Report on
 GEOPHYSICAL SURVEYS

MOBERLY NO. 1 GROUP

Moberly and Byers Townships Porcupine Mining Division

HOLLINGER MINES LIMITED

Ground magnetic and V.L.F. and horizontal-loop electromagnetic surveys have been carried out over a group of 82 claims in Byers and Moberly Townships, Porcupine Mining Division, Province of Ontario.

The work was performed over the past two years and covered all except four claims near the center of the group.

PROPERTY, LOCATION and ACCESS
The Moberly No. 1 Group consists of 82 contiguous unpatented mining claims held by Hollinger Mines Limited.

The property is located twenty-five miles northwest of downtown Timmins.

Access to the property is by helicopter to a few cleared sites or along drill roads from Kamiskotia Lake.

HISTORY
There is evidence of older grid lines near the northeast and southwest parts of the property, but there is no record of ground mineral exploration work by previous operators in government files.

A horizontal-loop electromagnetic survey carried out during 1976 and 1977 over 40 claims in Moberly Township was reported in 1977.

The results of a drill hole put down in 1977 were also recorded in the same year.

No outcrop has been encountered on the property, but from our drill results and the surrounding geology, the area contains mainly basic to felsic lavas of Archean age intruded by north trending diabase dykes. A younger olivene diabase dyke mapped in Loveland Township trends northwesterly across the center of the property. Felsic intrusive rocks are suspected, mainly in the western part.

TOPOGRAPHY

Pleistocene clays mantle most of the area. Slight gouging of Enid Creek and its tributaries and the occasional sandy ridge provide the only relief that would not exceed five meters above or below the plain.

The forest cover is a gradual change from commercial spruce stands in the northern part to open larch swamp in the south with occasional cedar swamps and spruce muskegs throughout.

SURVEY METHODS
a) Linecutting:

In Moberly Township the claims were covered by a grid of north-south lines 400 feet apart, originating from a base line along the north boundary. There is also a base line at 52 S and on the small detail grid near line 12 W .

On the Byers claims, lines were cut in an eastwest direction from a base line originating at the township boundary and line 8 W on the above grid. Another base line was surveyed across the property at 32 W .

Everywhere stations were measured at 100 foot
intervals or less.
b) H.E.M. Survey:

On the Byers grid, the H.E.M. survey was carried out with an EM-17 electromagnetic unit manufactured by Geonics Limited of Toronto. Readings were taken every 100 feet or less with the coils 400 feet apart in the horizontal co-planar mode.

The claims thus covered are: P. 492822 to P. 492845 and P. 492856 to P. 492865 , all inclusive.
C) V.L.F. (20 KHz E.M.) Survey:

Twelve claims in Moberly and fourteen claims in Byers Township were surveyed with an EM-16 electromagnetic receiver, also manufactured by Geonics Limited. The readings were taken at intervals of 100 feet or less, using station NAA (Cutler, Maine) on north-south lines, and NSS (Annapolis, Maryland) on the east-west grid.

The claims covered by this method are: P. 453367 to P. 453374 and P. 492849 to P. 492852 in Moberly Township, and P. 492842 to P. 492845 and P. 492856 to P. 492865 in Byers Township.
d) Magnetic Survey:

The magnetic survey was performed over the existing grid of picket lines on 32 claims in the west part of the Moberly grid, using a Geometrics G-816 proton magnetometer. Control stations were established along the $0+00$ base line, the 52 S B.L. and the south tie-line near the township line by averaging repeat loops that included the even 400 foot stations. A curve of the diurnal was obtained from the control points and applied to the readings.

The claims covered by the magnetic survey are: P. 453375 to P. 453386 , P. 492774 to P. 492791 , P. 492846 and P. 492855 .

RESULTS

a) H.E.M. Survey:

The results are plotted in profile form and interpreted on the accompanying plan entitled 'H.E.M. SURVEY'.

Although seventeen anomalies labelled in order of priority from 'A' to 'R' have been plotted, only 'A' to 'E' show the characteristics of conductors originating from a bedrock source. Anomaly 'F' coincides with a V.L.F. conductor and therefore warrants further examination. Except for 'N', the remaining anomalies display poor ratios and are therefore likely due to irregularities in the conductive clay mantle.
b) V.I.F. (20 KHz E.M.) Survey:

Results of the V.L.F. survey are plotted as profiles on two separate plans entitled 'V.L.F. SURVEY' at a scale of 1 inch to 400 feet. One plan shows the work in Moberly Township and the other covers the Byers Grid.

In the Moberly part, anomaly 'C' coincides with a horizontal-loop conductor detected in 1977. Anomaly ' K ' is due to sulphide mineralization encountered in a drill hole sunk in 1977. Conductors 'A' and 'B' will be re-evaluated following completion of the magnetic survey in this area. None of the remaining nine conductive zones is of immediate interest although they could represent sulphide concentrations.

On the Byers grid, anomalles 'A' to 'E' coincide with horizontal-loop conductors that are not all likely due to a bedrock source. On its own merit, only anomaly 'A' remains of further interest. The conductors represented by dashed lines on the plan are anomalies believed due to operator errors.
c) Magnetic Survey:

The results ontained from the magnetic'survey are plotted and contoured on the accompanying plan entitled 'MAGNETICS'. The parallel-line method of contouring employed is interpretive and, therefore, most magnetic anomalies are readily discernible.

North trending features are invariably dykes. From the drilling, the anomaly trending north of east near the 52 S base line is caused by basic magnetic lavas in contact with acid flows to the north. To the west across the northwest trending dyke, the contact continues for 800 feet and is displaced to the south 800 feet.

CONCLUSIONS and RECOMMENDATIONS

No new major conductive or magnetic zone has been detected by these surveys.
H.E.M. and V.L.F. anomalies that may originate from a bedrock source should be examined using vertical loop or more sophisticated electrical methods.

Additional magnetic work is usually warranted over any potential drill target that may ensue.

Respectfully submitted,

H. Z. Tittley, P.Eng.

G

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT facts Shown here need not be repeated in report TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

pe of Survey(s) Geophysical; E.M. and Magneti	
Claim Holder(s) Hollinger Mines Limited	
Box 320, Timmins, Ont. P4N 7E2	
Survey Company Hollinger Mines Limited	
Author of Report _H. Z. Tittley	
Address of Author Box 320, Timmins, Ontario	
Covering Dates of Survey October 1976 - Sept. 8, 1978	
Total Miles of Line Cut $\quad 86.57$	
SPECIAL PROVISIONS CREDITS REQUESTED	DA
	Geophysical
ENTER 40 days (includes line cutting) for first survey.	-Electromagnetic 40 \& 20
	-Magnetometer_40\&20
	-Radiometric
ENTER 20 days for each additional survey using same grid.	-Other
	Geological
	Geochemical

AIRBORNE CREDITS (Special provision creditt do not apply to airborne surveys)
Magnetometer \qquad Electromagnetic \qquad Radhometric

DATE: Sept. 8,1978

Res. Geol.

Previous Surveys

GEOPHYSICAL TECHNICAL DATA

GROLND SURVEYS -- If more than one survey, specify data for each type of survey

Profile scale
Contour interval

Instrument
Geometrics G-816 Proton Magnetometer
Accuracy - Scale constant \pm l gamma
Diurnal correction method closed loop
Base Station check-in interval (hours) 0.75
Base Station location and value_ 00 Base Line at $28+00^{\prime} \mathrm{W}$
$=59,710$ gammas minus 59,000 equal 710 gammas on plan.

Instrument Geonics EM-16 and EM-17
Coil configuration EM-16, Vertical: EM-17, Horizontal Co-planar
Coil separation EM-16, infinity: EM-17, 400 feet.
Accuracy EM-16, $\pm 1 \%$; EM-17, $\pm 2 \%$
Method: EM-16 [\mathbf{x} Fixed transmitter
\square Shoot back $E M-17 \times$ In line
Parallel line

Parameters measured__In-Phase (Real) and Out-of-Phase (Imaginary)

Instrument
Scale constant
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument \qquad
Method \square Time Domain
\square Frequency Domain
Parameters - On time___ Frequency \qquad

- Off time ___ Range
- Delay time \qquad
- Integration time \qquad
Power
Electrode array
Electrode spacing
Type of electrode

