

010

GEOPHYSICAL REPORT

RECEIVED

ON THE

JUN 2 1988

ROBB TOWNSHIP PROPERTY Porcupine Mining Division

FOR

FALCONBRIDGE LIMITED Porcupine Mining Division, Timmins, Ontario

0C JOHN GRANT WE HOY Prepare J.C.GRANT F.G.A.C. Exsics Exploration Ltd. Timmins, Ontario May 25, 1988

.

Ø10C

TABLE OF CONTENTS

				Page
INTRODUCTION	•	•	•••	1
PERSONNEL	•	•	• •	1
PROPERTY LOCATION AND ACCESS	•	•	•••	i
CLAIM STATUS	•	•	•••	2
GEOPHYSISICAL PROGRAM	•	•	•••	3
MAGNETIC SURVEY PROCEDURE	•	•	•••	3
ELECTROMAGNETIC SURVEY PROCEDURE	•		•••	4
VLF SURVEY	•	•	•••	4
HORIZONTAL LOOP SURVEY	•	•	•••	5
BASE MAPS	•	•	•••	5
SURVEY RESULTS	•	•	•••	6
CONCLUSIONS AND RECOMMENDATIONS	•	•	•••	8
LIST OF MAPS				

Contoured Magnetometer Survey Map #1 Map #2 VLF Dip-Angle Max Min II 1777 Hz Map #3 Max Min II Map #4 444 Hz

.

- 1 -

LIST OF FIGURES

- Figure 1 Location Map
- Figure 2 Road Location Map
- Figure 3 Claim Location Map
- Figure 4 Grid Sketch Map
- Figure 5 Local Geology Map
- Figure 6 VLF Transmitter Stations Location Map

APPENDECES

- Appendix A EDA OMNI IV
- Appendix B EDA OMN1 PLUS SYSTEM
- Appendix C Max Min II System

Introduction

Exsics Exploration Limited was contracted to perform geophysical surveys on a group of 22 claims owned by Falconbridge Limited, which are situated in Robb Township, Porcupine Mining Division, Timmins, Ontario. These surveys were completed during the latter half of February to the first week of March, 1988.

The objective of those surveys was to locate and outline favorable geological structure which would be suitable for economical base metal and or gold deposition.

Personnel

The Exsics staff directly involved with the data collection are as follows:

Lanny Anderson	Timmins,	Ontario
Wayne Pearson	••	"
Jeff Peterson	**	
Mike Hickey		**
Rick Lavoy	11	**

The work program was supervised by J. C. Grant.

Property Location & Access

The "Robb Property" consists of 22 contiguous, unpatented mining claims all of which are located in the north, central-east section of Robb Township as shown on the Ministry of Northern Development and Mines Plan Map M-309. Half Moon Lake flows into the central-east section of the property. Refer to figures 1 and 2 of this report.

In more general terms, the property is situated approximately 37 km north-northwest of the City of Timmins (figure 2)

Access to the property is ideal year round. Highway 101 west, head out of the city to the junction of Highways 101 west and 576. Highway 576 is a good paved road running north-northwest up to Kamiskotia Lake. A good secondary gravel road, constructed by Abitibi Lumber runs north off of highway 576 and provides good access to Half Moon Lake. A short boat ride or skidoo ride will bring one to the east end of cut grid.

Claim Group

The claim numbers which make up the "Robb Property" are listed below:

<u>Claim Number</u>

P-997524	P-997535
997525	997536
997526	997537
997527	997538
997528	997539
997529	997540
997530	997541
997531	997542
997532	997543
997533	969269
997534	969270

Total Group consisits of 22 Claims.

- 2 -

Geophysical Program

This program consisted of a total field magnetic survey, VLF and Max Min II electromagnetic surveys. All of these surveys were completed over the entire property.

Magnetic Survey Procedure

Magnetic Survey:

This survey was completed using the EDA Omni IV System and specifications for this unit can be found under Appendix A of this report.

The unit is capable of recording and storing magnetic values acccurate to the decimal point, thus greatly improving the accuracy as well as the quality of the collected data.

A base station was established on the survey grid at a fixed point and this unit was tuned to a reference field of 58500 gammas. The field unit was also tuned at the same fixed point and set to the same reference field.

The base station unit was set to record and store readings at 30 second intervals so as to monitor any spiking or change in the earth's diurnal throughout the day.

At the end of each survey day, the field unit and base station unit are coupled together and the raw field data is dumped to the base station mag where it is merged. The internal microprocessor then computes the diurnal variation in the earth's magnetic field for each survey grid coordinate by comparing the times at which readings were taked and computing any mid-interval values.

- 3 -

This is most useful in these northern latitudes where more detailed monitoring of the diurnal variations is required.

This correction is done during the data dump of the unit. The retrieved data is the correct data ready for plotting. This plotted data has had a background of 58000 gammas removed for ease in plotting.

Electromagnetic Procedure

VLF Survey

This survey was completed using the EDA Omni Plus System.

Specifications for this unit can be found as Appendix B of this report.

The survey was completed on the entire grid using a transmitter station, Cutler Maine, at a frequency of 24.0 kHz.

A dip angle measurement was recorded at each station on the grid. This data was then plotted direct onto the base maps and profiled. When interpreting this data, a true conductor axis is noted as positive readings to negative readings when traversing south to north.

One should keep in mind, when interpreting this survey, that the VLF unit is an ideal geological tool as it will react favourably to contact zones, faults, and shears as well as outcrop to swamp contacts, creeks, lake shores, and of course anomalous zones.

- 4 -

Horizontal Loop Survey

This survey was completed using the Max Min 11 System manufactured by Apex Parametrics of Toronto.

Specifications for this system can be found as Appendix C of this report.

This survey is a two-man continuously portable EM System which is designed to measure both the vertical and horizontal in-phase (IP) and quadrature phase (QP) components of the anomalous field from electically conductive zones.

For this survey, a coil separation between the receiver and transmitter operator was set at 150 meter, which would give a theoretical search depth range of 65-75 meters.

The two frequencies chosen were the 1777 and 444 Hz channels which, in the past, has proven to be guite sufficient in this area.

The data was collected at the mid-point of the operators over the entire grid. One in-phase and quadrature value was recorded at each station.

This data was then directly plotted onto the base maps.

BASE MAPS

The base maps were set-up at a scale of 1:5000 and all of the collected data was put on. For the magnetic data, 58000 gammas has been subtracted from each reading for ease in plotting. The data was then contoured at 100 gamma intervals wherever possible.

The VLF map was profiled at 1 cm to 10% and all conductor axis have been noted.

The Max Min maps were also profiled at 1 cm to 10% and one map was used for each frequency. The plot point is the mid-point between the operators which accounts for the 75 meter blanks at the north and south end of each line.

All of these maps can be found in the back pocket of this report.

Survey Results

The Max Min survey was successful in locating several areas of interest of which two appear to relate to legitimate bedrock conductors.

These two zones show up well on the 444 frequency which is less affected by conductive overburden layering.

The first zones strikes at 080 degrees from lines 700mw to 200mw at 1100 to 1200 mn. This feature lies at a depth of 60 meters with a conductivity value of about 15 mhos. The zone appears to be dipping slightly south to near vertical.

The west section of the zone has no definite magnetic association. The east extension strikes into but not across a strong magnetic high feature. This magnetic feature may relate to an ultramafic intrusive flowing into the metavolcanic host rock.

On examination of ODM preliminary map P.694, Geological series, Robb Township scale 1 to 1/4 mile, two drill holes appear to have tested this zone however, a more positive location of the holes are needed before eliminating the feature.

- 6 -

The second EM target closely parallels the first zone and is located across lines 600 mw to 300 mw at 700 to 800 mn. This zone lies at a depth of 30 meters with a conductivity of 2-3 mhos.

The magnetics show some weak low association which is somewhat spotty and irregular.

This feature may also have ben tested by a drill hole, see map P.694 for location.

The magnetic structure showing up across lines 800 mw to 200 mw at 2200 to 2400 mn may in fact relate to ultramafics and intermediate metavolcanic flows.

Another area of interest may be the magnetic activity across lines 400 mw to 400 me at 450 mn to 0. This area again may relate to ultramafic to felsic intrusives.

The VLF survey most probably is indicative of a complicated buried structure of flow and intrusive type material.

The interpreted fault structure, Map P-694, may run through lines 700 mn to 0+00 in a north-northwest direction.

Conclusions

The surveys did prove to be successful in outling two moderate to good EM zones on the grid. These zones may have been tested but closer inspection of the zones and hole locations would be necessary before drawing any definite conclusions.

Recommendations

A geological survey may add a more definite interpretation of the zones. Also, this mapping may locate the actual position of the old drilling.

The only additional recommendatiion would be further drilling to define the targets.

APPENDIX A

OMNI IV's Major Benefits

- Four Magnetometers in One
- Self Correcting for Diurnal Variations
- Reduced Instrumentation Requirements
- 25% Weight Reduction
- User Friendly Keypad Operation
- Universal Computer Interface
- Comprehensive Software Packages

Specifications]
Denamic Range		
	suppresses first significant digit upon exceeding 100 000	-
Tuning Method	gammas, Tuning value is calculated economic of the second states	
All omatic Fine Tuning	developed tuning algorithm	
	\pm 15% relative to ambient field strength of last stored	
Display Resolution	0.1 gamma	
Processing Sensitivity Structure Error Perclution	± 0.02 gamma	
Absolute Accuracy	0.01 gamma	
stadard Momento	± 2 gamma over total temperature range	
tal Field or Gradient	1 200 data blacks an anti-	
Tie-Line Points Base Station	1.100 data blocks or sets of readings	
Disay	5,000 data blocks or sets of readings	
	Operating temperature range from -40°C to 155°C that	1
_	display contains six numeric digits, decimal point, battery	
PS 2 Sorial L/O Interface	monitor and function descriptors.	
Gradient Tolerance	2400 baud, 8 data bits, 2 stop bits, no parity	
Test Mode	A. Diagnostic testing (data and programmet is a	
Serbr	B. Self Test (hardware)	
	Optimized miniature design. Magnetic cleanliness is consistent with the specified absolute assolute	
Gradient Sensors	0.5 meter sensor separation (standard), normalized to	
	gammas/meter. Optional 1.0 meter sensor separation	
Sensor Cable	Remains flexible in temperature range specified includes	
Cycleg Time (Base Station Mode)	strain-relief connector	
	second increments	
	-40°C to +55°C; 0-100% relative humidity; weatherproof	
	Non-magnetic rechargeable sealed lead-acid battery	
	cartridge or belt; or 12V DC power source option for base	
attery Cartridge/Beit Life	2,000 to 5,000 readings for sealed load acid power succes	ر
	depending upon ambient temperature and rate of	
leights and Dimensions	reaunitys	
Instrument Console Only	. 2.8 kg, 238 x 150 x 250mm	
Nicad or Alkaline Battery Cartridge	1.2 kg, 235 x 105 x 90mm	
Lead-Acid Battery Cartridge	1.2 kg, 540 x 100 x 40mm	
Lea -Acid Battery Belt	1.8 kg, 540 x 100 x 40mm	
Gradient Sensor	1.2 kg, 56mm diameter x 200mm	
0.5 m separation - standard	. 2.1 kg, 56mm diameter x 790mm	E D A Instrument 4 Thorncliffe Par
Manent Sensor (1) mseparation-optional		Toronto, Ontario Canada M4H 1H1
andard System Complement	Instrument console: sensor: 3 meter ceble studies	Cable: Instrumen
	sectional sensor staff, power supply, harness assembly	in U.S.A
Base Station Option	Standard system plus 30 meter cable	E D A Instrument 5151 Ward Road
	Standard system plus 0.5 meter sensor	Wheat Ridge, Cot U.S.A. 80033
• • • •		(303) 422 9112

:

E D A Instruments Inc. 4 Thorncliffe Park Drive Toronto, Ontario Canada M4H 1H1 Telex: 06 23222 EDA TOR Cable, Instruments Toronto (416) 425 7800

In U.S.A. E D A instruments Inc. 5151 Ward Road Wheat Ridge, Colorado U.S.A. 80033 (303) 422 9112

APPENDIX B

omni plus Vi Piwaginetometer System

Major Benefits of the OMNI PLUS

 Combined VLF/Magnetometer/Gradiometer System

- No Orientation Required
- Three VLF Magnetic Parameters Recorded
- Automatic Calculation of Fraser Filter
- Calculation of Ellipticity
- Automatic Correction of Primary Field Variations
- Measurement of VLF Electric Field

specifications*]
Frequency Tuning Range	. 15 to 30 kHz, with bandwidth of 150 Hz; tuning range accommodates new Puerto Rico station at 28.5 kHz	
Transmitting Stations Measured.	. Up to 3 stations can be automatically measured at any given grid location within frequency tuning range	
Recorded VLF Magnetic		
	. Total field strength, total dip, vertical quadrature (or alternately, horizontal amplitude)	
tandard Memory Capacity	. 800 combined VLF magnetic and VLF electric measurements as well as gradiometer and magnetometer readings	
Pisplay	. Custom designed, ruggedized liquid crystal display with built-in heater and an operating temperature range from – 40°C to + 55°C. The display contains six numeric digits, decimal point, battery status monitor, signal strength status monitor and function descriptors.	
RS232C Serial I/O Interface	. 2400 baud rate, 8 data bits, 2 stop bits, no parity	
Test Mode	. A. Diagnostic Testing (data and programmable memory) B. Self Test (hardware)	
Sensor Head	. Contains 3 orthogonally mounted coils with automatic tilt compensation	
Example 2 Sector Sec	40°C to 1 55°C	
	0 – 100% relative humidity; Weatherproof	
Power Supply	Non-magnetic rechargeable sealed lead-acid 18V DC battery cartridge or belt; 18V DC disposable battery belt; 12V DC external power source for base station operation only.	۶
Velghts and Dimensions Instrument Console Sensor Head VLF Electronics Module Lead Acid Battery Cartridge Lead Acid Battery Belt Disposable Battery Belt	2.8 kg, 128 x 150 x 250 mm 2.1 kg, 130 dia. x 130 mm 1.1 kg, 40 x 150 x 250 mm 1.8 kg, 235 x 105 x 90 mm 1.8 kg, 540 x 100 x 40 mm 1.2 kg, 540 x 100 x 40 mm	4 Tr CC CC CC CC CC CC CC CC TC CC TC CC TC T
reliminary		U. (3)
		Dr

EDA Instruments Inc., 4 Thorncliffe Park Drive, Toronto, Ontario Canada M4H 1H1 Telex: 06 23222 EDA TOR, Cables: Instruments Toronto (416) 425-7800

;

In USA, EDA Instruments Inc., 5151 Ward Road, Wheat Ridge, Colorado U.S.A. 80033 (303) 422-9112

Printed In Canada

APPENDIX C

3

APEX

MAXMIN II PORTABLE EM

- Five frequencies: 222, 444, 888, 1777 and 3555 Hz.
- Maximum coupled (horizontal-loop) operation with reference cable.
- Minimum coupled operation with reference cable.
- Vertical-loop operation without reference cable.
- Coil separations: 25, 50, 100, 150, 200 and 250 m (with cable) or 100, 200, 300, 400, 600 and 800 ft.
- Reliable data from depths of up to 180m (800 ft).
- Built-in voice communication circuitry with cable.
- Tilt meters to control coll orientation.

CERTIFICATE OF QUALIFICATIONS

1, John Charles Grant do hereby certify:

- that I am a geophysicist and reside at Lot 2 Martineau Avenue, Kamiskotia Lake, Timmins, Ontario.
- 2. that 1 am a Fellow of the Geological Association of Canada.
- 3. that I am a member of the Certified Engineering Technologist Association.
- 4. that I graduated for Cambrian College of Applied Arts and Technology, Sudbury Campus in 1975 with an Honour's diploma in Geology Technology.
- 5. that I have practised my profession continuously for 12 years.
- 6. that my report on FALCONBRIDGE LIMITED. on the Robb Township property, Procupine Mining Division, is based on work carried out under my supervision.
- 4. I hold no specific or special interest in the described property. I have been retained as a Consulting Geophysicist for "the property".

Dated this 25th_day of May 1988 at Timmins, JOHN GRANT G.A.C. John C. C.E.T ELLOW

OFFICE USE ONLY

Ministry of Northern Development and Mines

Gı Te

42A12SE0232 2.11273 ROBB

900

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Township or Area <u>Roisis Township</u> Claim Holder(s) <u>FRECONBRINGE FTO</u>	MINING CLAIMS TRAVERSED List numerically
$\frac{57!}{MoNETA}, \overline{Timmeds}, ONT.$ Survey Company \underline{ExSICS} \underline{Exf} . \underline{LTD} . Author of Report $\underline{-foldiol}$ $\underline{C.}$ \underline{GNANT} Address of Author \underline{BEX} $\underline{I880}, \underline{Timmeds}, Ont.$ Covering Dates of Survey $\underline{I6/o2/85}$ \underline{fo} $\underline{I8/5/88}$. (linecutting to office) Total Miles of Line Cut $\underline{I86.8}$ Km.	$- \frac{1}{997534}$ (prefix) (number) $- \frac{197535}{997535}$ $- \frac{1997536}{997537}$ $- \frac{1997537}{6000000000000000000000000000000000000$
SPECIAL PROVISIONS CREDITS REQUESTEDDAYS ger claimENTER 40 days (includes line cutting) for first surveyElectromagneticMagnetometer40ENTER 20 days for each additional survey using same gridOther	997532 997533 997533 997533 997533 997533
AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) MagnetometerElectromagneticRadiometric (enter days per claim) DATE: Mathematic SIGNATURE:	- <u>997535</u> - <u>997536</u> - <u>9975</u> 37
Res. Geol Qualifications 2.5341 Previous Surveys	917538 997539 997545
File No. Type Date Claim Holder	541 542 543
	969270 969269
	TOTAL CLAIMS

GEOPHYSICAL TECHNICAL DATA

Dry A

GROUND SURVEYS - If more than one survey, specify data for each type of survey

N	umber of Stations 2410 Number of Readings 7740
S	tation interval 20 METERS Line spacing 100 METERS
P	rofile scalelcm to 10??.
С	ontour interval IOU SAMMA
7.1	Instrument EDA ONNI IV
Ĭ	Accuracy - Scale constant 2 .5 Samma .
NU NU	Diurnal correction method DASE STRTIEN RECERDER
MA	Base Station check-in interval (hours) 305EC READINGS PURING DAY.
•	Base Station location and value
Ŋ	Instrument RPEX MAX Min II SYSTEM
ET	Coil configuration COPIANER COILS.
CIN	Coil separation ISO METER
W	Accuracy $\frac{1}{2}/ \delta \eta_{c}$
IRC	Method: Fixed transmitter Shoot back In line Parallel line
EC	Frequency $1777 H = H = H = H = H$
EI	Parameters measured 1 10/PAIRSE & 1 OUT OF PAIRSE
	Instrument
	Scale constant
Z	Corrections made
VT	
GRA	Base station value and location
•	
	Elevation accuracy
	Instrument
1	Method Time Domain Frequency Domain
	Parameters – On time Frequency
54	- Off time Range
E	– Delay time
II	- Integration time
ESIS	Power
	Electrode array
	Electrode spacing
1	Type of electrode
•	Type of electrode

INDUCED POLARIZATION

SELF POTENTIAL						
Instrument					Range	
Survey Method						
Corrections made		······································				
RADIOMETRIC						
Instrument					·	
Values measured						,
Energy windows (lev	els)					
Height of instrument				Background	Count	
Size of detector						
Overburden						
		(type, depth	 include outcrop 	map)		
OTHERS (SEISMIC	, DRILL WELL LO	GGING ETC.	.)			
Type of survey	VLF-E.	m	·			
Instrument E	AR Omd	, PLM	S -			
Accuracy	2 15 120.					
Parameters measured	DIP	RNGLE	= DF	RESU	LTANT	
a anameters measure	FIELD					
Additional informati	on (for understandi	ng regulte)	FREQU	FALCY 1	AS 2	4. 2 V
Cuttere Ma		ing results)	loga	-10-1 -10-1		<u> </u>
	<u> </u>			<u>, , , , , , , , , , , , , , , , , , , </u>		
B						
AIRBORNE SURVI	<u>, Y S</u>					
type of survey(s)		· · · · · · · · · · · · · · · · · · ·				
Instrument(s)		(specify for e	ach type of survey)		
Accuracy	4498			-		
Aircraft used		(specify for e	ach type of survey)		
Anciait useu						

Aircraft altitude	Line Spacing
Miles flown over total area	Over claims only

GEOCHEMICAL SURVEY - PROCEDURE RECORD

P.

Numbers of claims from which samples taken_____

Total Number of Samples	ANALYTICAL METHODS					
Type of Sample(Nature of Material)	Values expressed in: per cent					
Average Sample Weight	p. p. m.					
Method of Collection	р. р. b. Ц					
	Cu, Pb, Zn, Ni, Co, Ag, Mo, As,-(circle)					
Soil Horizon Sampled	Others					
Horizon Development	Field Analysis (tests)					
Sample Depth	Extraction Method					
Terrain	Analytical Method					
	Reagents Used					
Drainage Development	Field Laboratory Analysis					
Estimated Range of Overburden Thickness	No. (tests					
	Extraction Method					
	Analytical Method					
	Reagents Used					
SAMPLE PREPARATION	Commercial Laboratory (
(Includes drying, screening, crushing, ashing)	Name of Laboratory					
Mesh size of fraction used for analysis	Extraction Method					
	Analytical Method					
	Reagents Used					
General	General					

ene Ministry of Instructions: - Please type or print. Report of Work DODUMENT NO. Northern Development If number of mining claims traversed (Geophysical, Geological, exceeds space on this form, attach a list. 8806 and Mines Note: - Only days credits calculated in the Geochemical and Expenditures Ontario "Expenditures" section may be entered in the "Expend. Days Cr." columns. **Mining Act** Do not use shaded areas below. Type of Su Township or Area VIF SURVEYS K0313 MAXMIN Jel, MAGNETIC, Prospector's Licence No. Claim Holder(s) IDGE LIMITED FALCONA 164 Vinin.NS MONETR Date of Survey (from & to) Total Miles Day | Mo. | Yr. 88 Yr Jav m Exsics LTD Name and Address of Author (of Geo-Technical report) ISUX 880 YIMMINS, F. SRANT atoria Mining Claims Traversed (List in numerical sequence) Credits Requested per Each Claim in Columns at right Mining Claim Expend. Days Cr. Mining Claim Special Provisions Expend. Days Cr. Days per Claim Geophysical Prefix Prefix Number Number For first survey: Electromagnetic 40 997524 69270 Enter 40 days. (This includes line cutting) Magnetometer 40 7 525 9269 Badiometric 99 75H For each additional survey: using the same grid: - Other 99 7227 Enter 20 days (for each) Geological 528 Geochemical Man Days Days per Claim Geophysical 99 7530 Complete reverse side ANIO GEOLOGICAL SURVEY and enter total(s) here RECE - Electromagnetic ASSESSMENT FILES V.E.D. -----. OFFICE MAY-24-1988 diometric 33 8 1988 11 IN - Other MINING LANDS-SECTION 535 e d FCEIV Gebchemical 99 Airborne Credits Days per Claim 753 Note: Special provisions Electromagnetic 7538 credits do not apply Magnetometer to Airborne Surveys. CORDED RE UPINE Expenditures (englises bower little) 99 54 Type of Work Per mile 99 Performed onjClaim(s) APR 15 1988 997542 Calculation of Expenditure Days Credits Total Days Credits Total Expenditures \$ 15 ÷ Total number of mining claims covered by this 22 report of work. Instructions Total Days Credits may be apportioned older's For Office Use Only 4900199 choice. Enter number of days credits otal Days Cr. Date Ì in columns at right. Recorded 1760 Recorded Reco Holder of Branch 0 HOHEN GRAN of Work Certification Verifying Repor I hereby certify that I have a perional and intimate knowledg or witnessed same during and/or after its completion and the of the facts set forthin the Report of Work annexed hereto, having performed the work annexed report is true Name and Postal Address of Person Certying LLOW 1880 Certified 7+1

THE TOWNSHIP OF LOVELAND TP M.293 ROBB 2 M 5479 55478 uno 🔯 uno 🕅 : mnd. 🛈 3 1027788 1027789 1027748 1027749 1027750 1027783 1027784 1027785 1027786 19 DISTRICT OF 54409 54428 46a | 55455 5486 55485 COCHRANE CLM. 147 1027796 1027795 1027794 1027793 1027792 1027791 1027790 1027753 1027752 1027751 MAO U .нно Ф NRO D (- MROK URO U 54257 PORCUPINE 54256-54888 0529 54264 54265 MROL D NRO. 1027797 1027799 1027754 1027755 1027 54265 54264 54266 5426 (L) MRO HRO O (L) MHO 99722 MINING DIVISION 97526 4374 Villeo (X) 750672 € 4 07¥ ₩P0 (\$) 50559 5055 MR0 64273 4no X ·MRO() 50552 1027800 1027799 1027759 1027758 1020157) MBQ_ 997530 Halfmop 997529 9975**2**81 SCALE: 1-INCH=40 CHAINS 750654 750657 750660 87220 84274 6428 54640 50529 I 5691 Vino & Kuno 50549 #R0(0) 5893 53568 46225, akel 997533 P 997532 99773I LEGEND 1750655 17506561750661 Base 64076 HEY. 150527 45686 1000.2 man (V) 180211 8380261 936021 83387 \$5685 45692 O` 45684 REGISTERED PLAN OF SUBDIVISION TANKA BURLANT ALL 616209 50547 P997534 18380271 P969270 997558 P MRO PATENTED LAND Ma X 0 45688 2405 C.S. CROWN LAND SALE 12362 1239 Ö, i kas 997537 ¹⁹975**3**8 997536 NAC.® B139 LEASES SATURA NO 14. 51120 Loc. - the 12393 12358 21157 21156 12343 LOCATED LAND NRG X 12353 12340 I O M 12392 L.O. P997510 6 OCCUPATION 997843 997342 997541 997843 997342 997541 997843 64495 84492 997843 997541 OF LICENSE O 50683 50682 (R2M.R.O. MINING RIGHTS ONLY MRO(L) \$.R.O. 12342 SURFACE RIGHTS ONLY 51926 12341 2339 ω ROADS 0 52095 52094 52093 81945 P12403 12404 86100 515871 515899 \$1947 51946 00 51945 IMPROVED RUADS C.L.M. 148 N KING'S HIGHWAYS 2 12356 M. 271 996057 996062 996063 996969 O MRO ۹. . 9749E 38478 32099. Stoder P P Σ 51813 54783 RAIL WAYS 37508 ake 0 38477 \$2096 515996 /516|22 POWER, LINES 38476 996058 996061 | 996064 | 99696 * * ? MARSH OR MUSKEG Ο. 38481 516127 / 516139 38480 **}---**MINES P ۵. 996059 996060 996065 996967 38479 C. CANCELLED **|---**-3 M SON 279<u>4</u>9, A**3**# LON' NO PATENTED for S.R.O. 2 41 9713 516141 53178 516140 LWE 1. (F) 12472 14408 12558 14 10 28200 28201 V L **JAMIE** KAMISKOTIA COT NOTES West Commando 400' Surface: Rights Reservation along the shores Lake 1 2354 254 4 1 2594 67 25 2 1 61 of all lakes and rivers. with Control 854463 854465 LAKE Areas withdown town staking under Section 606147 6069 606195 FAK 14744 662:04 42 of the Mining ActiR COUNCE Ser AntRis My 854466 Disposition 606200 854452 85445 2 M 606199- 606198 905703 9056821 (P) SRO 854455 854458 _3 (}938) ۲ 653967 666207 600200 606209 9 34454 905706 1905683 This township lies within the Municipality 796602 1250599 894649 of CITY of TIMMINS. 205672 905673 32550 Ø 89+648 0940+7 447.62 197154 RESERVATIONS: 394652 1894651 1974650 ··(·· 724.997 647060 838353 838362 719167 779168 779169 779169 797460 '496602 . 260596 946747 3168 RI- S.R.O. REOPENED FOR STAKING 18716 3 7771 1, 1 1791 986158 986158 750574 750 975 8501 25705 150544 750 995 8501 25705 10574 10577 (P) (P) 8946541894653 838354 838361 1836625 826626 836676 536671 754004 754094 75410+ *j &4858B 12005 724978° / -++++++-1 P P 19 19455 18212 8518 94656 814655 18212 25706 99454 814655 6502 © 6925 988160 988159 IN PLANNED. REFOREST RATIONS. 838355 838360 836638 836632 836673 836673 1936673 154085 75685 7568585 756858685 7568585 75685 264100 988161 (1973) (1 Apr. 14/82 R2) ORDER OF THE MINISTER WITHDRAWS . MINILG AND SUPPACE RIGHTS UNDER 1754094.... 838356 838359 836650 836651 834091 834072 734086 754087 Mining Act, RS0193 Oct 1/29 Received \mathbf{Y}_{i} 238367 238358 836653 836652 836052 834094 834093 454688 754688 754997 <u>}</u> 13 M LOND PIO24197 PLAN NO. M.30914 M 15 M 16 M 2 👘 🖓 🖄 👘 1**7** M 🔅 👘 🖏 🖏 TURNBULL TP M. 316 MINISTRY OF MANIMULE TESOURCES 200 SURVERS ALLE ACCOPPERS PEADOLE A CONTRACTOR MAN

A.00+2 0+0€W . M.00-6 5+00W 4+00W े --\$ 00 8 8 ×00+m 2+00 \$ **}**+00₩ 3+00E 2+00E +005 \sim ੍ਰ _+_ ○+_) \bigcirc 4 .__] .~! . J (أريب ł ; _ . 1 _____ ~+•00% ----3, -4, -4, 26+00N 26+00N TL 24+00N L_24+.⊴ON 22+00N 22+00N 20+00N 20+00N 18+00N 18+00N

		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
TLI6+00N	$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TL 16+00N
14+00N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I4+00N HALFMOON LAKE
12+00N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12+00N
10+00N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
8+00N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6+00N	$\begin{array}{c} 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4+00N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0.000	-4[+1] -3[+1] -5[-2] +2[+3] +4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-610 -510 $-61-1$ $-61+3$ $-612-610$ -510 $0-61-1$ $-61+3$ $-612PARAMETRES MEASURED: Inphase (%)Out of phase (%)$

12+00W 4+00W M00+01 M00+6 5+00W 3+00W W00+7 2+00W 8+00W W00-M00+|| 3+00E 2+00E M00+I 1+00E 00+0 ÷9 ____ ____ _____ _ ___ ____ ____ _ ____ __ _

28+00N 28+00N *2 | +5 +2+1 0 +3 0 +4 0 +4 0 +4 0 +4 +1 +5 +4 +5 +4 +5 +4 +6 +7 +8 +12 +7 +10 +8 4.1.1.1.2.10.40.2.4 26+00N 26+00N +3 +4 +4 +3 +3 0 1 +6 +4 +8 +11 +5 +4 +6 +5 17 +7 16 +3 7-3 TL 24+00N 1 1 1 1 1 1 1 TL 24+00N 222241222111449999145648847665543466 575575775757756677756667775666777566667775766666777566666777566666777576666677757666667775766666777*Ì +6 +4 +6 +6 +4 +3 997526 计性性的 +5 +5 +5 +4 +2 887774656750 +5 +8 +9 +7 +7 +2 +3 +2 22+00N 22+00N 5 +4 +4 +8 +13 +13 +13 +12 +12 +10 -10 +5 +9 +8 **_**+8 +6 +7 +4 20+00N 20+00N 0 0 0 +700 +700 +8 -1 +8 + +1 +19 +2 +19 +3 +10 +3 +6 +10 +10 +7 +11 +13 +13 +12 +3 18+00N +6 +6 5 +8 σ

18+00N

±00€

4

_

	L 12+00W L 11+00W	W00+01 J	L 7+00W L 6+00W L 5+00W L 4+00W	L 3+00W L 2+00W L 1+00W	L 1+00E L 2+00E L 3+00E L 4+00E		
28+00N				300 300 300 300 300 300 300 300 300 300	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28+00N	N
26+00N				- 34 - 29 - 36 - 37 - 36 - 36 - 37 - 36 - 36 - 36 - 37 - 36 - 36 - 36 - 37 - 37 - 36 - 37 - 37 - 37 - 37 - 37 - 37 - 37 - 37	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 400 9 26+00N 7 5 5 6	
TL 24+00N		600612 -661 700731 800808 - 869	Image Image <th< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>3400 4 5 5 7 400 5 5 500 7 - 600 8 600</td><td></td></th<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3400 4 5 5 7 400 5 5 500 7 - 600 8 600	
22+00N		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H621 H012 H932 C4068 957(V 815 1778 520 936(L) 716 1350 1954 936(L) 716 1350 1954 936(L) 716 1350 1954 936(L) 716 1350 1954 936(L) 618 1089 1626 90801 510 889 928 63801 435 600 689 928 63801 435 600 689 928 63801 435 600 689 928 63801 435 600 689 928 63801 435 600 689 928 63801 435 600 689 928 6380 435 600 638 545 9868 864 483 545 678 911 631 831 803 447	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 7 2 600 2 2+00N 3 -500 1 2 7 9/00	
20+00N		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 400 8 300 4 20+00N 3 9 4 4 0 8 6	
18+00N		-457 -443 -425 -416 -402 -401 -418 -479 -524 500 -492	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 7 3 3 4 0 7 0 6 5 300	·
TLI6+00N	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300 TL 16+00N	
14+00N	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 341 \\ 559 \\ 400 \\ 449 \\ 461 \\ 664 \\ 500 \\ 522 \\ 1000 \\ 522 \\ 1200 \\ 1200$	14+00N HALFMOON LAKE	
12+00N	$\begin{array}{r cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12+00N	
IO+OON	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-369 -334 -337 -368 -345 -303 -374 -375 -318 400 -397 -326 -395 -380 -336 -368 -365 -350 -361 -363 -351 -342 -365 -352 -317 -359 -361	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 0 10+00N 200	
8+00N	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 8 3 8 4 8 5 0 3 3 5 5 0 3 3 5 5 5 5 5 5 5 5 5 5 5	
6+00N	400 400 400 400 400 400 400 400	-314 -339 -358 -348 -352 -369 -435 -398 -383 -393 -359 402 -306 -336 -428 -302 -317 -440 -347 -316 -459 -318 -318 -464 -311 -301 -454 -338 -314 -439	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 300 5 10 11 19 13 7 14 19 400	
4+00N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.11273 LEGEND strument: EDA OMNI-IV
2+00N	-303 -303 -305 -305 -294 -300 -294 -294 -294 -294 -294 -294 -294 -294	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3 \\ 5 \\ 6 \\ 6 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B 300 31 A 55 2+00N D	arametres Measured: Earth's total magnetic field accuracy: +/- I nano-teslas iurnals: Corrected by base station recorder

M00+01 |2+00W 4+00W M00+6 5+00W 3+00W 8+00W 7+00W 6+00W 2+00W 4+00E 3+00E M00+|| 7 2+00E M00+I 1+00E 00+0 ____ _ ____ ____ __ لـ _ ___ **___** ___ ____ ٦ 28+00N 28+00N -10 26+00N 26+00N -14 \Box TL 24+00N HI I I I I I TL 24+00N +3 3024 1-1-1-23 -3 526 -2 4463237 K0 Q 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 9752 22+00N 22+00N 2222 <u>}</u>3 ťΟ --2 -0 --1 - 3 2232 - 3-9-9-9- 0 - 3 - 0 -TO2002343432 20+00N 20+00N -2 -0 0 221-0001 33252232 997528 <u>-99-9</u> -32000 (-3 97529 97530 ----2 - --3 202 -3 18+00N 出3 -11 18+00N

The state of the state of the spectrum of the state of th

