On The

GOLDHURST RESOURCES INCORPORATED PROPERTY

TURNBULL TOWNSHIP
Ontario

RECEIVED

JUN 21986
MINING LANDS SECTION

Prepared By:
J. C Grant, CET, AFGAC May 20, 1986
dual 2.5347

TABLE OF CONTENTS

PAGE
INTRODUCTION 1
LOCATION MAP (FIGURE 1) 2
LOCATION MAP (FIGURE 2) 3
LOCATION 4
ACCESS 4
LINECUTTING PROGRAM 4
PROPERTY LOCATION MAP (FIGURE 3) 5
GEOPHYSICAL PROGRAM 6
SURVEY PROCEDURE 6
GENERAL GEOLOGY 7
ECONOMIC GEOLOGY 8
GEOLOGY MAP (FIGURE 4) 11
GOLD OCCURRENCES (FIGURE 5) 12
SURVEY RESULTS 13
GOLD OCCURRENCES (FIGURE 6) 16
RECOMMENDATIONS 17
REFERENCES
APPENDIX A
CERTIFICATE

INTRODUCTION

Goldhurst Resources Incorporated holds a group of 21 contiguous, unpatented mining claims in Turnbull Township, Porcupine Mining Division, Northeastern Ontario (figure 1).

The entire group of claims is located in the Northeastern Quadrant of the Township, East of the 26 mile creek, as shown in figure 2.

This report will deal with the results of a geophysical program carried out on 12 of the 21 claims held by the company.

The claim numbers are as follows:

Location

Claim \#
Turnbull Township
"
"
"
"
"
"
"
"
"
" 849092
"
849093
(refer to figure 3, Claim Group Sketch).

Page 2

The property is located approximately 14 miles West, Northwest of the City of Timmins, in Turnbull Township. The Eastern boundary of the group is situated 6000 feet West of the Turnbull-Godfrey Township line with the North and South boundaries between the 3.5 and 5.25 mile markers of the Township line. The Northwest corner of the group touches 26 Mile Creek.

ACCESS

Access to the property is ideal during the winter months.

A 20 minute ride, West from the City of Timmins along Highway 101, will bring you to the junction of 101 West and Highway 576 (Kamiskotia Lake Road). Another 20 minute ride Northwest along Highway 576 will bring you to the old Genex Mine road which travels Southwest off of Highway 576.

A six mile skidoo ride along this Genex Road will bring you to the Galore Gold Mine site which is just South of the Southeast corner of Goldhurst's group. A trail for skidooing was cut and flagged to line 4400 South of the survey grid. (refer to Property Location Map).

During the summer months access to the property would be by helicopter to a number of landing sites along 26 Mile Creek.

LINECUTTING PROGRAM

During the month of March 1986 a detailed grid was cut to cover the 12 claim group. A baseline was established 1/4 of a mile West of the East boundary and cut from the North boundary of the group, due South to the Southern boundary.

GOLDHURST RESOURCES INC.

PROPERTY LOCATION MAP
SCALE: 1 inch=1/2 mile

FIG. 3

Crosslines were turned off and cut at 200 foot intervals from L0 000 to L5000S. All of the crosslines were cut and chained at 100 foot intervals to the East and West boundaries of the group. A tieline was established at 2600 W for better grid line control. This tie line was also cut due South from LO+00 to L5000S.

GEOPHYSICAL PROGRAM

This program, completed by Exsics Exploration Limited during the month of April 1986, consisted of a total Field Magnetic Survey and VLF-EM dip and field strength surveys. All of the grid lines were read at 100 foot intervals.

SURVEY PROCEDURE

Magnetic Survey:

The Magnetic survey was completed on 21 miles of grid ines using a Scintrex MP-2 Portable Proton Magnetometer. A total of 1040 readings were recorded. The specifications of the Scintrex mag can be found as Appendix A of this report.

The survey was done by first establishing a number of base magnetic stations. These stations were set up to correct for any variance in the Magnetic Diurnal during the day. These stations were established at the following points:

LOCATION
L4400S/BL
L2600S/BL
L1000S/BL

VALUE IN GAMMAS
58944
58920 58930

The collected data was then plotted on a base map using a scale of 1 inch to 200^{\prime}. For simplicity in plotting, a background level of 58000 gammas was removed from all the readings. The plotted data was contoured at 10, 25, 50, 100 gamma intervals wherever possible.

This base map can be found in the back pouch of this report.

VLF-EM Survey:
The VLF survey was also completed on 21 miles of grid lines using a Crone VLF-EM (Radem) Receiver.

The survey was completed using a transmitting station of 21.4 khz , Annapolis, Maryland. Both a dip angle measurement and a Field strength measurement were recorded at each station. This field strength data was done to aid in the interpretation of the structure.

After collecting the dip angle data a Low Pass filtering called Fraser Filtering was done. This results in positioning a high positive peak over shallow sources of conductivity and a low positive peak over deeper buried zones.

A total of 2080 readings were recorded over the survey grid and all of the lines were read at 100 foot intervals.

This collected data was then plotted on Base Maps using a scale of $1^{\prime \prime}$ to 200'. The dip angle measurements were profiled at 1" to 20 degrees, the Field Strength data was contoured at 10% and the filtered data was contoured at 10 intervals.

All of these base maps can be found in the back pocket of this report.

GENERAL GEOLOGY

The Goldhurst Property is mainly underlain by felsic metavolcanic tuffs, agllomerates and breccias to the Southeast and mafic metavolcanic flows, tuffs and agllomerates to the Northeast section of the block.

The strike of these structures is North-South with a foliation that is generally East-West. A fault zone flanks the Eastern boundary of the block and strikes across the entire length of the property. A diabase dike runs parallel to this fault in the central portion of the group. Some small felsic intrusions also occur in the North-East corner of the claim group.

ECONOMIC GEOLOGY

The eastern section of Turnbull Township has been active in gold exploration since 1910. A fair number of gold occurences are located approximately 1 mile to the Southeast of Goldhurst's property.

These occurences will be discussed seperately below. (refer to Gold Occurences Map, figure 5).

Evans Gold Occurence, 1

A trench 8 feet deep and 20 feet long exposes a quartz porphyry dike cut by quartz stringers mineralized with fine pyrite. A sample was taken by the Provincial Assayer and returned results of 0.07 ounces of gold per ton ($2.4 \mathrm{q} / \mathrm{t}$).

Lally Claim, 2
The claim, staked by James Lally in 1909, is reported to have two timbered shafts. The claim is mostly underlain by granites and quartz porphyry.

The Lally vein strikes approximately at 170° and dips to the East at 80°. This vein is traced for 150 feet (45 meters) and pinches and swells from a crack in the host rock to a width of 6 feet (2 meters). Native Gold is reported to occur in this vein.

Two small shafts were sunk in granites to mine out a vein reported to contain visible gold.

Hubert Claim, 4

Only the Northwest corner of this claim was mapped. The rock is of andesitic composition including some pillow lavas striking at 040° and facing Southeast. A brecciated zone striking at 030° contains some pyrite across a length of 250 feet (75 meters).

This zone continues off of the claim where some low gold values have been reported.

Evans Showing, 5

Greenstone covers this area which has also been intruded by quartz porphyry dikes.

Finley reports in 1925 that "Gold is said to have been found in quartz veinlets cutting the porphyry."

Galore Property, 6

The claim on which the gold showing is located is mainly covered by sand and boulders with very little outcrop exposure. The few outcrops that do occur are of andesitic composition. A 30 foot (9 meter) shaft was sunk. Material on the dump is reported to be sheared, oxidized and disseminated pyrite.

One hundred feet (30 meters) South of this shaft a pit was dug in a quartz vein which is 8 feet (2.4 meters) wide. This vein strikes at 100° and dips vertically. The quartz is largely barren but pockets of calcopyrite occur on the North margin of the vein. Samples from the dump and the quartz vein were taken by the Provincial Assayer. Both samples returned only trace gold.

Page 10

In April of 1984 Galore Gold Resources Incorporated drilled 5 holes in two parallel Pulse, EM conductors. One of the conductor axis is on the shaft and the second is approximately 30 meters to the East. Both zones are striking North to Northwest. Drill hole \#2 intersected a small section of visible gold on the "shaft conductor". Drill hole \#5 also intersected a 10 cm wide section containing some visible gold.

This second intersection occurs on the conductor East of the shaft.

SURVEY RESULTS

The VLF-EM surveys were successful in locating a number of responses. Each of these zones will be discussed separately and in detail below.

Zone A (L400N - L5000S e 800E)
This VLF zone represents one of the most predominant features of the survey grid and most probably represents a mapped fault zone ${ }^{1}$.

The VLF response matches the mapped fault exactly, including the shift in the North-South strike of the fault, evident between lines 2000 and 2200 s.

Examination of the field strength data for this section of the survey grid also outlines the fault and a second East-West fault in the vicinity of L 2000 and 2200 s.

The magnetics also support the fault and its relation to this VLF zone.

Zone B (L400N to L2000S 1000W to 700W)
This VLF response appears to represent a legitimate bedrock conductor at depth. The magnetics do not show any direct or definite correlation with the zone; however, there is magnetic signature flanking the zone to the East. A horizontal loop survey was done over this zone and the results show a conductor at a depth of approximately 70 meters (229 feet). The zone has a conductivity value of appeoximately 10 to 30 Mhos which would suggest a good conductor within the search depth of the survey.

Zone B^{\prime} (L800S to 1200 S \& 600W)
This zone also appears to be a legitimate bedrock response at depth. There is a moderate magnetic correlation with the zone. This feature may in fact be associated with zone B.

The Horizontal loop survey proves the legitimacy of this feature. The results show a conductive zone at a depth of 55 to 75 meters and a conductivity value of 12 - 25 Mhos.

Zone C (L600S to L2400S \& 2200W to 1500W)
This zone may be indicative of a bedrock response but may also relate to a fracture or shear zone.

The magnetics show a good west flanking feature parallelling the entire length of the zone.

The Horizontal loop survey also suggests a thin conductive zone at depth.

The field strength data outlines a well defined structure which may in fact strike Southeast as far as line 3400w, where it then appears to butt up against an Eastwest feature.

Zone D (L3800S to 5000 S e 1900W to 1200 W)
This zone represents another and probably the most interesting feature of the survey grid.

The zone has good magnetic correllation with the northern extension but shows an East-West intrusion parallelling Line 4200S. This intrusion also appears to drastically alter the strike of the zone from North-South to NW-SE.

The extreme strike change resulted in establishing a compassed, flagged grid to cross the zone at a better angle.

The results show a good, clean, sharp resonse which continues off of the grid to the Southeast.

The final conductive zone roughly parallels the baseline from L4200S to L5000S at 200 W .

This zone may be the south extension of the zone striking Northwest from L3800S to 3200 S .

The magnetic feature which seems to be striking West along L4000S may have interrupted the strike direction of the zone.

Page 16

RECOMMENDATIONS

There are several conductive zones on the Goldhurst property which most likely relate to legitimate bedrock responses.

Certainly the conductive zones B, C, D and the zone parallelling the baseline from Line 4000 S to L5000S should be considered for a follow-up program of both Geology and Geophysics. A Horizontal Loop survey would enhance the importance of each of these zones and provide a much more definite picture.

The abundance of outcrop in the vicinity of the baseline and South section of the grid may provide some explanation of some of the zones. Power stripping and/or trenching may be considered.

CONCLUSIONS

The Goldhurst property represents one of the most interesting properties in the Township. The recent discoveries of the Galore property to the immediate South of Goldhurst would certainly suggest that gold is present in the area.

These results plus the discoveries of the past would certainly upgrade any property which has legitimate bedrock conductors present on it. Not only does this fact apply to the Goldhurst property but using the figure showing the area's gold occurrences and their relation to the strike and position of the Goldhurst's anomalies, definitely suggests that the property may in fact have the potential for a gold deposit.

The anomalies on the Goldhurst property may be North extensions of the Galore zones which have already proven the existence of ore grade gold values.

Darke, K. H. Drill Hole Location Plan of Galore Gold Resources Incorporated including Au intersections. Turnbull Township, Timmins, Ontario.

Fraser, D. C. Contouring of VLF-EM data, Geophysics, Volume 34, 1969 Number 6 (December, 1969). P 958 - 967.

Holbrooke, G. L. Report on: Craibbe - Fletcher Gold Mines Limited. Timmins, Ontario

Middelton, R. S. Magnetic, Petrochemical and Geological Survey of Turnbull and Godfrey Townships. NTS 42 A/W. Cochrane District, Ontario. O.D.M. OPEN FILE REPORT 5118.

CERTIFICATE

I, John C. Grant, hereby certify that:

1) I am a graduate geophysicist (1975) of the three year program in Geological Technology at Cambrian College of Applied Arts and Technology, Sudbury Campus. I have worked subsequently as an Exploration Geophysicist for Peck Exploration Limited, (5 years), North Bay Office, and as exploration manager and Geophysicist for Exsics Exploration Limited, from 1980 to the present.
2) I am a Member of the Certified Engineering Technologist Association since 1984.
3) I am an Associate Member of the Geological Association of Canada.
4) I have been actively engaged in my profession for the last eleven (11) years, including all aspects of exploration studies, surveys and interpretations.
5) I have no specific or special interest in the described property. I have been retained as a Consulting Geophysicist for property appraisal.

Consulting Geophisicist
Exsics Exploration Limited.

Ministry of Northern Development and Mines

Geophysical-Geological-Geochemical Technical Data Statement

File

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) VLF, Magnetic, HEM
Township or Area Turnbull Township
Claim Holder(s) Goldhurst Resources Incorporated

MINING CLAIMS TRAVERSED
List numerically

P $\quad 867086$
(prefix)
(mumber)
867087
867088
867089
8670.90
867.0 .91
.8.4.9.8.8
8.4.90.82
8499.90
84.9.0.9.
8.4.9.0.92
8.4.9093

Magnetometer \qquad

DATE:

Geophysical	$\begin{aligned} & \text { DAYS } \\ & \text { per claim } \end{aligned}$
--Electromagnetic	
-Magnetometer	40
-Radiometric	
-Other	
Geological	
Geochemical	

SPECIAL PROVISIONS CREDITS REQUESTED

ENTER 40 days (includes line cutting) for first survey.
ENTER 20 days for each additional survey using same grid.

Electromagnetic \qquad Radiometric
(enter days per claim)
Geochemical

SIGNATURE:
Audhor of Repoft or Agent

Res. Geol. \qquad Qualifications
Previous Surveys

GEOPHYSICAL TECHNICAL DATA

Instrument Scintrex MP-2 Proton Magnometer
Accuracy - Scale constant ± 1 gamma
Diurnal correction method Various Base Stations
Base Station check-in interval (hours) 3 hours
Base Station location and value L4400S/BL (58944), L2600S/BL (58920), L1000S/BL(5893C

	Instrument Crone VLF-EM Radem Receiver	
	Coil configuration Two coils at right anqles in instrument	
	Coil separation Infinite	
	Accuracy ± 1 deqree	
	Method: \square - Fixed transmitter \square Shoot back \square In line	\square Parallel line
	Frequency_ Annapolis, Maryland 21.4 (specify V.L.F. station)	
	Parameters measured In phase Dip Angles, one field strength	
	Instrument	
	Scale constant	
\cdots	Corrections made	

Base station value and location

Elevation accuracy

Instrument
MethodTime Domain
Frequency Domain
Parameters - On time Frequency \qquad

- Off time Range
- Delay time \qquad
- Integration time \qquad
Power
Electrode array
Electrode spacing
Type of electrode

TECHNICAL DESCRIPTION OF
MP-2
MAGNETOMETER

RESOLUTION
TOTAL FIELD ACCURACY
RANGE

INTERNAL MEASURING PROGRAMME

EXTERNAL TRIGGER

DISPLAY

RECORDER OUTPUT (Optional)

GRADIENT TOLERANCE POWER SOURCE

SENSOR

HARNESS

OPERATING TEMPERATURE TANGE
SIZE

WEIGHTS

1 Gamma.
± 1 Gamma over full operating range.
20,000 to 100,000 gammas in 25 overianping steps.

Single reading - 3.7 seconds. Recyc. feature permits automatic repetitive reading: 3.7 seconds intervals.

External trigger input permits use of sampliing intervals longer than 3.7 seconds.

5 digit LED (Light Emitting Diode) readout displaying total magnetic field in gammas or normalized battery voltage.

Multiplied precession frequency and gate time outputs for interfacing with incremental tape recorders (eg. Increlogger) for digital recording. As an additional option a digital to analogue convertor is available for use with analogue recorders.

Up to 5000 gammas/metre.
8 alkaline "D" cells provice up to 25,000 readings at $25^{\circ} \mathrm{C}$ under reasonable signal/noise conditions (less at lower temperatures). Premium carbon-zinc cells provide about 40% of this number.

Omnidirectional, shielded, noise-cancelling dual coil, optimized for high gradient tolerance.

Complete for operation with staff or back pack sensor.
$-35^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Console, with batteries: $80 \times 160 \times 250 \mathrm{~mm}$.
Sensor: $80 \times 150 \mathrm{~mm}$.
Statf: $30 \times 1550 \mathrm{~mm}$. (extended)
$30 \times 600 \mathrm{~mm}$. (collapsed)
Console, with batteries: 1.8 kg .
Sensor: 1.3kg.
Staff: 0.6 kg .

SCINTREX earth science division

Proton Precession Magnetometer for Portable or Base Station Use

MP - 2

features -
1 gamma sensitivity and accuracy over range of 20,000 to 100,000 gammas.
Operates in very high gradients, to 5000 gammas per metre.
Ultra small size and weight.
Up to 25,000 readings from only 8 D cells.
Battery pack isolated from electronics for corrosion protection.
Battery pack easily extended for winter use.
Light-emitting diode digital display, with complete test feature.
Unique no-glare polarized reflector permits easy reading in bright sunlight.
Indicator light warning of excessive gradient, ambient noise or electronic failure.

- Rugged all metal housing for rough field use at all temperatures.
- Automatic recycling or external trigger features permit ready conversion to base station use.
Short reading time.
- Broad operating temperature range.

The MP-2 is a portable one gamma proton precession magnetometer for field survey or base station use. The optimized design of sensor and circuitry using the latest CMOS components has resulted in a very light weight, low power consumption, rugged and reliable magnetometer.

Light emitting diodes coupled with an ingenious optically polarized reflector combine solid state reliability with easy reading even in bright sunlight.

A standard automatic recycling feature allows ready use of the MP-2, with suitable (optional) interfacing, as a base station recorder in analogue or ditigal form. Alternativaly, a remote trigger can be used.

The noise-cancelling dual-coil sensor and electronics have been so designed as to effectively eliminate reading problems due to virtually all magnetic gradients which may be encountered in field survey condilions.
-

CRONE GEOPHYSICS LIMITED RADEM VLF EM RECEIVER

An EM receiver measuring the FIELD STRENGTH, DIP ANGLE and QUADRATURE components of the VI communications stations.

This is a rugged, simple to operate, ONE MAN EM unit. It can be used without line cutting and is thus ideally suited for IROUND LOCATION OF AIRBORNE CONDUCTORS and RECONNAISANCE SURVEYS of MINERAL SHOWINGS. This instrument utilizes higher than normal EM frequencies and is capable of detecting poorly conductive sulphide deposits ind fault zones. It accurately isolates BANDED CONDUCTORS and operates through areas of HIGH POWERLINE NOISE The method is capable of deep penetration but due to the high frequency used its penetration is limited in areas of clay and :onductive overburden.

The DIP ANGLE measurement detects a conductor from a considerable distance and is used primarily for locating conducto The FIELD STRENGTH measurement is used to define the shape and attitude of the conductor.

- Instrument Sales, Rental and Repair Services
- Contract Survey Services
- Consulting Services
- Computer Plotting and Processing Services

SPECIFICATIONS*

SOURCE OF PRIMARY FIELD:
NUMBER OF STATIONS:
STATIONS AVAILABLE:
Standard
$"$
$"$
$"$
$"$
$"$

Optional
"
"
"
$"$
$"$

CODE
CM
SW
AM
H
BOF
E
MS
OD
NC
HN
YJ
TJ
BA

VLF Communications Stations 1 to 25 KHz
7 Switch Selectable
The Seven Stations May Be Selected From:
STATION \& LOCATION
Cutler, Maine
Seattle, Washington
Annapolis, Maryland
Laulualei, Hawaii
Bordeaux, Frace
Rugby, England
Moscow, Russia
Odessa (Black Sea)
Exmouth, Australia
Helgelend, Norway
Yosamai, Japan
Tokyo, Japan
Buenos Aires, Argentina

CALL SIGN	FREQUENCY
NAA.	24.0 KHz
NLK.	24.8 KHz
NSS.	21.4 KHz
NPM.	23.4 KHz
NWU.	15.1 KHz
GBR.	16.0 KHz
UMS	17.1 KHz
EWB.	15.6 KHz
NWC.	22.3 KHz
JXZ.	17.6 KHz
NDT.	17.4 KHz
JG2AR.	20.0 KHz
	23.6 KHz

CHECK THAT STATION IS TRANSMITTING: Audible signal from speaker.

PARAMETERS MEASURED:

(1) DIP ANGLE in degrees of the magnetic field component, from the horizontal, of the major axis of the polarization ellipse. Detected by a minimum on the field strength meter and read from an inclinometer with a range of $\pm 1 / 2^{\circ}$.
(2) FIELD STRENGTH (total or horizontal) of the magnetic component of the VIF field, (amplitude of the major axis of the polarization ellipse). Measured as a percent of normal field strength established at a base station. Accuracy $\pm 2 \%$ dependent on signal. Meter has two ranges: $0-300 \%$ and $0-600 \%$.
(3) QUADRATURE component of the magnetic field, perpendicular in direction to the resultant field, as a percent of the normal field strength, (amplitude of the minor axis of the polarization ellipse). This is the minimum reading of the Field Strength meter obtained when measuring the dip angle. Accuracy $\pm \mathbf{2 \%}$.
OPERATING TEMPERATURE RANGE: $-40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.120^{\circ} \mathrm{F}\right)$

DIMENSIONS:
SHIPPING DIMENSIONS:
WEIGHT:
SHIPPING WEIGHT:
BATTERIES:
$9 \mathrm{~cm} \times 19 \mathrm{~cm} \times 27 \mathrm{~cm}\left(31 / 2^{\prime \prime} \times 71 / 2^{\prime \prime} \times 101 / 2^{\prime \prime}\right)$
$30 \mathrm{~cm} \times 14 \mathrm{~cm} \times 36 \mathrm{~cm}\left(11 / \mathrm{s}^{\prime \prime} \times 5 \frac{1}{2 \prime \prime} \times 14^{\prime \prime}\right)$
2.7 kg (6 lbs)
6.0 kg (13 lbs)

2 of 9 volt
Average Life Expectancy
20 Hours for Continuous Operation

[^0]

- Five frequencies: RPR, 444, BEB, 1777 and 3ESE Hz.
- Maximum coupled (horizontal-loop 3 operation with reference cable.
* Minimum coupled operation with reference cable.
* Vertical-loop operation without reference cable.
* Coil separations: 25, 50, 100, 150, 200 and 2EOm [with cablel or $700,200,300,400,600$ and E00 ft. Reliable data from depths of up to 180 m (EOOft. i Built-in voice communication circuitry with cable. : Tilt meters to control coil orientetion.

-

 -

eference cable.

222, 444, 898, 1777 and 3555 Hz .
:Vuid:.....s: MAX: Transmitter coil plane and receiver coll plane horizontal (Max-coupled; Horizontal-loop mode). Used with refer cable.
MIN: Transmitter coilplane horizor. tal and receiver coil plane vertical (Min-coupled mode). Used with reference cable.
V.L. : Transmitter coilplane vartical and receiver coil plene horizontal (Vertical-loop mode). Used without reference cable, in parallel lines.

Wirame:-1.. Hitir: - In.Phase and Quadrature compoments of the secondary field in MAX and MIN modes.

- Tilt-angle of the total field in VL. mode.
- Automatic, direct readout on 90 mm ($3.5^{\prime \prime}$) edgewise meters in MAX and MIN modes. No nulling or compensation necessary.
- Tilt angle and null in 90 mm edgewise meters in V.L.mode.

In.Phase:	$\pm 20 \%, \pm 100 \%$ by push-
	button switch.
Quadrature: $\pm 20 \%, \pm 100 \%$ by push-	
	button switch.
Tilt:	$\pm 75 \%$ slope.
Null (V.).	Sensitivity adjustable by separation switch.

in-Phase and Quadrature: 0.25% to 0.5% : Tilt: 1%
$\pm 0.25 \%$ to 11% nommally, depending on conditions, frequencies and coil separetion used.

- 222Hz : 2enatm²
- 444Hz : 200Atm²
- 日边Hz: 120Atme
- 1777Hz: 60Atm²
$-3555 \mathrm{~Hz}: 30 \mathrm{Atm}{ }^{2}$
$9 V$ trens redio type betteries (4). Life: epprox. 35 hres. continuous duty (alkaline, 0.5 Ah), less in cold weuther.

I2V GAh Gei-type rechargeable battery. (Charger Eupplied).

Light weight 2 -conductor teflon ceble for minimum friction. Lhebrielded. All reference cebles optionel et extra cost. Please epecify.

Quilt-in intercom system for voice communication between receiver and trensmitter operators in MAX and MIN modes, via reference cable.

Built-in signal and reference werning lights to indicate erronecus readinge.
$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$.
6kg (13 lbs.)
13kg (29 lbe.)
Typically 60kg (135lbe.), depending on quantities of reference cable and betteries included. Shipped in two field/Ehipping cases.

Specifications Bubject to change without notification


```
Mining Recorder
Ministry of Morthern Development and Mimes
60 Wilson Avenue
Timmins, Ontario
P4N 2S7
```

Dear Sir:
We received reports and maps on June 2, 1986 for a Geophysical (Magnetometor and Electromagnetic) Surveys submitted under Special Provisions (credit for Performance and Coverage) on Mining Claims P867086, et al. in the Township of Turnbull.

This material will be exninined and assessed and a statement of assessment work credits will be issued.

We do not have a copy of the report of work wich is normally filed with your office prior to the submission of this technical data. Please formard a copy as scon as possible.

Yours sincerely,
J.C. Smith, Supervisor

Mining Lands Section
Whitney 8lock, 6th Floor
Queen's Park
Toronto, Ontario
MTA 1 W3
Telephone: (416) 965-4888
AB/mC
cc: Goldhurst Resources Limited 1963 Dean Home Road
J.G. Grant Miseissauga Ontario 80x 1880 L5J 2K6 Thmins, Ontario P4117 71

Mining Lands Section
Control Sheet

TYPE OF SURVEY

GEOPHYSICAL
GEOLOGICAL
GEOCHEMICAL
EXPENDITURE

MINING LANDS COMMENTS:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
D. Stunt

Signature of Assessor

[^0]: *Specilications subject to change without notice"

