2.17404

OPAP FINAL REPORT

RECEIVED

JUN 17 1997

FOR

PROSPECTING, MECHANICAL STRIPENING LANDS BRANCH

DIAMOND DRILLING

ON THE

FORTUNE TOWNSHIP GOLD PROSPECT
FORTUNE TOWNSHIP
PORCUPINE MINING DIVISION
CLAIM MAP REFERENCE SHEET G3943
LONGITUDE 82 DEGREES 05 SECONDS WEST
LATITUDE 48 DEGREES 35 SECONDS NORTH

SUBMITTED ON BEHALF

OF
DAVID V. JONES
(PROSPECTORS LIC.# M21190)

AND

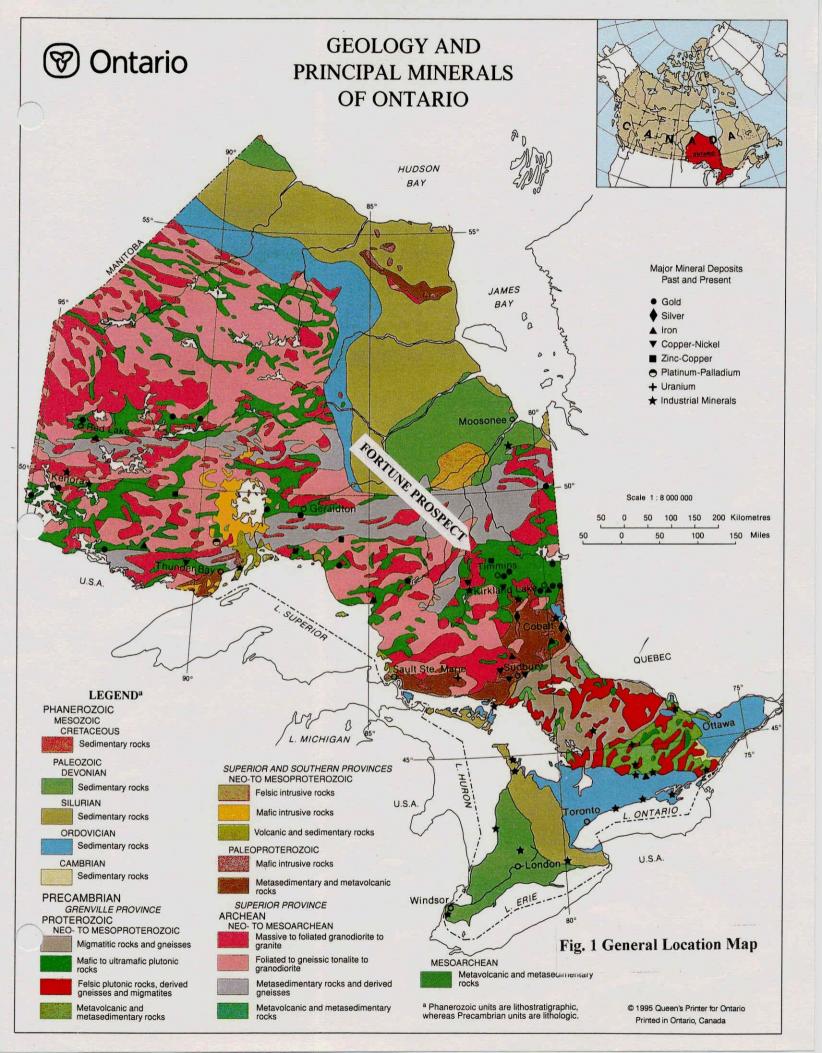
J.KEVIN FILO
(PROSPECTORS LIC.# M25052)

2A12SW0001 2.17404 FORTUNE

010

DEC./95

BY: J. K. FILO


TABLE OF CONTENTS PART 1

INTRODUCTION
PROPERTY, LOCATION AND ACCESS
EXPLORATION METHOD
PROPERTY HISTORY
GENERAL GEOLOGY AND PROPERTY GEOLOGY
DISCUSSION OF THE 1995 WORK PROGRAM AND RESULTS
CONCLUSIONS AND RECOMMENDATIONS
BIBLIOGRAPHY
CERTIFICATE
FIGURES
FIGURE 1: GENERAL LOCATION MAP FIGURE 2: TOWNSHIP REFERENCE MAP FIGURE 3: CLAIM MAP FIGURE 4: ONT. DEPT. OF MINES MAP 2205 FIGURE 5: ONT. DEPT. OF MINES MAP LEGEND FIGURE 6: GEOLOGICAL MAP OF SHOWING AND DRILL HOLE LOCATION FIGURE 7: SECTION FOR DRILL HOLE
APPENDICES
APPENDIX 1: SAMPLE DESCRIPTIONS APPENDIX 2: ASSAY SHEETS APPENDIX 3: DAILY LOGS FOR PROGRAM APPENDIX 4: HISTORICAL DATA FROM PRIVATE FILES

PART 2

DRILL LOGS IN ATTATCHED SEPERATE BINDER

INTRODUCTION

The purpose of this report is to document the exploration work carried out by Messrs. Filo and Jones on their Fortune Twp. Gold Prospect during the 1995 field season. This report will be written in a format such that it will conform with the regulations necessary to satisy all asssessment and OPAP requirements.

Exploration work on the Fortune Twp. property consisted of some prospecting, substantial mechanized stripping, sampling and diamond drilling. This work was carried out to evaluate an underexplored gold occurrence.

The results of the recent exploration work along with a series of recommendations for further work are presented in the following portions of this report.

PROPERTY, LOCATION, AND ACCESS

The current property where all of the exploration was carried out, consists of only two small single unit claims numbered 1201746 and 1201750, located in the SE corner of Fortune Twp. as shown in fig.3. The location of this property is more accurately defined as 82 degrees 05 seconds west longitude and 48 degrees 35 seconds north latitude. The exact location of the property may be referenced by refering to fig.2.

Access to the property is obtained from Timmins by heading west along Highway 101 W. to the Mallette saw mill. At the saw mill one heads NW along the main Mallete haul road to the first major "Y" in the road and then north a short distance along a series of secondary all weather haul roads. The actual distance to the property from the City of Timmins itself is 83.5km.

EXPLORATION METHOD

Data from the personal family files of Mr. J.K.Filo showed that significant gold values were present on the subject claims originally prosected by Mr. Ivan Dea. Consequently, Messrs. Filo and Jones researched assessment data and attempted to locate the ocurrence in the field. After a short period of time, gold mineralization was indeed confirmed as a result of prospecting efforts by Filo and Jones. An evaluation, of the showing area suggested the main gold bearing vein and adjoining structure warranted further evaluation. After the preliminary evaluation a mechanized stripping program was completed. This work, was carried out ultilizing a John Deere 690 from Mascioli Construction of Timmins Ont. Upon completion of the mechanized stripping program, the outcrop area was washed, mapped, and sampled. Lastly, a 350 foot (106.7m.) diamond drill hole was completed to evaluate the gold bearing vein and adjoining structure.

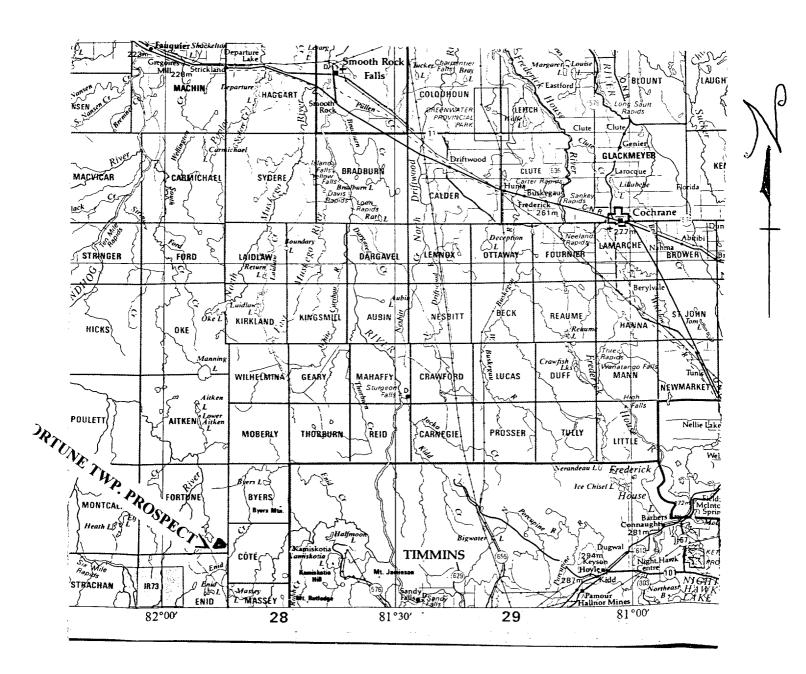


FIG. 2: Fortune Twp. Location Map at a scale of 1:600000

PROPERTY HISTORY

In the past, the current subject claims comprised portions of larger claim blocks that were worked by both companies and individual prospectors. The details on the work carried out are documented below with the accompanying assessment file reference:

<u>Kidd Creek (T2548):</u> In 1982, Kidd Creek worked this property to evaluate its gold potential. They carried out mag, and VLF-EM over the property, and mentioned the presence of two gold occurrences. A number of anomalies were detected, and an induced polarization survey was recommended to follow up the gold targets. Ironically, they fail to mention the exact location of the targets. However, a piece of confidential information in the personal files of K. Filo (Appendix 3) shows that this ground was prospected by I. Dea for Texasgulf at that time, and significant gold values are indeed present from this information.

B. Davis (T3012): In 1984 B. Davis carried out some stripping and trenching on the two claims controlled currently by Messrs. Filo and Jones, but no values were reported from this work.

Ivan Dea (T-3071): In 1986 Mr. I. Dea the same prospector who worked the claims for Kidd Creek carried out work on the claims held by Messrs. Filo and Jones at present. Work consisted of trenching and stripping. Once again no values from any sampling was reported.

GENERAL GEOLOGY AND PROPERTY GEOLOGY

There is very little geological information available about Fortune Twp. In fig.4, the Ontario Dept. of Mines shows Fortune Twp. to be on the western edge of the Abitibi Greenstone Belt, and most of the township is covered by granitic rocks. A small sliver of westerly trending mafic volcanic rocks is present in the SE corner of the Twp., where the current subject block is located.

A property examination, and the recent work program confirmed the presence of pillowed and/or massive, strongly sheared, feldspar porphyritic mafic volcanics in the immediate showing area. Some gold bearing quartz veins are associated with NW trending shears within the volcanics. The shears associated with the gold bearing quartz veins were seen to have a halo of fine disseminated pyrite. This fine pyrite is in the volcanic wall rock, coarse cubic pyrite is present in the vein itself. In the immediate showing area there is also a large mafic dyke suspected to be a lamprophyre, with a trend of approximately 020 degrees Az. Drilling intersected geology similar to that mapped on surface.

LEGEND

CENOZOIC

PLEISTOCENE AND RECENT

. , varved cray , sand , grave! , pea!

UNCONFORMITY MESOZOIC

PALEOZOIC LOWER AND MIDDLE SILURIAN

*3 Thornioe Formation: limestone, dol-omite, sandstone, wabi Formation: limestone, shale,

MIDDLE AND UPPER ORDOVICIAN

Dawson Point Formation: shale.
Fair Formation: limestone.
Sucke Formation: limestone, shale
Guigues Formation: sandstone. UNCONFORMITY

PRECAMBRIAN

LATE PRECAMBRIAN MAFIC INTRUSIVE ROCKS

____ 15 Diabase: dikes.

INTRUSIVE CONTACT

MIDDLE PRECAMBRIAN ALKALIC INTRUSIVE ROCKS

15 Syenite, nepheline syenite.

MARIC INTRUSIVE ROCKS

INTRUSIVE CONTACT

HURONIAN SUPERGROUP COBALT GROUP

13 - Ouartzite, arxose.

Sowganda Formation

7 Unsubdivided.
12e FirstLrook Member: argillite, grey-wacke, siltstone, arkose.
12c Coleman Member: conglomerate, arkose, greywacke, quantite, argil-lite.

EARLY PRECAMBRIAN
MAFIC INTRUSIVE ROCKS

11 Diabase: dikes.

FELSIC INTRUSIVE ROCKS

10e Quartz porabyty, quadtz-leidspar porphyry, leidspar porphyry, gran-ophyre, leidspar porphyry, gran-ophyre, leidspar 10e Trondhyemite, granodiorite, quartz morzonite: simple batholiths and stock Trondhyemite, granodiorite, quartz morzonite: duartz diorite, solite, pegmatite, migmatite: complex batholiths.

METAMORPHOSED MAFIC AND ULTRAMAFIC ROCKS

1 8 Gabbro, diorite, lamprophyre.

7 Peridotite, dunite, pyroxenite, serpentinites

INTRUSIVE CONTACT

6 Conglomerate, greywacke, siltstone, slate, argilliteh

5 Greywacke, siltstone, slate, argillite and minor pebble conglomeratel METAVOLCANICS

ALKALIC METAVOLCANICS

Trachyle, leucitic trachyle; flows, tuff, breccia.

ULTRAMAFIC METAVOLCANICS

3 Serpentinized dunitic and perido-titic flows.

FELSIC METAVOLCANICS

2 Unsubdivided. 1 2a Pyroclastic rocks. 2b Flows.

INTERMEDIATE AND MARIC

METAVOLCANICS

1 Unsubdivided.
1 la Intermediate flows.
1b Intermediate pyroclastic rocks.
1c Malic flows and pyroclastic rocks.

IF Iron formation and ferruginous chert (occurs as a member of stratigraphic units 1, 2, 4, and 5).

S Sulphide mineralization.

Formerly classified as Algoman.

#Several ages; some units appear to be intrusive equivalents of volcanic formations whereas others postdare volcanicism.

. William of Constitution of the State of Melachewan Swarm. FIG. 5: Legend to Accompany Fig. 4; also from Map 2205.

DISCUSSION OF THE 1995 WORK PROGRAM AND RESULTS

The 1995 work program confirmed the presence of a previously undocumented gold occurrence in SE Fortune Twp. Mechanized stripping of the area showed that gold mineralization was contained in a narrow quartz hosted shear zone, trending in a northwesterly direction.(fig.6) The highest assay obtained from surface sampling was 7297 ppb Au. The gold bearing sections of the quartz vein in the shear contained very course pyrite. The the sheared and occasionally contained volcanic wall rock disseminated pyrite. Stripping also showed that there were a number of parallel shear zones adjacent the main gold bearing system, and the structure in the immediate showing area was very strong. Thus, because of strong structure, and parallel shears, it was thought that this area may have potential to host more gold in a wider section of the main gold bearing system, or parallel systems along strike, or at depth.

Consquently one short 350 foot drill hole was drilled into the system. The drill hole intersected the down dip extension of the surface vein from at 55.4 to 57.6 and the vein assayed 0.064 oz./ton. This was unfortunately the best assay in the hole. The drilling also cut some minor shear zones below the main shear and vein. Values associated with these lower shear zones were anomalous at best.

CONCLUSIONS AND RECOMMENDATIONS

The exploration efforts to date, confirmed the presence of interesting gold mineralization hosted in a pyritic quartz vein associated with shears, and good geological structure all within feldspar porpyritic mafic volcanics. Drilling confirmed the presence of a sereies of en-echelon shear zones at depth associated with minor pyrite and minor quartz stringers. The environment described above is a very favourable one for gold mineralization, and is typical of environments found in numerous major gold camps such as Timmins and Kirkland Lake Ont.

An examination of the showing area relative to the old Kidd Creek data, particularily the contoured VLF-EM map, shows there are numerous targets or annomalies that parallel the main showing structure. Although, the showing itself did not have a VLF-EM response, it is possible that the parallel targets are better mineralized and or stronger shear systems, and thus responded better to the VLF survey. Since it is evident that there is a distint association between shearing, pyrite mineralization, and gold it would be prudent to follow up on the Kidd Creek targets.

The following recommendations should be considered for this project:

1) As recommended by Kidd Creek previously, initiate an induced polarization survey over the showing area to obtain a signature. Then prioritize other key target areas from the old Kidd data and cary out I.P. in these areas.

2) Select the targets that best resemble the showing signature and drill test them.

Respectfully Submitted,

J. K. Filo HBSc. Geo.(1980)

BIBLIOGRAPHY

Assessment Files: Various assessment files in the Timmins Resident Geologists Office as referenced in the Area and Property History section of this report.

Ont. Div. Of Mines

1972:Timmims-Kirkland Lake Geological Compilation Series, Map 2205. Scale 1in. to 4 miles.

CERTIFICATE

- I, J.K. Filo of 535 Bartleman of the City of Timmins, Ontario do hereby cerfify:
- 1) I have written this final OPAP report on behalf of Mr. David V. Jones and myself with the assistance of Mr. D. Jones.
- 2) I have been directly involved with the field work pertaining to this project, and I have reviewed all of the recent data and pertinent historical data and government reports prior to writing this report.
- 3) I am a professional geologist with the Assoc. of Professional Engineers and Geoscientists of B.C., and I hold an Honours BSc. (1980) from Laurentian University in Sudbury.
- 4) I further certify that I have been practicing my profession continuously since graduation, a period of fifteen years. During this time I was employed as both a mine geologist and exploration geologist in Canada, Mexico, and SE Asia. I have worked for various mining and exploration companies including Texasgulf Exploration, Urangessellschaft Canada Ltd., Amax Exploration, Cominco (Pine Point Mines), Giant Yellowknife Mines, Freeport McMoran Copper and Gold, and various junior mining companies.

Kevin Filo

David V. Jones

Diffen

APPENDIX 1 DESCRIPTIONS FOR SAMPLES

ROCK SAMPLE DESCRIPTIONS

- FKF 7: Quartz vein material with about 15-20% cubic pyrite.
- FKF 8: Milky white quartz vein, 10% of sample within a mafic volcanic, no significant sulphide in this sample.
- <u>SAMPLE 20:</u> Strongly sheared light grey feldspar porphyritic mafic volcanic, minor pyrite, less than 0.5% disseminated pyrite. Sample is weakly silicified.
- SAMPLE 21: Rusty sugary white quartz with very minor fine pyrite, less than 0.5%.
- Sample 22: Same as sample 34 except only a trace of pyrite.
- <u>Sample 23:</u> Light grey strongly sheared, micaceous, weakly silicious mafic volcanic, very minor clot of quartz and minor trace of pyrite.
- Sample 24: Rusty white sugary quartz with about 1% pyrite maximum.
- <u>Sample 25:</u> Micaceous sheared, locally serecitic?, mafic volcanic with minor quartz and a trace of pyrite.
- SAMPLE 26A: Rusty quartz vein with minor fine pyrite 0.5-1%.
- SAMPLE 26B: Same as sample 23 except no quartz or pyrite.
- SAMPLE 27: Brown rusty quartz vein, sugary, some cubic pyrite.
- <u>SAMPLE 28:</u> Light grey colored sheared, micaceous mafic volcanic with very minor disseminated pyrite.
- SAMPLE 29: (CHIP SAMPLE OVER 30cm.) This sample is as per description for sample 30.
- SAMPLE 30: (CHIP SAMPLE OVER 1.0m.) This sample is a sheared micaceous mafic volcanic, that is gossanous on the fresh surface, light grey in color on the fresh surface, slightly silicious and contains minor pyrite.
- $\underline{ \text{SAMPLE 31:} }$ (CHIP SAMPLE OVER 50cm.) This sample is the same as sample 30.
- SAMPLE 32: Brown sugary rusty quartz vein with 1-2% pyrite.
- SAMPLE 33: Brown rusty quartz vein with minor pyrite.
- <u>SAMPLE 34:</u> Sheared, weakly silicious and slightly micacous mafic volcanic with minor pyrite. Sample is a light grey color on the fresh surface.

- SAMPLE 35: Sheared mafic wall rock with minor quartz vein material, wall rock light grey in color, weakly silicious and contains minor specks of oxidized sulphide.
- SAMPLE 36: Strongly sheared mafic volcanic, slightly serecitic (alteration of feldspar phenocrysts?). Also, some quartz vein material, very minor pyrite found in both quartz vein material and volcanic.
- SAMPLE 37: Sheared feldspar porphyritic mafic volcanic, minor quartz, some gossan staining on volcanic and quartz.
- SAMPLE 38: Quartz with Fe carbonate in contact with a sheared slightly micaceous mafic volcanic. Some minor light green alteration (sericite) suspected to be alteration of feldspar that is seen in nearby fresh rock. Wall rock adjacent the vein is also slightly silicious.
- SAMPLE 39: (CHIP SAMPLE 1.0m.) Light grey silicified sheared mafic volcanic, minor gossan staining.
- <u>SAMPLE 40:</u> Light grey silicified porphyritic mafic volcanic with some gossan staining and minor pyrite, generally less than 1%. Sample is weakly foliated.
- <u>SAMPLE 41:</u> Same description as for sample 39, this sample is a grab sample.
- SAMPLE 42: Sheared mafic volcanic, that is light grey in color on the fresh surface. Sample is weakly silicified and contains minor pyrite, probably 0.5-1% maximum, also some gossan staining note in sample.

** NOTE:

- 1) A total of 26 surface samples were taken on the Fortune Prospect as described above. Other samples on this project were taken from drill core (49 samples) and are described in drill logs. The samples described above are all grabs except where otherwise noted. In all total surface and drill samples for this project was 75.
- 2) Annalysis of all samples from this project were performed by Swastika Labs or Bondar Clegg and elements that each sample was assayed for are shown in Appendix 2 on official lab reports from the respective companies. Concentrations of each element tested are shown at the top of the lab report. Further, surface samples above from 20-43 inclusive are prefixed with and F in the lab reports.
- 3) Upon completion of annalysis all pulps and rejects were discarded, but representative core samples are stored at the Timmins core library.

APPENDIX 2 ASSAY SHEETS ALL SAMPLES FROM FORTUNE PROSPECT

Established 1928

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Assay Certificate

5W-2529-RA1

Company: K. FILO

Project: Attn:

K. Filo

Date: JUN-07-95

We hereby certify the following Assay of 8 Rock samples submitted JUN-06-95 by .

Sample Au Au Check Number g/tonne g/tonne

FKF # 7 2.67 2.40 FKF # 8 0.03 -

Certified by_

P.O. Box 10, Swastika, Ontario P0K 1T0
Telephone (705) 642-3244 FAX (705) 642-3300

Geochemical Lab Report

DATE PRINTED: 27-SEP-95

				Prince interior an		
98.0	(COM	PLETE)		 PROJECT: NONE		PAGE 1
ELEN	MENT	Au30		 		
U	NITS	PPB		 	•••••	
		<5		 		
		501				
		<5				
		<5				
		1550		 		. ,
		16	,			
		385				
		13				
		271				
		24		 		
		9		 	.,	
		12				
		<5				
		7297				
.,		3464		 		
		10				.,
		<5				
		8				
		<5				
		11	· · · · · · · · · · · · · · · · · · ·			
		< 5		 	***************************************	
		<5				
		93				
		20				

Geochemical Lab Report

2.0 (COMPLETE) ELEMENT Au30 UNITS OPT <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.001 0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	Au30 G/T 0.02 <0.01 <0.01 <0.01 0.01 <0.01 0.03 2.19 0.01 <0.01 <0.01 <0.01 <0.01	DATE PRINTED: 15-NOV-S PROJECT: NONE	PAGE 1
VNITS OPT <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.064 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	G/T 0.02 <0.01 <0.01 <0.01 0.01 <0.01 0.03 2.19 0.01 <0.01 <0.01 <0.01 <0.01	·	
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.02 <0.01 <0.01 <0.01 0.01 <0.01 0.01 <0.01 0.03 2.19 0.01 <0.01 <0.01 <0.01 <0.01	·	
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<0.01 <0.01 <0.01 0.01 <0.01 0.01 <0.01 0.03 2.19 0.01 <0.01 <0.01 <0.01 <0.01	·	
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<0.01 <0.01 <0.01 0.01 <0.01 0.01 <0.01 0.03 2.19 0.01 <0.01 <0.01 <0.01 <0.01	·	
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.064 <0.001 <0.001 <0.001 <0.001 <0.001	<0.01 <0.01 0.01 <0.01 0.03 2.19 0.01 <0.01 <0.01 <0.01 <0.01	·	
<0.001 <0.001 <0.001 <0.001 <0.001 0.064 <0.001 <0.001 <0.001 <0.001 <0.001	<0.01 0.01 <0.01 0.01 <0.01 0.03 2.19 0.01 <0.01 <0.01	·	
<0.001 <0.001 <0.001 <0.001 0.064 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.01 <0.01 0.01 <0.01 0.03 2.19 0.01 <0.01 <0.01 <0.01 <0.01	·	
<0.001 <0.001 0.001 0.064 <0.001 <0.001 <0.001 <0.001	0.01 <0.01 0.03 2.19 0.01 <0.01 <0.01	·	
<0.001 <0.001 0.001 0.064 <0.001 <0.001 <0.001 <0.001	0.01 <0.01 0.03 2.19 0.01 <0.01 <0.01	·	
<0.001 0.001 0.064 <0.001 <0.001 <0.001 <0.001	<0.01 0.03 2.19 0.01 <0.01 <0.01 <0.01	·	
0.001 0.064 <0.001 <0.001 <0.001 <0.001	0.03 2.19 0.01 <0.01 <0.01 <0.01		
0.064 <0.001 <0.001 <0.001 <0.001 <0.001	0.01 <0.01 <0.01 <0.01 <0.01	·	
<0.001 <0.001 <0.001 <0.001 <0.001	0.01 <0.01 <0.01 <0.01	·	
<0.001 <0.001 <0.001 <0.001	<0.01 <0.01 <0.01	·	
<0.001 <0.001 <0.001 <0.001	<0.01 <0.01 <0.01		
<0.001 <0.001 <0.001	<0.01 <0.01		
<0.001 <0.001	<0.01		
<0.001			
<0.001			
<0.001			
	<0.01		
0.001	0.03	•	
<0.001	0.01		
<0.001	<0.01		
<0.001	0.01		
<0.001	<0.01		
<0.001	0.01		
0.001	0.03		
<0.001			
<0.001	<0.01		
<0.001	0.01		
<0.001	0.01		
<0.001	0.01		
<0.001	0.02		
0.011	0.38		
0.005	0.16		
	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 0.001 0.001	<0.001 <0.01 <0.001 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 0.01 <0.001 0.03 <0.001 0.01 <0.001 0.01 <0.001 <0.001 <0.001 0.01 <0.001 0.01 <0.001 0.01 <0.001 0.01 <0.001 0.01 <0.001 0.01 <0.001 0.01 <0.001 0.01 <0.001 0.03	<0.001 <0.001 <0.001 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 0.03 <0.001 0.01 <0.001 0.01 <0.001 <0.01 <0.001 0.01 <0.001 0.01 <0.001 0.01 <0.001 0.01 <0.001 0.01 <0.001 0.01 <0.001 0.03

Bondar-Clegg & Company Ltd.
5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada
Tel: (613) 749-2220, Fax: (613) 749-7170

Certificate **Analysis**

SWELE PLORES AU SINGER UNITS OPT STY-15 STY-15 STY-15 STY-15 STY-15 STY-16 STY-	REPORT: 195-572	91.4 (coa	PLETE)		•	PROJ	PRINTED: 8-DEC ECT: NOME	PAG	E 1
Marker Mart Marker Mar	SAMPLE	ELEMENT	Au					*** ***	
357/3 0.005 357/4 0.003 357/4 0.003 357/4 0.003 357/4 0.003 357/4 0.003 357/4 0.001 357/4 0.001 357/5 0.001 357/5 0.008 357/5 0.008 357/5 0.005 357/5 0.005	NUMBER	UNITS	OPT						
357-24 0.003 357-75 0.006 357-76 0.005 357-77 0.005 357-79 0.011 357-79 0.011 357-79 0.003 357-75 0.006 357-75 0.006 357-75 0.006 357-75 0.006						***************************************	***************************************		
\$37/5									
537-4 0.003 537-8 0.007 537-8 0.001 537-9 0.011 537-9 0.003 537-71 0.006 537-72 0.005 537-73 0.002 537-73 0.002									
35747 0.003 35748 0.007 35749 0.011 35750 0.003 35771 0.008 35772 0.005 35773 0.002 35774 0.004									
557-8 0,007 557-9 0.011 557-5 0,008 55751 0.008 55752 0.005 55753 0.002 55754 0.004									
357-24 0.007 35749 0.011 35750 0.003 35751 0.008 35752 0.005 35753 0.002 35754 0.004	3314[****				
35750 0.003 35751 0.006 35752 0.005 35753 0.002 35754 0.004			0.007						
35751 0.008 35752 0.005 35753 0.002 35754 0.004									
35752 0.005 35753 0.002 35754 0.004			0.003						
33.733 0.002 35.754 0.004	35751		800.0						
35754 0.002	35752	***************************************	0.005		U.s				
	35753	414-4	0.002					***************************************	*** #
	35754								
				***************************************			***		

	***************************************		***************************************		***************************************		d. telsen		
						********** #****		***************************************	
		***************************************				************************************			
	751111144	*************		***************************************	*****		*		

		***************************************			***************************************				

5420 Canotek Road, Ottawa, Ottario, KIJ 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170

APPENDIX 3 DAILY LOGS FOR PROGRAM

: for David V. Jones

Summer 1995 OPAP

DATE WORK UN FORTUNE

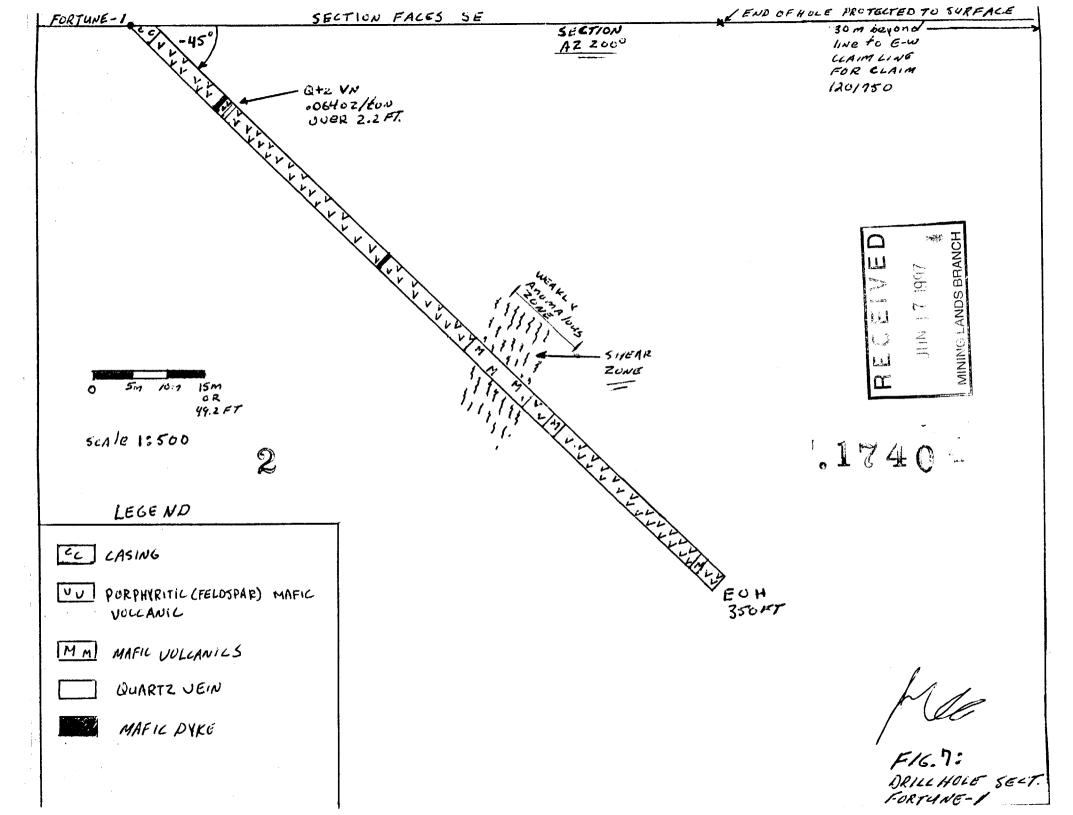
D	D-4-	Work Performed
Гау	Date 1995	MOLK Leliolmed
1	May 18	cut grid, Kenogaming Tp., L-0, L-2E
2	May 19	" L-5E, L-6E
	June 2	prospected area in Fortune Tp. that was later power stripped
	June 3	hand cleaned and sampled " (samples FKF- ,7,8)
5	June 5	cut grid, Kenogaming Tp., L-3E, north part L-2E
6	June 6	" L-1E, south part L-2E
7	June 9	prospected claim 1201546 in area of old pits (Kenogaming Tp)
8	June 10	hand cleaned and sampled area of old pits (samples 1 to 8)
9	Aug. 10	cut grid, Kenogaming Tp., L-14E, L-15E
10	Aug. 11	" L-9E, L-10E
111	Aug. 12	" north part L-12E, L-13E
12	Aug. 13	prospected L-3E from BLO to 420 N. hand stripped around
		area from 20 N to 80 N
13	Aug. 16	prospected L-7E from BLO to 4N, handstripped area between 6E and 7E (sample 75)
14	Aug. 20	supervise and hand clean Kenogaming power stripping
15	Aug. 21	# # # # # # # # # # # # # # # # # # #
16	Aug. 23	power wash Kenogaming stripped area
17	Aug. 24	· · ·
18	Aug. 25	prospected L-6E from BLO to 4N, L-8E from 4N:to BLG, L-11E from 260S to 370N
19	Aug. 26	shovel and grug hoe aroung quartz vein at 580E, 135N (samples 76,77,78)
20	Aug. 27	prospected L-13E, 14E, 15E from BLO to north boundary
21	Aug. 31	mapped and prospected Kenogaming stripped site
22	Sept. 1	•
23	Sept.20	supervise and hand clean Fortune Tp. power stripping
24	Sept.21	n n
25	(Sept. 22)	cut hose trail and pump set up- Fortune Tp.
26	Sept.23	power wash, hand clean, sample, and map Fortune Tp. stripped area
27	Sept.24	16
28	Sept. 25	न
29	Sept.26	н
30	Sept.27	11
31	Oct. 16	draft Kenogaming stripping map and Fortune Tp. maps
32	Oct. 24	H +
33	Oct. 25	11
34	Nov. 2	draft Kenogaming Tp prospecting map
35	Nov. 3	H
36	Nov. 4	11
37	Nov. 10	core split Fortune Tp. core
38	Nov. 11 Nov. 12	11 H
40	Nov. 26	VLF survey over claim 1201549 (Kenogaming Tp.)
41	Nov. 27	draft VLF map Kenogaming Tp.
42 43	Nov. 28 Nov. 29	draft Miscellaneous firgures, maps, and tables for OPAP report
44	Dec. 2	report compilation
45	Dec. 3	•

Dope. 4c# 1721190

IV. DAILY REPORTS (Summarize work activity in Section I)

for J.K. Filo Summer 1995 OPAP

DATE ON FURTURE


Day	Date 1995	Work Performed
1	May 19	Cut grid, Kenogaming Tp., L-3E, L-4E
2	May 20	" , L-7E, L-8E
3	May 22	" , L-llE, south part L-12E
4	June 2	prospected area in Fortune tp. (area that was later power stripped)
-5	June 3	hand stripped and sampled " " FKF-0./.0
6	June 9	prospected claim 1201546 in area of old pits
7	June lo	hand cleaned & samples " " samples Ken- 1 to 8
8	Aug 10	prospected North parts L-3E & L-2E & hand stripped at samples 20 to 24
9	Aug 11	" " south parts LJE & L-ZE sample 25
10	Aug 12	" L-lE at 22S - handstripped & cleaned at samples 26 to
11	Aug 13	cleaned area & sampled at 26 to 30
12	Aug 15	prospected L-1E from 20S to 12 S
13	Aug 16	sampled & cleaned aroun samples 32 to 36
14	Aug 20	supervise & hand shovel Kenogaming power stripping
15	Aug 21	,
16	Aug 22	cut hose trail & pump set up for Kenogaming power washing
17	Aug 23	Power wash Kenogaming with water pump
18	Aug 24	•
19	Aug 25	prospected L-0, L-1E, L-2E samples 37 to 42
20	Aug 26	" L-4E, L-5E, L-9E, L-10E, samples 43 to 47
21	Aug 27	" L-12E, & south parts L-13E & L-14E, samples 48,49,50
22	Aug 31	mapped & prospected Kenogaming stripped site
23	Sep 1	11
24	Sep 6	wrote up sample descriptions summary for Kenogaming samples
25	Sep 20	supervised & hand cleaned Fortune Tp. power stripping
26	(Sep 21)	N 11
27	Sep 23	power wash & hand clean, sample & map Fortune Tp area
28	Sep 25)	н н
29	(Sep 26)	ri ri
30	(Sep 27)	· · · · · · · · · · · · · · · · · · ·
31	Sep 28)	44
32	Oct 10	diamond drill supervise - Fortune Tp.
33	Oct 11	N U
34	(Nov 10	core logging
35	(Nov 11)	ii ii
	Nov12	E3 14
36	Nov 26	established grid on claim 1201549 - for VLF survey
37 38	Nov 30	draft drill logs and figures
1	Dec 1	M #
39		report writing & compilation
40	Dec 2	1 abor o arretific or combined
41	Dec 3	14,
42	Dec 4	
43	Dec 5	"
144	Dec 6	
45	Dec 10	
L		

JESOS 2

APPENDIX 4 HISTORICAL DATA FROM PRIVATE FILES

Texasguli Canada Lid. EYPLORATION . TIME RECEIVED ASSAY REPORT

emple date <u>5ept-30-81</u> Reported FOR TUNE :- TWF I-DEA GRMS % Se % Pb % Sn V % S % Zn g/Mg Ag V SAMPLE No. 0.502 14.0 AA-6353-(.01 7.0 4.0 <.01 3.0

												HOLE N	10. FURT	UNE-	/		Pg /
DRILLING COMPANY G. CORK DA	o,lling	COLLAR ELEVATION NO SURVEY	BEARING OF HOLE FROM TRUE NORTH 200°AZ	AQ LORE 350 FT.	DIP OF HOLE AT COLLAR	- 450	POINT	ON OF HOLE ON TO A FIX	IM XKD	1	FERENCE 1	- 1	CLAIM 1		250	٥	
DATE HOLE, STARTED DATE // C / 0/95 0	TE COMPLETED	DATE LOGGED NOU 10/95	LOGGED BY		(H)		डह ह	SKUTCH	n		ON (Tp., 1	_		Lot. a	nd Long.)	
EXPLORATION CO. OWNER OF FILO & JUNE 1995		DATE SUBMITTED DEC9	SUBMITTER BY ST	[GNATURE	(H)					DRODED	TY NAME			s pec			
FOOTAGE FROM TO	ROCK TYPE		plour, grain size	DESCRIPTION , texture, minera	I	etc.	NO.	SAMPLE :	FOOTAGE TO	EMPLE	Au	Pd ppb	Cu	Zn	ASSAYS + ppm Ag		N1
0 10.4 (4	ASING													3,172			
	- / /		1 / /	· / /	10.11					-							
10.4 50.8 FG	RPHYRITIC	- grey blue	ex unit ?	hux contain	enliete un s	homeways to	ka						RE	CE	IVE	E D	
1 /2	lafic .	-unit 15	very fine	refined a	nd has a	10,000 \$3. (-)	JE.							JN 17	1997		
	PRANIC	distind	FABRIC (4	geained a											1337		
		note un	10-12' m	INOR fault	ZUNE, SU	mc /				-	 		MININ	LAND	SBRA	1CH	
				fo C.A. shon			<u> </u>		-		-						
		<u>-4/50 (4),</u>	TO-29 SOME	black sub	6-hedral Dh	Enourysys					-						
				locky cons	120m 22-2	4 ft.									:		
			1.) (fault 2														
	-	(G) 10-27	ako vo	ERY local.	fine pyrite	11/22					<u> </u>	_					
		OUER 18 //	and minun	tion (45°	etz stamen	5 (1-28)					-	\dashv			-		
		to//owng	the Julia	tion 145°	10 (.H)						-						
		(G) 21-50	8														
		-51.11 a	purphuritie	matic vole	ANIC, thur	(15 weakly											
		SheAREd	al 450 to	matic vole	/ C. T. Yo. S												

												HOLE	NO. Ful	TUNE	= 1		Pg Z
DRILLING COMPANY		COLLAR RLEVATION	BEARING OF HOLE FROM TRUE NORTH	TOTAL	DIP OF HOLE		RELATIO	N OF HOLE N TO A FID N THE CLAN	CED	MAP REI	PERENCE	NO.	CLAIN	NO.			
DATE HOLE STARTED	DATE COMPLETED	DATE LOGGED	LOGGED BY		(M)					LOCATI	ON (Tp.,	Lot,	Con. OR	Lot. a	nd Long	.)	
EXPLORATION CO. OF	NER OR OPTIONEE	DATE			(H)												
		SURMITTED	SUBMITTED BY SI	GNATURE	(M)		_			PROPER	TY NAME						
				DESCRIPTION	(H)		NO.	SAMPLE	POOTAGE	ENGLE	Au	Pd			ASSAYS		
FOOTAGE FROM TO	ROCK TYPE	Co	lour, grain size	, texture, miner	als, alteration,	etc.		FRON	10	LEKTI	oz/to	bbp	Cu	Zn	yd bbw	Co	Ni
		- tance	of proite	ind m	INUR GUART	/2	35706	10.4	13.4	3.0	<.001						<u> </u>
		Stangen		011	ENAL		35707	/3.4	16.9	3.5	¥:001		ļ				-
		- from 40	-50 ff /Lin	e une u	sceics of	Sheared	35708	16.9	20	3.1	4.001			<u> </u>	<u> </u>		┼
		feliszAR	pur phyer t	ie Sykele	to up to	6" long,				<u> </u>					ļ		
		45° /0 6 A	1.			0,	35709	30	33	3	C.001				ļ		 -
		-luwer ed	11	fol.A.			2.	7.		<u> </u>							-
			•				357/0	40	43	3	2.001				ļ		-
50.8 57.4	MAFIC DYKE	-veri fie	ie appined	ma fix di	ike, sta	ongly	357//	43	46	3	£,00(ļ		—
		nagnetie	0 //	5% DVR. LE	, lower	confact	357/2	46	50.6	4.8	2.001						-
		450 fo C.1		7-1	,		357/3	50.8	52.4	2.6	2.001						ــــــ
							35714	52.4	55.4	3.0	0.001						↓
524 55.4	Feldspar,	- fine gi	PAINTED GRE	ev unt	will strute	hed	35715	55.4	57.6	2.2	0.064					ļ	—
32 / 30 /	Purphyribic.	1	ts assucia	11 / //	nuntilialite	, ,	35716	57.6	60.	2.4	K_801						-
	WA.C.			L.		rianted							<u> </u>				4_
	1/0/CANIU	45° fo 6.	A., minun	guante 3	Jaingers in	this			·								-
		interval(c1/22)	/									ļ	ļ	 	ļ	+-
													<u> </u>				+
55.4 57.6	QUARTZ VEIN	Milky whi	le stin with	th purite	(2-38) of chi	9/10/12.66									 		+
		(1/2-12) 1	minior WAL	rock inclu	sions, contac	ts 45 foc.A.					1			<u> </u>		<u> </u>	

												HOLE		INE-			3 3
DRILLING COMPANY		COLLAR ELEVATION	BEARING OF HOLE FROM TRUE NORTH	TOTAL	DIP OF HOLE AT COLLAR		RELATIO	N OF HOLE N TO A FI N THE CLA	XKD	MAP RE	PERENCE	NO.	CLAIM	NO.			
DATE HOLE STARTED	DATE COMPLETED	DATE LOGGED	LOGGED BY							LOCATI	ON (Tp.,	Lot,	Con. OR	Lot. a	nd Long	-)	
EXPLORATION CO. OWN	TER OR OPTIONEE	DATE SUBMITTED			·					DROBAS	TY NAME						
			SUBMITTED BY SI	GNATURE			1			PROPER				···			
FOOTAGE FROM TO	ROCK TYPE	Co	lour, grain size	DESCRIPTION, texture, miner:	als, alteration,	etc.	NO.	SAMPLE FROM	<u>FOOTAGE</u> TO	emole Legote	Au Oz /Łom	Pd ppb	Cu	Zn	assays ppm ag	+ Co	ni
526 149	Feldspap Purphyntic	Ca 52 1 -	1125 -V 11	· · · · · · · · · · ·	14/4		35717	80	83	3	4,00/			, , , ,		·	
526 149	MATIC VOLLANZ				matic when	1.16.	357/8		86.	3	4.001						<u> </u>
	TATIC OUTCANIE	Tempelia	VALOCIASTIC	O (pillow SA	luages) no	ded	35719		90	3	2,001					<u> </u>	_
		- < 6 0000	still at	450 fo C.1	A.		35720		91	1	Z,001						igdash
		-minon	fault 20-	21' block	V 450 to C	. A.	3572/	91	93	2	4.001						<u> </u>
					with some		35722	107	1/6	3	0.001					ļ	igdash
		(1-28)51	2114625,021	ented 450	PARALLET TO C	.A.									<u> </u>	 	├-
		- OSGRALI	this soci	for has	UGRIC MINIM	1/				ļ					-	ļ	-
		pyaite 1							<u> </u>				ļ		 		╀
		,								ļ					-		\vdash
		@ /125-19	19, 51.11 0	Glospar po	prohyritic-	meterol.	35723	128	130	2	4.001			<u></u>			╀
		but mure	MASSIVE,	stants /o	become v	iery	35724		133	3	4.001		<u> </u>		 	-	+
		blenched	at 128 fo	o lower a	ontact	at	35725	/33	136	3	4.001		-				+
	*	Syke					35726		140	9	2.001				-		+
		- VERY SPA	ase sulphid	a in this	interval		35727	1	143	3	K.001		-			-	+
		-minua sh	GARING 450	foc.A. no	an contact		35728	1	146	3	4.001		 			-	+
						/ - ^	35729		149	3	4,001		-	-	-	+	+
49 150.8	MAFIC DIKE	- 45 DE1	PREVIOUS d	Escription	fine pyri	te (3-52)	35730	149	150.8	2.0	4.001				-	1	+
		51 rung/y.	MAGAGEIL, 10	ntucts 450	10 C.Fl.		<u> </u>	<u></u>				<u></u>		1			

													BVLB.	FOR	1016-	1		3
RILLING	COMPANY		COLLAR ELEVATION	BEARING OF HOLE FROM TRUE NORTH	TOTAL	DIP OF HOLE AT		RELATIO	N OF HOLE N TO A FIN N THE CLA	CED	MAP REI	PERENCE		CLAIM		<u>-</u>		
ATE HOLI	E STARTED	DATE COMPLETED	DATE LOGGED	LOGGED BY							LOCATIO	ОМ (Tp.,	Lot,	Con. OR	Lot. ar	d Long.)	
(PLORAT)	ION CO. OWN	ER OR OPTIONEE	DATE SUBMITTED								PROPER'	TY NAME				 :		
				SUBMITTED BY SI	IGNATURE	<i>j</i>		1			2							
OTAGE ROM 1	ro	ROCK TYPE	Co	olour, grain size	DESCRIPTION , texture, miner	als, alteration,	etc.	NO.	SAMPLE :	POOTAGE TO	ENGIA LEGGER	Au OZ/tow	Pd ppb	Cu	A Zn	SSAYS + ppm Ag		ni
				777		///	10 /	0 -00 /	1600	15/1	T							=
50.8	201.5		- weskly			Gluspai pur	PhyRitic	3573/	150.8	154.1	3.3	K.001						
		PorphyRibic	7	41./:	<i>V'</i> /	ate arounis		-			-							_
		MATIC	14	1 30	oclase pho		1. 1100	-			1 :							
		VOLCANIL	-whire	sheared 9	y Jolintes	generally					 							
			10C.H.	fairly ste	Pongly Shen	red From	/30-8											
	-		160.3	/	1-1 / /	1/- 2- 34	y local											
			Mustas	10.061306 (1)	1phidos 4	150 foca	1 10000											
			Junite 3	77-7015	7 5/10	hlly defte	rent:											ļ
,			-ax 19	31 malca	where cheat	vers is more o	Island	35732	180	183	3	.001						<u> </u>
			1		,	GREY MAYEN,	4.4.		183	186	3	K.001				<u> </u>		<u></u>
-		40 7 R. 93 . x -		A 107 .	/ /	MARKOD by que	,		186	190	4	K.001						<u> </u>
		1 4	10 core 9	/ /		6 450 fo C.1.		35735	_	193.3	3.3	2.001						_
				ion fine pyn				35736	143.3	196		K.001						-
<u>:</u>			1					35737	198	199	3.0	4,001						_
								35738		201.5	1	4,001						_
01.5	237	Matre Volcarie	- (201.5	- 215, MAVIL	volcaries,	weakly to no	SeaAtely	1	201.5	205		4.001						-
•••			sheaped , n	won numate s	tringers 450	to C.A. PARAlle	1/0	35740	205	208	3.0	.011			<u> </u>			-
			shepping 12	-still of unit	+ MINOR SYDE	le 1-22, gre	y unit	35741		21/	3.0			<u> </u>	<u> </u>	<u></u>		<u></u>
			fine gaant	d			•	35742	211	2/5	4.0	. 001						

-

													HOLE		rtunb	/		Pg 5
DRILLING	COMPANY		COLLAR ELEVATION	BEARING OF HOLE FROM TRUE NORTH	TOTAL	DIP OF HOLE AT		RELATIC	ON OF HOLI ON THE CLL	CXXXD	MAP RE	FERENCE	NO.	CLAIH	NO.			
DATE HOLE	STARTED	DATE COMPLETED	DATE LOGGED	LOGGED BY		,					LOCATI	ON (Tp.,	Lot,	Con. OR	Lot. a	nd Long.	.)	
EXPLORATI	ON CO. OWN	NER OR OPTIONEE	DATE SUBMITTED	SUBMITTED BY	SIGNATURE						PROPER	TY NAME						
FOOTAGE FROM T	0	ROCK TYPE	Co	olour, grain si	DESCRIPTION ze, texture, mine	rals, alteration,	etc.	NO.	SAMPLE FROM	FOOTAGE TO	LENGTE	os/for	Pd ppb	Cu	Zn	ASSAYS + ppm Ag		N1
			-2/5- 23'	7 65 00	er descripti	on for the	s unit											
			1 / 1		significant		<u>ary</u> v	35943	215	2/8	3	.005			!			<u> </u>
			201:0		3.74((9		35144	2/8	220	2	,003			· i			<u> </u>
237	248.5	FeldSPAR	- (24)	lack week	Car 124	ned, weakl	1	35745	220	223	3	.006						<u> </u>
-87	270.5	Porphypitic	,	1 Longitude		, , , , , , , , , , , , , , , , , , ,		35746	223	276	3	.013						<u> </u>
		Masi	College	anio a	(1 /	10 401	35747	226	230	4	.003						
	<u> </u>	Volcasic	teluspae		7	PROTES TEXAL	10 101	35748	230	232	Z	.007						
		VOICHE	minop que		50 /0 C.A			35749		237	5	,0//						
			/ /			21 C 11	' : - -	25//	200			,0,,						
			-94AF12/	•		unit & a											i	
			Soction m		1 / / / / / / / / / / / / / / / / / / /	7 717	GAGIANI				1							
			PAIAMEL Y	. /	/			<u> </u>										
			<i>i</i>		IATE PUZA	/	(provenes?)	 		1							į	
			-MEAR /OW	rua conta	act, BIACK	Phonoeirsus	PARCIOS 1	 	 									Γ
2111	256'	MASIC		.00.	act 450/c	cA												
248.5	276	Volcanic ?	-sharp	1 1 1	uer 45 76					1	1	1						
		VOICHNIC .	-MASSIUE	Jigh & GAG	VIST GREEN	fac GRAMO					1	1						
		· · · · · · · · · · · · · · · · · · ·	UNITWIT	1 no 5500	gill, Stead	AURE, UEININ	19, OK			1	1							T
			WINERALIE	MUNION CONTRACT	1 110 S. T. A	., MINOR SPECK	20 400				-	 						
			1. YACD K	over contac	1 -47 10 C.4	. MINDIE SPECE	on jaro	<u> </u>			<u> </u>							

of plaite on contact.

												HOLE	NO.	funt	<u>-</u>		6
DRILLING COMPANY		COLLAR ELEVATION	BEARING OF HOLE FROM TRUE NORTH	TOTAL	DIP OF HOLE AT		RELATIO	ON THE CLA	XXXD	MAP RE	PERENCE	NO.	CLAIH	NO.			
DATE HOLE STARTED	DATE COMPLETED	DATE	LOGGED BY	J						LOCATI	ON (Tp.,	Lot,	Con. OR	Lot. a	ind Long	.)	
EXPLORATION CO. OWN	ER OR OPTIONEE	DATE SUBMITTED	SUBMITTED BY SI	GNATURE						PROPER	TY NAME						
				DESCRIPTION			NO.	SAMPLE	POOTAGE	gregiz	Au	Pđ			ASSAYS		
FOOTAGE FROM TO	ROCK TYPE	Co	olour, grain size	pascarrion , texture, miner	als, alteration,	etc.	10.	FROM	TO	LENGTH	or Hon	aqq	Cu	Zn	A.g.	Co	tn T
256 337	FOLJSPAR	-feldspar	purphuri	la malie a	solcano, fi	1 1 E	3 57 50	269.5	270.5	1	.063						
	Porphyaitic	genned		afric unu	84b-hods	1			<u> </u>								ـ
	MALIC VOLLANIC	Phonous	5/5. uppo	" contac	has 4	low								· -	<u> </u>		
		1///	lic shone		yun6??)											ļ	igapha
		i .	, /2	unit has	a distinct	•											
		PAGRIC 1	1	epkly shen	red, toh.	afron					ļ					<u> </u>	
		vetabric	450 /2 0	C.A.	,		35751	290	293	3	.008				ļ	<u> </u>	\vdash
		This 360		302.5) ha	s minimal	gunte	38752	243	296191	4	.005					ļ	_
		HAUAR-/Z	cach stan		rally para	//e /	35753	297	300	3	. OC Z					<u> </u>	ــــ
		to fo (1)	fion (450 y	-/1	stringens n	nke up										<u> </u>	igspace
		32 of 7	this intere		U								<u> </u>			<u> </u>	—
		-10ca/ 1	RACES OF	Purite												<u> </u>	
		-competer	et saction	' /	Vanctures	د می و			<u> </u>							<u> </u>	↓_
		foc.A.	a /50 @ 261 B	Kach fisz hi	icholastite?	pillowgalaKe?	· J									 	
		-9/sv , at	1 2435- 30	o, minima	I number	1									<u> </u>	ļ	\perp
		PHURU CIVST	15, 500 ion	of black a	number	116,4/80					<u> </u>			<u> </u>	 	 	+
	/	4 JOHKHI SH	homod													 	_
		-ukorat													ļ	 	1
		1														<u></u>	<u> </u>

													HOLE	NO. FURT	UNE	<u>. </u>		7 Pg
DRILLING COMPANY		COLLAR ELEVATION	BEARING OF HOLE FROM TRUE NORTH	TOTAL	DIP OF HOLE		RELATIO	LOCATION OF HOLE IN RELATION TO A FIXED POINT ON THE CLAIM		MAP REFERENCE NO.								
DATE HOLE STARTED DATE COMPLETED DATE LOGGED			· · · · · · · · · · · · · · · · · · ·			LOCATION(Tp., Lot, Con. OR Lot. and Long.)												
EXPLORATION CO. OWNER OR OPTIONEE		DATE SUBMITTED							PROPERTY NAME									
				308411189 81 3.					I		SNOTE	T	Pd	1		ASSAYS		
FOOTAGE ROCK TYPE FROM TO		ROCK TYPE	DESCRIPTION Colour, grain size, texture, minerals, alteration, etc.			NO.	FROM	<u>FOOTAGE</u> TO	LIDEGER	oz/tan	ppp	Cu	Zn	yd bbar	Co	N1		
			<u>G300-33</u>	7						1								ــــــ
	-				1 22 12 11 11 11 11 11	1115 12 60060	r Ince								!			<u> </u>
97A EX(8			-///	11 41311-10114	hone mroo	L (1)	<u>N</u>	 							:			
		s still 1	- unit distinctly more messive in appearance, a still numerous phenocrys to in a gray fine granod black materix but no fabric or foliation															
			KICOT JOIALL OVER 1-2 foot intervals			 				+								
		6X(C)4/1	DUALLE OUT	1-2 100 8	INFORUATS	· · · · · · · · · · · · · · · · · · ·	-		 								T	
		-no 5ign	jyicant su	Iphides 4	VEIL LALG					-	+ -		1				1	
			ULLASSIUM	occassional guarde or quarte can't stringen			 		 		+						T	
					-		-		 		i							
337_	341.4		- as per descriptions on 2485 to 286 ft. - sharp upper 4 lower consults in this CASE, 40 445° dogrees respectively - 21/22 pyrite noted on lower consult									-	-		 		 	T
		Volcario?	-Sharp 4	- Sharp upper & lower contects in this						-	-			<u> </u>	 	 	†	+-
			FASC, S	, 40 4450 dognes respectively					ļ			-		 	 	-	 	十
			- 61/28	Pyrite 10	tod on	Jowen con	Nach				-			<u> </u>		+	+-	
341.4	350	Purphur. dic	-as per a	Loscrip from	n above	Jacan 300-	330	37754	341.4	344.4	4	,004						1
		Porphy. Vic	this is	formal ha	S GCCASSI	out quant	R						ļ			-		+
		Volcanic	doil and	1 no 59.	get unit	faces 300- onel quant sulphilo	<u>.</u>						<u> </u>				-	+
			NOTE:	11916 571	PROD AT	1005 118	PARV					-						1
			140 -	TIMMINAL P	17.	LURE LIBI	- , , · · ·								<u></u>		<u></u>	<u></u>

ALL REJECTS Y PULPS FROM ASSAYS DISCARPED.

Ministry of Northern Development and Mines

Declaration of Assessment Work Performed on Mining Land

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

Transaction Number (office use)

1. 9766 00/3/
Assessment Files Research Imaging

Personal information collected Mining Act, the information is a Questions about this collecti 933 Ramsey Lake Road, Sudi

0241 (02/96)

the Mining Act. Under section 8 of the correspond with the mining land holder.

1 Development and Mines, 6th Floor,

001 2.17404 FORTUNE

900

Instructions: - For work performed on Crown Lands before - Please type or print in ink.	e recording a claim, use form 0240. $f 2 .17404$
Recorded holder(s) (Attach a list if necessary)	
Name	Client Number
D, V. JONES	/ 49 8 6 8 Telephone Number
Address Box 1513	1 F
	it as treme v
SOUTH PONCUPINE	705 - 235-2213
Name	Client Number 131 784
J. K. FILD Address	Telephone Number
Address 535 BANTLEMAN	705- 268-0371
	Fax Number
TIMMING	///.12
Work Type - DRILLING - POWER STRIP - POWER STRIP - ASSAYS Dates Work From 2° 09 95 To 20 / Performed Poay Month Year Day Mor Global Positioning System Data (if available) Global Positioning System Data (if available) Township/Area FORTUNE M or G-Plan Number - G-3443 Please remember to: - obtain a work permit from the Minist - provide proper notice to surface right	Mining Division Mouping Resident Geologist District Try of Natural Resources as required; Ints holders before starting work;
3. Person or companies who prepared the technical re	
J.K. FILO	Fax Number
Address 535 BANTLEMAN TIMMINS	SAME
Name	Telephone Number
	Fax Number ECEIVED
Address	S
Name DIS GEUVE	Telephone Number N 1 1997
	Fax Number LANDS RRANCH
Address 1997 1UN 6 1997	Fax Number INING LANDS BRANCH
4. Certification by Recorded HEOREUSINE DIVISION	ON
forth in this Declaration of Assessment Work having cause or after its completion and, to the best of my knowledge,	ereby certify that I have personal knowledge of the facts set the work to be performed or witnessed the same during the annexed report is true.
Signature of Recorded Holder or Agent	Date TUAL 1 10 7
If	JUNE 6/97 Telephone Number Fax Number
Agent's Address	Telephone Number Fax Number

Donmed. 500+ 147

the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form. Bank. Value of work Value of work Value of work Value of work **Number of Claim** Mining Claim Number. Or if to be distributed performed on this applied to this assigned to other Units. For other work was done on other eligible at a future date. mining land, list claim or other claim. mining claims. mining land, show in this mining land. hectares. column the location number indicated on the claim map. \$2.825 N/A \$24,000 \$26, 825 16 ha TB 7827 eg 0 \$24,000 0 12 1234567 eg \$4,892 0 \$ 4,000 \$8.892 2 1234568 eg 800 1201746 1 14, 130,00 12,530 800 2 800 1201750 3 4 5 6 7 8 9 10 11 12 13 14 15 Column Totals 800 14,130 1600 DAVID V. JONES, do hereby certify that the above work credits are eligible under subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done. Signature of Recorded Holder or Agent Authorized in Writing JUNE 6/97 Instructions for cutting back credits that are not approved. Some of the credits claimed in this declaration may be cut back. Please check (-) in the boxes below to show how you wish to prioritize the deletion of credits: 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated. 2. Credits are to be cut back starting with the claims listed last, working backwards; or 3. Credits are to be cut back equally over all claims listed in this declaration; or 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe): RECEIVED JUN 17 1997 Note: If you have not indicated how your credits will be cut back from the Bank first, followed by option number 2 if necessary. Deemed Approved Date Date Notification Sent Date Approved Total Value of Credit Approved Approved for Recording by Mining Recorder (Signature)

Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to

Northern Development and Mines

Statement of Sosia for Assessment Credit

Personal information collected on this form is obtained under the authority of subsection 6(1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, the information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry of Northern Development and Mines, 6th Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Work Type	Units of Work Depending on the type of work, list the number of hours/days worked, metres of drilling, kilometres of grid line, number of samples, etc.	Cost Per Unit of work	Total Cost
DIAMOND DRILLING	350 ' FT.	\$ 17.12 / FT	5,992."
POWER STRIP (JOHN DEERE)	2 DAYS (10 HAS /OAY)	64.20/ HA	1,284.00
VAJAX POWER WASH	11 MAN DAYS	# 175 / M. ONY	1,925.
FOWER STRIP SUPERVISE + AS	5157. 4 MAN DAYS	# 175/17.0A4	700.
ASSAYS (Ay)	76 SAMPLES	# 17.16/SAMOUS	1,304.31
CORE SPLITTING + LOG	5 MAN DAYS	\$ 175/M.DAY	875.
REPORT + DRAFTING	7 MAN DAYS	# 175 /M.day	1,225.
Associated Costs (e.g. supplies,	mobilization and demobilization).		
6 DAYS	WAJAX PUMP RENTAL	A 42.93 /044	257.6°
	MEY + PAINTING		87.74
	€ise .		
		9 /	11.00 00
Transp	ortation Costs /600 /CM	9 0.30 /KM	480.
Food a	nd Lodging Costs		
	Total Value (of Assessment Work	14,130,65

Cal	cula	ations	of	Filing	Discount	ts:
-----	------	--------	----	--------	----------	-----

	older than 5 years is not eligible for credit.	res claime		100,	ds within 45 days of a	
TOT	AL VALUE OF ASSESSMENT WORK	× 0.5	b = <u>JU</u>	Total \$	value of worked claime	d
 Wor If wo Valu 	k filed within two years of performance is claimed ork is filed after two years and up to five years af se of Assessment Work. If this situation applies to	d at 100% ter perform your clain	of the aborate it is, use the	ove Total Value an only be <u>clai</u> e dalcularion b	of Assessment Work. mod at 50% of the Total	

request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs.				200
PAVIO V. JONES do horoby cartify that the amounts shown ar	'UN	6	1997	_
I, LAVIO V. JONES, do hereby certify, that the amounts shown ar	re as accurat	e as	may	/
(please print full name)	: 157)	('		
(please print full name) reasonably be determined and the costs were incurred while conducting assessment work of	on the tands,	edire	HAG BRV	ISIO

the accompanying Declaration of Work form as RECOMED HOLDER (recorded holder, agent, or state company position with signing authority) I am authorized

to make this certification.

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

August 28, 1997

DAVID V. JONES 909 GOVERNMENT ROAD BOX 1513 SOUTH PORCUPINE, Ontario PON-1H0

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9846 Fax: (705) 670-5863

Dear Sir or Madam:

Submission Number: 2.17404

Status

Subject: Transaction Number(s):

W9760.00131 Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact Bruce Gates by e-mail at gates_b@torv05.ndm.gov.on.ca or by telephone at (705) 670-5856.

Yours sincerely,

ORIGINAL SIGNED BY

Blair Kite

Supervisor, Geoscience Assessment Office

Mining Lands Section

Work Report Assessment Results

Submission Number:

2.17404

Date Correspondence Sent: August 28, 1997

Assessor:Bruce Gates

General Comment:

A good report accompanies this submission.

Transaction Number First Claim Number

Township(s) / Area(s)

Status

Approval Date

W9760.00131

1201750

FORTUNE

Approval

August 28, 1997

Section:

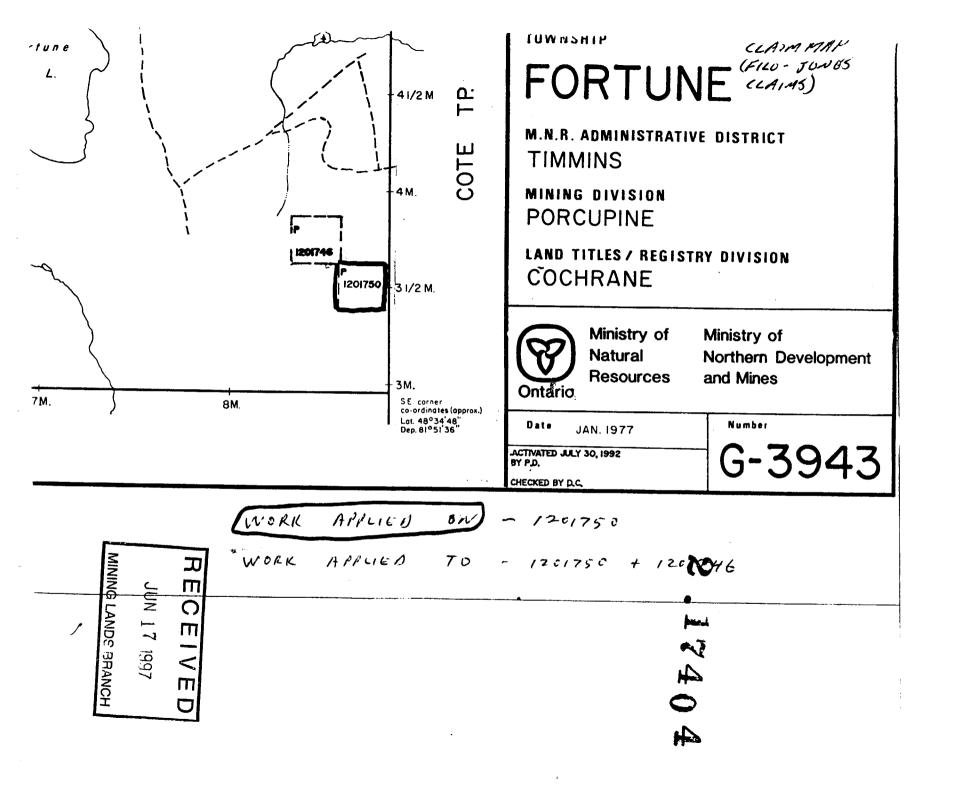
10 Physical PSTRIP 16 Drilling PDRILL

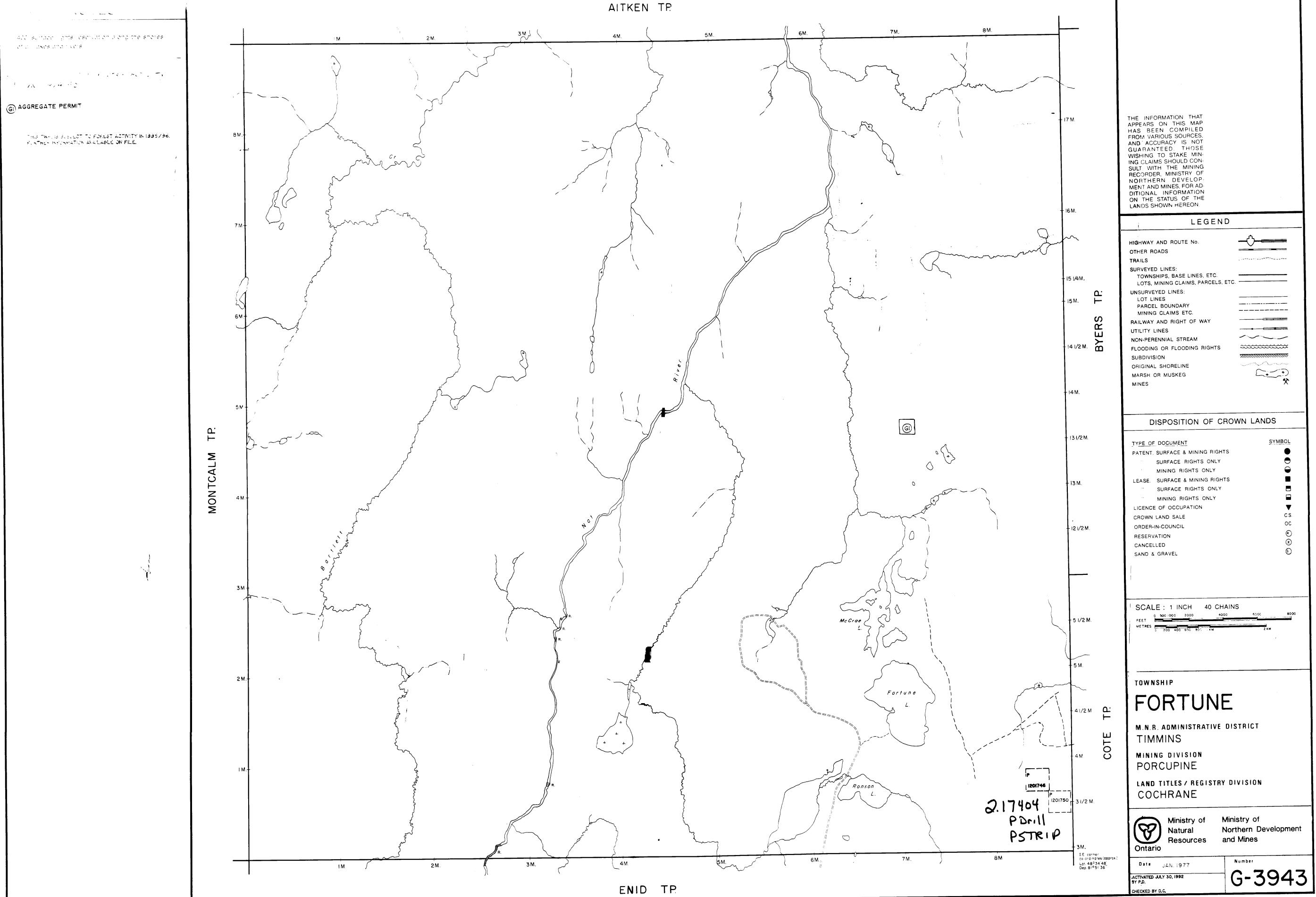
Correspondence to:

Resident Geologist

South Porcupine, ON

Assessment Files Library

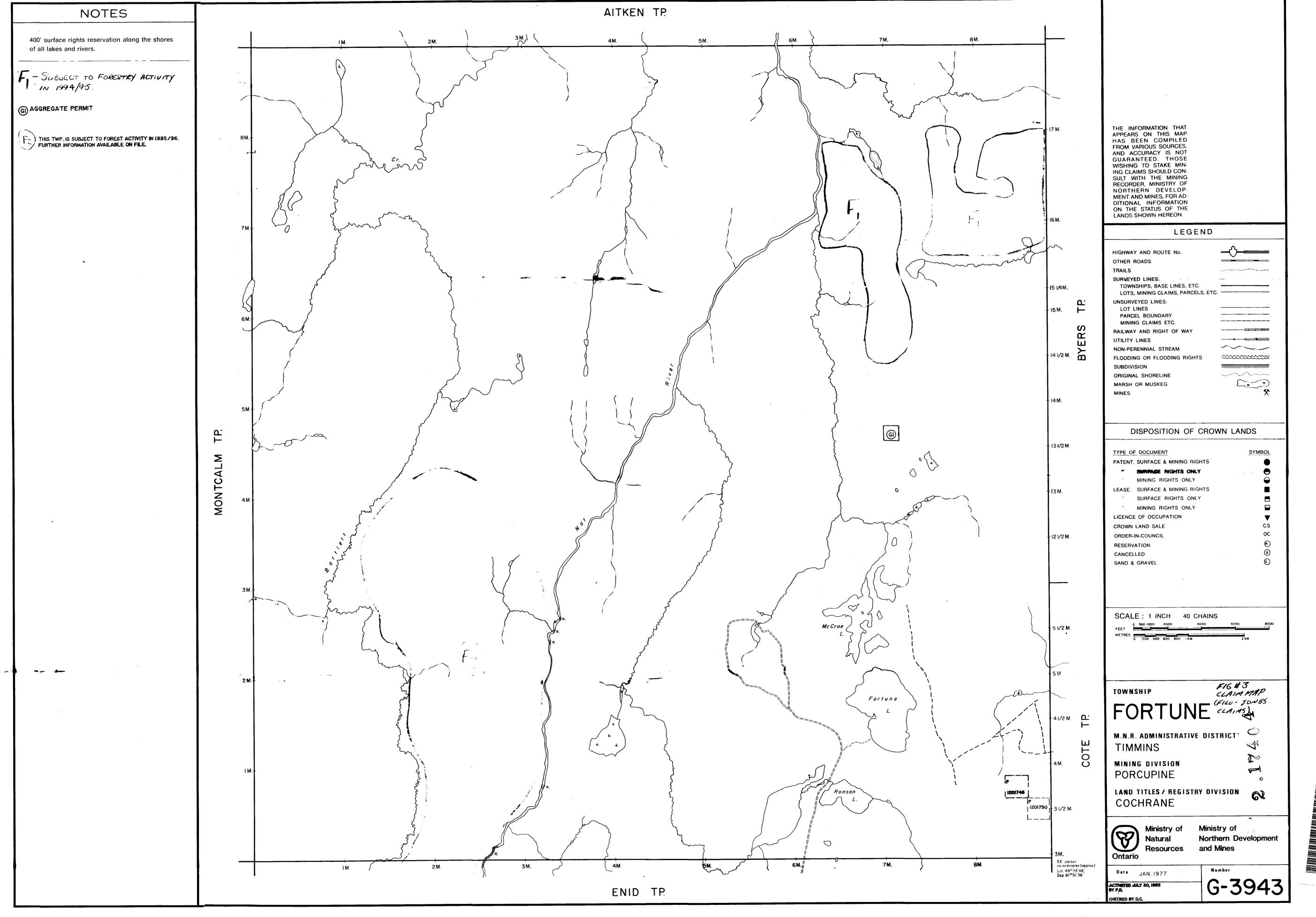

Sudbury, ON

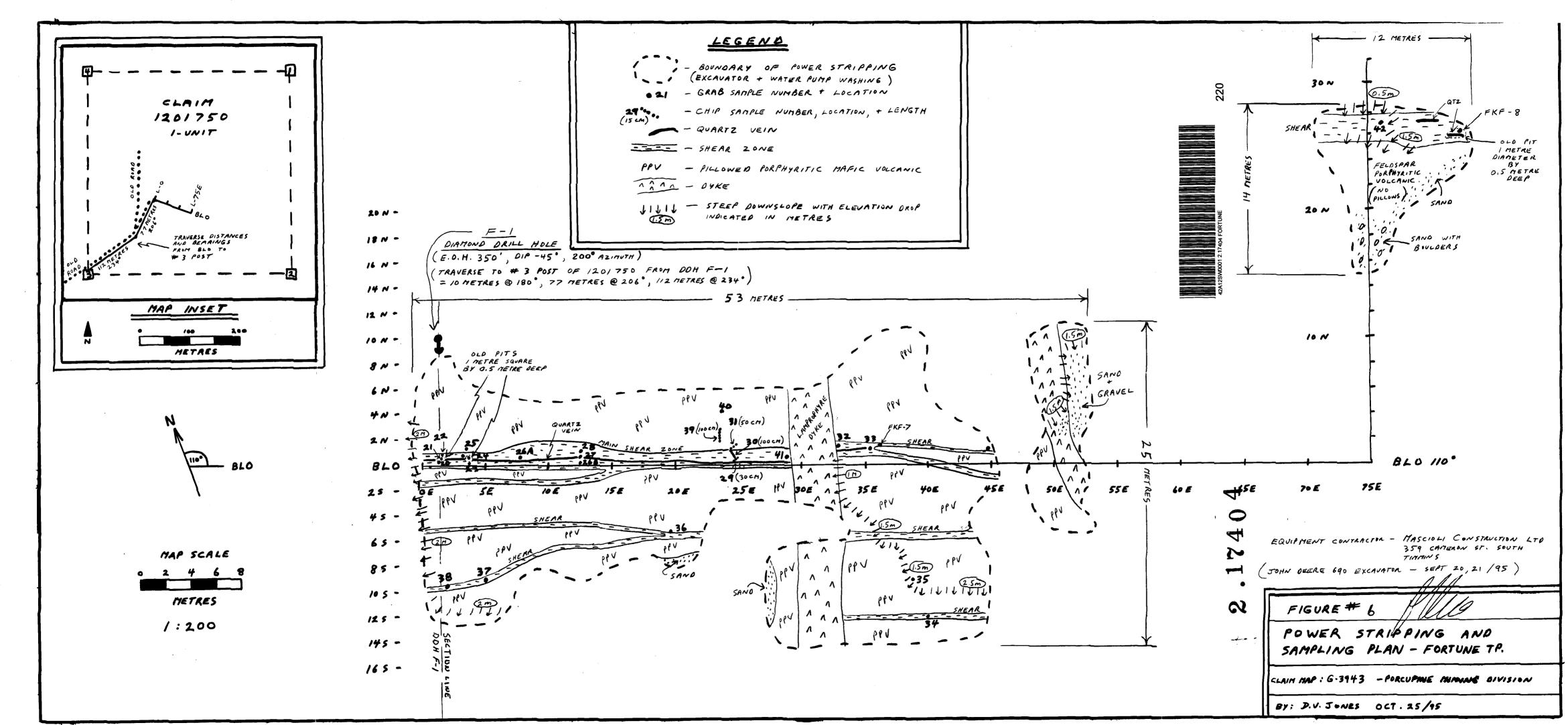

Recorded Holder(s) and/or Agent(s):

DAVID V. JONES

SOUTH PORCUPINE, Ontario

JOHN KEVIN FILO TIMMINS, Ontario




42A12SW00001 2.17404 FORTUNE

20

2.1740

