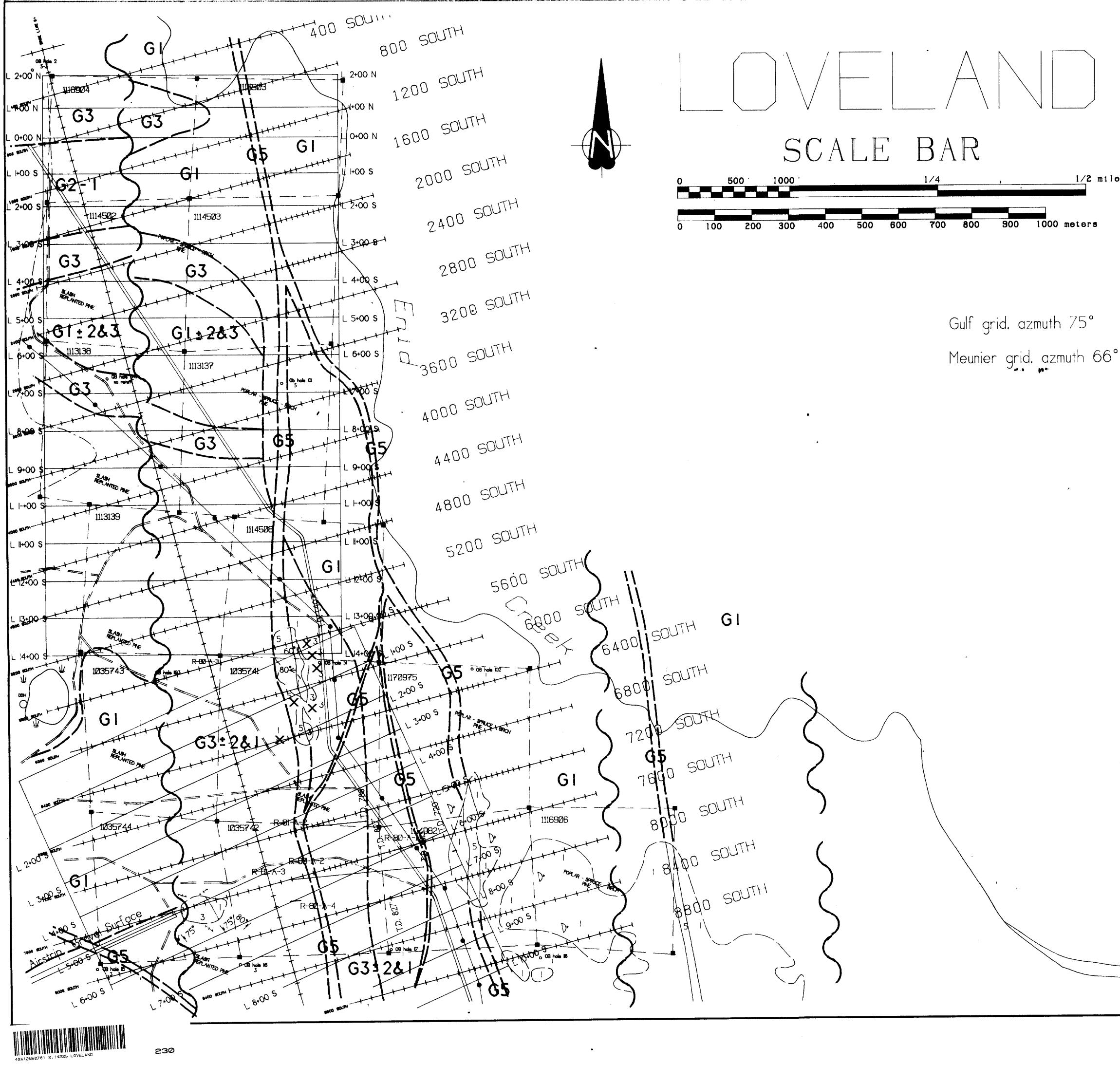


.

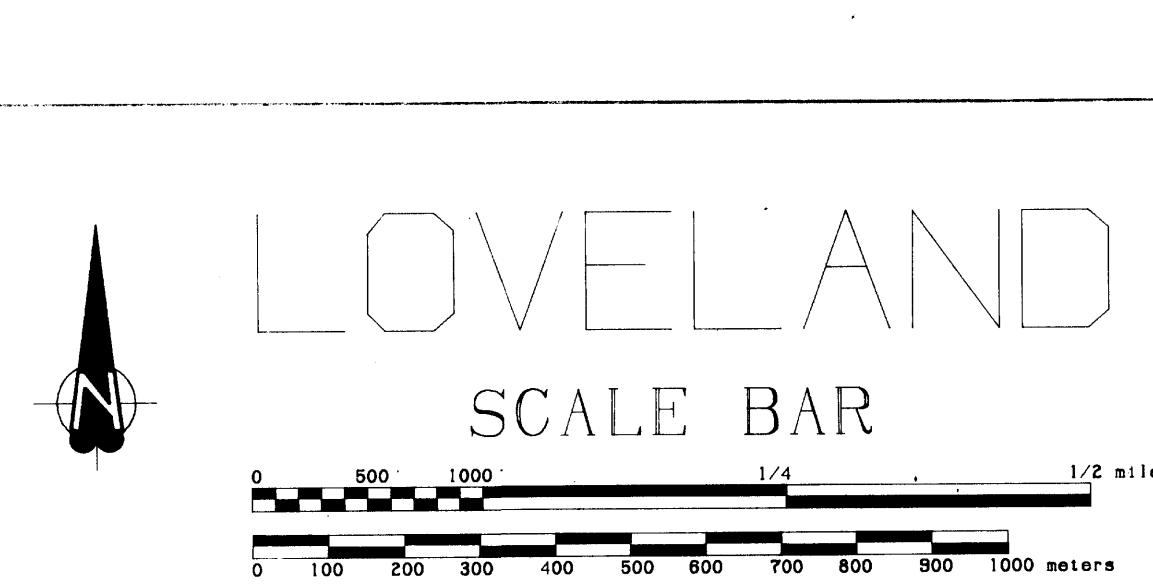
, 12800 SOUTH 12800 SOUTH SOUTH 1159768 23*⁶⁰ 3600 - POPLAR - BROY 14000. **G**1 G1 4800 29+00 S 15200 -Gl 7B+8B **+**61− G1 16800 SOUTH 6 Star G5 17200 SOUTH HHHH GI 11 35-445 NOT NITE 16256 * Heret 1114506 \$5 (P) \rightarrow SUTH 092 G1 GI-Z FOU. 1189766 184 1 Kam Xi SOUT 1.188001 -P SOUT 19201. 65 de \G1-85 SOUT - 1960 -G1 B hole 1 08 hole 27 1176540 1176541 · 20000 , 08 hole 66 20408 SOUTH G1 G3 ±182 G1 Gl 1 M - WI. 20400 SOUTH

	LEGEND
	CENOZOIC
// m	QUATERNARY
	PLEISTOCENE & RECENT Till. verved cley. send. grevel. boulders. organic debrie
	PRECAMBRIAN
Gulf grid. azmuth 75	PRECAMBRIAN
// Meunier grid. azmutł	
	5 Diabare INTRUSIVE CONTACT
	EARLY PRECAMBRIAN
λ .	MAFIC INTRUSIVE ROCKS
	4 Galaboro on thack metric flow
	INTRUSIVE CONTACT
	METAVOLCANIC ROCKS
	FELSIC METAVOLCANIC ROCKS
	3 Measure to foliated lave, porphyritic tuff, tuff, lepilli and volcanic braccia
Dr G1	INTERMEDIATE METAVOLCANIC ROCKS
	2 Massive to folisted leve, porphyritic tuff, tuff, lepilli end volcenic breasts
	MAFIC METAVOLCANIC ROCKS
	volcanic breccia
K	SYMBOLS
	7 7 Foliation inclined. vertical
	Joint inclined, ventical
$\langle \cdot, \rangle \rangle$	D. Pillow. tops from shape and packing
X	Fault
	O Overburden drill hole Geological boundary, interpreted
	/ C Indicates geophysical interpretation
Δ $(\Box Ver$	See PROFESSION -
	Diamond drill hale
	Vegetation boundry
G1)	Outcrop boundry
	D.D. DOWEN ENCLINEEDING INC
	R.P. BOWEN ENGINEERING INC.
G1	DAVID J. MEUNIER
	Title:
	GEOLOGY MAP
	DATE: MAY 1991 SCALE: 1:5,000 N.T.S.: 42A
· · · · · ·	DRAWN BY: RPB FILE: M-1991-1 FIG. MAP 1

.


٠

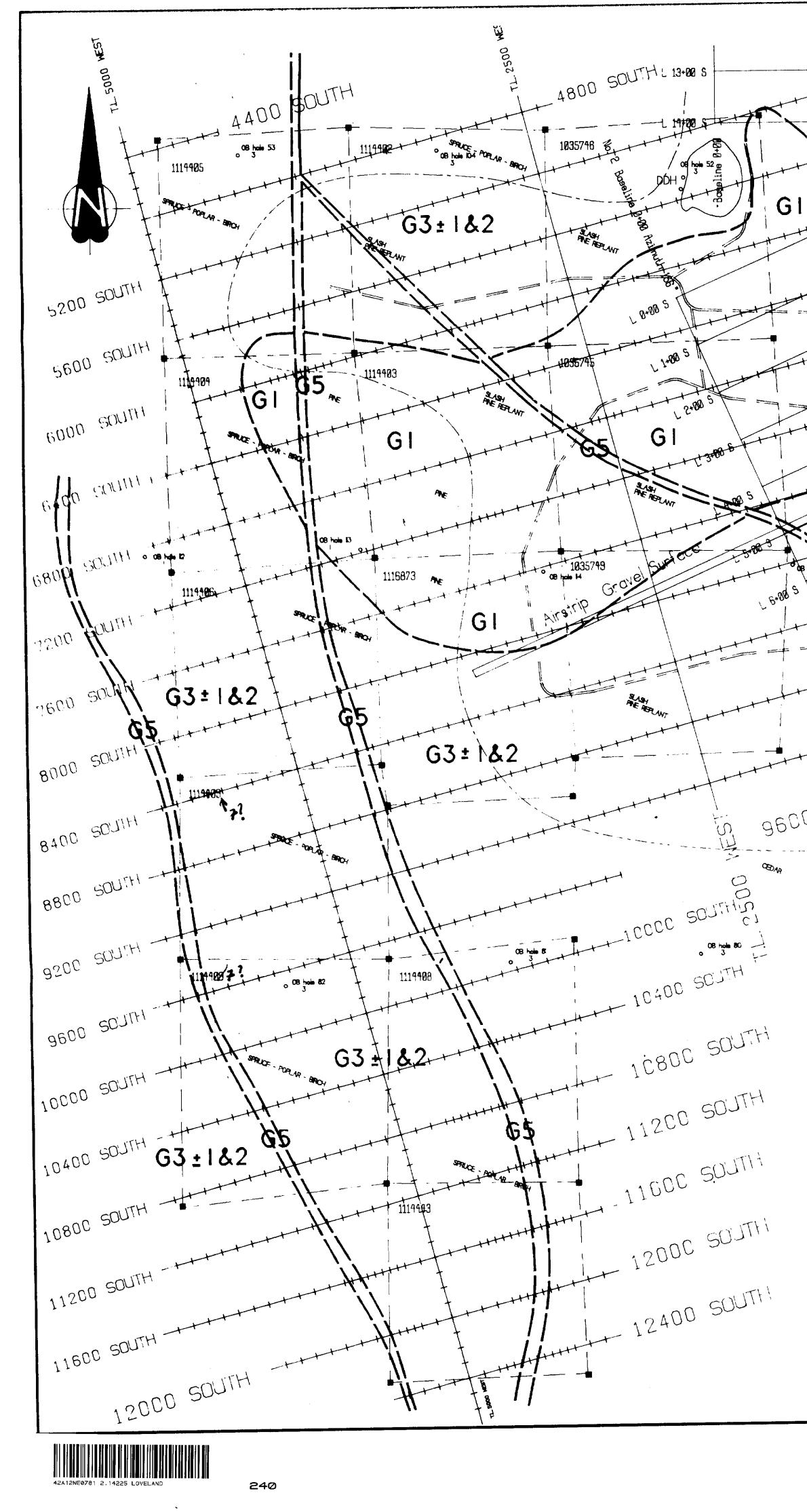
•


. •

.

· _

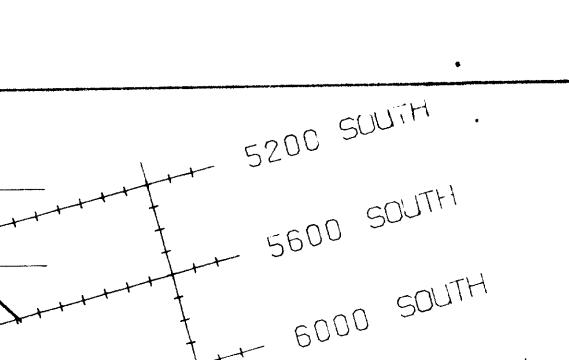
.


-

	LEGEND
	CENOZOIC
	QUATERNARY
•	PLEISTOCENE & RECENT
	Till, verved cley, send, grevel, boulders. () organic debrie
0	PRECAMBRIAN
	EARLY TO MIDDLE PRECAMBRIAN
•	MAFIC INTRUSIVE ROCKS
	5 Diebeen INTRUSIVE CONTACT
	EARLY PRECAMBRIAN
	HAFIC INTRUSIVE ROCKS
o	4 Guttero ar thack mellic flow
	INTRUSIVE CONTACT
	FELSIC METAVOLCANIC ROCKS
	3 Nessive to foliated lave, porphyritic tuff, tuff, lepili and valuenic brecain ,
Г Х Б	INTERMEDIATE METAVOLCANIC ROCKS
	2 Measure to foliated lave. porphyritic tuff, tuff, lepilli and volcanic braceie
	MAFIC METAVOLCANIC ROCKS
	l Massive leve, pillow love and volcenic braccie
	SYMBOLS
	f f Foliation inclined, vertical
	Joint inclined. vertical
	D+ Pillow, tops from shape and packing
	Foult
	Overburden drill hale
1	Geological boundary, interpreted G Indicates geophysical interpretation PROFESSION R
•	2.14225 BOWEN
	Dissond drift hole
•	Vegetation boundry
	R.P. BOWEN ENGINEERING INC.
	Client:
	DAVID J. MEUNIER
) .	
	GEOLOGY MAP
	DATE: MAY 1991 SCALE: 1:5,800 N.T.S.: 42A
	DRAWN BY: RPB FILE: M-1991-1 FIG. MAP 3

.

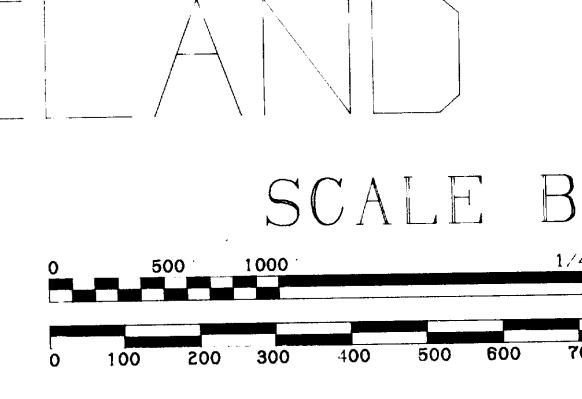
•


•

•

•

1



GI 6400 SOUTH 6800 SOUTH 7200 SOUTH 7600 SOUTH 8000 SOUTH 8400 SOUTH

BBOC SOUTH 960C SOUTH

Gulf grid. azmuth 75° Meunier grid. azmuth 66°

ar San Rh

.

۲

OUATERWARY PLEISTOCENE & RECENT Tituered data PRECAMBRIAN EARLY TO MIDDLE PRECAMBRIAN WATE INTRUSIVE ROOS S 9 minu MARIE MARKEN PRECAMBRIAN WATE INTRUSIVE ROOS S 9 minu MARIE MODE PRECAMBRIAN WATE INTRUSIVE ROOS S 9 minu MARIE MODE MARIE MODE MARIE MODE MARIE MERCON	energen en genergen ag en genergen genergen en en genergen beste genergen en genergen en genergen en genergen g F	LEGEND
PLEISTOCENE & RECENT PRECAMBRIAN PRECAMBRI		CENOZOIC
PLEISTOCENE & RECENT PRECAMBRIAN PRECAMBRI		OLIATERNARY
PRECAMBRIAN PRECAMBRIAN EARLY TO MIDDLE PRECAMBRIAN UNFORMEROUS UNFORMEROUS COMMUNICATION PRESENCEMENT INTERNET INTER		
EARLY TO MIDDLE PRECAMBRIAN WHICH INTRASIVE ROOS S to the INTROSPIC CONTACT EARLY PRECAMBRIAN MARCE MIDSING CONTACT EARLY PRECAMBRIAN MARCE MIDSING CONTACT EARLY INTROSPIC CONTACT EARLY INTROSPIC CONTACT INTROSPIC CONTACT INTERVIENT INTROSPIC INTERVIENT INTROSPIC INTERVIENT INTROSPIC INTERVIENT INTROSPIC INTERVIENT INTERVIENT INTROSPIC CONTACT INTERVIENT INT		Till, verved cley, sand, gravel, boulders.
PRECAMBRIAN WFIC INTRUBUE ROCKS S INTRUST CONTACT EARLY PRECAMBRIAN MYEL INTRUST CONTACT EARLY PRECAMBRIAN MYEL INTRUST CONTACT INTERVENTION OF AND CALLER ROCKS I dear with which a property and MYELSIC NETAVOLCALLE ROCKS I dear with the intervention MYELSIC NETAVOLCALLE ROCKS I dear with the intervention I dear with the intervention MYELSIC NETAVOLCALLE ROCKS I dear with the intervention I d		PRECAMBRIAN
Superior and the second secon		
BUTUESINE CONTACT EARLY PRECAMBRIAN MARCA INTRUSINE CONTACT A Contact of the March The MARCATIC MODES A Contact of the March The MARCATIC MODES A Contact of failed from productive MARCATIC METAAULCANIC FOOKS A contact of failed from productive MARCATIC METAAULCANIC FOOKS A contact of failed from productive MARCATIC METAAULCANIC FOOKS A contact of failed from productive MARCATIC METAAULCANIC FOOKS A contact of failed from productive MARCATIC METAAULCANIC FOOKS A contact of failed from productive MARCATIC METAAULCANIC FOOKS A contact of failed from productive MARCATIC METAAULCANIC FOOKS A contact of failed from productive MARCATIC METAAULCANIC FOOKS A contact inclined, overtained A contact incl		
Image: Anti-Ender Processing of the second of the secon		
 4 deter or basines for MIRLENCE CONTACT ETAVOLCANIC ROCKS 3 deter to failand interpretation of the second of failand interpretation of the second of the seco		
ATRUSTIC CONTACT		WAFIC INTRUGIVE ROOKS
Image: State of the state		4 Galibro on thick motive flow
FE.SIC METAVOLCAVILO ROCKS 3 Example to failure ber, production 2 INTERMEDIATE VETAVOLCAVILO ROCKS 2 STANDARD FORMED FOR SUCCESS 2 Internet formation of production production 3 MERCES 3 MERCES 4 Representation of the second standard operation 4 Representation of the second standard operation 4 Representation 6 R P BOWEN ENGINEERING INC. Clients' 3 AVID 3 MERCES 3 AVID 3 MERCES 3 AVID 3 MERCERS 3 AVID 3 MERCERS 3 AVID 3 MERCERS 3 AVID 3 MERCERS		INTRUSIVE CONTACT
3 3 Institute to following model the following model by the set of t	•	
August to failable free, applying the server is the contract branch		3 Mammaive to folisted lave, porphyritic
AFIC METAVOLCAULE ROCKS MAFIC METAVOLCAULE ROCKS MAFIC METAVOLCAULE ROCKS Mainter and minimum and m		INTERMEDIATE METAVOLCANIC ROCKS
SYMBOLS SYMBOLS I Enterior inclined, vortical Continuined, vortical Continuined, vortical Continuined, vortical Continuined, vortical Continuined		2 Massive to falisted lave, parphyritic tuff, tuff, lepilli and volcanic braccie
SYMBOLS SYMBOLS Symbol S Symbol		
 Follation inclined vertical Joint inclined vertical Pillaw, table from shope and positing Foult. O Gentarian drill hale G Goodagical bandery, interpreted Indicates geochysical interpreted Indicates geochysical interpreted R.P. BOWEN ENGINEERING INC. Client: DAVID 3, MEUNIER 	,	
 Joint inclined, vertical Pillow, tops From shope and packing Fault Overburden drill hele Geologisal boundary, interpreted Indicates: geophysical interpreted Indicates: geophysical interpreted Bower R. P. BOWEN ENGINEERING INC. Client: DAVID 9: MEUNIER 		SYMBOLS
Pillow, Loos From shope and packing Fault O Derburden drill hole Geological boundary. Interpreted Indicates geochysical interpreted Indicates geochysical interpreted Deard of he Vegete body Outcrop boundry R.P. BOWEN ENGINEERING INC Client: DAVID J. MEUNIER Itile:		1 1 Foliation inclined. vertical
Foult C Directordan drill hale G Directordan drill hale G Directores geochysical interpreted Indicates geochysical interpreted David di hale Vegeta bander Vegeta bander Outcrop boundry R. P. BOWEN ENGINEERING INC Client: DAVID J. MEUNIER Title:		Joint Inclined, vertical
C Overburden dill hole Geological abundery: interpreted Indicates: geochysical interpreted Jul Bary Deard of his Vegeters bordy Ourcrop boundry R. P. BOWEN ENGINEERING INC. Client: DAVID J. MEUNIER Title:	₩ <i>f</i> .). Pillow, tops from shape and packing
Geological boundary. interpreted Indicates: geophysical interpreted Indicates: geophys		Foult
G Indicates geophysical interpretation W see Denord of his Vegetore bordy Vegetore bordy Outcrop boundry R.P. BOWEN ENGINEERING INC. Client: DAVID J. MEUNIER Title:		O Overburden drill hole .
BAR W Sump Descend d'i hole Vegetetter bordy Vegetetter bordy Vegetetter bordy Outcrop boundry R.P. BOWEN ENGINEERING INC. Client: DAVID J. MEUNIER Title:	r Se	Indicates geophysical interpretation
R.P. BOWEN ENGINEERING INC. Client: DAVID J. MEUNIER Title:		₩ seap
AR Vegetetter boundry Vegetetter boundry Outcrop boundry Outcrop boundry Outcrop boundry Outcrop boundry Outcrop boundry Outcrop boundry Outcrop boundry Outcrop boundry Outcrop boundry Client: DAVID J. MEUNIER Title:		
BAR Client: DAVID J. MEUNIER		
BAR * Client: DAVID J. MEUNIER		
Title:		R P BOWEN ENGINEERING INC.
Title:		Client: 2.14225 DAVID 2.14225
	BAR	
	1/4 1/2 mile	
700 800 900 1000 meters DATE: MAY 1991 SCALE: 1:5,000 N.T.S.; 42A		DATE: MAY 1991 SCALE: 1:5,000 N.T.S.: 42A
700 800 900 1000 meters DRAWN BY: RPB FILE: M-1991-1 FIG. MAP 4		