# REPORT ON GEOPHYSICAL WORK <br> MACDIARMID 33/42 <br> MACDIARMID TOWNSHIP 

NTS: 42-A12
PROJ \# 8036

FOR
FALCONBRIDGE LIMITED

$$
\text { 2. } 210: 2
$$

## SUMMARY AND RECOMMENDATIONS

Magnetic and HLEM were carried out over the Macdiarmid $33 / 42$ property for Falconbridge Limited in August, 1999.

The magnetic survey mapped north-south striking diabase dikes and northwest striking ultrabasics. The HLEM survey detected a number of northwest striking conductors. A number of EM anomalies to the northwest of the ultrabasic have a long strike length and represent formational graphitic sediments.

Three zones of fair to good conductivity do not appear to have been tested by diamond drilling. Anomaly ' $K$ ' is identified on three lines, however, may continue to the northwest in the flank of the response from conductor ' $H$ '. Anomalies ' $Q$ ' and ' $S$ ' are located to the south of the ultrabasic and have short strike lengths. Intermediate lines, on either side of Line 5700 East, would have to be surveyed in order to determine the strike of conductor ' S '.

Three zones of poor conductivity (anomalies ' $D$ ', ' $N$ ' and ' $O$ ') are associated with the ultrabasic. Anomalies ' D ' and ' N ' have a direct correlation with the magnetic high anomalies. A hole drilled by Canadian Johns Manville in the vicinity of anomaly ' $N$ ' intersected disseminated chalcopyrite in gabbro and felsic volcanics.

## TABLE OF CONTENTS

page
Summary and Recommendations ..... i
Introduction ..... 1
General Geology ..... 1
Previous Work ..... 3
Survey Descriptions ..... 9
Magnetic Results ..... 9
HLEM Results ..... 11
References ..... 20
Appendix A - List of Claims

## LIST OF FIGURES

page
1.(a) Location Map ..... 2
(b) Claim Map ..... 2
2. Land Position, 1960's ..... 5
3. Land Position, 1970's ..... 6
4. Land Position, 1980's ..... 7
5. Approximate Location of Previous Drill Holes ..... 8
6. Colour Image of the Total Magnetic Field. ..... 10
7. HLEM Results, 200 metre Coil Separation, 444 Hertz ..... 13

## LIST OF TABLES

page

1. Summary of Previous Work ..... 4
2. Anomaly ' C ' Interpretation ..... 12
3. Anomaly 'G' Interpretation ..... 14
4. Anomaly 'H' Interpretation ..... 15
5. Anomaly 'K' Interpretation ..... 16
6. Anomaly 'L' Interpretation ..... 16
7. Anomaly 'M' Interpretation ..... 17
8. Anomaly 'P' Interpretation ..... 18
9. Anomaly ' Q ' Interpretation ..... 18
10. Anomaly 'S' Interpretation ..... 19

## LIST OF MAPS

1. Magnetic Results (BACK POCKET)
2. HLEM Results, 200 m Coil Separation, 222 Hz (BACK POCKET)
3. HLEM Results, 200 m Coil Separation, 444 Hz (BACK POCKET)
4. HLEM Results, 200 m Coil Separation, 1777 Hz (BACK POCKET)

## INTRODUCTION

Magnetic and horizontal loop electromagnetic (HLEM) surveys were carried out on the Macdiarmid 33/42 property for Falconbridge Limited, in August, 1999. This work is an extension of surveys which were carried out on the Macdiarmid 51 property in September, 1998 and previously reported on. It is part of a joint venture between Falconbridge Limited, Hudson Bay Exploration \& Development Ltd. and Explorers Alliance Ltd.

The property is located approximately 27 kilometres northwest of the city of Timmins (Figure 1(a)) in the west central portion of Macdiarmid Township, Porcupine Mining Division. The west edge of the grid can be accessed by all-terrain vehicle in the summer or snowmobile in the winter along bush roads which run east and then south from the Abitibi Camp 50 road; this road is accessed from Highway 576 which runs north from Kamiskotia Lake. The east edge of the grid can be accessed by boat along the Mattagami River.

The grid on the Macdiarmid $33 / 42$ property and Macdiarmid 51 property covered part of 44 contiguous mining claims which consist of 60, forty acre claim units (Figure 1(b)). A list of the claim numbers is given in Apendix A.

The HLEM survey was carried out by B. Pigeon and L. Eden and the magnetic survey was run by J . derWeduwen.

## GENERAL GEOLOGY

Macdiarmid Township is located near the west end of the Abitibi greenstone belt which consists of predominantly east-west striking, steeply dipping Archean sediments and ultramafic to felsic volcanics. These rocks have been intruded by ultramafic to felsic bodies, north-south striking Matachewan diabase dikes and east northeast striking Keweenawan diabase dikes.

In 1970, the Ontario Division of Mines carried out a regional magnetic survey in Macdiaramid and Loveland Townships. These results were compiled with existing surveys, which were submitted for assessment work credits, and the geology of the two townships was interpreted on map 2288 at a scale of


Figure 1(a): Location Map


Figure 1(b): Claim Map

1 inch to $1 / 2$ mile (Middleton, 1974). The geology of Macdiarmid Township is also presented on map 2205 at a scale of 1 inch to 4 miles (Pyke, 1973) on map P3379 at a scale of 1:100,000 (Ayer etal, 1998).

Previous surveys and drilling in the vicinity of the Macdiarmid $33 / 42 / 51$ property suggest that it is underlain by northwest striking felsic and intermediate volcanics and graphitic sediments. An ultramafic complex, comprised of peridotite, dunite, serpentinite and gabbro, trends northwest through the middle of the property. All of the rocks have been intruded by north northwest striking diabase dikes.

## PREVIOUS WORK

The following is a description of previous exploration work carried out on the property and submitted for assessment work credits (Table 2).

In 1946, Inco filed the results from eight holes which were drilled on their 35 claim block in the area of the present Macdiarmid $33 / 42$ property; all of the holes intersected the ultrabasic complex. In 1960, Inco filed the results from two more holes which also intersected the ultrabasic.

In 1961, Texasgulf Sulphur Co. Ltd. filed the results from two drill holes (M33-1 and M41-1), located within the present survey area. A number of graphite zones within felsic volcanics were intersected in each hole.

In 1964, Silver-Miller Mines Limited held eight claims in Macdiarmid Township along the Macdiarmid /Loveland township line, Silvertown Mines Limited held a block of ten claims directly to the south of SilverMiller and Lovejoy Mining and Exploration Limited and Mistango River Mines Limited held a block of 35 claims directly to the east of the Silver-Miller property (Figure 2). All three companies ran magnetic and HLEM surveys on northeast-southwest lines spaced every 400 feet. The magnetic surveys were run with a vertical field, fluxgate magnetometer and the HLEM survey was run with a coil separation of 200 feet at a frequency of 876 Hertz. Lovejoy also ran a vertical loop electromagnetic (VLEM) survey to detail conductivity which was detected in their HLEM survey.

| YEAR | COMPANY | GEOPHYSICS | DRILL <br> HOLES | AFRI <br> FILE |
| :--- | :--- | :--- | :--- | :--- |
| 1946 | Inco |  | 6241 to 6248 <br> 1960 |  |
| 1961 | Texasgulf | Timmins T-194 <br> 42A12NE0545 |  |  |
| 1961 |  |  | M33-1 |  |
| 1964 | Conwest Exploration Ltd. |  |  | 42A12NE0542 <br> 42A12NE0544 |
| 1964 | Silver-Miller Mines Limited | Mag, HLEM | SM-1 to 6 |  |
| 1964 | Silvertown Mines Limited |  |  | ST-1, ST-2 |

Table 1. Summary of previous assessment work.

Silver-Miller drilled five holes on what are now claims 995400 and 1212996 and one other to the south of these claims. They intersected gabbro and felsic volcanics, however, no conductivity was evident in the holes, to explain targeted EM anomalies. Silvertown sank two diamond drill holes on their property, one of which was totally within a gabbro and the other in gabbro and felsic volcanics. In 1967, Asarco drilled at least four holes (M-1 to M-4) on Lovejoy's property to test EM anomalies.

In 1964, North Rankin Nickel Mines Ltd. conducted magnetic and HLEM surveys over 20 of 35 optioned claims, to the north of the Silver-Miller property. The grid on this property consisted of lines spaced every 300 feet and oriented $\mathrm{N} 35^{\circ} \mathrm{E}$. The magnetic survey was run with a fluxgate magnetometer and the HLEM was run with a coil separation of 300 feet and a frequency of 876 Hertz. Eight holes (NRK-65-1 to

8) were drilled to test EM anomalies. In 1965, the company optioned eight more claims to the east and carried out magnetic and HLEM surveys along north-south lines spaced every 200 feet.

In 1964, Bruce-Presto Mines
Limited held a block of 35 claims which straddled the Mattagami River and covered the east end of the present survey area. A grid consisting of east-west lines spaced every 400 feet was established on the property, however, no survey results were filed for assessment credits. Seven holes (Mac-1 to 7) intersected felsic volcanics and ultrabasics; graphite with pyrite and pyrrhotite mineralization was encountered in a number of the holes.

In 1965, Mespi Mines Limited ran magnetic and VLEM surveys over a forty claim block in southwest Macdiarmid and southeast Loveland Townships. The grid on the property consisted of east-west lines spaced every 400 feet. The magnetic readings were taken with a fluxgate magnetometer and the VLEM readings were taken with a coil separation of 300 feet at frequencies of 1800 and 480 Hertz. In 1966, Mespi
ran the same surveys along north-south lines spaced every 400 feet on a block of 9 claims directly to the east. In 1968, Mespi also ran these surveys along east-west lines spaced every 400 feet on a block of 20 claims located to the east of the present Falconbridge survey area. No drilling was submitted for assessment credits.

In 1969, Noranda Exploration conducted magnetic and VLEM surveys on a 12 claim block and a 9 claim block, both of which covered part of the present survey area. The surveys were run along grid lines oriented $\mathrm{N} 35^{\circ} \mathrm{E}$ and spaced every 400 feet. The magnetic survey was run with a vertical field, fluxgate magnetometer. One hole (M69-1), which was drilled on the 12 claim block, intersected felsic volcanics but no conductors.

In 1972, Canadian Johns-Manville Ltd. carried out a magnetic survey on a block of 30 claims which covered most of the present Macdiarmid $33 / 42$ property (Figure 3). The survey was run with a fluxgate magnetometer along grid lines spaced every 400 feet and oriented northeast-southwest. In 1973, six diamond drill holes (Mac73-1 to 6) were sunk to test magnetic anomalies; all of the holes intersected a
 peridotite body with gabbro along the contact. In 1977, magnetic and vertical loop electromagnetic surveys were run over one other adjoining claim. The claims were brought to lease and were not re-opened for staking until 1999, when they were staked by Falconbridge Limited.

In 1971 and 1972, Hollinger Mines Limited carried out magnetic and HLEM survey over thirteen claims located along the west edge of the Mattagami River, to the northeast of the present survey area. The surveys were run along grid lines oriented $10^{\circ}$ east of north and spaced every 400 feet. The magnetic survey was run with a torsion wire magnetometer and coil separations of 300 and 400 feet were used in the HLEM survey.

In 1975, Phelps Dodge Corporation of Canada Limited ran geophysical surveys on four claim groups
in Macdiarmid Township. The most western group consisted of three claims which are presently claims 995400, 995401 and 995402. Magnetic and HLEM surveys were run on these claims, along lines oriented northeast-southwest and spaced every 400 feet. The magnetic survey was run with a fluxgate magnetometer and the HLEM survey was run with a coil separation of 400 feet at a frequency of 1600 Hertz. Although no drilling was filed, Amax later reported finding a drill site and drill core in the middle of what is now claim 995400.

In 1977, Geophysical Engineering Limited held a block of 31 claims in west central Macdiarmid Township. They filed the logs from two diamond drill holes (P-1 and P1-4); one hole was completely within gabbro and the other intersected a graphitic slate at the contact between gabbro and felsic volcanics.

In 1977, Amax Minerals Exploration carried out magnetic and HLEM surveys on eight contiguous claims which were located along the west edge of the Mattagami River, directly to the north of the
 Macdiarmid $33 / 42$ property. They were run along grid lines spaced every 125 metres and oriented $10^{\circ}$ north of west. The magnetic survey was run with a total field, proton precession magnetometer and the HLEM survey was run with a coil separation of 600 feet and frequencies of 444 and 1777 Hertz. In 1978, two diamond drill holes were sunk to test EM anomalies; both holes, MAC-1 and MAC2 , intersected graphitic tuffs. A geological survey was also carried out on two claims which are presently 995400 and 995401.

In 1987, the Ontario Geological Survey carried out a combined airborne magnetic and EM survey in the Timmins area which included Macdiarmid Township (OGS, 1988). This survey was flown along northsouth lines spaced approximately every 200 metres.

In 1988, Falconbridge Limited carried out magnetic and HLEM surveys over a block of 33 claims


Figure 5: Approximate Location of Previous Drill Holes
located directly to the north of the patented Canadian Johns-Manville claims (Figure 4). The surveys were run along north-south lines spaced every 100 metres; the magnetic survey was run with a total field, proton precession magnetometer and the HLEM survey was run with a coil separation of 120 metres at frequencies of 444 and 177 Hertz. At least five drill holes were sunk to test EM anomalies.

## SURVEY DESCRIPTIONS

The surveys were run on grid lines spaced every 100 metres and oriented at $55^{\circ} \mathrm{Az}$ (Figure 1(b)). Tie lines were cut every 400 metres and all of the lines were picketed every 25 metres except for Lines 3200 to 3500 East, north of 0 North, which were picketed every 20 metres.

The magnetic readings were taken every 12.5 metres with a Scintrex IGS-2/MP-4. This instrument is a proton precession magnetometer which measures the earth's total magnetic field to an accuracy of 0.1 nT . Diurnal variations were monitored every 10 seconds with a Scintrex MP-3 base station magnetometer, located off the grid at 10200 East, 10360 North; the base station value to which all of the readings were levelled is 59237 nT . A total of 4672 readings were taken along 55.4 kilometres of line.

The horizontal loop EM survey was carried out with the Apex Parametrics MaxMin I-5. This instrument measures the in-phase and quadrature components of the secondary field as a percentage of the primary field; the depth of penetration is approximately half of the coil separation. Readings were taken every 25 metres using a coil separation of 200 metres and frequencies of 222, 444 and 1777 Hertz. A total of 2040 stations were read along 56.8 kilometres of line.

## MAGNETIC RESULTS

The magnetic results are contoured every 100 nT on map 4 at a scale of 1:5000. The results have compiled with the Macdiarmid 51 survey and are presented in Figure 6 at a scale of 1:25,000.

Instrument : Scintrex IGS-2/MP-4
Type : Total Field Proton Precession
Gridded By : Geosoft Bigrid
Cell Size : 10 metres
Filter: 1 Pass 9 Point Hanning
Contour Interval : 500 nT
Scale: 1:25,000
HLEM Anomaly. 444 Hertz

Figure 6 : Total Magnetic Field, Macdiarmid 33/42/51

The most prominent feature in the magnetic results is a very high amplitude anomaly which strikes northwest through the middle of the property. This anomaly represents an ultrabasic body which has been drilled by Inco in 1946 and Canadian Johns Manville in 1973.

To the southwest of the ultrabasic, the magnetic field is uniformly low except for two linear north-south striking magnetic highs which represent diabase dikes. To the northeast of the ultramafic there are also at least two more north-south striking diabase dikes. Other linear magnetic high anomalies in this area, with the same amplitude as the dikes, strike northwest and may represent ultramafic intrusives or flows. They may also be diabase dikes which have been diverted parallel to stratigraphy at a geological contact or fault zone.
$E M$ anomalies ' D ' and ' N ' coincide with magnetic high anomalies which represent the ultrabasic. Both of these anomalies reflect poor conductivity.

## HLEM RESULTS

The results of the HLEM survey are profiled on maps 1,2 and 3 at a scale of 1:5000; the profile scale used is $1 \mathrm{~cm}=\mathbf{2 0} \%$ for all of the frequencies. The 444 Hertz results have also been compiled with the Macdiarmid 51 results and are presented in Figure 7 at a scale of 1:25,000.

There is a strong inversion of the quadrature component on most of the anomalies on the property which is due to very conductive overburden. The interpretation of the anomalies was taken from the lowest frequency, however, the inversion is still apparent in these results and the interpreted conductivity and depth are likely higher than the true values. Some of the conductors on the property are closely spaced which also makes an interpretation of the individual anomalies difficult.

The labelling of the anomalies has been kept consistent with the labels of anomalies to the northwest on the Macdiarmid 51 property.

Anomaly ' $C$ ' is a very high amplitude anomaly which is located between 765 South on Line 3000 East
and 505 South on Line 3900 East. The quadrature component of the anomaly is inverted because of conductive overburden and the response is, no doubt, partially influenced by the response from conductor L, located directly to the north. The interpreted parameters suggest very good conductivity at a shallow depth (Table 2).

This anomaly was likely the target of Hole $\mathrm{M}-1$ which was drilled by Asarco on Mistango River's ground in 1967. The hole intersected graphitic tuffs and felsic volcanics. It was also the target of Hole M41-1 which was drilled by Texasgulf in 1961; this hole also intersected a graphitic zone in felsic volcanics.

| LINE | ANOMALY <br> CENTER | ANOMALY <br> WIDTH <br> $(\mathbf{m})$ | IP <br> $(\%)$ | Q <br> $(\%)$ | DEPTH <br> $(\mathbf{m})$ | CONDUCTIMTY <br> THICKNESS <br> (mhos) | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3000 E | 765 S | 10 | -33 | -8 | 38 | 156 |  |
| 3100 E | 765 S | 10 | -29 | -9 | 42 | 137 |  |
| 3200 E | 720 S | 10 | -27 | -5 | 50 | 219 | 299 |
| 3300 E | 680 S | 10 | -36 | -4 | 40 | $?$ |  |
| 3400 E | 645 S | $?$ | -22 | $?$ | $?$ | 312 |  |
| 3500 E | 590 S | $?$ | -42 | -4 | 30 | $?$ |  |
| 3600 E | $?$ | $?$ | $?$ | $?$ | $?$ | 200 |  |
| 3700 E | 535 S | $?$ | -52 | -12 | $<20$ | 239 |  |
| 3800 E | 525 S | $?$ | -52 | -9 | $<20$ |  |  |
| 3900 E | 505 S | 10 | -38 | -13 | 24 |  |  |



Anomaly 'D' is located between 525 South on Line 2700 East and 425 South on Line 3200 East. It is mainly a quadrature response and represents poor conductivity. This anomaly has a direct correlation with a linear high magnetic field which represents the ultrabasic body.


Figure 7 : HLEM Results, 444 Hertz, 200 metre coil separation, Macdiarmid 33/42/51

Anomaly 'G' strikes southeast from 144 South on Line 2700 East to 180 North on Line 3500 East. The source of the anomaly is good conductivity at a depth which ranges from 60 to 100 metres (Table 3). The large widths interpreted for this anomaly are likely due to multiple conductors rather than one broad zone.

This anomaly was the target of Hole M-3B which was drilled by Asarco on the Mistango River ground in 1967 and Hole MCD42-1 which was drilled by Falconbridge in 1988; both holes intersected graphitic tuffs. The anomaly continues to the northwest through the Macdiarmid 51 grid and was likely the target of two holes (NRK65-4 and NRK65-6) drilled by North Rankin in 1965. It was also the target of two holes drilled by Geophysical Engineering (P-1 and P1-4) to the southeast in 1979.

| LINE | ANOMALY <br> CENTER | ANOMALY <br> WIDTH <br> $(\mathrm{m})$ | $\mathbb{P}$ <br> $(\%)$ | $\mathbf{Q}$ <br> $(\%)$ | DEPTH <br> $(\mathrm{m})$ | CONDUCTMITY <br> THCKNESS <br> $(\mathrm{mhos})$ | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2700 E | 144 S | 20 | -17 | -5 | 70 | 119 |  |
| 2800 E | 137 S | 25 | -7 | -5 | 88 | 36 |  |
| 2900 E | 112 S | 25 | -7 | -5 | 88 | 36 |  |
| 3000 E | 80 S | 35 | -6 | -4 | 100 | 37 |  |
| 3100 E | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ |  |
| 3200 E | 40 N | 30 | -8 | -6 | 80 | 31 |  |
| 3300 E | 80 N | 40 | -13 | -10 | 56 | 31 |  |
| 3400 E | 130 N | 60 | -10 | -8 | 64 | 28 |  |
| 3500 E | 180 N | 40 | -13 | -9 | 60 | 36 |  |

Table 3: Anomaly 'G' Interpretation, $222 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly 'H' strikes southeast between 360 North on Line 2600 East and 580 North on Line 3500 East. The source of the anomaly is a narrow zone of very good conductivity at a depth which ranges from 40 metres on Lines 3100 and 3200 East to 80 metres at the southeast end of zone (Table 4). The greater width interpreted on Lines 3100 East to 3300 east is likely to multiple conductors where they occur en-echelon.

The width can not be determined on Lines 2700 to 2900 East because of interference from anomaly ' $K$ ' to the southwest.

Anomaly 'H' was the target of Hole MCD42-4, which was drilled by Falconbridge in 1988; it intersected a number of graphitic sedimentary units. This anomaly also continues to the northwest through the Macdiarmid 51 grid and was likely the target of two holes (NRK65-7 and NRK65-8) drilled by North Rankin in 1965.

| LINE | ANOMALY <br> CENTER | ANOMALY <br> WIDTH <br> $(\mathrm{m})$ | IP <br> $(\%)$ | Q <br> $(\%)$ | DEPTH <br> $(\mathrm{m})$ | CONDUCTMTY <br> THICKNESS <br> $(\mathrm{mhos})$ | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2600 E | 360 N | $?$ | -25 | -7 | 50 | 154 |  |
| 2700 E | 370 N | $?$ | -21 | -5 | 60 | 185 |  |
| 2800 E | 385 N | $?$ | -21 | -4 | 62 | 219 | 97 |
| 2900 E | 405 N | $?$ | -19 | -8 | 56 | 165 |  |
| 3000 E | 425 N | narrow | -22 | -6 | 56 | 156 |  |
| 3100 E | 450 N | 50 | -29 | -7 | 46 |  |  |
| 3200 E | 460 N | 40 | -31 | -7 | 44 | 199 |  |
| 3300 E | 490 N | 20 | -28 | -4 | 52 | 273 |  |
| 3400 E | 560 N | narrow | -15 | -6 | 70 | 100 |  |
| 3500 E | 580 N | narrow | -9 | -5 | 86 | 51 |  |

Table 4: Anomaly 'H' Interpretation, $222 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly ' $J$ ' is located approximately 125 metres to the north of anomaly ' H ' on Line 3000 to 3200 East. It is a poorly defined, mainly quadrature response which is likely surficial.

Anomaly ' K ' is located approximately 200 metres south of anomaly ' H ' on Lines 2700 to 2900 East. The source of the anomaly is very good conductivity at a depth of approximately 100 metres (Table 5). The width and dip can not be determined because of interference from anomaly ' H '.

| LINE | ANOMALY <br> CENTER | ANOMALY <br> WIDTH <br> $(\mathrm{m})$ | $\mathbb{P}$ <br> $(\%)$ | $Q$ <br> $(\%)$ | DEPTH <br> $(\mathrm{m})$ | CONDUCTIVITY <br> THICKNESS <br> $(\mathrm{mhos})$ | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2700 E | 200 N | $?$ | -10 | -4 | 92 | 102 |  |
| 2800 E | 200 N | $?$ | -11 | -3 | 94 | 151 |  |
| 2900 E | 230 N | $?$ | -9 | -2 | 104 | 188 |  |

Table 5: Anomaly 'K' Interpretation, $222 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly 'L' strikes southeast between 560 South on Line 3100 East to 375 South on Line 3700 East. It is a only a partial anomaly because of its location, on the north flank of the stronger response from conductor ' $F$ '. The width and dip can not be determined since the south shoulder of the anomaly is not defined. The depth of the source is shallow on Line 3600 East and increases to the northwest and southeast. The conductivity is very good (Table 6).

| LINE | ANOMALY <br> CENTER | ANOMALY <br> WDTH <br> $(\mathrm{m})$ | $\mathbb{P}$ <br> $(\%)$ | Q <br> $(\%)$ | DEPTH <br> $(\mathrm{m})$ | CONDUCTIVITY <br> THICKNESS <br> (mhos) | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3100 E | 560 S | $?$ | -8 | -6 | 80 | 34 |  |
| 3200 E | 525 S | $?$ | -15 | -10 | 56 | 37 |  |
| 3300 E | 500 S | $?$ | -20 | -13 | 41 | 37 |  |
| 3400 E | 500 S | $?$ | -19 | -17 | 30 | 24 |  |
| 3500 E | 485 S | $?$ | -12 | -16 | 26 | 11 |  |
| 3600 E | 440 S | $?$ | -20 | -24 | $<20$ | 14 |  |
| 3700 E | 375 S | $?$ | -10 | -11 | 48 | 17 |  |

Table 6: Anomaly 'L' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly 'M' strikes east southeast across the north end of Line 4400 East and west end of Tie Line 800 North. The source of the anomaly is good conductivity at a depth of 40 metres (Table 7). It is only partially defined on both lines and the dip and width of the conductor can not be determined. This anomaly may be the east extension of anomaly ' $G$ '.

| LINE | ANOMALY <br> CENTER | ANOMALY <br> WIDTH <br> $(\mathrm{m})$ | $\mathbb{I P}$ <br> $(\%)$ | $Q$ <br> $(\%)$ | DEPTH <br> $(\mathrm{m})$ | CONDUCTMTY <br> THICKNESS <br> $(\mathrm{mhos})$ | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4400 E | 700 N | $?$ | -2 | -9 | $<20$ | 1 |  |
| 800 N | 4500 E | $?$ | -2 | -8 | $<20$ | 1 |  |

Table 7: Anomaly 'M' Interpretation, $222 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly ' $N$ ' is located between 115 South on Line 4500 East and 580 North on Line 5400 East. It is mainly a quadrature response in the low frequency results and represents poor conductivity. There is an inphase response on Lines 5100 to 5300 East, suggesting better conductivity which is difficult to calculate because of poorly defined background. It coincides with a linear, high magnetic anomaly which represents the ultrabasic body.

Anomaly ' $O$ ' also represents poor conductivity between 235 South on Line 4800 East and 150 North on Line 5400 East. This anomaly is located along the north flank of one of the ultrabasic bodies.

Anomaly 'P' strikes east-west between 537 North on Line 5800 East and 720 North on Line 6000 East. The source of the anomaly is a 25 metre wide zone of good conductivity at a depth which ranges from 50 metres to 70 metres (Table 8). The dip of the conductor is to the north.

This anomaly was likely the target of Hole M33-1 which was drilled by Texasgulf in 1961. The hole intersected a number of graphite zones with nodules and stringers of pyrite and pyrrhotite mineralization
within felsic volcanics.

| LINE | ANOMALY <br> CENTER | ANOMALY <br> WIDTH <br> $(\mathrm{m})$ | IP <br> $(\%)$ | Q <br> $(\%)$ | DEPTH <br> $(\mathrm{m})$ | CONDUCTIVTY <br> THICKNNES <br> (mhos) | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5800 E | 537 N | 25 | -11 | -7 | 74 | 37 |  |
| 5900 E | 615 N | 25 | -25 | -7 | 50 | 153 |  |
| 6000 E | 720 N | 25 | -6 | -7 | 62 | 14 |  |

Table 8: Anomaly 'P' Interpretation, $222 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly $\mathbf{Q}$ is located between 12 South on Line 5700 East and 37 North on Line 6000 East. The source of the anomaly is a 25 metre zone of poor to good conductivity (Table 9). The depth to the conductivity increases from less than 20 metres on Line 6000 East to 100 metres on Line 5700 East. The poor conductivity, shallow depth and the high quadrature response to the south on Line 6000 East suggest that the source of the anomaly on this line is surficial and may not be part of the same anomaly on Lines 5700 to 5900 East.

| LINE | ANOMALY <br> CENTER | ANOMAIY <br> WIDTH <br> $(\mathrm{m})$ | IP <br> $(\%)$ | Q <br> $(\%)$ | DEPTH <br> $(\mathrm{m})$ | CONDUCTIVITY <br> THICKNESS <br> $(\mathrm{mhOs})$ | CONMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5700 E | 12 S | 25 | -4 | -3 | 100 | 28 |  |
| 5800 E | 12 N | 25 | -12 | -9 | 60 | 34 |  |
| 5900 E | 50 N | 25 | -4 | -6 | 50 | 9 |  |
| 6000 E | 37 N | 25 | -1 | -6 | $<20$ | 3 |  |

Table 9: Anomaly 'Q' Interpretation, 222 Hz, 200 metre coil separation.

Anomaly ' $R$ ' is a partially defined response at the south end of Lines 5900 and 6000 East. The inphase/quadrature ratio suggests that the source is poor conductivity. It is located on the south flank of a bedrock high and likely represents a surficial conductor.

Anomaly $\mathbf{S}$ is a one line anomaly which is centered at $\mathbf{2 6 2}$ South on Line 5700 East. The source of the anomaly is a 25 metre wide zone of fair conductivity at a depth of 64 metres (Table 10). The dip can not be determined because the south shoulder is not defined.

| LINE | ANOMALY <br> CENTER | ANOMALY <br> WIDTH <br> $(\mathrm{m})$ | $\mathbb{P}$ <br> $(\%)$ | $Q$ <br> $(\%)$ | DEPTH <br> $(\mathrm{m})$ | CONDUCTMTY <br> THICKNESS <br> $(\mathrm{mhOS})$ | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5700 E | 262 S | 25 | -4 | -5 | 64 | 9 |  |

Table 10: Anomaly 'S' Interpretation, $222 \mathrm{~Hz}, 200$ metre coil separation.


Timmins Geophysics Limited

## REFERENCES

## Ayer, J.A. and Trowell, N.F.

1998: Geological Compilation of the Timmins Area, Abitibi Greenstone Belt; Ontario Geological Survey, Preliminary Map P.3379, scale 1:100,000.

## Middleton, R.S.

1974: Magnetic Survey of Loveland and Macdiarmid Townships, District of Cochrane; Ontario Division of Mines, GPR2, 26 p . Accompanied by Map 2288, scale 1 inch to $1 / 2$ mile.

## Ontario Geological Survey

1988: Airborne Electromagnetic and Total Intensity Survey, Timmins Area, Macdiarmid Township, Districts of Cochrane and Timiskaming Ontario; by Geoterrex Limited, for Ontario Geological Survey. Geophysical/Geochemical Series Map 81061. Scale 1:20,000. Survey and compilation from March 1987 to October 1987.

Pyke, D.R., Ayres, L.D. and Innes, D.
1973: Timmins-Kirkland Lake Sheet; Ontario Division of Mines, Geological Compilation Series, Map 2205, scale $1^{\prime \prime}=4$ miles.

## APPENDIX A

| CLAM \# | \# of UNITS | RECORDING DATE | RECORDED HOLDER | TOWNSHIP |
| :---: | :---: | :---: | :---: | :---: |
| 995399 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995400 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995401 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995402 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995403 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995404 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995447 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995448 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995449 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995450 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995451 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995452 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995453 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995455 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995456 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995457 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995458 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 995459 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 996042 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 996049 | 1 | May 21, 1987 | Falconbridge Limited | Macdiarmid |
| 1211709 | 1 | June 7, 1999 | Falconbridge Limited | Macdiarmid |
| 1211714 | 1 | June 7, 1999 | Falconbridge Limited | Macdiarmid |
| 1211715 | 1 | June 7, 1999 | Falconbridge Limited | Macdiarmid |
| 1211716 | 1 | June 7, 1999 | Falconbridge Limited | Macdiarmid |
| 1211718 | 3 | June 7, 1999 | Falconbridge Limited | Macdiarmid |
| 1211719 | 1 | June 7, 1999 | Falconbridge Limited | Macdiarmid |
| 1211720 | 2 | June 7, 1999 | Falconbridge Limited | Macdiarmid |
| 1211721 | 4 | May 29, 1998 | Falconbridge Limited | Macdiarmid |
| 1211723 | 3 | June 7, 1999 | Falconbridge Limited | Macdiarmid |
| 1211724 | 3 | May 29, 1998 | Falconbridge Limited | Macdiarmid |
| 1211727 | 2 | June 7, 1999 | Falconbridge Limited | Macdiarmid |
| 1211728 | 1 | May 29, 1998 | Falconbridge Limited | Macdiarmid |

$\left.\left.\begin{array}{|c|c|c|c|c|}\hline \text { CLAIM \# } & \text { \# of UNITS } & \text { RECORDING } \\ \text { DATE }\end{array}\right] \begin{array}{c}\text { RECORDED } \\ \text { HOLDER }\end{array}\right]$ TOWNSHIP

Table 1 : Property Description
2. 21082

DATE: 03/31/2001 DRILL HOLE RECORD


COMMENTS : Hole drilled to test SpectrEM target 608a - Intersected two conductive graphite horizons
WEDGES AT
directional data:



| $\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$ | ROCK TYPE | texture and structure | $\begin{aligned} & \mid \text { ANGLE } \\ & \text { \|TO CA } \end{aligned}$ | ALTERATION | MINERALIZATION | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 83.85 \\ \text { T0 } \end{array}$ | *7, a* | FINE GRAINED DIORITE |  | -Minor fracture controlled qtz/albite veining. | -No sulphides observed. | -Magnetic susceptibility ranges from 0.1 to 0.4 |
| 93.05 |  | -Light green, fine to medium grained diorite. |  |  |  |  |
|  |  | Unit appears to be finer grained near the upper |  |  |  |  |
|  |  | \| and lower contact, suggesting chilling against |  |  |  |  |
|  |  | the previous and following units. |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | -Unit is massive and testure, overprinted by |  |  |  |  |
|  |  | \| minor fracture controlled qtz/albite veining. |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | -Downhole contact is indistinct, marked by a |  |  |  |  |
|  |  | \| fining in grain size and the re-appearance of |  |  |  |  |
|  |  | \| volcaniclastic textures related to the following unit. |  |  |  |  |
|  |  |  |  |  |  |  |
| $\begin{array}{r} 93.05 \\ \text { T0 } \end{array}$ | *2, e, bx* | \| insitu brecciated amygdular mafic volcanics |  | -Minor fracture controlled qtz/carbonate and carbonaceous | -Trace disseminated Py/po |  |
| 110.60 |  | -Fine grain dark green massive to brecciated |  | alteration. |  |  |
|  |  | \| mafic volcanics. Unit hosts 1 to $2 \%$ qtz/carbonate |  |  |  |  |
|  |  | filled amygdules. |  |  |  |  |
|  |  | \| -Massive sections are interspaced by insitu |  |  |  |  |
|  |  | \| brecciated intervals that locally develop into hyaloclastitic textures. |  |  |  |  |
|  |  | \| -Unit is overprinted by weak, hairline fracturing |  |  |  |  |
|  |  | infilled by minor qtz/carbonate alteration. |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | \| -Downhole contact is sharp, 38 deg TCA. |  |  |  |  |
| $\begin{array}{r} 110.60 \\ \text { T } \end{array}$ | *7, a* | FINE GRAINED DIORITE |  | -Trace fracture controlled qtz/carbonate alteration. | -No sulphides observed. | -Magnetic susceptiblities are <br> identical to mafic volcanics, ranging |
| 113.30 |  | -Light green fine grain diorite. Unit is |  |  |  | between 0.1 and 0.3 . |
|  |  | \| identical in appearance to diorite observed |  |  |  |  |
|  |  | \| uphole. |  |  |  |  |
|  |  | -Diorite is massive in texture, and is observed | 1 |  |  |  |
|  |  | \|to be finer grained near the uphole and donhole | , |  |  |  |
|  |  | \| contacts. |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | - Downhole contact is sharp, 45 deg TCA. | I |  |  |  |
| 113.30 | «2,e, bx» | In Situ brecciated amydular mafic volcanics |  | -Fracture controlled gtz/carbonate | -Trace disseminated Py/Po observed | -Unit interpreted to be thick |
| TO |  |  |  | veining renders unit moderately | throughout unit. | flow/flows |
| 162.40 |  | -Dark green, fine grained massive to in situ |  | pervasively carbonatized. |  |  |
|  |  | brecciated mafic volcanics. Unit hosts 1 to $2 \%$ |  |  | -Disseminated Py becomes 0.5 to 1\% | -Magnetic susceptibility comparable to |
|  |  | \| qtz/carbonate filled amygdules. Amygdules do not |  | -Qtz/carbonate/albite veinlets greater | abundant approaching the dowwhole | previous units. |
|  |  | display any specific zoning. |  | than 10 cm in diameter observed between | contact. Minor amounts of rusty red |  |


| $\begin{array}{r} \text { FROM } \\ \text { TO } \end{array}$ | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | texture and structure | $\begin{aligned} & \mid \text { ANGLE } \mid \\ & \mid \text { TO CA } \end{aligned}$ | alteration | MINERALIZATION | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 124.0 and 124.1 m , and 125.4 and | coloured Sph abserved 1 cm from lower |  |
|  |  | -Unit is similar in appearance to mafics observed |  | 125.5 m . | contact. |  |
|  |  | uphole. |  | -Weak pervasive carbonaceous |  |  |
|  |  | -Wispy subparallel hairline fractures appear to |  | alteration increases towards lower |  |  |
|  |  | define flow shear laminatons |  | contact. |  |  |
|  |  | -Downhole from 138.5m, unit becomes increasingly | - |  |  |  |
|  |  | fractured, infilled by abundant hairline thick | 1 |  |  |  |
|  |  | qtz/carbonate veinlets. |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | Intervals of broken and blocky core observed |  |  |  |  |
|  |  | between 134.5 and 135.5 m , and 142.3 and 143.0 m . |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | - Downhole contact is sharp, 50 deg TCA. |  |  |  |  |
|  |  |  |  |  |  |  |
| $\begin{array}{r} 162.40 \\ \text { TO } \end{array}$ | *5, a, 9* | \| Conductive graphitic argillite | 1 | -Fracture controlled qtz/carbonate veining occupies $2-4 \%$ of unit. | \| -Minor fracture controlled Po, and | nodular, and brassy/earthy fine | -Interval is moderately to strongly conductive. |
| 169.60 |  | - Dark grey to black, finely laminated graphitic |  |  | \| disseminated Py. |  |
|  |  | argillite, mudsone, and greywacke. Argillite |  | -Greywacke sections appear to be |  |  |
|  |  | hosts $2-3 \%$ fracture controlled, nodular and |  | overprinted by strong pervasive | -Unit hosts $2-3 \%$ pyritic sulphides. No base metal sulphides observed. |  |
|  |  | earthy disseminated Py. |  | carbonaceous alteration. |  |  |
|  |  | -Argillite is finely laminated, exhibiting a |  |  |  |  |
|  |  | strong slatey cleavage, parallel to bedding, 50 |  |  |  |  |
|  |  | deg TCA. |  |  |  |  |
|  |  | -Graphitic intervals are moderately to strongly | ' |  |  |  |
|  |  | conductive, occupying 60\% of unit. Graphitic |  |  |  |  |
|  |  | sections are interspaced by crudely bedded |  |  |  |  |
|  |  | muddy to silty greywacke. | , |  |  |  |
|  |  | -Load structures observed at greywacke/argillite | , |  |  |  |
|  |  | contact at 166.3m indicates a downhole facing | 1 |  |  |  |
|  |  | direction. No other clear facing indicators were |  |  |  |  |
|  |  | observed. |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | -Downhole contact is sharp but irregular, roughly 70 deg TCA. |  | - |  |  |
|  |  |  |  |  |  |  |
| $\begin{array}{r} 169.60 \\ 70 \end{array}$ | «2,p,e,n» | vartolitic mafic volcanics |  | -Minor fracture controlled gtz/carbonate alteration. | -Trace, fine disseminated Po observed near the downhole contact, between | -Magnetic susceptibilities of 0.1 and 0.2 observed. |
| 200.45 |  | -Dark green, fine grained massive to pillowed |  |  | 197.3 and 200.45 m . |  |
|  |  | variolitic mafic volcanic flows. Mafics host 1 to |  | -Strong pervasive carbonaceous |  |  |
|  |  | $2 \%$ disseminated qtz/carbonate filled amygdules. |  | alteration is developed around the |  |  |
|  |  |  |  | uphole contact between 169.6 to |  |  |
|  |  | \| -Pillows are poorly defined. Locally, vague |  | 120.5 m , and in patches near the lower |  |  |
| HOLE NOMBER: MCD32-01 |  |  |  | DRILL HOLE RECORD | LOGGED | : G Collins PAGE: |


| $\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$ | ROCK TYPE | texture and structure | $\left.\begin{array}{\|l\|} \mid \text { ANGLE } \\ \mid \text { TO CA } \end{array} \right\rvert\,$ | ALleration | MINERALIZATION | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \| swelvage features area observed. Massive |  | contact between 97.3 and 98.1m. |  |  |
|  |  | \| intervals are interspaced by variolitic patches, |  |  |  |  |
|  |  | and by minor amounts of hyaloclastitic material. |  |  |  |  |
|  |  | -Between 1950 and 198.0 m , flow shear laminations |  |  |  |  |
|  |  | -Between 195.0 and 198.0m, flow shear laminations are observed. |  |  |  |  |
|  |  | are observed. |  |  |  |  |
|  |  | - -Intervals of blockey, broken core noted between |  |  |  |  |
|  |  | 174.9 and $175.2 \mathrm{~m}, 176.5$ and $176.8 \mathrm{~m}, 181.4$ and |  |  |  |  |
|  |  | 181.6 m , and 182.4 and 183.5 m . |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | -Downhole contact is sharp, 20 deg TCA. |  |  |  |  |
| 200.45 | *5,a, 9 * | graphitic argillite and siliceous mudstone |  |  | -Unit hosts 3 to 5\% fracture | -Unit marked by multiple intervals of |
| T0 | *5,a,g* |  |  | qtz/carbonate veining. | controlled, nodular and fine | moderately to strongly conductive |
| 217.20 |  | -Dark grey to black, finely laminated graphitic |  |  | disseminated $\mathrm{Py} / \mathrm{Po}$. | material. |
|  |  | argillite interspaced by minor ammounts of fine |  |  | -Nodules of Po, rimmed with coarser |  |
|  |  |  |  |  | grained PY are 1-2\% abundant between |  |
|  |  | -Unit hosts 3 to 5\% fracture controlled, nodular |  |  | 200.45 and 203.0 m . |  |
|  |  | and disseminated Po and Py. |  |  |  |  |
|  |  |  |  |  | -Between 211.1 and 212.5, graphite |  |
|  |  | -Unit exhibits a stronlgy developed slatey | , |  | host bands of finely disseminated |  |
|  |  | cleavage ranging from 25 to 30 deg TCA |  |  | sulphide (earthy Py/Sph?) occupy 5-10\% |  |
|  |  | throughout unit. Between 201.2 and 201.5m, a |  |  | of interval. |  |
|  |  | small parasitic fold closure is observed. |  |  |  |  |
|  |  | -Very siliceous, finely laminated beds of | I |  |  |  |
|  |  | cherty mudstone observed between 210.7 and |  |  |  |  |
|  |  | $211.1 \mathrm{~m}, 212.5$ and 213.6 m , and 214.8 and 216.8 m . |  |  |  |  |
|  |  | -Badly broken core, and minor gouge observed on |  |  |  |  |
|  |  | slip surfaces between 203.8 and 204.2 m . |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | -Downhole contact is marked by broken, leached | I |  |  |  |
|  |  | core and a 40 cm qtz/albite vein hosting minor |  |  |  |  |
|  |  | Py/Po. |  |  |  |  |
|  |  |  |  |  |  |  |
| $\begin{array}{r} 217.20 \\ 70 \end{array}$ | *3,4,a,t* | Finely laminated felsic to intermediate tuffs |  | -Minor fracture controlled qtz/carbonate veining. | -Trace fracture controlled and patchy Po mineralization. |  |
| 224.60 |  | -Light grey to green, finely laminated felsic to | 1 |  |  |  |
|  |  | intermediate tuffs. Cherty, light grey tuffaceous | \| |  | -Faint Sph staining observed in |  |
|  |  | material is interbedded with lighter green beds. | 1 |  | interval of felsic tuff at 221.6 m . |  |
|  |  | -Unit is extremely fine grained, none of the | 1 |  |  |  |
|  |  | tuffaceous material would be coarser than fine | 1 |  |  |  |
|  |  | silt. | 1 |  |  |  |





|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample | $\underset{\text { (M) }}{\text { From }}$ | To (M) | $\underset{\text { Leng }}{\text { (M) }}$ | \# | SIO2 | AL203 $\%$ | CAO $\%$ | $\begin{gathered} \text { MGO } \\ \hline \end{gathered}$ | NA2O $\vdots$ | K20 | FE203 | ${ }^{\text {TIO2 }}$ | $\begin{array}{r} \text { P205 } \\ \frac{\square}{5} \end{array}$ | $\begin{array}{r} \text { MNO } \\ \vdots \\ \hline \end{array}$ | CR2O3 \% | $\begin{array}{r} \text { LOI } \\ \% \end{array}$ | SUM | $\begin{array}{r} Y \\ \text { PPM } \end{array}$ | $\begin{array}{r} \text { 2R } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \mathrm{BA} \\ \mathrm{PPM} \end{array}$ | $\begin{array}{r} \mathrm{RB} \\ \mathrm{FPM} \end{array}$ | $\begin{array}{r} \text { SR } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \mathrm{CO} \\ \hline \end{array}$ | $\begin{gathered} \text { CU } \\ \text { PPM } \end{gathered}$ | $\begin{array}{r} \text { ZN } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \text { NI } \\ \text { PPM } \end{array}$ | $\begin{gathered} \mathrm{CR} \\ \mathrm{PPM} \end{gathered}$ | $\begin{aligned} & \text { FIELD } \\ & \text { NAME } \end{aligned}$ | $\begin{gathered} \text { CHEM } \\ \text { ID } \end{gathered}$ | M |
| KA03909 | 77.00 | 80.00 | 3.00 | II | 64.71 | 14.90 | 3.18 | 2.52 | 4.06 | 1.19 | 5.54 | 0.60 | 0.17 | 0.18 |  | 2.33 | 99.48 | 20 | 140 |  |  |  |  | 35 | 190 | 30 | 165 | 2, e, bx | $3(\mathrm{j})$ | 177 |
| KA03910 | 89.00 | 92.00 | 3.00 | \\| | 50.45 | 15.05 | 9.07 | 5.44 | 2.53 | 0.45 | 11.10 | 1.41 | 0.20 | 0.19 |  | 3.68 | 99.57 | 15 | 110 |  |  |  |  | 65 | 120 | 60 | 190 | 7,a,m | 7 jw | 125 |
| KA03911 | 104.00 | 107.00 | 3.00 | \|| | 48.11 | 15.66 | 9.77 | 7.51 | 1.65 | 1.73 | 10.58 | 0.78 | 0.10 | 0.18 |  | 3.65 | 99.72 | 10 | 50 |  |  |  |  | 80 | 85 | 130 | 180 | 2, e, bx | $2(j) u$ | 119 |
| KA03912 | 137.00 | 140.00 | 3.00 | II | 54.82 | 15.20 | 8.38 | 5.85 | 2.43 | 0.81 | 8.79 | 0.78 | 0.11 | 0.15 |  | 2.52 | 99.84 | 15 | 80 |  |  |  |  | 70 | 60 | 110 | 220 | 2, e, bx | 2 (j) w | 131 |
| KA03913 | 158.00 | 161.00 | 3.00 | 1 | 62.91 | 15.04 | 4.38 | 1.76 | 4.12 | 2.0 | 4.57 | 0.62 | 0.16 | 0.14 |  | 3.91 | 99.61 | 15 | 140 |  |  |  |  | 20 | 85 | 25 | 165 | 2, bx | 3 j | 143 |
| кA03914 | 173.00 | 176.00 | 3.00 | \\| | 61.70 | 15.36 | 4.67 | 3.11 | 3.47 | 0.85 | 7.02 | 0.67 | 0.19 | 0.10 |  | 2.55 | 99.69 | 20 | 160 |  |  |  |  | 20 | 95 | 25 | 145 | 2,p,e,r |  | 171 |
| KA03915 | 197.00 | 200.00 | 3.00 | II | 62.92 | 15.25 | 4.77 | 1.89 | 4.59 | 1.07 | 5.01 | 0.60 | 0.17 | 0.13 |  | 3.34 | 99.74 | 15 | 140 |  |  |  |  | 60 | 50 | 25 | 175 | 2,m,e | ${ }^{3 j}$ | 146 |
| KA03916 | 215.60 | 215.70 | 0.10 | \|| | 81.77 | 8.75 | 1.12 | 0.31 | 2.84 | 1.42 | 2.11 | 0.16 | 0.06 | 0.04 |  | 0.96 | 99.54 | 20 | 200 |  |  |  |  | 5 | 40 | 10 | 600 | 5,a,Si |  | 163 |
| KA03917 | 220.25 | 220.50 | 0.25 | 1 | 70.61 | 13.83 | 1.51 | 0.57 | 5.13 | 1.20 | 4.68 | 0.32 | 0.08 | 0.10 |  | 1.49 | 99.62 | 40 | 340 |  |  |  |  | 15 | 70 | <5 | 100 | 3,a,t | 4jB | 176 |
| KA03918 | 221.35 | 221.70 | 0.35 | 1 | 79.48 | 9.51 | 1.29 | 0.29 | 2.60 | 1.68 | 2.92 | 0.30 | 0.10 | 0.03 |  | 1.54 | 99.74 | 20 | 200 |  |  |  |  |  | 85 | 5 | 250 | 4,a,t | 4jB | 171 |
| KA03919 | 227.00 | 228.50 | 1.50 | II | 61.85 | 14.41 | 2.94 | 3.22 | 3.57 | 0.56 | 9.34 | 0.82 | 0.22 | 0.17 |  | 2.58 | 99.68 | 25 | 200 |  |  |  |  | 180 | 195 | 10 | 120 | 3, ${ }^{\text {a }}$ |  | 204 |
| KA03920 | 248.00 | 251.00 | 3.00 | II | 48.33 | 15.50 | 8.88 | 7.12 | 2.31 | 0.52 | 12.50 | 1.36 | 0.22 | 0.17 |  | 2.88 | 99.79 | 15 | 90 |  |  |  |  | 55 | 80 | 95 | 210 | 7,a,m | 7 (j) u | 132 |



| Sample | $\begin{aligned} & \text { From } \\ & \text { (M) } \end{aligned}$ | $\begin{aligned} & \text { To } \\ & \text { (M) } \end{aligned}$ | Leng. <br> (M) | $\ddot{\\|}$ | $\begin{array}{r} \text { DY } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \text { ER } \\ \text { PPM } \end{array}$ | $\begin{gathered} \text { LU } \\ \text { PPM } \end{gathered}$ | $\begin{gathered} \text { OS } \\ \text { PFB } \end{gathered}$ | $\begin{gathered} \text { IR } \\ \text { PPB } \end{gathered}$ | $\begin{gathered} \text { RU } \\ \text { PPB } \end{gathered}$ | $\begin{array}{r} \mathrm{RH} \\ \text { PPB } \end{array}$ | $\begin{array}{r} \text { PT } \\ \text { PPP } \end{array}$ | $\begin{array}{r} \text { PD } \\ \text { PPB } \end{array}$ | $\begin{array}{r} \text { LI } \\ \text { PPM } \end{array}$ | $\begin{gathered} \mathrm{BE} \\ \mathrm{PPM} \end{gathered}$ | $\begin{gathered} \text { MN } \\ \text { PPM } \end{gathered}$ | $\begin{array}{r} \text { GA } \\ \text { FPM } \end{array}$ | $\begin{gathered} \text { GE } \\ \mathrm{PPR} \end{gathered}$ | $\begin{array}{r} \text { IN } \\ \text { PPM } \end{array}$ | $\begin{gathered} \text { TL } \\ \text { PPM } \end{gathered}$ | $\begin{array}{r} \text { SC } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \text { BR } \\ \text { PPM } \end{array}$ | $\begin{gathered} \text { YB } \\ \text { PPP } \end{gathered}$ | $\begin{gathered} \text { NB } \\ \text { PPD } \end{gathered}$ | $\begin{gathered} \text { HG } \\ \text { PPB } \end{gathered}$ | MGO\# | CA/AL | ni/MGO | ISHIKW | 2n/NA2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KA03909 | 77.00 | 80.00 | 3.00 | II |  |  |  |  |  |  |  |  |  |  | 5 |  |  |  |  |  | 10 |  |  | $<10$ |  | 0.53 | 0.21 | 11 | 34 | 47 |
| KA03910 | 89.00 | 92.00 | 3.00 | II |  |  |  |  |  |  |  |  |  |  | 10 |  |  |  |  |  | 20 |  |  | 10 |  | 0.54 | 0.60 | 11 | 34 | 47 |
| KA03911 | 104.00 | 107.00 | 3.00 | II |  |  |  |  |  |  |  |  |  |  | 5 |  |  |  |  |  | 25 |  |  | $<10$ |  | 0.63 | 0.62 | 17 | 45 | 52 |
| KA03912 | 137.00 | 140.00 | 3.00 | II |  |  |  |  |  |  |  |  |  |  | 5 |  |  |  |  |  | 20 |  |  | $<10$ |  | 0.61 | 0.55 | 19 | 38 | 25 |
| KA03913 | 158.00 | 161.00 | 3.00 | \|| |  |  |  |  |  |  |  |  |  |  | 5 |  |  |  |  |  | 10 |  |  | $<10$ |  | 0.48 | 0.29 | 14 | 31 | 21 |
| KA03914 | 173.00 | 176.00 | 3.00 | \|| |  |  |  |  |  |  |  |  |  |  | 5 |  |  |  |  |  | 10 |  |  | $<10$ |  | 0.51 | 0.30 | 8 | 33 | 27 |
| KA03915 | 197.00 | 200.00 | 3.00 | II |  |  |  |  |  |  |  |  |  |  | 5 |  |  |  |  |  | 10 |  |  | $<10$ |  | 0.47 | 0.31 | 13 | 24 | 11 |
| KA03916 | 215.60 | 215.70 | 0.10 | \\| |  |  |  |  |  |  |  |  |  |  | <5 |  |  |  |  |  | 5 |  |  | $<10$ |  | 0.26 | 0.13 | 32 | 30 | 14 |
| KA03917 | 220.25 | 220.50 | 0.25 | \\| |  |  |  |  |  |  |  |  |  |  | 5 |  |  |  |  |  | 5 |  |  | $<10$ |  | 0.25 | 0.11 | 17 | 22 | 14 |
| KA03918 | 221.35 | 221.70 | 0.35 | \| |  |  |  |  |  |  |  |  |  |  | $<5$ |  |  |  |  |  | 5 |  |  | $<10$ |  | 0.19 | 0.14 | 17 | 34 | 33 |
| KA03919 | 227.00 | 228.50 | 1.50 | \\| |  |  |  |  |  |  |  |  |  |  | 5 |  |  |  |  |  | 10 |  |  | $<10$ |  | 0.45 | 0.20 | 3 | 37 | 55 |
| KA03920 | 248.00 | 251.00 | 3.00 | \\| |  |  |  |  |  |  |  |  |  |  | 5 |  |  |  |  |  | 25 |  |  | 10 |  | 0.58 | 0.57 | 13 | 41 | 35 |



COMMENTS : Testing SpectrEm target 603. Caused by magnetite veinlets in ultramafic intrusive.
wEDGES AT: none


| FROM TO | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | texture and structure | $\begin{aligned} & \left\|\begin{array}{l} \mid \mathrm{ANGLE} \\ \text { \|TO CA } \end{array}\right\| \end{aligned}$ | Alteration | mineralization | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | *-bob-* | overburden |  |  |  |  |
| то |  | - NW casing in hole. |  |  |  | \| |
| 49.00 |  | - capped |  |  |  | I |
|  |  |  |  |  |  |  |
| 49.00 | «6, c, Sr, Tk» | ULTramafic intrusive: dunite |  |  |  |  |
| то |  |  |  |  |  | I |
| 215.25 |  | Dark green-brown, coarse-grained, massive, |  | SrPM: |  | \| |
|  |  | serpentinite-talc altered dunite. |  | (49.00-186.00): | - 3\% magnetite throughout. | \| - mag. susceptability $=10.1$ (at top |
|  |  |  |  | - moderate, pervasive, serpentinizaton | - nil sulphides- depleted? | ( of hole) increasing gradually to 15.6 |
|  |  | \| - rounded, 0.2-0.5cm, green-brown |  | of olivine. |  | \| units at 120 m . |
|  |  | \| recrystallized, serpentinized, and partially talc |  | - Olivine grains are green-brown due |  | \| - from 120 m to 150 m mag. sus. varies |
|  |  | altered olivine grains (92\%). |  | to alteration often with cores |  | \| from 16.8 to 22.4 units. |
|  |  | - rare (5\%) euhedral olivine crystals up to $0.5 \times$ |  | altering to green/clear talc. |  | \| - from 150.0 m to 215.25 m , in intense |
|  |  | 1.25 cm . Euhedral grains become $30 \%$ abundant |  |  |  | \| talc altered zone, susceptability is |
|  |  | below 150.0 m and grain size increases to 0.4 to |  | SrPW: |  | \| generally 35-48 units with sections |
|  |  | 0.7 cm . Magnetic susceptability, and talc |  | (186.00-215.25m) : |  | from 15 to 20 units occassionally. |
|  |  | alteration becomes stronger here as well. |  | - trace to weak, pervasive |  |  |
|  |  | - on a broken surface, the rock is a massive |  | serpentinization. |  |  |
|  |  | green/black, recrystallized-altered, fine-grained |  | -olivine grains are mostly brown and |  |  |
|  |  | mass- no grains visible. |  | unaltered. |  |  |
|  |  | 1-1.5\% interstitial "wispy" magnetite grains and |  |  |  |  |
|  |  | needles that envelop and define the olivine in an |  | TkPM: |  |  |
|  |  | \| otherwise massive green-brown dunite. |  | (49.00-206.0m) : |  |  |
|  |  | - a moderate 51 foliation is devoloped at 70 to |  | - moderate, pervasive talc alteration. |  |  |
|  |  | $85^{\circ} \mathrm{TCA}$. Foliation surfaces are lined with 0.2 cm |  | core is very slick and difficult to |  |  |
|  |  | talc and chrysotile. |  | pick-up. |  |  |
|  |  | \| - notable absense of any type of sulfide. |  | TKPW: |  |  |
|  |  | \| - throughout the unit there are 0.3 to 10 cm zones |  | (206.0m-215.0m) : |  | I |
|  |  | Of silica (?) flooding where the original rock is |  | - weak, pervasive talc alteration. |  |  |
|  |  | \| bleached to a white-blue color and hardness |  |  |  |  |
|  |  | increases slightly. |  | TkFW: |  |  |
|  |  | - These silica zones occur at: 133.26, 133.90, |  | (49.0-150.0m) : |  |  |
|  |  | 145.50, 172.18, 192.35, 195.58, 196.10 and |  | -Talc/chrysotile alteration in |  |  |
|  |  | 214.75 m . They cut the core at $50^{\circ}$ to $85^{\circ} \mathrm{TCA}$ with |  | micro-fractures (between olivine |  |  |
|  |  | sharp planar contacts. Typically these zones ${ }_{\text {contain complete or partial replacement of }}^{\text {col }}$ |  | grains) fills 0.1 cm wide gaps or <br> foliation (S1) surfaces (?) $0^{\circ} 5^{\circ} \mathrm{TCA}$ |  |  |
|  |  | \| contain complete or partial replacement of |  | foliation (S1) surfaces (?) © $85^{\circ} \mathrm{TCA}$ and is weak except (1) 56.96, 66.57, |  |  |
|  |  | grains are observed. |  | 74.58, 75.77, 76.34, 82.00, 89.59, |  | \| |
|  |  |  |  | 124.22, 126.43-130.00. Here there |  |  |
|  |  | veins: |  | are 3 to 10 cm intervals (except where |  |  |
|  |  | Veins of banded magnetite +/- lizardite occur |  | noted) that have moderate to intense |  |  |
|  |  | throughout the entire hole. |  | talc/clay alteration. Alteration is intense from 56.95 to $82.00 \mathrm{~m} @<5 \mathrm{~cm}$. |  |  |
|  |  | 49.0-74.5m: |  |  |  |  |
|  |  | - 40 magnetite veinlets/veins (one 0.3 cm veinlet |  | TkFM: |  |  |
|  |  | every 0.63 m$)$. |  | (150.0-206.0m) : |  | 1 |









COMMENTS : Hole drilled to test Spectrem target 630b
Failed to intersect conductive material
WEDGES AT
DIRECTIONAL DATA:


42A12NE2031 2.21032 MACDIARMID


| $\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$ | ROCK TYPE | TEXTURE AND STRUCTURE | $\begin{aligned} & \mid \text { \|ANGLE } \\ & \mid \text { TO CA } \end{aligned}$ | alteration | MINERALIZATION | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -Rare cm scale albite/epidote filled amygdules |  |  |  |  |
|  |  | observed throughout interval. |  | -Qtz/carbonate/albite veinlets |  |  |
|  |  | -Numerous eratically oriented joints produce |  | controlling potassic alteration |  |  |
|  |  | blocky core throughout intervals. Rock is massive |  | greater than 10 cm in diameter |  |  |
|  |  | and non-foliated. |  | observed between 116.5 and 117.0 m , and |  |  |
|  |  |  |  | 130.65m. |  |  |
|  |  | -Interval of badly broken core observed between |  |  |  |  |
|  |  | 81.9 and 82.5 m . Fracture sets occurring on the |  |  |  |  |
|  |  | $10-30 \mathrm{~cm}$ scale observed throughout remainder of |  |  |  |  |
|  |  | nterval. |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | -Weakly magnetic aphanitic black dykes observed |  |  |  |  |
|  |  | between 108.45 and 109.4, and 111.9 and 112.6 m |  |  |  |  |
|  |  | -Dykes have similar magnetic susceptibility to |  |  |  |  |
|  |  | following unit. |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | -Downhole contact is marked by badly broken core. |  |  |  |  |
| $\begin{array}{r} 132.40 \\ \mathrm{TO} \end{array}$ | * $6, \mathrm{~m}$, *J* | pyroxenitic gabbro |  | -Minor fracture controlled talc/serpentine alteration. | -Trace disseminated Py. | -Unit is similar in appearance to pyroxenitic gabbro mapped in outrcops |
| 231.00 |  | -Dark grey fine to medium grained pyroxenitic |  |  |  | located in northwestwern portion of |
|  |  | gabbro observed to host phlogopite/biotite. | \| |  |  | the property, however |
|  |  | -Unit is massive in texture overprinted by weak |  |  |  | phlogopite/biotite was not identified |
|  |  | fracturing accompanied by minor chlorite |  |  |  | to the north west. |
|  |  | serpentinite veining. |  |  |  |  |
|  |  | -A breakdown of mineralogy of the intrusive is as follows: |  |  |  | -Magnetic susceptibility rangews from 1.5 to 3.5 throughout unit. |
|  |  |  |  |  |  |  |
|  |  | Plagioclase - $25 \%$ Albite Prion - |  |  |  | -Unit apears to have "dyked out" conductor. |
|  |  | Albite $-10 \%$ <br> Pyroxene $-50 \%$ |  |  |  | conductor. |
|  |  | Pyroxene - $50 \%$ Phlogopite $-13 \%$ |  |  |  |  |
|  |  | Magnetite - 1\% |  |  |  |  |
|  |  | Unidentified - $1 \%$ |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | -Unit is fairly homogenous in composition. |  |  |  |  |
|  |  | -Near the uphole contact, a fining in grain size |  |  |  |  |
|  |  | is observed, suggesting a chill zone is |  |  |  |  |
|  |  | developed over several meters. |  |  |  |  |
|  |  | -Unit becomes coarser grained towards end of | , |  |  |  |
|  |  | hole. |  |  |  |  |
|  |  |  | - |  |  |  |
|  |  | -Talc/Serpentine filled fractures are observed throughout unit, occupying 1 to $2 \%$ of core. | \| |  |  |  |
|  |  | throughout unit, occupying 1 to $2 \frac{1}{6}$ of core. <br> Fracture surfaces commonly erratically oriented | 1 |  |  | , |
|  |  | slickensides suggesting minor slip across most | 1 |  |  | 1 |








COMMENTS : Drilled to test Spectrem target 506a: 50mhos. Explained by two zones of semi-massive Po@134\&157m
WEDGES AT: NONE
dIRECTIONAL DATA:

| Depth (M) | Astronomic Azimuth | $\begin{aligned} & \text { Dip } \\ & \text { degrees } \end{aligned}$ | Type of Test | Flag | Comments | Depth (M) | Astronomic Azimuth | $\begin{gathered} \text { Dip } \\ \text { degrees } \end{gathered}$ | Type of Test | Flag | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 68.00 | 237030101 | -4901010" | $s$ | OK |  | - | - | - | - | - |  |
| 128.00 | $240030^{\prime \prime} 0^{\prime \prime}$ | -49030' 01 | s | OK |  | - | - | _ | - | - |  |
| 188.00 | $245030{ }^{\circ}$ | $-49^{\circ} 0.01$ | s | OK |  | - |  | - | - | - |  |
| - | - | - | - | - |  |  |  | - | - |  |  |



42A12NE2031 2.21032 MACDIARMID


| FROM TO | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | \| texture and structure | $\begin{aligned} & \mid \text { ANGLE } \mid \\ & \mid \text { TO CA } \mid \end{aligned}$ | ALTERATION | MINERALIZATION | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  |  | L Lower contact is veined at $25^{\circ} \mathrm{TCA}$ | 1 |  |  |  |
|  |  | 198.03-98.50m: |  |  |  | - mag. sus. $=0.11$ units. |
|  |  | \| Quartz-Carbonate vein: |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | \| Light brown, fine-grained, dense and needle-like |  |  |  |  |
|  |  | \| quartz-carbonate (75\%), intergrown with white, |  |  |  |  |
|  |  | coarse crystalline quartz (22\%) with minor green |  |  |  |  |
|  |  | \| chlorite stains (3\%) and discontinuous selvage |  |  |  |  |
|  |  | 1-brown, carbonate-stained quartz needles are 0.2 |  |  |  |  |
|  |  | $\times 2 \mathrm{~cm}$. |  |  |  |  |
|  |  |  | 1 |  |  |  |
|  |  | \| Lower contact is sharp and undulating at $10^{\circ} \mathrm{TCA}$. |  |  |  | - mag. sus. $=0.00-0.75$ units. |
|  |  | 98.50-120.25m: | 1 \| |  | - 0.1\% disseminated Po as partial |  |
|  |  | \| - same as (58.00-98.03m). | 1 \| | - Weak pervasive carbonitization | infills in amygdules. |  |
|  |  | - pillow selvages are spaced 30 to 40 cm apart. |  | (CbPW) overall: except moderate | - $0.1 \% \mathrm{Cp}$ in amygdules with Po. |  |
|  |  | - tops up (northeast) based on amygdules/selvage |  | pervasive carbonitization (CbPM) from |  |  |
|  |  | \| relationship@ 99.25, 100.70, 102.95, 107.35, |  | 105.85 to 120.35 m . |  |  |
|  |  | 110.65, 119.80m. Tops down (southwest) at 114.60, |  |  |  |  |
|  |  | 114.80, 117.50, 118.85, 120.25m. |  | - Albitization (AbPW) occurs as |  |  |
|  |  | - all tops indicators have a low degree of |  | discontinuous 20 cm zones in pillow |  |  |
|  |  | \| confidence except at 119.80 m where amygdules |  | cores and along fractures and flooding |  |  |
|  |  | \| become larger and more dense at selvage at "top" of pillow and the lower selvage at 120.25 m has |  | into adjacent wallrock from fractures. |  |  |
|  |  | flattened and elongated amygdules parallel to |  |  |  |  |
|  |  | selvage indicating tops up (moderate). |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | veins: |  |  |  |  |
|  |  | \| - minor (5\%) quartz-carbonate veins from 109.15 |  |  |  |  |
|  |  | to 115.00 m 00 to $40^{\circ} \mathrm{TCA}$. |  |  |  |  |
|  |  | - white quartz veins occur at selvages, either |  |  |  |  |
|  |  | cross-cutting or parallel to them and are 1 to |  |  |  |  |
|  |  | \| 2.5 cm wide with minor pale brown interstitial albite. |  |  |  |  |
|  |  | - no veins elsewhere. |  |  |  |  |
|  |  |  |  |  |  |  |
| $\begin{array}{r} 120.25 \\ \mathrm{TO} \end{array}$ | 《2,a,e» | MAFIC VOLCANIC: AMYGDALOIDAL | \| | | - moderate, pervasive carbonitization along foliation surfaces (CbPM). | - 0.1\% Po disseminations from 120.25 to 133.00 m . | - mag. sus. $=0.17$ - 1.81 unitsincreases towards lower contact. |
| 134.44 |  | Medium-green, fine-grained, amygdaloidal, weakly |  |  | - $3 \%$ Po from 133 to 134.44 m parallel |  |
|  |  | foliated, mafic volcanic. |  | - albite in fractures (AbFW). | to foliation. Po increases towards lower contact. |  |
|  |  | \| - unit could be one thick pillow? |  |  |  |  |
|  |  | - amygdules are 0.1 cm to 1 cm long and up to 0.5 cm |  |  |  |  |





| hoLe num | ER: MCD41-01 |  |  | DRILL Hole record |  | DATE: 03/31/2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FROM TO | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | TEXTURE AND STRUCTURE | $\begin{aligned} & \mid \text { ANGLE } \\ & \|\mathrm{TO} \mathrm{CA}\| \end{aligned}$ | Alteration | MINERALIZATION | REMARKS |
|  |  | Lower contact is sharp, planar and erosional @65ำ ${ }^{\circ}$ CA. |  |  |  |  |
|  |  |  |  |  |  |  |
| 162.05 | *3, a, e* | intermediate volcanic: Vesicular | 1 | - (AbPW) ; (SePW); (SiSW) weak | - $3.5 \%$ Po: $2 \%$ Po as fine | - mag. sus. $=0.15-2.96$ units. |
|  |  |  |  | pervasive albitization, trace to weak | \| disseminations from 162.05 to 164m. | values decrease downhole. |
| 169.21 |  | Light green, fine-grained, quartz-filled |  | sericitization and spotty | \| $1.5 \%$ as 6 massive and semi-massive Po |  |
|  |  | vesicular, flow. |  | silicification from 162.05 m to | \| bands from 162.05 to 164.75 m . The |  |
|  |  |  |  | 163.18m. Alteration hosts most of the | \| thickest is at 162.95 m @ $70^{\circ} \mathrm{TCA}$ and is |  |
|  |  | - $40 \%$ round to oval vesicles $1-2 \mathrm{~mm}$ to 164.50 m and |  | pyrrhotite in this unit. | \| massive po. ${ }_{\text {l }}^{\text {- from }} 164$ to $169.21 \mathrm{~m}, 0.1 \%$ Po as fine |  |
|  |  | <1mm from 164.50 m to 169.21 m all are filled with quartz and trace chlorite. This rock likely has a |  |  | \| - from 164 to $169.21 \mathrm{~m}, 0.1 \%$ Po as fine disseminations. |  |
|  |  | quartz and trace chlorite. This rock likely has a felsic or intermediate chemistry. Vesicles |  |  | \| - 0.1\% Py disseminated in bands of po. |  |
|  |  | possibly filled later- alteration? |  |  |  |  |
|  |  | - groundmass is plagioclase-rich (50\%) with | , |  |  |  |
|  |  | chloritized mafic groundmass (10\%?). |  |  |  |  |
|  |  | - rounded grey chert clast © 162.73 m is $3 \times 5 \mathrm{~cm}$. |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | Lower contact is sharp, irregular, and chilled |  |  |  |  |
|  |  | $\mathbb{@ x}^{\sim} 50^{\circ} \mathrm{TCA}$. |  |  |  |  |
| 169.21 | *7, a» | mafic intrusive dyke |  | - (ChFW) black chlorite fills minor | - 0.18 finely disseminated Po mostly | - mag. sus. $=0.36$ to 0.67 units. |
| то |  |  |  | $1-3 \mathrm{~mm}$ irregular fractures $10.2 \%$ of | associated with Ch alteration. |  |
| 171.35 |  | Light green, fine-grained, weakly plagioclase |  | unit) often with trace Po +/- Cp. | - <0.1\% finely disseminated Cp within |  |
|  |  | phyric, diorite(?) dyke. |  |  | \| Po disseminations. |  |
|  |  | - $60 \%$ plagioclase, $40 \%$ chloritized mafics. |  |  |  |  |
|  |  | - from 169.93 to 170.05 m , medium-grained, with |  |  |  |  |
|  |  | $70 \%$ plagioclase laths up to $0.2 \times 0.4 \mathrm{~cm}$. |  |  |  |  |
|  |  | Lower contact is sharp, planar and chilled over |  |  |  |  |
|  |  | $1 \mathrm{~cm} \mathrm{e} 65^{\circ} \mathrm{TCA}$. |  |  |  |  |
|  |  |  |  |  |  |  |
| $\begin{array}{r} 171.35 \\ \text { TO } \end{array}$ | *2,a,e, p* | MAFIC VOLCANIC: AMYGDALOIDAL AND PILLOWED | \| | | (ChFM) Chlorite alteration is moderate over 10 cm wide zones around | $\left\lvert\, \begin{aligned} & -0.3 \% \text { Po total. } \\ & \text { 1-0.1\% Po as fine disseminations and }\end{aligned}\right.$ | - mag. sus. $=0.17$ to 3.11 from 170.35 to $191 \mathrm{~m} ;$ ~ 0.30 to 0.70 units to |
| 213.00 |  | Light-green, fine-grained to weakly plagioclase |  | selvages. | \| amygdule fillings. | 213.00 m |
|  |  | phyric, amygdaloidal and pillowed mafic volcanic |  | - (ChSW) Weak chloritization of | \| - 3\% Po in selvages between 180.20 to |  |
|  |  | flow. |  | amygdules with quartz. | \| 190.45 m only. |  |
|  |  | - anhedral to subhedral plagioclase phenocrysts, |  | - (Absw) weak albitization/ |  |  |
|  |  | 1 to 3 mm , comprise $3 \%$ of 50 cm sections throughout |  | silicification from 195.60 m to |  |  |
|  |  | the unit. |  | 213.00 m due to flooding from veins. | I |  |
|  |  | - some selvages are poorly preserved and -1m |  |  |  |  |
|  |  | spaced to 178 m and 194.50 to 213.00 m , but become |  |  | I |  |
|  |  | more abundant and more closely spaced ( 500 cm |  |  | I |  |
|  |  | apart) from 278 to 194.50 m . |  |  |  |  |
|  |  | - selvages usually more strongly chloritized and |  |  | ! |  |
|  |  | quartz veined and sometimes brecciated and pyrhhotite-rich. | \| |  | \| |  |
| HOLE NUMBER: |  |  |  | DRILL HOLE RECORD | LOGGED | V.Peckham PAGE: |


| $\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$ | ROCK TYPE | texture and structure | $\begin{aligned} & \mid \text { angle } \mid \\ & \mid \text { to ca } \end{aligned}$ | alderation | MINERALIZATION | REMARKS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \| - conflicting tops from amygdule/selvage |  |  |  |  |  |
|  |  | \| relationships and amygdule concentrations. | \| |  |  |  |  |
|  |  | 1-moderate tops indicated from amygdule/selvage | \| |  |  |  |  |
|  |  | \| relationship at 183.00 m . | I |  |  |  |  |
|  |  | - - amygdules represent $5 \%$ of rock and are up to | I |  |  |  |  |
|  |  | - $0.75 \times 2 \mathrm{~cm}$ and quartz +/- chlorite between 176.40 | 1 |  |  |  |  |
|  |  | 1 and 177.00 m and 178.00 and 197.50 m . | 1 |  |  |  |  |
|  |  | \| - elsewhere amygdules are 0.2 to $0.4 \mathrm{~cm} \mathrm{sq.}$. | 1 |  |  |  |  |
|  |  | 1-veining is weak ( $10 \%$ of unit), irregular, 0.3 |  |  |  |  |  |
|  |  | I to 0.5 cm wide and quartz-carbonate veining. Only | 1 |  |  |  |  |
|  |  | \| trace ( $<2 \%$ ) from 171.35 to 191.60 m . | 1 |  |  |  |  |
|  |  | I - moderate quartz (trace carbonate) veining ( $20 \%$ | 1 |  |  |  |  |
|  |  | \| of unit) from 207.41 m to EOH ( 213.00 m ). Veins are | \| |  |  |  |  |
|  |  | \| 20 to $25^{\circ} \mathrm{TCA}$ and white/brown with dark green | I |  |  |  |  |
|  |  | \| chlorite patches as in large veins higher in the | 1 |  |  |  |  |
|  |  | \| hole. | - |  |  |  |  |
|  |  | \| - brecciation is healed by quartz-carbonate | I |  |  |  |  |
|  |  | \| veining |  |  |  |  |  |
|  |  | \| - flow-top brecciation between 194.75 and 201 m . | , |  |  |  |  |
|  |  | \| Breccia veins are 10 to 15 cm wide. | , |  |  |  |  |
|  |  | - fragments in selvages are $<0.5 \mathrm{~cm}$ sq. and found | , |  |  |  |  |
|  |  | \| in <5cm wide zones. | 1 |  |  |  |  |
|  |  | - | 1 \| |  |  |  |  |
| 213.00 | *EOH* | \| | 1 I |  |  |  |  |
| T0 |  |  | \| |  |  |  |  |
| 213.00 |  | \| | I |  |  |  |  |
|  |  | \| | , |  |  |  |  |
| hole num | R: MCD4 1 |  |  | DRILL HOLE R |  |  | PAGE: |



| Sample | From (M) | To | Leng. <br> (M) | $\begin{array}{rr} \\| & \text { SIO2 } \\ \\| & \% \end{array}$ | $\begin{array}{r} \text { AL203 } \\ \frac{4}{\square} \end{array}$ | $\begin{array}{r} \text { CAO } \\ \vdots \\ \hline \end{array}$ | $\begin{gathered} \text { MGO } \\ \vdots \end{gathered}$ | $\begin{gathered} \mathrm{NA} 2 \mathrm{O} \\ \% \end{gathered}$ | $\begin{array}{r} \text { K2O } \\ \vdots \\ \hline \end{array}$ | $\begin{array}{r} \text { FE203 } \\ \% \end{array}$ | $\begin{array}{r} \text { TIO2 } \\ \vdots \end{array}$ | $\begin{array}{r} \text { P2O5 } \\ \% \end{array}$ | MNO | $\begin{array}{r} \text { CR203 } \\ \% \end{array}$ | $\begin{array}{r} \text { LOI } \\ \frac{\%}{6} \end{array}$ | SUM $\%$ | Y PPM | $\begin{array}{r} \text { ZR } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \text { BA } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \text { RB } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \text { SR } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \mathrm{CO} \\ \frac{\square}{5} \end{array}$ | $\begin{array}{r} \text { CU } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \text { ZN } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \text { NI } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \text { CR } \\ \text { PPM } \end{array}$ | $\begin{array}{cr}\text { FIELD } & \text { CHEM } \\ \text { NAME } & \text { ID }\end{array}$ | ALIM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AT03685 | 64.00 | 67.00 | 3.00 | \| 57.04 | 17.33 | 8.27 | 2.32 | 3.29 | 1.11 | 6.00 | 1.22 | 0.18 | 0.16 |  | 2.51 | 99.43 | 20 | 130 |  |  |  |  | $<5$ | 110 | 65 | 195 | 2,a,e, p2 ${ }^{\text {(j) }}$ w | 137 |
| AT03686 | 90.00 | 93.00 | 3.00 | \|l 58.81 | 17.43 | 7.38 | 1.81 | 4.09 | 0.91 | 5.47 | 1.15 | 0.17 | 0.09 |  | 2.02 | 99.33 | 20 | 120 |  |  |  |  | 605 | 100 | 80 | 225 | 2,a,e,p2(j)w | 141 |
| AT03687 | 117.00 | 120.00 | 3.00 | Il 57.97 | 16.32 | 6.45 | 2.50 | 4.47 | 0.33 | 7.27 | 1.22 | 0.17 | 0.15 |  | 2.64 | 99.49 | 20 | 130 |  |  |  |  | <5 | 140 | 85 | 255 | 2,a,e,p2(j)w | 145 |
| AT03688 | 123.00 | 126.00 | 3.00 | I\| 55.39 | 15.04 | 7.24 | 3.05 | 3.73 | 0.98 | 7.47 | 1.15 | 0.17 | 0.19 |  | 5.24 | 99.65 | 20 | 120 |  |  |  |  | <5 | 75 | 60 | 185 | 2,a,e 2(j)w | 126 |
| AT03689 | 126.00 | 129.00 | 3.00 | \|| 47.38 | 17.80 | 7.39 | 3.91 | 3.55 | 0.10 | 13.30 | 1.71 | 0.21 | 0.42 |  | 3.67 | 99.44 | 30 | 120 |  |  |  |  | <5 | 145 | 75 | 220 | 2,a,e, b2 (h)w | 161 |
| AT03691 | 152.00 | 155.00 | 3.00 | \|| 64.14 | 15.39 | 4.07 | 0.92 | 4.15 | 2.06 | 5.68 | 0.96 | 0.32 | 0.11 |  | 1.91 | 99.71 | 40 | 250 |  |  |  |  | <5 | 75 | 10 | 90 | 2,a,e,b3(j) y | 150 |
| AT03692 | 158.25 | 158.83 | 0.58 | \|| 52.93 | 16.02 | 7.12 | 4.53 | 2.65 | 1.79 | 7.87 | 0.81 | 0.13 | 0.21 |  | 5.36 | 99.42 | 15 | 120 |  |  |  |  | $<5$ | 110 | 75 | 135 | 2,a,e 3j | 139 |
| AT03693 | 165.05 | 168.05 | 3.00 | \|| 59.15 | 16.53 | 6.17 | 2.95 | 3.71 | 0.93 | 6.25 | 0.72 | 0.14 | 0.10 |  | 2.91 | 99.56 | 20 | 160 |  |  |  |  | $<5$ | 80 | 80 | 120 | $2, * b,{ }_{n} 3 \mathrm{j}$ | 153 |
| AT03694 | 169.21 | 172.21 | 3.00 | \|| 46.45 | 16.15 | 11.40 | 8.77 | 0.98 | 1.04 | 10.59 | 0.66 | 0.05 | 0.17 |  | 3.47 | 99.74 | 15 | 30 |  |  |  |  | 85 | 95 | 165 | 255 | 7,a 7hu | 120 |
| AT03695 | 173.00 | 176.00 | 3.00 | \|| 60.17 | 15.42 | 5.97 | 2.98 | 3.88 | 0.73 | 6.78 | 0.70 | 0.14 | 0.12 |  | 2.97 | 99.86 | 20 | 140 |  |  |  |  | 20 | 90 | 60 | 125 | 2,a,e,p3(j) | 145 |
| AT03696 | 203.00 | 206.00 | 3.00 | 60.85 | 14.89 | 6.84 | 2.99 | 3.69 | 0.65 | 6.32 | 0.68 | 0.14 | 0.11 |  | 2.68 | 99.84 | 20 | 140 |  |  |  |  | 40 | 80 | 55 | 160 | 2,a,e, p3(j) | 133 |





COMMENTS : Drilled to test SpectrEM 607. Explained by graphitic argillite at 152.70-153.17m; 153.17-153.95m
WEDGES AT: NONE
DIRECTIONAL DATA:


$$
\begin{aligned}
& \text { LOGGED By: Vince Peckham } \\
& \text { PAGE: } \\
& \text { G. Glunis sol U. Pectitom } \\
& \text { lav } 31,2001
\end{aligned}
$$

| FROM TO | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | texture and structure | $\begin{array}{\|l\|} \hline \text { \|ANGLE } \mid \\ \mid \text { TO CA } \end{array}$ | alteration | MINERALIZATION | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | *-obt* | overburden |  |  |  |  |
| то |  |  |  |  |  |  |
| 37.00 |  | NQ outer casing removed. Nw casing left for |  |  |  |  |
|  |  | geophysics. Hole is capped. |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 37.00 | *6, a, Sr, Tk* | ULtramafic intrusive: dunite | 1 |  |  | - magnetic susceptability gradually |
| то |  | Dark green and black, fine-grained, massive, |  |  |  | increases from 22 to 55 units from 37 m |
| 96.50 |  | serpentinized-talc altered dunite. |  |  |  | to 96.50 m . |
|  |  |  |  |  |  |  |
|  |  | 37.00-40.56m |  | 37.00-40.66m |  | 60\% recovery from 37-38m. |
|  |  | - 95\% fine-grained, rounded, serpentinized |  | - Moderate, pervasive, serpentinization |  |  |
|  |  | Olivine; $3 \%$ talc-altered plagioclase; $2 \%$ pin-head |  | of olivine. |  |  |
|  |  | magnetite. |  | - Plagioclase has weak, spotty talc |  |  |
|  |  |  |  | alteration in cores of olivine; 3\%. |  |  |
|  |  | 40.66-41.55m |  | 40.66-41.55m |  |  |
|  |  | - Banded lizardite-magnetite-chrysotile vein |  | - vein |  |  |
|  |  | 20 $0^{\circ} \mathrm{TCA}$. 0.3 cm chrysotile @ wallrock contacts, |  |  |  |  |
|  |  | 1.2 cm magnetite, and $>3.5 \mathrm{~cm}$ of fibrous, |  |  |  |  |
|  |  | green-black lizardite. |  |  |  |  |
|  |  | 41.55-69.20m |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | -serpentinized olivine with sections of euhedral |  | - sections of moderate, pervasive |  |  |
|  |  | Olivine (51.50-52.00m and 65.00-65.10m) 0.2cm x |  | sections of unaltered rock between. |  |  |
|  |  | 0.5 cm in size; $3 \%$ talc altered plagioclase; 1-2\% |  |  |  |  |
|  |  | pin-head magnetite. |  |  |  |  |
|  |  | - ${ }^{3} 30 \mathrm{~cm}$ spaced 0.2 cm wide veinlets of |  |  |  |  |
|  |  | chrysotile, $20-50^{\circ} \mathrm{TCA}$. Six veinlets are 0.5 cm |  |  |  |  |
|  |  | with magnc wide lizardite veins © $54.4,60.0$ and |  |  |  |  |
|  |  | 63.0 m dipping 20 and $50^{\circ} \mathrm{TCA}$. |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | - $69.20-69.48 \mathrm{~m}$ |  | 69.20-69.48m -vein |  |  |
|  |  | - $55^{\circ}$ TCA. . ${ }^{\text {a }}$, | , |  |  |  |
|  |  |  |  |  |  |  |
|  |  | $69.48-89.20 \mathrm{~m}$ ( ${ }^{\text {c }}$ |  | $69.48-89.20 \mathrm{~m}$ |  |  |
|  |  | - Same as 41.55-69.20m. Olivine is euhedral to | \| | - weak, pervasive, intermittent |  |  |
|  |  | subhedral. The "talc" is the weathering product |  | serpentinization in the following |  |  |
|  |  | of olivine here - not plagioclase. |  | intervals: $73.55-73.73 \mathrm{~m} ; 76.80-76.88 \mathrm{~m}$; |  |  |
|  |  | - Twelve evenly spaced, 0.3 to 0.5 cm wide | 1 \| | 77.10-77.25m; $80.25-82.25 \mathrm{~m}$ |  |  |







| $\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$ | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | TEXTURE AND STRUCTURE | $\begin{aligned} & \mid \text { ANGLE } \\ & \mid \text { TO CA } \mid \end{aligned}$ | alteration | MTNERALIZATION | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 156.83 | *5,9》 | Black, massive, graphitic argillite. <br> Lower contact is fragmental © ${ }^{\sim} 35^{\circ} \mathrm{TCA}$. |  |  |  | - mag. sus. $=0.52$ units. <br> - strong conductor (conductor \#3). |
| 157.03 |  |  |  | -pervasive strong silicification. | - 0.5\%; three $0.5 \times 2 \mathrm{~cm}$ blebs of Po. |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 157.03 | «2,a» | mafic volcanic | - |  |  | - mag. sus. $=0.22$ to 0.77 units. <br> - poor RQD from 164 to 164.20 m . 1 cm to 5 cm irregular graphite coated fractured fragments at start of run. |
| то |  | Dark grey-black, fine-grained basalt. |  |  |  |  |
| 172.92 |  |  |  | - weak silicification at upper brecciated zone (157.03-158.25m) | -trace ( $0.4 \%$ ), fine disseminated Po and Py . | - poor RQD from 164 to 164.20 m . 1 cm to 5 cm irregular graphite coated fractured fragments at start of run. |
|  |  | - $<0.1 \mathrm{~cm}$ anhedral plagioclase (52\%), euhedral |  |  |  |  |
|  |  | \| ( $0.5 \times 1 \mathrm{~mm}$ ) muscovite(?) needles that overgrow |  |  |  |  |
|  |  | \| plagioclase and 0.2 cm euhedral pyroxene (45\%) <br> \| - fragmental upper contact (157.03-158.25m) - flow | 1 |  |  |  |
|  |  | top?- with argillite and quartz (0.2-0.4cm) |  |  |  |  |
|  |  | \| surrounding subrounded fragments of 1 cm sq . to | I |  |  |  |
|  |  | \| $>15 \mathrm{~cm}$. |  |  |  |  |
|  |  | - two minor (<10cm) sections of plagioclase and |  |  |  |  |
|  |  | pyroxene needles up to $0.5 \mathrm{~cm} \times 0.2 \mathrm{~cm}$ - crystal |  |  |  |  |
|  |  | \| settling? |  |  |  |  |
|  |  | \| - subtle contacts defined by slight, sharp color |  |  |  |  |
|  |  | \| and grain size contrasts at moderate to high (45 |  |  |  |  |
|  |  | ( to $60^{\circ}$ ) TCA. Evidence of flow composition |  |  |  |  |
|  |  | \| changes, minor unconformities or cross-cutting features? |  |  |  |  |
|  |  | \| - numerous graphite ( $<0.1 \mathrm{~cm}$ ) coatings on |  |  |  |  |
|  |  | fractures. |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | Lower contact is gradational from 171.80-172.92m. |  |  |  |  |
|  |  | It is marked by a sharp increase in pyroxene |  |  |  |  |
|  |  | \| grain size to $0.2 \times 1 \mathrm{~cm}$ that acummulate in 5 cm |  |  |  |  |
|  |  | intervals until 172.92 m where coarse pyroxene |  |  |  |  |
|  |  | ( becomes continuous into next unit. |  |  |  |  |
| 172.92 | «7,a, P" | MAFIC INTRUSIVE: GABBRO-GABBRONORITE | , |  |  | mag. sus. $=0.22$ to 0.66 units. |
| то |  |  |  |  |  |  |
| 178.10 |  | Grey-black, fine-grained, pyroxene-porphyritic gabbro-gabbronorite. | \| |  | trace ( $0.1 \%$ ) disseminated blebs of Po with minor Cpy up to 0.25 cm sq. from 177.15 to 178.10 m . |  |
|  |  |  | , |  |  |  |
|  |  | \| - medium-grey, fine-grained (<0.1cm), | \| |  |  |  |
|  |  | \| plagioclase-muscovite-pyroxene groundmass with | I |  |  |  |
|  |  | \| variable concentrations of black pyroxene needles |  |  |  |  |
|  |  | ( $0.2 \times 0.5 \mathrm{~cm}$ ) dispersed throughout unit and often | , |  |  |  |
|  |  | 5 cm in diameter). |  |  |  |  |
|  |  |  | 1 |  |  |  |




| $\begin{array}{r} \text { FROM } \\ \text { TO } \end{array}$ | ROCK TYPE | texture and structure | $\begin{aligned} & \mid \text { ANGLE } \mid \\ & \mid \text { TO CA } \mid \end{aligned}$ | alteration | MINERALIZATION | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | - black, medium-grained, weak, pervasively |  |  |  |  |
|  |  | serpentine + talc altered olivine. Olivine | I |  | - 1\% Po in fine disseminations. $2-3 \%$ |  |
|  |  | possibly psuedomorphed by fine-grained pyroxene? | । |  | between 247.30 and 247.95 m . |  |
|  |  | - 0.5 cm sq. olivinettalc replaced olivine grains. |  |  | - no Po after 247.95m |  |
|  |  | Cores are mostly plagioclase with mostly |  |  |  |  |
|  |  | unaltered rims of olivine. |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | Lower contact is sharp and planar $0.55^{\circ} \mathrm{TCA}$ |  |  |  |  |
|  |  |  |  |  |  |  |
| 250.24 | * $7, a, m \geqslant$ | MAFIC Intrusive: GABERO |  |  |  |  |
| T0 |  |  |  |  |  |  |
| 251.53 |  | Light green, fine-grained, equigranular, massive, altered gabbro dyke with dark green chill margins |  | - weak, pervasive chlorite alteration of pyroxene throughout. | - 0.1\% Po fine disseminations. | - mag. sus. $=0.14$ to 0.35 units. |
|  |  | at upper and lower contacts ( $250.24-250.42 \mathrm{~m}$ and |  | - 0.5 cm sq. patches of plagioclase |  |  |
|  |  | 251.34-251.53m). |  | aggregates are stained flesh colour? |  |  |
|  |  | - 70\% plagioclase in groundmass and irregular |  | - $2 \%$ irregular, dark green patches of |  |  |
|  |  | shaped aggregates 0.5 cm sq . to $>10 \mathrm{~cm}$ sq. $(20 \%)$; |  | moderate chlorite alteration 1 to 3 cm |  |  |
|  |  | $30 \%$ euhedral, chlorite altered pyroxene. |  | sq. |  |  |
|  |  | - all grains are <0.1cm. |  |  |  |  |
|  |  | - similiar to gabbro from 178.10 to $231.75 m$. |  |  |  |  |
|  |  | Lower contact is sharp, planar, and chilled |  |  |  |  |
|  |  | @70 ${ }^{\circ}$ TCA. |  |  |  |  |
|  |  |  |  |  |  |  |
| 251.53 | *7, b> | mafic intrusive: olivine gabbronorite - |  |  |  |  |
| TO 252.90 |  | GABBRONORITE |  |  |  | - mag. sus. $=1.88$ to 2.00 units. |
|  |  | Dark grey-black, medium-grained, equigranular |  |  |  |  |
|  |  | olivine gabbronorite. |  | - weak pervasive serrpentinization and | - 0.18 Po; <0.1cm dissemenations. |  |
|  |  | - fine-grained, serpentine + magnetite (matrix) |  | talcification of olivine. |  |  |
|  |  | surrounds altered, white-grey talc + serpentine |  |  |  |  |
|  |  | altered, round, 0.3 to 1 cm olivine grains. |  |  |  |  |
|  |  | - weakly magnetic. |  |  |  |  |
|  |  | Lower contact is sharp and anastomosing © $5^{\circ} 0^{\circ} \mathrm{TCA}$. | \| | |  |  |  |
|  |  |  |  |  |  |  |
| 252.90 | *7,a,b,sr* | mafic intrusive: olivine gabbronorite |  |  |  |  |
| T0 |  |  |  |  |  |  |
| 268.21 |  | Medium-green, fine and medium-grained, |  | - moderate, pervasive serpentinization and weak talc alteration of olivine |  | to 0.15 units from 265 to 268.21 m . |
|  |  | equigranular, weakly plagioclase and pyroxene porphyritic olivine gabbronorite. |  |  |  |  |
|  |  | -- $55 \%$ plagioclase; mostly interstitial grains |  |  |  |  |
|  |  | ( 0.1 cm to 0.4 cm ) |  |  |  |  |
|  |  | - 30\% serpentinized olivine. |  |  |  |  |
|  |  | - 3-5\% euhedral, prismatic, and interstitial |  |  |  |  |





| Sample | $\underset{(M)}{\text { From }}$ | $\begin{aligned} & \text { To } \\ & \text { (M) } \end{aligned}$ | Leng. <br> (M) | $\begin{array}{lr} \\| & A G \\ \\| & \text { PPM } \end{array}$ | $\begin{gathered} \mathrm{AU} \\ \mathrm{PPB} \end{gathered}$ | $\begin{gathered} \text { C } \\ \text { PPM } \end{gathered}$ | $\begin{array}{r} \text { PB } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \mathrm{s} \\ \text { PPM } \end{array}$ | $\begin{array}{r} v \\ \text { PPM } \end{array}$ | $\begin{gathered} \text { AS } \\ \text { PPM } \end{gathered}$ | $\begin{array}{r} \text { SN } \\ \text { PPM } \end{array}$ | $\begin{gathered} \text { CD } \\ \text { PPM } \end{gathered}$ | $\begin{array}{r} \text { SB } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \text { BI } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \text { SE } \\ \text { PPM } \end{array}$ | $\begin{gathered} \mathrm{HF} \\ \mathrm{PPP} \end{gathered}$ | $\begin{gathered} \text { TA } \\ \text { PPM } \end{gathered}$ | $\begin{array}{r} W \\ \text { PPM } \end{array}$ | $\begin{gathered} \text { мо } \\ \text { PPM } \end{gathered}$ | $\begin{array}{r} \text { TH } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \mathrm{U} \\ \mathrm{PPM} \end{array}$ | $\begin{array}{r} B \\ \mathrm{PPM} \end{array}$ | $\begin{array}{r} \text { CS } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \text { LA } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \mathrm{CE} \\ \mathrm{PPM} \end{array}$ | $\begin{gathered} \text { ND } \\ \text { PPM } \end{gathered}$ | $\begin{array}{r} \text { SM } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \text { EU } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \text { GD } \\ \text { PPM } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AT03670 | 49.50 | 52.50 | 3.00 | \| |  | 50 |  | 0.03 | 25 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AT03671 | 82.50 | 85.50 | 3.00 | II |  | 60 |  | <0.01 | 20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AT03672 | 93.50 | 96.50 | 3.00 | , |  | 65 |  | $<0.01$ | 25 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AT03673 | 104.30 | 107.30 | 3.00 | \\| |  | 60 |  | $<0.01$ | 30 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AT03674 | 123.60 | 126.60 | 3.00 | \\| |  | 70 |  | <0.01 | 35 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AT03675 | 141.40 | 144.40 | 3.00 | \\| |  | 65 |  | 0.10 | 75 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ат03676 | 167.00 | 170.00 | 3.00 | \\| |  | 55 |  | 0.32 | 120 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AT03677 | 173.00 | 176.00 | 3.00 | \\| |  | 50 |  | $<0.01$ | 155 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AT03678 | 183.00 | 186.00 | 3.00 | \| |  | 40 |  | 0.16 | 225 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AT03679 | 210.00 | 213.00 | 3.00 | \\| |  | 40 |  | 0.09 | 245 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AT03680 | 220.00 | 223.00 | 3.00 | \\| |  | 35 |  | 0.02 | 145 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AT03681 | 232.75 | 235.75 | 3.00 | \\| |  | 45 |  | 0.02 | 155 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AT03682 | 249.00 | 250.00 | 1.00 | \\| |  | 60 |  | 0.25 | 90 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AT03683 | 251.00 | 251.10 | 0.10 | II |  | 45 |  | 0.06 | 190 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Sample | $\begin{aligned} & \text { From } \\ & \text { (M) } \end{aligned}$ | $\begin{aligned} & \text { To } \\ & \text { (M) } \end{aligned}$ | Leng. <br> (M) | $\begin{array}{cc} \\| & \mathrm{DY} \\ \\| & \mathrm{PPM} \end{array}$ | $\begin{array}{r} \text { ER } \\ \text { PPM } \end{array}$ | $\begin{gathered} \text { LU } \\ \text { PPM } \end{gathered}$ | $\begin{gathered} \text { os } \\ \text { PPB } \end{gathered}$ | $\begin{gathered} \text { IR } \\ \text { PPB } \end{gathered}$ | $\begin{gathered} \mathrm{RU} \\ \mathrm{PPB} \end{gathered}$ | $\begin{array}{r} \text { RH } \\ \text { PPB } \end{array}$ | $\begin{array}{r} \text { PT } \\ \text { PPB } \end{array}$ | $\begin{array}{r} \text { PD } \\ \text { PPB } \end{array}$ | $\begin{array}{r} \text { LI } \\ \text { PPM } \end{array}$ | $\begin{gathered} \text { BE } \\ \text { PPM } \end{gathered}$ | $\begin{gathered} M N \\ \text { MPM } \end{gathered}$ | $\begin{array}{r} \text { GA } \\ \text { PPM } \end{array}$ | $\begin{gathered} \text { GE } \\ \text { PPM } \end{gathered}$ | $\begin{array}{r} \text { IN } \\ \text { PPM } \end{array}$ | $\begin{gathered} \text { TL } \\ \text { PPM } \end{gathered}$ | $\begin{array}{r} \text { SC } \\ \text { PPM } \end{array}$ | $\begin{array}{r} \text { BR } \\ \text { PPM } \end{array}$ | $\begin{gathered} \text { YB } \\ \text { PPM } \end{gathered}$ | $\begin{gathered} \text { NB } \\ \text { PPM } \end{gathered}$ | $\begin{gathered} \text { HG } \\ \mathrm{PPB} \end{gathered}$ | MGO\# | Ca/al | MGO | ISHIKw | 2N/NA2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AT03670 | 49.50 | 52.50 | 3.00 | \\| |  |  |  |  |  |  |  |  |  | <5 |  |  |  |  |  | 5 |  |  | $<10$ |  | 0.96 | 0.07 | 25 | 100 | 71 |
| AT03671 | 82.50 | 85.50 | 3.00 | \\| |  |  |  |  |  |  |  |  |  | <5 |  |  |  |  |  | 5 |  |  | $<10$ |  | 0.94 | 0.02 | 26 | 100 | 333 |
| AT03672 | 93.50 | 96.50 | 3.00 | \\| |  |  |  |  |  |  |  |  |  | <5 |  |  |  |  |  | 5 |  |  | <10 |  | 0.94 | 0.02 | 31 | 100 | 250 |
| AT03673 | 104.30 | 107.30 | 3.00 | \|| |  |  |  |  |  |  |  |  |  | $<5$ |  |  |  |  |  | 5 |  |  | $<10$ |  | 0.94 | 0.01 | 32 | 100 | 71 |
| AT03674 | 123.60 | 126.60 | 3.00 | \\| |  |  |  |  |  |  |  |  |  | <5 |  |  |  |  |  | 5 |  |  | $<10$ |  | 0.92 | 0.02 | 40 | 100 | 192 |
| AT03675 | 141.40 | 144.40 | 3.00 | \|| |  |  |  |  |  |  |  |  |  | <5 |  |  |  |  |  | 15 |  |  | $<10$ |  | 0.90 | 1.53 | 40 | 78 | 389 |
| AT03676 | 167.00 | 170.00 | 3.00 | - |  |  |  |  |  |  |  |  |  | <5 |  |  |  |  |  | 20 |  |  | $<10$ |  | 0.85 | 0.98 | 28 | 72 | 43 |
| AT03677 | 173.00 | 176.00 | 3.00 | I |  |  |  |  |  |  |  |  |  | <5 |  |  |  |  |  | 25 |  |  | $<10$ |  | 0.77 | 0.95 | 11 | 57 | 33 |
| AT03678 | 183.00 | 186.00 | 3.00 | 1 |  |  |  |  |  |  |  |  |  | 5 |  |  |  |  |  | 25 |  |  | 10 |  | 0.46 | 0.49 | 2 | 31 | 21 |
| AT03679 | 210.00 | 213.00 | 3.00 | \|| |  |  |  |  |  |  |  |  |  | 5 |  |  |  |  |  | 25 |  |  | $<10$ |  | 0.35 | 0.67 | 3 | 25 | 71 |
| AT03680 | 220.00 | 223.00 | 3.00 | \|| |  |  |  |  |  |  |  |  |  | $<5$ |  |  |  |  |  | 25 |  |  | $<10$ |  | 0.67 | 0.83 | 2 | 35 | 46 |
| AT03681 | 232.75 | 235.75 | 3.00 | \\| |  |  |  |  |  |  |  |  |  | <5 |  |  |  |  |  | 40 |  |  | $<10$ |  | 0.86 | 3.37 | 6 | 51 | 91 |
| AT03682 | 249.00 | 250.00 | 1.00 | II |  |  |  |  |  |  |  |  |  | < 5 |  |  |  |  |  | 15 |  |  | $<10$ |  | 0.86 | 1.17 | 31 | 74 | 85 |
| A903683 | 251.00 | 251.10 | 0.10 | \\| |  |  |  |  |  |  |  |  |  | 5 |  |  |  |  |  | 30 |  |  | $<10$ |  | 0.68 | 0.84 | 15 | 40 | 630 |

# Work Report Summary 

Transaction No: W0160.00134
Recording Date: 2001-APR-05
Approval Date: 2001-JUN-22

Status: APPROVED
Work Done from: 1999-AUG-01
to: 2000-JUL-31

Client(s):
130679
FALCONBRIDGE LIMITED
Survey Type(s):

EM
Work Report Details:

| Claim\# |  | Perform | Perform Approve | Applied | Applied Approve | Assign | Assign Approve | Reserve | Reserve <br> Approve <br> Due Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P | 986731 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 986732 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 986733 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 986734 | \$0 | \$0 | \$400 | \$400 | \$0 | $0{ }^{+}$ | \$0 | \$0 2002-MAY-21 |
| P | 986735 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995399 | \$373 | \$373 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2004-MAY-21 |
| P | 995400 | \$14,590 | \$14,590 | \$400 | \$400 | \$4,590 | 4,590 | \$9,600 | \$9,600 2002-MAY-21 |
| P | 995401 | \$9,200 | \$9,200 | \$400 | \$400 | \$4,800 | 4,800 | \$4,000 | \$4,000 2002-MAY-21 |
| P | 995402 | \$466 | \$0 | \$400 | \$400 | \$66 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995403 | \$466 | \$0 | \$400 | \$400 | \$66 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995408 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995409 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995410 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995443 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-13 |
| P | 995447 | \$187 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995448 | \$466 | \$0 | \$400 | \$400 | \$66 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995449 | \$466 | \$466 | \$400 | \$400 | \$66 | 66 | \$0 | \$0 2002-MAY-21 |
| P | 995450 | \$93 | \$93 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995451 | \$466 | \$466 | \$400 | \$400 | \$66 | 66 | \$0 | \$0 2002-MAY-21 |
| P | 995452 | \$466 | \$466 | \$400 | \$400 | \$66 | 66 | \$0 | \$0 2002-MAY-21 |
| P | 995453 | \$466 | \$466 | \$400 | \$400 | \$66 | 66 | \$0 | \$0 2002-MAY-21 |
| P | 995455 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995456 | \$187 | \$187 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995457 | \$140 | \$140 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995458 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995459 | \$93 | \$93 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995460 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995461 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995476 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995477 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995480 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 995481 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 996042 | \$47 | \$47 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 996043 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 996044 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |



## Work Report Summary

Transaction No: W0160.00134
Recording Date: 2001-APR-05
Approval Date: 2001-JUN-22
Work Report Details:

| Claim\# |  | Perform | Perform Approve | Applied | Applied Approve | Assign | Assign Approve | Reserve | Reserve Approve Due Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P | 996048 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 996049 | \$187 | \$187 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 996050 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 996067 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 996068 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 996069 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 996070 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 996071 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 996072 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 996073 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 996074 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 996075 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 996076 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 996077 | \$0 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-21 |
| P | 1211709 | \$47 | \$47 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-JUN-07 |
| P | 1211712 | \$5,165 | \$5,165 | \$400 | \$400 | \$2,765 | 2,765 | \$2,000 | \$2,000 2002-JUN-07 |
| $P$ | 1211714 | \$373 | \$373 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-JUN-07 |
| P | 1211715 | \$47 | \$47 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-JUN-07 |
| P | 1211716 | \$466 | \$466 | \$400 | \$400 | \$66 | 66 | \$0 | \$0 2002-JUN-07 |
| P | 1211718 | \$28,076 | \$28,542 | \$1,200 | \$1,200 | \$6,876 | 8,274 | \$20,000 | \$19,068 2002-JUN-07 |
| P | 1211719 | \$466 | \$466 | \$400 | \$400 | \$66 | 66 | \$0 | \$0 2002-JUN-07 |
| P | 1211720 | \$8,673 | \$8,673 | \$800 | \$800 | \$181 | 181 | \$7,692 | \$7,692 2002-JUN-07 |
| P | 1211721 | \$1,632 | \$0 | \$0 | \$0 | \$0 | 0 | \$1,632 | \$0 2002-MAY-29 |
| P | 1211723 | \$10,099 | \$10,099 | \$1,200 | \$1,200 | \$0 | 0 | \$8,899 | \$8,899 2002-JUN-07 |
| P | 1211724 | \$233 | \$0 | \$800 | \$800 | \$0 | 0 | \$0 | \$0 2002-MAY-29 |
| P | 1211727 | \$93 | \$93 | \$800 | \$800 | \$0 | 0 | \$0 | \$0 2002-JUN-07 |
| P | 1211728 | \$326 | \$0 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-MAY-29 |
| P | 1211729 | \$373 | \$373 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-JUN-07 |
| P | 1211734 | \$140 | \$140 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-JUN-07 |
| P | 1211738 | \$1,399 | \$1,399 | \$800 | \$800 | \$0 | 0 | \$599 | \$599 2002-JUN-07 |
| P | 1211740 | \$50 | \$50 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-JUN-07 |
| P | 1211744 | \$700 | \$700 | \$0 | \$0 | \$0 | 0 | \$700 | \$700 2001-JUL-23 |
| P | 1211745 | \$140 | \$140 | \$400 | \$400 | \$0 | 0 | \$0 | \$0 2002-JUN-07 |
| P | 1211746 | \$700 | \$700 | \$800 | \$800 | \$0 | 0 | \$0 | \$0 2002-JUN-07 |
| P | 1211747 | \$466 | \$466 | \$800 | \$800 | \$0 | 0 | \$0 | \$0 2002-JUN-07 |
| P | 1211748 | \$466 | \$466 | \$800 | \$800 | \$0 | 0 | \$0 | \$0 2002-JUN-07 |
| P | 1211749 | \$233 | \$233 | \$1,600 | \$1,600 | \$0 | 0 | \$0 | \$0 2002-JUN-07 |
| P | 1211750 | \$9,759 | \$13,069 | \$800 | \$800 | \$0 | 746 | \$8,959 | \$11,523 2002-JUN-07 |
| P | 1212996 | \$1,866 | \$1,866 | \$0 | \$0 | \$0 | 0 | \$1,866 | \$1,866 2001-JUL-29 |
|  |  | \$100,347 | \$100,347 | \$34,400 | \$34,400 | \$19,806 | \$21,752 | \$65,947 | \$65,947 |

## Work Report Summary

| Transaction No: | W0160.00134 | Status: APPROVED |
| :--- | ---: | ---: | :--- |
| Recording Date: | 2001-APR-05 | Work Done from: 1999-AUG-01 |
| Approval Date: | $2001-J U N-22$ | to: $2000-J U L-31$ |

Status of claim is based on information currently on record.

Ministry of
Northern Development and Mines

Ministère du Développement du Nord et des Mines

Date: 2001-JUN-22

GEOSCIENCE ASSESSMENT OFFICE 933 RAMSEY LAKE ROAD, 6th FLOOR SUDBURY, ONTARIO P3E 6B5

Tel: (888) 415-9845
Fax:(877) 670-1555

SUITE 1200, 95 WELLINGTON STREET WEST TORONTO, ONTARIO
M5J 2V4 CANADA

## Subject: Approval of Assessment Work

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.
Assessment work credit has been redistributed, as outlined on the attached Work Report Summary to better reflect the location of work.

If you have any question regarding this correspondence, please contact LUCILLE JEROME by email at lucille.jerome@ndm.gov.on.ca or by phone at (705) 670-5858.

Yours Sincerely,


Ron Gashinski
Supervisor, Geoscience Assessment Office

Cc: Resident Geologist
Falconbridge Limited (Claim Holder)

Assessment File Library
Falconbridge Limited (Assessment Office)








Torget Property AQ19
SectrEM Target 608a


| KIDD/HBED/EAL JV |  |  |  |  |  | ASSAYS TABLE |  |  |  |  | MCD32-01 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sus. | $\begin{array}{\|c\|} \hline \text { fRN } \\ (\omega) \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{TO} \\ & (\mathrm{in}) \end{aligned}$ | $\begin{array}{\|l\|c\|} \hline \text { lat } \\ \text { (in) } & \begin{array}{c} 0 \\ p p e n ~ \end{array} \\ \hline \end{array}$ | $\begin{array}{\|c\|c\|} \hline \\ \hline \end{array}$ | $\begin{array}{\|c} \hline \mathbf{p o p}_{6} \\ \text { past } \\ \hline \end{array}$ | $0\left\|\begin{array}{c} \text { nic } \\ \text { pope } \end{array}\right\|$ | Mpo | * ${ }_{0}$ | ${ }_{4}^{4} \times 1 \times$ |  |  |  |  |  |
|  | 83,30 | 33.05 | 0.531 |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{20} \times 2359$ | ${ }^{151,00}$ | 182.50 | $1.5{ }^{18}$ | ${ }^{3} 8$ | 1 | 4 | 3 | 0.2 |  |  |  |  |  | 2, 2 , 0.6 |
| Masesss | ${ }^{156.50}$ | 1255.50 | 1.572 | 172 | ${ }^{2}$ | 4 | 2 | 0.3 |  |  |  |  |  | (ex |
| \%x03s37 | (165.50 |  | 1.51 .58 | - | ${ }_{11}^{19}$ | ${ }^{124}$ | 2 | ${ }_{0}^{0.3}$ |  |  |  |  |  | 5, 5 |
| \%xasess |  | 188.50 | 1.55 1.5 | ${ }^{138}$ |  | ${ }_{88}^{27}$ | ${ }_{8}^{2}$ | ${ }_{0}^{0.3}$ |  |  |  |  |  | 退5,0,0, 5 |
| хаезs80 | 200,45 | 201.50 | 4.1) 7 | 1110 | 30 | 171 | 3 | 0.4 |  |  |  |  |  | 5,0,9 |
| ${ }^{1020356}$ | ${ }^{20150}$ | 20, ${ }^{2030}$ | ${ }^{1.551585}$ | ${ }_{412}^{107}$ | 4 | 12 | 2 | ${ }^{0.2}$ |  |  |  |  |  |  |
| \|ne3363 | 20.50 | 206,00 | 1.515 | ${ }^{208}$ | 16 | ${ }^{78}$ | ${ }^{2}$ | ${ }^{0.3}$ |  |  |  |  |  | 5, |
| (1)039384 | 207, | 209.50 | 1.51 .85 | ${ }^{12122}$ |  | ${ }_{23}$ | ${ }_{3}^{10}$ | ${ }^{0.3}$ |  |  |  |  |  |  |
| S3068 | ${ }^{289} 000$ | 210.50 | 1.58 | 227 | ${ }^{10}$ | ${ }^{35}$ | 10 | 10.3 |  |  |  |  |  | 50,9 |
|  | cin | ${ }^{212.50}$ | ${ }^{1.5}{ }^{\text {a }}$ 88 | - 230 | ${ }_{13}^{14}$ | ${ }_{50}^{49}$ | ${ }^{18}$ | ${ }^{0.7}$ |  |  |  |  |  | 边 5 |
|  | 213.50 21500 | ${ }^{215.00}$ | 1.5500 1.520 | ${ }_{92}^{39}$ | 19 | ${ }_{8}^{88}$ | 3 | 0.1. |  |  |  |  |  | 5,0,9, |
| -103971 |  |  | 0.961 | ${ }_{64}$ |  |  |  | 0.1 |  |  |  |  |  | 8,a- |

FALCONBRIDGE LIMITED
Exploration Division
Timmins ontario

ROTATED SECTIION LOOKING
$327^{\circ}$
DDH MCD32-01
GRID 99MCD33
Az 237

| Torget Property \# |
| :--- |
| Project \#: 435 |




Target Property AQ19
SectrEM Target 603b


FALCONBRIDGE LIMITED
Exploration Division



FALCONBRIDGE LIMITED

42A12NE2031





