RECEIVED

SEP 281976
COMBINED GEOPHYSICAL SURVEYS
PROJECTS UNIT:

COTE PROJECT

COTE TOWNSHIP, ONTARIO

FOR

INTRODUCTION

The Cote Project consists of a group of 32 claims located in the northern portion of Cote Township, in the Timmins Area of the District of Cochrane, Ontario.

A grid of N-S picket lines, spaced at 400 foot intervals, has been cut over the claims. Surveying has been carried out with horizontal loop electromagnetics and magnetics over 27.6 miles of picket line. The surveying was carried out by the crews of Mattagami Lake Mines Limited in the period from March 22 to April 14, 1976.

LOCATION AND ACCESS

The claims are located in the northern part of Cote Township, about 20 miles $W N W$ of Timmins, Ontario.

In winter, access is by skidoo trail from the all weather road that crosses the SE corner of the township. However, a damaged bridge on the south part of this road prohibits vehicle access in summer. Best access is by helicopter.

GEOLOGY

The area is covered by Preliminary Map P 840, Timmins Data Series, Cote Township, which shows geology, drilling, and previous geophysical results.

Most of the claims are covered by overburden but a few outcrops

GEOLOGY (CONTINUED)
on the western part show Rhyolite tuffs, Quartz porphyry, and mafic rocks as well as several bands of E-W trending iron formation. The above are cut by a series of $\mathrm{N}-\mathrm{S}$ trending diabase dikes. In addition, three strong N-S linears cross the claims and suggest other diabase dikes.

SURVEY INSTRUMENTS

A direct reading McPhar GP. 70 Proton mag. instrument was used to measure the total field to an accuracy of 1 gamma.

An Apex Max-Min electromagnetic unit was employed for the horizontal loop survey. A frequency of $444 \mathrm{H}_{\mathrm{z}}$ and a coil separation of 600 feet was used. The in-phase and quadrature components were measured to an accuracy of 1% of the primary field.

PRESENTATION OF RESULTS

The results of the electromagnetic and magnetic surveys are shown on the accompanying maps at a scale of $1^{\prime \prime}=400$ feet.

DISCUSSION OF RESULTS

Only one conductor, Zone A, was outlined by the survey.

ZONE A

Zone A is characterized by low amplitude responses on 36 W and
and 40 W and very weak indications on the adjacent traverses (i.e. 32 W and 44 W), giving a strike length of about 1,200 feet. The indicated conductivity is high, 20 mhos. on 36 W and 100 mhos. on 40 W with $444 \mathrm{H}_{\mathrm{z}}$ and 60 mhos. on the $888 \mathrm{H}_{2}$ detail. There may be some inaccuracy due to the low amplitude of the response, but the conductor has a high conductivity in the massive sulphide-graphite range. Depth of burial calculations vary from 270 to 360 feet and indicate unusually deep overburden.

The magnetic association of Zone A is not clear due to presence of two interpreted diabase dikes that trend N -S and cross 40 W near 13 N and 28 W near 10 N . Subtracting these effects from the survey is difficult with present data, but it appears that zone A has a direct magnetic expression of at least 100 gammas on every line or is associated with a long gentle magnetic high that extends from 3 N on 80 W eastward through the area of the conductor.

Zone A is regarded as an important first priority target and two long holes have been spotted (i.e. 36W and 42 W) to determine its cause.

MAGNETICS

On the western portion of the grid, to the south of the baseline, a strong E-W anomaly extends from 104 W to 52 W and coincides with mapped iron formation. Its termination near 52 W suggests a fault or diabase dike and it may continue along the south ends of line 48 W to 36 W .

The N-S diabase dikes that cross the baseline near 28 W and 40 W have been previously discussed under Zone A.

A single high conductivity zone, Zone A, has been outlined by the survey. It has a strike length of about 1,200 feet and appears to be covered by 300 feet of overburden. Its magnetic correlation is difficult to determine due to the presence of two diabase dikes but it appears to be associated with a gentle high in excess of 100 gammas. Zone A is definitely a first priority target and two holes have been spotted to test it.

Detailed magnetic surveying along Zone A might be of value in assessing its magnetic content.

Respectfully submitted,

June 9, 1976.

Don B. Sutherland, Consulting Geophysicist.

ZONE	LINE	STA	DIP	DIRECTION	LENGTH
A	36 W	10.5 N	50°	North	800
A	42 W	9.5 N	500	North	800

Ministry of Nat

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT
FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT MINI
TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey (s) \qquad Geophysical
Township or Area \qquad Cote
Claim Holder (s) \qquad Mattagami Lake Mines Limited

Survey Company \qquad Mattagami Lake Mines Limited
Author of Report \qquad Mr. D. B. Sutherland

Address of Author \qquad
Covering Dates of Survey March 22 to June 9, 1976
(linecutting to office)
Total Miles of Line Cut. 27.6

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer \qquad Electromagnetic \qquad Radiometric

$\angle . D$
Res. Geol. \qquad Qualifications \qquad 63.1168

Previous Surveys

MINING CLAIMS TRAVERSED List numerically
P443392,

P443393 (number)
.P.443394. \qquad P. 443.3 .9 .5 \qquad
\qquad P443397. \qquad
.P.4433.98.............
P. 443399 \qquad
.P. 44340 A P. 443401 \qquad
\qquad .P. 443403 \qquad
\qquad P. 4.43 .405 \qquad
\qquad P. 443.407 \qquad
\qquad P.443.409. \qquad
\qquad P443411

.P. 443.420.
P. 443.421 \qquad

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS- If more than one survey, specify data for each type of survey

Number'bf Stations
EM 1296, Mag 1362
Station interval 100^{\prime}
EM 1'I $=20$
Profile scale

Number of Readings EM2662, Mag 1462
Line spacing
4001

Contour interval

y	InstrumenMcPhar GP. 70
Accuracy - Scale constant	Proten
Magnetometer	
Diurnal correction method	\pm l gamma
Base Station check-in interval (hours)	graphical
Base Station location and value	

Instrument \quad Apex. Max-Min
Coil configuration_Horizontal Loop
Coil separation 6001
Accuracy
1% of primary field
Method: $\quad \square$ Fixed transmitter \square Shoot back \square In line \square Parallel line
Frequency_ 444 H 3 and ($888 \mathrm{H3}$)
(specify V.L.F. station)
Parameters measured In phase and out of phases

Instrument \qquad
Scale constant
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument \qquad
Method \square Time Domain
Frequency Domain
Parameters - On time ____ Frequency \qquad

- Off time ___ Range
- Delay time \qquad
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing
Type of electrode \qquad

$\underset{\square}{\square+2}$

