ON
REID $42 / 52$
REID TOWNSHIP

FALCONBRIDGE LIMITED

SUMMARY AND RECOMMENDATIONS

HLEM and magnetic surveys were carried out on the Reid $42 / 52$ property for Falconbridge Limited in December of 1998.

The magnetic survey maps northeast trending ultramafic bodies and north-south striking diabase dikes. The EM survey maps a number of zones of conductivity, most of which are long formational type conductors.

It is recommended that east-west lines are cut to the north and south of anomalies ' E ', ' K ' and ' N ' to better define the source of these anomalies. It is also recommended that anomaly ' O ' is tested by diamond drilling on Lines 200 South and 1200 West and anomaly ' M ' is tested on Line 1800 West.

TABLE OF CONTENTS

page
Summary and Recommendations i
Introduction 1
General Geology 3
Previous Work 3
Survey Descriptions 4
Magnetic Results 5
EM Results 7
References 16

LIST OF FIGURES

page
1.(a) Location Map 2
(b) Claim Map 2
2. Total Magnetic Field 6
3. HLEM Results, 444 HZ 8
LIST OF TABLES
page

1. Property Description 1
2. Summary of Previous Work 4
3. EM Anomaly ' A ' Interpretation 7
4. EM Anomaly ' B ' Interpretation 9
5. EM Anomaly ' C ' Interpretation 10
6. EM Anomaly 'D' Interpretation 10
7. EM Anomaly ' F ' Interpretation 11
8. EM Anomaly ' H ' Interpretation 12
9. EM Anomaly ' K ' Interpretation 13
10. EM Anomaly 'L' Interpretation 13
11. EM Anomaly 'M' Interpretation 14
12. EM Anomaly ' N ' Interpretation 14
13. EM Anomaly ' O ' Interpretation 15

LIST OF MAPS

1. Total Magnetic Field

2. HLEM Results, 222 HZ, 200 Metre Coil Separation
3. HLEM Results, 444 HZ, 200 Metre Coil Separation
4. HLEM Results, 1777 HZ, 200 Metre Coil Separation

$$
5 x \quad a b 6
$$

INTRODUCTION

During December 1998, magnetic and horizontal loop electromagnetic (HLEM) surveys were carried out on the Reid $42 / 52$ property for Falconbridge Limited.

The property is located 37 kilometres northwest of the city of Timmins in the northwest portion of Reid Township, Porcupine Mining Division (Figure 1(a)). Thorburn Creek flows north through the center of the property. It was accessed by snowmobile along logging roads which run east and then northeast from the old Abitibi Camp 50 road which runs north from Highway 576 at Kamiskotia.

The surveys covered parts of 10 claims (Figure 1(b)) which are comprised of a total of 92, forty acre claim units; the claim numbers are listed in Table 1.

The magnetic survey was carried out by J. derWeduwen and the HLEM survey was run by B. Pigeon and L. Eden.

CMAN		necerphicrentr	VRScrivis	arumesten
1207794	13	July 09, 1996		Reid
1211742	4	July 10, 1998		Reid
1211743	8	July 10, 1998		Reid
1218745	16	June 20, 1997		Reid
1218746	7	June 20, 1997		Reid
1226430	12	Dec. 05, 1997		Reid
1227611	8	Nov. 25, 1997		Reid
1227612	3	Nov. 25, 1997		Reid
1227613	6	Nov. 25, 1997		Reid
1228069	15	May 27, 19977		Reid

Table 1 : Property Description

Figure 1(a): Location Map

Figure 1(b): Claim Map

GENERAL GEOLOGY

Reid Township is located near the west end of the Abitibi greenstone belt which consists of predominantly east-west striking, steeply dipping Archean sediments and ultramafic to felsic volcanics. These rocks have been intruded by ultramafic to felsic bodies, north-south striking Matachewan diabase dikes and east northeast striking Keweenawan diabase dikes.

The geology of Reid Townships is presented on map 2205 at a scale of 1 inch to 4 miles (Pyke etal, 1973) and on map P3379 at a scale of $1: 100,000$ (Ayer etal, 1998).

Previous drill holes in the area indicate that the Reid $42 / 52$ property is underlain by east-west to east northeast striking intermediate volcanics and east northeast trending, sill-like, ultramafic bodies. graphitic sediments occur close to the ultramafic/volcanic contacts. North-south striking magnetic anomalies suggest that all of the rocks are cut by diabase dikes. The Mattagami River Fault strikes north-south through the middle of the survey area.

PREVIOUS WORK

The following is a description of previous work which has been filed for assessment credits on the property (Table 2).

In 1964, Mespi Mines Ltd. held a large claim block in northwestern Reid Township and carried out an exploration program which included airborne and ground magnetic and electromagnetic surveys. The airborne survey was flown along lines spaced every 200 metres and oriented northeast-southwest. The ground surveys, which included magnetics, HLEM, VLEM and gravity, were run on lines spaced every 100 metres and oriented northwest-southeast. The HLEM survey was run with a coil separation of 300 feet and a frequency of 876 Hertz and the magnetic readings were taken with a fluxgate magnetometer. At least 17 holes (R-1 to 17) were drilled to test EM targets

VEAR	compaty	Cecharsics	DRIL HOEES	AFRI FILE
1966	Mespi Mines Ltd.	Mag, HLEM, VLEM, Grav	R-1 to 17	42A13SE0100
1972	Hollinger Mines Ltd	Mag, HLEM		42A13SE0089
1972	Newmont Mining Corp.	Mag, IP	R-73-1 to 4	42A13SE0083

Table 2. Summary of previous assessment work.

In 1972, Hollinger Mines Ltd. ran magnetic and HLEM surveys over four claims in Reid Township which included the southwest corner of the present survey area. The magnetic survey was run with a torsion style magnetometer and HLEM survey was run with a coil separation of 400 feet.

In 1972, Newmont Mining Corporation of Canada Limited held a block of 84 claims in northwest Reid Township which included the northeast quarter of the present survey area. Magnetic and induced polarization (IP) surveys were run along north-south grid lines spaced every 600 feet. The magnetic readings were taken every 100 feet with a fluxgate magnetometer and the IP survey was run with a gradient array and potential electrode spacing of 200 feet. In 1973, Newmont drilled five holes directly to the east of the Reid 52 grid. Graphitic sediments were intersected in four of the holes.

In 1987, the Geological Survey of Canada flew an airborne magnetic and EM survey over the Timmins area which included Reid Township. This survey was flown along north-south lines spaced approximately every 200 metres.

SURVEY DESCRIPTIONS

A 2500 metre long base line, designated 0+00 North and oriented east-west, was established on the Reid 42 survey area and orthogonal grid lines, designated 1100 to 3600 West, were cut every 100 metres; tie lines were cut at 400,800 and 1000 North. East west grid lines were later cut in the southeast corner of the survey area from 400 South to 400 North in order to detail a north northeast striking
conductor.
A second base line was established at 2000 North on the Reid 52 survey area and north south grid lines were cut every 100 metres between 1500 and 2300 West and between 2800 and 3400 West. Tie lines were established along the north edge of the grid at 2400 North and along the south edge at 1600 North. All of the lines on both grids were picketed every 20 metres.

The magnetic readings were taken every 10 metres with a Scintrex IGS-2/MP-4. This instrument is a proton precession magnetometer which measures the earth's total magnetic field to an accuracy of 0.1 nT. Diurnal variations were monitored every 10 seconds with a Scintrex MP-3 base station magnetometer, located off the grid at 10200 East, 10360 North; the base station value to which all of the readings were levelled is 59237 nT . A total of 5484 readings were taken along 54.4 kilometres of line.

The horizontal loop EM survey was carried out with the Apex Parametrics MaxMin I-5. This instrument measures the in-phase and quadrature components of the secondary field as a percentage of the primary field; the depth of penetration is approximately one half of the coil separation. Readings were taken every 20 metres using a coil separation of 200 metres and frequencies of 222, 444 and 1777 Hertz. A total of 2171 stations were read along 53.6 kilometres of line.

MAGNETIC RESULTS

The total magnetic field is contoured every 100 nT on map 1 at a scale of 1:5000. The results are also presented in Figure 2 at a scale of 1:20,000.

A linear north-south striking anomaly along the east side of the Reid $\mathbf{4 2}$ grid is, no doubt, a diabase dike. It appears to end at a broad northeast trending anomaly which is centered between the two grids and, from previous drilling, represents an ultramafic body. Other diabase dikes on the Reid 42 grid may be represented by a very subtle anomaly along Line 2400 West and by a discontinuous north-south trending high along Lines 2700 and 2800 West. The only indication of diabase dike to the north, on the Reid 52 grid, is a low amplitude anomaly between the north end of Line 1900 West and 2250 North on

Figure 2 : Total Magnetic Field, Reid 42/52 Property

Line 1800 West.
The magnetic field is very high over the west half of the Reid 52 grid. An east-west trending high over the north half of the area appears to be part of a much larger high centered to the northwest in the airborne survey (OGS, 1972). Two other magnetic high anomalies in the south half strike west southwest and all three of these anomalies most likely represent ultramafic bodies.

EM RESULTS

The results of the HLEM survey are profiled on maps 2,3 and 4 at a scale of 1:5000; the profile scale used for all of the frequencies is $1 \mathrm{~cm}=20 \%$. The results using 444 Hertz are also presented in Figure 3 at a scale of 1:20000.

The following is a description conductors detected in the survey and labelled ' A ' to ' O ' on the maps.

Anomaly 'A' is located to the north of Base Line 2000 North on Lines 3100 to 3400 West. The depth to the source increases from 30 metres on Line 3100 West to 90 metres on Line 3400 West (Table 3). The conductivity also increases from east to west, from 2 mhos on Line 3100 West to 43 mhos on Line 3400 West. The profiles on Lines 3400 and 3300 West suggest the presence of at least two conductors, sixty metres apart; the inphase/quadrature ratio indicates that the more northern zone has a

3400 W	2090 N	60	-9	-4	94	43	
3300 W	2090 N	60	-9	-9	58	10	
3100 W	2090 N	$?$	-9	-11	46	7	
3000 W	2070 N	10	-3	-6	32	2	

Table 3: Anomaly 'A' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Figure 3 : HLEM Survey, 444 Hertz, 200 metre coil separation, Reid 42/52 Property
poorer conductivity. The width of the source on Lines 3100 and 3200 West is 20 metres and the dip on all of the lines is to the south.

This anomaly was likely the target of Hole R-16B, which was drilled by Mespi in 1966. The hole intersected a number of graphite zones in a talc chlorite schist.

Anomaly ' B ' is a low amplitude anomaly centered at 3160 West on Line 2400 North. It is a one line anomaly and the strike can not be determined. The source is poor conductivity at a depth of 20 metres and is likely surficial.

2400 N	3160 W	narrow	-2	-5	20	2	

Table 4: Anomaly 'B' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly 'C' strikes northeast between 1940 North on Line 2100 West to 2260 North on Line 1500 West, with a slight offset between Lines 1900 and 2000 West. The source of the anomaly is good conductivity at a depth of 50 to 60 metres on Lines 2000 and 2100 West and 60 to 80 metres on Lines 1500 to 1900 West (Table 5).

Anomaly 'D' strikes northeast between 1960 West on Line 1600 North and 1910 North on Line 1500 West. The source of the anomaly is very good conductivity at a depth of up to 80 metres (Table 6). The width, on the lines where it can be determined, is 20 metres except for Line 1700 West it appears to be narrow. The dip can not be determined because of incomplete anomalies and the influence of anomaly ' C ' to the north.

The depth and conductivity, calculated for conductors ' C ' and ' D ' in the east half of the Reid 52 grid,

	\square						
2100 W	1940 N	$?$	-9	-9	58	10	
2000 W	1990 N	$?$	-10	-10	54	10	
1900 W	2100 N	$?$	-10	-7	74	17	
1800 W	2140 N	?	-12	-9	60	16	
1700 W	2160 N	$?$	-11	-7	74	18	
1600 W	2220 N	$?$	-8	-6	80	17	
1500 W	2260 N	$?$	-10	-6	80	21	

Table 5: Anomaly 'C' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.
are likely higher than the true values because of an inversion of the quadrature component caused by very conductive overburden; this inversion is most apparent in the high frequency (1777 Hz) results.

Anomalies ' D ' was most likely the target of Hole R-73-3 which was drilled to the east of the Reid 52 grid by Newmont in 1973. The hole intersected graphitic sediments at the contact between serpentinized peridotite to the south and mafic volcanics to the north.

1600 N	1960 W	20	-21	-3	64	121	
1900 W	1680 N	?	$?$	$?$	$?$	$?$	
1800 W	1780 N	$?$	-15	-3	80	100	
1700 W	1840 N	$?$	-24	-3	58	138	
1600 W	1885 N	20	-30	-3	50	150	
1500 W	1910 N	20	-32	-3	46	156	

Table 6: Anomaly 'D' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly ' E ' is a one line anomaly centered at 2260 West on Line 1600 North. It is mainly a quadrature response in the 222 and 444 Hertz results, however, the in-phase component is influenced by the higher amplitude response from conductor ' D '. The fact that there is a quadrature component inversion in the high frequency results suggests that the conductivity is likely better than indicated in the lower frequency results and that the anomaly reflects a bedrock source.

This anomaly is interesting because of the coincident high magnetics which, however, might be due to a diabase dike which strikes to the north northeast. The conductor possibly strikes southwest along the south flank of an ultramafic body, however, the only indication of the anomaly on Line 2200 West is a quadrature component anomaly in the high frequency results. Further work would have to be carried out to better define this anomaly and coincident magnetics.

Anomaly ' F ' is located between 600 North on Line 3600 West and 490 North on Line 3100 West. The source of the anomaly is a 20 metre wide zone of good conductivity which dips close to vertical (Table 7). The depth varies from 60 metres on Line 3200 West to 90 metres on Line 3500 West.

3600 W	600 N	?	-6	-5	81	14	
3500 W	570 N	$?$	-9	-4	94	43	
3400 W	570 N	20	-12	-8	66	18	
3300 W	560 N	20	-10	-7	74	17	
3200 W	530 N	20	-10	-9	60	13	
3100 W	490 N	20	-?	?	?	$?$	

Table 7: Anomaly 'F' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly ' G ' is located 100 metres to the north of anomaly ' F ' on Lines 3500 and 3600 West. There is little that can be interpreted from this anomaly except for the north edge of the source.

Anomaly 'H' strikes southeast between 420 North on Line 3200 West and 310 North on Line 3000 West and then east-west between Lines 3000 and 2500 West. The source of the anomaly is a 20 metre wide zone of very good conductivity at a depth which ranges from 50 to 100 metres (Table 8).

This anomaly may be the offset extension of anomaly ' F '. The government airborne survey suggests that these anomalies are the east end of a formational conductor which continues to the northwest through Thorburn Township.

whe							
3200 W	420 N	?	-7	-5	86	18	
3100 W	365 N	30	-20	-5	62	85	
3000 W	310 N	20	-27	-5	50	114	
2900 W	315 N	15	-11	-6	78	26	
2800 W	310 N	20	-10	-7	74	18	
2700 W	300 N	10	-13	-4	84	71	
2600 W	320 N	narrow	-13	-3	86	92	
2500 W	340 N	narrow	-8	-4	98	36	

Table 8: Anomaly 'H' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly 'J' strikes east-west between 480 North on Line 3000 West and 460 west on Line 2500 West. It is a poorly defined anomaly because of the low amplitude and affect from the higher amplitude response of anomaly ' H ', to the south. The inpase/quadrature ratio suggests poor conductivity, however, it most likely represents a bedrock source.

Anomaly ' K ' is a one line anomaly centered at 2000 West on Line 800 North. The source of the anomaly is poor conductivity at a depth of 20 metres (Table 9). The high quadrature to the east and west suggest that it coincides with a bedrock valley and, along with the poor conductivity, that the source is surficial. It may join with a weak, mainly quadrature response between 500 North on Lines 1900 West and 400 North on Line 1800 West which appear to flank a bedrock high to the east. Alternatively, it may reflect poor conductivity which strike southwest along the south contact of an ultramafic body.

2400 N	3160 W	narrow	-2	-5	20	2	

Table 9: Anomaly 'K' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly ' L ' is a mainly quadrature response which strikes north-south at 1450 West on Lines 200 to 400 North. The source of the anomaly is a narrow zone of poor conductivity at a shallow depth (Table 10) and is likely surficial.

400 N	1440 W	narrow	-3	-9	<20	2	
300 N	1450 W	narrow	-4	-10	<20	2	
200 N	1450 W	narrow	-3	-6	32	2	

Table 10: Anomaly 'L' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly 'M' strikes east southeast between 220 North on Line 1900 West and 180 North on Line 1800 West. The source of the anomaly is a narrow zone of fair to good conductivity at a depth of 50 metres on Line 1900 West and 60 metres on Line 1800 West; dip is to the south.

LHE							
1900 W	220 N	narrow	-4	-3	50	14	
1800 W	180 N	narrow	-4	-5	62	6	

Table 11: Anomaly 'M' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly ' N ' is a one line anomaly centered at 2000 West on Line 0 North. The source of the anomaly is fair conductivity at a depth of 66 metres. The high quadrature to the east suggests that it is located on the flank of a bedrock high, however, the conductivity suggests a bedrock source. More work would have to be done to determine the strike of this conductor.

2400 N	3160 W	narrow	-2	-5	20	2	

Table 12: Anomaly ' N ' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly 'O' strikes north northeast from 1570 West on Line 400 South to 1380 West on Line 100 South, where it ends at a north south diabase dike. To the east of the dike the anomaly strikes northeast from 60 South on Line 1200 West to 0 South on Line 1100 West. The source of the anomaly is poor conductivity on Lines 300 South, 400 South and 1100 West, and very good conductivity on Lines 200

South, 100 South and 1200 West (Table 13). The depth to the conductor is over 100 metres adjacent to the diabase dike and decreases to the northeast and southwest. The width varies from narrow on Lines 100 and 300 South up to 40 metres on Line 1200 West.

The diabase dike changes strike from north-south, south of the conductor, to north northwest, north of the conductor which may suggest that the conductivity is located at a geological contact. This conductor has not been previously tested and should be drilled on Lines 200 South and 1200 West.

				${ }^{1}$			
1100 W	0 S	narrow	-4	-4	80	7	
1200 W	60 S	40	-5	-3	110	35	
100 S	1380 W	narrow	-7	-2	110	71	
200 S	1430 W	20	--8	-4	98	36	
300 S	1450 W	narrow	-3	-3	80	7	
400 S	1570 W	20	-2	-3	60	3	

Table 13: Anomaly 'O' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

MAY 11, 1999
Date

Timmins Geophysics Ltd.

REFERENCES

Ayer, J.A. and Trowell, N.F.
1998: Geological Compilation of the Timmins Area, Abitibi Greenstone Belt; Ontario Geological Survey, Preliminary Map P.3379, scale 1:100,000.

Ontario Geological Survey

1988: Airborne Electromagnetic and Total Intensity Survey, Timmins Area, Reid Township, Districts of Cochrane and Timiskaming Ontario; by Geoterrex Limited, for Ontario Geological Survey, Geophysical/Geochemical Series Map 81053. Scale 1:20,000. Survey and Compilation from 1987 to October 1987.

Pyke, D.R., Ayres, L.D. and Innes, D.G.
1973: Timmins-Kirkland Lake Sheet, Districts of Cochrane, Sudbury and Timiskaming; Ontario Div. Mines, Map 2205, Geol. Comp. Ser., Scale 1 inch to 4 miles.

Transaction Number (office use)
Assessment Files Research Imaging

section $65(2)$ and $66(3)$ of the Mining Act. Under section 8 of the Mining Act, this it work and correspond with the mining land holder. Questions about this collection
nt and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

900

Instructions: - For work performed on Crown Lands before recording a claim, use form 0240.

- Please type or print in ink.

1. Recorded holdertst (Attach a list if necessary)

2. Type of work performed: Check (x) and report on only ONE of the following groups for this declaration.

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required;

- provide proper notice to surface rights holders before starting work;
- complete and attach a Statement of Costs, form 0212;
- provide a map showing contiguous mining lands that are linked for assigning work;
- include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a list if necessary)

I,
4. Greg Collu's , do hereby certify that t have personal knowledge of the facts settontinin-
this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

$$
\text { Deemed Aput } 10,2000
$$

Schedule for Declaration of Assessment Work on Mining Land

Mining Claim Number. Or if work was done on other eligible mining land, show in this column the location number indicated on the claim map.	Number of Clatm Units. For other mining land, list hectares.	Value of work Performed on this claim or other mining land	Value of work Applied to this Claim.	Value of work assigned to other mining claims.	Bank. Vatue of work to be distributed at a future date.
1226430	12 •	\$2,922	\$0	\$922	\$2,000
1228069	15 -	\$1,694	\$0	\$694	\$1,000
1207794	13 -	\$7,012	\$0	\$512	\$6,500
1211743	8	\$5,843	\$0	\$2,576	\$3,267
1211742	4 .	\$1,402	\$0	\$402	\$1,000
1218745	16 *	\$3,272	\$0	\$872	\$2,400
1227613	$6 \quad$ -	\$3,389	\$0	\$189	\$3,200
1227611	8 -	\$3,506	\$0	\$1,506	\$2,000
1227612	3 -	\$1,928	\$0	\$928	\$1,000
1218746	7	\$1,358	\$0	\$818	\$540
1168520	1	\$0	\$400		
1168521	1	\$0	\$400		
1224004	2	\$0	\$800		
952123	1	\$0	\$219		
952124	1	\$0	\$400		
952125	1	\$0	\$400		
952126	1	\$0	\$400		
952127	1	\$0	\$400		
952128	1	\$0	\$400		
952129	1	\$0	\$400		
952130	1	\$0	\$400		
952137	1	\$0	\$400		
952132	1	\$0	\$400		
952133	1	\$0	\$400		
952134	1	\$0	\$400		
952135	1	\$0	\$400		
952136	1	\$0	\$400		
952137	1	\$0	\$400		
952138	1	\$0	\$400		
952096	1	\$0	\$400		
952097	1	\$0	\$400		
952098	1	\$0	\$400		
952099	1	\$0	\$400		
Column Totats		\$32,326 $\$ 9,419$		\$9,419	\$22,907

Personal information collected on this form is obtained under the authority of subsection $6(1)$ of the Assessment Work Regulation 696 . Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, g33 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Note:

- Work older than 5 years is not eligible for credit.
- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

Ministry of
Northern Development
and Mines

March 1, 2000
FALCONBRIDGE LIMITED
SUITE 1200, 95 WELLINGTON STREET WEST TORONTO, ONTARIO
M5J-2V4

Ministère du
Développement du Nord et des Mines

> Geoscience Assessment Office 933 Ramsey Lake Road
> 6th Floor
> Sudbury, Ontario
> P3E 6B5
> Telephone: (888) 415-9845
> Fax: \quad (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mlsmnnge.htm

Submission Number: 2.20041
Status
W0060.00007 Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section \#6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact STEVE BENETEAU by e-mail at steve.beneteau@ndm.gov.on.ca or by telephone at (705) 670-5855.

Yours sincerely,

ORIGINAL SIGNED BY
Blair Kite Supervisor, Geoscience Assessment Office Mining Lands Section

Work Report Assessment Results

Submission Number: 2.20041

Date Correspondence Sent: March 01, 2000
Assessor:STEVE BENETEAU

| Transaction | First Claim
 Number Township(s)/Area(s) Status | |
| :--- | :--- | :--- | :--- | :--- |
| Number 1226430 REID Approval | Approval Date | |
| W0060.00007 | | March 01, 2000 |

Section:
14 Geophysical EM
14 Geophysical MAG

Correspondence to:

Resident Geologist
South Porcupine, ON

Assessment Files Library

```
Recorded Holder(s) and/or Agent(s):
Greg Collins
TIMMINS, ON, CAN
FALCONBRIDGE LIMITED
TORONTO, ONTARIO
EXPLORERS ALLIANCE CORPORATION
TIMMINS, ONTARIO
COMAPLEX MINERALS CORP.
CALGARY, ALBERTA
HUDSON BAY EXPLORATION AND DEVELOPMENT COMPANY
LIMITED
FLIN FLON, MANITOBA
JEAN-CLAUDE BONHOMME
TORONTO, ONTARIO
```


