

Creverndubterm.

3 acercem

 were detil survoy cathed out on moprews moviousy
 docouthed En reporte hy tho witer dated Juzy 17 ch and Nepact 2ovi.

The other purvego doscribad in the roport con-
 a donducter on the Glencone property and a survey carried (ationkida bownehro

Wameny the youryou

The location of tho proproies in Roid tomship
are described in earlier reports. The ares surveyed in Whaty homahip is show on the locetion map.

The property in Kidd township is classed as Claim Goup L-1 and includes the north helf of lot 2 , Concession 2.

Three of the surveys described in this report were carried out using the Ronka Mark JV horizontal loop with with a 300 foot coil interval. One of the detail surveys in Reid township was to check a Ronka conductor and vertical loop equipment was used.

A description of the results of each survey follows:
$\operatorname{coterex} x$
'raceis a detail survoy of Anomaly "C" on Claim Coup K-1 in licid tommship. A previous vertical loop survey had also detailed this conductor. It is a fairiy derinite conductor and the writer understands that drilling has already indicated that graphite is the cause of the conductor.

VESEOL LOOP SMUEY - BEID TOANHIP

Ghis survey was to check "in anomaly indicated in a pevious horizoneal Joop survey. In the vertical loop stavey "han anomaly shows a ereator length and a stronger craductor. This is probably due to the ereater penetration oi the equipment.

The survey also indicetca another anomaly roferred to as mes wich actually looks as though it could be the extension of anomaly "AT. It extends off the property to the east.

GRME TOMGETP

This was a detail survey to check a conductor on the propercy of Glencona Mines lid. Mo conductor was ouclined for a leneth of approxinately 1,000 feet and shows as a very strong conductor. It appears to bo almost vortical and has an cast-west strike.

The prosence of gossan over the conductor indicates that the conductor is probably due to sulphides.

CROUP 1-3 - KIDD TOWMSHIP
The survey was carried out along both east-west and
now-south lines, as show on the accompanying map. The or?y yosponses indicative of a conductor were found on the nocth-south Iines 0 and 33. These are shown as sopacte conductors but could actually represent a northcast zonc. The responses are cuite weak and unfortunately the best one ts on the property boundary.

It will be noted that somo irregular positive
reopones were obesined on line $3 W$. These have no economic sicmificunce as there was nothing picked up on the eastwest Lincs.

The detail surveys supveyed to check and in some cabos further delineate the previously indicated conductors. Ficeld data was eiven to the Company's geolorist and at the tiroe of writing this report these conductors have been checked.

The survey carried out on the Xidd township property strdicated only a weak conductor close to the east boundary. It would seea advisable to check this with a vercical loop survoy prion to any investigation by diamond drilling.

Respectifully submitted, PROSPECTHM GEOPHYSICS LTD.

0

$24 \operatorname{cog}^{290}$

An clectromagetise survey hen been carmed out on a promeroy of Gamian davelin dod. in Reda tomship, frumen arem of ontato. tho tollowing roport and woomparine map docoribes who resuits of this burvey wat on frcerpretation of tho results.

Wourey now 100 m

The property surveyod is looated in Concossions TS IV and $\bar{\square}$ of Retd townaip, Forcupine Mining Divicion,
 10 acres cach, redictered with the Doparement of Winos as chow on tho acomparying rap as follows:

61654 to 616El inclusive

5S6密 to 9802 HoJusivo

$$
59706 \text { to } 99 / 23
$$

96129
Wok outcropsine relativoly searce in tho area the thare whro some outcros located turing the geoWeyscol sarvey ad theo are shown on the accomanying
 Wh. The pound is anost entirely low-lyine muskeg. (wes wowdy

Goolomical nap 2066 puiselsed by tho Ontario DopartWhat of hate does not how wy outcrops in Reld tomehip wh from tho areal felogy one wad expect the property to be daedely undalich by voleade rocks.

Tho electronametie survey was carricd out using a monk foxk Ti olectromarevie unit along a network क. norcheas lines. the resutes are plottod on a map on a sealo of 400 teot to the dreh.

In cxomintion or the map shows a numer of broad woth ondectors genorally trendag northwest. Those are nethes bypacel of conduckive overburden as the out-ofmase roadme 20 ereater whan the Emohaso. "y" and "G
wame dot ather bypeth of thic typo.
The moes intervedne vorductor indicated in the wavey is reserred to as "all zone and was encountered

 se qued licily thet the matordin in between the two se aso omonetive. If this is ate to sulphido ninoraligntion, ft onld consted of two badis of fairly massivo
 ticar Oa 2 ne 8 tho conductivity is quito good and it fow water going to the somentast but this may bo due Wh the dopth of overburion. Tho readings on line 0 eavees the poscibiley of the onductor extending here
 worm thow up turther southeast when could possibly romesont tho mano mixicturci.

There aro a groat nany huteguar positive responsae ohtanod in the eurvoy throwghout the property. Wese rempneed heve no bighixance and are due to the exeentive ret conditions oncountered in the survey.

Tro olcotromagetic ourvoy was carried out using
 dow whentrorva.

In the hortartat lows type of survey, both the L-wiese che du-mophere componts of the secondary Who aro mownred, wowe spechal characteribtics make powble a finny acurate ovaluation of the conducbitby. t owometor catod by sulphide mineralization wh maduca a curve goind som boitive roading through sexo to negrivo and back egrin to ponsitivo. Hoth the Whemase and outerehese reatuge show the seme gemoral curv. Tho ratio betweon the in-phase and outmof-phase somers over a conductor fs an indicstion of the conGuctridy of the body. A good conductor would cause a macer deviation of the inmohase component then the churdumase component. The oporstite is true of a poor ontwotor.

In sone wreas seondary curronts are induced in amas and leice. . These momalios can usually be dism

hne oloctromenetic suroy indicated several
 Qt sembctive overburcon.

Whe best Iookine conduevtr is roxarded to as "an

As rentioned provioundy, the othor conduotoms
 of has withe could be weed to determine the importance o. tho othoxs.

Mesmoctrulny oubrittod,

Fortrots eno.
ANG: 30, 190\%

$428152 x$

Stred the ondind awoy way carried out, a
 ad memoted through lys ícet of overburion at 50°. Te is the wheres mideretondme that there was nothing Wh the underlyive rocks of enkath the conductor. As a wemb, a verbeet loo, 2% Ho chect survey was carded

She refales of this curvey ano shom on a eeparate

Whe vertical zoop readnes on "A, zono do not Wen a conduch with the exception of line $12 w$ where
 SW Whe hath rextinge were obtaned on the horisontal jow ogromot thow was not a cross-over but only a ciket andeation on the vertical loop readings.

Whe wadines obtanod in tho horkontal hoop carvey ace not typuct of conductive oworourden but one
 condutor in the mondyint rocke buricd under more than

We bect of woburden. Therefore the explanetion whid bosta to be sure typo on comutor the the over waron. Fho mon lively orgenation is that there is a hetsomet condubor in the overourdon (water seam conthater an beotrolyte) that show ur well with the Whantal loop wavey but tho zempone with a vortical Wen wavey in necligjble excot mong the edges. The Mated bow carted out did not encounter the odge of Wh bokdotue deot.

The varticel 200 surver camiod out ovor ne" whe tachutes o fariv wow onductor here cotonding
 Whandambly, only one biyte work wes earched out so
 atoo themable to dotembno the dip since the reating wa noo then sufncionty far on eath line. The

$$
\text { The onobton hascatod by the vorrical } 2000
$$

wavey ts stwated tome 200 rect wonthent of the pevious conductor. thes may postibly bo due to the An of 10 my be tho oricntation. The two axes aro
 anger to be a food ploce to test tho zone.

On the basie of the check surveys tho zone warrants

 bu choked by mane of the vortsen loop equipment. Rewpectully mumituca,

made ri. Che Bet. 3, 255

I. INTRODUCTION

030
A combined airborne EM and magnetometer survey has been completed for Canadian Javelin Ltd, over three blocks of ground in the Timmins area of Ontario. The aircraft mployed was the Canadian Aero Mineral Surveys Limited geophysically-equipped de Havilland Otter, registration CF-IGM.

The areas surveyed are described as the Edwards Township, Reid Township and Thorburn Township blocks. The final areas laid out by Canadian Javelin field personnel differ somewhat from the original axeas described in the contract of May 12, 1964, especially the Edwards block which was anlarged appreciably. The final line-mileage flown totals 700.2 Line-miles, distributed as follows:

| Edwards Township block | 358.8 linemiles |
| :--- | :--- | :--- |
| Reid Township block | 225.7 linemiles |
| Thorburn Township block | 215.7 Inemmiles |

In all three areas, the linewspacing was $1 / 8$ mile and the mean terrain clearance, 150 feet.

The survey began on May 16, 1964, and was completed on July 11, 1964.

Canadian Aero Mineral Surveys Limited field
personnel associated with this project were as follows:

The project was supervised by A. R. Rattew, R.Eng., author of this report.

Details of the equipment carried on the Otter and an explanation of the recorder chaxts are provided in Appendix II. Appendix III describes our anomaly rating and anomaly listing procedures.

Privess

The adxborne EM data are presented on three
separate sheets at the scale of one inch equals $\frac{1}{4}-m i l e$. An airphoto laydown provides the base for the EM maps.
II. GEOLOGY

Geological information on these areas is scarce. They are deeply covered by drift for the most part.

The Reid and Thorburn areas are covered by the Ontario Department of Mines preliminary map P. 139 at the scale of one inch equals two miles. Most of the Edwards Township block is covered by D.D.M. preliminary maps P. 152 and P. 153 at one inch equals $\frac{k}{4}$ mile.

In the few outcrops which do exist a wide variety of Precambrian rocks have been mapped. They include acidic to basic volcanics, acidic and basic intrusives, quartzite, amphibolite and various gneissic rocks.

One sulphide showing with minor chalcopyrite is reported in the western part of Edwards Township.
tuners

Ail EM anomalies have been assigned numbers which are shown on the maps and in the anomaly I1st, Appendix I. These numbers consist of the line upon which the anomaly occurs, plus letters A, B, C, etc., from south to north or from east to west. Additionally, the main zones of conductivity are assigned reference numbers on the map sheets to facilitate discussion in this report (numbers 1, 2, 3, etc.).

The "x" category of anomaly rating is reserved for questionable anomalies and for anomalies which are suspected of being due to suxface conductors. Because the Timmins axea has great economic potential, we include on the maps, any feature from the EM charts which has a reasonable chance of being a legitimate anomaly,

In many parts of the Timmins arca, the overburden has a fairly high conductivity, yielding substantial quadrature anomalies. Most of these quadraturs enomalies are broad and smooth and many correlate clearly with swamps; these are readily discarded. The sharper quadrature anomalies could derive from either lowconductivity bedrock conductors or narrow, conducting swamps.

Many of these features are included on the maps, and attention is drawn to the possibility of a surface conductor in the "Comments" column of the anomaly listing or in the text of this report.

Edwards Township Area

Seven zones of anomalous conductivity have been numbered on this sheet. All of them but one, (zone 3), consist of single-line anomalies. Additionally, there are eleven "x-type" anomalies designated only by their anomaly numbers.

Zone 1 is a triplempaked anomaly occurring in the vicinity of known sulphida mineralization. The direct magnetic correlation on the centre anomaly suggests an appreciable pyrrhotite content, and there may be a slight magnetic anomaly on the northern peak as well.

Zone 2 is a very weak, maltiple anomaly, but it is probably legitimate. The O.D.M. geology map shows a north-easterly strike in this vicinity, suggesting that 1 and 2 may, in fact, be the same conductive zone.

The only extensive zone of bedrock conductivity is zone 3, a 3/4-mile-iong, multiplew conductor belt. The width of the zone changes drastically from line to line and there is
magnetic correlation with many of the EM anomalies. Chances are good that sulphides will be found in this belt, probably in combination with graphite. The strongest EM response within zone 3 is anomaly 6B.

Zones $4,5,6$, and 7 consist of single-line, broad, quadrature anomalies. The possibility exists that surface conductors are the source of one or all of these anomalies, but in all cases, there are reasons to suspect some bedrock conductivity contrast. Therefore, in a thorough follow-up programe, these conductors should be explored.

Any of the eleven questionable, "x-type", anomalies could warrant exploration if the geological environment is sufficiently encouraging.' strictly on the basis of the anomaly characteristics, our preference among the questionable features is for anomalies $\mathrm{FA}, 6 \mathrm{~A}, 24 \mathrm{~A}, 24 \mathrm{~B}$, and 34A.

Reid Township Area

Nine zones of anomalous conductivity have been numbered and there are four other "x-type" anomalies shown.

Zones: 1, 5, 6, 7, 8, and 9 are definite bedrock conductors. of these, 5,6 , and 9 appear to be related. Note
bimifso
that information on zone 9 is incomplete and its position is somewhat uncertain, because it occurs at the end of the lines outside the job boundary.

Zone 8 is a good sulphide prospect, a localized feature of high conductivity with a coincident magnetic anomaly.

Although zone 2 consists of a single, questionable anomaly, we consider that it has a fair chance of being a legitimate bedrock conductor.

Zone 3 is a definite anomaly, but it could derive from a surface conductor rather than a bedrock source.

Zone 4 , consisting of strong, broad, quadrature anomalies, is probably a surface conductor. It is stronger than most, however, and is therefore lucluded on the map.

The three "x-type" anomalies 52A, 53A, and 55A, all have similax chaxacteristics: they are in-phase anomalies related to terrain. We considex them poor prospects for bedrock conductivity. Anomaly 60 A is also a probable surface effect.

Thorburn Township Area

Five zones of anomalous conductivity have been numbered on this sheet. Of these, we consider zones 1,2 , and 3 definite bedrock conductors, and zones 4 and 5 good possibilities.

Although both the anomalies in zone 4 are questionable, they tend to support each other.

The characteristics of zone 5 are such that it is questioned as a possible surface conductor.

The remaining ten "x-type" anomalies plotted on this sheet are all strongly suspected of being surface effects or noise effects. Our preference among these is anomaly 10A.

Cumeregs
unite

IV. SUMMARY AND RECOMMENDATIONS

Duw to the economic potential of this area, all definite bedrock conductors warrant exploration. Furthernore, if the local geological environment is considered sufficiently encouraging, any of the questionable anomalies could be worth examination.

The definite bedrock conductors are as follows:
Edwards - 1 and 3 .
Redd $\quad-1,5,6,7,8$, and 9.
Thorburn $\quad 1,2$ and 3 .

A number of other zones have a good chance of being bedrock conductors and we recommend that they be included on the 1ist for mandatory followup. They axe as follows:
Edwards $2,4,5,6$, and 7.
Refd 2 and 3,
Thorburn -4 and 5,

There 1a a considerable variation in characteristics among the more questionable enomalies which we include on the maps.

Strictly on the basis of their geophysical properties, we prefer the following from this group:

Edwards anomalles FA, 6A, 24A, 24B, and 34A. Thorburn anomaly 10A.

Respectfully submitted,

OTTAWA, Ontario, July 28, 1964.
A. R. Rattew, P.Eng.; Geophysicist.

PROJECT NO. 4026 - EDWARDS TOWNSHIP AREA

In-Phase
Anomaly piducials Ound

Anomaly	Fiducials	Quad	Altitude	Magnetics	Rate	Comments
FA	5974/7	-/80	130	$n 11$	x	
DA	5334/8	-/50	235	$n 11$	x	Probable swamp effect
DB	5391/7	-/60	140	nil	x	Probable swamp effect
CA	5127/33	-/70	125	nil	3	Double, ore peak sharp
BA	5011/3	-/40	145	nil	X	Probable swamp effect
BB	5028/34	-/50	140	$\begin{aligned} & \text { Assoc? } \\ & 40 \mathrm{~g} \end{aligned}$	3	Possible swamp effect
AA	6582/94	-/100	135	Assoc? broad 200g	3	
$A B$	6543/7	-/60	140	nil	x	
1 A	2857/61	120/60	140	$\begin{aligned} & \text { Dir? } \\ & \text { 15g } \end{aligned}$	3	Double, strong
1 B	285/5	40/50	135	$\begin{aligned} & \text { Dir.broad } \\ & 30 g \end{aligned}$	3	Broad - Broader quad
2 A	3018/22	60/120	140	Dir: 408	3	Double, strong broad quad
2 B	3024/9	$1 / 70$	150	$\begin{aligned} & \text { Dix:? } \\ & 60 \mathrm{~g} \end{aligned}$	3	Broad quad Double?
3 A	$3343 / 7$	80/60	125	$\begin{aligned} & \text { Dix. to } \mathrm{N} \\ & 130 \mathrm{~g} \end{aligned}$	3	

PROJECT NO. 4026 - EDWARDS TOWNSHIP AREA

Anomaly	Fiducials	In-Phase Quad	Altitude	Magnetics	Rate	Comments
3 B	3340/3	40/200	135	Dirs 150g	3	Strong quad
3 C	3336/40	-/180	135	$\begin{aligned} & \text { Dir.broad } \\ & 120 \mathrm{~g} . \end{aligned}$	3	Strong quad
$g \mathrm{D}$	3333/6	-/170	140	Dir? 70 g	3	
4 A	3508/12	-/90	150	$\begin{aligned} & \text { N. Flank } \\ & 80 \mathrm{~g} \end{aligned}$	3	Broad - No IP
4 B	3654/65,	-/150	145	n11.	3	Multiple quad, surface conductor?
5 A	3828/32	50/40	140	Dir] 20g	3	Double?
6 A	3978/84	60/.	250	nil	x	Probable manoeuvre noise
6 B	3992/6	120/220	145	D1x. 15 g	2A	
6 C	3996/400	40/40	150	Dix. 2308	3	Broad, weak
7 A	4317/21	40/70	150	```S.edge 180g Possibly some direct mag.```	3	Poor IP, Double ?
11 A	5451/5	40/0,	130	D1x. 258	x	Probable turbulence noise
20.4	8053/60	60/*	120-160	$\begin{aligned} & \text { Dir. } C \\ & 80 \mathrm{~g} \end{aligned}$	x	No quad. Broad multiple
21 A	8261/4	140/20?	150	$\begin{aligned} & \text { S.Flank } \\ & 100 \mathrm{~g} \end{aligned}$	2B	

APPENDIX I

PROJECT NO. 4026 - EDWARDS TOWNSHIP AREA

Anomaly	Eiducials	$\begin{aligned} & \text { In-Phase } \\ & \text { Quad } \end{aligned}$	Altitude	Magnetics	Rate	Comments
21 B	8264/6	80/20?	150	Dix: 300g	3	Sharp mag.
21 C	8266/8	50/20?	150	Dir: 158	3	
23 A	8881/4	30/*	150	$\mathfrak{n i l}$	*	Doubtful
24 A	9063/6	40/-	150	$\begin{aligned} & \text { S.Flank } \\ & 20 \mathrm{~g} \end{aligned}$	x	
24 B	8938/41	40/-	150	$\begin{aligned} & \text { N. Flank } \\ & 60 \mathrm{~g} \end{aligned}$	x	
34 A	2126/9	-/50	140	$\mathfrak{n 1 1}$	X	Possible surface effect.

PROJECT NO. 4026 - REID TOWNSHIP AREA.

Anomaly	Fiducials	$\begin{aligned} & \text { In-Phase } \\ & \text { Quad } \end{aligned}$	Altitude	Magnetics	Rate	Corments
39 A	4677/80	20/30	160	$\begin{aligned} & \text { N. side. } \\ & 80 \mathrm{~g} \end{aligned}$	x	Weak : in,
		?		1H:		
40 A	4526/9	30/30	155	$\begin{aligned} & \text { N. edge } \\ & 60 \mathrm{~g} \end{aligned}$	3	Weak
40 B	4523/6	30/*	150	DIx: 40 g	X	$\begin{aligned} & \text { IPonly, } \\ & \text { weak } \end{aligned}$
50 A	2602/5	40/-	155	$\begin{aligned} & \text { Dir.broad } \\ & 300 \mathrm{~g} \end{aligned}$	x	Good shape
52 A	2357/64	100/*	145	$\begin{aligned} & \text { Assoc? } \\ & 100 \mathrm{~g} \end{aligned}$	X	Probable surface effect
53 A	2051/6	90/*	140	nil	x	Probable surface effect
53 AB	1995/9	-/80	135	$\begin{aligned} & \text { N. Flank } \\ & 600 \mathrm{~g} \end{aligned}$	3	possible surface conductor
54 A	1741/4,	.. -/120	145	nil	3	Possible surface conductor
54 B	1814/9	-180	135	ni.	3	Probable surface conductor
54 C	1861/6	60/20?	145	$\begin{aligned} & \text { N.Flank } \\ & 200 \mathrm{~g} \end{aligned}$	3	Double?
55 A	1524/30	80/	140	nil	x	Probable surface effect
55 B	2501/12	-/140	125	nil	3	Probable surface conductor

PROJECT NO. 4026 REID TOWNSHIP AREA

Anomaly	Fiducials	In-Phase Quad	Altitude	Magnetics	Rate	Comments
57 A	930/3	203/40	125	$\begin{aligned} & \text { N. Flank } \\ & 120 \mathrm{~g} \end{aligned}$	3	Weak
57AA	3313/8	-/120	140	nil	3	Possible surface conductor
57 AB	3256/60	60/207	165	nil	x	Double?
58 A	533/6	60/20	125	n11	3	Broader and weak quad
58 B	520/3	40/40	130	Dir? broad 258	3	
59 A	447/50	40/30	125	$\begin{aligned} & \text { N.edge } \\ & 60 \mathrm{~g} \end{aligned}$	3	Broader quad
60 A	0050/3	10/30	130	nil	3	Weak
60 B	0024/9	-/40	125	nil	X	Probable surface effect
65 A	8867/76	40/40	140	D1x. 1208	3	Weak
66AA	7492/5	80/20	135	N.Flank 80 g	3	
66 A	3035/8	60/20	155	Dix. 60g	3	Strong
67 A	7481/5	70/40	135	N.Flank 60 g	3	

PROJECT NO. 4026 - THORBURN TOWNSHIP AREA

In-Phase

7 A	$0754 / 7$	$108 / 40$	145	nil	x
8 A	$987 / 90$	$50 / 20$	160	Dir? broad 15g	

	A	$1013 / 6$	$20 / 50$	140	E.Flank
		$30 g$			

10 A 1220/3 135 nil x
10 B 1289/92 $-/ 40 \quad 160 \quad \because \quad$ n11 \quad x

11 A $1394 / 7 \quad-/ 50 \quad 115$
nil \quad x
Possible surface effect

Probable manoeuvre noise

17 A $\quad 2648 / 51 \quad 40 / 40 \quad 140$

> E.edge

3

18 A
2953/6 $40 / 70$
140
E.edge
70 g

3

APPENDIX I

PROJECT NO. 4026 - THORBURN TOWNSHIP AREA

Anomaly	Fiducials	$\begin{aligned} & \text { In-Phase } \\ & \text { Quad } \end{aligned}$	Altitude	Magnetics	Rate	Comments
19 A	8270/3	20/30	155	Dir? 10g	X	
22 A	8875/8	40/=	160	nil.	X	
23 A	8945/8	-140	150	Dir? broad 40 g	x	
29 A	4796/4800	-140	150	ni1	X	Possible surface conductor
29 B	4834/7	-/30	140	Dix. 50g	x	Possible surface conductor
30 A	4900/3	-140	135	$\begin{aligned} & \text { E.Flank } \\ & \text { 100g } \end{aligned}$	x	
32 A	5148/51	-/50	140	$n 11$	x	Possible surface effect.

Canadian Javelin Limited
Report On The
K-1 Claim Group
Reid Township, Ontario

Introduction:

This report considers the field work conducted by Canadian Javelin Limited on a group of forty -six unpatented mineral claims located in the west central portion of Reid Township, Porcupine Mining Division, District of Cochrane, Ontario. This group of claims was purchased from Messes. J. Hamilton and J. Sweet in early May 1964 and has been designated by the Company as the $\mathrm{K}-1$ claim group.

Purpose:

The purpose of this report is to describe and evaluate the field program which consisted of line-cutting, airborne and ground magnetic and electromagnetic surveying, and diamond drilling. This program was initiated in late June 1964 and was completed in early October.

The ultimate goal of this program was to locate a base metal sulfide deposit by drilling a target or targets outlined by geophysical methods.

Location and Access:

The forty-six 40 acre claims, bearing the following numbers -

$$
\begin{aligned}
& P-61664-61681, \text { inclusive } \\
& P-59670-59677 \text { inclusive } \\
& P-59688-59691 \text { inclusive } \\
& P-59706-59721 \text { inclusive }
\end{aligned}
$$

are registered in the name of Canadian Javelin Limited, 100 Bronson Avenue, Ottawa 4, Ontario, with the Ontario Department of Mines, Timmins Recording Office. These claims are located in a township in which the sub-division has been annulled. However, if this township were sub-divided, the K -l claim group would lie approximately in Lot's 12,11 and the west half of Lot 10 , northernmost 3/4 of Concession III; east half of Lot 10, Lot 9, and the west half of Lot 8 , northernmost $3 / 4$ of Concession III and the south half of Concession IV; east half of Lot 8, northernmost $3 / 4$ of Concession III and the southernmost $3 / 4$ of Concession IV; and the west half of Lot 7, northernmost 3/4 of Concession III and the south half of Concession IV; Reid Town -
ship, which is situated about 20 air miles north-northwest of Timmins.

The northward flowing Thorburn Creek meanders through the central portion of the property, and the west branch of Thorburn Creek flows eastward through the southernmost tier of claims from the Reid-Thorburn Township line, to just south of claim number 61664, where it joins the northward flowing branch.

Thorburn Creek does not carry sufficient water to allow the use of boats of any type, but it would possibly be suitable for "skidoo" type vehicles when frozen. Consequently, helicopters are necessary for access to the property. During the recent field season, large helicopter landing areas were cleared in claims numbered 61669, 59674 and 59720.

Topography and Cover:

The ground in the K-1 claim group is generally flat, moderately well drained, and not extremely swampy. It is entirely covered with glacial drift to depths probably well over 100 feet. The area has not been cut over for many years, and the trees are mainly large spruce, jackpine, birch and poplar. Dense alder underbrush is prevalent only along the banks of Thorburn Creek.

Field Program:

Since this property was acquired by Canadian Javelin in early May 1964, no previous field work has been performed on the $\mathrm{K}-1$ claim group by or for that Company, nor is there any evidence of previous work on this ground by others.

The field work consisted of establishing two surveyed base lines, bearing N $45^{\circ} \mathrm{W}-6900$ feet apart, for a total base line length of 14,680 feet. The zero point on the main base line is located in the southwest corner of claim number 59670. A total of 198,000 feet of picketed cross line was cut at 400 foot intervals at right angles to the base lines. The north and south claim boundaries were used as tie lines. All of the above information is presented on the enclosed map at a scale of 1 inch equals 400 feet.

Ground and airborne geophysical surveys were then conducted over the property. This phase located conductive zones which were later, tested to depths over 550 feet by diamond drilling.

Airborne Survey:

(: A total of 24 miles (including turns) of electromagnetic and magnetic survey was flown within the confines of the $\mathrm{K}-1$
group by Canadian Aero Mineral Surveys Limited, Hunt Club Road, Ottawa, during the month of June 1964. A De Haveland Otter equipped with the appropriate geophysical gear flew lines bearing $\mathrm{N} 45^{\circ} \mathrm{E}$ at $1 / 8$ mile line spacing and at a $150-200$ foot elevation.

The airborne survey determined the presence of two anomalies (numbered 1 and 2 on the Aero Surveys map). The larger one (No. 1) is about 1500 feet in length and is located in claim numbers 61679 and 61680: it trends approximately east-west. The number 2 anomaly was picked up only on one flight line and is approximately located in claim number 59720.

The number 1 anomaly has been considered by Canadian Aero to be a definite bedrock conductor, and the number 2, although a single questionable anomaly, has been considered to have a fair chance of being a legitimate bedrock conductor. The number 1 anomaly is associated with a 40 gamma magnetic response and the number 2 is associated with a 300 gamma magnetic high.

The geophysical data was interpreted by A. R. Rattew, P. Eng., author of the report entitled "Airborne Geophysical Survey of the Edwards, Reid and Thorburn Township Areas for Canadian Javelin Limited, by Canadian Aero Mineral Surveys Ltd.", Project No. 4026, dated 28 July 1964. This report carries the

Canadian Javelin file number - 312.

There were no conductive zones indicated in the remaining portion of the claim group, and an examination of the airborne magnetometer tapes indicated additional magnetically anomalous zones, which were subsequently precisely located during the ground survey.

Geology:

There are no reported outcrops in Reid Township other than in the very southwest corner at a point common to the townships of . Reid, MacDairmid, Thorburn and Loveland, where the Ontario Department of Mines Map No. 2046 - the Timmins-Kirkland Lake Sheet, reports undifferentiated Archean acid and intermediate volcanics in contact with andesites and basaits which, in turn, are in contact with gabbros and diorites. The contacts are reported to trend west-northwest or north-west and the attitudes of three magnetic highs on the $\mathrm{K}-1$ claim group suggest a similar orienta tion of probable basic intrusives.

A thorough search on the $K-1$ claim group failed to locate any outcrops and the diamond drilling indicated that the overburden is in the range of 100 to 150 feet in depth.

Three diamond drill holes were put down at the following locations:

$\mathrm{K}-1 / 1$	$\quad 54+50 \mathrm{SW} / 8+00 \mathrm{NW}$	$\mathrm{SW} @ 55^{\circ}$
$\mathrm{K}-1 / 2$	$75+25 \mathrm{SW} / 28+00 \mathrm{NW}$	$11 @ 65^{\circ}$
$\mathrm{K}-1 / 3$	$2+25 \mathrm{SW} / 52+00 \mathrm{SE}$	11060°

and the $\log s$ of the holes are briefly summarized below:-
$K-1$
$0-172$
$172-605$

Overburden, large boulders 160-172'
Varigated dacite tuff.
Core Angle: 45-70
-...-- End of Hole --.......
$K-1 / 2$

0-175	Overburden - sand and gravel.
175-200	Andesite.
200-217	Rhyolite.
217-365	Phyllitic sediments with weak graphite and pyritic mineralization.
365-445	Rhyolite tuff and tuff breccia.
445-465	Andesitic tuff.
465-525	Rhyolitic tuff.
525-554	Andesitic tuff. Core Angle: $40-50^{\circ}$
	-.....- End of Hole -......

$\mathrm{K}-1 / 3$

$0-130$	Overburden-sand, gravel and clay.
$130-157$	Rhyolite with minor pyrite mineralization.
$157-526$	Gabbro- "Polka Dot".
$526-556$	Rhyolite tuff.
$556-611$	Gabbro- "Polka Dot".
	Core Angle: 50-600

The core angles indicate that the rocks dip steeply to the northeast. The diamond drilling suggests that, (1) the western portion of the $\mathrm{K}-1$ claim group is underlain by acid and intermediate volcanics which lie above and below a 148 foot band of sediments, (2) the central portion is underlain by intermediate volcanics, and (3) the eastern portion is underlain by an extensive body of gabbro, intruded into acid volcanics.

Magnetics:

The magnetic survey on the $\mathrm{K}-1$ claim group was conducted by W. Voce from Davison, Michigan and W. Vickers of Porquis, Ontario. A Jalander Model W 505, total field type magnetometer was used. Magnetic base stations were established at 400 foot intervals along the base lines and over 3960 readings were taken at fifty foot intervals along 198,000 feet of NE-SW picketed cross line.

The magnetic background appears to trend roughly north and south and is in the range of 650 to 850 gammas. This approximately duplicates the area magnetic background recorded on the Department of Mines and Technical Surveys Sheets 298 G-299G 300 G and 301 G, The Pamour, Kamiskotia Lake, Thorburn Creek and Crawfish Lakes Sheets.

The ground survey established the presence of two very prominent anomalous magnetic zones, one in the eastern portion of the property and the other in the southwest corner.

The largest and most extensive ' B ' anomaly actually consists of two nearly parallel magnetic ridges extending from the south to the north claim boundary at about $\mathrm{N} 11^{\circ} \mathrm{W}$.

The extent and orientation of these ridges suggest that they may be caused by two relatively near surface northward trending basic dikes.

A study of the profiles across these anomalies suggests that, (l) the westernmost ridge is caused by the presence of two adjacent dikes which merge into one near the south boundary, and (2) the western 'pair' dips westward, and (3) the eastern single dike dips vertically or steeply to the west.

The distance between the western 'pair' and eastern single dike appears to gradually increase from 1000 feet near the south boundary to over 1500 feet at the north end. By the same token, the total width of the ' B^{\prime} anomaly increases from 1500 feet to over 2000 feet from south to north.

The recorded magnetic response over the ' B ' anomaly is
up to 1200 gammas above the background.

A southeast trending conductive zone " B " located from $2+50 \mathrm{SW} \times 36+00 \mathrm{SE}$ to $4+50 \mathrm{SW} \times 60 \not+00 \mathrm{SE}$ appears to cross a portion of the western magnetic anomaly. However, diamond drilling to test the conductive zone suggested that the EM anomaly was caused by conductive overburden. A 369 foot intersection of gabbro in DDH K-1/3 suggested that the gabbro might be the underlying rock responsible for the magnetic anomaly; however, the gabbro apparently is non-magnetic as several sections of drill core tested with a Brunton compass failed to visibly deflect the compass needle.

The "C" magnetic anomaly, located in the southwest corner of the property, is quite complex - the eastern and western portions are possibly caused by underlying basic dikes trending north-north-northwest. The rock causing the eastern portion of the anomaly could possible be more deeply buried.

The central portion of the " C " anomaly trends slightly south of east, and appears to be associated with the "C" EM anomaly, which diamond drilling indicated is caused by a heavily graphitic zone in metamorphosed Archean sediments. The high magnetic readings, however, were encountered about 300 feet
southwest of the conductor. This suggests that they are possibly caused by the presence of underlying andesitic rock, which was encountered in the bottom of DDH K-1/2.

As stated above, the magnetic background appears to trend roughly north and south, and, although there is very little relief in the background, it suggests that the grain of most of the underlying rock between the " B " and " C " anomalies is north and south or slightly north-northwest-south-southeast.

Electro Magnetics:

The electromagnetic survey on the $\mathrm{K}-1$ claim group was conducted by Prospecting Geophysics Limited of 3518 Vendome Avenue, Montreal, Quebec. A Ronka Mark IV horizontal loop unit, with a 300 foot coil separation was used in the field. The operators were F. Dicaire and E. Vaillancourt from Val d'Or, Quebec, who were on the property from 20 July to 12 August, 1964. A Squires Vertical loop unit and the Ronka Mark IV were used on lines $20 \not+00$ NW through $36+00 \mathrm{NW}$, and $0 \not f 00$ through $12 \not f 00 \mathrm{NW}$ and $48+00 \mathrm{SE}-56+00 \mathrm{SE}$, on 1 and 2 September, 1964, by P. Ferderber; J. LeClaire, J. Doyon, R. Pelette and L. Routhier to check the initial horizontal loop survey.

The electromagnetic data was interpreted by H.J.

Bergmann, P. Eng. of Prospecting Geophysics Limited, and was presented to Canadian Javelin Limited in the following reports:
" Report on Electromagnetic Survey On Property of Canadian Javelin Limited, Reid Township, Ontario" Aug. 30, 1964 and Appendix dated 3 Sept. 1964

- Canadian Javelin File No. 308 -
and
" Report on Electromagnetic Surveys, Canadian Javelin Limited, Timmins Area, Ontario" 13 November, 1964.
- Canadian Javelin Limited File

No. 324 -

The initial horizontal loop survey outlined four major possibly conductive zones (A, B, C \& D). However, Bergmann considered only the ' A ' zone to be caused by the presence of a conductor in the underlying rock. He felt that the B, C. and D zones, plus five undesignated anomalous areas, were caused by conductive overburden conditions.

The 'A' anomaly was encountered on lines $4 \not f 00 \mathrm{NW}$ and $8 \not \subset 00$ NW and was over 800 feet in length. A study of the electro magnetic profiles suggested that it was caused by a conductive zone dipping steeply to the north, and that it could possibly represent two bands of fairly massive sulfides with disseminated sulfides between them.

This conductive zone was tested to a depth of 605 feet, by
diamond drill hole $\mathrm{K}-1 / 1$, drilling $\mathrm{S} 45^{\circ} \mathrm{W}$ at 55° from $54+50 \mathrm{SW} / 8+00 \mathrm{NW}$. The drilling failed to intersect any mineralization which would have produced the ' A ' anomaly, whereupon check surveys were conducted over the zone with vertical loop and horizontal loop units. The results of the vertical loop survey do not show a conductor except on line $12+00$ NW where a "cross-over" was determined, but where the initial horizontal loop response was quite weak. The check survey with the horizontal loop equipment was unable to duplicate the first survey. results, and the inconsistency has been explained by Prospecting Geophysics as a combination of condensation in the equipment, wet ground, conductive overburden and a possible sharp drop in bedrock topography, which produced a false (A) anomaly.

The ' C ' anomaly crosses lines $20 \not f 00$ NW through $36+00^{\circ}$ NW; in a northwesterly direction, and is probably the No. l anomaly determined by the airborne survey. This anomaly was considered by Prospecting Geophysics as possibly being caused by conductive overburden; however, diamond drill hole K-1/2 collared at $75+25 \mathrm{SW}$ on line $28 \not f 00 \mathrm{NW}$ and drilling south 45° west at 65° intersected metamorphosed graphitic sediments from 217^{\prime} to 365^{\prime} with a massive sulfide zone from 335.0 to 337.5 This intersection quite definitely identified the cause of the anomaly
as being a conductor in the underlying rock, rather than in the overburden. The ' C ' anomaly appears to be associated with a fairly strong magnetic ridge about 300 , feet to the south, and which has a very similar orientation. This is the only case on the $K-1$ claim group in which the magnetics and conductivity are even remotely associated.

The ' B ' anomaly extends north-northwesterly from line $60 \nLeftarrow 00 \mathrm{SE}$ to line $36 \not+00 \mathrm{SE}$, crosses a strong magnetic high at $60+00 \mathrm{SE} / 6+00 \mathrm{SW}$, and is probably the No.' 2 a nomaly indicated by the airborne survey.

Prospecting Geophysics stated that all of the EM anomalies other than ' A ' were probably caused by conductive overburden, and the results of diamond drill hole $\mathrm{K}-1 / 3$, collared at $2 \nmid 25 \mathrm{SW} / 52 \not \subset 00 \mathrm{SE}$, drilling $\mathrm{S} 45^{\circ} \mathrm{W}$ at 60°; appear to substantiate this assumption, as the pyrite-pyrrhotite mineralization encountered in this hole was too weakly disseminated to provide the response obtained in the electromagnetic survey. A check survey with horizontal loop equipment, prior to spotting the drill hole, verified the plotted position of the ' B ' conductor.

From the results of the diamond drilling it is obvious that the electromagnetic surveys on the $\mathrm{K}-1$ claim group were not particularly successful, what with vanishing conductors, coupled
with deep and probably conductive overburden conditions. It is felt that the entire claim group should be systematically reexamined in the future with more definitive electromagnetic equipment.

Diamond Drilling:

Three "Ax" sized diamond drill holes were put down to test the conductive zones delineated by the A, B and C electromagnetic anomalies. The drilling was performed by Boyles Bros. (Que.) Ltd. of Noranda, P. Q. and a BBS-2 drill machine was used in all instances.

Three drill holes have been logged by the writer and are presented as follows:

DDH K-1/1 Page 16

DDH K-1/2 Page 17

DDH K-1/3
Page 18

None of the mineralized sections of core from holes $\mathrm{K}-1 / 1$ and $\mathrm{K}-1 / 3$ warranted assaying, however a 5.0 foot sample was taken from $K-1 / 2$ and assayed for gold, silver, copper and nickel by Swastika Laboratories, with the following results:

GOLD	SILVER	nil
nil	01	NICKEL
none		

Although the results of the drilling are not particularly encouraging, they have indicated that a potentially favourable volcanic sedimentary environment exists in the southwest corner of the $\mathrm{K}-1$ claim group.

Geological Interpretation:

Based upon diamond drilling and magnetic information, it is possible to make an educated guess as to the distribution and orientation of the rock types which underly the $\mathrm{K}-1$ claim group. The western boundary area is probably underlain by two deeply buried basic dikes striking nearly north-souih, in close proximity to a zone of volcanics and intercalated metamorphosed sediments which probably strike nearly $\mathrm{N} 45^{\circ} \mathrm{W}$ and dip steeply to the northeast. The central portion is probably underlain by intermediate volcanics and tuffs, with a general north-northwest strike and a steep eastward dip. In the vicinity of DDH K-1/3 an extensive gabbroic mass, possibly a sill, has intruded conformably into a
zone of northward trending eastward dipping rhyolites. The eastern portion of the claim group is probably cut by two basic dikes striking $N 10^{\circ}-15^{\circ} \mathrm{W}$ and dipping either vertically or very steeply to the west. Due to the resistant nature of the more basic rocks in comparison to rhyolites and dacites, the basic dikes may not have been eroded to the same level as those rocks underlying the central portion of the claim group. This is somewhat substantiated by the fact that the magnetic responses across the assumed dikes are consistently 600 to 1200 gammas above the background, and that the overburden in hole $\mathrm{K}-1 / 3$ is only 100 ft . deep, whereas in holes $K-1 / 1$ and $K-1 / 2$ it is over 140 feet in depth.

Conclusions:

The 1964 field program on the $\mathrm{K}-1$ claim group consisted of line cutting, airborne and ground magnetic and electromagnetic surveying and diamond drilling.

Even though the electromagnetic surveys were not particularly successful in locating bedrock conductors, diamond drill hole $\mathrm{K}-1 / 2$ definitely identified the cause of the ' C^{\prime} electromagnetic anomaly as being a highly graphitic zone of sediments between andesitic and rhyolitic tuffs. The diamond drilling also
indicated that the A and B conductors were either nonexistent, or due to conductive overburden. It is felt that the excessive overburden depths and possible conductivity have reduced the effectiveness of the electromagnetic equipment used on the $K-1$ claim group during the 1964 season.

Although only one of the drill holes identified a conductive zone in the bedrock, the remaining two holes did serve to identify the underlying rock types and to permit a probable geologic interpretation of their distribution and attitudes.

Recommendations:

Since only the ' C ' electromagnetic anomaly appears to be associated with a magnetic feature, it is difficult to become encouraged about the remaining conductors as none of them are conformably related to any definite magnetic highs or lows.

The property should be held as long as we have sufficient man day credits to do so, and it is recommended that the entire claim group be rerun with a vertical loop electromagnetic unit, although there are very slim chances of outlining additional or significant conductive zones. There is still some question as to the plausibility of the reasons put forth by Prospecting Geo-
physics Limited concerning the presence and then disappearance of the "A" conductive zone.

Respectfully Submitted,

March 24, 1965

