

SUMMARY REPORT

OF THE

1991 EXPLORATION PROGRAM

TULLY TOWNSHIP PROPERTY

PORCUPINE MINING DIVISION, ONTARIO

FOR

CYPRUS GOLD (CANADA) LIMITED

NTS 42A\11

Report No. 649
A.C.A. Howe International Limited
Murray C. Rogers
March 25, 1991

010C

TABLE OF CONTENTS

		<u>Page</u>
Sur	nmary	1
	roduction	4
Pro	perty Description, Location, Access & Topography	5
	tory of Exploration	8
	rrent Area Activity	8
	gional Geology	9
Pro	perty Geology and Mineralization	9
	scription of the Exploration Program	15
	sults of the Exploration Program	18
	cussion and Conclusions	22
	commendations	23
	liography	25
Cer	tificate of Qualifications	26
	TABLES	
		
1.	Table of Regional Rock Types	10
2.	Summary of the Diamond Drill Program Characteristics	16
	FIGURES	
1.	Property Location Map	6
2.	Property Map (Scale: 1:20,000)	7
3.	Regional Geology Map	11
4.	Location and Geology Maps of the Porcupine Camp	12
5.	Total Magnetic Field Map (1:2,000)	Folder
6.	Pole Reduced Total Magnetic Field Map (1:2,000)	Folder
7.	Measured Vertical Magnetic Gradient Map (1:2,000)	Folder
8.	Max-Min E.M. Stacked Profile Map; 222 Hz (1:2,000)	Folder
9.	Max-Min E.M. Stacked Profile Map; 444 Hz (1:2,000)	Folder
10.	Max-Min E.M. Stacked Profile Map; 888 Hz (1:2,000)	Folder
11.	Diamond Drill Plan; Texmont and Frankfield Deposits (1:2,000)))Folder
12.	Diamond Drill Plan; Texmont Deposit (1:1,000)	Folder
13.	Diamond Drill Plan; Frankfield Deposit (1:1,000)	Folder
14.	Property Survey Plan (1:2,000)	Folder

Drill Sections; Texmont Deposit

15.	0+80 E (1:1,000)	Folder
16.	1+60 E (1:1,000)	Folder
17.	2+60 E (1:1,000)	Folder
18.	3+00 E (1:1,000)	Folder
19.	3+20 E (1:1,000)	Folder
20 .	3+60 E (1:1,000)	Folder
21.	3+80 E (1:1,000)	Folder
22.	4+00 E (1:1,000)	Folder
23.	4+40 E (1:1,000)	Folder
24.	4+80 E (1:1,000)	Folder
25.	5+60 E (1:1,000)	Folder
26.	6+80 E (1:1,000)	Folder

Dril	l Sections: Frankfield Deposit	
27.	9+80 E (1:1,000)	Folder
28.	10+00 E (1:1,000)	Folder
29.	10+20 E (1:1,000)	Folder
30 .	10+40 E (1:1,000)	Folder
31.	10+60 E (1:1,000)	Folder
32.	11+60 E (1:1,000)	Folder
33.	12+20 E (1:1,000)	Folder
34.	12+80 E (1:1,000)	Folder
35.	13+20 E (1:1,000)	Folder
36.	13+40 E (1:1,000)	Folder
37.	13+80 E (1:1,000)	Folder
38.	14+20 E (1:1,000)	Folder
39.	14+40 E (1:1,000)	Folder
40.	14+60 E (1:1,000)	Folder
41.	14+80 E (1:1,000)	Folder
42.	15+00 E (1:1,000)	Folder
43 .	15+20 E (1:1,000)	Folder
44.	15+40 E (1:1,000)	Folder
45.	15+60 E (1:1,000)	Folder
46.	15+80 E (1:1,000)	Folder
47.	16+00 E (1:1,000)	Folder
48.	16+20 E (1:1,000)	Folder
49 .	16+40 E (1:1,000)	Folder
50.	16+80 E (1:1,000)	Folder
51.	17+20 E (1:1,000)	Folder
52.	17+60 E (1:1,000)	Folder
53.	17+80 E (1:1,000)	Folder

54.	18+00 E (1:1,000)	Folder
55.	18+20 E (1:1,000)	Folder
56.	18+40 E (1:1,000)	Folder
<i>57</i> .	18+80 E (1:1,000)	Folder
58.	19+20 E (1:1,000)	Folder
59.	19+40 E (1:1,000)	Folder
60.	19+60 E (1:1,000)	Folder
61.	19+80 E (1:1,000)	Folder
62.	Vertical Longitudinal Section	Folder
	Frankfield Deposit - Main Zone	Folder
	(1:1,000)	

APPENDICES

Diamond Drill Logs, Assay Logs and Assay Certificates
 Petrographic Descriptions of Selected Rock Samples
 Seperate Report
 Seperate Report

SUMMARY

Cyprus Gold (Canada) Ltd. ("Cyprus") recently completed an exploration program on the Tully Township property in Northern Ontario. The objective of the program was to delineate and expand two areas of gold mineralization known as the Texmont and Frankfield Zones, with the purpose of outlining large (>1,000,000 tonne), economic gold deposits. The program consisted of core relogging and sampling, grid establishment, geophysical surveying and diamond drilling.

The property lies 40 kilometres northeast of the City of Timmins, and is comprised of forty six contiguous mining leases and claims in three groups, which straddle the boundary between Prosser and Tully Township.

Originally staked as a base metal prospect to cover airborne electromagnetic conductors, the property was drilled by Intex Mining Company in 1968-69 resulting in the discovery of a gold deposit which was named the Texmont Zone. Further drilling by Intex and Frankfield Explorations Ltd. of a separate electromagnetic conductor lying about one kilometre east of the Texmont Zone resulted in the discovery of a second gold deposit, which was named the Frankfield Zone. Drill indicated reserves for the two zones were estimated by Pearson (1989) at 114,000 tons grading 0.22 ounces gold per ton for the Texmont Zone and 310,000 tons grading 0.21 ounces gold per ton for the Frankfield Zone.

The property lies geologically within the Abitibi Subprovince of the Canadian Shield. The Archean-aged rocks have been regionally metamorphosed to greenschist facies. Both the Texmont and Frankfield Zones are characterized by a generally east-west striking stratigraphy, which dips steeply to the north. Mafic to intermediate flows and less common graphitic-tuffaceous interflow horizons host the gold mineralization ("Main Zone"), which lies stratigraphically above and semiconcordant with the contact of a heavily serpentinized ultramafic flow. Average widths of the Main Zone range from two to five metres. The gold occurs as inclusions within fine-grained arsenopyrite, which is exhibited as halos surrounding dark grey, randomly oriented quartz veins. The mineralized zones are typically altered to an assemblage of iron carbonate and fine-grained sericite. Local silicification is commonly associated with the quartz veining.

Cyprus' exploration program was completed during the period December 11, 1990 to March 8, 1991, and initially consisted of relogging drill core from Gowest Resources' 1990 drill program, and further sampling on portions of 15 holes from their 1988-90 drill programs. No new mineralized intersections were encountered during this resampling program, although a number of weakly mineralized sections were outlined which in effect increased the mineralized width of some of the known gold-bearing intervals.

Field activities were initiated with the establishment of a picket- line grid, which totalled 42.79 line-kilometres, over the northern section of the property, covering both the Intex & Frankfield gold deposits. Total field and gradient magnetic surveys, and a Max-Min horizontal loop electromagnetic survey were completed over the entire grid area. The resulting magnetic data assisted in the interpretation of the geology of the area, and exhibited a linear magnetic high trending to the north-northwest across the property and which may represent a fault structure. Interpretation of the magnetic and electromagnetic data indicates a right-hand or dextral displacement along this fault structure of approximately 800 metres. Realignment of the rock units along this fault structure results in a general alignment of both the Texmont and Frankfield gold zones to a position of stratigraphic equivalency.

Cyprus' exploration effort also included the completion of a diamond drill program which consisted of nine core holes totalling 4,385 metres. The purpose of the drilling was to examine the downdip potential of both the Texmont and Frankfield Zones. Both deposits had been previously defined by drilling to a vertical depth of 150 metres with several additional deeper holes on the Frankfield Zone ranging down to a depth of 560 metres. Cyprus' program resulted in the completion of drill holes T-91-1 to T-91-6 inclusive and T-91-9 which examined the down-dip potential of the Frankfield Zone. Hole T-91-8 tested the Texmont Zone, while Hole T-91-7 examined a geophysical target to the west of the Texmont Zone. A total of 1016 split core samples were submitted for gold analysis. Local sections were also analyzed for arsenic.

To-date, diamond drilling has delineated a near surface strike-length for the Frankfield Zone of about 480 metres. The strike-length appears to decrease with depth, along a steep westerly plunge to a length of about 200 metres at a vertical depth of 300 metres. The deepest intersection (2.37 grams gold/tonne over 3.0 metres) was encountered in hole T-91-6 at 600 vertical metres.

The Texmont Zone was found to strike east-northeast and has been traced by drilling over a strike length of 120 metres. A westward plunge for the deposit has been inferred. Hole T-91-8 encountered the Main Zone mineralization at a vertical depth of 360 metres yielding an interval grading 2.27 grams gold/tonne over 3.0 metres.

The results of the drill program on the Frankfield Zone confirmed previous drill results with the best intersection from this program derived from holes T-91-1 (4.55 gm.gold/tonne/5.0 metres), T-91-2 (4.77 gm.gold/tonne/6.05 metres) and T-91-5 (6.35 gm.gold/tonne/2.0 metres). The gold mineralization within both deposits was found to be irregular and somewhat discontinuous in nature. Although there is a general east-west trend to the deposits, the style of the mineralization suggests that the vein zones may be concentrated in discrete pods and shoots angled away from the main trend of the zone.

Based upon the results of Cyprus' drill program, it appears that both the Texmont and Frankfield deposits have been adequately examined, and there is no apparent potential remaining for the occurrence of large (>1 million tonne), economic gold deposits to exist within the areas presently outlined by drilling. Further work on these zones is not warranted at this time.

However, good potential exists for finding other gold deposits on the remainder of the claim group, which remains relatively unexplored. An exploration program is therefore proposed which would comprise an expansion of the existing grid, additional magnetic and horizontal loop electromagnetic surveying, followed by 'Pionjar' overburden sampling to delineate and prioritize additional exploration targets. A 1500 metre diamond drill program would follow to test selected targets. The recommended program, if fully implemented, would require an exploration expenditure of \$165,000 Canadian.

INTRODUCTION

Mr. Alvin Jackson, Exploration Manager of Cyprus Gold (Canada) Ltd. (Cyprus), 1810 - 1055 West Hastings Street, Vancouver, B.C. commissioned A.C.A. Howe International Limited (Howe) to supervise and complete an exploration program on the Tully Township property located in the Timmins area of northern Ontario.

The following report provides a detailed review of the exploration program which was carried out by Cyprus on the property during the period of December 11, 1990 to March 8, 1991. An exploration program has also been recommended to further evaluate the gold potential of the claim group.

Conclusions and recommendations which are presented in this report are based upon information gained from earlier exploration and from an assessment of the recently acquired information from the Cyprus program.

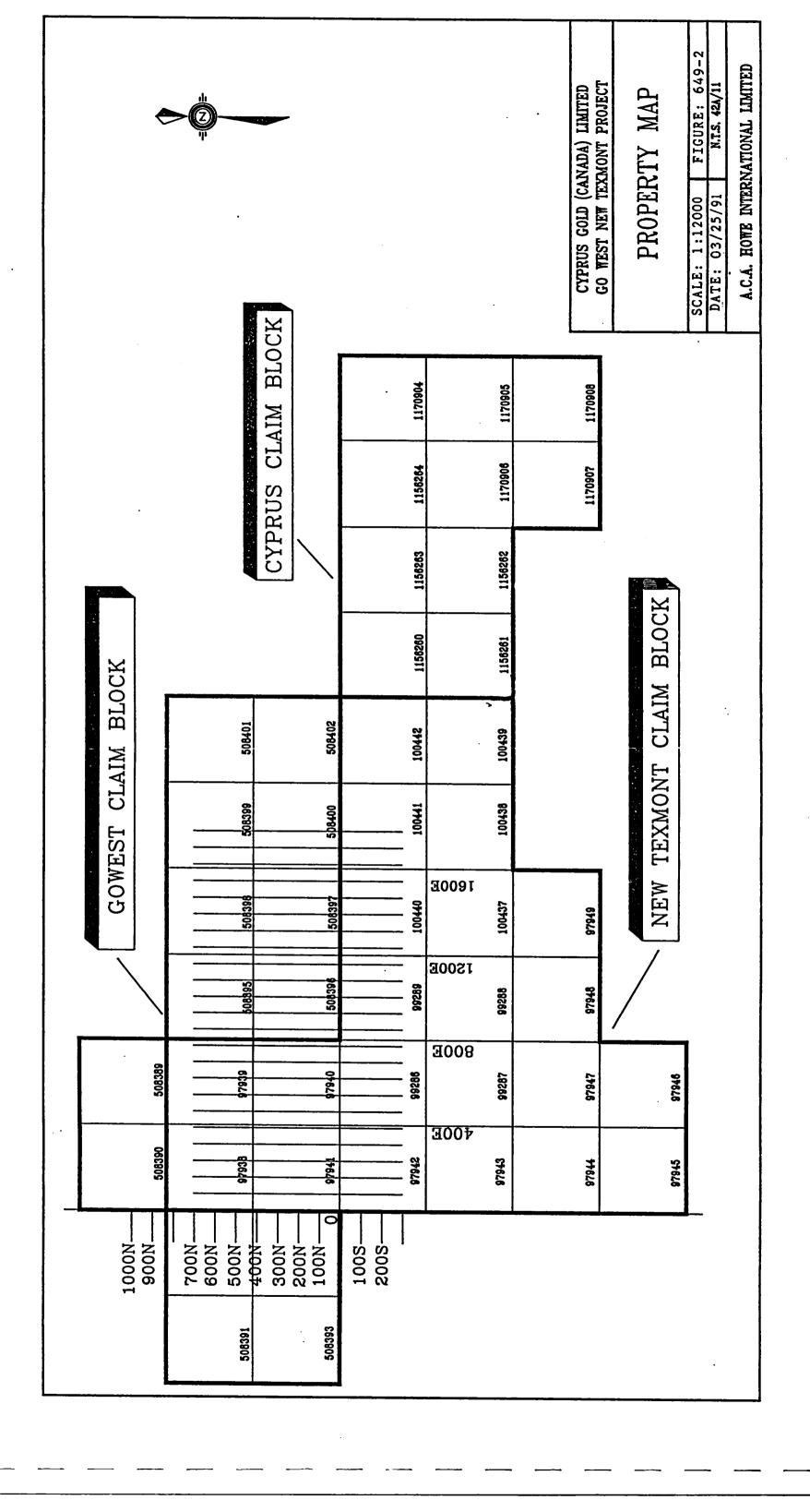
PROPERTY DESCRIPTION, LOCATION, ACCESS AND TOPOGRAPHY

The property straddles the boundary of Tully and Prosser Townships, 40 kilometres northeast of the city of Timmins in northern Ontario (Figure 1).

Access to the west end of the claim group is available by a gravel and clay road which was constructed by New Texmont Exploration Ltd. ("New Texmont") in 1988. The road branches off from Highway 655 at a point 33 kilometres north of Timmins. Total length of the road is 14.2 kilometres from the highway to the Texmont Zone. The east end of the property is accessible via a 29 kilometre long timber road from Highway 610 at Connaught.

The Tully Township property is comprised of three contiguous claim groups which total 46 claims, and can be described as follows (Figure 2):

N.T.S. 42A\11; Latitude 48° 44' N; Longitude 81° 11' W


Gowest Claim Group

<u>Township</u>	Claim No	<u>No</u>	<u>Status</u>	<u>Title</u>
Prosser	P.508391-394	4	Unpatented	50.0% Gowest Amalgamated Resources Ltd.
Tully	P.508389-390	2	Unpatented	31.8% New Texmont Exploration Ltd.
Tully	P.508395-402	8	•	18.2% Frankfield Explorations Ltd.
New Texm	ont Claim Group	1		
Tully	P.97938-949	12	Leased	63.6% Intex Mining Company, 36.4%
Tully	P.99286-289	4	Leased	Frankfield Explorations Ltd.
Tully	P.100437-442	6	Leased	(New Texmont owns 50% of Intex Mining)
Cyprus Go	old Claim Group			
Tully	P.1156260-264	5	Unpatented	100% Cyprus Gold (Canada) Ltd.
Tully	P.1170904-908	5	Unpatented	` '

Cyprus has the option to earn up to a 70% interest in both the Gowest Amalgamated Resources ("Gowest") and New Texmont claim groups by making cash and exploration expenditures over four years.

Topographically, the area consists of flat swamps and coniferous forest. Relief rarely exceeds 10 metres over the property area. Glacial overburden generally ranges from 3 to 50 metres in thickness. The West Buskeau Creek represents the only natural source of water in the immediate property area and lies approximately 500 metres west of the western property boundary.

HISTORY OF EXPLORATION

Originally staked as a base metal prospect following the Kidd Creek discovery to cover airborne electromagnetic conductors, the property was drilled in 1968-69 by Intex Mining Company Ltd. (Intex) who discovered a gold deposit which was named the Texmont Zone.

In 1969, McIntyre Mines Ltd. discovered a gold deposit of about 350,000 tons in a similar geological environment on the Nickel Offsets property, two kilometres to the south of the Texmont Zone.

Further drilling by Intex and Frankfield Explorations Ltd. (Frankfield) of an electromagnetic conductor resulted in the discovery of a second gold deposit, named the Frankfield Zone, which lies about one kilometre east of the Texmont Zone. Drilling in 1980 and 1982 on the Gowest property which lies to the north, intersected the downdip extension of the Frankfield Zone. In 1987, New Texmont optioned the Gowest property and carried out a program of diamond drilling in 1988, 1989 and early 1990.

Drill indicated reserves for the two zones were estimated by Pearson (1989) at 114,000 tons grading 0.22 oz gold/ton (103,600 tonnes of 7.53 gm gold/tonne) for the Texmont Zone and 310,000 tons grading 0.21 oz gold/ton (282,800 tonnes of 7.19 gm gold/tonne) for the Frankfield Zone.

CURRENT AREA ACTIVITY

Exploration in the area was quite active during the winter of 1990-91. Falconbridge Exploration was engaged in a reconnaissance diamond drill program in Prosser Township. Homestake Mining Co. carried out a diamond drill program on its property in northeast Tully Township.

There was also some staking activity in the area. Silversides Resources staked a group of claims in east-central Tully Township apparently on speculation concerning the Cyprus program.

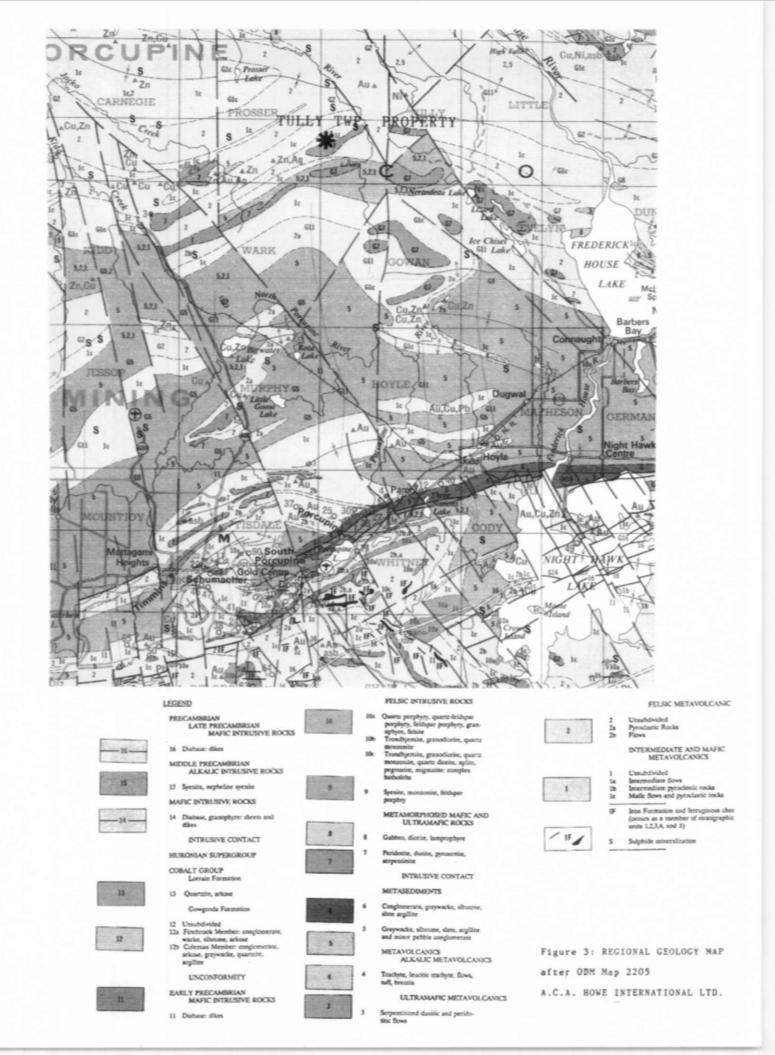
REGIONAL GEOLOGY

The Tully Township property lies within the Abitibi Subprovince of the Canadian Shield. The rocks, which are of Archean age, have been regionally metamorphosed to greenschist facies. A wide range of rock types occur in the area including ultramafic to felsic flows, mafic to felsic pyroclastics, ultramafic and mafic intrusives and a variety of sedimentary rock types (Table 1 and Figure 3).

An east-west trending, steeply dipping stratigraphy is dominant in the area. Broad east-west trending folds and north to northwest trending faults characterize the structural geology.

The Kidd Creek Mine, which is a world class volcanogenic, base metal, massive sulfide deposit, lies 15 kilometres to the southwest of the property and the Porcupine gold camp, which has produced more than 50 million ounces of gold, is situated 40 kilometres to the south-southwest (Figure 4).

PROPERTY GEOLOGY AND MINERALIZATION


Glacial overburden covers almost the entire property. The geology can therefore only be interpreted from geophysical results and from drill core, which is mainly available from the northern half of the property that hosts both the Texmont and Frankfield gold zones.

Both the Texmont and Frankfield Zones are characterized by a similar north to south stratigraphy of mafic and intermediate flows with minor, narrow, interflow ash tuff and carbonaceous-graphitic sedimentary horizons. Ultramafic flows occur as occasional, narrow (<10 metre) units in the lower portion of the sequence and as a thick (>200 metre) basal unit. The stratigraphic sequence strikes generally east-west with a dip of 75° - 85° to the north. The top of the sequence is believed to be north facing. The sequence appears to be relatively undeformed, although narrow (<20 metre) "deformation zones" of strongly foliated, veined and brecciated material have been occasionally noted. A strong northnorthwest (?) trending fault was intersected in previous drilling at grid reference 0+00 X 1430E. The displacement of this fault is unknown.

The mafic to intermediate flows are generally massive and fine grained (< 1mm) with occasional amygdaloidal, variolitic or pillowed features. Mafic to intermediate ash tuffs generally occur as narrow (<5 metre) interflow units, commonly in contact with or intermixed with graphitic sedimentary horizons. The graphitic horizons occur as narrow (<5 metre) interflow horizons which are commonly intermixed with volcanic material and may locally contain up to 50% pyrite or pyrrhotite. The ultramafic flows have generally undergone intense hydrous alteration to a fine grained talc-serpentine-carbonate mineralogy. Occasional remnant spinifex texture indicates the flow origin of the rock and rare remnant mineralogy infers a peridotite precursor. More detailed descriptions of the rock types can be found in the drill logs (Appendix 1) and the petrographic descriptions (Appendix 2).

Table 1 - Table of Regional Rock Types

PHAMEROZOIC CENOZOIC QUATERNARY PLEISTOCEME AND RECENT Glocid drik, sand, greed, lake, stream and successful
PRECAMBRIAN MAPIC INTRUSIVE ROCKS 10 To Gribus rocks BITRUSIVE CONTACT EARLY PRECAMBRIAN
RAPISECASING INSTANDAPHIC COMPLEX By Managhabel Ingression-quient-foldering grandite! By Malanquist grandite Imphiliate pyression-quients physicalen! Be Lausaratic grandite Ingression-generi-quients folderi) Militaration-energy-austroalizatic graines (suppor amphilia- like facion) But negarat CONTACT
INTERMEDIATE TO FELSIC INTRUSIVE ROCKS 8 Unabblished Be Gracks, grandleites, quett montenite, transhjemite, quett dorite 30 Aprile 30 Aprile 32 Payradies 34 Symile
ANTAUSWE OR GRADATIONAL CONTACT MIGMATITES 7 United divided 7 To State parts bidges goods (metased mentary migma- field 7 bidges of grants bidges goods (metased mentary migma- field 7 bidges of grants bidges goods british divide (metased conference migraphic)
MAFIC TO ULTRAMAFIC INTRUSIVE ROCKS 6 Unabbidided 6 Gabbin, Gorbe 90 Productin, dunia 80 Unramics and surpendiated rocks 6d Lamprophyre dikes WITHUSIVE CONTACT
METAVOLCANO METASEDIMENTS Metavolcinants 5 Unsubdivided 5 Sandener, arter, quarties Stitude Sc Conference 6d Stuarn, arplies, shale for Soon SI Graphics metavolcinants 5g Obel Sh Faregrount thert
Metavolenies 4 Unabblished da Pyrodusies, ph to applements dis Flore
Febric Meterolizatics 3 theodofi-ided 3a Aut, halfit, telf 3b Breain to applemente Imprentals 3c Dibes and stocks (quarte-idedpar) 3d Flow, remines to febrated 3e Flow, primered to susypholoidel 3f Flow, applyritic 3g Graphic hariten 3h Carbonolited herizon
Interspecialist Metavoltanics 2 Unadeficided 22 Adu, Ispill, Self 28 Bessin to applementale 20 Chie 24 Flore, monive to Infacted 20 Flore, pillowed to samplishedal 21 Flore, prophyridic 20 Carlomatic and interse 20 Carlomatic de jeriton
Mafie Metanolesmics 1 Unadeficided 1a Adr. Landi, suff. 1b Beserie to apphenesse Iragmentals 1c Dias 1d Plan, massive to foliosed 1d Flan, planshumid to amyglateidel 1f Flan, posthymics 1g Graphics harisen 1h Codenation harisen 11 Amythafies, suphibalic school 1h Unamafic Row, sphiligs

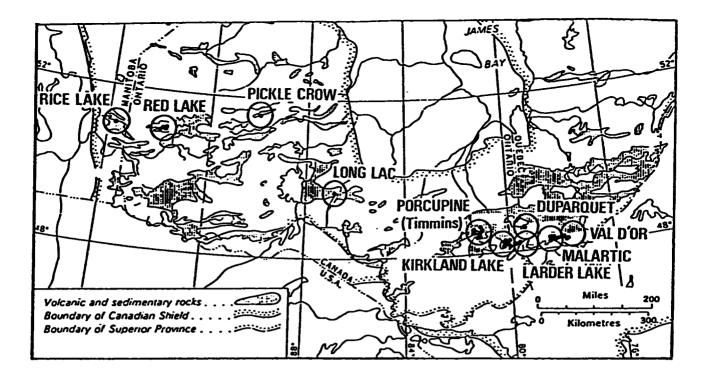


Figure 4a. Location of Porcupine Camp in relation to other major gold producing camps in the Superior Province of the Canadian Shield.

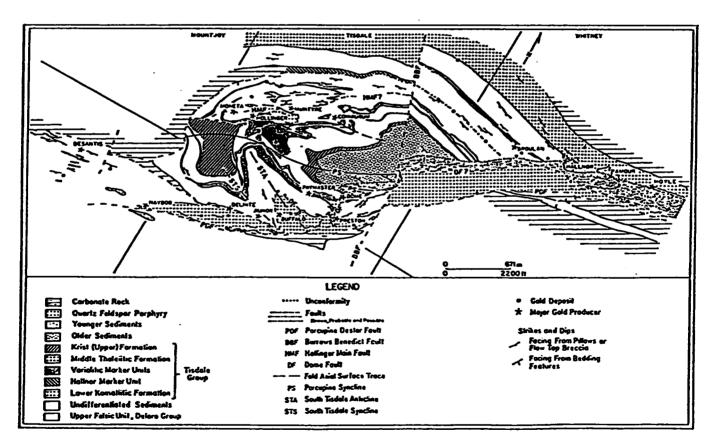


Figure 4b Generalized geology of the Porcupine camp. Compiled from Ontario Geological Survey 1 inch to 1000 feet and 1 inch to % mile scale maps of Tisdale, Whitney, Deloro, Ogden and Mountjoy Townships.

Visual and petrographic observations indicate that carbonate, iron carbonate, sericite and to a lesser degree, silica alteration are the common forms of alteration associated with the deposits. Calcite alteration occurs pervasively, as infilling of amygdules and as random veining throughout most of the stratigraphy. Pervasive iron carbonate alteration and fine grained, pervasive sericite alteration occur locally either in combination or as separate alteration products. Silicification is generally found only locally and is associated with quartz veining. Chlorite-epidote alteration is also a common feature in certain areas but is principally related to greenschist facies metamorphism of the rocks.

Significant gold mineralization in both deposits is hosted by mafic to intermediate flows commonly containing appreciable amounts of graphitic material, and much less commonly by distinct graphitic horizons. The base of the primary gold mineralized zone (Main Zone) is found to vary from a position at the footwall ultramafic flow contact up to 25 metres above the contact and is generally subparallel to the stratigraphy. Drilling indicated that significant mineralized intervals generally ranged from 2 to 5 metres in width, but have also occurred over widths of up to 22.5 metres (hole 89G0-3). Typically the higher grade zones are usually found within wider intervals of weakly mineralized material.

Visual, petrographic and analytical evidence indicates that the gold in this environment occurs as inclusions within arsenopyrite. Free gold has not been observed. The mineralization occurs as sulfidic halos associated with medium to dark grey, randomly orientated quartz veining. The sulfides mainly consist of pyrite and arsenopyrite with occasional traces of sphalerite and chalcopyrite. The pyrite occurs as fine grained ($\leq 1.0 \text{ mm}$) disseminations and clusters comprising 2-15% of the core intersection. Fine grained (0.2 mm) arsenopyrite occurs as disseminated needles, clusters and bands comprising 1-30% by volume. Arsenopyrite is also exhibited as inclusions within pyrite grains. The gold content exhibits a positive correlation with the arsenopyrite content. Very fine grained ($\leq 0.2 \text{ mm}$), disseminated sphalerite and chalcopyrite are found locally in trace (< 0.5%) amounts and as inclusions in pyrite.

Grey quartz veining ranges from 1% up to 50% locally in the mineralized sections. The grey colour is due to abundant fluid inclusions in the quartz.

The mineralized zones are typically pervasively altered to iron carbonate with common, fine grained sericite. Local silicification is also commonly associated with the quartz veining.

Occasional narrow, weakly mineralized intervals are also found in the hangingwall sequence. These often have the same style of mineralization as the Main Zone, or occur as extensively quartz veined and silicified intervals containing minor (1-3%) pyrite.

A general paragenetic sequence of the Main Zone alteration and mineralization can be inferred from visual and petrographic observations, and is represented in the following

diagram.		
Time		
Calcite	\neg	[
Fe Carbonate		
Sericite		
Silica		
Quartz Veining		
Arsenopyrite		
Chalcopyrite		
Sphalerite		

Pyrite

DESCRIPTION OF THE EXPLORATION PROGRAM

Cyprus' exploration program was carried out from December 11 to 21, 1990 and January 3 to March 8, 1991. The program consisted of core relogging and sampling, grid establishment, geophysical surveying and diamond drilling.

Core relogging and additional sampling of portions of 15 holes was completed (Appendix 1). This included New Texmont holes 88-FI-2 to 88-FI-13 inclusive and Gowest holes 89-G0-3 and 90-G0-5. Hole 90-G0-4 was completely relogged. A total of 209 core samples were collected for gold analysis.

A picket line grid of 42.79 kilometres was established over the northern section of the Tully Township property. The east-west baseline was established along the survey boundary between Concessions II and III for a distance of 1,840 metres. Approximately 40.90 line-kilometres of grid line was cut with 25 metre stations on lines spaced at 40 metre intervals over the western and eastern portions of the property, and 80 metre intervals over the central portion of the grid. The entire base line was surveyed with a laser transit at 100 metre intervals.

Total field and gradient magnetic surveys were completed over the entire grid area utilizing an OMNI-IV Plus proton precession magnetometer. A total of 3,420 total field and gradient readings were taken at a sample interval of 12.5 metres. All readings were corrected for diurnal variations using an OMNI-IV base-station recorder. Both the gradient and total field magnetic data was processed using the GEOSOFT system which presents the readings in a bi-directional gridding algorithm resulting in pronounced lineations in both the down-line and across-line directions. The total field magnetic data has been contoured at an interval of 25 gammas (Figures 5-6). The vertical gradient data has been contoured using an interval of 2 gammas (Figure 7).

A total of 42.31 line-kilometres of horizontal-loop electromagnetic surveying was completed over the grid area utilizing a Max-Min I electromagnetic unit coupled with an APEX M.M.C. datalogger. Three frequencies (222 Hz, 444 Hz and 888 Hz) were recorded at 25 metre station intervals along all of the grid lines. The data has been plotted on stacked profile maps (1:2,000 scale) each of which displays one frequency illustrating both the in-phase and quadrature profiles (Figures 8-10).

The diamond drill program consisted of nine core holes which totalled 4,385 metres. Information on the drill holes, which are numbered T-91-1 to T-91-9 inclusive, are summarized in Table 2 and their locations displayed on the drill plans (Figures 11-13). The purpose of the drilling was to examine the downdip potential of both the Texmont and Frankfield Zones at vertical depths down to 600 metres. Both deposits had been previously well defined to a vertical depth of 150 metres, with several additional deeper holes on the Frankfield Zone ranging down to a depth of 560 metres.

TULLY TWP. PROJECT - DIAMOND DRILLING PROGRAM SUMMARY

HOLE NO	ZONE	LOCATION (METRES)	ELEVATION (METRES)	DIP (DEGREES)	AZIMJTN (DEGREES)	DRILLING DATES	LENGTH (METRES)	COPERITS	MINERALIZATION (INTERVAL: CM.AU/TONNE)
1-61-1	Frankfleld	1479.53 E; 251.75 N	2.08	3 9.	180	Jan. 16-26/91	9.267	Casing left 116 samples	430.7-435.7: 4.55/5.0
T-91-2	Frankfield	1560 E; 168 N	2.86	09-	180	Jan. 26-31/91	321.85	Casing left 97 samples	259.7-265.75: 4.77/6.05 285.85-288.55: 2.29/2.7
1-91-3	Frankfield	1560 E; 250 N	2.51	09-	180	Jan. 31 - Feb. 6/91	381.9	Casing left 121 samples	342.75-346.75: 2.86/4.0 342.75-351.75: 1.67/9.0
1-91-4	Frankfield	1318 E; 192 N	2.47	09-	180	Feb. 1-9/91	541.5	Casing left 135 samples	
1-91-5	Frankfield	1560 E; 300 N	1.71	-65	180	Feb. 6-13/91	468.2	Casing left 128 samples	415.5-424.0: 3.50/8.5 422.0-424.0: 6.35/2.0
1-91-6	Frankfleld	1480 E; 402 N	0.91	\$9-	180	Feb. 9-25/91	793.05	Casing left 139 samples	675.7-678.7: 1.75/3.0 686.2-689.2: 2.37/3.0
T-91-7	Texmont	080 E; 119 N	2.64	-61	180	Feb. 13-16/91	263.95	Casing left 68 samples	
1-91-8	Texmont	404 E; 308 N	8.20	9-	180	Feb. 17-22/91	483.4	Casing left 104 samples	158.8-160.3: 5.28/1.5 301.15-304.15: 2.22/3.0 334.45-337.45: 1.00/3.0 428.9-431.9: 2.27/3.0
1-91-9	Frankfield	1320 E; 272 N	2.47	09-	180	Feb. 18-26/91	636.1	Casing left 108 samples	237.5-239.0: 3.65/1.5

Drill holes T-91-1 to T-91-6 inclusive and T-91-9 examined the Frankfield Zone. Hole T-91-8 tested the Texmont Zone. The magnetic survey outlined a flexure in the basal ultramafic unit to the west of the Texmont Zone which was examined by hole T-91-7.

The drilling program was carried out from January 16 to February 26, 1991 utilizing two wireline drills, a BBS-35 and a BBS-37, which cored with NQ-sized drilling tools. A core recovery of nearly 100% was achieved for all of the holes. A Tropari compass was employed in all of the holes to determine downhole dips and azimuths. Casing was left in all of the holes, each of which has been marked with survey stakes and labelled with plastic tags. The core is stored on the property at the end of the access road, north of the Intex pit.

Drill collars were surveyed with respect to established reference points, employing a transit and tape. Elevations were surveyed using a transit and levelling rod. A large number of the 1988-90 drill hole collars were also located and surveyed. The boundary of the Texmont pit was also surveyed. The survey plan is presented as Figure 14.

A total of 1016 split core samples were submitted for analysis at Swastika Laboratories, Swastika, Ontario. Individual sample lengths generally ranged from 1.0 to 1.5 metres. The samples were analyzed for gold, and various mineralized sections were also analyzed for arsenic. Initially the gold determinations were obtained by fire assay, digested by acid and finished with atomic absorption analysis. Later analysis for gold and all of the arsenic determinations were made by atomic absorption analysis. Regular internal checks were carried out of the assays results. A second laboratory was also used to carry out check assays on some of the sample pulps. Good correlation between the assays was achieved.

RESULTS OF THE EXPLORATION PROGRAM

The objective of the diamond drill program was to examine the downdip potential of both the Texmont and Frankfield Zones with the purpose of outlining large (>1,000,000 tonne), economic gold deposits. The results of the drill program are summarized below and illustrated in Figures 15 to 61, inclusive.

Frankfield Zone

Hole No T-91-1 (1479.53 E; 251.75 N)

Interval (metres)	Width	Grade (gm Au/T)	Description (metres)
180.9-183.6	2.7	2.07	Andesite flows with graphite, 1-10% po-py, grey quartz veining (qv)
296.7-298.2	1.5	1.07	Graphitic horizon, 1-10% po-py, qv
430.7-435.7	5.0	4.55	Intermediate (int) flows, Fe carb,qv, py, asp, Main Zone
Hole No T-91-2 (15	660 E; 168 N)		
259.7-265.75	6.05	4.77	Int flows, Fe carb, qv, py, asp, Main Zone
285.85-288.35	2.7	2.29	Int flows, Fe carb, qv, py, asp, Main Zone
Hole No T-91-3 (15	660 E; 250 N)		
170.1-174.6	4.5	1.18	Graphitic horizon, 5-70% py, 2-3% qv
310.0-313.5	3.5	0.92	Int flows, 20-30% qv,
332.75-336.75	4.0	1.22	py, asp Int flows, qv, py, asp, Main Zone
342.75-351.75	9.0	1.67	Int flows with graphite, Fe carb, qv, py, asp, Main Zone

Hole No T-91-4 (13	318 E; 192 N)					
499.7-501.2	1.5	0.94	Graphitic sediments, 2-50% py, Fe carb, qv, fault zone			
Hole No T-91-5 (15	560 E; 300 N)					
415.5-424.0	8.5	3.50	Int flows, silica, qv, py, asp, Main Zone			
437.5-439.5	2.0	1.91	Graphitic sediments, qv, py, asp, Main Zone			
Hole No T-91-6 (1480 E; 402 N)						
Interval	Width	Grade	Description			
501.7-502.7	1.0	1.31	Int flows, graphite, 2-3% qv, po, py			
580.0-584.7	3.0	1.05	Graphite, int flow, qv, py-po			
675.7-678.7	3.0	1.75	Int flows, graphite, qv, py, po, asp, Main Zone			
686.2-689.2	3.0	2.37	Int flows, graphite, qv, py, po, asp, Main Zone			
Hole No T-91-9 (1	320 E; 272 N)		Widin 2010			
102.7-104.2	1.5	1.44	Ultramafic flow, qv,			
137.9-139.4	1.5	1.71	Mafic flows, silica, qv, py			
237.5-239.5	1.5	3.65	Int flows, qv, py, asp			

Holes T-91-2, 91-3 and 91-5 were drilled on line 1560 E, intersecting the Main Zone of the Frankfield deposit at vertical depths of 210, 260 and 320 metres, respectively (Figure 45). On line 1480 E, drill holes T-91-1 and 91-6 encountered the Main Zone at respective vertical depths of 360 and 600 metres (Figure 41). Holes T-91-4 and 91-9 were drilled on line 1320 E to test the hypothesis of a westerly plunge of the Frankfield deposit. Neither hole intersected the Main Zone mineralization. The "footwall" ultramafic unit was intersected at vertical depths of 420 and 500 metres respectively (Figure 35).

1.65

Int flows, qv, py, asp

243.5-245.0

1.5

Texmont Zone

164.75-169.25	4.5	0.53	Int ash tuff, 5-100% py
Hole No T-91-8	404 E; 308 N)		
158.8-160.3	1.5	5.28	Int flows, qv, py, silica, Fe carb
301.15-304.15	3.0	2.22	Int flows, qv, silica
334.45-337.45	3.0	1.00	Int flows, qv, silica, py
428.9-431.9	3.0	2.27	Mafic flows, graphite, qv, py, asp, Main Zone

Drill hole T-91-8 on line 400 E encountered the Main Zone of the Texmont deposit at a vertical depth of 360 metres (Figure 22). On line 080 E to the west of the Texmont Zone, hole T-91-7 failed to intersect any significant mineralization. The "footwall" ultramafic unit was encountered at a vertical depth of 185 metres (Figure 15).

A number of geophysical features were outlined by the magnetic and electromagnetic surveys. Prominent magnetic highs were found at the south end of the grid at about 100 S to 300 S from 1120 E to 1840 E and from 0 to 400 E. These broad features represent thick ultramafic flow sequences. Magnetic lows to the north of the highs are the result of alteration of the ultramafics to talc-serpentine with a coincident destruction of magnetite. A northeast-trending magnetic high from the baseline at 400 E to 720 E X 200 N represents an ultramafic flow unit, with a magnetic low caused by talc-serpentine-altered material to the north. Irregular magnetic highs from line 0 to 520 E at 300 N to 500 N probably represent a mixed volcanic sequence with local ultramafic flows and/or pyrrhotite-bearing graphite units. Another area of irregular magnetic highs from 1440 E to 1680 E at 300 N to 450 N is the result of a mixed sequence of mafic to intermediate flows with local pyrrhotite-bearing graphitic horizons.

A linear magnetic high trending at 330° crosses the baseline at 1040 E. This could represent a fault. If a dextral motion is interpreted for the fault with an approximate 800 metre displacement, a realignment would move the eastern end of the ultramafic flow unit (magnetic high) at 850 E x 300 N to the southeast to align with the ultramafic flow unit (magnetic high) at 1200 E x 300 S. This would result in the lateral continuity of the "footwall" ultramafic flow units, a general alignment of the Texmont and Frankfield Zones, and further consistency in the magnetic pattern to the north.

A strong, east-west trending electromagnetic conductor with a steep northerly dip occurs at 80 N to 100 N on lines 1520 E to 1840 E. Both the in-phase and out-of-phase readings display good coincidental responses. Drill hole logs indicate that a graphitic horizon is the likely source of the anomaly. Local coincidental magnetic highs reflect the pyrrhotite-rich portions of the graphitic horizon.

Another good conductor was found to trend from 1640 E X 175 N through to 1840 E X 275 N, increasing in amplitude towards the northeast. Drill hole logs indicate a graphitic horizon is the source of the anomaly, with local coincident magnetic highs reflecting pyrrhotite enrichment. An east-west trending conductor is indicated by both in-phase and out-of-phase responses from 1200 E to 1280 E at 050 S and can be traced by weak quadrature responses to about 1600 E. Dispersed graphitic material is the source of the anomaly. A steeply dipping, east-northeast trending anomaly which displays in-phase and out-of-phase responses can also be traced from line 0 to 320 E at 50 N to 100 N. Drill hole logs again indicate that a graphitic horizon is the source of the anomaly, it's local magnetic high associated with a localized pyrrhotite concentration.

DISCUSSION AND CONCLUSIONS

The 1991 drill program adequately examined the economic potential of both the Texmont and Frankfield deposits. Neither zone represents a large, economic gold deposit. In general, the results of the exploration were found to be comparable to those obtained by the previous exploration programs which were directed towards these zones.

As defined by the drill programs, the Frankfield Zone has an east-west strike and a dip of 80°-85° to the north, roughly parallel to that of the stratigraphy. As interpreted from the longitudinal section (Figure 62), the deposit has a near surface strike extent of about 480 metres (1320 E to 1800 E) which shortens with increasing depth along a steep, westerly plunge to an indicated strike length of about 200 metres (1440 E to 1640 E) at a vertical depth of 300 metres. The deepest intersection was in hole T-91-6 at 600 vertical metres.

The Texmont Zone also strikes in an east-northeast direction and dips about 75° to the north, again generally parallel to the stratigraphy. A 120 metre (320 E to 440 E) strike length extending to a vertical depth of 150 metres has been outlined for the deposit. A westward plunge for the zone has been inferred. Hole T-91-8 encountered the deposit at a depth of 360 metres, exhibiting a down plunge continuation of the zone to at least that depth.

An interpretation of all of the exploration results completed on the property indicates that the only laterally continuous zone of gold mineralization is found within the Main Zone of both the Texmont & Frankfield deposits. The Main Zone of mineralization within both of these deposits exhibits a similar style of mineralization. Gold is associated with fine grained arsenopyrite, which occurs as halos surrounding dark grey quartz veins. The veins and sulfides were probably emplaced along structurally fractured zones within the host rocks, which had been made brittle by early stage iron carbonate alteration.

The Main Zone of gold mineralization is generally hosted by intermediate flows at or near the contact with a thick "footwall" ultramafic flow sequence. This apparent stratigraphic control may be related to a primary syngenetic preconcentration of the gold or due to structural control imparted by a brittle/ductile transition at the contact.

The gold mineralization in both deposits was found to be irregular and somewhat discontinuous in nature. Although there is an overall east-west trend to the deposits, the random attitudes of the quartz veining and sulfides which were encountered indicate that the vein zones may occur as more discrete pods and shoots angled away from the trend. Drilling downdip into some of these high grade shoots may account for some of the exceptional intersections (i.e. 89-G0-3: 5.45 gm gold/tonne/22.65 metres) which apparently do not have very much lateral continuity.

RECOMMENDATIONS

The Texmont and Frankfield deposits appear to have been adequately explored with no apparent potential remaining for the occurrence of a large deposit within the areas presently outlined by drilling. Further work on either of these zones is not warranted at this time.

However, only a relatively small portion of the entire property has been adequately explored. Good potential exists for finding other gold deposits within the remainder of the claim grouping which encompasses a similar geological environment to that of the known deposits.

An exploration program is therefore proposed to evaluate the economic potential of the southern and eastern portion of the property. The proposed program would initially consist of an expansion of the existing grid followed by an expansion of the magnetic survey coverage, combined with horizontal-loop electromagnetic surveying over selected areas of the property. The proposed grid would consist of lines at 100 metre intervals with stations spaced at 25 metres. Fill-in lines may be required in some localities.

The expansion of the magnetic survey coverage would be effective in outlining the ultramafic flow units which occur as broad, uniform magnetic highs and have been found to be associated with the gold mineralization. Talc-serpentine altered ultramafics would be represented by adjacent, uniform magnetic lows. Graphitic horizons, which are commonly found within the ore zone stratigraphy and occasionally host the gold mineralization, will be outlined as linear conductors by the electromagnetic surveys.

A Pionjar overburden sampling program is also recommended to effectively prioritize any prospective targets outlined from the geophysical program. The proposed sampling program would involve the testing of the basal till horizon at regular intervals, down-ice from the geophysical targets. The heavy mineral concentrate from each till sample would be assayed for both gold and arsenic.

Following the completion of the surface geophysical surveys and till sampling program, a 1500 metre program of reconnaissance diamond drilling is invisioned to test the selected targets. Emphasis would be placed on targets which are coincident with the interpreted ultramafic flow contacts, with priority given to targets with magnetic and electromagnetic responses coincidental with anomalous gold-arsenic values in the basal till.

The recommended program if completed in its entirety, would require an exploration expenditure of \$165,000.00 Canadian, and has been budgeted as follows:

Grid establishment - 50 line km @ \$200/km	\$ 10,000
Magnetic survey - 50 line km @ \$125/km	6,250
Max-Min E.M. survey - 25 line km @ \$250/km	6,250
Pionjar overburden sampling - 20 days @ \$600/d	12,000
Heavy mineral analysis - 60 samples @ \$30/sample	1,800
Diamond drill program - (all inclusive)	
1500 metres @ \$75/metre	112,500
Miscellaneous (approx.11%)	16,200
Total	\$ 165,000

Respectfully submitted,

Murray C. Rogers, M.Sc., FGAC

Consulting Geologist

Toronto, Ontario March 25, 1991

BIBLIOGRAPHY

Johnson, K.W.

Interim Report on the Tully Township Project,

1991

Porcupine Mining District, Ontario, of Cyprus Gold (Canada) Ltd.,

A.C.A. Howe International Limited, Report No. 647.

Pearson, H.A.

Report of Work Performed on Intex Mining

1989

Company Limited, Frankfield Explorations Limited, Gowest Amalgamated Resources Ltd., New Texmont Explorations Limited - Tully Township Properties, Porcupine Mining Division, Ontario, 8 pages.

Pyke, D.R. 1982

Geology of the Timmins Area, District of

Cochrane, Ontario Geological Survey, Report 219, 141 pages.

Rogers, M.C. 1990

Assessment Work Summary and History of

Exploration, Texmont Property, Tully and Prosser Townships for Cyprus Gold (Canada) Ltd., A.C.A. Howe International Limited, Report No.

646.

CERTIFICATE

- I, Murray C. Rogers, of 1032, 95 Trailwood Drive, Mississauga, Ontario, hereby certify that:
- 1. I am currently working on a contract basis as a senior project geologist with A.C.A. Howe International Limited, with offices at 22 Front Street West, Suite 1400, Toronto, Ontario M5J 1C4.
- 2. I am a graduate of the University of Calgary, Alberta with a Bachelor of Science (1977) degree in geology and of Queen's University, Kingston, Ontario with a Masters of Science (1982) degree in geology.
- 3. I have practised my profession in excess of twelve years.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. I have personal knowledge of the project, being the geologist responsible for the on-site supervision of the program.
- 6. I have not received, nor do I expect to receive any interest, directly or indirectly, in the properties or securities of Cyprus Gold (Canada) Ltd., or any related companies.

Murray C. Rogers, M.Sc., FGAC

Toronto, Ontario March 25, 1991

APPENDIX 1

DIAMOND DRILL LOGS, ASSAY LOGS
AND
ASSAY CERTIFICATES FOR
HOLES T-91-1 TO T-91-9
AND
RELOGGED PORTIONS OF
HOLES 88-FI-2 TO 88-FI-13,
89-G0-3,90-G0-4 AND 90-G0-5

DIAMOND DRILL LOG

CLIENT:

NAME OF PROPERTY:

Cyprus Gold Tully Twp - Frankfield **SHEET NO: REMARKS:**

Casing left in hole

HOLE NO:

LENGTH: **CLAIM NO:** T-91-1 495.6 metres

Zone

LOGGED BY: STARTED:

FINISHED:

M. Rogers Jan. 16/91 Jan. 26/91

LOCATION:

ELEVATION:

AZIMUTH:

DIP:

14+79.53 E; 2 + 51.75 N

2.08 metres

180° -66

FROM	то то	DESC	CRIPTIO	
0	14.6	Overt	ourden	
14.6	132.95	hardn compogeners oval t (2h), (1-5%,	ess 3-4, osition, lo ally <.5% o elongat common irregular	s (2d, 2e); medium green, fine grained (≤.5 mm), massive to locally pillowed, mafic-intermediate ocal weakly developed schistosity at 45° to core axis, disseminated (dissem.) pyrite (py), common (1-5%), e calcite-filled amydules, pervasive calcite alteration (1-10%), random and irregular calcite veinlets, local, and random quartz veinlets with .5-5% py commonly, gillite lenses and interbeds.
		33.3	38.15	Variably bleached section due to sericite (?) alteration.
		47.0	47.6	10-30% lenses of argillite; local calcite veining to 50%
		49.3	53.6	Lighter coloured section; bleached due to sericite (?) alteration.
				Local weak schistosity at 55.0 metres at 30° - 35° to c.a.
		53.9	59.25	5-20% lenses and fragments of argillite; locally common (up to 50%) calcite veining; local, 1-2%

blebs of py.

FROM	OM TO DESCRIPTION			
		57.8	59.25	10-30% calcite veining generally parallel to foliation, local 1-5% quartz veinlets; .5-2% dissem. and blebbed py.
		59.25	62.35	Lighter coloured, "bleached" section due to sericite (?) alteration.
		62.35	64.3	20-100%, grey quartz - calcite veining, generally irregular, random to foliation parallel, .5-1% dissem. pyrrhotite (po).
		64.3	79.25	1-20% argillite lenses and interbeds; common (1-10%) calcite veining; local graphitic lenses (2g).
		75.1	77.3	Extensive quartz and calcite veining; local graphitic lenses with 1-3% blebbed py. (2g).
		84.2	88.0	Common (1-25%) graphite lenses (2g); extensive quartz and calcite veining - generally random; calcite and silica alteration (2g).
		87.3	88.0	5-50% po and py as dissem, stringers and blebs.
		88.0	131.3	Generally massive andesite flows with 1-10% carbonaceous and graphitic sediments (2g) as lenses, stringers and fragments, commonly with .5-5% py-po associated; pervasive calcite alteration; common veining, local elongate calcite-filled amygdules, local, weak schistosity at 35°-45° to c.a., local flow breccia.
		110.8	111.1	White-grey quartz vein.
		111.7	111.9	White quartz vein at 30° to c.a.
		114.4	117.25	Lighter coloured section probably due to sericite (?) alteration.
		120.5	122.8	Lighter coloured section due to sericite (?) alteration.

FROM	то	DESCRIPTION
		123.4 131.3 Extensive (5-30%) grey quartz and calcite veining, irregular and random to foliation parallel, local .5-3% dissem and stringer po-py, local bleaching - sericite (?), common in-situ brecciation; possible very fine (<<.5mm) asp. up to 1%. Sharp contact at 45° to c.a.
132.95	135.15	Andesite Ash Tuff (2a); medium grey-green, fine-grained (≤ 1mm), schistosity at 45° to c.a., hardness 3-4, intermediate composition, pervasive calcite alteration, ≤.5% py as dissem. and stringers, local, blebs of po, 1-10% calcite veinlets - irregular, random to foliation parallel. Sharp contact at 45° to c.a.
135.15	215.2	Andesite Flows (2d,2e); similar description to 14.6- 132.95; generally massive, locally amygdaloidal (calcite-filled), rare pillows, pervasive calcite alteration, common irregular and random quartz and calcite veining, minor (\leq 1%) py-po, local carbonaceous-graphitic lenses.
		160.0-161.4 Barren, white quartz veining (50%) subparallel to c.a.
		173.3-188.5 Common (1-10%) stringers, lenses and fragments of carbonaceous and graphitic sediment in the volcanic rock generally with py and po (2g).
		180.9-183.6 5-20% graphitic lenses with 1-10% po-py locally as dissem., stringers and blebs.
		182.7-183.2 Grey quartz veining with 1-3% py (2g).
		Weak schistosity at 40°-45° to c.a. throughout this part of the section.
		214.2-215.2 Lighter coloured section - minor bleaching; contact zone.
		Sharp contact

FROM	то	DESCRIPTION
215.2	244.9	Andesite Flows (2d); medium green, fine grained (1mm), massive, hardness 3-4, intermediate composition, weak to locally strong, pervasive calcite alteration, generally ≤.5% dissem. py-po, common (1-5%), irregular and random calcite and quartz veinlets, local, 1-5% graphitic lenses, rare, calcite-filled amygdules, distinct in appearance from previous flows, slightly coarser and more mafic; epidote present.
		236.2-236.55 50% calcite veining.
		Gradational contact
244.9	292.2	Intermediate flows (2d); medium grey, fine grained (<1 mm), hardness 3-4, massive, intermediate composition, more felsic in appearance than previous unit, local, 1-5%, calcite-filled amygdules, no apparent foliation, common, pervasive, weak-strong calcite alteration, generally \leq .5% dissem. po-py, common 1-10%, irregular and random calcite veinlets, local, minor quartz veining.
		245.65 - 246.15 70% barren calcite veining.
		257.9 - 258.1 Grey quartz vein with .5% dissem. py.
		263.1 - 263.7 Interbed of carbonaceous argillite; 35% irregular and random calcite veinlets, brecciation.
		272.9 - 273.6 Extensive (30-80%) white and grey quartz veining with 1% dissem. py.
		273.6 - 274.9 5-10% irregular and random quartz veinlets; almost total carbonatization (calcite) of host rock; brecciation.
		274.9 - 299.0 Strong pervasive calcite alteration.
		278.85 - 285.65 Well developed section of local, small pillows, flow top breccias and irregular, light coloured chilled material; extensive calcite alteration.

FROM	то	DESCRIPTION
		Fe carbonate alteration; medium to dark brown carbonate initially along quartz veinlets and as irregular blebs from 285.1 - 286.6; then as large patches and zones of weak to strong intensity from 286.6 - 288.4 and as blebs and along veinlets to 289.7; section contains 5-10% quartz veinlets with 1% py.
		Indistinct contact.
292.2	295.75	Andesite Ash Tuff (2a); very similar to 132.95 - 135.15; weak schistosity at 60° to c.a., pervasive calcite alteration. Sharp contact
295.75	298.0	Graphitic Sedimentary Horizon (2g); dark grey - black, fine grained (<.5 mm), well developed schistosity at 50°-60° to c.a., mainly graphitic sediments with minor andesitic material, common (1-10%) py-po as dissem., stringers and blebs, local, extensive quartz veining, common (1-5%), random and irregular calcite veinlets, bleached chill zones at both contacts. Gradational contact over 30 cm.
298.0	319.6	Intermediate Flows (2d,2e); very similar to 244.9 - 292.2; generally massive with common, calcite-filled amygdules, local, small pillows, local flow top breccia, common, random, quartz and calcite veining, common, weak-strong, pervasive calcite alteration, local Fe carbonate alteration, weak foliation locally at 55° to c.a.
		299.85 - 300.35 Extensive, medium brown Fe carb. alteration.
		300.35 - 309.5 Common Fe carb. alteration, buff - medium brown colour, weak - strong, occurs pervasively, as infilling of amygdules and as stringers and veinlets.
		309.5 - 313.25 Bleached zone due to very strong, pervasive calcite alteration.
		311.85 - 312.95 70% grey quartz veining with 10% Fe carbonate as stringers and veinlets; 1% py, local silicification.

· -.

FROM	то	DESCRIPTION	
			aphitic sedimentary interbed. arp contact with .5 meter chill margin
319.6	325.1	Intermediate Ash description; fine gr pervasive calcite al	Tuff (2a); very similar to $132.95 - 135.15$ ained (≤ 1 mm), weak foliation at 50° - 55° to c.a., teration.
		Sharp contact with	altered chill margin from 325.1 - 325.8.
325.1	371.0	fine grained (< 1 intermediate comp filled amygdules, le	s (2d, 2e); similar to 298.0 - 319.6; medium grey, mm), massive to weakly foliated at 55° to c.a., osition, common calcite-filled and local Fe carbocal small pillows, weak-strong, pervasive calcite carbonate alteration, 1-5% calcite veinlets, 1-5% tal flow breccia.
		325.1 - 325.6	Pervasive, strong, light brown Fe carbonate alteration.
		325.6 - 327.7	Fe carbonate alteration as veinlets and as filling for amygdules.
		339.1 - 343.55	1-10% graphitic lenses, patches and fragments with minor (.5-1%) dissem. po-py.
		333.85 - 334.85	5% quartz veining.
		343.55 - 348.7	5 - 20% graphitic lenses; 1-5% quartz veinlets, .5-5% po-py as dissem. blebs and stringers, pervasive calcite alteration.
		348.0 - 348.15	Graphitic interflow sedimentary horizon with 40% py.; bleached chill zone 347.8 - 348.0.
		348.7 - 349.2	Weak - moderate pervasive Fe carbonate alteration.
	D.Z.	351.9 - 371.0	Common (5-10%), irregular, random to foliation parallel white and grey quartz veining, .5-2% dissem py-po locally, rare chalcopyrite (cp), pervasive calcite alteration, local Fe carbonate alteration, modwell developed schistosity at 45°-55° to c.a., common brecciation, deformation zone (D.Z.).

FROM	то	DESCRIPTION	
		354.9 - 359.6	Fe carbonate alteration - pervasive, lenses and patches.
		361.3 - 363.7 363.7 - 364.7	•
		364.7 - 371.0	Fe carb. alteration - pervasive, lenses and patches; local graphite lenses.
		366.1 - 367.2	10-50% graphitic sediment.
		Sharp contact.	•
371.0 379.	8	carbonate, extre	k: totally altered to d. grey - black talc and minor mely soft, modwell developed foliation at 45°-60° ly highly variable due to deformation, local white 6c).
		F.Z. 378.0 - 378 F.Z. 379.6 - 381 Contact in fault	1.2 Badly broken core; fault zone.
379.8 460.	6	generally mafic, I pervasive calcite (1-20%) white	ows (2d,2e); very similar to 325.1-371.0 description, ocal carbonate-filled amydules, common, weak-strong alteration, local Fe carbonate alteration, common, grey, irregular, random quartz veining, common generally $\leq .5\%$ dissem. po-py.
		379.8 - 389.8	Fe carbonate alteration as pervasively and as dissem.
		395.9 - 396.4	50% grey quartz veining.
		402.2 - 424.95	1-5% white-grey quartz veins with $< 1\%$ py; host contains generally $\le .5\%$ very fine, dissem. py, locally to 1-2%, possible very fine asp ($< .5\%$) rarely.
		424.95 - 431.0	Weak-mod. dissem. gradually to pervasive, buff Fe carbonate alteration, weak reaction to acid, generally .5-1% dissem. py, rare, <.5%, very fine (<<.5mm) asp.

FROM	то	DESCRIPTION	
		427.0 - 427.7	5-15% grey, random quartz veining.
		428.15 - 428.5	10% grey, random quartz veining
		429.0 - 429.7	80% grey, quartz veining.
		431.0 - 435.35	Pervasive, buff Fe carbonate; 2-40% sulfides locally-py and asp as dissem. and masses, very fine grained (<.5mm), local, random grey quartz veining.
			431.0 - 431.65 2-3% py, .5-1% asp.
			431.65 - 432.05 5% py, 10-30% asp, 25% grey
			quartz veining. 432.05 - 432.6 2-3% py, 2-3% asp.
			432.6 - 433.45 50% grey quartz veining; 2-3% py, 5% asp on average.
			433.45 - 434.3 1% py, .5-1% asp.
			434.3 - 435.35 1% py, 1-20% asp, average 2-3%.
		435.35 - 444.85	Weak - moderate, buff Fe carb. alteration, 1-3% fine dissem. py, rare, <.5%, very fine asp, common, 1-10% grey, random quartz veining, rare hematite along veins.
		444.85 - 448.35	2-10%, random, grey quartz veining.
		448.35 - 451.4	Weak, buff, pervasive Fe carb. alteration, ≤ 1% dissem. py, 1-3%, random, grey quartz veinlets.
		451.4 - 460.6	Generally 1-5%, random, grey quartz veining, ≤ 1%, very fine dissem. to blebs of py, rare malachite stain along fractures, rare hematite in quartz veins, weak pervasive calcite alteration.

Sharp contact

FROM TO	DESCRIPTION	
460.6 495.6		Totally Talc-Carbonate Altered Ultramafic (6c); medium grey-green, very soft, fine grained, massive, composed almost totally of talc with common veinlets and infillings of carbonate, rare quartz veining, no appreciable magnetite.
	495.60 metres	End of Hole.

Rock Core Quality Limited

Property: To//y Project:_____

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft	Core Quality %	# of Fractures	No. of Fractures per met/ft
/	96.0	M	50 ⁺	11.9+	29.8	50+	11.9+
رع	100.0	M	50	11.9	6/4	42	95
ر۶	100.0	11	55	/3./	69-0	46	11.0
< <i>f</i>	(50.0)	M	28	7.1	97.5	28	7.1
<u>ي</u> ح	100.0	M	17	3.6	85.2	17	3.6
ć.	/00.0	M	18	4.1	90./	18	4.1
7	(20.C)	M	22	5.1	93.0	22	5./
8	/35.5	M	16	.3.7	95.3	16	3.7
9	(30.5)	Ĥ	16	3.8	98.8	16	3.8
K	/00.0	M	17	4.0	89.5	/7	40
//	100-2	М	13	2.9	93.3	13	2.9
12	100.0	M	16.	3.7	97.7	16	3.7
13	100.0	M	23	5./	86.7	23	.5./_
14	6.00	<u> </u>	32+	7.6+	78.6	27+	6.4
15	100.0	M	21	4.9	87.5	21	4.9
16	1000	M	20	47	90.0	<u>~20</u>	47
17	130.0	M	19	4.2	92.2	19	73
18	100.0	M	14	3.3	97.3	14	
17	100.0	M	18	4.1	93.2	IC.	3.6
30	100.0	M	14	3.2	98.9	14	3.8
5/	100.0	<u> </u>	1.3	-3.0	92.0	1.3	3.0
عزي	100.0	M	16	3.6	92.0	16	3.6
.23	(00.0	M	14	3.4	95.5	14	3.4
24	(00.0	14	21	4.8	89.7	19	4.4
ವರ	100.0	M	ಎ 3	5.4	91.8	23	5.4
26	100.0	M	16	3.6	25.5	16	3.6
رع	100.0	M	19	4.3	943	/9	4.3

Rock Core Quality Limited

Property: Tilly Project:

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft '	Core Quality %	# of Fractures	No. of Fractures per met/ft
SX	100.0	11	27	6.1	81.8	<u> 27</u>	6.1
29	1:22.2	7	16	3.7	98.0	16	<i>3</i> .7
, 3 0	(00.0	M	22	5.0	90.9	ವಿವಿ	.5-0
-5/	./00.0	М	1.3	£.9	63.3	/3	-2.9
30	/35.O	14	/0	€.€	97.7	/0	5.5
,-3-3-	/oo-O	M	2/	47	29.8	2/	4.7
34	/00.3	11	14	3,2	97.7	13	3.0
ී ට	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	M	<i>5</i> 2	5.3	93.2	22	5.0
36	/00.0	M	2/	4.8	89.7	21	43
237	(20.2	11	24	53	75.6	21	4.7
-58	/05.5	14	15	-3.4	96.6	15	3.4
.39	/ (50, 5	M	29	6.6	86.4	29	6.6
40	/op.5	M	/9	4.4	90.7	/9	4.4
41	(32.3	M	15	3.4	92.0	/5	34
45	(0).5	M	15	3.4	93./	/5	34
43	/03.0	M	23	5.3	85.1	23	5.3
44	(32.2	M	30	6.8	77.3	<u>~8</u>	6.4
45	(00,0	M	.3/	7.4	88.1	26	6.2
46	100.0	M	26	5.8	83.1	26	5.7
47	(33.5)	M	24	5.4	92.1	24	5.4
42	(22.0)	M	J8 ⁺	6.5	77.9	28+	6.5
49	(\(\)\(\)\(\)	М	17	3.8	93.3	/7	3.7
20	/80.0	11	18	4.1	95.5	18	4.1
5/	102.2	11	24+	5.5+	88.6	24+	5.5+
5.	/22.2	11	21	4.8	94.3	2/	4.2
53	100.0	M	20	4.7	95.3	20	4.7
54	100.5	14	21	4.6	88.0	21	46

Rock Core Quality Limited

Property: To//y Project:_____

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft '	Core Quality %	# of Frectures	No. of Fractures per met/ft
55	/00.0	М	28+	6.6	83.5	28 ⁺	6.6
-56	100.0	M	25	5.7	828	25	5.7
57	/30.3	11	24	5.3	87.9	24	53
58	-/-25-0	11	25	5.6	86.7	<u> </u>	5.6
59	100.5	M	37+	8.5+	64.7	30+	6.9
60	£22.5	M	23+	5.4+	9/.8	23+	5.4+
61	100.0	M	18	4.0	94.4	18	4.0
4.2	(32.3	M	17	33	92./	16	3.6
63	/37.3	M	17+	3.9+	94.4	17+	3.9F
64	100.0	M	31	4 7	95.5	ير ا	47
65	/00.0	M	28	11	86.2	,27	6.2
56	/00.0	11	2/+	5.0+	89.3	21+	5.0+
67	100-0	M	24	5.5	85.2	24	55
68	(25.3	7	2/	5./	96.4	21	5.1
69	100.3	M	15	3.4	96.6	/5	3.4
70	/0 0.0	M	18	40	86.7	18	43
71	(30.0	11	16	3.7	96.5	16	3.7
7.2	100.0	M	10	22	93.4	/0	2.2
73	()) ()	11	16	3.6	93.3	16	3-6
74	/90.3	M	16	.3.6	95.5	16	3.6
7.5	97.0	M	23+	5.8+	89.0	23+	58+
76	100.D	M	1 2/	4.6	87.6	2/	4.6
77	100.0	M	29+	6.0+	76.3	25 ⁺	5.2+
72	102.0	11	22+	5.6	92.4	22+	5.6+
79	1923	M	25+	5.7+	85.2	19+	4.3
30	97.0	11	47+	11.1+	6/-2	47	//. / +
8/	/00.0	11	33+	7.8+	72.9	33+	7.8+

Rock Core Quality Limited

Property: Total Project:

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft '	Core Quality %	# of Fractures	No. of fractures per met/ft
82	/30.5	M	37+	9.4+	92./	31	7.8+
83	98.0		54	10.7	52.9	44+	10.4+
74	79.0		50°	11.9	15.5	50+	11.0+
85	22.0	M	39+	10.1+	72.7	-297	10.1+
76	/30.3	بر	_30+_	7./+	179.8	[_] ە <i>ق</i> !	フバー
87	/ 53.0	M	22+	4.9+	82.5	wit -	4.97
33	122.3	M	22	5.0	84.1	22	2.0
උද	100.0	14	40	9.9	100	31	5.18
٩c	100 C	M	35	8 C	43	347	7.6+
91	166.0	M	247	6.5+	91	<u> ۲7۲</u>	734
92	100.0	Μ	73	9.6	965	22+	48'
93	1000	<u> </u>	25"	5.51	ું કે <u>7</u>	255	5.65
Cit	Luc	_M	λo ^r	5.64	100	አኔ ^ተ	5.5+
95	100	M	21	4.9	98	21	4.9
96	icc	<u>M</u>	18	4,2	97	31	4.2
97	62.3	11	22	4.4	90.7 87.7	22	44
77	103.0	19	18+	41	87.7	15+	3.7
99	100.0	M	27	6.0	83.5	27	6.5+
(CCN	100.5	14	46+	10.7	5/2	37+	8.6+
/2/	1000	M	32+	7.4+ 6.6+	83.9	32+	7.4+
10-	1005	M	27+	5.6+	79.3	27 ⁺	6.5+
103	97.0	5-M	35+	8.5+	72.0	35+	8.5+
104	94.0	5	60+	13.6+	40.9	60+	13.6+
10.5	98.0	-5	50+	122+	.57.3	50+	12.4
106	100.0	-5	46 ⁺	10.6+	58.6	46+	10.6+
107	100.2	.5	47	10.6+	640	47+	10.6+
1837	100.0	-2.	25	5.7	78.4	25	5.7

Rock Core Quality Limited

Drill Hole No: 7-9/-/ Client: Cycr.15

Property: Tu//y Project:

/0°	200			# pieces of core per met/ft '	Quality %	Fractures	Fractures per met/ft
	_ 95.J	5	35+	9.0T 7.8T	66.7 67.8 96.7	-35t	7.8+
	/33.3	5	35+		67.8	-35+	7.8+
//0 ///	102-0	_5	14	4.7	96.7	14	4.7
	•					<u> </u>	
						 	<u> </u>
					 	ļ	
				<u> </u>		ļ	
				 			-
				ļ		 	
						ļ	ļ
					<u> </u>	 	
				-			
		<u> </u>	<u> </u>		1	 	 -
			ļ			 	
						 	
				 	ļ	 	
						-	
				 	-	 	
				-	-	 	
						-	1
			 	 		 	
				 		†	
				 			
				1		 	
					<u> </u>	+	+
				 		·	

SURVEY DATA AND CALCULATED CO-ORDINATES (metres)

PROPERTY: TULLY TWP.

HOLE NO: 91-1

GRID: FRANKFIELD

DATE: JANUARY, 1991

SURVEY BY: MCR

INSTRUMENT: TROPARI

	=======================================	:========	=======================================		=========
DEPTH	INCLINATION	BEARING	EASTINGS	NORTH INGS	ELEVATION
0.00	-66.00	180.00	1479.530	251.750	2.080
65.00	-63.00	180.00	1479.530	223.767	-56.588
127.50<-	7.7.7.7.7	180.50	1479.400	193.945	-111.514
190.00	-57.00	181.00	1478.972	161.291	-164.804
296.00	-54.00	180.00	1478,448	101.255	-252.162
435.00	-51.00	180.00	1478.448	16.637	-362.438
495.60	-50.00	180.00	1478.448	-21.910	-409.198

SUMMARY LITHO LOG PROPERTY: TULLY TWP. HOLE No.: 91-1 Page 1 of 2

LITHO UNIT	DEPTH	EASTINGS	NORTHINGS	ELEVATION	CORE ANGLE			
O.B.	14.60	1479.53	245.46	-11.10	none			
2D, 2E, CARB	84.20	1479.49	214.61	-73.46	45.0			
2D,2E,2G,PO,	88.00	1479.48	212.79	-76.80	45.0			
2D, 2E, CARB	132.95	1479.36	191.10	-116.16	45.0			
2A, CARB	135.15	1479.35	189.95	-118.04	45.0			
2D, 2E, CARB	173.30	1479.09	170.02	-150.57	45.0			
2D, 2E, 2G, CAR	188.50	1478.98	162.08	-163.53	45.0			
2D, 2E, CARB	215.20	1478.85	147.02	-185.57	45.0			
2D, CARB	244.90	1478.70	130.20	-210.05	45.0			
2D, CARB	285.10	1478.50	107.43	-243.18	50.0			
2D, FE CARB	289.70	1478.48	104.82	-246.97	50.0			
2D, CARB	292.20	1478.47	103.41	-249.03	50.0			
2A, CARB	295.75	1478.45	101.40	-251.96	60.0			
2G,PY,PO	298.00	1478.45	100.04	-253.75	55.0			
2D, 2E, CARB, F	319.60	1478.45	86.89	-270.88	55.0			
2A, CARB	325.10	1478.45	83.54	-275.25	55.0			
2D, 2E, CARB, F	339.10	1478.45	75.02	-286.36	55.0			
2D, 2E, 2G, CAR	348.70	1478.45	69.17	-293.97	55.0			
2D, 2E, CARB, F	351.90	1478.45	67.22	-296.51	55.0			
D.Z.,2D,2E,C	363.70	1478.45	60.04	-305.87	50.0			
D.Z.,6C,TALC	364.70	1478.45	59.43	-306.66	50.0			
D.Z.,2D,2E,C	371.00	1478.45	55.60	-311.66	50.0			
6C, TALC, CARB	379.80	1478.45	50.24	-318.64	55.0			
2D, 2E, CARB, F	431.00	1478.45	19.07	-359.26	55.0			
2D,2E,FE CAR	435.35	1478.45	16.41	-362.71	55.0			

** BORSURV ** Page 2 of 2

SUMMARY LITHO LOG PROPERTY: TULLY TWP. HOLE No.: 91-1

LITHO UNIT	DEPTH	EASTINGS	NORTHINGS	ELEVATION	CORE ANGLE
2D, 2E, CARB, F	460.60	1478.45	0.35	-382.19	55.0
6C.TALC.CARB	495.60	1478.45	-21.91	-409.20	55.0

ASSAY LOG

PROPERTY: TULLY TWP. HOLE No.: 91-1

Page 1 of 3

I	FROM	то	WIDTH	Au oz\t	Au gm\T	As ppm	
51	7.75	59.25	1.50	NIL	NIL	NIL	
59	9.25	60.75	1.50	NIL	NIL	NIL	
. 60	75.	62.25	_ 1.50	NIL	N[L	NIL	 -
62	2.25	63.25	1.00	NIL	NIL	NIL	
63	3.25	64.25	1.00	0.000	0.010	NIL	
75	5.10	76.60	1.50	0.001	<u> </u>	NIL_	
7(6.60	77.60	1.00	NIL	NIL	NIL	
	1.20	85.70	1.50	NIL	$NL\Gamma$	NIL	
	5 .7 0	87.20_	1.50	NIL	NIL	NIL	
	7.20	88.00	0.80	NIL	NIL	NIL	
	1.30	102.80	1.50	NIL	NIL	NIL ·	
	2.80_	104.30	<u> </u>	NIL_	NIL_	NIL_	
	0.80	112.30	1.50	0.005	0.170	NIL	
	3.40	124.90	1.50	0.006	0.190	NIL	
	4 . 9.0_		150	0.008_	0.270	NIL	 -
	6.40	127.90	1.50	0.005	0.160	NIL	
	7.90	129.40	1.50	0.002	0.070	NIL	
	9.40	130.90	1.50	0.010	0.330	NIL_	
	0.90	132.40	1.50	0.002	0.070	NIL	
	0.00	161.50	1.50	0.001	0.020	NIL	
	0.90_		1.50	0.028_	0.950	NIL	
	2.40	183.60	1.20	0.101	3.170	NIL	
	2.60	263.70	1.10	0.001	0.020	NIL	
	2.90	273.60	0_70	0.001	0_030	NIL	
	3.60	275.10	1.50	0.001	0.040	NIL	
	5.00	286.50	1.50	NIL	NIL	NIL	
	650		150	NLL_	NIL_	NIL	
	8.00	289.70	1.70	NIL	NIL	NIL	
	2.20 3 <u>.7</u> 0_	293.70 295.20	1.50 1.50	NIL NIL	NIL NIL	NIL NIL	
	5.20	296.70	1.50	0.000	0.010	NIL	
	6.70	298.20	1.50	0.031	1.070	NIL	
	B.20	<u> 299.80</u>		NIL_	NIL	NIL NIL	
	9.80	301.30	1.50	NIL	NIL	NIL	
	1.30	302.80	1.50	NIL	SIL	NIL	
		304,30	1.50	0.004_	0.140	NIL_	
	4.30		1.50	0.001		NIL	
30	5.80	307.30	1.50	NIL	NIL	NIL	
.30	7.30	308.80					
	B.80	309.50	0.70	0.000	0.010	NIL	,
	1.85	312.95	1.10	0.002		NIL	
		326.10		0.000_			
	6.10	327.70	1.60	0.000	0.010	NIL	~~ / *
	3.85	334.85	1.00	NIL	NIL	NIL	
	3.55	345.00	1.45	NIL	NIL	NIL	
	5.00	346.50	1.50	0.018	0.620	NIL	
	6.50	348.00	1.50	0.000	0.010	NIL	
34	B_00_	349_50_	1.50_	0.002	0.070	NIL	
	1.90	353.40	1.50	NIL	::IL	NIL	
35	3.40	354.90	1.50	0.000	0.010	NIL	

Page 2 of 3

ASSAY LOG PROPERTY: TULLY TWP.

HOLE No.: 91-1

=====	=======		 =======		=======================================		
	FROM_	TO	WIDTH	_Au oz\t_	_Au_gn:\T_	As ppm	
	354.90 356.40_	356.40 357.90_	1.50 _ 1.50_	NIL 0.000	NTL 0.010	NIL NIL	
	357.90	359.40	1.50	0.001	0.030	NIL	
	359.40	360.90	1.50	0.001	0.010	NIL	
	360.90	362.40	1.50	0.001	0.040	NIL	
	362.40	363.90	1.50	0.000	0.010	NIL	
	363.90	365.40	1.50	0.001	0.920	NIL	
	365.40	366.90_	1_50_	0.000_	0.010_	NIL	
	366.90	368.40	1.50	0.000	0.010	NIL	
	368.40	369.90	1.50	0.000	0.010	NIL .	
	369.90_	<u>371.10</u>		0.000	0.010	NIL_	
	376.75	377.75	1.00	0.000	0.010	NIL	
	380.95	382.50	1.55	0.000	0.010	NIL	
••	_382.50	384 -0.0_			0.010_	NLL	
	384.00	385.50	1.50	0.000	0.010	NIL	
	385.50	387.00	1.50	0.000	0.010	NIL	
	387.00	<u> 388.50</u>	1.50		0.010_	NIL_	
	388.50	390.00	1.50	0.001	0.020	NIL	
	390.00	391.00	1.00	0.000	0.010	NIL	
	395.40	_396.40	1.00	0.001	0.020_	N1L	 -
	402.20	403.70	1.50	0.000	0.010	NIL	
	403.70	405.20	1.50	NIL	NIL	NIL	
	405.20 406.70	406.70_	1.50	NIL_	N[r	NIL	
	408.20	408.20 409.70	1.50 1.50	NIL	NIL.	NIL	
	408.20	_411.20_	1.50 1.50	NIL NIL	NIL	NIL	1
	411.20	412.70	1.50	NIL	NIL NIL	NIL	
	412.70	414.20	1.50	NIL	NIL	NIL NIL	:
	414.20_	415.70	1.50 1.50_	NIL NIL	NIL_	NIL NIL	
	415.70	417.20	1.50	NIL	NIL	NIL	
	417.20	418.70	1.50	NIL	NIL	NIL	•
	418.70	420.20		NIL	NIL_	1.000	
	420.20	421.70	1.50	0.000	0.010	1.000	
	421.70	423.20	1.50	NIL	NIL	1.000	
	423.20	424.70	1.50_	NIL_	NiL_	10.000	
	424.70	426.20	1.50	0.002	0.060	150.000	•
	426.20	427.70	1.50	0.001	0.040	120.000	
	427.70 -	429.20		0-002	0070-	140-000	
	429.20	430.70	1.50	0.006	0.200	170.000	
	430.70	431.70	1.00	0.108	3.790	4300.000	:
	431_70	432.70	1.00_	0.242		10000_000	 .
	432.70	433.70	1.00	0.130	4.170	7800.000	
	433.70	434.70	1.00	0.021	0.710	2200.000	
	- 434.70	_435.70_	100	0.162		-9500+000	
	435.70	437.20	1.50	0.000	0.010	80.000	•
	437.20	438.70	1.50	NIL	NIL	60.000	
	438 <u>_70</u>	_440.20_	1_50	0_002	0.070_	90_000	
	440.20	441.70	1.50	0.000	0.010	40.000	
	441.70	443.20	1.50	0.004	0.130	60.000	
	443.20	444.70	1.50	NIL	NIL	60.000	

Page 3 of 3 ASSAY LOG PROPERTY: TULLY TWP.

HOLE No.: 91-1

_ FROM_		WIDTH	_Au _oz\t	Au_gn:\T	As ppm
444.70	446.20	1.50	NIL	NTL	60.300
446.20	447.70_	150	NIL_	NIL_	50.000
447.70	449.20	1.50	NIL	NIL	60.000
449.20	450.70	1.50	NIL	NTL	42.000
450.70_	452.20	1,50	0.000	0.010_	42.000
452.20	453.70	1.50	0.000	0.610	45.000
453.70	455.20	1.50	0.011	0.370	200.000
455.20	_456.70_	1.50.	0.007	0.250_	300.000
456.70	458.20	1.50	0.000	0.010	50.000
458.20	459.70	1.50	NIL	NIL	25.000
459.70_	461.10	1.40	NIL	NiL	55.000
461.10	462.60	1.50	NIL	NIL	18.000
462.60	464.10	1.50	NIL	NIL	3.000
466-60-	468.10_	1.50_	NIL_	NrL_	1.000
475.80	477.30	1.50	NIL	NIL	4.000
487.60	489.10	1.50	NIL	NIL	4.000
	····				
·					

** BORSURV ** AVERAGED ASSAY INTERVALS	Pa	ge 1 of
PROPERTY: TULLY TWP.		
10LE NO: 91-1		
lHW (-2.70 d.tCore_Angle: 902.70 t.t.)		· · · · · · · · · · · · · · · · · · ·
FROM:180.90	EASTINGS:	1479.0
FROM:180.90		
0.060 Au oz\t	ELEVATION:	-157.0
2.070_Au_gm\T		
0.000 As ppm		
	EASTINGS:	1479.0
TO:183.60		
	ELEVATION:	-159.3
2. HW (_1.50 d.tCore_Angle: 901.50_t.t.)		
volum damento de la company de	 	
	EASTINGS:	1478.4
FROM: -296.70	northings:	100-8
	ELEVATION:	-252.7
0.031 Au oz\t		
0.000 As ppm		
0.000 As ppm	EASTINGS:	1478.4
- TO:-298.20	NORTHINGS:	99.9
	ELEVATION:	
3MZ (5.00d.tCore_Angle:_905.00_t.t.)		
	EASTINGS:	1478 4
FROM: 430.70	NORTHINGS:	
	ELEVATION:	-359.0
0.133 Au oz\t		
		
146180.000 As ppm	EASTINGS:	1478.4
TO: 435,70	NORTHINGS: NORTHINGS:	
	ELEVATION:	

_

_

5

DIAMOND DRILL LOG

Cyprus Gold SHEET NO: **CLIENT:** Casing left Tully Twp - Frankfield **REMARKS:** NAME OF PROPERTY: in hole M. Rogers T-91-2 **LOGGED BY: HOLE NO:** Jan. 26/91 321.85 metres STARTED: LENGTH: Jan. 31/91 **CLAIM NO:** FINISHED: 15+60 E; 1 + 68 N LOCATION: **ELEVATION:** 2.86 metres 180° **AZIMUTH:** -60° DIP:

FRO	м то	DESCRI	PTION	-
0	8.2	Overburd	len	
(≤1 mm), massive, common, silica and pillows, rare schistosity at 55° to core a epidote in local sections, rare, black ta pervasive calcite alteration, common calcite veinlets, common (1-5%), gre quartz veinlets, generally ≤.5% disserpyrrhotite (po), common, lenses,				es (2d, 2e); medium green-greenish-grey, fine grained e, common, silica and calcite-filled amygdules, local stosity at 55° to core axis, intermediate composition, ections, rare, black talc along fractures, weak-strong, alteration, common (1-5%), irregular and random common (1-5%), grey-white, random and irregular generally ≤.5% disseminated (dissem.) pyrite (py) - common, lenses, stringers and patches of aphitic sediment with 1-3% po-py, rarely to 10% as
		8.2 -	16.6	Variable epidote alteration.
		65.85 -		Moderate, buff Fe carbonate alteration occurring pervasively, and as patches and lenses; ≤ 1% dissem. py, local quartz veining.
		77.3 -	78.25	
		81.6 -	82.6	` • ·
		85.1 -	87.2	Moderate, pervasive, buff Fe carb. alteration.
		88.85 -	92.35	5-10% graphitic sediment as lenses and patches with 1-5% py-po.

FROM	то	DESCR	IPTI	ON					
		Gradatio	onal	contact.					
92.35	99.3	(2d); dan at 45°-60 the rem intermed with gra parallel	Graphitic - carbonaceous sedimentary rock (2g) - Intermediate flow (2d); dark grey - black, fine grained (≤ 1mm), weak - strong foliation at 45°-60° to c.a., 50-100% graphitic and carbonaceous sediment with the remainder as intermixed and interbedded flow material of intermediate composition, 2-25% py as dissems., blebs and stringers with graphitic material, extensive (2-30%), random and foliation parallel calcite veining, 1-5%, random and foliation parallel, grey quartz veining, common brecciation.						
		Gradatio	onal	contact.					
99.3 1	170.4	d,2e); very similar to 8.2 - 92.35 description; ith common, calcite-filled and silica-filled ng, pervasive calcite alteration, local Fe carb. Icite and quartz veining, generally ≤.5% dissem. Parbonaceous and graphitic sediments, local local epidote.							
		99.3		100.6	5-10% graphitic lenses with 1-2% py.				
		111.6	-	112.6	Average 10% grey quartz veins, Fe carb. alteration.				
		114.6	-	115.9	Weak epidote alteration.				
		120.5	-	121.15	Extensive silicification with 2-3% dissem. py.				
		121.75	-	126.55	3-10% irregular and random quartz veining.				
		131.0	-	139.5	Variably bleached due to weak-moderate silicification associated with 2% locally 30% grey and purple quartz veining, minor epidote, .5-1% dissem. po on average, local chlorite, weak.				
		139.5	-	147.3	Weak, pervasive silica alteration; associated bleaching, occasional quartz veins.				
		141.0	-	142.9	5% grey quartz veining.				
		147.3	-	151.75	Weak-strong Fe carbonate alteration; buff -d. brown, occurs pervasively and as blebs and stringers, foliation at 45°-55° to c.a., minor (1-2%), grey quartz veinlets.				
		151.75	•	152.5	Strong calcite alteration; foliation at 50° to c.a.				

FROM	то	DESCRIPTION
		152.5 - 154.4 Fe carbonate alteration; same as 147.3-151.75 description, 5% calcite veinlets, foliation at 50°-55° to c.a.
		147.3 - 154.4 Probable, minor deformation zone (D.Z.). 154.4 - 163.4 Weak-strong, pervasive calcite alteration; Fe carb. alteration as stringers, blebs and amygdule fillings, 5% calcite veinlets, 1-2% quartz veinlets, local foliation at about 50° to c.a., generally ≤ 1% dissem. and stringer pypo, very common amygdules, local flow-top breccia, local, minor sericite, rare amethyst veins.
		163.4 - 165.3 Mod strong, pervasive calcite alteration. 165.3 - 166.2 Weak, pervasive Fe carb. alt. with local blebs and stringers.
		169.9 - 170.4 Mod strong silicification; 5%, random, white quartz veining. Sharp contact.
170.4	171.85	Intermediate ash tuff (2a); buff, fine grained (≤ 1 mm), massive, moderate-strong pervasive Fe carbonate alteration, 1-2% quartz veinlets, contains broken sections.
		Sharp contact.
171.85	176.1	Intermediate flows (2d, 2c); same as 99.3-170.4 description; generally massive with common amygdules, rare pillows and flow-top breccia, local graphitic-carbonaceous interflow units, common calcite alteration, local Fe carbonate alteration, generally 1-3% calcite veinlets and 1% quartz veinlets, generally ≤.5% dissem. py-po.
		172.5 - 172.75 Extensively talc altered ultramafic unit (6c) 173.75 - 176.1 Weak-moderate, pervasive Fe carb. alt., local silicification with quartz veining of 5% overall. Sharp contact at 45° to c.a.

FROM	то	DESCRIPTION					
176.1	184.2	Ultramafic unit (6c), probable flow; dark grey-black, fine grained (< 1 mm), massive-foliated at 45° to c.a., totally altered to talc and minor carbonate, minor remnant magnetite, common (1-5%) calcite veinlets, common (1-2%) quartz veinlets generally parallel to foliation, local interflow graphitic sediment horizons.					
		176.9 - 177.4 Interflow unit of 20-100% graphitic sediment with 1-10% py.					
		183.7 - 184.2 Fine grained "chilled" margin.					
		Sharp contact at 45° to c.a.					
184.2	184.75	Graphitic sedimentary unit (2g); black, fine grained, well developed foliation at 45° - 60° to c.a., composed of graphite and 3-10% po.					
		Sharp contact at 50° to c.a.					
184.75	301.75	Intermediate flows (2d, 2e); similar to previous descriptions; medium grey, fine grained (< 1mm), generally massive, common, calcite-filled amygdules, intermediate composition, local graphitic sedimentary lenses-interbeds, general weak-strong, pervasive calcite alteration, 1-2% on average, random calcite veinlets, local, random quartz veinlets, general ≤.5% dissem. py-po, local, weak foliation at 50°-55° to c.a., local Fe carbonate alteration.					
		197.9 - 206.5 Variable weak-moderate, pervasive Fe carb. alt., generally ≤ 1% dissem. py, 1% to locally 5% grey quartz veining, local, minor silicification.					
		255.7 - 272.95 Moderate-strong, pervasive Fe carbonate alteration, bleached buff colour; local weak foliation at 50°-55° to c.a., common (1% to locally 50%), random, grey quartz veining, 2-30% sulfides-py and asp, py as dissem. and stringers and blebs, asp (.5-30%) as very fine (<.5mm) dissems.					

- ---

FROM	то	DESCRIP	DESCRIPTION					
		255.7 -	259.75	1-2% dissem. py, trace (<.5%) dissem. asp.				
		259.75 -	261.9	2-30% asp, average 5-10%, 1-20% py; 10-50%, random, grey quartz veining.				
		261.9 -	263.5					
		263.5 -	264.7	1-5% py, ≤ 1% asp.				
		264.7 -	265.75	1-5% py, 2-25% asp, average 5-10%, 5%, grey quartz veining.				
		265.75 -	273.0	1-2% py, ≤ 1% asp.				
		271.2 -	275.2	5% average, grey, random quartz veining, locally to 80%.				
		273.0 -	281.7	1-2% dissem. py, local, <.5% asp.				
		281.7 -	288.55	Fe carbonate alteration as weak-strong pervasive, stringers, blebs and patches.				
		281.7 -	285.85	1-2% dissem. py, \leq 1% asp.				
		285.85 -	287.15	25% - 50%, random, dark grey quartz veining, extensive Fe carb. alt., 1-3% py, 2-25% asp (average 3-5%).				
		287.15 -	287.9	1% py, < 1% asp.				
		287.9 -	288.55	50%, dark grey quartz veining with Fe carb. alt., 1-2% py, average 5% asp.				
		288.5 -	297.4	Pervasive calcite alteration; average .5-1% dissem. py, rare, trace (<.5%) asp., local chlorite stringers.				
		297.4 -	300.85	Moderate, pervasive talc-chlorite alteration.				
		300.85 -	301.75	Interflow carbonaceous-graphitic sedimentary horizon with local 1-10% blebs and stringers of py; common black talc along fractures. (2g).				

Sharp contact.

Rock Core Quality Limited

Property: Tully Project:

Core Tray #	Core Recovery %	Hardness aoft med hard	# pieces of core per tray	# pieces of core per met/ft '	Core Quelity %	# of Fractures	No. of Fractures per met/ft
1	/00.0	M	3/	7.2.	81.4	.7/	7.2
್ತು_	100.0	M	26+	.5.9+·	85.2	24+	5.5+
3	100.0	11	20	4.6	87.4	<i>∞</i> 20	4.6
4	1000	M	15	3.5	92.0	15	3.5
-5	/00.0	M	23	5./	88.9	233	5.1
6	000	11	.30	6.7	80.9	30	6.7
_7	C-CC\	<u> </u>	ي 27	8.2	85.4	2 7	8.2
3	/22.2	11	25	5.7	87.5	25	5.7
9	100.0	11	≥೧	4.5	92.1	- ೧೯	4.5
10_	1000	<u> </u>	<u> </u>	6.5	28.5	ર્સ્ક	6.3
//	/:0:0-5		23	5.1	87.8	2/	47
1.3	100-0	<i>I</i> 1	27	6.1	87.	27	6./
13	(02.0	1.1	-20	47	94.1	20	47
14	100.0	<u> </u>	13,	ج5.0	95.5	13	الت
15	(0.00		27+	SI+	<i>5</i> ×.3	27+	6./+
16	/30.0	M	26	6.0	80.5	26	6.0
17	100.0	M	/8	4.2	93.3	/8	42
13	/00.0	<u>M</u>	20	4.4	93.3	20	4.4
19	100.0	<u> </u>	33	7.3	75.6	30	6.7
ري.	98.0		42+	9.5+	63.6	42+	9.5+
~\ <u>\</u>	98.0	_5	42+	9.8+	61.6	37	8.6+
<u> </u>	(00.0	5-M		4.6	94.2	19	4.6
وي ا	/00.0	M	17_	3.7	97.7	17_	3.7
24	\00.0 1		22+	5.0	29.8	22+	5-0
25	<u>/00.0</u>	<i>Y</i>	/.3	3.0	. 96.5.	/3	30
26	<u>/ນລ.ດ</u>	<u> </u>	17	3.8	79.8	/3	<i>3</i> .5
27	100.0	M	17	3.8	93.3	_/7	3.8

FROM TO	DESCRIPTION
301.75 321.85	Ultramafic flow (6c); totally talc-carbonate altered; little original texture or mineralogy, light-medium greenish-grey, very soft, very fine grained (<.5 mm), local brecciation, common calcite veinlets, massive, no remnant magnetite, rare remnant spinifex texture.
	320.25 - 321.05 75% white calcite veining.
	End of Hole 321.85 metres.

Rock Core Quality Limited

Property: Tu//y Project: Project: Client: Cypius

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft	Core Quality %	# of Fractures	No. of fractures per met/ft
23	\00.0	M	19	5.8	95.4	19	5.2
29	100.5	M	17	4.0	9.3-0	/7	4.0
.30	100-0	M	14	3./	93.3	14	3./
-31	100 1	1	21	4-8	88.5	18	4.1
3.2	100.0	M	21	4.8	89.8	<i>حرا</i>	4.7
3.3	/00.0	H	29	6.4	79./	29	6.4
34	Kan.o.	M	/7	3.9	76.6	17	3.7
35	/00.0	M	21	4.8	89.8	21	4.8.
36	100.0	14	2.3	5./	84.4	ري	4.7
.37	970	M	64+	15.6 ⁺	524	55+	134
.38	97.0	M	35+	8.4+	81.9	35+	8.4+
30	100.0	<i>M</i>	25	5-7	87.5	£5	5.7
40	100.0	19	27	6./	87.6	27	6./
4!	100-0	M	21	4.7	92./	21	47
42	100-0	M	2/	4.8	90.9	/ي	48
43	100.0	M		4.4	92.0	/9.	44
44	/00.0	M	20	4.4	94.5	19	4.2
45	100.0	M	20	4.5	93.2	18	41
46	97.0	M	34+	7.9+	72.1	30+	7.0+
47	/00.5	M	21	4.7	94.4	2/	4.7
48	/00.0	M	20	4.5	85.2	20	4.5
49	/00.0	M	15	3.3	93.3	15	3.3
-50	/00.0		18	4-1	93.2	18	41
-5/	/00.0	1	/2	3.8	94.4	/2	3.8
.50	(00.0	M	19	4.2	92.2	/9_	4.2
5-3	100.0	M	/7	3.9	94.3	16	3.6
54	/00.0	11	25	5.6	<i>7</i> 8.9	23	5.1

Rock Core Quality Limited

Property: Tully Project:

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft '	Core Quality %	# of fractures	No. of Fractures per met/ft
55	/00-0	M	15	3.3	91.1	15	3.3
56	100.0	M	22	5.0	93,2	ω	5.0
.57	100.0	M	37+	8.3	70.8	31+	7.0+
58	/30.5	M	20	46	93./	20	4.6
52	100.0	~	23	5.4	84.7	-20	4.7
60	100. D	M	27	6.2	85.1	23	5.3
6/	100.0	M	/7	3.7	9/.3	17	37
43	100.0	M	18	40	9/.0	16	3.6
63	/00.0	M	23	5.2	84.1	23	5.2
64	100.0	M	26	6.0	96.6	23	5.3
65	100.0	M	12	3.7	92.3	17	3.7
66	1000	\mathcal{M}	/9	4.3	94.3	19	4.3
67	102.0	J-M	48+	11.6+	65.1	42+	10.1+
63	96.0	<u>ح</u>	50+	11.6+	41.9	-50 ⁺	11.6+
69	92.0	5	50+	12.8+	60.3	50 ⁺	12.8+
70	92.0		100+	22.0+	50.5	100+	22.5+
71	100.C		41	10.0	63.4	41	10.0
7,3	/00.0	2	23	11.5	37.5	23	11.5
, ,							
					-		

SURVEY DATA AND CALCULATED CO-ORDINATES (metres)

PROPERTY: TULLY TWP. DATE: FEBRUARY, 1991

HOLE NO: 91-2 SURVEY BY: MCR

GRID: FRANKFIELD INSTRUMENT: TROPARI

DEPTH	INCLINATION	BEARING	EASTINGS	NORTHINGS	ELEVATION
0.00	-60.00	180.00	1560.000	168.000	2.860
75.00	-57.00	179.00	1560.342	128.814	-61.088
174.00	-56.00	179.00	1561.296	74.181	-143.643
231.00<-	54.00	178.75	1561.938	41.493	-190.334
288.00	-52.00	178.50	1562.761	7.200	-235.857
321.85	-52.00	178.50	1563.306	-13.633	-262.531

Page 1 of 1

SUMMARY LITHO LOG PROPERTY: TULLY TWP.

HOLE No.: 91-2

6C, TALC, CARB

321.85

1563.31

-13.63

-262.53

55.0

______ CORE ANGLE **EASTINGS** NORTHINGS **ELEVATION** LITHO UNIT DEPTH 8.20 1560.04 163.72 -4.13O.B. none 55.0 2D, 2E, CARB 65.85 1560.30 133.59 -53.292D, 2E, FE CAR 70.50 1560.32 131.17 -57.2555.0 -66.5955.0 2D, 2E, CARB 81.60 1560.41 125.17 -67.4355.0 2G.PO 82.60 1560.42 124.62 -75.56 1560.51 119.24 55.0 2D, 2E, CARB, F 92.35 99.30 1560.58 115.40 -81.35 55.0 2G, 2D 2D, 2E, CARB, F 131.00 1560.88 97.91 -107.7955.0 55.0 2D, 2E, CARB, Q 139.50 1560.96 93.22 -114.872D, 2E, CARB 88.92 -121.3855.0 147.30 1561.04 85.00 -127.3055.0 2D, 2E, FE CAR 154.40 1561.11 2D, 2E, CARB, F 170.40 1561.26 76.17 -140.6450.0 2A, FE CARB 171.85 1561.27 75.37 -141.8550.0 2D, 2E, CARB, F 176.10 1561.32 72.98 -145.3655.0 6C 184.20 68.33 -152.0055.0 1561.41 2G 184.75 68.02 -152.4555.0 1561.42 2D, 2E, CARB 197.90 1561.56 60.47 -163.2255.0 2D, 2E, FE CAR 206.50 1561.66 55.54 -170.2755.0 2D, 2E, CARB 255.70 1562.29 26.63 -210.0655.0 2D, 2E, FE CAR 272.90 1562.54 16.28 -223.8055.0 2D, 2E, CARB, P 281.70 1562.67 10.99 -230.8355.0 2D, 2E, FE CAR 288.55 1562.77 6.86 -236.2955.0 2D, 2E, CARB 300.85 1562.97 -0.71-245.9855.0 2G 301.75 1562.98 -1.26 -246.6955.0

ASSAY LOG_____ Page 1 of 2

PROPERTY: TULLY TWP.

202.40

203.90

1.50

0.010

0.330

HOLE No.: 91-2

· -	FROM_	TO	WIDTH_	_Au_oz\t_	_Au_gm\T_	As ppm
	11.50	13.00	1.50	NIL	NIL	N.S.
	14.00-	15.50		NIL_	NIL-	N.S
	23.20	24.70	1.50	NIL	NEL	N.S.
	31.80	33.30	1.50	NIL	NIL	N.S.
	49.10_	50.60_	1.50_	0.000_	0.010	N.S
	52.20	53.70	1.50	NIL	NIL	N.S.
	65.85	67.35	1.50	NIL	i, LP	N.S.
- ··	67.35	6885	150_	NIL	N[L	N.S
	68.85	70.35	1.50	NIL	NIF.	N.S.
	77.30	78.30	1.00	0.000	0.0:0	N.S.
	80.40_	81.40	1.00	NIL	NIL	N.S
	81.40	82.70	1.30	NIL	NIL	N.S.
	85.10	86.10	1.00	NIL	NiL	N.S.
	- 86-10-	87.20		NIL		N.S. N.S
	92.30	93.80	1.50	0.003	0.030	
	93.80	95.30	1.50	0.003	0.050	N.S.
	95.30_	96 .80	1. -50	NIL		N.S.
	96.80	98.30	1.50	NIL	NTL	N.S
	98.30	99.80	1.50		NIL O UEO	N.S.
	102.40-			0.007	0.250	N.S.
		-103-90-	150		NiL	
	108.50	110.00	1.50	NIL	NCL	N.S.
	111.55	113.05	1.50	NIL	NIL	N.S.
	120.30-	-121-30-	100-	NIL	N T L	N.S
	121.30	122.80	1.50	NIL	NIL	N.S.
	122.80	124.30	1.50	NIL	NIL	N.S.
	124-30-	-125.80-	150	NIL		
	133.15	134.65	1.50	NIL	NIL	N.S.
	134.65	136.15	1.50	NIL	NIL	N.S.
	13615	-137.65-	150	—— —NIL—		N.S
	140.50	142.00	1.50	NIL	NIL	N.S.
	142.00	143.50	1.50	NIL	NTL	N.S.
	14730	-148-80-		NIL-	NIL	
	148.80	150.30	1.50	NIL	NCL	N.S.
	150.30	151.80	1.50	0.001	0.020	N.S.
		1 5330	150	——N I L—	NTL	N.S
	153.30	154.80	1.50	NIL	NIL	N.S.
	159.10	160.60	1.50	NIL	NIL	N.S.
	160.60	-162.10-	150	N·IL	NIL	N.S.
	169.90	170.90	1.00	0.003	0.030	N.S.
	170.90	171.90	1.00	0.001	0.010	N.S.
	173-75-	1-76-00	125- -	0,-002	0+080	NS
	175.00	176.20	1.20	NIL	NTL	N.S.
	176.20	177.70	1.50	NIL	NtL	N.S.
·· ··-	182.65		 15 5		NIL	N S
	184.20	184.75	0.55	0.001	0.050	N.S.
	184.75	186.25	1.50	NIL	NIL	N.S.
	1-9790	1-99-40	150	0- 001	0+ 030	N.S
	199.40	200.90	1.50	0.002	0.070	N.S.
	200.90	202.40	1.50	0.009	0.320	N.S.
	202.40	203.90	1.50	0.010	በ 320	NS

N.S.

-- ASSAY LOG--- ---

PROPERTY: TULLY TWP.

HOLE No.: 91-2

	FROM-	ТО	WIDTH-	Auoz\t	Au-gm\T	As-ppm
	203.90	205.40	1.50	0.001	0.050	N.S.
				0-010-		N.S.
	216.70	218.20	1.50	0.001	0.020	N.S.
	226.80	228.30	1.50	NIL	N/L	N.S.
	228.30	229. 80_			N.L_	N.S.
	233.00	234.50	1.50	NIL	N+L	N.S.
	238.00	239.50	1.50	NIL	h. E.L	
		245-25-			NIL-	N.S.
	254.20	255.70	1.50	NIL		
	255.70	257.20	1.50		NIL	27.000
		<u> 257.20</u> <u> 258.70</u>		NIL	NIL	29.000
	258.70				NIL-	
		259.70	1.00	0.001	0.030	160.000
	259.70	260.70	1.00	0.110	3.770	8800.000
	260.70				10.010-	
	261.90	263.50	1.60	0.017	0.570	
	263.50	264.70	1.20	0.016	0.550	2300.000
-	264.70			0-320		N-I-L
	265.75	267.25	1.50	0.001	0.020	90.000
	267.25	268.75	1.50	NIL	NIL	70.000
-	268 7.5					
	270.25	271.75	1.50	NIL	NIL	60.000
	271.75	273.25	1.50	0.001	0.040	80.000
٠		2-7475	150	_		55-000
	274.75	276.25	1.50	NIL	NIL	55.000
	276.25	277.75	1.50	NIL	NIL	60.000
	27775-		1.50			60-000
	279.25	280.75	1.50	NIL	NIL	50.000
	280.75	282.25	1.50	NIL	NTL	29.000
	282 2 5	283.7 5	1 50	—— — -N IL—	N (L-	32-000
	283.75	285.00	1.25	0.007	0.250	30.000
	285.00	285.85	0.85	0.001	0.040	80.000
-		—28 7. 15—		0.044-		
	287.15	288.55	1.40	0.088	3.020	3900.000
	288.55	290.00		0.003	0.110	240.000
-	290 - 00				0. 030-	70- 000
	291.50	293.00	1.50	NIL	NTL	27.000
	293.00	294.50	1.50	NIL	NUL	14.000
	294.50	296.00 -	150	NIL-		19.000
	296.00	297.50	1.50	NIL	NIL	70.000
	297.50	299.00	1.50	NIL	NiL	9.000
	299.00	300.50-		· NIL-		
	300.50	301.75	1.25	NIL	NIL	NIL
	301.75	303.25	1.50	NIL	NEL	N.S.
	303.25	304.75-	-150	NIL-	NTL-	
	308.20	309.70	1.50	NIL	NIL	N.S.
	312.75	314.25	1.50	NIL	NIL	N.S.
	320-00	-321. 50-	1 50		N [-L-	N.S.

DIAMOND DRILL LOG

CLIENT: Cyprus Gold SHEET NO: NAME OF PROPERTY: Tully Twp. Casing left **REMARKS: HOLE NO:** T-91-3 in hole LENGTH: 381.9 metres **DRILLED BY: CLAIM NO: LOGGED BY: M.Rogers** LOCATION: L 1560 E; 250 N STARTED: Jan. 31/91 **COORDINATES:** Feb. 6/91 FINISHED: **ELEVATION:** 2.51 metres **AZIMUTH:** 180° DIP: -60°

FRO	м то	DESCRIP	TION	•
0	8.55	Overburde	en	
8.55 170.8		massive to composition calcite-fille calcite veir quartz veir and interbudisseminat	o weakly for, weak-stood on, weak-stood on a mygdule on a	2d,2e); medium grey, fine grained (
		15.9 -	19.2	3-10% white-grey quartz veining.
		27.35 -	28.9	3-5% white quartz veining.
		36.5 -	93.25	Moderate - strong, pervasive, calcite alteration; light green, bleached appearance; occasional, buff section with minor Fe carbonate alteration.
		93.25 -	96.5	Pervasive calcite alteration; medium grey colour, not bleached in appearance.
		96.5 -	137.8	Moderate - strong, pervasive calcite alteration; local intervals with buff coloured, pervasive Fe carb. alteration; bleached in appearance.
		116.75 -	117.55	60%, light grey, quartz veining at low angle to c.a., 1% dissem. py.

FROM	то	DESCRIPTI	ON				
		129.6 -	134.6	5% overall graphitic sedimentary lenses and 5% quartz-carb. veinlets.			
		137.8 -	145.35	Pervasive calcite alteration; lacks bleached appearance.			
		145.35 -	148.0	L. grey, bleached section due to pervasive calcite alt.			
		148.0 -	170.8	Pervasive calcite alteration.			
		164.1 -	170.8	5% to 30% graphitic sedimentary lenses and beds, increasing in content towards lower contact; 1-10% py as dissem., stringers and blebs; 2-3%, random, grey quartz veins.			
		Gradational	contact.				
170.8	174.05	generally ma	assive, soft,	unit (2g); black, fine grained (<.5 mm), composed of graphite and 5-70% dissem., byrite, 2-3%, random, grey and pink quartz			
		Gradational	contact.				
174.05	201.45	Intermediate flows (2d, 2e); similar to $8.55 - 170.8$ description; pervasive calcite alteration, local to common graphitic lenses, common (1-5%) calcite veinlets, common (1-2%) quartz veinlets, generally $\leq 1\%$ dissem. py.					
		174.05 -	175.5	5-10% graphitic lenses, 1-5% py.			
		177.1 -	184.4	Slightly bleached appearance due to calcite alteration.			
		184.4 -	194.0	Strongly bleached due to strong, pervasive calcite alt.			
		189.9 -	193.9	5-10%, random, white-grey, quartz veining.			
		200.4 -	201.45	20-50%, white-grey, quartz veining; common breccia; occasional lenses of talc-carbonate.			
		Sharp veined	l contact.				

FROM	то	DESCRIPTION
201.45	209.3	Ultramafic rock, probable flow (6c); totally altered to talc and minor carbonate; dark grey, very fine grained, very soft, local foliation at 60° to c.a., no original texture or mineralogy, occasional, white quartz vein.
		Sharp contact at 60° to c.a.; breccia at contact.
209.3	212.0	Intermediate ash tuff (2a); medium grey, fine grained (≤1 mm), massive, intermediate composition; weak, pervasive, calcite alteration, 1-2%, random, quartz veinlets.
		Sharp contact.
212.0	214.5	Intermediate flows (2d,2e); same as 174.05 - 201.45 description.
		212.45 - 213.55 25-50%, random, grey quartz veining with 5-15% Fe carb. stringers, extensive silicification, 2-5% dissem py; common silicification to 215.0.
		Sharp contact.
214.5	217.85	Intermediate ash tuff (2a); similar to 209.3 - 212.0 description; moderate, pervasive Fe carb. alt.
		Sharp contact.
217.85	258.2	Intermediate flows (2d, 2e); similar to 174.05 - 201.45 description; weak-strong, pervasive calcite alt., local Fe carb. alt., common, random, white-grey quartz veining.
		220.8 - 231.1 2-10%, grey quartz veining; local, 1-3% py, associated silicification, minor, brown, Fe carb. along veins.
		231.1 - 237.2 5% up to 100% locally, light grey to dark grey, random quartz veining, extensive, local silicification, common chlorite, common, pervasive, carbonate alt., generally 2-10%, blebs and veinlets of Fe carbonate, generally 1-3% py, common in situ breccia.

FROM	то	DESCRIPTION	
		237.2 - 242.6	Very strong, pervasive calcite alteration; extensive bleaching.
		242.6 - 250.05	
		250.05 - 258.2	Common Fe carbonate alt. occurring locally pervasively, also as med dark brown blebs and stringers; common, white - grey quartz veining, local, 1-2% dissem. py., common silicification with veining.
		252.35 - 252.7	White quartz vein at low angle to c.a.
		Sharp contact	
258.2	260.2		robable flow (6c); totally altered to talc-carbonate; 09.3; local foliation at 60°-65° to c.a.
		Sharp contact at 6	0° to c.a.
260.2	361.6	general, weak-stro random quartz veir	s (2d, 2e); similar to 174.05-201.45 description; ong, pervasive calcite alteration, generally 1-2%, as, common (1-5%) lenses and patches of graphitic carbonate alteration.
		260.2 - 260.5	Graphitic sedimentary interflow horizon (2g).
		271.2 - 280.8	Variable 10% to locally 90% silicification; 2-3%, grey quartz veins, 5-30%, d.brown Fe carb. alt as veinlets directly related to degree of silicification; ≤1% dissem. py; local breccia; local quartz veining up to 50%; local po as blebs and dissem. of 1-3%.
		280.8 - 298.5	Weak-strong, pervasive calcite alt.; generally 2-5%, locally higher, random, white-l.grey quartz veins; generally $\leq 1\%$ py.
		287.65 - 290.4	3 - 20%, white - l. grey quartz veining.

- --

FROM	то	DESCRIPTION					
		348.3 - 348.85	3-5% asp on average, 1-5% py; minor, d. grey quartz veining.				
		348.85 - 350.05	1% py, ≤.5% asp; common graphite.				
		350.05 - 351.0	3-5% asp average, locally to 30%, 1-3% py, 10-50% grey quartz veining; common graphite lenses.				
		352.4 - 361.6	L. green colour due to fine grained chlorite; common chlorite lenses and veinlets; 352.4 - 352.7: flow-top breccia.				
		Sharp, broken cont	act				
361.6 383	1.9	Ultramafic rock, probable flow (6c); totally altered to talc-ca medium-dark grey, fine grained, soft, massive, no original to mineralogy.					
		End of Hole 381.9	meters.				

Rock Core Quality Limited

Drill Hole No: 7-9/-3 Client: Cyons

Property: Tu//y Project:_____

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft '	Core Quelity %	# of Fractures	No. of Fractures per met/ft
	100.0	M	25	5.7	85./	25	5.7
-2	98.5	M	46+	10.7+	55.8	46+	10.7 ⁺
.3_	100.5	M	27	6.2	82.8	27	6.2
4	705.0	M	26	6.0	87.5	24	5.6
5	100.0		25	5.5	<i>7</i> 4.7	25	5.5
5	√00. ⊃	14	27	6.3	94.2	27	6.3
7	700-2	M	24	5.3	84.6	24	5.3
8_	/00.0	M	19	4.4	966	/9	44.
9	/00.0	M	23	5./	83.3	20	44
/0_	<i>1</i> 00.0	M	20	4.6	92.0	20	46
	/ 00.0	H	24	5.7	98.8	2/	5.0
1=	1000	M	13	2.9	87.6	13	2.9
43	/00.0	M	22	4.9	93.3	20	4.5
14	100.0	M	17	3.9	95.4	17	3.9
15	100.0	M	14	3.2	94.3	14	7.2
16	100.0	M	17	3.8	92.1	17	3.3
17	/60.0	<u> </u>	18	40	92-1	18	4.0
18	/03.0	M	22	5./	93./	22	5.1
/9	100-0	11	/5	3.4	920	15	3.4
20	/60.0	M	18	4.2	23.0	16	3.7
21	/00-0	_ М	16	3.6	91.0	16	3.6
22	100.0	<u> </u>	21	4.8	88.6	21	4.8
23	/00-0	14	17	3.9	95.6	/7	3.9
24	(00-0	M	18	4.1	97.7	18	4.1
کټ	/00.0	M	30+	6.8	73.9	26+	5.7+
-X	/00.0	М	29	6.6	83.0	25	5-7
27	100.0	M	27	6./	83./	27	6.1

Rock Core Quality Limited

Drill Hole No: 7-9/-3 Client: Cycus

Property: Tolly Project:____

							
Core Tray #	Core Recovery %	Wardness soft med hard	# pieces of core per tray	# pieces of core per met/ft '	Core Quality %	# of Fractures	No. of Fractures per met/ft
28	100.0	\mathcal{M}	16	3.6	/00.0	16	3.6
29	/00.0	M	24	5.3	90.0	24	5.3
30_	100.0	M	15	3.3	93.3	15	3.3
3/_	C.00\	M	/3	2.9	/OO.O	13	2.7
<u>-355</u>	100.0	M	14	3.2	90.9	14	7.2
33	/00.0		23	5.2	90.9	21	48
.34	<u> </u>	H	14	3./	923	14	3.1
35	/02.0	M	19	44	95.3	19	4.4.
36	98.0	M	37+	8.2+	71.6	.37+	8.5+
37	96.5	ک	50+	12.3+	583	50+	12.3+
38	100.0	S	26+	6.0+	81.4	24+	5.6+
39	100.0	M	26 ⁺ 32 ⁺	7.1+	73.3	29+	6.4
40	100.0	M	28	6.7	92.9	28	6.7
41	100.0	<u>H</u>	35	7.7	79.1	35	7.7
42	1000	11	27	6.2	83.9	27	6.2
43	100.0	M	-25	5.6	86.7	25	5.6
44	100-0	11	37	8.6	88.4	34	7.9
45	0-00\	_ 5	22	4.9	93.3	22	49
96	1000	5-11	_25	5.7	95.4	Z	4.8
47	100-0	11	22	5./	81.6	17	3.9
43	100 0	M	4/	9.9+	61.4	36+	8.7+
49	/00.0	M	14	2.8	87.0	14	2.8
<u>50</u>	/00.0	M	25	6.7	96.0	25	6.7
5/	100.0	M	18	4.0	28.8	- 17	3.8
SZ	/00.0	M	22	5.1	87.4	17	3.9
23	100.0	M	20	4.7	91.9	20	4.7
.54	100.0	M	36+	8.3+	70.1	36+	8.3+

Rock Core Quality Limited

Drill Hole No: 7-9/-3 Client: Cyprus

Property: Tolly Project:____

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft '	Core Quality %	# of Fractures	No. of Fractures per met/ft
55	100.0	11	19	44	90.8	18	4.1
56	100.0	11	23	5.3	87.2	2/	4.7
57	/20.0	11	-28	6.3	82.0	25	5.6
-58	1000	M	43+	9.9+	5/.7	43+ 20	9.9+
.50	100.0	M	-20	4.5 8.0 ⁺	92.1 52.6	20	4.5
60	100.0	~	38+	8.0+	526	1.327	6.7
<u>s/</u>	/00.a	M-H	18 ⁺	4.0+	82.0	16 ⁺	3.6+
6 3	100.9	M-H	19	4.4	91.9	16	3.7
63	<i>/</i> 00.0	M	16	3.6 2.5	90.9	/5	3.4
64	100.0			2.5	96.6	//	2.5
<u>65</u>	ICC,C	μ	13	3.C	લું	15	3.5
Colo	iccc	M	20	4.65	_91	23	5. 3
67	100. 6	<u></u>	22	5.12	90	31	4.7
< X	100.0	M	19	4.4 7.2 ⁺	95.5	19	4.4
69	100-0	M	27	7.2+	88.2	25+	6.7+
70_	/00-0		22	44	93-0	22	44
71	/00-0		17	40	/00.0	17	40
	1.00	<u>~i</u>	スト	4.6	44	اذ	ام لا
· ;	1	M	スケ	56	43	11	44
1	1	M	15	3.3	95	13	×
1	1		14	4.1	36	17	3.0
1	1000	n	12	٨.1	100	立人	2.7
7	1000	<u>M</u>	111	2.	91	1'}	
j	1223		23	53	47) S	2
1,	13.2	11	2	4.0	_ 1 3	70 11	10
	10.0.0	i11	15	3 2_	95		32
	72.0	5	50+	12.7+	. 29.1	50+	12.7

Rock Core Quality Limited

Property: Tully Project:

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ·	Core Quelity %	# of Fractures	No. of Fractures per met/ft
8 0	96.0	5	50+	11.8+	28.2	50 ⁺	118+
33	98.0	5	50+ -36+	128 ^T	-29.5	50+	12.8
34	93.0	5	-36+	8-5+	56.7	3/	7.3+
85	96.0	5	35+	8.1+	628	35+	8.1+
36	96.0	5	15+	15.3+	0.0	12+	14.1+
			<u> </u>		-		
		- 	 				•
	<u> </u>				<u> </u>		
			<u> </u>			<u> </u>	
				-			
				 			
		!	<u> </u>	<u> </u>		<u> </u>	<u> </u>
			l	 			
·				<u>. </u>			
							
	-						
	l					_	
		· · · · · · · · · · · · · · · · · · ·					
-							
					<u></u>		
		<u> </u>					
			l				

SURVEY DATA AND CALCULATED CO-ORDINATES (metres)

PROPERTY: TULLY TWP.

HOLE NO: 91-3

GRID: FRANKFIELD

DATE: FEBRUARY, 1991

SURVEY BY: MCR

INSTRUMENT: TROPARI

DEPTH	INCLINATION	BEARING	EASTINGS	NORTHINGS	ELEVATION
0.00	-60.00	180.00	1560.000	250.000	2.510
99.00	-56.00	175.50	1562.060	197.578	-81.447
121.00<-	54.25	174.62	1563.142	185.046	-99.496
143.00<-	52.50	173.75	1564.472	171.989	-117.152
187.00	-49.00	172.00	1567.925	144.365	-151.225
241.50<-	45.50	170.50	1573.552	107.801	-191.246
296.00	-42.00	169.00	1580.558	69.060	-228.933
381.90	-42.00	169.00	1592.738	6.397	-286.412

SUMMARY LITHO LOG PROPERTY: TULLY TWP. HOLE No.: 91-3

Page 1 of 1

LITHO UNIT	DEPTH	EASTINGS	NORTHINGS	ELEVATION	CORE ANGLE	
O.B.	8.55	1560.18	245.47	-4.74	none	
2D, 2E, CARB	96.50	1562.01	198.90	-79.33	45.0	
2D, 2E, CARB, F	137.80	1564.16	175.07	-112.98	45.0	
2D,2E,CARB	170.80	1566.65	154.54	-138.68	45.0	
2G,PY	174.05	1566.91	152.49	-141.20	45.0	
2D,2E,CARB	201.45	1569.42	134.67	-161.84	50.0	
6C, TALC, CARB	209.30	1570.23	129.40	-167.60	60.0	
2A, CARB	212.00	1570.51	127.59	-169.58	60.0	
2D,2E,FE CAR	214.50	1570.76	125.91	-171.42	60.0	
2A, FE CARB	217.85	1571.11	123.67	-173.88	60.0	
2D, 2E, CARB	220.80	1571.41	121.69	-176.05	60.0	
2D,2E,CARB,Q	237.20	1573.11	110.69	-188.09	60.0	
2D, 2E, CARB	242.60	1573.69	107.02	-192.01	60.0	
2D,2E,FE CAR	258.20	1575.70	95.93	-202.79	60.0	
6C, TALC, CARB	260.20	1575.96	94.51	-204.18	60.0	
2D, 2E, CARB	271.20	1577.37	86.69	-211.78	60.0	
2D,2E,SIL,FE	280.80	1578.60	79.86	-218.42	60.0	
2D, 2E, CARB, Q	298.50	1580.91	67.24	-230.61	60.0	
2D,2E,CARB,F	306.00	1581.98	61.77	-235.62	60.0	
2D,2E,FE CAR	326.20	1584.84	47.03	-249.14	60.0	
2D,2E,FE CAR	352.40	1588.56	27.92	-266.67	60.0	
2D,2E,CHL	361.60	1589.86	21.21	-272.83	60.0	
6C, TALC, CARB	381.90	1592.74	6.40	-286.41	60.0	

ASSAY -LOG---PROPERTY: TULLY TWP. HOLE No.: 91-3 -TO WIDTH — Au oz\t— Au-g:n\T— 8.55 10.05 1.50 NIL NIL N.S. 15.90 -1-7 - 40 -1 --50-NIL NIL N.S. 17.40 18.90 1.50 NIL NIL N.S. 24.35 25.85 1.50 NIL NIL N.S. 27-35 28-85 -1-50-NIL NIL N.S. 37.70 39.25 1.55 NIL NIL N.S. 42.00 43.50 1.50 NIL NIL N.S. 50.60-52.10 -1.50 NIL <u> `iL</u> N.S. 52.75 54.25 1.50 NIL MIL N.S. 1.50 59.25 60.75 NIL NIL N.S. 61.55 63.05 _1..50_ NIL NIL N.S. 67.10 68.60 1.50 TRACE 0.010 N.S. 71.45 72.95 1.50 NIL NIL N.S. 75.-10-76.60 1-.-50-NIL NIL N.S. 80.90 82.40 1.50 NIL NIL N.S. 83.90 85.40 1.50 NIL MIL N.S. 87-20 88.70 -1--50 NIL NIL N.S. 93.25 94.75 1.50 NIL NIL N.S. 98.60 100.10 NIL 1.50 NIL N.S. -105.95---104.45 1--50 NIL NIL N .-S-.-110.25 111.75 1.50 NIL NIL N.S. 116.75 118.25 1.50 TRACE 0.010 N.S. -120.70 -122 --20 1--50--NIL NLL N-.-S-129.60 131.10 1.50 N.S. TRACE 0.010 131.10 132.60 1.50 NIL NIL N.S. -1:3:4--10 -132.60-1.50 NIL NIL N-S-138.75 140.25 NIL 1.50 NIL N.S. 146.60 148.10 1.50 0.009 0.315 N.S. 156.05 157.55 1.50 NIL NIL N.S. 164.10 165.60 1.50 0.002 0.065 N.S. 165.60 167.10 1.50 NIL NIL N.S. 167.10 168.60 1.50 0-001-0.034 N-S:-168.60 170.10 1.50 0.001 0.048 N.S. 170.10 171.60 1.50 0.025 0.864 N.S. -1-71-,-60 173.10 0.041 -1---50--1--395-N-S. 173.10 174.60 1.50 0.037 1.272 N.S. 179.60 181.10 1.50 NIL NIL N.S. 183.40 -184-.90--- --1---50 N.S. NIL NIL 189.90 191.40 1.50 NIL NIL N.S. 191.40 192.90 1.50 NIL NIL N.S. 192--90--1-94-, 40 1--50-NIL -NIL N.S. 200.25 201.75 1.50 NIL 0. v41 N.S. 209.00 210.50 1.50 NIL NIL N.S. 210.50 -2-1-1 - 50--1-.-00 NIL NIL N.S. 211.50 212.50 1.00 NIL NIL N.S. 212.50 214.00 1.50 0.007 0.243 N.S. 215 -20--2-1-6---7-0--1--50--N-I-L-**ህ**ፓ፡ፋ N ~S~ 220.80 222.30 1.50 $\Sigma : \mathbf{L}$ NIL N.S. 222.30 223.80 NIL 1.50 i. IL N.S.

223.80

225.30

1.50

NIL

MIL

N.S.

- ASSAY LOG --Page-2-of-3.

PROPERTY: TULLY TWP.

HOLE No.: 91-3

- FROM	TO	WIDTH	_Au oz\t_	Au_gm\T_	As_ppm
225.30	226.80	1.50	NIL	NIL	N.S.
226.80	228.30-	1.50	NIL	NIL	N.S
228.30	229.80	1.50	NIL	NIL	N.S.
229.80	231.30	1.50	NIL	NIL	N.S.
231.30	232.80	1.50	0.001	0.034_	N.S
232.80	234.30	1.50	0.004	0.147	N.S.
234.30	235.80	1.50	0.004	0.137	N.S.
235.80	-237.30-		NIL-		N.S
243.85	245.35	1.50	0.003	0.103	N.S.
245.35	246.85	1.50	NIL	NIL	N.S.
246.85	248.35_	1.50 _	NIL	NIL	N.S
248.35	249.85	1.50	NIL	NTL	N.S.
249.85	251.35	1.50	NIL	NIL	N.S.
	-252.85-	1.50	0.007	0.254-	N.S
252.85	254.35	1.50	0.006	0.190	N.S.
254.35	255.85	1.50	0.004	0.130	N.S.
255 85	255.86	0_01 _	NIL_	NJL_	N.S
260.20	261.70	1.50	NIL	NIL	N.S.
263.40	264.90	1.50	NIL	NIL	N.S.
	272.70	150 -	NI-L	NIL-	NS
272.70	274.20	1.50	0.001	0.024	N.S.
274.20	275.70	1.50	NIL	NIL	N.S.
275.70	_277.20 _	1.50	0.000_	0.010_	N.S
277.20	278.70	1.50	0.006	0.219	N.S.
278.70	280.20	1.50	0.003	0.099	NIL
280 - 20	28170	150	NIL	N I-L-	N.S
286.85	288.35	1.50	NIL	NIL	N.S.
288.35	289.85	1.50	NIL	NIL	N.S.
	291.35	150		\ I L-	N.S
299.10	300.60	1.50	NIL	NIL	N.S.
300.60	302.10	1.50	NIL	NIL	N.S.
308 -5 0	310.00	—150	0-001-	0-041-	80 -000
310.00 311.00	311.00	1.00	0.022	0.744	2300.000
311.00	312.00 313.50	1.00	0.039	1.330	NIL
313.50	315.00	1 50	0.023 <u>-</u> -	0-780-	2700. 000
315.00	315.00	1.50	0.001	0.031	60.000
316.50 -	318.00 —	1.50 1.5 0 -	NIL NII	NIL	70.000
318.00	319.50		NIL-	NIL-	
319.50	321.00	1.50 1.50	NIL	NIL	70.000
319.50	321.00 322 .50	1 50	NIL 0+000	NIL	80.000
322.50	324.00	1.50	0.000 NIL	0-014-	80-0 00
324.00	325.50	1.50	NIL	NIL	50.000 36.000
324.00 325.50	-327.00	1 .5 0		······································	40.000
327.00	328.50	1.50	NIL	NIL	340.000
328.50	330.00	1.50	NIL	NIL	45.000
	33150	1.50 1.50	NIL NIL	NIL_	45.000 36-000
331.50	332.75	1.25	0.000	0.017	34.000
332.75	333.75	1.00	0.054	1.865	1900.000
333.75	334.75				
333.75	334.75	1.00	0.024	0.819	1800.000

SSAY LO	OG		* BORSU			Page_	3 of '
	Y: TULLY					Fase_	.a
OLE No	.: 91-3						
	=======================================		 =======				
	FROM	ТО	WIDTH	_Au oz\t_	Augm\T	_ As ppm_	-
	334.75	335.25	0.50	0.021	0.730	900.000	
	335.25	-336.75	1.50	0.043	1.474-	1500.000	
	336.75	338.25	1.50	0.001	0.038	100.000	
	338.25	339.25	1.00	NIL	NIL	40.000	
		341.25				60.000-	_
	341.25	342.75	1.50	NIL	NIL	60.000	
	342.75	343.75	1.00	0.214		6789.000	
		344.75					
	344.75	345.75			0.127		
		346.75		0.092	3.158	NIL	
	347.75	348.75					
				0.017			
	348.75	349.75			0.213		
		·· -350.75-		0.025			
	350.75	351.75	1.00	0.056	1.920	3700.000	
	351.75	353.25	1.50	NIL	NIL	2700.000	
· · · 	-353-25	35475				4-000	
	354.75	356.25	1.50	NIL	NIL	4.000	
	356.25	357.75	1.50	NIL	NIL	2.000	
-· ·	- 357 . -75-	359.25-	1- 5 0 ·	NIL-	NTL	5-000	
	359.25	361.60	2.35	NIL	NIL	3.000	
	361.60	367.60	6.00	NIL	NIL	1.000	
						<u> </u>	
<u>-</u> -		· · · · · · · · · · · · · · · · · · ·					
						·	
							
							
							

:.

** BOKSURV **		
AVERAGED ASSAY INTERVALS	Pa	ge 1 of 1
PROPERTY: TULLY TWP.	·	
HOLE No: 91-3		
		3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1HW-(-4.00-d.t.—Gore-Angle:-904.00-t.t.)-		
	EASTINGS:	1585.77
FROM:- 33275	NORTHINGS: -	42.25
	ELEVATION:	-253.52
0.038 Au oz\t		
- 1.315-Au-gm\T		
1600.000 As ppm		
	EASTINGS:	1586.34
TO: 336.75	NORTHINGS:	- 39.33
	ELEVATION:	-256.20
		•
2. MZ (4.00 d.t.—Core-Angle:-90—-4.00-tt-)—	 	
PROV. 045 55	EASTINGS:	1587.90
FROM: 347.75		
0.000	ELEVATION:	-263.56
0.026 Au oz\t		
0.902-Au-gm\T-		
3925.000 As ppm		
TO 054 85	EASTINGS:	1588.46
то:351.75	NORTHINGS:-	2839
	ELEVATION:	-266.24
3. MZ (-4.00 d.t.—Gore Angle: 90 4.00 t.t.)		
o. nz (4.00 d.t. — core-nigre: 50 — 4.00 d.t.)—		
	EASTINGS:	1587.19
FROM: 342.75	NORTHINGS	
110011. 042110	ELEVATION:	
0.083 Au oz\t	EDEVALION.	-200.22
2.861 Au gm\T	· · · · · · · · · · · · · · · · · · ·	
2972.250 As ppm		
	EASTINGS:	1587.75
	NORTHINGS :	——-32 . 04
	ELEVATION:	-262.89
	·	
	· ·	
The state of the s		

DIAMOND DRILL LOG

CLIENT: Cyprus Gold SHEET NO: 1 Tully Twp. Casing left NAME OF PROPERTY: **REMARKS:** T-91-4 hole **HOLE NO:** in 541.5 metres LENGTH: **DRILLED BY: CLAIM NO:** LOGGED BY: **M.Rogers** L 13+18 E; 1 + 92 N Feb 1/91 LOCATION: STARTED: FINISHED: Feb 9/91 **COORDINATES: ELEVATION:** 2.47 metres **AZIMUTH:** 180° -60° DIP:

FROM TO	DESCRIPTION .				
21.3 318.6	Intermediate flows (2d,2e); medium greenish-grey, fine-grained (≤ 1mm), massive, intermediate composition, generally ≤ .5% disseminated (dissem.) pyrite (py), 1-3%, random and irregular calcite veinlets, generally 1%, random and irregular, white-l. grey quartz veinlets, greenish coloration due to probable fine-gr. chlorite, common, dark green chlorite stringers, local-common, calcite-filled amygdules, weak, local foliation at 50° to core axis.				
	36.2 - 39.0 1-2%, l. grey quartz veining with 1-2% py.				
	39.0 - 43.0 5-50%, l. grey quartz veining. Gradual change in colour at about 44.0 meters from medium greenish-grey to medium grey due to disappearance of chlorite.				
	43.0 - 49.0 2-5%, l. grey quartz veining with ≤1% py.				
	From about 44.0 meters the gradual appearance of local, pervasive calcite alteration; bleaching commonly associated. Rare pillow development and flow top breccia. Gradual reappearance at about				

55.0 meters of fine grained chlorite.

62.5 66.0 Common pillow development.

Beginning of occasional lenses and narrow beds of graphitic sediment at 73.0 meters; generally with py.

FROM	то	DESCR	APTION	
		75.0	- 86.1	Generally 2-5%, locally up to 75%, grey quartz veining; commonly with graphite lenses and minor py.
		83.55	- 83.95	75%, grey quartz veining with 1-2% py.
		86.1	- 113.0	Generally 1-3%, random, grey quartz veining with minor (1-2%)py.
		Pervasiv	ve calcite alte	eration appears to be more common downhole.
		102.95	- 103.55	50%, grey quartz veining with 1% py.
		108.5	- 139.7	Mod. bleaching due to pervasive calcite alt., moderate-strong intensity.
		118.6	- 121.7	5% average, random, grey quartz veins.
		126.4	- 139.7	Local, weak, pervasive, buff-coloured Fe carbonate alt.
		139.7	- 147.7	5-50%, random, l. grey and minor purple quartz veining with pervasive Fe carbonate alteration and generally ≤ 1% py-po, common, minor, graphitic lenses.
		147.7	- 152.95	Weak-moderate, pervasive, buff Fe carb. alt with 1-2% quartz veining, locally higher; minor graphite.
		152.95	- 156.1	2-10%, random, grey quartz veining; moderate, buff Fe carb. alt. occurring pervasively; minor graphite.
		156.1	- 156.8	Moderate, pervasive Fe carb. alt., 1-2% quartz veinlets; minor graphite.

FROM	то	DESCRIP	MON	
		156.8 -	204.15	Moderate-strong, pervasive, calcite alteration; 1-2% grey quartz veinlets; common, mild bleaching; local weak foliation at 45° to c.a.,
		171.25 -	174.1	common (1-5%) graphite lenses. 20-75% graphitic sediment (2g) with 1% to locally 10% po, common soft-sediment breccia; 1-2% quartz veinlets.
		174.7 -	181.4	Modstrong bleaching due to calcite alteration.
		182.2 -	183.1	10-20% graphitic sedimentary lenses.
		181.4 -	204.15	Weak-mod. bleaching due to calcite alt.
		183.95 -	185.1	10-50%, grey quartz veining locally.
		194.2 -	194.8	50%, grey quartz veining.
		203.95 -	204.35	30%, white quartz veining.
		204.15 -	207.55	Fine-grained chlorite.
		207.55 -	208.35	Moderate, pervasive, Fe carbonate alteration.
		208.35 -	216.4	Fine grained chlorite; local white quartz veining.
		216.4 -	230.1	Weak-strong, pervasive calcite alteration; generally 1-3% quartz veining; local, pervasive Fe carb. alt.
		230.1 -	233.45	Fine grained chlorite alt.
		233.45 -	242.3	Weak-strong, pervasive calcite alt; 1-2% quartz veining; local Fe carb. alt., local, minor chlorite.
		242.3 -	243.1	Mod. pervasive Fe carb. alt. with 3-5%, grey quartz veining.

FROM	то	DESCRIPT	TON	
		244.9 -	247.5	Weak-mod., pervasive Fe carb. alteration.
		248.8 -	249.5	10-80% white quartz veining.
		247.5 -	289.7	Weak-strong, pervasive calcite alteration; local bleaching; common, weak-moderate pervasive, buff Fe carb. alteration; 1-3%, random, grey quartz veining.
		289.7 -	291.25	20 - 100% graphitic sedimentary interflow (2g); 2-10% blebs, dissems. and lenses of po, foliation at 50° to c.a.
		291.25 -	305.25	Modstrong, pervasive calcite alteration; common bleaching, local sections with weak-moderate, pervasive, buff Fe carb. alteration; common lenses, patches and narrow beds of graphitic sediment with 1-10% po.
		294.35 -	318.6	Bleached section due to carb. alteration.
		295.9 -	296.7	25%-100% graphitic sediment; 1-10% po (2g).
		299.5 -	300.45	20%-100% graphitic sediment, 1-5% po.
		304.4 -	305.25	Calcite veinlet stockwork.
		305.25 -	318.6	L. greenish-grey, bleached appearance; variable, pervasive calcite alteration; common, minor silicification; common, fine-grained chlorite; 3-20%, random calcite veinlets; 1-2%, random, white-grey-purple quartz veinlets.
		Indistinct C	Contact	
318.6	320.65		· •	bbable flow; (6c); totally altered to talc and minor fine-grained (<1 mm), soft, massive.
		Sharp conta	act at 45	° to c.a.

FROM	TO	DESCRIPTION	
320.65 407.65	Intermediate flows (2 foliation at 50° to c.a.	2d,2e); similar description to 21.3-318.6; local	
			Weak-strong, pervasive carbonate alteration; generally calcite but locally Fe carb. especially associated with quartz veining; local white-grey quartz veining.
			Modwell developed foliation at 50° to c.a., deformation zone (D.Z.); 326.4-331.0: 10-60%, random, white-l.grey quartz veining with extensive, strong, pervasive, Fe carb. alt.; epidote in veins; 2-5% graphitic lenses; local, 1-2% py.; Fe carb. alt. continues as blebs to 335.5.
		340.1 - 342.2	5-20% Fe carb. alt. as d. brown blebs and patches; 2-3% quartz veins.
		340.1 - 354.9	Common, l. green colour due to fine gr. chlorite- epidote-carbonate.
		347.1 - 349.85	Minor deformation zone (D.Z.); well dev. foliation at 55° to c.a.; sericite and calcite alteration; local sedimentary lenses; 2-3% quartz veining.
		354.9 - 407.65	Generally unaltered; local, white-pink, random, silica veinlets; common calcite veinlets; common, fine gr., chlorite alt.; local, 1-2% po as stringers; 354.9-361.3: 5-10%, pinkish-white quartz veinlets.
		377.6 - 407.65	Occasional, random amethyst veinlets commonly with 1-3% py-po; commonly associated chlorite veinlets.
		Sharp contact at 45°	
407.65	410.2	Intermediate ash tufi massive, intermediat	f (2a); medium grey, very fine grained (≤.5 mm), te composition.
		Sharp contact.	

FROM	то	DESCR	IPTION	
410.2	489.75	generally chlorite, white-gro	y unalter common, ey-purple	ys (2d,2e); similar to previous general descriptions; red, except common to extensive fine grained random calcite veinlets, common (1-3%), random, a quartz veinlets, generally ≤ 1% dissem. py-po, with quartz veins.
		411.7 -	413.55	5-10%, white-grey quartz veining with 2-3% po; local silicification.
		416.0 -	419.6	5-20%, white-purple quartz veining with 1-3% po; common silicification.
		419.6 -	429.15	3-10% white-purple-grey quartz veining with 1-3% po; local silicification; po locally to 10% as stringers, \leq 1% py, occasional .5-2% chalcopyrite (cp) with po.
		434.6 -	437.6	2-10%, random, white-purple quartz veins with 1-3% po, \leq 1% py, $<$ 1% cp.
		440.2 -	444.0	5-10%, ld. grey quartz veining with po and minor py and rare cp; veining generally subparallel to foliation at about 30°-45° to c.a.
		444.0 -	447.2	Extensive purple quartz veining and silicification with chl., epidote and 1-3% po, <1% py, local .5-1% cp.
		447.2 -	479.2	Relatively unaltered except very common fine-gr. chlorite; generally 1-2%, locally to 30% purple-white-l.grey quartz veining with 1-2% po., \leq 1% py and occasional \leq 1% cp; local, pervasive calcite alt; local silicification.
		451.7 -	452.05	30% purple quartz veining.
		479.2 -	489.75	Modstrong, pervasive calcite alt.; common, fine grained chlorite alt.; 1-10%, veinlets and stringers of d. brown, fibrous actinolite; 1-2% quartz veins.

FROM	то	DESCRIPTI	ON	
		Sharp contact	et at 60°	' to c.a.
489.75	502.85	argillites (5d) developed for dissem., bleb argillite, fine buff-coloured); graph bliation bed and graine d pervas	nce of graphitic sedimentary rocks (5f) and attic argillites black, fine grained (<.5 mm), well at 55° to c.a., composed of graphite and 2-50%, nodular py, interbedded with medium-dark grey d (<.5 mm); pervasive calcite alteration, local sive Fe carb. alt. in argillite locally, very common, ning locally, particularly in graphitic sections.
		489.75 -	492.0	Argillite section.
		492.0 -	492.55	Graphitic argillite; 25%-50% py.
		492.55 -	494.4	Interbedded graphitic arg. and argillite with 5-70%, l. grey, quartz veining; 1-5% py.
		494.4 -	495.7	Mainly argillite with 5% quartz veining and 1-3% py.
		495.7 -	496.8	Graphitic argillite with 5-30% py and 20%, grey quartz veining.
		496. 8 -	497.6	Argillite with pervasive Fe carb. alt.
		497.6 -	502.85	Graphitic argillite with 2-10% py; 2-5%, grey, quartz veining.
		499.85 -	501.35	Fault Zone; badly broken core.
		Broken conta	act	

FROM TO	DESCRIPTION
502.85 541.5	Ultramafic flows (6c); totally altered to talc and minor carbonate; l. green-d.grey, fine grained (<.5 mm), massive, very little remnant texture except rare spinifex, no original mineralogy, common, random calcite veinlets.
	503.6 - 506.4 Extremely broken section with local gouge; Fault Zone (F.Z.).
	525.0 - 533.2 Common broken sections; Fault Zone (F.Z.).
	Progressively less altered downsection. Some sections with some original mineralogy and spinifex texture near bottom of hole.
	End of Hole 541.5 meters.

Rock Core Quality Limited

Drill Hole No: 7-9/-4 Client: Cycus

Property: Tu//y Project:

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft	Core Quality %	# of Fractures	No. of Fractures per met/ft
	100-9	М	23	5.2	83.1	.23	52
.2	100-5	M	21	4.6	84.6	21	4.6
_3	100.0		46+	10-7+	56.8	42+	7.8 ⁺
4	./00.0	M	29	6-6	73.9	29	6.6
5	/05-5	M	25	5.8	82.6	25	5.8
6	100.0	M	25	6.0	96.4	25	6.0
7_	/00.0	M	15	3.3	94.6	15	3.3
8	/00-0	M	/8	4.2	941	18	4.2
9	(200)	11	18	40	89.9	18	40
10	100.0	M	21	49	90.6	/9	4.5
11	100.0		23	5.1	90.0	23	5./
12	100.0	11	21	4.8	94.3	21	4.8
13	100.0	M	22	5./	90.7	2.3	5.1
14	100.0	M	21	4.8	8/8	19	4.3
/5	100.0	M	/7	3.7	/00.0	/7	3.7
16	100.0	M	15	3.6	95.2	15.	3.6
17	150.0	M	21	49	23.0	21	4.9
18	100.0	M	18	43	90.9	18	43
/9	/00.0	M	19	4.3	25.5	19	4.3
છ	100.0	M	24	5.6	90.7	24	5.6
ال	100.0	M	222	48	87.9	30	44
22	0.00	M	/7	40	/00.0	17	4.0
23	(00.0	M	21	4.7	92.2	21	4.7
24	1000	M	19	4.3	94.4	19	4.3
25	/00.0	M	21	4.8	92.0	21	4.8
26	100-0	M	18	41	94.3	18	4.1
27	100.0	11	2/	47	90.0	21	4.7

Rock Core Quality Limited

Property: To//y Project: _______

Core Tray #	Core Recovery %	Herdness soft med herd	# pieces of core per tray	# pieces of core per met/ft	Core Quelity %	# of Fractures	No. of Fractures per met/ft
28	/ 0 0.0	M	19	4.4	9/.9	16	3.7
29	100.0	<u> </u>	22	5.1	23./	22	5./
30	100.0	14	2/	46	84.6	21	4.6
3/_	100-0	M	23	5.3	93.0	23	5.3
32	100.0	M	ಎಂ	4.7	95-3	20	4.7
33	100.0	H	24	5.6	93.0	24	5.6
34	/00.0	M	17	3.7	95.5	17	3.3
35_	/0 0.0	M	30	6.9	88.5	30	6.9
.36_	100.0	M	/8	4.2	98.8	18	4.2
37	/00.0	\sim	21	4.7	80.9	21	4.7
_38	/00.0	M	24	5.8	89.2	24	5.8
.79	100-0	M	24	5.6	91.9	24	5.6
40	/00-0	11	/7	4.0	98.8	17	4.0
41	100.0	<u>/1</u>	22	5.0	93.2	22	5.0
42	/00.0	/1	- 2 0	4.5	90.9	~0	4.5
43	/00.0	M	/9	42	91.1	18	4.0
44	/00.0	M	23	5.4	82.4	23	5.4
45	/0 0.0	M	18	4.0	93.3	18	4.0
46	/00.0	M	24	5.5	87.5	24	5.5
47	0.00	M	20	4.5	96.6	20	45
48	(00.0	M	22	5.0	89.8	22	5.9
49	\ 0 3.0	M	15	3.4	94.3	15	3.4
50	/00.0	M	26	5.9	87.5	24	5.5
51	/00.0	<u> </u>	23	5.3	88.4	22	5.1
5 ?	/00.0	M	24	5.5	87.7	24	5.5
53	/00.0	M	24	5.4	87.6	24	5.4
54	/œ.s	\sim	-23	5.3	78.4	23	5.3

Rock Core Quality Limited

Property: To//y Project:_____

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft	Core Quality %	# of Fractures	No. of Fractures per met/ft
.55	1000	M	20	4.5	87.5	20	4.5
-56	100.0		/3	4.2	95.5	18	4.2
57	/20.0	M	12	2.7	96.6	12	2.7.
58	100.0	M	17	40+	89.5	17+	40 ⁺
50	/OD.O	M	13	2.9	93.3	13	2.9
(ICC C	71	14	3.5	100	17	4.2
61	ICC. C	M	18	4.0	100	18	4.0
62	1000	Μ	えし	5.c	૯૧	33	53.
63	100 C	M	35	5.と	96	34	5.6
64	100.0	_M	20	4.4	98	3C .	4,4
65	1000	Μ	21	4,9	95	19	4,4
56	\OD_O	M	19	41	87./	19	4.1
67	100.0	M	/7	3.9	96.6	17	3.9
68	(00.0)	M	16	4.9	97.7	16	49
69	600	11	25	5.7	90.9	24	5.5
70_	100.0	11	-2/	4,9	941	21.	4.9
7/	100.0	11	27	6.0	84.4	<i>ચ</i> 6	5.8
72	100.0	M	16	3.7	97.7	16	3.7
23	(00.0	M		4.2	930	18	42
74	100.0	M	15	3.3	92.4	15	3.3
75	1000	14	29	6.8	75.3	27	6.4
26	1000	M°	19	44	92.0	19	44
<u>77</u>	100.0	M	15	3.3	96.7	15	33
78	100.0	M	18	40	89.9	18	40
79	/00-0	M	<i>- 2</i> 0	4.5	92.0	20	45
४८	6.00	M	² -2/	4.8	89.7	2/	4.8
8/	/00-0	M	16	3.6	95.6	16	3.6

Rock Core Quality Limited

Drill Hole No: 7-9/-4 Client: Cyprus

Property: Tully Project:_____

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft .	Core Quelity %	# of Fractures	No. of Fractures per met/ft
82	/00.0	M	24	5.5	82.8	24	55
73	/00-0		18	40	92.1	/6	3.6
34	/00.0	M	15	3.3	92.3	15	33
25	·/00-0	M	/8	4.0	94.4	18	4.0
- (4)	100.0	M	14	3.5	100	j4	3.5
£7	100.0	М	16	3.7	100	- 16	3.7
3.0	1000	M	:7	4.2	100	17	4,2
<u> </u>	100.0	M	14	4.2	100	14	4.2
90	1000	M	<i>j</i> 4	3.2	100	14	3.2
٦١	100.5	M	2/	48	253	2/	4.5
42	105-0	11	13	30	100.5	13	3.0
93	133.3	M	15	3.3	94.4	/5	33
94	100.0	M	//	2.5	95.5		2.5
45	105-2	M	14	3.2	943	14	3.2
<i>7</i> 6.	100.0	M	18	42	853	18	4.2
97	1000	M	21	4.7	99 -	21.	4.7
48	100.0	М	31	4.5	ico	18	4.5
99	1006	М	22	5.1	99	・ よ ス	51
100	160.0	М	15	3.3	100	15	3,3
ici	1000	М	15	34	9.7	15	3.4
102	1000	М	15	3.4	99	15	3.4
105	100.0	M	حز/	4.8	88.6	21	4.8
104	100.0	M	20	4.4	90.1	ವರ	4.4
105	100.0	M	19	44	77.7	19	4.4
106	100.0	M	18	4.0	96.6	18	% 9
107	100.0	M	25	5.7	83.9	-25	5.7
108	100.0	M	31	6.8	78.0	31	6.8

Rock Core Quality Limited

Drill Hole No: 7-9/-4 Client: Curre

Property: Tully Project:_____

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quality %	# of Fractures	No. of Fractures per met/ft
109	96.0	<u></u> S	50 ⁺	11.8+	54.1	50 ⁺	11.3+
//0	\$6.0	_5	100+	26.0	37.7	100+	26.0+ 259+
44	90	5 S	1007	入59+ 14.2	184	1000	259+
112	100		ψC;	14.2	59.2	45	10.7
113	100	S	_7o+	16.9+	41,0	7+	16.9+
117	18	\$	100+	2365	27	IGC +	23.6+
115	95	S	100+	25.7+	34	160	25.75
116	90.0	_5	/m+	24.1+	30./	/xx+	24/5
117	28.0		/3o+	28.2+	9.8	/ɔɔ+	28.2+
118	90.0	-5	/00+	27.4+	30.1	100+	274+
117	100.0	حــــ	44+	6.9+	63.2	40+	9.2+
120	1020	5	18+	6.9+	69.2	18+	6.9+
		-1-					

SURVEY DATA AND CALCULATED CO-ORDINATES (metres)

PROPERTY: TULLY TWP.

DATE: FEBRUARY, 1991

HOLE NO: 91-4

SURVEY BY: MCR

GRID: FRANKFIELD

INSTRUMENT: TROPARI

DEPTH	INCLINATION	BEARING	EASTINGS	NORTHINGS	ELEVATION
		180.00	1318.000	192.000	2.470
0.00	-60.00				-88.463
105.00	-60.00	182.50	1316.855	139.512	• • • • • •
219.50	-57.00	181.50	1314.767	79.723	-186.090
317.60	-56.00	180.00	1314.058	25.582	-267.894
434.60	-55.00	177.50	1315.504	-40.671	-364.317
541 50	-54 00	177.00	1318.482	-102.677	-451.346

Page 1 of 2

SUMMARY LITHO LOG PROPERTY: TULLY TWP.

HOLE No.: 91-4

2D, 2E, CHL

CORE ANGLE NORTHINGS ELEVATION EASTINGS DEPTH LITHO UNIT -15.98none 181.35 1317.77 21.30 O.B. 50.0 -35.64 170.01 1317.52 44.00 2D, 2E, CHL 50.0 -62.48154.51 2D, 2E, CARB 75.00 1317.18 50.0 -72.09148.96 1317.06 2D, 2E, CARB, Q 86.10 50.0 -106.711316.46 128.34 126.40 2D, 2E, CARB ·50.0 -118.05 121.39 1316.22 139.70 2D, 2E, CARB, F 50.0 112.46 -132.63156.80 1315.91 2D, 2E, FE CAR 104.92 -144.95 50.0 1315.65 2D.2E,CARB 171.25 50.0 -147.38103.43 174.10 1315.59 2G,PO -173.00 50.0 87.74 1315.05 204.15 2D, 2E, CARB 50.0 -175.9085.96 1314.98 207.55 2D, 2E, CHL 50.0 85.55 -176.58208.35 1314.97 2D, 2E, FE CAR 81.34 -183.45 50.0 1314.82 2D, 2E, CHL 216.40 -244.6350.0 1314.26 40.98 289.70 2D, 2E, CARB, F 50.0 -245.9240.12 1314.25 291.25 2G, PO 50.0 -257.6032.40 1314.15 2D, 2E, CARB, F 305.25 50.0 -268.721314.07 25.02 318.60 2D, 2E, CARB, S 50.0 -270.4123.86 1314.10 320.65 6C, TALC, CARB 50.0 22.24 -272.761314.13 323.50 2D, 2E, CARB -280.1750.0 17.15 332.50 1314.24 2D, 2E, D.Z., F 50.0 -286.4412.84 1314.34 340.10 2D, 2E, CARB 50.0 8.88 -292.211314.42 347.10 2D, 2E, CHL, CA 50.0 7.32 -294.471314.46 2D, 2E, D.Z., S 349.85 -298.6355.0 1314.52 4.46 2D, 2E, CHL, CA 354.90 55.0 -342.11-25.41407.65 1315.17

Page 2 of 2

SUMMARY LITHO LOG PROPERTY: TULLY TWP.

HOLE No.: 91-4

LITHO UNIT	DEPTH	EASTINGS	NORTHINGS	ELEVATION	CORE ANGLE
2 A	410.20	1315.20	-26.85	-344.21	55.0
2D,2E,CHL,Q.	429.15	1315.44	-37.59	-359.83	55.0
2D, 2E, CHL	434.60	1315.50	-40.67	-364.32	55.0
2D,2E,CHL,Q.	447.20	1315.85	-47.98	-374.57	55.0
2D, 2E, CHL	479.20	1316.75	-66.54	-400.63	55.0
2D, 2E, CARB	489.75	1317.04	-72.66	-409.22	55.0
5F,5D,PY,Q.V	502.85	1317.41	-80.26	-419.88	55.0
6C, TALC, CARB	541.50	1318.48	-102.68	-451.35	55.0

_As_ppm -TO-N.S. NIL NIL 29.25 1.30 27.95 -N.S. -NIL NIL 36.20 37.70--1.50 N.S. NIL 37.70 39.20 1.50 NIL N.S. NIL 40.70 1.50 NIL 39.20 N.S. NIL NIL -1-50 40.70 -42..20 NIL N.S. 43.70 1.50 NIL 42.20 NIL N.S. 1.50 NIL 45.20 43.70 NIL. N.S. 1.50 NIL 46.70 --45.20 1.50 0.010 N.S. 0.000 48.20 46.70 N.S. NIL NIL 1.50 49.70 48.20 N.S. .1-.50 ... NIL NIL 54.60--53.10-NIL N.S. 1.50 NIL 58.20 56.70 N.S. NIL NIL 1.50 62.80 64.30 N.S. NIL 1.50 NIL-67.30 68.80~ NIL N.S. NIL 75.00 76.50 1.50 N.S. NIL 76.50 78.00 1.50 NIL NIL-NIL N.S. 79.50 -1--50 -78.00 NIL N.S. 1.50 NIL 79.50 81.00 N.S. 1.50 NIL NIL 82.50 81.00 NIL N.S.---NIL -1--50 82.50 -84-.-00 N.S. 0.010 84.00 1.50 0.000 85.50 NIL N.S. NIL 87.00 1.50 85.50 N-S--N I-L 90.75 1-.-50-NIL·- 89.25 N.S. 1.50 NIL NIL 97.95 99.45 0.020 N.S. 0.001 102.40 103.90 1.50 N-S-NIL 107-35 1.50 NIL 105-85 N.S. 1.50 NIL NIL 111.20 109.70 N.S. NIL NIL 120.30 1.50 118.80 N-. S . -NIL NIL -1-30--65--1-. 50--1.29-.-1-5 N.S. NIL NIL 136.05 137.55 1.50 NIL N.S. NIL 139.70 141.20 1.50 N-.S. 1-50 NIL NIL 142.70 141.20-N.S. NIL NIL 1.50 142.70 144.20 NIL N.S. 1.50 NIL 144.20 145.70 N.S. NIL -147-.20 -1.50NIL 145-70 N.S. NIL NIL 1.50 147.20 148.70 N.S. NIL NIL1.30 148.70 150.00 NIL NIL N.S. 150.00 -- 151.30 1-.-30 N.S. 151.30 152.80 1.50 NIL NIL N.S. 1.50 NIL NIL 154.30 152.80 NIL NIL N-S-- 154.30 -155.80 -1-.-50 NIL NIL N.S. 160.20 1.50 158.70 NIL N.S. NIL 1.50 160.20 161.70 N.S.-NIL -1.50 NIL -161.70 -163-20 0.010 N.S. 172.75 0.000 1.50 171.25 N.S. 0.010 0.000 172.75 174.25 1.50 N -- S---N-I-L -N[b -182--00 -183-50--1--50-N.S. NIL 183.50 185.00 1.50 NIL NIL N.S. 185.00 186.50 1.50 NIL NIL N.S. 1.50 NIL 190.60 189.10

----Page-2-of-3-ASSAY LOG--

PROPERTY: TULLY TWP. HOLE No.: 91-4

FROM-	ТО	WIDTH	-Au oz\t	_Augm\T	Asppm
		. 50	MTT	RIL	N.S.
193.50	195.00	1.50	NIL 		
	1-9650-	150		NIL	N.S.
203.95	205.45	1.50	NIL	NIL	N.S.
207.50	208.50	1.00	NIL		N.S
20930-			NIL		N.S.
218.60	220.10	1.50	NIL	NIL	N.S.
222.20	223.70	1.50	NIL	NIL	
	22890				N.S.
242.10	243.60	1.50	NIL	NIL	N.S.
243.60		1.50	NIL	NIL	
245.10		150		NIL	N.S N.S.
248.45	249.95	1.50	NIL	NIL	
255.95	257.45	1.50	NIL	NEL	N.S.
- 257.45	25895				
258.95		1.50	NIL	NIL	N.S.
262.35	263.85	1.50		NIL	N.S.
	268-30-	150			N-S
274.10		1.50	NIL	NIL	N.S.
284.60		1.50	NIL	NIL	N.S.
289.70		150	0.000		
295.60		1.50	NIL	NIL	N.S.
299.00		1.50	NIL	NIL	N.S.
	30200		NIL	NIL-	N-S
307.70		1.50	NIL	NIL	N.S.
309.20		1.50	NIL	NIL	N.S.
323-40		1.50-			N.S
324.90		1.50	0.001	0.031	N.S.
		1.50	0.002	0.060	N.S.
326.40	_	1.5 0		NIL-	N-S
327 9 0		1.50	NIL	NIL	N.S.
329.40		1.50	NIL	NIL	N.S.
330.90		_			N-S-
332-40		1.50	NIL	NIL	N.S.
340.10		1.50	NIL	NIL	N.S.
341.60			NIL	NIL-	
-347-10			NIL	NIL	N.S.
348.60		1.50	NIL	NIL	N.S.
355.65		1.50		NTL	N.S
35715		 150-		NIL	N.S.
358.68		1.50	NIL MIT	NIL	N.S.
360.15		1.50	NIL	NIL	N.S.
36736		1-50-	NIL_		N.S.
377.25		1.50	NIL	NIL	N.S.
381.90		1.50	NIL	NIL	N.S. N.S.
383.40			0.000-	0.00 7 -	
396.0		1.50	NIL	NIL	N.S.
398.80	400.30	1.50	NIL	NIL	N.S.
404-60	0 40 550-	150-		N [L	N-S
405.50	407.00	1.50	NIL	N(L	N.S.
410.2		1.50	NIL	NIL	N.S.
411.7		1.50	NIL	NiL	N.S.

ASSAY LOG Page 3_of_3

PROPERTY: TULLY TWP.

HOLE No.: 91-4

	FROM	то	WLDTH	_Au oz\t_	Au_gm\T	As.ppm
	416.00	417.50	1.50	NIL	NIL	N.S.
-		419.00-			NIL	N.S
	419.00	420.50	1.50	NIL	NIL	N.S.
	420.50	422.00	1.50	NIL	NTL	N.S.
	422-00_	_423_50_	1.50	NIL_	1: ī L_	N.S
	423.50	425.00	1.50	NIL	NīL	N.S.
	428.75	430.25	1.50	NIL	NIL	N.S.
		-436.10 -		NIL	J J M	
	436.10	437.60	1.50	NIL	NíL	N.S.
	440.20	441.70	1.50	NIL	N!L	N.S.
· ·		_443_20_	1_50	NIL	NIL	N.S
	443.20	444.70	1.50	NIL	NIL	N.S.
	444.70	446.20	1.50	NIL	NUL	N.S.
•		44770-	150		NIL-	N.S
	450.40	451.90	1.50	NIL	NEL	N.S.
	451.90	453.40	1.50	· NIL	NIL	N.S.
	_ 455+80-	457.30	1_50	NIL	NIL	N .S
	457.30	458.80	1.50	NIL	NIL	N.S.
	460.60	462.10	1.50	NIL	NIL	N.S.
	46210		1-,-50			N.S
	465.40	466.90	1.50	NIL	NIL	N.S.
	471.75	473.25	1.50	NIL	NIL	N.S.
	47660		150	0-00-	0010	N.S
	479.20	480.70	1.50	NIL	NIL	N.S.
	483.40	484.90	1.50	NIL	NIL	N.S.
		488-:50-	 1.50	NIL	—— ЫГГ—	
	492.20	493.70	1.50	0.001	0.030	N.S.
	493.70	495.20	1.50	0.001	0.020	N.S.
		-496.7 0-	1 50	0.004	0 . 13 7	N-CS
	496.70	498.20	1.50	NIL	NIL	N.S.
	498.20	499.70	1.50	0.002	0.075	N.S.
	499 -7 0	501-20-	15 0		0.93 6	
	501.20	502.70	1.50	0.007	0.213	N.S.
	506.70	508.20	1.50	NIL	NIL	N.S.
	516 .2 0	-517.70-	15 0	-NIL-	NIL	N·-S·

		
** BORSURV **		
AVERAGED ASSAY INTERVALS	Pag	ge 1 of 1
PROPERTY: -TULLY-TWP		
HOLE No: 91-4		
HOLE NO: 91-4		
	:	
1. MZ-(-4.50-d-tCore-Angle:-90-4.50-t-t-)-		
	EASTINGS:	1317 28
FROM:498.20	-NORTHINGS.	-77 56
	ELEVATION:	-416.09
0.012 Au oz\t		
0-418-Au-gm\T		
-0.000 As ppm (Cut to: 0	.000)	
	EASTINGS:	1317.40
TO: 50270	NORTHINGS: -	80 . 17
	ELEVATION:	
	EBEVALION.	. 413.70
		-
		
	·· ····	
		
		

DIAMOND DRILL LOG

Cyprus Gold SHEET NO: **CLIENT:** 1 Tully Twp. Casing NAME OF PROPERTY: **REMARKS:** T-91-5 **HOLE NO:** left in hole **DRILLED BY: 468.2** meters LENGTH: LOGGED BY: **M.Rogers CLAIM NO:** Feb 6/91 15 + 60 E; 3+00N STARTED: LOCATION: Feb 13/91 FINISHED: **COORDINATES: ELEVATION:** 1.71 meters 180° **AZIMUTH:** -65° DIP:

FRO	м то	DESCI	RIPT	ION	•				
0	9.15	Overburden							
9.15	224.8	Intermediate flows (2d,2e); medium-dark grey, fine grained (<1mm) weakly foliated at 40°-45° to core axis, intermediate composition generally ≤.5% disseminated (dissem.) pyrite (py) - pyrrhotite (po) common, calcite - filled amygdules, common (1-10%), random irregular-straight, calcite veinlets, moderate-strong, pervasive calcite alteration, minor (1%), random, white-grey quartz veining, locally to 10-50%; common lenses, patches and narrow beds of graphitic sediment, usually with 1-3% py-po, local bleaching due to carbonate alteration, local Fe carbonate alteration, usually as stringers with quartz veins but progressively as pervasive sections.							
		41.3	•	43.6	3-50%, white - l. grey quartz veining.				
		49.1	-	52.1	2-50%, white - l. grey quartz veining.				
		53.0	-	53.85	5-70%, white - l. grey quartz veining.				
		66.5	-	70.65	2-10%, grey quartz veining; .5-2% dissem. py; rare, .5-1%, v. fine arsenopyrite (asp).				
		89.6	•	94.4	5-30%, white quartz veining at generally low angles to c.a.				
		105.1	-	112.45	5-30%, white - l. grey quartz veining with minor po-py				

FROM	то	DESCR	APTI	ON	
		142.55	-	151.8	Variable bleaching due to pervasive calcite alteration and local sections of buff colored Fe carbonate alt., generally 1-2% grey quartz veins; minor dissem. py-po.
		149.9	-	150.3	L. grey quartz vein.
		155.5	-	163.35	Variably bleached section due to mainly pervasive, buff colored Fe carb. alt; generally 1-2% quartz veining, ≤.5% py-po generally.
		163.35	-	165.4	10-20% graphitic lenses with 1-2% fine gr. pyrite.
		165.4	•	166.7	Bleached by pervasive Fe carb. alt.
		166.7	-	197.4	Pervasive calcite alteration; minor, local bleaching; 1-3% grey quartz veining; mafic in appearance, possible 1d unit, massive flows for part of section.
		197.4	-	208.4	Extensive sericite alteration with minor carb. alt., moderate - strong; local light-dark grey quartz veining with silicification; generally ≤ 1% dissem. py - (po), local 1-5% as blebs and stringers; 1-2% quartz veining locally to 75%; veins generally with 1-5% py, rare, <.5%, fine gr. asp.
		205.0	-	205.5	75% grey quartz veining with 3-5% py and <.5% asp.
		215.4	•	224.8	Modstrong, pervasive calcite alt.; variable bleaching.
		Sharp c	onta	ct at 60°	to c.a.

FROM	то	DESCRIPTION				
224.8 2	25.85	Graphitic sedimentary unit (2g); black, fine gr. (<.5mm), well dev. foliation at 55° - 60° to c.a., composed of graphite and 2-15% py as dissem., blebs and stringers, 3-5%, quartz veinlets.				
		Sharp contact at 60° to c.a.				
225.85	230.9	Intermediate flows (2d) - Graphitic sedimentary rock (2g); mainly massive flows with 10-35% lenses and beds of graphitic sediment, 1-5% py, 1-5% quartz veining.				
		228.9 - 230.0 Extremely broken zone; Fault Zone (F.Z.)				
		Sharp broken contact				
230.9	254.8	Intermediate flows (2d, 2e); similar to 9.15-224.8 description; general pervasive calcite alteration.				
		230.9 - 232.0 Mod., pervasive Fe carb. alt.				
		232.0 - 234.4 5-25%, white quartz veining				
		235.55 - 241.9 Generally 3-30%, random, white-grey quartz veining; pervasive calcite alt., local, pervasive Fe carb. alt. with veining; minor 1-2% py locally; local, minor chlorite, 5-10%, d. brown actinolite.				
		240.5 - 241.4 Massive, white quartz vein.				
		243.1 - 254.8 Generally 3-30%, locally to 100%, random, white-grey quartz veining; common silicification; local pervasive Fe carb. alt.; 1-3% dissem. py; local chlorite; 5-20%, d. brown actinolite.				
		252.1 - 252.9 Massive, white quartz vein.				
254.8	257.25	Ultramafic flow (6c); totally altered to d. grey talc-carbonate; minor quartz veining. Indistinct contacts.				

FROM	то	DESCRIP	TION						
257.25	259.25	Intermediate flow (2d); folication at 55° to c.a.; extensive sericite alteration.							
259.25	263.9	Sharp contact Ultramafic flow (6c); totally altered to talc-carbonate.							
		Sharp cont	Sharp contact at 50° to c.a.						
263.9	269.3	d. grey, ma	ssive, moding, 1-5%,	lows (1d,2d); similar to 9.15-224.8 description; l strong, pervasive calcite alteration, common, grey quartz veining with 1-2% py, local buff Fe					
		Gradationa	l contact	•					
269.3 34	14.5	greenish-gr relatively u veinlets, ge	ey, fine gr naltered e nerally 1-2	(2d, 2e); similar to previous units; l-med., r. (<1mm), massive, intermediate composition, except v. common, fine gr. chlorite, 1-3% calcite 1%, random quartz veinlets, ≤ 1% dissem. py-po; mmon chlorite lenses, locally variolitic.					
		269.3 -	280.3	Bleached appearance; minor silicification.					
		303.4 -	309.5	Common - extensive (5-50%), white-purple-grey, random quartz veining with common silicification, local 1-3% py-po.					
		309.5 -	344.5	Common, weak-strong, pervasive calcite alteration; variable but generally minor chlorite; local, buff Fe carb. alt., 2-3% random, grey quartz veins with local silicification .5% - 2% py as dissem. and stringers; Fe carb. alt. occurs pervasively as blebs, stringers and filling amygdules, buff to dark brown color, common occurrence.					

FROM	то	DESCRIPTION
		339.5 - 340.1 40%, d. grey quartz veining with silicification; 1-5% py, 1-10% asp as fine gr. dissem. and masses.
		341.25 - 341.55 30% - 50% graphitic sediment with 10% po; foliation at 60° to c.a. Sharp contact
344.5	350.2	Interbedded sequence of Graphitic sedimentary rock (2g) and Ultramafic flows (6c); graphitic units are black, fine grained, well foliated at 60° to c.a., composed of graphite, 2-15% py-po and minor chert lenses; ultramafic is light grey, fine grained, massive and totally altered to talc-carbonate; minor quartz and calcite veining.
		Sharp contact at 60° to e.a. with common graphitic lenses for another meter.
350.2	435.55	Intermediate volcanic flows (2d,2e); med. grey, fine gr. (<1mm), massive, intermediate composition, locally common calcite-filled amygdules, weak-strong, pervasive calcite alteration, generally 2-3% calcite veinlets and 1-2% quartz veinlets, local, pervasive, buff-colored Fe carb. alt, generally \leq 1% dissem. py-po.
		361.5 - 402.8 Relatively unaltered section, except minor, fine gr. chlorite, weak, pervasive calcite locally; 2-10%, random, white - l. grey quartz veining with local silicification.
		402.8 - 410.55 Variable weak-mod., pervasive, buff-colored; Fe carbonate alt; 2-3%, grey quartz veining; 1% dissem. py.
		408.4 - 408.9 5% ld.grey quartz veining with 2-10%, fine gr. asp and 1-5% py; strong pervasive Fe carb. alt.
		408.9 - 410.55 1-2% py.
		410.55 - 411.2 1-15% asp, 1-2% py, 1-5% grey quartz veinlets.

FROM	то	DESCR	IPTI	ON	
		411.2	-	412.5	75%, l. grey quartz veining, local 1-10% asp, 2-3% overall.
		412.5	-	415.45	Extensive silicification with 2-10%, l.grey quartz veining; 1-5% py, \leq 1% asp.
		415.45	-	416.85	5-30%, l. grey quartz veining, extensive silicification, 2-10% dissem and blebbed py, 2-15% fine gr. asp as dissem and patches.
		416.85	-	422.25	1-2% quartz veining, variable silicification, 1-3% py, <1% asp.
		422.25	•	423.35	2-3% asp., 3-5%, grey quartz veining, 2-5% py; silicification.
		423.35	-	423.75	5-10% asp, 2-10% py, 15% quartz veining, silicification.
		423.75	-	424.6	1-2%, grey, quartz veining, 1-2% py, <1% asp, variable silicification.
		428.25	-	431.7	1-3% py, minor silicification, <1% asp; Fe carb. alt.
		431.7	-	432.4	3-4%, d. grey quartz veining; silicification; 1-2% py, average 2-3% asp.
		432.4	-	433.3	1-2% py, ≤1% asp
		433.3	-	434.0	2-3%, d. grey quartz veining, 1-2% py, 2-3% av. asp.
		434.0	-	434.65	2-3%, d. grey quartz veining, 1-3% py, \leq 1% asp.
		434.65	-	435.1	3-5%, d. grey quartz veining, 2-3% py, 1-2%
		Gradati	onal	contact.	asp average.

FROM	то	DESCRIPTION
435.55	439.5	Graphitic sedimentary unit (2g); black, fine grained (<.5 mm), massive, composed of graphite with 1-5% py, local, grey quartz veining, local .5-2% asp.
		435.1 - 437.05 1%, grey quartz veining, 1-2% py, <1% asp. 437.05 - 437.75 3-5%, d. grey quartz veining, 2-3% py, 1-2% asp. 437.75 - 439.5 1% grey quartz veining, 1-2% py, <.5% asp.
		Sharp contact
439.5	468.2	Ultramafic flows (6c); totally altered to talc-carbonate; l. greenish grey-black, fine grained (<.5mm), very soft, no original mineralogy, remnant spinifex texture locally, common calcite veinlets, occasional, grey, quartz veinlets.
		End of Hole 468.2 meters.

Rock Core Quality Limited

Drill Hole No: T-91-5 Client: CTPRUS

Property: Tofly Project:_____

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quality %	# of Fractures	No. of Fractures per met/ft
Bizl	100%	М	36 "	87	72	۲	36 "
2	99	M	23+	5.5*	85	33+	5.5 "
3_	100	53	6	3.7	90	16	3 7
4	102-3	M	27	6.4	34.7	£7_	6.4
కె	/m.o	M	15	3.5	96.5	/5	3.5
6	/00.0	M	23	5.2	89.9	23	5.2
7	100.0	M	18	4.1	90.9	18	4.1
8	100.5	M	16	3.7	100.0	16	3.7 .
7	(00.0	M	23	5.1	346	20	4.4
/c	000	M	17	4-1	97.6	17	4.1
[]	1000	M	್ವಾನ್ _	5./	76.7	19	44
15	100.0	M	21	4.8	920	20	4.5
13	100.0	M	24	5.4	38.8	22	4.9
15	/20.0	M	.30	7.0	67.4	-30	7-0
15	1000	Μ	32	7.2	٤7	13	5.2
<u>j</u> 6	1600	М	27	(b)	86	26	5.4
17	1000	M	21	4.7	43	21	4.7
18	icc	M	34	5.7	93	33	5.4
14	1600	<u> </u>	17	3.9	92	17	3.4
20	100.0	<u>M</u>	24	5.6	99	24	56
21	ات ر	M	1 17	3 %	92	17	36
ત્રર	100.0	М	19	4.4	100	16	3.7
23	ice	М	17	3.9	95	16	3.6
34	1000	M	17	3,9	100	_ 11	3.9
25	/ 00.0	M	19	43	94.3	19	43
<i>汉</i> 6	105-0	M	17	4.0	97.6	17	4.0
、 、 フ	100.0	M	30	6.7	88.2	္တသ	48

Rock Core Quality Limited

Drill Hole No: 7-9-5 Client: ______

Property: ______ Project:_____

Core Tray #	Core Recovery %	Herdness soft med hard	# pieces of core per tray	# pieces of core per met/ft .	Core Quality %	# of Fractures	No. of Fractures per met/ft
28	/m.5	M	14	32	89.8	14	3.2
.29	/05.D	M	15	3.4	94.3	15	3.4
30	100-0	11	16	36	93.2	16	3.6
3!	105-0	<u> </u>	15	3.6	97.6	15	3.6
33	102-2	14	18	4.1	88.6	18	4.1
33	100.0	М	13	4.1	99	II	2.6
34	1600	M	12	. 2.7	ઉષ્ટ	12	2.7
35	100.0	М	14	3.2	95	14	32.
3ს	1cc.c	М	14	3.3	99	15	3.5
3)	1000	М	18	4.2	96	17	4.0
<u>ვ</u> ზ	1000	_ M	3	4.1	85	31	4.1
39	100 0	М	17	4.0	icc	17	4.0
40	100,0	M		3.4	96	17	3.9
41	ico C.	М	19	4.4	96	17	4.0
42	100.0	Μ	22	4.9	90	77	4.9
43	100.0	М	14	3.1	94	14	3.1
44	1000	M	λo	4.7	89	15	3.5
45	ici	М	16	3.7	76	اك	3.7
76	iceu	7	18	4.0	73	16	36
47	/፡ɔɔ.ɔ	M	30+	7.2+	72.2	30+	7.2+
५७	/ဘ-3	γ.	27	6.3	80.2	25	5.8
<u> ५</u> १	/00.0	M	<i>-3</i> 0	7.1	74.1	<i>-3</i> 0	7.1 5.4
50	100.0	M	<i>ح</i> ٤٧	5.4	843	24	5.4
_ زر	25 .5	5	100+	26.5 ⁺ 13.5 ⁺	29.9	100+	-3.5+
52	/201.0	M	- 55 [™]	13.5+	5/.9	-50 ⁺	13.5+
53	/00.0	M	24	5.8	95.2	24	5.3
54	(00.0	M	2/+	5.0	79.8	\mathcal{Z}^{+}	5.0 ⁺

Rock Core Quality Limited

Drill Hole No: 7-9/-5 Client: Cyprus

Property: Tu//y Project:

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quality %	# of Fractures	No. of Fractures per met/ft
55	100.5	بر	3.2	7.4	83.7	<i>3</i> 5	7.0
<u> </u>	100.0	11	<i>23</i>	5.8 -	89.7	2/	4.8
-57	93-0		47+	10.9+	40.7	43+	10.5+
57	/ Oo. 2	M	ردي	5.3	25.2	22	5.3
59	/00.0	M	24	53	90.0	24	5.3
60	/33.3	M	16	3.6	98.9	16	3.6
61	/00.0		18	4.0	91.1	18	% 0
62	135.5	M	15	3.4	92.0	15	3.4.
65	133.3	11	14	3.3	96.5	14	3.3
6.t	100.0	M	/3	3.0	943	/3	3.0
65	100.5	11	12	2.7	96.7	12	2.7
66	1000		19	4.3	વિષ્ઠું	19	4.3
67	1000	М	12	2.7	99	12	2.7
رز	1000	М	16	3.6	92	16	36
69	160.C	М	13	3.0	100	/3	3.0
70	1000	M	16	3.5	100	16.	3.5
71	100 C	М	13	3,6	ico	13	3.6
72	100.0	М	17	3.9	9 છ	17	3.9
73	1000	М	15	3:3	96	15	3.3
74	1000	М	19	4.4	100	18	4.1
75	100.0	2	i3_	2.9	رن	12	2.6
76	100,0	Д	iE	4,0	100	16	4,0
77	100.0	۲	12	2.7	icc	is	2.7
ንይ	100.0	M	40	8.9	85	33	7, 3
79.	1000	M	20	6.0	1/0	21	. 41
50	ان تات ا	11	λĊ	4.7	95	17	43
٤. ١	100.0	11	17	14.5	100	17	40

Rock Core Quality Limited

Drill Hole N	Vo: 1 ,		Client:
Property:	:	•	Project:

Core Tray #	Core Recovery %	Nardness soft med hard	# pieces of core per tray	# pieces of core per met/ft	Core Quality %	# of Fractures	No. of Fractures per met/ft
	10.	М	1:1	3.1	100	14	
= =	انا	[]	17	3.4			3,9
31	ندا	M	1	3.1	<i>3</i>	11	7
3-	, ,	П	14	えこ	100	12	1.3
<u> </u>	100	М	13	3.0	ICC.	13	3.0
37	١٢٠	М	17	3.1	95	17	3.7
ر <u>ر</u> ر	ice	M	20	4.5	વંદ	19	4.3
<u> </u>	100	М	24	5.5	95	20	4.5 •
1:	155	М	18	4.1	99	18	4.1
11	100	М	i(o	3.6	46	16	36
92	160	М	15	3.4	49	15	34
43	100.0	M	29	6.6	99	29	(l-
44	1000	М	12	2.7	100	12	27
95	1000	<u> </u>	12	2.7	İGO	19	2.7
96	New C	М	20	4.5	100	19	4.5
97	120	М	13	3.0	100	15	3.0
93	100	М	んじ	4.5	11	20	1,5
44	100		27+	6.7*	57	27	6.7+
ند.	100		455	10.5*	50	75	IC.5
121	100		35 🕶	31+	1	35*	315
1)2	100	<u> </u>	44 1	935	50	441	١٠٠
103	100	3	41. 40	<i>I</i> () = 1	47	11.77	10.5
1:1	100	S	- 7:	11 = 1	10	1775	11 -
65	/10.3	చ	26	60	94.3	26	6.5
100	/01.5	<u>5</u>	//	7.9	57.1	[]	7.9
						1	

SURVEY DATA AND CALCULATED CO-ORDINATES (metres)

PROPERTY: TULLY TWP.

HOLE NO: 91-5

GRID: FRANKFIELD

DATE: FEBRUARY, 1991

SURVEY BY: MCR

INSTRUMENT: TROPARI

DEPTH	INCLINATION	BEARING	EASTINGS	NORTHINGS	ELEVATION
0.00	-65.00	180.00	1560.000	300.000	1.710
64.50<	-59.00	176.50	1560.925	269.733	-55.240
96.75<	56.00	174.75	1562.247	252.456	-82.440
129.00	-53.00	173.00	1564.245	233.835	-108.695
225.00	-52.00	169.00	1573.387	176.113	-184.857
282.50<	-49.50	169.50	1580.173	140.371	-229.384
340.00	-47.00	170.00	1586.986	102.694	-272.283
404.10<	-45.00	170.50	1594.527	58.810	-318.392
468.20	-43.00	171.00	1601.939	13.300	-362.920

SUMMARY LITHO LOG PROPERTY: TULLY TWP.

HOLE No.: 91-5

Page 1 of 2

=======================================	========	=======================================			
LITHO UNIT	DEPTH	EASTINGS	NORTHINGS	ELEVATION	CORE ANGLE
О.В.	9.15	1560.13	295.71	-6.37	none
2D, 2E, CARB	41.30	1560.59	280.62	-34.76	45.0
2D, 2E, CARB, Q	53.85	1560.77	274.73	-45.84	45.0
2D, 2E, CARB	142.55	1565.54	225.69	-119.44	45.0
2D, 2E, CARB, F	151.80	1566.42	220.13	-126.78	45.0
2D,2E,FE CAR	166.70	1567.84	211.17	-138.60	45.0
2D,1D,CARB	197.40	1570.76	192.71	-162.96	45.0
2D, 2E, SER, Q.	208.40	1571.81	186.09	-171.69	50.0
2D, 2E, CARB	224.80	1573.37	176.23	-184.70	50.0
2G,PY,Q.V.	225.85	1573.49	175.59	-185.51	55.0
2D,2G,PY,Q.V	230.90	1574.08	172.45	-189.43	55.0
2D, 2E, CARB, F	254.80	1576.90	157.59	-207.93	55.0
6C, TALC, CARB	257.25	1577.19	156.07	-209.83	55.0
2D, SER	259.25	1577.43	154.82	-211.38	55.0
6C, TALC, CARB	263.90	1577.98	151.93	-214.98	55.0
1D,2D,CARB	269.30	1578.62	148.58	-219.16	55.0
2D,2E,CHL	303.40	1582.65	126.68	-244.98	55.0
2D,2E,Q.V.,S	309.50	1583.37	122.68	-249.53	55.0
2D, 2E, CARB, F	339.50	1586.93	103.02	-271.91	55.0
2D,2E,Q.V.,S	340.10	1587.00	102.63	-272.35	60.0
2D, 2E, CARB, F	344.50	1587.52	99.61	-275.52	60.0
2G,6C,PY,PO	350.20	1588.19	95.71	-279.62	60.0
2D, 2E, CARB	361.50	1589.52	87.97	-287.75	60.0
2D, 2E, CHL	402.80	1594.37	59.70	-317.46	60.0
2D,2E,FE CAR	410.55	1595.27	54.23	-322.87	60.0

Page 2 of 2

SUMMARY LITHO LOG PROPERTY: TULLY TWP. HOLE No.: 91-5

LITHO UNIT	DEPTH	EASTINGS	NORTHINGS	ELEVATION	CORE ANGLE
2D,2E,SIL,Q.	435.55	1598.16	36.48	-340.24	60.0
2G,Q.V.,PY,A	439.50	1598.62	33.68	-342.98	60.0
6C, TALC, CARB	468.20	1601.94	13.30	-362.92	60.0

PROPERTY: TULLY TWP.

HOLE No.: 91-5

	========				========	====
FROM_	ТО	WIDTH_	Au oz\t_	Au_gm\T	As ppm	
22.40	23.90	1.50	NIL	NIL	3.000	
3570	37.20	1.50	NIL-	NIL	N.S	
37.20	38.70	1.50	NIL	NIL	N.S.	
41.25	42.75	1.50	NIL	NIL	N.S.	
42.75_	44.25	1.50	TRACE_	0.030	N.S	
49.10	50.60	1.50	NIL	NEL	N.S.	
50.60	52.10	1.50	NIL	NIL	N.S.	
- 53.00 -			NIL	NIL	N.S.	
66.50	68.00	1.50	NIL	NIL	N.S.	
68.00	69.50	1.50	NIL	N T L	N.S.	
69.50_	71.00_	1.50	NIL	N [L	N.S	
75.30	76.80	1.50	NIL	NIL	N.S.	
84.10	85.60	1.50	NIL	NIL	N.S.	
89.60		150	NIL-	NIL-	N.S	
91.10	92.60	1.50	NIL	NTL	N.S.	
92.60	94.10	1.50	· N.S.	N.S.	N.S.	
98.10	99.60	150		NIL	N.S	
105.75	107.25	1.50	TRACE	0.010	N.S.	
110.80	112.30	1.50	NIL	NIL	N.S.	
-11415					N.S	
124.55	126.05	1.50	NIL	NIL	N.S.	
136.05	137.55	1.50	NIL	NIL	N.S.	
- 142.20	14370_	150-	TRACE	0-580	N -S	
147.10	148.60	1.50	NIL	NIL	N.S.	
149.20	150.70	1.50	TRACE	0.150	N.S.	
15550-			NIL	- 0 010	— —N.S.	
161.15	162.65	1.50	NIL	NIL	N.S.	
162.65	164.15	1.50	NIL	P. [L	N.S.	
164-15-	165-65-	150		NIL	N.S	
168.20	169.70	1.50	NIL	NIL	N.S.	
169.70	171.20	1.50	NIL	NIL	N.S.	
1-751-5-		150	NIL	NIL-	N-S	
189.30	190.80	1.50	TRACE	0.040	N.S.	
198.80	200.30	1.50	NIL	0.010	N.S.	
	201~80	150		 0-220	N-S	
201.80	203.30	1.50	TRACE	0.160	N.S.	
203.30	204.80	1.50	TRACE	0.180	N.S.	
204-80-	—206 . 30—	1.5 0	0 . 020-	0.730		
206.30	207.80	1.50	TRACE	0.123	N.S.	
207.80	209.30	1.50	NIL	NTL	N.S.	
209-30-	—211.40—	210	0-010	0.310	N.S	
214.20	215.70	1.50	0.010	0.370	N.S.	
224.00	225.50	1.50	TRACE	0.130	N.S.	
225.50	227 00	 150	0.004	0.250-	N.S.	
227.00	228.50	1.50	0.006	0.223	N.S.	
228.50	230.00	1.50	0.059	2.030	N.S.	
230-00-	231 00	1-00	 0+004-	0 -151	N-S	
231.50	233.00	1.50	NIL	NIL	N.S.	
233.00 235.55	234.50	1.50	NIL	NIL	N.S.	
239.95	237.05	1.50	NIL	MIL	N.S.	

--- ASSAY -LOG-

PROPERTY: TULLY TWP. HOLE No.: 91-5

	- FROM	TO	WIDTH	—Au ∙oz\t…	Au-gm\T	As-ppm
	237.05	238.55	1.50	NIL	NIL	N.S.
		240.05				N.S.
	240.05	241.55	1.50	NIL	NIL	N.S.
	241.55	243.05	1.50	NIL	NIL	N.S.
	243-05	244 -60_	1-55	NIL	i:T L	N.S
	244.60	246.10	1.50	TRACE	0.147	N.S.
	246.10	247.60	1.50	0.007	0.254	N.S.
	247.60	-249.10-				N.S.
	249.10	250.60	1.50	NIL	1.IL	N.S.
	250.60	252.10	1.50	NIL	NIL	N.S.
	252.10	253.60_	1.50	NIL_	NIL	N.S
	253.60	255.10	1.50	NIL	NTL	N.S.
	263.90	265.40	1.50	NIL	NIL	N.S.
	265.40 -	···266.90-		NIL -		
	269.70	271.20	1.50	NIL	NIL	N.S.
	278.00	279.50	1.50	· NIL	NIL	N.S.
	303.40	304.90_	150	0.001-		N.S
	304.90	306.40	1.50	0.000	0.010	N.S.
	306.40	307.90	1.50	0.000	0.010	N.S.
	307.90-	309.40	150	0.000-	0.014	N.S
	314.00	315.50	1.50	0.001	0.034	N.S.
	317.10	318.60	1.50	0.001	0.021	N.S.
	-318.60	32000	140	0000	0.014-	N.S
	320.00	321.50	1.50	0.000	0.017	N.S.
	328.50	330.00	1.50	0.000	0.014	N.S.
	330.00	-331-50-	1.50	0.000	0.014	N.S
	334.80	336.30	1.50	0.000	0.014	N.S.
	336.30	337.80	1.50	NIL	NIL	N.S.
	-33 7.8 0	339.3 0	1 50	NIL-	NIL	N+S
	339.30	340.30	1.00	0.032	1.111	N.S.
	340.30	341.80	1.50	0.000	0.010	N.S.
· ·	-34 4.5 0	346. 00	1.5 0	 0.001	0 024 	
	346.00	347.50	1.50	NIL	NIL	N.S.
	347.50	349.00	1.50	NIL	NIL	N.S.
	-349-00-	350.50	1-50	0-001	0-02 1	N.S.
	356.40	357.90	1.50	0.001	0.021	N.S.
	364.55	366.05	1.50	0.000	0.017	N.S.
	-366 - 05 -	36755	150	0.001	0-027	N.S.
	369.65	371.05	1.40	0.001	0.034	N.S.
	371.05	372.55	1.50	0.000	0.014	N.S.
	- 372-55-	374 05-	1-5 0	0.001	0-021	NS
	382.85	384.15	1.30	0.000	0.010	N.S.
	385.65	387.15	1.50	0.000	0.014	N.S.
	-393. -9 5	395-45	150	0.000	0.010	N-S
	395.45	396.95	1.50	0.000	0.014	N.S.
	402.55	404.05	1.50	0.000	0.017	N.S.
	40405	40555	1 50	0-000-	0-007-	N-S
	405.55	407.05	1.50	0.001	0.027	N.S.
	407.05	408.05	1.00	0.001	0.024	N.S.
	408.05	409.05	1.00	0.098	3.350	N.S.

ASSAY LOG	Page_3_of_3_/
PROPERTY: TULLY TWP.	,

HOLE No.: 91-5

FROM	TO.	WIDTH	Au oz\t	Au gm\T	- As ppm	
409.05	410.55	1.50	0.010	0.357	N.S.	
410.55	411.50	0.95		1.896	N.S.	
	412.50		0.012	0.415	N.S.	
412.50	413.50	1.00	0.007	0.210	N.S.	
413.50	41450	-1.00	0.004	0.127		
414.50	415.50	1.00	0.025	0.857	N.S.	
415.50	417.50	2.00	0.242	8.297	N.S.	
417.50	419.00	1.50	···············	0.024	N.S.	
419.00	420.50	1.50	0.002	0.032	N.S.	
420.50	422.00	1.50	0.007	0.243	N.S.	•
422.00	423.00	_ 1.00	0.248	_ 8.503_		
423.00	424.00	1.00	0.122	4.197	N.S.	
424.00	425.50	1.50	0.001	0.045	N.S.	
425.50	427.00	1.50 -	0.000	- 0.014	N.S.	
	428.50		0.000		N.S.	
428.50	430.00	1.50	0.002	0.062	N.S.	
430.00	431.50-	1.50	0.023	0.785		
431.50	432.50	1.00	0.001	0.041	N.S.	
432.50	434.00	1.50	0.019		N.S.	
434.00	435.00		0.011			
435.00	436.50	1.50	0.012	0.415	N.S.	
436.50	437.50	1.00	0.012	0.422		
- 437.50-	43850		0.046		N.S.	
438.50	439.50	1.00	0.064	2.205		
439.50	441.00	1.50		0.045		
44100	442-50		0.000			
	449.30		0.001	0.024		
452.55	454.05	1.50	0.000	0.010		
					·	

	** BORSURV ** ASSAY INTERVALSTULLY-TWP	Pa.	ge 1 of
LE No:			
222222		:======================================	5656555
MZ({	3.50-d.t.—Core-Angle:-908.50-t.t.)		-
	FROM:415.50	EASTINGS:	1595.8
	116011. 410.00	ELEVATION:	
<u>-</u> .	0.102 Au oz\t 3.504-Au-gm\T		
	-0.000 As ppm (Cut to:	0.000)	1506 0
	TO: - 424.00	NORTHINGS:	44.6
	10. 121.00	ELEVATION:	-332.2
		· · · · · · · · · · · · · · · · · · ·	
_		<u> </u>	
			
·			·
			
			
			

- `

J

DIAMOND DRILL LOG

CLIENT:	Cyprus Gold	SHEET NO:	1
NAME OF PROPERTY:	Tully Twp.	REMARKS:	Casing left
HOLE NO:	T-91-6		in hole -
LENGTH:	793.05 metres		hole
LOCATION:	L 1480 E; 402 N		deepened
COORDINATES:			from 71695
ELEVATION:	0.91 metres		to 793.05
AZIMUTH:	180°	LOGGED BY:	M.Rogers
DIP:	-65°	STARTED:	Feb. 9/91
		FINISHED:	Feb. 25/91

FROM TO	DESCRIPTION
0 13.25	Overburden
13.25 69.5	Mafic - intermediate flows (1d, 2d); medium-dark green, fine grained (1 mm), massive, mafic-intermediate composition, extensive fine-grained chlorite, also 1-3% chlorite veinlets and stringers, minor, random quartz veinlets, generally ≤.5% disseminated (dissem.) pyrite (py).
	17.6 - 20.65 Badly broken core, fault zone.
	Gradational change
69.5 574.1	Intermediate - mafic flows (2d,e,1d,e), med - dark, greenish grey, fine grained (< 1mm), massive, mafic-intermediate composition, occasional calcite-filled amygdules, relatively unaltered except very common, fine grained chlorite, generally ≤ .5%, dissem. py-po, local stringers, occasional, random quartz veins, rare, local, pervasive calcite alteration; at approximately 110.0 meters weak-strong, pervasive calcite alteration begins to occur very commonly; local chlorite veinlets and patches; generally 1-2% quartz veining.

FROM	то	DESCRIPTION	
		119.5	Lighter colored sections, common, apparently due to calcite alteration.
		128.25 - 132.9	1-15%, grey plagioclase (?) phenocrysts of .5-2 mm.
		132.95 - 151.85	2-10%, random, white-grey calcite veins; 1-5% quartz veins; rare in situ breccia.
		149.6 - 151.85	5%, grey quartz veining; mod. bleaching due to pervasive calcite and local silica alt.
		158.9 - 160.7	2-3% grey quartz veining; local silicification, 1% py, 3-5% calcite veining.
		164.8 - 574.1	Occasional lenses, patches and narrow beds of graphitic sediment; usually with minor py.
		172.0	Noticeable gradual decrease in chlorite content with a change in rock color from light to medium greenish-grey to light-medium grey until 182.2 where there is no chlorite; pervasive calcite.
		202.75 - 203.1	L. grey quartz vein with 3-5% py.
		214.35 - 215.85	5-100% locally, l. grey quartz veining.
		246.0 - 247.0	5-10%, random, grey quartz veining.

FROM	то	DESCRIPTION	
		256.95 - 260.7	5-50%, l. grey, random quartz veining; associated 5-15%, graphitic lenses with minor po.
		262.2 - 273.	 2-5%, grey quartz veining, minor silicification; ≤ 1% py-po generally; common graphitic lenses; local veining to 100%.
		273.1 - 298.2	1-5%, grey quartz veining, locally to 10-20%; common graphitic lenses; ≤ 1% py-po, 2-15% calcite veining.
		298.2 - 318.2	Generally 1% quartz veining, locally to 5-10%, occasional graphite lenses.
		318.2 - 322.3	10-20% graphitic lenses, 3-5%, grey quartz veining, 1-5% po.
		322.3 - 366.0	1-2%, grey quartz veining, 3-10% calcite veinlets, 5-10% graphitic lenses, ≤ 1% po-py, locally 2-3%, quatz veining locally to 10-20%; mod strong, pervasive calcite alt.
		366.0 - 375.2	Mod strong, pervasive calcite alt.; local, weak, pervasive, buff-colored Fe carb. alt., 1-2%, random, l.grey quartz veinlets, 2-3% calcite veining, 1% graphite lenses.
		375.2 - 389.6	1-3%, grey quartz veining, 3-10% calcite veining, 5-20% graphite lenses, 1-3% py-po, mod strong, pervasive Fe carb. alt - buff colored.
		376.8 - 378.6	5 10-35% graphitic lenses with 2-20% py - po.

FROM	то	DESCRIPTION					
		389.6 -	391.6	5-20% l.grey quartz veining; silicification; 5-30% dissems. and masses of py.			
		391.6 -	403.2	Mod strong, pervasive calcite and common Fe carb. alt; generally 1-2% quartz veinlets, local graphite lenses, 1% py, locally 2-5%.			
		398.8 -	399.8	20-30% graphitic lenses.			
		402.4 -	403.2	5%, l. grey quartz veining, local silicification; 2-5% py.			
		403.2 -	424.5	Mod strong pervasive Fe carb. alteration, buff colored; 1-2%, grey quartz veinlets, 2-5% calcite veinlets, generally ≤ 1% py-po, occasional lenses of graphitic sediment.			
		424.5 -	435.54	D. grey volcanic with strong, pervasive calcite alteration; 2-3% grey quartz veining.			
		435.4 -	442.7	Mod strong sericite alt., local, 2-3%, l d. grey quartz veinlets with assoc. silicification; 441.0-441.95 10-30% graphite; generally ≤.5% py.			
		442.7 -	449.4	Mod strong pervasive calcite alt. with common fine gr. chlorite.			
		449.4 -	473.5	Relatively unaltered except extensive, fine gr- chlorite; 2-5%, white-l. grey-purple, random quartz veining with local silicification, local chlorite stringers, local chloritic pillow selvages local 1-3% po, locally variolitic.			
		470.25 -	470.75	5% coarse gr. (1-10 mm) plagioclase phenocrysts.			

FROM TO		DESCR	DESCRIPTION				
	473.5	•	483.6	Relatively unaltered massive flow except with extensive, fine gr. chlorite, lacks significant veining.			
		483.6	-	492.8	Extensive fine-gr. chlorite, 2-3%, white-l.grey-purple quartz veining, local 1-3% po. with veining, local silicification, local 1-2% py and rare ≤ 1% cp with veins.		
		492.8	-	496.0	Pervasive calcite alt.		
		496.0	•	503.4	Modstrong, pervasive Fe carb. alt., 2-3%, l. grey quartz veins, 3-10% graphitic lenses with po-py.		
		501.85	•	502.3	Graphitic unit (2g) with 75% massive py and minor grey quartz veining.		
		503.4	-	510.3	3-10% grey, random quartz veining, locally to 100%, extensive pervasive Fe carb. alt., common silicification with veining, generally 1-2% py.		
		510.3	-	513.65	Mod strong pervasive calcite alteration.		
		509.4	-	510.15	Massive white - l. grey quartz vein.		
		513.65	-	518.15	D. brown, strong, pervasive Fe carb. alt. with 2-3% quartz veins.		
		518.15	-	519.05	Weak - mod. silicification.		
		519.05	-	547.2	Strong, pervasive calcite alteration; extensive fine-gr. chlorite; 1% grey quartz veining, locally to 10% - 20%, local foliation at 50° to c.a.		

FROM	то	DESCRIPTION					
		527.9	-	528.2	20% - 50% l. grey quartz veining with 2-5% py.		
		533.35	•	534.4	Mod strong, d. brown, Fe carb. alt.		
		539.8	-	547.2	2-5%, random, white-grey and purple quartz veining with 1-3% py, occasional Fe carb. alt.		
		547.2	-	556.8	Fine gr. chlorite alt; local, weak, pervasive calcite alteration, 1-5%, purple-white-l. grey quartz veinlets.		
		556.8	-	560.65	Mod strong, pervasive calcite alt., minor, fine gr. chlorite, 2-10% white-grey quartz veining, local pervasive, buff colored Fe carb. alt. generally with veining.		
		560.65	-	572.5	Variolitic flow, weak-mod., pervasive calcite alt., local, fine gr. chlorite, 1-2% quartz veining.		
		572.5 Veined	- conta	574.1	Strong, pervasive Fe carb. alt. with 3-5%, grey quartz veining.		
574.1 58	Graphitic - carbonaceous sedimentary unit (2g) with exte veining (Q.V.); d. grey - black, fine grained (<.5mm), lo at 50° to c.a., graphitic -carbonaceous sediment with 5-10 grey, random quartz veining, .5-5% py-po as dissem., loc calcite and Fe carb. alt., common (1-5%) calcite veinlet						
		574.85	-	575.5	100%, grey quartz veining with 1-3% py.		
		579.3	-	580.4	10-30%, grey quartz veining.		

FROM TO DESCRIPTION

699.9 793.05

Ultramafic flows (6c); totally altered to talc-carbonate; medium greenish-grey, fine grained (<.5mm), massive, no original mineralogy, occasional remnant spinifex texture, 5-10%, random, calcite veinlets.

700.3 - 701.5 5% quartz veining with 5% py.

Hole deepened from 716.95 meters.

Common badly broken sections.

Less calcite veining downhole to average 1-3%.

Gradual change downhole to common d. grey-black color and local occurrence of some remnant original mineralogy and textures; occasional serpentine along fractures; still remains extensively to totally altered to talc.

End of Hole 793.05 meters.

FROM	то	DESCRIPTION					
	664.9	-	680.6	Weak-mod., pervasive calcite alt.; common (1-20%) lenses of graphite, local foliation at 55° to c.a., 1-3% and locally higher % random, grey quartz veining, 1-2% py-po, locally to 5%.			
		680.6	-	689.9	Strong, pervasive, calcite alteration, 5-25% graphite lenses, 1-5% dissem. and stringer pypo, 2-10%, random, grey quartz veinlets.		
		680.6	-	686.25	1-5% py-po; rare, ≤.5% arsenopyrite (asp).		
		686.25	-	686.55	Average 5% asp.		
		686.55	-	687.8	1% asp.		
		687.8	-	688.7	Average 5% asp.		
		688.7	-	689.9	≤ 1% asp		
		Gradati	onal	contact			
689.9 69	93.1	general	ly 2-	3% grey	y unit (2g); similar to previous descriptions; quartz veining, 1-3% py, generally ≤.5% asp, s, pervasive, calcite alt.		
		692.25	-	692.5	5% asp, 30% quartz veining.		
		Gradati	ional	contact			
693.1 6	Interbedded sequence of talc-carbonate altered ultramafic f and graphitic sediments (2g); no appreciable mineralization ≤ 1% py; strong, pervasive calcite alt. of graphitic sedimer						
		Gradati	ional	contact			

Rock Quality Log Hole No. T-91-6

		Ask	a_ / U+			.	 -	
	Box M.	Core of	Hardwess HMS	Present of Care	ficos/moter	ROD %	No of Fratures	Fratures /M
_ `	/	1000	M	23	5.3	93.1	23	5.3
	2	85.0	11	25+	4.8 ^t	46.2	25	4.8+
_	3	100.0	M	25	5.6	87.6	23	5.2
	4	100-0	M	24	5.6	83.7	22	5./
	5	1000	M	27	6.3	77.9	23	5.3
	6	0.00	M	27	6.4	91.7	25	6.0
	フ	1000	M	≥27	6.5	69.7	25	5.6
_	8	1000	M	25	5.7	71.3	25	5.7
	9	\00-O	M	23	2.2	91.7	-23	5.5
, - -	/ 0	100.0	M	23	5.4	88-2	21	4.9
	//	100.0	M	30	7.1	78.6	24	5.7
	12	0000	M	19	4.3	96.6	19	43
	ß	/00.0	M	/9	4.2	<i>3</i> 8.9	19	4.2
_	14	0.00	M	19	4.2	922	19	4.2
	15	100.0	М	16	3.7	95	16	3.7
	16	100.0	М	81	4.1	98	/8	4.1
	17	100.0	М	26	5.9	100	24	5.9
	18	100.0	M	14	3.1	100	14	3.1
<u> </u>	19	100.0	M	23	5.5	100	20	4.8
	<i>⋧</i>	100.0	M	18	4.0	96	18	4.0
	21	100.0	M	スス	5.0	94	12	5.0
	22	100.0	M	22	5.0	93	22	5.0
_	-23	100.0	М	17	3,9	100	17	3.9
	24	1000	M	17	3,9	99	17	3.9
	25	100.0	K	27	6.3	89	24.	5.6 H 0
	26	100.0	М	21	4,8	100	21	4.8
	.27	1000	M	18	1.8	98	18	1.8
_	-28	1000	η	31	6.9	86	30	6.7
	_27	100.0	M	22	5./	90.7	22	5./
_	_							
			•	• -				

Rock Core Quality Limited

Drill Hole No: 7-9/-6 Client: Cyclica

Property: Tolly Project:

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quality %	# of Fractures	No. of Fractures per met/ft
	100.0	M	ન્દ્રિએ	5.2	92.7	22	5.2
3	103.5	11	<i>-20</i>	4.5	87.5	ي <u>ر</u> ک	4.5
3.	122	11	35	€./-	88.2	27+	6.1-
Ç.	100 -	M	35	35	92	j.j.	57
3%	1000	Μ	l i	4/2	100		41
	ال ورا	M	27	64	90	21	47
	(223	М	15	3.5	ICC	16	37
7	13.0	М	25	: 51	100	16	1:1.
	1-20	11	50	17.	96	スス	
51	1:33	/1	14	5.4	<i>100</i>	<i>[]</i> 17	47
40	ioc c	M	التا التا	3 E	<i>100</i>	17	3 &
41	1000	М	14	3.3	100	14	33
42	100 D	М	25+	5.7	92	£5+	5.75
43	icee	Μ	23	5.4	100	22	5.4
44	100.0	М	187	421	91	181	4,2+
45	ice J	n	22	5.1	94	aa	5.1
76	icc.c	М	20	46	100	20	4.6
47	ارد ر	Μ	20	4.6	100	20	4.6
48	1000	М	235	5,3°	96	23+	5.3*
79	100.6	Μ	19	<u>ዛ.</u> ኢ	96	19	4.2
50_	1000	М	24	6.2	100	24	6.2
51	1000	M	25+	5.90	7.8	25+	595
5 3	1000	М	23	5.7	100	32	5,4
55	100.0	М	21	4.7	91	19	4,2
54	100 c	,9	17	3,8	98	17	3.8
56	1000	M	וו	4.0	100	17	7.0
5 6	1000	Μ	15	3.4	160	15	34

Ÿ

Rock Core Quality Limited

Drill Hole No: T-91-6 Client: CYPRUS

Property: Tuli Project:_____

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quelity %	# of Fractures	No. of fractures per met/ft
57	100 c	M	17	4.0	100	17	٧ , ሮ
<u>5</u> 8	1000	Λ	19	43	97	19	4.3
ŚÌ	'00 to	М	20	4.4	100	3.	4.9
<u>(,c</u>	100.0	М	15	3.3	97	15	3.3
61	1600	М	15	3.4	100	15	34
62	1000	M	12	2.8	100	12	ე. ხ
63	1666	М	15	3.4	100	12	34
64	1000	М	16	3.7	loc	16	3.7 -
65	loco	М	23	5.1	94	22	4.9
66	100.0	11	21	5./	98.8	21	5.1
€7	(50-2)		/9	44	96.6	19	44
48	730.0		15	3.4	96.6	15	.3.4
69	100.0		14	3.2	90.9	14	3.2
<u> </u>	1000		スよ	5.1	1520	21	51
1	1000	М.	17	4.6	100.0	19.	45
77_	1000		27	6.D	96	以7.	(s.0
73	1000	М	27	6.0	47	27	60
-7.1	1000	Ŋ	スケ	625	100	25	CAS
	100 U	M	16	3.7	100	16	3.7
<u>ا د'آ</u>	1000	Μ	18	4.2	160	<u>18</u>	4.2
_7?	1000	<u>M</u>	121	4.8	97	21	4.8
75	100 C	М	24	6.3	100	71	5.5
19	1000	М	12/	4,7	98	2/	4.7
3 <u>ა</u>	icus	М	21	6.8	100	21	6.6
31	100.0	М	16	3.3	92	16	3.3
34	100.0	M	30	6.8	94	20	4.5
<u>შა</u>	1000	L M	15	3.1	94	15	31

Page 1 of 1

SUMMARY LITHO LOG PROPERTY: TULLY TWP.

HOLE No.: 91-7

LITHO UNIT	DEPTH	EASTINGS	NORTHINGS	ELEVATION	CORE ANGLE
О.В.	10.00	79.93	113.93	-5.98	none
2H,2D,2E,D.Z	49.00	79.67	94.13	-39.58	40.0
2D,2E,FE CAR	68.40	79.36	83.73	-55.95	40.0
2G,PY	71.25	79.30	82.18	-58.34	45.0
2A,2G	87.45	79.00	73.36	-71.92	45.0
2G,PY	91.25	78.92	71.29	-75.11	50.0
2A,2G,PY,5C,	110.15	78.56	61.00	-90.96	50.0
2A,5C,CARB,F	164.75	77.02	29.96	-135.85	50.0
2A,5C,CARB,P	168.65	76.90	27.73	-139.04	50.0
2A,5C,CARB	173.50	76.75	24.95	-143.01	50.0
2A,5C,CARB,Q	181.05	76.53	20.63	-149.20	50.0
2A,5C,CARB	188.55	76.28	16.26	-155.29	50.0
2A,5C,CARB,Q	195.35	76.06	12.27	-160.79	50.0
2A,SIL,BX,Q.	210.00	75.57	3.67	-172.64	. 50.0
2A, SER	225.00	75.07	-5.13	-184.78	50.0
2A, SER, TALC,	228.85	74.94	-7.39	-187.89	50.0
6C, TALC, CARB	263.95	73.77	-27.99	-216.29	50.0
6C, TALC, CARB	203.95	13.17	-61.33		-210.23

ASSAY LOG Page 1 of 2

PROPERTY: TULLY TWP. HOLE No.: 91-7

FROM	TO	WIDTH	Au oz\t_	Au_gin\T	As. ppm
10.00	11.50	1.50	NIL	NIL	N.S.
11.50	13.00-	1.50	0.000		N.S.
13.00	14.50	1.50	NIL	NIL	N.S.
14.50	16.00	1.50	0.000	0.010	N.S.
16.00			NIL_		N.S.
17.50	19.00	1.50	0.000	0.017	N.S.
22.65	24.15	1.50	0.000	0.14	N.S.
	31.65			0.010	
30.15				0.010	N.S.
41.45	42.95	1.50	0.000		
48.25	49.75	1.50	0.000	0.014	N.S.
55.40	56.90	1.50	NIL.		N.S.
68.00	69.50	1.50	0.001	0.027	N.S.
69.50	71.00	1.50	0.001	0.624	N.S.
71.00	72.50			NIL -	
77.20	78.70	1.50	0.000	0.017	N.S.
81.10	82.60	1.50	NIL	NIL	N.S.
87.15-	88-65-	150	0.00.7	0.243	N.S.
88.65	90.15	1.50	0.006	0.198	N.S.
90.15	91.65	1.50	0.001	0.027	N.S.
- 94.25	-95.75-			0.134-	N.S.
97.45	98.95	1.50	0.001	0.024	N.S.
103.95	105.45	1.50	0.000	0.017	N.S.
		150	0-001	0-048-	N-S-
	108-85-				N.S.
111.60	113.10	1.50	0.000	0.017	
116.10	117.60	1.50	NIL	NIL	N.S.
	-122.20-				N.S.
130.00		1.50	0.012	0.425	N.S.
134.50	136.00	1.50	0.001	0.031	N.S.
	143-, 60				N • S •
148.25	149.75	1.50	0.001	0.011	N.S.
156.20	157.70	1.50	0.001	0.031	N.S.
164-75-	166-25-			0 878	N ∵S.
166.25	167.75	1.50	0.011	0.387	N.S.
167.75	169.25	1.50	0.009	0.319	N.S.
1-73 -00-		50-	0.006-	0.213_	N.S.
174.50	176.00	1.50	0.001	0.024	N.S.
176.00	177.50	1.50	0.001	0.638	N.S.
177.50	-179.00 -		0.003-		r.s.
179.00	180.50	1.50	0.002	0.975	N.S.
187.75	189.25	1.50	0.001	0.048	N.S.
		—150	0.001	0-072-	N -S :
189.25			0.001	0.034	N.S.
190.75	192.25	1.50			
192.25	193.75	1.50	0.004	0.144	N.S.
193.75		150	0.003-	0-036-	NS.
195.25	196.75	1.50	0.001	0.021	N.S.
196.75	198.25	1.50	NIL	NIL	N.S.
 198 25-		1 50-	 0-,000-		N-S
199.75	201.25	1.50	0.000	0.010	N.S.
201.25	202.75	1.50	0.001	0.024	N.S.
202.75	204.25	1.50	0.001	0.027	N.S.

SSAY LOC	- ··· -	· ——	** BORSU	RV ** 		Page 2_of
ROPERTY:	TULLY					
======	======	=======	=======	========	========	=======================================
	. FROM.	ТО	WIDTH	Au_oz\t	Augm\T	As.ppm
	204.25	205.75	1.50	0.000	0.017	N.S.
	205.75	207.25-	1.50	0.00-	0.014	N.S
	207.25	208.75	1.50	0.000	0.410	N.S.
	208.75	210.25	1.50	NIL	NiL	N.S.
	210.25			0-000		N.S
	211.75	213.25	1.50	0.000	0.010	N.S.
	213.25	214.75	1.50	0.000	0.007	N.S.
	214.75	- 216.25 -				— N.S
-	216.25	217.75			0.010	N.S.
	217.75	219.25	1.50	0.000		N.S.
					NIL	
				0.000		N.S.
	220.75 222.25		1.50		NIL	N.S.
•					0.014	
				0.000		N.S.
					NIL	
	-228 25 -	229 _75_	150-		NTL-	N-S
· · · — · ·						
						
					-	
						
					*	

_

DIAMOND DRILL LOG

CLIENT: NAME OF PROPERTY:	Cyprus Gold Tully Twp.	SHEET NO: REMARKS:	1 Casing left in hole
HOLE NO:	T-91-8		in noie
LENGTH:	483.4 metres	DRILLED BY:	
CLAIM NO:		LOGGED BY:	M.Rogers
LOCATION:	4 + 04 E; $3 + 08 N$	STARTED:	Feb. 17/91
COORDINATES:		FINISHED:	Feb. 22/91
ELEVATION:	8.20 metres		
AZIMUTH:	180°		
DIP	-65°		

FROM	то	DESCRIPTION
0	6.1	Overburden
6.1	65.85	Intermediate flows (2e); locally amygdaloidal; l. grey - l med. greenish-grey, fine grained (≤.5mm), common, weak-mod. developed foliation at 40°-45° to core axis, intermediate composition, common-extensive variable silicification and sericitization resulting in bleaching, occasional graphitic lenses, local, weak, pervasive, calcite alteration, 1-3%, random, white-grey quartz veinlets, ≤1% disseminated (dissem.) pyrite (py), sericite and silica alteration occurs pervasively and ranges from weak-strong, local, minor breccia; locally 1-3% py with veining or strong silicification.
		55.85 - 56.35 Graphitic sedimentary unit (2g) with 20% quartz veining and 10% py.
		Gradational alteration decrease in intensity to about 65.85 where there is no significant silica or sericite alteration.
65.85	67.65	Intermediate flow (2e); amygdaloidal; strong pervasive calcite alteration.
		Gradational contact over 10 cm.
67.65	72.9	Intermediate-mafic flow, feldspar porphyry (2f); med dark grey, fine grained (≤.5mm) with 10-20% white feldspar phenocrysts of 1 mm, massive, intermediate composition, 1-3%, random, calcite veinlets, 1%, random, quartz veinlets.
		Gradational contact.

FROM TO	DESCRIPTION
72.9 84.55	Mafic - intermediate flows (2d, 2e); med dark grey, fine gr. (\leq .5 mm), massive, mafic-intermediate composition, generally \leq 1% dissem. py, common, fine gr. chlorite, strong-mod. pervasive calcite alteration, 3-10%, random, calcite veinlets, \leq 1% quartz veinlets, 1-3% chlorite stringers.
	Sharp contact at 45° to c.a.
84.55 86.0	Intermediate tuff (2a); l med. grey, grain size 1-10mm, foliation at 55° to c.a., heterolithic clasts, weak calcite alteration.
	84.55 - 85.0 Brecciated chert with 5-10% py; local 5-30% quartz veining.
	Sharp contact at 55° to c.a.
86.0 337.6	Intermediate flows (2d,2e); med. grey, fine gr (\leq .5 mm), massive intermediate composition, mod strong, pervasive calcite alteration common, calcite-filled amygdules, local chloritic-carbonate pillov selvages, 2-5%, random, calcite veinlets, generally \leq 1% quartiveinlets, \leq .5% dissem. py, local, buff-coloured Fe carbonate alteration usually with quartz veining, common, minor, fine gr. chlorite, local weak foliation at 50° to c.a.
	115.95 - 117.65 10% calcite veining, 5%, white quart
	118.7 - 119.55 30-50%, white, quartz stockwork.
	118.7 - 130.9 V. common, fine-gr. chlorite alteration none-weak carb. alt., weak foliation at 50° 55° to c.a.
	130.9 - 141.55 Generally weak-mod., pervasive calcite alt common fine gr. chlorite, common, mino bleaching due to calcite alt., 1%, random quartz veining.

FROM	то	DESCRIPTIO	ON	
		135.65 -	136.83	Common quartz veining with minor silicification and py.
		141.55 -	145.5	Carbonate, Fe carb. altered section with 3-5%, grey quartz veining and local silicification, 1-3% py with veining, well developed foliation at 50° to c.a., minor deformation zone (D.Z.).
		145.5 -	147.65	Mod., pervasive, buff coloured, Fe carb. alteration.
		147.65 -	. 159.0	Mod strong, pervasive, calcite alteration, 2-5%, random, grey quartz veining; local, buff-coloured Fe carb. alteration.
		159.0 -	160.35	5 10-20%, white - grey - purple quartz veining, 1-2% py; silica and Fe carb. alteration.
		160.35 -	229.45	Weak-strong, buff-grey pervasive sericite alt., 2-5%, random, white-l. grey-purple quartz veining; local silicification, 1-3% py with veining.
		178.6 -	181.2	2-10%, random, l. grey, quartz veining; locally 5-20% graphitic lenses; sericite and silica alteration, 2-10% py locally with graphite, local breccia.
		198.55 -	202.05	5 10-50%, white-l. grey, random, quartz veining, extensive silicification, local sericite, 1-5%, fine gr. dissem. py.

FROM	ТО	DESCRIP	MOIT		
		202.05	•	205.5	3-5% quartz veining, common silicification, local sericite.
		229.45	-	245.45	Mod strong. pervasive, Fe carbonate alteration, generally 1-2% quartz veinlets and 2-5% calcite veinlets, local sericitic sections to 238.15.
		238.25	•	240.25	5-10%, l. grey, random quartz veining.
		243.2	•	247.35	5-10% calcite veinlets, 3% quartz veinlets.
		245.45	-	246.45	Mod strong sericite alt.
		246.45	-	268.9	Mod strong, pervasive, l med. brown, Fe carbonate alteration, common sections of only sericite alteration, generally 1-3%, random quartz veining, locally higher %, 2-5%, calcite veining, local foliation at 40° - 45° to c.a.
		268.9	-	281.4	Mod strong, pervasive Fe carbonate and calcite alteration, grey-tan, common foliation at 40° to c.a., local, calcite-filled amygdules, 1-2% quartz veining and 2-5% calcite veining parallel to foliation generally.
		281.4	-	291.4	5% to locally 80%, random, l. grey, quartz veining with common silicification, 1-2% py, local breccia.
		291.4	-	299.95	Mod strong, pervasive iron carb. alteration; 2-5%, random, grey quartz, veining, 1-5%, calcite veining, local silicification with veining, 1-2% py with veining.
		299.95	-	303.05	Generally 5% but locally to 30%, white-grey, quartz veining, common silicification, 1-2% py-po.

FROM TO	DESCRIP	TION		
	317.45	•	334.5	2-5%, locally 10-15%, random, l. grey - purple, quartz veining, common silicification.
	299.95	-	337.6	Common, weak, pervasive, calcite alteration, local, pervasive Fe carb. alteration, 1-3%, l. grey-purple quartz veining.
	334.5	-	337.6	20-50%, white-l. grey, quartz veining with 1-2% py; common silicification.
	Veined co	ntact.		
337.6 452.9	composition calcite alt	on, sigr eration	nificant , comn	ey, fine grained (≤.5mm), massive, mafic magnetite content, weak-strong pervasive, non, fine grained chlorite, 2-5% chlorite quartz veinlets, 1-3% calcite veinlets.
	370.0	-	398.0	Gradational increase in fine gr. chlorite content so that it occurs extensively with a proportional decrease in calcite alteration to weak-mod. intensity.
	398.0	-	409.5	Lacks chlorite alteration, mod strong, pervasive calcite alt.
	409.5	•	424.4	Weak - strong sericite alteration grey-buff, 2-3%, l. grey-purple quartz veining, locally to 10-20%, local silicification.
	424.4	-	437.9	Weak-mod., pervasive calcite alteration; 2-10%, random, l-d. grey quartz veining with 1-10% py, common, 1-10%, graphitic lenses, rare, <.5%, dissem. asp.
	437.9	-	452.25	Weak - mod., pervasive calcite alteration, 1-2%, grey, quartz veining, 5-20%, random calcite veining, weak foliation at 50° to c.a., 2-10% graphitic lenses.

FROM TO	DESCRIPTION
	452.25 - 452.9 Extensive, fine gr. chlorite alt. Sharp contact
452.9 483.4	Ultramafic rock, probable flows (6c), totally altered to talc-carbonate, d. grey-black, fine gr. (<.5mm), massive, composed of talc and 10-20%, calcite stringers and veinlets, no original mineralogy.
	End of Hole 483.4 meters.

Rock Core Quality Limited

Drill Hole No: Talle Client: Capacity

Property: Project:

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quality %	# of Fractures	No. of Fractures per met/ft
\	icu	17	16"	3.6 *	୧୨	167	3.5*
2	1CC	M	23°	5.3+	6)	23+	5.3+
3	اتن	M	26	59	90	24	5.4
4	100	М	17	3.9	94	17	3.9
ن	100	M	31+	7.1+	86	31+	7.1+
(100	М	16+	3.7 -	92	16+	3.7+
1	\cc	М	23+	5.3+	33	23+	5:3+
ر	ارر	M	25+	· 5.6 °	33	25+	5.60 -
^c i	100	M	スユ	5.1	100	21	4.9
ان	IOC	M	24	5.3	91	24	5.3
ii	100	n	25	5.7	اع	25	5.7
12	130	n	<u> </u>	5.31	35	23r	5.31
13	100	М	15 ⁺	3.3*	46	15+	3 3'
14	ICU	M	23	5,2	82	23	5.2
15	100	M	15 t	3.5 5	93	15+	.3.5+
16	100	М	12	2.7	94	12.	2.7
7 _	100	<i>F</i> 1	18	4.0	93	i&	4,0
اذ	100	М	16	3.7	97	16	3.7
19	100	M	174	3.8	96	17	3.8
2د	100	М	118	4.2	100	Ìti	4.2
21	100	M	121	4.7	94	21	4.7
ری ا	100	M	15+	3.5 +	98	15+	3.5+
23	100	Λ	15	3.4	100	15	3.4
24	100	1 //	32	7.2_	92	20	4.5
25	100	M	الو	3.9	100	16	3.9
26	/20.0	M	21	4.9	91.9	19	4.4
27	/33.3	M	- 20	4.6	92.0	ر مخت	4.6

SURVEY DATA AND CALCULATED CO-ORDINATES (metres)

PROPERTY: TULLY TWP.

DATE: FEBRUARY, 1991

HOLE NO: 91-7

SURVEY BY: MCR

GRID: TEXMONT

INSTRUMENT: TROPARI

DEPTH	INCLINATION -61.00 -58.00 -56.00 -54.00	BEARING	EASTINGS	NORTHINGS	ELEVATION
0.00		180.00	80.000	119.000	2.640
53.20		181.50	79.647	92.001	-43.199
118.35<		182.50	78.408	56.540	-97.838
183.50		183.50	76.453	19.222	-151.206
263.95		183.00	73.772	-27.989	-216.291

Rock Core Quality Limited

Drill Hole No: T-91-8 Client: CYPRUS

Property: TULLY Project:

Core Tray #	Core Recovery X	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quality %	# of Fractures	No. of Fractures per met/ft
28	C20.	M	17	4.3	94.3	10	火 ジ
٦٩	133.5	11	16	4.0	89.9.	16	43
30	/00 3	N	14	3.1	94.4	14	3.1
31	100.3	<i>'N</i>	16+	4.0+	28.9	14+	35+
2-	√33. ³	1.1	24	5.5	84.1	24	5.5
23	15.0	Λ.	16	3.6	95.5	16	3.6
±4-	1000	\sim	16	-7.6	93.3	16	3.6
35	100.0	~	16	3.6	25.5	16	3.6.
35	100.0	μ	18	4./	92.0	18	4.
<u> </u>	100-0	<u></u>	22	-5.3	94.3	22	5.0
3	100.0	13	17	3.8	25.5	17	3.8
20	1000	11	15	3.4	94.4	15	3.4
<u> <∴o</u>	1000		20	4.7	87.2	20	4.7
<u> 44, </u>	100-0	<u> </u>	19	44	92.0	19	44
42	100-2	/1	25	5.7	89.8	25	5.7
43	100.0	11	25	5.8	9/9	25	5.3
exer.	/22.0		22	5.3	91.6	-20	4.8
55	/00.0	M	25+	5.8+	74.4	26+	5.8+
46	(00.0	M	16	3.7	93.0	16	3.7
47	1000	M	~33	5.6	91.5	23	5,6
43	100.0	<i>H</i>	18	4.1	90.8	18	4.1
49	1000	\mathcal{M}	20	47	91.8	20	4.7
<u> 3</u>	100.0	M	<i>2</i> 7	6.2	83.9	27	6.2
<u>5/</u>	103-3	<u> </u>	15	3.4	94.4	15	3.4
25	/00.0		24	5.3	92.0	24	53
<u>23</u>	100.0	M	20	46	87.8	<u> २</u> ०	46
<u> ۲۲۰</u>	192.5	M	17	3.7	93.9	17	39

Rock Core Quality Limited

Drill Hole No: 7-9/-3 Client: Cyclus

Property: Tolly Project:

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quelity %	# of Fractures	No. of Fractures per met/ft
5 5	100.5	M	~24	5.4	88.3	24	5.4
<u>50</u>	100-0	M	20	4.5	94.3	20	4.5
57	/00-0	11	36	8.3	75.9	36	7.3
58	100.0	11	<u> </u>	5.3	94.2	~23	5.3
59	100.0	M	.23	5.2	31.8	23	5.2
€.0	12.3	M	24	53	84.4	24	5.3
61	100.0	M	29	6.7	79.1	27	6.3
42	100.0	M	~20	4.6	89.7	<i>₹</i> 0	4.6.
€3	100.0	M	22	5.0	88.6	-32	5.0
64	100.0	M		.9.9	92.0	17	3.9
15	/00.0	n	21	4.7	86.5	2/	4.7
66	100		16	3.6	100	16	3.5
67	100	Μ	14	3./	100	14	3.1
હઇ	100	M	14	3.1	100	14	31
69	100	M	18	4,6	100	18	4.6
70	100	Λ	19	4.0	91	19.	4.0
	100	Μ	21	4.9	98	21	4.9
72	(AD) . D	M	10	2.4	\05.0	10	2.4
23	1000	M	/2	2.7	93.3	12	2.7
74	1000	M	12	2.7	97.8	12	2.7
25	(00-0	M	18	40	9/.0	18	40
76	100-5		15	-3.4	25.5	15	3.4
	/03.3	M	12	2.7	95.5	12	27
78_	100.5	M	12.	2.3	98.9	12	28
79	/00.2	/1	20	4.5	91.0	ನಾ	4.5
80	00.00	M	~23	5.3	90.5	-23	5.3
<u> 51</u>	100.0	M	£3	3.0	943	/3	3-0

Rock Core Quality Limited

Property: Tolly Project:

Core Tray #	Core Recovery %	Nardness soft med hard	# pieces of core per tray	# pieces of core per met/ft	Core Quality %	# of Fractures	No. of Fractures per met/ft
1.2	/00.0	M	13	2.9	95.5	/3	29
/3	1020	M	16	3.7	98.9	16	3.7
64	100	<u> </u>	17	3.7	43	<i>i</i> 7	3.7
<u> ک</u> ځ	100	М	12	2,8	jou	12	2.6
<u> ک</u> (ب	100	М	14	2.9	96	14	2.9
€7	jci	M	10	<u> </u>	juu	10	2.3
ت	160	,~1	19	5,6	100	19	5.6
21	100	\mathcal{M}	15	2.6	77	15	2.6-
90	1000	4	16	4/	/00.0	_/6	4.1
9/	133.0	<u> </u>	16	3.6	96.6	16	3.6
92	\32.3 	11	/3	2.9	97.8	13	£.9
93	1000	M	13	3.0	97-6	13	3.0
94	130.3	11	14	3./	25.6	14	3.1
95	100.0	M	10	2.3	96.6	/0	23
96	$/\infty$.	11	15	3.7	93.8	15	3.7
97	100.0	11	18	4.0	91.2	18	4.0
93	100.0	H	35	8.0	64.8	29	66
9	100.0	M	26+	6.1+	88.2	22+	5.2+
\mathcal{O}	100.0	<u> </u>	19	4.4	93.1	19	4.4
<i>f</i> 5/	(m.s	M	24	5.5	828	24	5.5
/3.2	/ba-C	-5-M	23	5.3	90.7	-23	5.3
70.7	/SD_O	S	43+	9.7	53.9	43+	9.7+
104	100.0	<u>.</u> 5	30+	7.9+	85.5	.30+	7.9+
/05	100.0		46+	10.5+	45.5	46+	105+
106	100	S	33+	<u>5</u> 2+	71	33+	821
107	100	S	30 +	7,0 *	15	307	7.0 *
108	100	5	4C F	10.2"	44	40+	10.20
109	KC	\$	315	7.87	54	315	7.E.F
ic	10°C	Š	235	10.95	59	23 1	10.91

Rock Core Quality Limited

Drill Hole No: 7-91-6 Client: Curros

Property: ______ Project:_____

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quelity %	# of Fractures	No. of Fractures per met/ft
	42.2	M	14	3.1	97.8	14	3./
_///	/00-0	M	18	40	25.6	18	<i>4</i> .5
/kix	100.0	M	19	44	83.7	19	44
11=	<u> </u>	M	1/2	.3.9	97.7	12	3.7
114	/22.2	H	14	33	100.0	14	3.5
<u> 115 —</u>	1000	M	之C	4.2	94	えじ	4.2
1/6	100.0	M	₹ <u>0</u>	4.7	100.0	べ〇	4.7
117	100.0	M	177	. 4.7	100.0	17	4.7-
<u> 118</u>	100 U	- /	18	4.2	100.0	iE	4.2
119	IGO.C	<u> </u>	14	31	95	14	3.
120	1000	- /	11:	2.6	100	11	2.6
ᆚᆚ	100.0	 '}	13	2.9	99	13	2.9
122	100.0	1 H	15	3.4	100	12	3.4
123	100.0	M	117	3.8	100	17	3.8
124_	100.0	 //	19	4.2	96	19	4.2
125	1000	1-12-	16	3.2	86	16.	3.2
126	1000	H	16	3.7	100	16	3.7
127	100.0		16	3.7	96	16	3.7
128	100.0	n .	12	4.8	91	21	4.6
129	1000	1 17	15	3.5	100	15	3.5
130	100.0	 	21	4.8	98	21	4.8
131	100.0	1 11	32	5,1	197	22	5.1
137	100.0	 	15	3.4	87.9	15	34
433	$\sqrt{2}$	1 //	22	49	89.9	22	4.7
15%	1050	1 7	22	5./	96.5	- 32	5.1
135	<u> </u>	1 /1	20	4.3	90.2	حين	4.3
136	<u> /∞.</u>	 /1	15	3.5	97.7	15	3.5

Rock Core Quality Limited

Property: Tully Project:

Core Tray #	Core Recovery X	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft	Core Quality %	8 of Fractures	No. of Fractures per met/ft
138	100.0	M	20	4.7	93.0	20	4.7
139	133 3	M	19	4.3	87.6	19	43
140	(33.3	M	20	4.7	94.1	ဆွ	4.7
141	6.00	M	<i>-20</i>	44	90.1	20	4.4
145	CCO		24	5.6	92.9	24	5.6
143	/33.3	M	15	3.4	94.3	15	3.4
144	100.0	M	20	4.3	8X.0	~2)	43
145	/m.J	M	-23	5./	86.8	23	5.1.
KK	100.0	\mathcal{M}	19	4.5	97.6	19	45
147	100.0	<i></i>	15_	3.4	90.9	15	3.4
148	100-0	M	22	4.9	88.8	22	4.9
149	/00.0	<i>M</i>	36+	8.7+	65.1	36+	8.7+
150	98.0	11	34+	8.2+	55.4	30+	7.2+
151	1000		-37+	9.0+	65.9	37+	90+
150	100-0	11	25+	5.9+	80.0	25+	5.9+
/53	1000	M	_ <i>2</i> ;	5.9	729	24	5.9
154	100.0		20	4.8	86.9	20	4.8
155	100.0	M	24	5-6	81.4	22	5./
156	100-0	_5	30	6.7	62.2	26	5-8
157	100.0	-2	24	5.6	69.8	24	5.6
/58	100.0	S	25+	5.7	52	25+	5.7+
159	100.0	5	36+	8.95	45	36+	89+
160	100.0	S	35+	6.2+	35	35+	6.2+
161	160.0	S	33+	9,2+	8	334	9.21
162	100.0	S	11+	4.7+	48	11 -	6.71
				1			

Rock Core Quality Limited

Property: Tolly Project:

Core Tray #	Core Recovery %	Nardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quality %	# of Fractures	No. of Fractures per met/ft
11,2	97.0	5	100 ⁺	25.6+	23.1	100+	S56+
K.F	945	5	/35+	51.3+	43.7	100+	51.3+
165	1000	5	29+	6.5+	75.3	29	6.5
K.C	(00.0	S	30 ⁺	7.3	75.6	30+	7.5+
XT	100.0	5	48+	10.9+	34./	48+	10.7+
163	100.0	-5	5/+	15.9 ^T	28.1	46	144
167	100.0	5	58+	13.6+	21.1	58+	13.6
170	/30.0	5	54+	14.0+	50.6	54+	140t
Til	1000	.5	63+	15.8 ⁺	38.8	63+	15.8+
172	(2)2-2	5	59+	13.9 ⁺	.3/.8	59+	13.9+
123	(33.3	.5	457	12.2+	32.9	48+	12.2+
174	100.0	5	48+	13.2+	49.3	40	13-2+
1:5	(20,0)	5	38+	8.9+	57-6	38+	8.9+
176	(32.2	5	42+	10.1+	50-6	43+	10.1
177	1000	5	100+	27.8+	18.1	100+	27.7+
172	/00.0	5	100+	24.7+	4.9	100 ^T	24.7
179	160.0	S	100+	25.5 5	32	100°	25.5+
180	100,0	5	IOO"	26.37	46	100r	26.3+
181	100.0	5	100+	23.8+	25	100+	23.87
182	100.0	5	50 ⁺	27.3+	51.2	50+	23.3 ⁺
							ļ
							ļ
							
							ļ
							
						<u> </u>	
						<u> </u>	<u> </u>

SURVEY DATA AND CALCULATED CO-ORDINATES (metres)

PROPERTY: TULLY TWP.

DATE: FEBRUARY, 1991

HOLE NO: 91-6

SURVEY BY: MCR

GRID: FRANKFIELD

INSTRUMENT: TROPARI

DEPTH	INCLINATION	BEARING	EASTINGS	NORTHINGS	ELEVATION
0.00	-65.00	180.00	1480.000	402.000	0.910
85.50	-65.00	180.00	1480.000	365.866	-76.579
267.00	-63.00	179.50	1480.347	286.303	-239.710
392.30	-61.00	178.00	1481.630	227.492	-350.344
520.25	-59.00	178.50	1483.584	163.547	-461.152
716.95	-55.00	179.00	1485.921	56.442	-626.118
793.05	-55.00	178.00	1487.064	12.807	-688.456

SUMMARY LITHO LOG PROPERTY: TULLY TWP.

HOLE No.: 91-6

Page 1 of 2

LITHO UNIT	DEPTH	EASTINGS	NORTHINGS	ELEVATION	CORE ANGLE				
O.B.	13.25	1480.00	396.40	-11.10	none				
1D,2D,CHL	69.50	1480.00	372.63	-62.08	45.0				
2D,1D,CHL	110.00	1480.05	355.13	-98.60	45.0				
2D,1D,CARB	132.95	1480.09	345.07	-119.23	45.0				
2D,1D,CARB,Q	151.85	1480.13	336.78	-136.21	45.0				
2D,1D,CARB	256.95	1480.33	290.71	-230.68	45.0				
2D,1D,CARB,Q	298.20	1480.67	271.66	-267.26	45.0				
2D,1D,CARB	366.00	1481.36	239.84	-327.12	45.0				
2D,1D,CARB,F	375.20	1481.46	235.52	-335.25	45.0				
2D,1D,FE CAR	389.60	1481.60	228.76	-347.96	45.0				
2D,1D,CARB,F	403.20	1481.80	222.04	-359.78	45.0				
2D,1D,FE CAR	424.50	1482.12	211.40	-378.23	45.0				
1D, CARB	435.40	1482.29	205.95	-387.67	45.0				
2D,1D,SER	442.70	1482.40	202.30	-393.99	45.0				
2D,1D,CARB	449.40	1482.50	198.96	-399.79	45.0				
2D,1D,CHL	492.80	1483.17	177.27	-437.38	50.0				
2D, 1D, CARB	496.00	1483.21	175.67	-440.15	50.0				
2D,1D,FE CAR	501.85	1483.30	172.74	-445.22	50.0				
2G,PY	502.30	1483.31	172.52	-445.61	50.0				
2D,1D,FE CAR	510.30	1483.43	168.52	-452.53	50.0				
2D,1D,FE CAR	519.05	1483.57	164.15	-460.11	50.0				
2D,1D,CARB,C	547.20	1483.90	148.87	-483.75	50.0				
2D,1D,CHL	556.80	1484.02	143.64	-491.81	50.0				
2D,1D,CARB,Q	572.50	1484.20	135.10	-504.97	50.0				
2D,1D,FE CAR	574.10	1484.22	134.22	-506.31	55.0				

SUMMARY LITHO LOG PROPERTY: TULLY TWP. HOLE No.: 91-6

Page 2 of 2

LITHO UNIT	DEPTH	EASTINGS	NORTHINGS	ELEVATION	CORE ANGLE				
2G,Q.V.	582.60	1484.32	129.60	-513.44	55.0				
2D, 2E, CARB, C	657.80	1485.22	88.65	-576.51	55.0				
2D, CARB	680.60	1485.49	76.23	-595.63	55.0				
2D, CARB, Q.V.	689.90	1485.60	71.17	-603.43	55.0				
2G, PY, ASP	693.10	1485.64	69.43	-606.12	55.0				
2G,6C	699.90	1485.72	65.73	-611.82	55.0				
6C, TALC, CARB	793.05	1487.06	12.81	-688.46	55.0				

ASSAY LOG-

PROPERTY: TULLY TWP.

HOLE No.: 91-6 -Au-oz\t----Au-gm\T--_As__ppm WIDTH-FROM-TO. N.S. 0.000 0.010 1.50 51.75 50.25 N.S. -1..50--NIL NIL -69--55-68.05 N.S. NTL NIL 1.50 100.50 99.00 N.S. NIL NIL 1.50 114.60 113.10 NIL $N_{-}S_{-}$ NIL 1...50 120.50119.00 N.S. 0.010 0.000 1.50 135.20 133.70 N.S. NLL NIL 1.50 141.50 140.00 N.S. -NIL-NIL 1.50 145-10 143.60-N.S. NIL NIL 1.50 149.70 151.20 N.S. NIL NIL 1.50 160.75 159.25 N.S. NIL NIL 1.50 170.90 169.40 N.S. 0.014 0.000 1.50 178.80 177.30 N.S. NIL NIL 1.50 181.75 180.25 N.S. NIL NIL -1--50 -189-.-70 188.20 N.S. NIL NIL 1.50 196.00 194.50 N.S. 0.010 0.000 1.50 203.20 201.70 N-S-0.010 0.000 1--50 215-85 214.35 N.S. 0.014 0.000 1.50 224.70 223.20 N.S. NIL NIL 1.50 227.20 228.70 N.S.-- NIL -NIL 238.-30 -1-. 50 236.80 N.S. 0.014 0.000 1.50 247.50 246.00 N.S. NIL NIL 1.50 252.80 251.30 N-S-**-0-**010 0-000 -1--50 256-00 254.50-N.S. 0.014 0.000 1.50 257.50 256.00 N.S. 0.010 0.000 1.50 259.00 257.50 N.S. 0.021-0.001 1.50 --260.50 259.00 N.S. NIL NIL 1.50 262.00 260.50 0.007 N.S. 0.000 1.50 263.50 262.00 N - S--0-000- 0.014-1-.-50-265-00 263--50 N.S. 0.014 1.50 0.000 266.50 265.00 N.S. 0.014 0.000 268.00 1.50 266.50 N-S. ·N I L 1-50 -NIL -269--50 268--00 N.S. NIL NIL 1.50 271.00 269.50 N.S. NIL NIL 1.50 272.50 271.00 N-5-0 - 3910-.-01-1--1--50 281--55 283-05 N.S. NIL NIL 1.50 284.55 283.05 N.S. NIL NIL 1.50 291.00 289.50 N-S-0.010 1-.-50 -0-000 296-90 295.40 N.S. 0.0140.000 1.50 298.40 296.90 N.S. 0.007 0.000 1.50 319.50 318.00 0--021-N.S∵ 0-.001 -1--50--321--00 319-50 N.S. 0.010 0.000 1.50 322.50 321.00 N.S. NIL NIL 1.50 329.80 328.30 N:S: -NIL NIL -1:50° 332-20 333.70 N.S. 0.010 0.000 1.50 339.70 338.20 N.S. 0.007 0.000 344.30 1.50 342.80 -N-5+ -100 -0-003- -1-:-50-347..25 345--75 N.S. NIL NIL 1.50 351.00 349.50 N.S. NIL NIL 1.50 360.70 359.20 N.S. NIL NIL 1.50 369.65 368.15

... ASSAY LOG _____ Page 2 of 3

PROPERTY: TULLY TWP.

HOLE No.: 91-6

						=======================================
-	- FROM-	то	WIDTH	Au_oz\t_	. Augm\T	As_ppm
	375.25	376.75	1.50	NIL	NIL	N.S.
	376.75				0.075	N.S
	378.25	379.75	1.50	NIL	NIL	N.S.
	379.75	381.25	1.50	NIL	NIL	N.S.
	_ 381 -2 5	382_75		NIL_		N.S
	382.75	384.25	1.50	0.021	0.710	N.S.
	384.25	385.75	1.50	0.001	0.024	N.S.
		387.25—		0.006	0.219	N.S. · ·
	387.25	388.75	1.50	0.000	0.014	N.S.
	388.75	390.25	1.50	0.014	0.487	N.S.
_	390.25	39175	1.50_	0.018_	0.631	N.S
	391.75	393.25	1.50	0.003	0.089	N.S.
	398.30	399.80	1.50	NIL	NIL	N.S.
	401.40	402 - 90			0.014	
	402.90	404.40	1.50	0.000	0.010	N.S.
	407.70	409.20	1.50	0.000	0.014	N.S.
	415.10	416.60_			0.010	N_S
	416.60	418.10	1.50	0.000	0.007	N.S.
	421.20	422.70	1.50	0.000	0.014	N.S.
	428.80	-430 -30-		0.001	0.024	N.S
	436.00	437.50	1.50	0.000	0.017	N.S.
	437.50	439.00	1.50	NIL	NIL	N.S.
	439.00-	-440-50-			NIL	N-S
	440.50	442.00	1.50	NIL	NIL	N.S.
	442.00	443.50	1.50	0.000	0.010	N.S.
		4 53 7 5	1.50-	NIL		N-S
	456.55	458.05	1.50	0.000	0.010	N.S.
	465.50	467.00	1.50	0.000	0.012	N.S.
		485-10-	150			
	489.60	491.10	1.50	NIL	NIL	N.S.
	492.40	493.90	1.50	NIL	NIL	N.S.
	498-90-		1.50-	NIL-	NIL	
	501.70	502.70	1.00	0.038	1.310	N.S. N.S.
	503.40	504.90	1.50	0.000	0.017 0.069	N.S. N.S
		506 -40 -	150-		0.034	N.S.
	506.40	507.90	1.50	0.001	0.086	N.S.
	507.90	509.40	1.50	0.003		
	509.40	5 10 9 0-	1.50	0 . 001 NIL	NIL	N.S.
	513.60	515.10	1.50	NIL	NIL	N.S.
	515.10	516.60	1.50 150	0.001_	0.02 9	N.S
	516.60-	518-10- 519.60	1.50	0.001 NIL	NIL	N.S.
	518.10 527.90	529.40	1.50	0.017	0.576	N.S.
	527.90 533.35	529.40 534.85-	1.50 1.50	0.000	0.017-	NS
	539.80	541.30	1.50	0.001	0.021	N.S.
	541.30	541.30	1.50	NIL	NIL	N.S.
	541.30 546 -1 0-	—547 - 60−	1-50-	0 . -01-1_	0+381	N.S
	550.70	552.20	1.50	NIL	NIL	N.S.
	558.90	560.40	1.50	0.001	0.021	N.S.
	572.50	574.00	1.50	0.013	0.;12	N.S.
	312.30	017.00	1.00	J. J. J	- · · · -	- - -

ASSAY_LOG__

PROPERTY: TULLY TWP.

HOLE No.: 91-6

	FROM _	то	HTDIW	Au_oz\t_	Au. gm\T	As_ppm	
	574.00	575.50	1.50	0.007	0.247	N.S.	•
	575.50	57-7.00	1.50-	0.011-		N.S.	
	577.00	578.50	1.50	0.002	0.079	N.S.	
	578.50	580.00	1.50	0.002	0.079	N.S.	:
	580-00-	581.50_	1.50	0.026	0.902	N.S	
	583.20	584.70	1.50	0.035	1.197	N.S.	
	606.90	608.40	1.50	0.000	0.010	N.S.	
	620.80 -	622-30-	150	0.000		N.S	
	631.10	632.60	1.50	0.001	0.027	N.S.	
	637.85	639.35	1.50	0.000	0.017	N.S.	
	645.20-	646.70 _	150	0.003		N.S	
	657.80	659.30	1.50	0.000	0.014	N.S.	
	665.20	666.70	1.50	0.007	0.254	N.S.	
	666.70-	66820	1.50 -	0.003	···- 0.093 -	NS	
	668.20	669.70	1.50	0.001	0.031	N.S.	
	669.70	671.20	1.50	. 0.001	0.045	N.S.	
	67120-	<u> </u>	150-	0 +000	001-0	N.S	
	672.70	674.20	1.50	0.000	0.007	N.S.	
	674.20	675.70	1.50	0.001	0.027	N.S.	
	67570	677.2 0	150	0:-062-	2 129	NS	
	677.20	678.70	1.50	0.040	1.368	N.S.	
	678.70	680.20	1.50	0.002	0.058	N.S.	
	68020-	681-70-	1 60	0+068-	2-321	N.S	
	681.70	683.20	1.50	0.007	0.243	N.S.	
	683.20	684.70	1.50	0.010	0.329	N.S.	
	684-70-	68620	150-	0 013	0.446	N.S.	
	686.20	687.20	1.00	0.042	1.440	N.S.	
	687.20	688.20	1.00	0.071	2.431	N.S.	
	688 -2 0-	6892 0	100-	0. 094-	3. 23 3-	N.S.	
	689.20	690.20	1.00	0.006	0.216	N.S.	
	690.20	691.20	1.00	0.011	0.363	N.S.	
		69 2 -2 0	1 00	 0.018	0.631 -	——N∵S.	
	692.20	693.20	1.00	0.052	1.779	N.S.	
	693.20	694.70	1.50	0.002	0.058	N.S.	
	69 4.7 0-	696.2 0-	150-	 0.000-	001-4-	N.S.	
	696.20	697.70	1.50	0.021	0.717	N.S.	
	697.70	699.20	1.50	0.003	0.106	N.S.	
· · · · · · · · · · · · · · · · · · ·	699.20	700-20-	1.00	0. 001-	0.051	N.S.	
	700.20	701.70	1.50	0.000	0.017	N.S.	

AVERAGED ASSAY INTERVALS PROPERTY: TULLY.TWP. HOLE No: 91-6	** BORSURV **		··-·
HOLE No: 91-6	AVERAGED ASSAV INTERVALS	Pag	ge 1 of 1
1HW (3.00 d.t.—Core Angle: 90 — 3.00 t.t.) FROM: 675.70 ————————————————————————————————————			
FROM: 675.70	=======================================		
FROM: 675.70	1HW (3.00 d.tCore-Angle:90 3.00 t.t.)		
FROM: 675.70		FASTINGS	1.195 //3
0.051 Au oz\t	FROM: 675.70	NORTHINGS:	- 78··90-
-1.748_Au_gm\T -0.000 As ppm (Cut to: 0.000) EASTINGS: 1485.47 TO: 678-70			
-0.000 As ppm (Cut to: 0.000) EASTINGS: 1485.47 TO: -678.70	0.051 Au oz\t		
EASTINGS: 1485.47 TO: 678-70	-0.000 As ppm (Cut to:	0.000)	
ELEVATION: -594.04 2. MZ (3.00 d.t.—Core_Angle: 903.00_t.t.)		EASTINGS:	1485.47
2. MZ (3.00 d.t.—Core—Angle: 903.00_t.t.) FROM: 686.20	TO: 678-70		
EASTINGS: 1485.56 FROM: 686.20		ELEVATION:	-594.04
EASTINGS: 1485.56 FROM: 686.20	2 M7 (3 00 d.t. Core Angle: 903.00 t.t.)		
FROM: 686.20	Z. HZ (0.00 d.t. — oole-migle o oole-migle o		
0.069 Au oz\t -2.368-Au-gm\T -0.000 As ppm (Cut to: 0.700) EASTINGS: 1485.59 TO: 689.20		EASTINGS:	1485.56
0.069 Au oz\t -2.368-Au-gm\T -0.000 As ppm (Cut to: 0.700) EASTINGS: 1485.59 TO: 689.20	FROM: 686.20		
-2.368-Au-gm\T -0.000 As ppm (Cut to: 0.900) EASTINGS: 1485.59 TO: 689.20	0.069 Au bz\t	ELEVATION:	-600.33
-0.000 As ppm (Cut to: 0.900) EASTINGS: 1485.59 TO: 689.20	2-368-Au-gm\T		
TO: 689.20	-0.000 As ppm (Cut to:	0.900)	
ELEVATION: -602.85	mo - COO OO	EASTINGS:	1485.59
	689.20		
			332133
			
			
			
			·
		_	

DIAMOND DRILL LOG

CLIENT:	Cyprus Gold	SHEET NO:	1
NAME OF PROPERTY:	Tully Twp.	REMARKS:	Casing left
HOLE NO:	T-91-7		in hole
LENGTH:	263.95 metres	DRILLED BY:	
CLAIM NO:		LOGGED BY:	M.Rogers
LOCATION:	0 + 80 E; 1 + 19 N	STARTED:	Feb. 13/91
COORDINATES:		FINISHED:	Feb. 16/91
ELEVATION:	2.64 metres		
AZIMUTH:	180°		

DIP:		-61°							
FRO	M	то	DESCRIPTION						
0	10.0		Overbu	urden					
10.0	68.4		2h) wi (<1mn pervasi paralle veinlets situ bre alterati general	th 5-10 n), well ive, tan l calcite s, gener ecciation ion local	9% graphing develope Fe carbon veinlets, 1-ally < 1% on, occasionally; foliation 9% graphing	rock; probable intermediate flows (2d, 2e, tic lenses; l med. brown, fine grained d foliation at 35° - 45° to c.a., strong, ate alteration, 2-20%, random to foliation 2%, random to foliation parallel grey quartz disseminated (dissem.) pyrite (py), local, in al, calcite-filled amygdules; common sericite is only weakly developed locally in sections; itic lenses; as well as other siliceous			
			26.4	-	26.9	Lost core; probable fault.			
			10.0	-	49.0	Strongly foliated zone; deformation zone (D.Z.); extensive calcite veining; mod strong Fe carb. and local sericite alteration.			
			59.55	-	60.5	2-3% plagioclase phenocrysts.			
			49.0	-	64.3	Weakly foliated - massive flows, locally amygdaloidal, weak-mod, pervasive Fe carb. alt, 1-5% calcite veining, 1-2% grey quartz veining.			
			64.3	-	68.4	Mod. foliation with weak pervasive Fe carb. alt.			

FROM TO	DESCRIPTION
	Gradational contact
68.4 71.25	Graphitic sedimentary unit (2g); black, fine gr. (<.5mm), well developed foliation at 40°-50° to c.a., composed of graphite (30-70%), siliceous sediment and 1-10% py, 3-5%, grey quartz veining parallel to foliation.
	Gradational contact.
71.25 87.45	Intermediate volcanic ash tuffs (2a) - graphitic sedimentary lenses (2g); medium - dark grey, very fine grained (<.5 mm), well developed foliation at 40° - 50° to c.a., intermediate tuffs with generally 5-10% and locally higher lenses and narrow beds of graphitic sediment, high sedimentary component to unit, generally $\leq 1\%$ py, locally to 10% with graphite, relatively fresh, 2-5%, random - foliation parallel calcite veinlets, 1-2%, random - foliation parallel quartz veinlets, local calcite alteration.
	Gradational contact.
87.45 91.25	Graphitic sedimentary unit (2g); similar to 68.4 - 71.25 description; well developed foliation at 50° to c.a., mainly graphite with local 10-30% ash tuff, 5-70% locally py as dissem, stringers, blebs and massive, 2-3% calcite veinlets and 1-2% grey quartz veinlets parallel to foliation.
	Gradational contact.
91.25 110.15	Intermediate ash tuffs (2a) and graphitic sediment (2g); thoroughly intermixed and interbedded lenses of tuff and sediment, approximately 65/35: tuff/graphite but locally variable, 2-10% py with graphitic lenses, well dev. foliation at 50° to c.a., generally 2-5% calcite veinlets and 1-2% grey quartz veinlets parallel to foliation, extensive "soft sediment" brecciation, similar to 71.25-87.45 general description; general decrease in graphite content downsection to average 5-20%, common carbonate alteration from about 93.0, mainly weak-mod. pervasive calcite but also local buff-tan coloured Fe carb. alteration.
	Gradational contact.

FROM	то	DESCR	PTIO!	N	
110.15	195.35	fine gr. (fragment semi-con of graph unbroke intermed py as dis Fe carb.	<.5 mm ts of 1- isolidate in sect liate co sems., alt-buf veinlets	n) with exter- -50 mm be ted material ash materions; well omposition blebs and f-tan colours parallel ons.	ensive, generally elongate, rounded-angular lieved to be the result of the slumping of al, fragments are monolithic with a matrix rial, occasional, narrow (≤ 50 cm wide) developed foliation at 45°-50° to c.a., with common 1-20% graphite lenses, 1-5% stringers, common, weak-mod., pervasive red, generally 1-2% calcite veinlets and 1% to foliation, relatively unaltered over
		14475			5 la a 1 la 1000/ a a a d'annu a d'annu a d
		164.75	•	168.65	5-locally 100% py as dissem., stringers and massive; 1-10% graphite.
		173.5	-	181.05	Extensive (30-50%) calcite veining-random, pervasive calcite alt., 2-3%, random, white quartz veining, 3-5%, locally to 10% py, brecciation of host.
		188.55	•	189.05	50% white - I. grey quartz veining.
		191.1	•	192.7	10-50%, white - l. grey, random quartz veining; 1-5% py, common graphitic material.
		193.15	-	193.8	75% massive, white, quartz veining.
		193.8	•	195.35	Common (3-5%), random, grey quartz veining; weak - mod. silicification, bleaching, local chlorite-epidote, 1-3% py.

Gradational contact.

FROM	то	DESCRIPTION
195.35	228.85	Intermediate ash tuff (2a); extensively altered; l. greenish-brown, fine grained (<1mm), massive, altered composition, mod., pervasive silicification, common chlorite and epidote, generally 1-2% dissem. py, locally to 5%, common, local brecciation, 2-10%, random, dark grey quartz veining, possible fuchsite locally - fine grained, local, white quartz veins.
		Sharp decrease in silicification and increase in sericite alteration from about 210.0 meters with significant reduction in quartz veining (1%) Ser. is med dark brown with extensive dark grey calcite veinlets. Very common brown talc - carbonate for last few meters of lower contact. Probable original mixed ultramafic flow and intermediate tuff sequence.
		Gradational contact.
228.85	263.95	Ultramafic rock; probable flows (6c); totally altered to talc with 10-30% random calcite veinlets, d. grey - black, fine grained, massive, no original texture or mineralogy, 1-2%, white - l. grey quartz veins.
		End of Hole 263.95 meters.

Rock Core Quality Limited

Drill Hole No: ______ Client: ______

Property: To//y Project:_____

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quality %	# of Fractures	No. of Fractures per met/ft
	100.0	5-M	50+	12.0+	39.7	20+	42 OF
<u> </u>	/00.3	5-M	50	120+	56.6	50+	12.5+
67	1500	5-M	40+	9.57	540	40 ⁺	95+
4	89.0	5-19	Sient.	4.9+	66.3	22+	4.9t
5	1000	5-M	<i>-</i> 2.3	2.3	78.7	23	5.2
6	1000	5-11	-2/	4.6	824	2/	4.6
	100.3	5-M	29	6.9	76.2	29	6.9
.7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5-11	-26	5.9	88.6	<i>ચ</i> 3	5.2
9	100.0	5-/1	30	6.3	78.4	30	6.3
10	/22.3	11	27	6.2	X.2	27	6.2
	100-3	M	24	5.4	80.9	34	5.4
15	√00-0	M	24	5.5	95.5	23	5.2
13	160.C	M	25	5.8	98	<u> </u>	5.3
14	100.0	M	30 t	6.8+	93	30 r	6.51
15	100.0		<i>34™</i>	58 T	<u>85</u>	24+	ء تح 5
١٤	1000	M	29+	7,4*	<i>1</i> 0€	29!	7.41
17	100.0	М	23	5.2	96	23	5.2
18	102-3	11	26	6.4	88.9	26	6.4
19	102-2	5	50+	10.9+	50.0	.50 ⁺	10.9+
20	1025	M	2/	48	89.7	2/	43
	/20.0	M	19	44	96.6	19	4.4
22	102.5	11	2/	48	25.5	3/	48
£3	100-0		20	44	37.8	2 0	44.
J.	(00.5)	<u> </u>	/€	3.7	97.7	15	3.7
ఎక	100.0	<u> </u>	28	6.4	72.4	28	6.4
26	100.0	M	21	4.8	93./	2/	4.3
من	1000	<u> </u>	18	40	97.8	18	40

Rock Core Quality Limited

Drill Hole No: 7-9/-7 Client: Cycris

Property: Tolly Project:

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quality %	# of Fractures	No. of Fractures per met/ft
23	100.0	11	14	3.3	98.8	14	3.3
.70	1000	/1	18	4.0	74.6	18	4.0
35	100.0	M	/3	3.3	97.7	43	30
3/	100.0		19	43	91.0	19	4.3
30	/33.3	M	15	3.4	90.8	15	3.4
.33	100.0	11	/8	41	94.3	/8	41
-34	/xs.3	11	19	4.3	87.3	19	4.3
35	100.0		21	49	98.8	21	4.9.
.34	100-0	11	19	4.3	89.9	19	4.3
37	1000	14	16	3.6	85.4	16	3.6
37	100.0	M	18	4.3	98.8	18	4.3
30	100-0	M	15	3.3	91.1	15	3.3
40	00.0	M	-20	5.2	100.0	20	5.2
41	100.0	M	13	3.0	99	13	3.C
43	100.0	Μ	28	6.4	98	23	5.0
43	100.0	_ M	20 *	4.6+	98	20.5	4.6+
44	100.0	М	15	3.4	100	15	3.4
45	100.0	<u> </u>	13*	3.1+	100	13+	3.1
46	100.0	<u>M</u>	16	3.6	100	16	3.6
47	100.0	1	21	4.4	91	21	4.4
<u>48</u>	100.0	M	15	3,5	160	15	3.5
44	100.0	М	20	4.7	100	20	4,7
50	100.0	M	17	3,9	100	17	3.9
51	100.0	5	22	4.9	99	20	4,9
	1000	5	17	3.9	100	17	3.9
53	100,0	5	, 11	2.5	98	11	25
54	100.0	5	12	28	94.3	12	28

Rock Core Quality Limited

Drill Hole No: 7-9/-7 Client: Cycly

Property: ______ Project:_____

Core Tray #	Core Recovery %	Natchess soft med hard	# pieces of core per tray	# pieces of core per met/ft	Core Quality %	# of Fractures	No. of Fractures per met/ft
22	105.3	5	//	2.5	96.6	//	2.5
<u> 54.</u>	100-0	_5	18	4.2	26.0	18	42
-57	/33-3	-5	14	3.2	89.7	14	3.2
<u>58</u>	<u> ∕020</u>	5	21	5.2	87.7	2/	52
57	100.5	_5	<u> </u>				
						ļ	<u> </u>
-				-		<u> </u>	-
						<u> </u>	
		<u> </u>		 		 -	<u> </u>
		 	 	 -			
				 		 	<u> </u>
				 	<u> </u>	}	-
			 	 		<u> </u>	
				 			_
			<u> </u>			 	
		ļ			· · · · · · · · · · · · · · · · · · ·		
				 			
							
				 			
						 	
							
							
						 	 -
				 		 	
						 	
 			<u></u>	1		<u> </u>	

SURVEY DATA AND CALCULATED CO-ORDINATES (metres)

PROPERTY: TULLY TWP.

DATE: FEBRUARY, 1991

HOLE NO: 91-8

SURVEY BY: MCR

GRID: TEXMONT

INSTRUMENT: TROPARI

DEPTH	INCLINATION -65.00	BEARING	EASTINGS	NORTHINGS	ELEVATION
0.00		180.00	404.000	308.000	8.200
96.30	-61.00	182.50	403.046	264.291	-77.604
215.20	-58.00	179.50	401.993	203.954	-180.052
309.70	-56.00	180.00	402.218	152.486	-259.306
483.40	-49.00	179.50	402.679	46.745	-397.111

Page 1 of 1

SUMMARY LITHO LOG PROPERTY: TULLY TWP.

HOLE No.: 91-8

_____ CORE ANGLE NORTHINGS ELEVATION LITHO UNIT **DEPTH EASTINGS** 45.0 305.23 2.76 6.10 403.94 O.B. -50.4745.0 2E, SER, SIL 65.85 403.35 278.11 2E, CARB 67.65 403.33 277.29 -52.08 45.0 -56.7545.0 2F 72.90 403.28 274.91 50.0 403.16 269.62 -67.132D, 2E, CHL, CA 84.55 268.97 -68.4350.0 2A,Q.V.,PY 86.00 403.15 2D, 2E, CARB 141.55 402.65 241.33 -116.5950.0 50.0 2D, 2E, CARB, F 159.00 402.49 232.47 -131.63 402.03 196.19 -192.0050.0 2D, 2E, SER, SI 229.45 50.0 2D, 2E, FE CAR 245.45 402.07 187.48 -205.42174.71 -225.09 50.0 2D, 2E, FE CAR 268.90 402.12 167.90 -235.57 50.0 2D, 2E, FE CAR 281.40 402.15 2D, 2E, Q.V., S 291.40 402.17 162.45 -243.96 50.0 2D, 2E, FE CAR 402.29 135.50 -281.4450.0 337.60 -307.1550.0 1D, CARB 370.00 402.38 115.78 -329.36 50.0 1D, CHL 398.00 402.45 98.73 402.48 91.73 -338.4850.0 1D, CARB 409.50 402.52 1D, SER 424.40 82.66 -350.3050.0 1D, CARB, Q.V. 437.90 402.56 74.44 -361.01 50.0 -372.9150.0 1D, CARB 402.60 65.31 452.90 -397.1150.0 402.68 46.75 6C, TALC, CARB 483.40

ASSAY LOG PROPERTY: TULLY TWP.

HOLE No.: 91-8

Page 1 of 3

	FROM	то	WIDTH	Au oz\t	Au gm\T	As ppm	
	12.00	13.50	- 1.50	NIL-	NIL	N.S.	· -
	15.00	16.00	1.00	NIL	NIL	N.S.	
	27.00	28.50	1.50	NIL	NTL	N.S.	
	30-60	32.10_	1_50	NIL	NIL	N.S	
	34.50	36.00	1.50	NIL	NIL	N.S.	
	39.00	40.50	1.50	NIL	NIL	N.S.	
	41.90		1 . 50	NIL-	NIL-	N.S.	
	46.20	47.70	1.50	NIL	HIL	N.S.	
	51.50	53.00	1.50	NIL	KIL	N.S.	
	- 53.00				\\ [L		
	54.50	56.00	1.50	0.001	0.040	N.S	
	56.00	57.50	1.50	0.001	0.050	N.S.	
	57.50				NTL		.
	59.00	60.50	1.50	NIL	NTL	N.S.	
	84.55	86.00	1.45	0.000		N.S.	
					0-010-		
			1.50		NIL	N.S.	
	99.70	101.20	1.50	NIL NIL	NIL	N.S.	
	108.00	109.50			1.590		
	115.95						
	118.50	119.85	1.35	NIL	NIL	N.S.	
	135.65	137.15	1.50	0.000	0.010	N.S.	
-	141.60				0.010-	N-S	
	143.10	144.60	1.50	0.001	0.020	N.S.	
	144.60	146.10	1.50	NIL	NIL	N.S.	
-		-1.51.60				N.S	
	157.30	158.80	1.50	0.000	0.010	N.S.	
	158.80	160.30	1.50	0.154	5.280	N.S.	
	160.30	-16 1-80-	15 0		0670	N-S	
	161.80	163.30	1.50	NIL	NIL	N.S.	
	163.30	164.80	1.50	NIL	MIL	N.S.	
	16480	1 66 .30-	1.5 0 -		 0010	NS	
	170.20	171.10	0.90	0.000	0.010	N.S.	
	173.10	174.60	1.50	NIL	NIL	N.S.	
	17780-	179.30	150	0.001		N-S	
	179.30	180.80	1.50	NIL	NIL	N.S.	
	180.80	182.30	1.50	NIL	NIL	N.S.	
	184.70	186.20-	1.50		NIL ·	N.S.	
	186.20	187.70	1.50	NIL	NIL	N.S.	
	190.80	192.30	1.50	NIL	NIL	N.S.	
	19335-	194 .85	150 -			N-S	
	194.85	196.35	1.50	NIL	NIL	N.S.	
	197.50	198.50	1.00	0.001	0.030	N.S.	
	198.5 0	199.50	1.00-	—c001—	 0.020-	N.S.	
	199.50	200.50	1.00	NIL	: IL	N.S.	
	200.50	201.50	1.00	0.015	0.510	N.S.	
	201.50					N-S	
	202.50	204.00	1.50	NIL	:IL	N.S.	
	202.50		1.50	NIL	NIL	N.S.	
		205.50				N.S.	
	205.50	205.51	0.01 1.50	NIL NIL	:IL NIL	N.S.	

ASSAY LOG - Page 2 of 3

PROPERTY: TULLY TWP.

HOLE No.: 91-8

FROM-	ТО	_ WIDTH	Au oz\t	_Au_gm\T	As ppm	- -
213.60		1.50	NIL	NIL	N.S.	
220.80	-222.30	1.50	NIL	\IL	N.S	
226.30	227.80	1.50	NIL	::TL	N.S.	
231.00	232.50	1.50	NIL	NIL	N.S.	
_ 238.70 -	240.20_	1_50	NIL	YIL	N - S	
	244.70		NIL	NIL	N.S.	
250.40	251.90	1.50	NIL			
254.30	- 255.80-	1.50	NIL-	NIL.	N.S.	
255.80	257.30	1.50	0.001	0.20	N.S.	
	267.00			0.060	N.S.	
268.90	-270.40-	1 _ 50	NIL-	\TL	N.S	
		1.50	NIL	NIL	N.S.	
		1.50	NIL	NIL	N.S.	
	284.45		NIL		N.S.	
284.45	285.95	1.50	NIL	NIL	N.S.	
285.95	287.45	1.50	NIL) IL	N.S.	
203.33	288 95	1.50	0.003			
288.95	200.35	1 50	. 0.004	0.130	N.S.	
	291.95	1.50	NIL		N.S.	
290.45	291.90	- 150	0.003			
298.10	201 15	1 50	0.003	0.030	N.S.	
			0.089			
			0-041-			
			0.001		N.S.	
			0.000		N.S.	
			NIL-		N.S.	
		1.50			N.S.	
	324.90	1.50		0.050	N.S.	
		150	0	0-010		
	329.90	1.50	0.001 0.028	0.020	N.S.	
334.45	335.95	1.50	0.028	0.960	N.S.	
			0.030	1.140		
349.20		1.50	NIL	NIL	N.S.	
361.80	363.30			0.910		
37450-	376 00	150		'vIL	N-S	
384.20	385.70	1.50	NIL	NIL	N.S.	
406.10	407.60	1.50	NIL	NIL	N.S.	
	4 10.95			NIL-	NS	
410.95	412.25	1.30	NIL	MIL	N.S.	
412.25	413.75	1.50	NIL	NIL	N.S.	
	415.25	——1 5 0		0.010-		
415.25	416.75	1.50	NIL	NIL	N.S.	
416.75	418.25	1.50		0.020	N.S.	
424.40	-425.90-	- 150		0.910 -	50.000	
425.90	427.40	1.50		0.020	60.000	
427.40	428.90	1.50		0.040	60.000	
428-90-		150		3.500_	_3800+000	
430.40	431.90	1.50		1.030	2500.000	
431.90	433.40	1.50		0.030	80.000	
433.40	434.90	1.50		0.360	680.000	

ASSAY LOG PROPERTY: TULLY	TWP.				Page_3_of_	_3
HOLE No.: 91-8			The control of the decorate and the			
=======================================						
FROM	ТО	WI-DTH	_Au oz\t_	-Aug::\T	As ppm	
434.90			0.010			
436.40	-437.90	1.50	0.000		70.000	
444.30	445.80	1.50	0.001	0.420	17.000	
449.90	451.40	1.50	0.001 0.001 0.000	0.020	120.000	
452.95	454- 45-		0.000	0.010		
		 -				
					•	
			· 			
-	The Company of the Control of the Co	~ · ••	· • • · • • • • • • • • • • • • • • • •			
			•			
						
·						
				 -		
		 				<u> </u>
						
	······					· · ·
						
				-		_
· · ·						
	····					
					······································	

** BORSURV **		
AVEDACED ACCAY INTEDVALC	Pa	ge 1 of 1
PROPERTY: TULLY TWP	· · ·	-
HOLE No: 91-8		
=======================================		
1. HW (1.50 d.t. —Core Angle: 90 - 1.50 t.t.)	· ····································	
	EASTINGS:	402.49
FROM: 158.80	NORTHINGS:	232.57
	ELEVATION:	
0.154 Au oz\t		
-0.000 As ppm		
	EASTINGS:	
TO: 160.30		
	ELEVATION:	-102.75
2HW -(-3.00-d.tGore-Angle:-903-00-t.t.)		
	D. 6071166	400.00
PROV. 004 45	EASTINGS:	
FROM:30115		
0.005 4	ELEVATION:	-252.14
0.065 Au oz\t		
2-225-Au-gm-\T		
-0.000 As ppm	EASTINGS:	402 20
то: 304-15		
10: 304.13	ELEVATION:	
	EDEVALION.	-234.00
3. HW (3.00 d.t Core-Angle: -903.00-t-t-)-	· · · · · · · · · · · · · · · · · · ·	
	EASTINGS:	402 29
FROM:334-45	PORTHTNOS	 137 49
rion. Jot. to	ELEVATION:	
0.029 Au oz\t		2.0.01
		
-0.000 As ppm		

EASTINGS: -NORTHINGS: - 135.59 -TO: 337-45 -----**ELEVATION:** 4. MZ (-3.00-d-t-Gore-Angle:-90--3.00-t-t-)-

EASTINGS: 402.53 FROM: 428.90----79.92 ---NORTHINGS: -**ELEVATION:** -353.87

402.29 .

-281.32

0.066 Au oz\t -2-265-Au-gm\T-3150.000 As ppm

402.54 **EASTINGS:** ТО:--- 431-90 ----NORTHINGS:--- 78-10-

-356.25 **ELEVATION:**

DIAMOND DRILL LOG

CLIENT:	Cyprus Gold	SHEET NO:	1
NAME OF PROPERTY:	Tully Twp.	REMARKS:	Casing left
HOLE NO:	T-91-9		in hole
LENGTH:	636.1 metres	DRILLED BY:	
CLAIM NO:		LOGGED BY:	M.Rogers
LOCATION:	1320 E; 272 N	STARTED:	Feb. 18/91
COORDINATES:		FINISHED:	Feb. 26/91
ELEVATION:	2.47 metres		
AZIMUTH:	180°		
DIP:	-60°		

FRO	м то	DESCRIPTION
0	15.2	Overburden
15.2	88.4	Mafic flows (1d); dark green, fine grained (1 mm), massive, mafic composition, extensive, fine grained chlorite alteration, weak-strong, pervasive, calcite alteration, generally $\leq .5\%$, disseminated (dissem.) pyrite (py), 1-2%, random, calcite veinlets, $\leq 1\%$, random quartz veinlets, common (2-5%), chlorite stringers, local quartz veining of 2-10%.
		Gradational contact over 50 cm.
88.4	115.0	Ultramafic flows (6b), peridotite; d. grey-black, fine grained (≤.5 mm), massive, very mafic composition, significant magnetite content, peridotitic composition, possible local spinifex texture, strong, pervasive calcite alteration, 1-2% dissem. and blebbed py-po, local, random, white-grey quartz veining, occasional, calcite-filled amygdules.
		Gradational decrease in mafic content starting at about 115 meters, increase in occurrence of calcite-filled amygdules, also gradual decrease in magnetite content.
115.0	161.65	Mafic flows (1d, 1e); dark grey, fine grained (≤.5 mm), massive, local calcite-filled amygdules, mafic composition, generally ≤.5% dissem. py-po, 1%, random quartz veinlets, mod-strong, pervasive, calcite alteration, 2-3%, random calcite veinlets, local 1-3% py-po with quartz veinlets.

FROM	то	DESCRIPTION	
		134.9 - 141.1	Extensive silicification with 3-90%, l.grey, quartz veining, 1-10%, dissem. and blebbed py with veining; 137.45-140.15: 50%-90% quartz veining.
		159.75 - 160.35	Badly broken core; probable minor fault.
		Gradational indistin	ct contact.
161.65	387.7	local foliation at 40° and silica-filled amyghigher %, weak-str coloured, Fe carbons 5% with veining, 2-5°	(2d, 2e); medium grey, fine grained (\leq .5 mm), of to c.a., intermediate composition, local calcite gdules, 1-2%, random, grey quartz veining, locally rong, pervasive, calcite alteration, local, buffate alteration, generally \leq 1% py-po, locally up to %, random calcite veining, local silicification with sional graphitic lenses.
		168.45 - 171.85	Strongly foliated at 40° to c.a., 5-20%, grey quartz veining generally parallel to foliation, common silicification, 1-5% py.
		205.75 - 215.3	3% to locally 50%, random, l. grey, quartz veining; general silicification; 2-5% graphitic lenses, 1-5% dissem. and blebbed po, ≤1% py.
		215.3 - 234.55	Strong, pervasive calcite alteration; mafic-intermediate composition; 1-2%, grey quartz veining, locally higher %.
		224.4 - 226.6	5-10%, random, grey, quartz veining, 2-3% py.
		234.55 - 246.95	5-75%, l. grey, random-foliation parallel quartz veining, 2-20% py with veining as dissem., blebs and stringers, local foliation at 35°-40° to c.a., common silicification, 241.95 - 242.0: 2-3% asp, 243.8 - 243.9: 2-3% asp.

FROM	то	DESCRIPTION	
		246.95 - 293.95	Mod strong, pervasive, calcite alteration; local, buff-coloured, Fe carb. alt., generally 1-2%, grey, quartz veining, locally higher %, 1-10% calcite veining, generally ≤1% py-po, local po to 5-10%, intermediate amygdaloidal flows (2e); local, 1-3%, graphitic lenses.
		284.95 - 286.2	10-50% graphitic sediment (2g), 2-3% quartz veining, 2-5% po with graphite, breccia.
		284.5 - 293.95	5-10% and locally higher % graphitic lenses.
		293.95 - 320.9	Mod strong, pervasive, Fe carbonate alteration, 1-5% and locally higher %, random, l. grey quartz veining, local silicification.
		320.9 - 326.45	5-30% graphitic lenses with 1-10% py-po.
		326.45 - 343.0	1-5% graphitic lenses, locally with 1-10% py-po.
		333.1 - 335.5	3% grey quartz veining, graphitic lenses, 3-10% po.
		320.9 - 350.25	Weak-strong, pervasive calcite alteration.
		335.5 - 336.95	3-10% po.
		338.3 - 343.0	1-15% po, 2-5%, grey quartz veining.
		350.25 - 361.5	Strong, pervasive, tan coloured, Fe carb. alteration; generally 1% quartz veins, common, interflow units of graphitic sediment.
		361.5 - 368.8	Strong, pervasive calcite alteration.
		368.8 - 372.45	Strong, pervasive Fe carb. alteration; 3-30%, l. grey quartz veining, local silicification; minor (1-3%) py; 371.95-372.25: graphitic interflow unit with po.

FROM	то	DESCRIPTION
		372.45 - 387.7 Strong, pervasive calcite alt., local, brown, Fe carbonate alt. generally with quartz veining, generally 1-2% random, grey, quartz veining, locally to 10%.
		374.7 - 383.2 Mod strong, pervasive Fe carbonate alteration; 380.85 - 383.2: 2-10% quartz veining, 1-2%, dissem. py.
		Sharp contact at 50° to c.a.
387.7 3	91.25	Ultramafic rock, probable flow (6c); black, fine gr. (<.5 mm), foliation at 55° to c.a., composed principally of talc with lesser carbonate, local quartz veining.
		Sharp contact at 55° to c.a.
391.25	406.2	Intermediate flows, probable (2d); extensively altered; common, mod- strong, pervasive Fe carbonate alteration, 5-30%, purple - l. grey, random quartz veining, common silicification, common epidote, 1-2% dissem. py, common, fine gr. chlorite.
		400.5 - 405.5 Mod strong, pervasive, sericite alteration; 1-2% grey quartz veining.
		405.5 - 406.2 Same as 391.25 - 401.0 description.
406.2	553.55	Intermediate flows (2d, 2e); med dark grey, fine gr. (< 1mm), massive, intermediate composition, common, weak-strong, calcite alteration, local, brown, Fe carbonate alteration, occasional, calcite-filled amygdules, local variolites, generally 1-2%, random, quartz veining but locally higher %, generally 1-5%, calcite veinlets, generally ≤.5% po-py, locally higher with veining.
		413.85 - 416.7 20-40%, white, quartz-calcite veining.
		437.1 - 478.8 Relatively unaltered except local, fine gr. chlorite.
		459.1 - 460.7 Intermediate ash tuff unit (2a); grain size ≤ 1mm.

FROM	то	DESCRIPTION
		478.8 - 495.9 Weak-strong, pervasive, calcite alteration, common, 1-10%, random, calcite veinlets, generally 1-2%, locally higher %, random, quartz veining, local siliceous chloritic pillow selvages, local .5-3% popy with quartz veining.
		495.9 - 543.9 Relatively unaltered except local - common minor-extensive fine gr. chlorite; generally 1-2%, random quartz veining, locally to 5%-10%, white-l. grey-purple, local silicification with veining, minor (1-2%) po-py and rare, ≤1% cp with veins; variolitic flows.
		517.95 - 518.25 Massive, white quartz vein.
		519.6 - 520.0 Badly broken core; minor fault zone.
		540.5 - 543.1 5-10%, l. grey-purple, random, quartz veining with 1-3% po.
		543.9 - 553.55 Intermediate flows, very distinct from previous flows, minor variolites, strong, pervasive, calcite alteration, weak foliation at 50° to c.a., generally 1-2% quartz veining, ≤.5%, dissem. po-py.
		Sharp contact at 45° to c.a chilled margin.
553.55	555.35	Graphitic sedimentary unit (2g), black, fine gr. (≤.5mm), local foliation at 45°-55° to c.a., composed of graphite and 20-100% blebbed, nodular and massive pyrite.
		Sharp contact at 50° to c.a.; chilled volcanic margin.
555.35	588.4	Intermediate variolitic flows; (2d), med. grey, fine gr. (\leq .5mm), massive, intermediate composition, variolitic, generally unaltered except local - common, minor - extensive, fine gr. chlorite, 1-3%, random, white-l.grey-purple quartz veining, minor calcite alt. near upper contact, 1-3% po with quartz veining, also local \leq 1% py and rare, $<$ 1% cp with veining, local sections with 10-20% quartz veining.

FROM	то	DESCRIPTION	
		566.55 - 566.85	Massive, white quartz vein.
		568.6 - 569.35	20-30% quartz veining
		580.6 - 584.65	5-10% quartz veining with common areas of silicification.
		587.9 - 588.4	Graphitic sedimentary interflow horizon (2g) with 3-10% py, foliation at 55° - 65° to c.a.
		Sharp, chilled contact.	
588.4 60	5.25	weakly foliated at 55° t	d); med. grey, fine gr. (<1mm), massive to c.a., intermediate composition, weak-mod., ation, generally 1-2%, random quartz veinlets.
		602.8 - 605.25	Fine gr (<.5mm), modstrong silicification, chill margin.
		Sharp contact at 50° to	o c.a.
605.25 6	36.1		totally altered to talc; medium greenish-grey, ssive, no original mineralogy, local, remnant
		End of Hole 636.1 me	ters.

Rock Core Quality Limited

Drill Hole No: 7-91-9 Client: CYPRUS

Property: Toily Project:____

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quality %	# of Fractures	No. of fractures per met/ft
- 1	ico	М	20	5,2	100	20	5.2
2	100	M	25	5.8	86	25	5.8
3	100	М	28	7.0	97_	25_	6.25
4	100	М	25	5.1	8i	23	4.6
5	100	М	25	5.4	92	25	5.4
6	/CC	M	27	7.3	100	25	6.8
7	100.5	11	22	5.3	85.5	- ಕ್ರಾ	53
ઇ	/20.2	M	21	4.9	89.4	21	4.9-
9	100.0	<u></u>	28	6.2	74.7	26	5.7
10	700.0		32	5.8	<i>8</i> 6.0	<u> حج</u>	5.3
	1020	M	ى20	47	91.9	-2 0	4.7
12	100.5	M	/9	4.4	88.5	/9	4.4
13	1000	M	32	7.0	725	32	7.0
14	/CC	\mathcal{M}	٦9	6.8	93	29	6.6
15	100	M	20	4.5	94	20	4.5
ال	100	M	19+	4.47	92	19 F	4.45
17	100	<u> </u>	23	5.4	93	23	5.4
18	100	M	17	4.0	98	17	4.0
19	100	71	15	3.3	90	15	3.3
20	100	M	16	3,8	100	16	3.8
21	100	М	19	4.4	92	19	4.4
22	ico	M	15	3.6	96	15	3.6
23	ICC	M	22	4.7	93	22	4.7
24	16c	M	15	3.5	95	15	3.5
25	100	Μ	187	4.2+	84	16"	4.2+
26	100	Μ	18	4.3	86	18	4.3
27	100	M	17	3,9	96	17	3.9

ı

Rock Core Quality Limited

Drill Hole No: T-91-9 Client: CYPRUS

Property: Tull Project:

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quality %	# of Fractures	No. of Fractures per met/ft
<u>28</u>	1CC	M	18	4.2	99	18	7.入
29	1CC	M	22	4.2	73	22	4,2
3 ₀	ICC	r;	23	5.3	96	<i>2</i> 3	5.3
31	icc	/)	17	4.2	100	14	4.2
32	100	Μ	22	5.0	90	77	5,0
33	100	M	18	4.2	97	18	4.2
34	100	M	15+	3.8*	89	15+	3.8
35	10C	Λ	17	3.9	91	17	39.
36	100	M	12	2.8	100	12	2.8
37	100	M	22	4.9	90	22	4.9
<u> 3e</u>	100	M	ス	4.8	94	21	4.8
39	100.0	<u> </u>	24	5.9	79.3	19	4.6
40	100-0	M	17	3.8	90.0	17	3.7
41	100-0	\mathcal{M}		40	98.8	_/7	40.
<u> </u>	/02.5	M	2/	48	95.4	21	4.8
43	100.0	M	<i>-</i> 20	4.5	920	ન્ટ્ 0	4.5
44	100-0	M	<i>2</i> 6	4.5	89.8	<i>ح</i>	4.5
45	<i>100</i>	M	21	5.2	100	21	5.2
<u> 46 </u>	100	М	24	5.4	90	22	5.4
	ICC	M	19	4.3	95	19	4.3
<u> ५६</u>	100	/1	23	5,2	95	20	5.2
<u>49</u>	100	И	18	4.2	/OC	18	4,2
<u>50</u>	IUU	M	18	4.2	100	18	42
51	160	7	20	4.6	100	20	4.6
52	100		<i>j</i> 8	4.1	93	18	4.1
53	100	n	20	4,5	/00	20	4,5
54	jùÙ	<u> </u>	117	3.9	91	17	3.9

Rock Core Quality Limited

Drill Hole No: 1-91-9 Client: CYPRUS

Property: TLLY Project:____

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quality %	# of Fractures	No. of Fractures per met/ft
55	160	Λ	<i></i> スス†	5.2	99	72-	5.x +
56	100		22	4,9	90	12	4.9
57	100	<u>M</u>	24	5.4	95	24	5,4
5°	100	M	<i>λυ</i>	4.5	94	20	4.5
59	100		20	4.4	94	20	4.4
60	10c	M	<i>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </i>	4.8	96	21	4.8
61	160	Λ	19	4.4	99	19	4,4
62	/22.5	<u> </u>	-32 ⁺	4.9+	87.6	22+	4.9t
63	\s\s\3		16	40	100.0	16	4.3
64	100.3		-28	6.2	75.8	25	5 .5
65	/00.0	<u> </u>	حى	4. 7	93.0	<u> حرَ</u>	4.7
66	10.3		20	4.5	93.2	ન્ટેંગ	4.5
67	/00.0	<u> </u>	~20	4.5	98.8	20	45
68	/00.0	<i></i>	/8	4.0	96.7	18	4.0
69	\33-Q	<i>r</i> 1	/7	40	97.6	17	4.0
70	/27.0		18	4./	96.6	18	4.1
71	100	/1	18	4.3	97	jE:	4.3
72	10C	M	73	5,1	90	23	5.1
73	100	<u> </u>	15	3.6	95	15	3.6
74	100	M	20	4,4	92	je.	4
75	100	M	23+	5,9 +	1 75	235	5.9+
76	ico	M	10	2.4	99	10	2.4
77	1_0	<u></u>	20	4	83	20	4
78	100	M	20+	5.8+	96	20+	5.8*
79	100	M	23	5.6	100	33	5.6
80	100	M	18	4.1	94	18	4.1
81	JCU.	M	18	4,5	100	j &	4.5

Rock Core Quality Limited

Drill Hole No: 1-91-9 Client: CYPRUS

Property: TotLY Project:

Core Tray #	Core Recovery %	Nardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quality %	# of Fractures	No. of Fractures per met/ft
رن	100	11	17	3.9	98	17	3,9
83	jec	M	19	4.4	94	19	4.4
57	100.0	M	13	40	85.4	18	4.0
35	100-0		-24+	6.2+	88.5	2/+	5.F
84.	100.0	M		2.4	88.7	[2.4
87	100.0	11	27	6-7	85.2	27	6.7
33	100.0	1	38+	9.6+	77.2	-38°	9.6+
89	1000	M	22	4.8	87.0	22	4.8.
ŤC	100	M	21	5.1	ICC	시	51
91	1C.	1	291	647	23	391	641
٩٢_	/cc	М	16	3.5	96	16	35
43	100	М	12	2.6	94	12	یا .2
14	1CC	Μ	19	4.5	95	19	4.5
45	100	M	16	3.6	96	16	36:
76	100	М	16	3.7	95	16	3.7
47	100	М	18	4.0	89	18.	4.0
9 ₂ .	ICL	<u> </u>	えこ	5.0	ICU	26	5.C
99_	100.0	<u> </u>	R	2.7	96.6	12	2.7
150	1	M	18	4.1	95.4	/7	3.9
151	<u> </u>	M	21	4.8	86.4	2/	4.8
/02	1000	M	1	4.0	90.5	15	3.6
103	100.0	<u> </u>	14-	3.3	98.8	14	3.3
104	103.C		17	3.9	90.9	17	3.9
105	100.0	<u> </u>	17	40	100-0	17	4.0
_/C)€	100.0	M	2/	48	85.1	21	98
107	0.00	M	18	42	96.5	18	82
128	100.0	M	16	3.7	86.0	16	3.7

Rock Core Quality Limited

Property: Tu//y Project:_____

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quality %	# of Fractures	No. of Fractures per met/ft
109	100.0	M	25	5.6	85.4	25	5.6
1/0_	122.2	M	-31	7.2	80.2	3/	7.2
///	/32.3	11	18	42	93.0	18	4.2
112	1000		18	4.0	92./	18	50
113	100.0	M	22	5.1	87.2	22	5.1
114	100.0	M	- //	2.5	98.9	//	2.5
115	1300	M	13	3.0	94.3	13	3.0
114	100.5	11	18	4.4	92.7	18	4.4.
<u> 117 </u>	100.0	M	16+	3.5+	ሬይ	16+	3 5+
118	ICC.C	M	17-	49+	100	17+	4.9'
114	100.0	M	17	3.9	100	17	3.9
/ / /:	100.0	M	14	3.2	72	14	3.2
17.1	100,0	Μ	15	3.3	100	15	3.3
113	100,0	\mathcal{M}	15	2.9	78	15	2.5
123	100.0	М	21	5,0	95	2	5.6
124	1000	Μ	18	4.2	78	18	4.2
125	100.0	М	30	6.5	89	18	6.5
126	60.0	М	24	5.5	દ9	24	55
127	100.0	11	12	2.8	100.0	12	2.3
12E	100.0	M	16+	3.4+	် ၉၅	16+	344
1)4	100.0	Λ	16	3.8	99	16	3.8
130	100.5	M	15	3.4	97./	15	3.4
131	10000	<u>~</u>	2/	4.8	87.5	21	4-8
132	105.5	1	17	3.9	1000	_/7	3.9
/33	/33.T		2/_	4.7	87.5	2/	4.7
134	1027	M	28	6.2	78.0	28+	6.2
135	1000	<u>M</u>	27+	6.2+	73.6	27	6.2+

Rock Core Quality Limited

Property: Tolly Project:

Core Tray #	Core Recovery %	Hardness soft med hard	# pieces of core per tray	# pieces of core per met/ft ,	Core Quality %	# of Fractures	No. of Fractures per met/ft
136	jono	11	17+	4.3+	25.0	17+	43 ⁺
137	100.0	//	28+	5.6+	81.2	234	6.6+
133	100.0	<i>M</i>	49t	6.6+	57.0	47+	11.4
/39	130.0	M	42	9.8	65.1	42	9.8
140	100.0	M	6/+	14.0+	42.5	6/+	14.0+
141	100.0	11	62+	15.1+	34.1	1 25	15.1+
142	120.0	M	49+	11.5+	55.3	49+	11.5+
142	100.0	M	56 ⁺	13.0 +	37.2	56+	13.07
144	100.0	M	47+	11.9+	59.5	47+	11.9+
185	100.0	M	3	7.5	75.0	3	7.5
	ļ. <u>.</u>						
i							

SURVEY DATA AND CALCULATED CO-ORDINATES (metres)

PROPERTY: TULLY TWP.

DATE: FEBRUARY, 1991

HOLE NO: 91-9

SURVEY BY: MCR

GRID: FRANKFIELD

INSTRUMENT: TROPARI

DEPTH	INCLINATION	BEARING	EASTINGS	NORTHINGS	ELEVATION
0.00	-60.00	180.00	1320.000	272.000	2.470
87.50	-58.00	184.00	1318.427	226.962	-72.532
206.30	-58.00	182.00	1315.132	164.093	-173.280
303.90	-56.00	182.50	1313.046	110.978	-255.135
389.20	-54.00	178.50	1312.619	62.053	-325.008
508.10	-52.00	180.50	1313.243	-9.500	-419.966
636.10	-51.00	178.50	1313.938	-89.178	-520.140

Page 1 of 2

SUMMARY LITHO LOG PROPERTY: TULLY TWP. HOLE No.: 91-9

LITHO UNIT	DEPTH	EASTINGS	NORTHINGS	ELEVATION	CORE ANGLE
O.B.	15.20	1319.73	264.18	-10.56	none
1D, CHL, CARB	88.40	1318.40	226.49	-73.30	40.0
6B, CARB	115.00	1317.66	212.41	-95.85	40.0
1D, 1E, CARB	134.90	1317.11	201.88	-112.73	40.0
1D,1E,Q.V.,S	141.10	1316.94	198.60	-117.99	40.0
1D,1E,CARB	161.65	1316.37	187.72	-135.41	40.0
2D, 2E, CARB	168.45	1316.18	184.12	-141.18	40.0
2D,2E,Q.V.,S	171.85	1316.09	182.32	-144.06	40.0
2D, 2E, CARB	205.75	1315.15.	164.38	-172.81	40.0
2D, 2E, SIL, Q.	215.30	1314.94	159.20	-180.83	40.0
2D, 2E, CARB	234.55	1314.53	148.72	-196.97	40.0
2D, 2E, Q.V., P	246.95	1314.26	141.97	-207.37	40.0
2D, 2E, CARB, F	293.95	1313.26	116.39	-246.79	40.0
2D,2E,FE CAR	320.90	1312.96	101.23	-269.06	40.0
2D, 2E, CARB	350.25	1312.81	84.39	-293.10	40.0
2D,2E,FE CAR	361.50	1312.76	77.94	-302.32	40.0
2D,2E,CARB,F	387.70	1312.63	62.91	-323.78	40.0
6C, TALC	391.25	1312.63	60.82	-326.65	50.0
2D, FE CARB, Q	406.20	1312.71	51.82	-338.58	50.0
2D, 2E, CARB	437.10	1312.87	33.23	-363.26	50.0
2D,2E,CHL	459.10	1312.99	19.99	-380.83	50.0
2A	460.70	1312.99	19.03	-382.11	50.0
2D, 2E, CHL	478.80	1313.09	8.13	-396.57	50.0
2D, 2E, CARB	495.90	1313.18	-2.16	-410.22	50.0
2D,2E,CHL	543.90	1313.44	-31.78	-447.98	50.0

Page 2 of 2

SUMMARY LITHO LOG PROPERTY: TULLY TWP. HOLE No.: 91-9

LITHO UNIT	DEPTH	EASTINGS	NORTHINGS	ELEVATION	CORE ANGLE
2D, 2E, CARB	553.55	1313.49	-37.79	-455.54	50.0
2G,PY	555.35	1313.50	-38.91	-456.94	50.0
2D, CHL	588.40	1313.68	-59.49	-482.81	50.0
2D, CARB	605.25	1313.77	-69.97	-496.00	55.0
6C.TALC	636.10	1313.94	-89.18	-520.14	55.0

ASSAY LOG -- - Page 1 of 3

PROPERTY: TULLY TWP. HOLE No.: 91-9

	=========	======		========	=======================================	=====
FROM	ТО	WIDTH	Au oz\t	Au gm\T	As ppm	
17.30	18.80	1.50	TRACE	TRACE	N.S.	
28.80	30.30	1.50	NIL -		N.S.	
30.30	30.31	0.01	NIL	\!IL	N.S.	
47.10	48.60	1.50	0.002	0.080	N.S.	
58.50	60.00		0.003		N.S.	
63.30		1.50	NIL	MIL	N.S.	
76.35	77.85	1.50			N.S.	
86.50					N.S.	
88.65		1.50		0.;10	N.S.	
94.50		1.50		0.100	N.S.	
	1-04 . 20					
128.00		1.50		0.040	N.S.	
134.90		1.50		0.050	N.S.	
	1-3-7 90				N.S.	
137.90		1.50		1.710	N.S.	
139.40	140.90	1.50	0.002	0.060	N.S.	
	1-53.60				N-S	
165.20	166.70	1.50	0.002	0.070	N.S.	
168.20	169.70	1.50	0.007	0.230	N.S.	
	1-7-120				N.S	
171.20		1.50		0.010	N.S.	
180.30	181.80	1.50	0.001	0.020	N.S.	
	-186.50-			0-040-	N.S	
		1.50		0.010	N.S.	
194.70	196.20	1.50	TRACE	TRACE	N.S.	
	200.50		NIL	NIL-		
201.90	203.40	1.50		0.020	N.S.	
205.75	207.25	1.50	0.003	0.120	N.S.	
	20875	150-	0.021	0 - 730	N.S	
208.75	210.25	1.50	0.022	0.760	N.S.	
210.25	211.75	1.50	0.003	0.100	N.S.	
211 75	-21 3.25	150	0007-	0-230-		
213.25	214.75	1.50	0.003	0.120	N.S.	
214.75	216.25	1.50	0.001	0.050	N.S.	
	22590 -	150		0.180	N-S	
225.90	227.40	1.50	0.001	0.020	N.S.	
234.50	236.00	1.50	0.009	0.310	N.S.	
236.00	—237.50 —	-1-50	0.017		N.S	
237.50	239.00	1.50	0.106	3.650	N.S.	
239.00	240.50	1.50	0.015	0.520	N.S.	
	242.00	150	 0.01-3	0.150-	——N.S.—	
242.00	243.50	1.50	0.015	0.520	N.S.	
243.50	245.00	1.50	0.048	1.650	N.S.	
245.00	246.50	1.50	0.006-	0.210 -	N.S.	
249.00	250.50	1.50	0.008	0.290	N.S.	
250.50	252.00	1.50	0.001	0.030	N.S.	
· · 252.00·	253.50		0.000	0··010	N.S	
253.50	255.00	1.50	0.000	0.010	N.S.	
255.00	256.50	1.50	NIL	`.IL	N.S.	
270.80	272.30	1.50	0.000	0.010	N.S.	

ASSAY LOG _ Page_2_of_3__

PROPERTY: TULLY TWP. HOLE No.: 91-9

	:=======	:=====:	=======			=======
FROM	TO	- WIDTH	· Au oz\t-	Au - gr:\T	· As· ppm	
280.65	382.15	101.50	0.002	0.060	N.S.	
283.50			0.001 -	0.020	N.S.	· ·
285.00	286.50	1.50	0.004	0.150	N.S.	
294.00	295.50	1.50	0.000	0.010	N.S.	
303.90			0.000-	0.010	N.S	
	310.00	1.50	NIL	NIL	N.S.	
	316.60			NIL	N.S.	
	322.50			0.1i0		
322.50	324.00		0.006		N.S.	
324.00	325.50	1.50	0.002	0.770	N.S.	•
			0.001		N.S	
	328.50		0.010		N.S.	
333.10	334.60	1.50	0.015		N.S.	
				0.200		
	337.60					
				0.290	N.S.	
		1.50		0.110	N.S.	
					N·S	
		1.50		0.140	ĸ.s.	
	352.00			0.020	N.S.	
	-358.20			-0.020	—-и.s.	
368.80		1.50		0.020	N.S.	
370.30		1.50	0.003	0.120	N.S.	
371.80		150	0.001	·0 · · · · 30 ·	NS	
382.15	383.65	1.50	0.001	0.020	N.S.	
391.25	392.75	1.50	0.001	0.030	N.S.	
392.75	394.25-	1.50	0.005-	0-180	N.S	
		1.50	0.001	0.040	N.S.	
395.75	397.25	1.50	0.001	0.030	N.S.	
	398.75-	150	9.004-	0.130	N.S	
	400.25			0.090	N.S.	
	401.75			0.030	N.S.	:
				0.020	N.S.	
		1.50		0.010	N.S.	
		1.50		0.010	N.S.	:
			0.001-		N-S	
434.70	436.20	1.50	0.018	0.630	N.S.	
449.05	450.55	1.50	NIL	NIL	N.S.	
	462.00			0.010		
		1 50	0.000-		N·S	
477.50	479.00	1.50	0.000	0.010	N.S.	
485.50	487.00	1.50	0.008	0.290	N.S.	
49130-	492 .80	150 -	NIL-		N -S	
500.50	502.00	1.50	0.000	0.010	N.S.	
505.35	506.85	1.50	0.000	0.010	N.S.	!
509.20	510.70-	·· -1- 50	0000	0.010	N.S	·· · · · · · · · · · · · · · · · · · ·
517.80	519.30	1.50	0.001	0.020	N.S.	
521.65	523.15	1.50	0.000	0.010	ĸ.s.	
532 -80-	534-30	150 -		N[L	N-S	<i></i> /
540.50	542.00	1.50	0.001	0.020	N.S.	
542.00	543.50	1.50	NIL	።	N.S.	
553.25	554.75	1.50	0.003	0.120	N.S.	

582.7 587.2 594.2 598.1 603.7	LY TWP. 9 ========= OM	WIDTH 5 1.50 5-1.50 0 1.50 0 1.50 0 1.50 0 1.50 6 0.50 0 1.50	0.001 NIL NIL NIL 0.001 0.000	O.030 NIL NIL NIL 0.020 0.010	N.S. N.S. N.S. N.S. N.S.	===
FRO 554.7 568.3 581.2 594.2 598.1 603.7	9 ========= OM	1.50 1.50 1.50 1.50 1.50 0.50 1.50	0.001 0.001 NIL NIL NIL 0.001 0.000	0.030 0.030 NIL NIL NIL 0.020 0.010 0.010	N.S. N.S. N.S. N.S. N.S. N.S.	
FRO 554.7 568.3 581.2 582.7 587.2 594.2 598.1 603.7	TO 75	1.50 1.50 1.50 1.50 1.50 0.50 1.50	0.001 0.001 NIL NIL NIL 0.001 0.000	0.030 0.030 NIL NIL NIL 0.020 0.010 0.010	N.S. N.S. N.S. N.S. N.S. N.S.	
554.7 568.3 581.2 582.7 587.2 594.2 598.1	75 556.25 35 569.85 20 582.70 70 584.20 20 -588.70 25 594.75 10 599.60 75605.25	1.50 1.50 1.50 1.50 1.50 0.50 1.50	0.001 NIL NIL NIL 0.001 0.000	0.030 NIL NIL NIL 0.020 0.010 	N.S. N.S. N.S. N.S. N.S. N.S.	
554.7 568.3 581.2 582.7 587.2 594.2 598.1	75 556.25 35 569.85 20 582.70 70 584.20 20 -588.70 25 594.75 10 599.60 75605.25	1.50 1.50 1.50 1.50 1.50 0.50 1.50	0.001 NIL NIL NIL 0.001 0.000	0.030 NIL NIL NIL 0.020 0.010 	N.S. N.S. N.S. N.S. N.S. N.S.	
554.7 568.3 581.2 582.7 587.2 594.2 598.1	75 556.25 35 569.85 20 582.70 70 584.20 20 -588.70 25 594.75 10 599.60 75605.25	1.50 1.50 1.50 1.50 1.50 0.50 1.50	0.001 NIL NIL NIL 0.001 0.000	0.030 NIL NIL NIL 0.020 0.010 	N.S. N.S. N.S. N.S. N.S. N.S.	
568.3 581.2 582.7 587.2 594.2 598.1	35 569.85 20 582.70 70 584.20 20 588.70 25 594.75 10 599.60 75 605.25	1.50 1.50 1.50 1.50 0.50 1.50 1.50	NIL	NIL NIL NIL 	N.S. N.S. N.S. N.S. N.S. N.S.	
581.2 582.3 587.2 594.2 598.1 603.3	20 582.70 70 584.20 20 588.70 25 594.75 10 599.60 75 —605.25	1.50 1.50 0.50 0.50 1.50 1.50	NIL NIL NIL 0.001 0.000	NIL NIL 	N.S. N.S. N.S. N.S. N.S.	
582.7 587.2 594.2 598.1 603.7	70 584.20 20 588.70 25 594.75 10 599.60 75 —605.25	1.50 0.50 0.50 1.50 1.50	NIL 	NIL 	N.S. N.S. N.S. N.S.	-
582.7 587.2 594.2 598.1 603.7	70 584.20 20 588.70 25 594.75 10 599.60 75 —605.25	1.50 0.50 0.50 1.50 1.50	NIL 	NIL 	N.S. N.S. N.S.	
594.2 598.1 603.7	25 594.75 10 599.60 75605.25	0.50 1.50 1.50	0.001 0.000 0.000	0.020 0.010 0.010-	N.S. N.S. N.S.	
594.2 598.1 603.7	25 594.75 10 599.60 75605.25	0.50 1.50 1.50	0.001 0.000 0.000	0.020 0.010 0.010-	N.S. N.S. N.S.	
598.1 603.7	10 599.60 75605.25	1.50 51.50	0.000 0.000	0.010 0.010-	N.S	
603.7	75605.25	5 1·50···	0.000	0. 010-	N.S	
					•	
			•			
			•			
			•			_
			·			_
		<u> </u>				
		·				
					·	
						
						
					 .	
						
						_

_

** BORSURV **		
AVERAGED ASSAY INTERVALS	Pa	ge 1 of 1
PROPERTY: TULLY- TWP		
HOLE No: 91-9		
		:
1. HW (1.50 d.t.—Core Angle: 90 - 1.50 t.t.)		
	D. 6571166	
FDOM: 227 50	EASTINGS:	1314.47
FROM: 237.50	ELEVATION:	147.11 -199 45
0.106 Au oz\t		
	- 	
-0.000 As ppm		
	EASTINGS:	
TO:239.00		
	ELEVATION:	-200.70
		:
	-	
•		
		,
		
		,
	-· 	
		 ,
		 .
	···	
	· · - · · · · · · · · · · · · · · · · ·	
		:
· · · · · · · · · · · · · · · · · · ·		

_-

.--

_-

--

_-

--

- -

CLIENT:	Cyprus Gold	SHEET NO:	1
NAME OF PROPERTY:	Tully Township	REMARKS:	Relogged
HOLE NO:	90-4		
DRILLED BY:	Dominik		
CLAIM NO:	CON II/III	LOGGED BY:	K. Johnson
LOCATION:	L4700E x 1425 N	STARTED:	Feb. 13/90
COORDINATES:		FINISHED:	Feb. 26/90
ELEVATION:	951 feet		
AZIMUTH:	180°		
DIP:	-68°		•

FROM TO	DESCRIPTION
0.0 78	Casing (B.W.)
78.0 1218.7	Andesitic Flows
	- Uniform lavas, fine grained, light green to slightly darker alternating sequence of pillowed flows with distinct dark green to black, schistose pillow selvages; occ. brecciated flow top/btm.

- Up to 10% quartz-carbonate stringers throughout at random orientations.
- @ 1213' occ. graphitic band w up to 5% fine pyrite in discontinuous stringers and fracture fillings.

1218.7 1233.7 **Graphitic Horizon (Interflow)**

- Up to 10% nodular sulfide clasts? of fine-grained pyrite w trace pyrrhotite, 70% black amorphose graphite cut by irreg. qtz.carbonate stringers and discontinuous stringers and fracture fillings of pyrite/po.; occ. fragment of andesitic lava up to 4 inches; rounded pyrite & qtz-carb. clasts indicates brecciation of zone after deposition.
- @ 1233.5 to 1233.7: up to 50% fine nodules of pyrite.

FROM	то	DESCRIPTION
1233.7	1273.0	Carbonatized Andesite Flow
		- fine-grained flow; yellow-brown to beige colour w up to 15% qtz-carb. along fractures @ random orientations; up to 10% fine, interstitial iron carbonate gives rise to beige colouring of unit; up to 3% finely dissem. pyrite throughout and is associated w iron carb. alteration.
		- gradational to andesitic lavas at 1273.0
1273.0	1340.1	Andesitic Lavas/Flows
		- gradational from carbonitized lavas above; as prev. flow unit from 78 to 1218.7 feet.
1340.1	1346.9	Graphitic Horizon (Interflow)
		 As previous; up to 20% fine nodular pyrite hosted in graphitic seds (60%) w 10 to 15% irreg. qtz-carb. stringers throughout; exhibits moderate brecciation at 1345.0 feet as prev.
1346.9	1353.2	Carbonatized Andesite Flow
		- as previous; yellow-brown to beige colouring w up to 10% interstitial iron carbonate and 15% random qtz-carbonate stringers.
		1348.0 - 1353.2: Transitional zone between graphitic interflow horizon and underlying lavas; grades from 20% down to 10% fine-gr. pyrite; beige-green coloured matrix indicative of iron-carbonate alteration which lessens down-hole as does pyrite.
		N.B. Zone sampled to 1353.9' w no significant assay results. N.B. Rep Sa. for thin section from 1353.0.
1353.2	1403.4	Andesite Flow
		- As previous, occasional pillow selvage w moderate white carbonate alteration associated; 5 to 10% quartz-carbonate veining and alteration.

_

_-

_ .

1403.4 1419.0 Carbonatized Andesite

- Grey to light beige in colour, fine grained w up to %5 qtz-carbonate stringers noted at random orientations.
- occ. graphitic seds up to 3 inches in width as interflows units; exhibit up to 7% pyrite in these sections.

1419.0 1630.0 Andesite Flow

- as previous; pillowed; gradational contact with carbonatized andesites above and below the section.

1630.0 1696.3 Carbonatized Andesite

- tan to beige with green tinge, cut by thin irregular fractures, appears silicified (but is soft & can easily be cut by a knife); 20% interstitial iron carbonate throughout; fracturing increases in intensity down-hole; trace euhedral growths of fine pyrite; fine grained as is unaltered andesite, prob. carbonatized unit which is footwall to GIF, and thus indicates folding?

1696.3 1713.8 Graphitic Interflow Horizon

- black graphitic sediments, fine grained amorphous cut by 30% white qtz. carbonate veins up to 1.75 feet in width at random orientations; graphitic seds at 70° to c.a.; host up to 20% coarse nodules of fine pyrite; pyrite nodules up to 0.75 inch diameter & are subangular.

1709.3 to 1711.0: cherty component, light grey to tan, hard &

siliceous w 20% GIF & 5% fine diss. stringer

pyrite; probably exhalite sequence.

1711.0 to 1712.8: graphitic sequence w 40% nodular pyrite;

brecciated appearance suggests debris flow.

1712.8 to 1713.8: tuffs interbedded w GIF.

1713.8 1754.7 <u>Graphitic Tuffs</u>

- green-grey to black, mottled and schistose texture w slight schistosity at 60° to c/a; up to 5% graphitic component w 3 to 5% white/grey interstitial carbonate; unit cross-cut by occasional white qtz. vein up to 0.5 inch with sideritic alteration along vein selvages, at 40 to 45° to c/a; fragmental texture to unit indicative of tuffaceous derivation; could possibly be reworked tuffs w graphitic component being derived from underlying graphitic interflow (again suggesting fold w ranging now to south).

1754.7 1782.0 Andesite Flows, pillowed

- green, fine-grained w massive texture as previous; pillow selvages evident w carbonate alteration associated over widths up to 1 inch; becomes more massive at 1782.0.

1782.0 1811.0 Andesite Flow

- fine grained, green, massive w only occasional pillowed section; trace qtz-carb. veining.

1811.0 1850.3 Pillowed Andesite Flow

- green to dark green w abundant chlorotic pillows selvages; occ. sections exhibit bleached vesicles to 0.25 inch diameter; occ. brecciated flow top\btm. w calcitic alteration; brecciated sections exhibit slight schistosity at 50° to c/a.

1850.3 1870.2 <u>Carbonated Tuff Horizon (MAIN ZONE)</u>

- Fine grained, siliceous in approximately but soft; tan to yellow beige, lithic tuff horizon cut by thin dark grey qtz-filled fractures; 60% fine interstitial iron carbonate gives rise to beige colouring; up to 4% pyrite/pyrrhotite in this discont. stringers; sharp contact w lavas above at 60° to C/A; becomes slightly brecciated at 1852; qtz injection at 1857.4 to 1861.5; white qtz. carb - tarm. vein from 1861.5 to 1866.0.

1850.3 to 1857.4: carbonated lithic tuff; 3% pyrite, trace arsenopyrite

1857.4 to 1861.5: random qtz. injection in lithic tuff; slight porphyritic texture to zone; moderately to high shearing; 5% pyrite, 1% very fine arsenopyrite in lenses to 0.5 inch.

1861.5 to 1866.0: White quartz-carbonate vein w trace pyrite in coarse, subrounded growths; trace tourmaline infine; prismatic crystals.

1866.0 to 1867.8: lithic tuff, carbonatized w 15% qtz. injection, 10% very fine crystals of arsenopyrite; 2% stringer pyrite.

1867.8 to 1868.5: injection quartz in carb. lithic tuff; cut by 1 inch white qtz-carbonate vein at 20° to C/A.

1868.5 to 1869.2: carbonated tuff, yellow-beige as before, becomes interbedded gradationally with f. gr. lavas down-hole.

1870.2 1882.1 Andesite Flow

- green, fine-grained & massive.

1874.4 to 1876.1: intense qtz-carbonate veining w chloritic selvages; irregular pattern, coarse clot of pyrite at 1875.2.

1882.1 1965.1 Andesite Flow

-dk green, medium grained flow; massive w 8% interstitial carbonate (white, calcite); chlorotic, w mottled texture, prob. med-grained flow; equigranular texture.

1965.1 2012.0 Andesite Flow; Pillowed

-as prev., fine grained, green w carb. + chloritized pillow selvages.

2012.0 2012.5 Graphitic Interflow Horizon

-80% graphitic w calcite and sylvite alteration at 45° to C\A in thin stringers; trace sulfides.

2012.5 2025.9 Andesite Flow

- fine grained green; massive; occ. graphitic horizon from 0.1 inch width to 0.2 foot; 1% folded gh-cb stringers w axis at 40° to C\A evident at 2019.0.

2025.9 2081.0 <u>Carbonatized Tuff Horizon (Welded Tuff?)</u>

- as prev. unit @ 1850.3 feet but exhibits much less iron carbonate alteration @ 3 to 5%; very fine gr. lithic tuff, med. grey to black (dark grey) w grnd. section to wispy bands of light tan to beige-iron carbonate altered sections @ 50° to C/A.
- Up to 15% finely disseminated pyrite in carbonate altered sections over core widths of up to 0.8 feet; secondary pyrite along irreg. fractures @ 5%; <2% white qtz.- carb. veining up to 0.75 inch widths at 45° to C\A.

2028.9 to 20320: slight cataclastic brecciation w minor qtz. injection; 3% qtz. cb; 2% pyrite w wispy schlerin of iron-cb alteration; trace v. fine arsenopyrite.

2032.0 to 2043.3: minor iron - cb. alt. of v. fine lithic tuffs; 3% fine-med pyrite disseminations; 25 to 35% paragonitic? partings minor qtz.injection.

2043.3 to 2046.5: 20% iron cb. alter. over short sections to 0.3 feet, 5% diss & stringers pyrite, trace arsenopyrite.

(Min. Zone) 2048.1 to 2052.7: 10% to 15% v. fine pyrite diss. throughout w up to 5% v. fine needles arsenopyrite barely distinguishable in matrix. Good iron carbonate alteration in partings and brecciated bands; 3% red hematite noted on fractures which exhibit graphite on slips; carb. & sulfides well bonded at 45° to C/A.

from 2052.7 grades into dk. grey lithic tuff w 1% med. pyrite in diss. stringers slight iron cb. alteration foliation at 450 to C/A.

FROM TO	DESCRIPTION
	2072.0 to 2082.0: moderate partings of iron carbonate alteration in wispy bands at 45° to C/A; 2% pyrite, trace to 2% faint lenses of v.v. fine arsenopyrite in carbonate-alt. sections; asp. mineralization more noticeable in sections with qtz. injection: up to 5%.
2082.0 2086.0	Contact Zone with Talc Peridotite
	- dark green, appears like andesite flow; grades into grey-black talcose peridotite; Trace pyrite.
2086.0 2192.0	Talc Peridotite (Serpentinite)
	 black grey, cut by random qtz-cb (calcite) filled fractures, non-magnetic, talcose; trace pyrite.
2192.0	End of hole

ROPERTY: TU	ILLY					1 45e-2-01-4
DLE No.: 90) -4					
========	=======	=======	=======	========	========	========
	FROM-	ТО	-WIDTH -	AU	Au-g/-t	
				0.310	10.630	
				NIL		
	570.58	572.11	1.52	NIL	NIL	
	617.49	618.41	0.91	NIL	NIL	
·	618-41	619-35-	0.94	0 <u></u> 1.02	3.498	
	619.35	621.18	1.83	0.062	2.126	
	621.18	622.25	1.07	0.010	0.343	
	622.25 -					
	622.80			0.112	3.840	
	623.62	624.17	0.55		NIL	•
	624.17	-625-27-	- 1.10 -			
				0.352		
			0.55	0.024	0.823	
	626.52					- · · · · · · · · · · · · · · · · · · ·
	627.43		1.07		2.126	
	628.50	629.26	0.76	0.064	2.195	
	62926-			0.028-	-0.960	
			0.91		1.440	
	631 54	633 07	1 52	0.070	2 400	
· <u>-</u> ·- ·	633 -07	-634.59-	1. 52	O - 2 3 B	8.161—	
	634 59	636.12	1.52	N.S.	N.S.	
	004.03	030.12	1.52	N.S.	N.D.	
<u> </u>	.				·	
· · - · — · · · · · · · · · · · · · · ·						
						•
·····			···		·	
	- 				· 	
						
						·
				·		
			·			
						

**			**

;,

** BORSURV **		
AVERAGED ASSAY INTERVALS PROPERTY: TULLY	Pa	ge 1 of 2
HOLE No: 90-4		
=======================================	==========	=======
1. HW (-1.80-d-t.—Core-Angle:-901.80-t-t-)-	-	
PP014 054 00	EASTINGS:	1427.19
FROM: 374.23		
0.050 AU	ELEVATION:	-321.90
1.708-Au-g/t		
_	EASTINGS:	1427.1
TO: 376.03	NORTHINGS:	220.39
	ELEVATION:	-329.40
2. HW (2.07 d.t. Core Angle: 90 2.07 t.t.)		•
2. III (2.07 d.t. Core Angre. 30 2.07 t.t.)		
	EASTINGS:	1427.19
FROM: 408.46	NORTHINGS:	202.49
	- ELEVATION: -	
0.044 AU		
1.521 Au g/t	FACTINGS.	1427 10
TO: 410.53	NORTHINGS:	201.3
	ELEVATION:	-358.1
		· · · ·
3. HW (4.91 d.t. Core Angle: 90 4.91 t.t.)		
	FACTINGS.	1497 10
FROM: 565.13	NORTHINGS	112 26
	ELEVATION:	
0.184-AU		
6.296 Au g/t		
TO. 570.04	EASTINGS:	1427.19
	ELEVALION:	-400.14
4 MZ-(10.42-d.tCore-Angle:-90-10.42-t.t.)-		
TDOM: COA 4.5	EASTINGS:	1427.19
FROM:624-17		
0.097 AU	ELEVATION:	-529.50
3.332 Au g/t		
	EASTINGS:	1427.19
TO: 634.59	NORTHINGS:	67.25
	-ELEVATION:-	53724

	- BORSURV_		
AVERAGED ASSAY INTERVAL PROPERTY: TULLY		Pa	ge 2 of 2
		=======================================	
			
	e Angle: 90 9.33 t.t.)		
FROM: 625.27	7	EASTINGS:	1427.19 73.49
	0.102 AU 3.514 Au g/t		
TO: 634.59		- EASTINGS: NORTHINGS:	142719- 67.25
		ELEVATION:	-537.24
			•
			
· · · · · · · · · · · · · · · · · · ·			
	•		
			
·			
· · · · · · · · · · · · · · · · · · ·			

-

CLIENT:

NAME OF PROPERTY:

HOLE NO:

Cyprus Gold Tully Twp. 90-GO-5

FROM TO	DESCRIPTIO	ON .				
1893 1902	Intermediate - Mafic volcanic flow; heavy talc-chl alt; several s qtz. stringers at many orientations to c.a.; 1% fine to med. di py; minor graphite.					
1902 1988	sericite alt;	volcanics; light greenish-brown colour; Fe-carb. & moderate chl. alt; few qtz-carb. veins at various 1% - trace py.				
NOTE:	The following	intersections were previously sampled.				
	Sample #	Interval				
	9926	1965 - 1969.3				
	9802	1969.3- 1972				
	9927	1972 - 1976				
	9928	1976 - 1981				
	0000					

1981 - 1986.5

9928 9929

_____Page_1_of_3_< -- ASSAY- LOG----PROPERTY: tully

HOLE No.: 90-5

	FROM	ТО	WIDTH		Aug/t	
	28.74	29.38	0.64	N.S.	N.S.	
	32.16				N.S	
	34.11		0.30			
	53.64			N.S.		
· · · · · · · · · · · · · · · · · · ·						
	72.85	73.43	0.58	N.S.	N.S.	
	73.43	74.04	0.61		N.S.	
	76.29-	76.66		N.S.		
	79.16	79.71	0.55	N.S.	N.S.	
	79.71	80.01	0.30	N.S.	N.S.	
				N.S		
	80.47			N.S.	N.S.	
	81.38	81.81	0.43	N.S.	N. C	
				N.S		
		88.85		N.S.	N.S.	
			0.27		N.S.	
					N.S	
		111.10				
				N.S.		
			0.46		N.S.	
				N-s		
			0.37	N.S.	N.S.	
		170.99	0.64	N.S.	N.S.	
	171 6 6		0-64	N-S		
	175.72	175.90	0.18	N.S.	N.S.	
	175.90	176.72	0.82	N.S.	N.S.	
	176.72	-176:91		N.S.	-N.S.	
		177.82	0.91	N.S.	N.S.	
	177.82	179.07	1.25	N.S.	N.S.	
			0.67		-N.S	
		185.23		N.S.	N.S.	
	195.50		0.55	N.S.	N.S.	
			<u> </u>			
		206.84		N.S.	N.S.	
	206.84				N.S.	
	-216 -32-	-21-7 20	0 ₃ .88	N.S.		
	217.20	217.93	0.73	N.S.	N.S.	
	217.93	218.33	0.40	N.S.	N.S.	
		-220.89-	 0.61	N-S	N-S	
	237.59	237.96	0.37	N.S.	N.S.	
	251.76	252.25	0.49	N.S.	N.S.	
	265 2 4	265-, 48	0-24	NS		
	284.56	284.93	0.37	N.S.	N.S.	
	284.93	286.51	1.58	N.S.	N.S.	
	28651	-287.00 -		N.S	N.S	· · · · · ·
	289.77	290.81	1.04	N.S.	N.S.	
	289.77	290.81	1.04	N.S.	N.S.	
		-2 9 1-54-		N -S	N-S	
	294.38	294.86	0.49	N.S.	N.S.	
	318.52	318.82	0.30	N.S.	N.S.	
	328.36	329.15	0.79	N.S.	N.S.	

-- ASSAY-LOG-- Page-2-of-3

PROPERTY: tully HOLE No.: 90-5

 FROM-	ТО	WIDTH -	· AU	Au-g/t	
331.01			N.S.		
 331.62	-332.29-	067	N.S	- N.S	
332.29	333.08	0.79	N.S.	N.S.	
333.08	334.06	0.98	N.S.	N.S.	
 334-06	_334.67_	061	N.S	N-S	
357.16			N.S.	N.S.	
362.19			N.S.		
377.71			N.S.	-N.S.	
378.26	378.74		0.004	0.137	
378.74	379.23	0.49	0.004	0.137	•
379.23	380.39	1.16 -	- 0.002	0.069-	
380.39	380 54	A 15	0.008	0.274	
380.54	381 43	በ ያዩ	0 022	0 754	
381.43-	381.94	-0.52	0.018	0.617	
381.94	382.46	0.52	0.006	0.206	
		0.94	N.S.	N.S.	
			N-S		
438.36			N.S.		
			N.S.		
			N-S		
442.57				N.S.	
	456.59				
				N.S.	
 			N.S		
458.57				0.411	
 459.24	460.46			N.S.	
			N.S	N-S	
473.05	474.27		N.S.	N.S.	
473.05	474.27		N.S.	N.S.	
		0.49	NS		
540.17	540.78			N.S.	
540.17			N.S.	N.S.	
			NS		
545.59				N.S.	
556.23			N.S.		
 565 . -89			N.S		
569.67	570.43	0.76	0.002	0.069	
570.43	570.68	0.24	0.002	0.069	
 -570.68	-571.04-	037 -	0.004	0 -1-37	
577.90	578.51	0.61	0.002	0.053	
579.82	580.95	1.13	TRACE	0.031	
 580 -95	582.47-	<u> </u>	0.029	1.008	
582.47	584.00	1.52	TRACE	0.017	
584.00	585.52	1.52	TRACE	0.034	
 585.52			NIL-	NIL	· · · ·
587.04	588.57	1.52	NIL	NIL	
588.57	590.09	1.52	TRACE	0.010	
	 59162	152	NIL	NIL	
591.62	593.14	1.52	NIL	NIL	
593.14	594.66	1.52	NIL	NIL	
594.66	596.19	1.52	NIL	NIL	

ASSAY LOG-Page-3-of-3
PROPERTY: tully

PROPERTY: tully HOLE No.: 90-5

596.19 597.71 1.52 NIL NIL 597.71- 598.93 1.22 NIL NIL 600.24 601.06 0.82 N.S. N.S. 606.12 607.25 1.13 N.S. N.S. 607.25- 608.50 1.25 N.S. N.S. 608.50 609.51 1.01 N.S. N.S. 609.51 611.43 1.92 N.S. N.S. 611.43 612.62 1.19 N.S. N.S. 612.62 613.62 1.01 N.S. N.S. 613.62 615.05 1.43 N.S. N.S. 615.05- 616.49 1.43 N.S. N.S.	
600.24 601.06 0.82 N.S. N.S. 606.12 607.25 1.13 N.S. N.S.	 -
606.12 607.25 1.13 N.S. N.S. 	
608.50 609.51 1.01 N.S. N.S. 609.51 611.43 1.92 N.S. N.S. 611.43 612.62 1.19 N.S. N.S. 612.62 613.62 1.01 N.S. N.S. 613.62 615.05 1.43 N.S. N.S.	
609.51 611.43 1.92 N.S. N.S. 611.43 612.62 1.19 N.S. N.S. 612.62 613.62 1.01 N.S. N.S. 613.62 615.05 1.43 N.S. N.S.	
611.43 612.62 1.19 N.S. N.S. 612.62 613.62 1.01 N.S. N.S. 613.62 615.05 1.43 N.S. N.S.	
612.62 613.62 1.01 N.S. N.S. 613.62 615.05 1.43 N.S. N.S.	
613.62 615.05 1.43 N.S. N.S.	
615.05 616.49 1.43 N C N C	•
616.49 617.52 1.04 0.018 0.617	
617.52 618.47 0.94 0.204 6.995	
618.47 619.72 - 1.25 0.008 0.274	-
619.72 620.66 0.94 N.S. N.S.	
620.66 622.19 1.52 N.S. N.S.	
622.19622.740.55N.SN.S	
622.74 623.92 1.19 N.S. N.S.	
623.92 625.36 1.43 N.S. N.S.	
625-36626.701.34N.SN.S	
626.70 627.89 1.19 N.S. N.S.	
627.89 629.08 1.19 N.S. N.S.	
629.08629.440-37N.SN.SN.SN.S	
629.69 630.54 0.85 N.S. N.S	
631.73 632.70 0.98 N.S. N.S.	
632.70 634.50 1.80 0.148 5.075	
634.65 635.81 1.16 0.052 1.783	
635.81 636.12 0.30 0.010 0.343	
636-12637.121-010.0782-675	
637.12 637.64 0.52 0.028 0.960	
637.64 639.01 1.37 0.042 1.440	
639-01-640.84-1.830.0792.709	
640.84 641.91 1.07 0.004 0.137	
641.91 642.58 0.67 0.006 0.206	
642.58642.910.340.0481.646	
642.91 643.34 0.43 0.080 2.743	
643.34 644.38 1.04 0.088 3.018	•
644.38645.901.520.0020.069	 _
646.60 648.31 1.71 N.S. N.S.	
652.82 653.37 0.55 N.S. N.S.	
658-18658.430.24N.S N.S	
662.51 663.37 0.85 N.S. N.S.	į

** BORSURV ** VERAGED ASSAY INTERVALS	Par	ge 1 of
PROPERTY: tully		
IOLE No: 90-5		
	=======================================	======
. HW (1.37 d.t.— Core-Angle: 90 1.37 t.t.)		
	EACMINGS.	1562 1
FROM: 569.67	EASTINGS:	1003.1
rkon: 509.07	ELEVATION:	
0.003 AU	ELEVATION.	-302.0
0.003 Au -g/t		
	EASTINGS:	1563.1
TO: 571.04		
10. 371.04		
. HW (0.94 d.t. Core Angle: 90 0.94 t.t.)		•
	EASTINGS:	1565-6
FROM: 617.52		
	ELEVATION:	
0.204 AU		50011
6.995 Au g/t		
	-EASTINGS:	1565
TO: 618.47	NORTHINGS:	132.2
	ELEVATION:	-540.:
. MZ (3.11 d.t. Core Angle: 90 3.11 t.t.)		
	71.071100	1500
	-EASTINGS:	
FROM: 632.70		
	ELEVATION:	-551.
3.990 Au g/t		•
3.330 Au g/t	EASTINGS:	1566
TO: 635.81		
10. 000.01	ELEVATION:	
	LUU I II I IVII I	5001
. MZ (-4.72-d.t. Core Angle: 90-4.72-t.t.)	-	
	EASTINGS:	1566
FROM	LASTINUS.	1.90. (
FROM: 636-12		_552 G
0.062 AU		
2.141-Au-g/t	- 	
	EASTINGS:	1567.
TO: 640.84	NORTHINGS:	117.8

;

VERAGED ASSAY INTERVALS	Pa	ge 2 of 2
ROPERTY: tully OLE No: 90-5		_
MZ (1.80 d.t. Core Angle: 90 1.80 t.t.)		
FROM: 642.58	EASTINGS:	1567.10 116.72
	- ELEVATION: -	55876
0.079 AU 2.697 Au g/t		
	_ EASTINGS:	1567.20
TO: 644.38	NORTHINGS:	115.56
	ELEVATION:	-560.13
		· · · · · · · · · · · · · · · · · · ·
		•
		·
e e e e e e e e e e e e e e e e e e e	•	
•		
		
		
· - · · · · · · · · · · · · · · · · · ·		
· 		
	<u> </u>	_ _
		- · ·

_ _

_

_

. .

-

- · -

CLIENT:

NAME OF PROPERTY:

HOLE NO:

Cyprus Gold Tully Twp. 88-FI-2

FROM TO	DESCRIPTION
418 422	Mafic volcanic flow; dark green to black; fine grained; light chlorite- carb alt., few irreg. qtz-carb. fractures + veinlets of various angles to c.a.
422 490	Carbonate altered mafic volcanics; light grey-green; intense pervasive carb. alt. + many irreg. qtz-carb. fractures + veinlets @ many orientations to c.a.; tr to <1% fine to medium subhedral py.
	Note: 476-496 previously sampled

ASSAY LOG	 	Page-1-of-2
PROPERTY: tully		

HOLE No.: 88-2 -- FROM------TO----WIDTH --------Au---Au-g/-t-13.72 14.72 1.01 N.S. N.S. -38.-74 40.08 1.34 N.-S.-N -- S --1.37 40.08 41.45 N.S. N.S. 42.03 0.58 41.45 N.S. N.S. 65.38 66-29 0.91 0..002 0.069 66.29 66.60 0.30 N.S. N.S. 67.79 66.60 1.19 N.S. N.S. -67.79-68.67-0.88 N.S .---N.S. 68.67 69.16 0.49 N.S. N.S. 69.16 70.71 1.55 N.S. N.S. 70.71... 711.31 - 640.60N.S. N.S. 71.23 71.93 0.70 N.S. N.S. 73.37 71.93 1.43 N.S. N.S. 82.60 83.12 0.52 N.S. N.S. 83.55 83.12 0.43 N.S. N.S. 83.55 84.00 0.46 N.S. N.S. -128-63 -130.151-52 NIL NIL 130.15 131.67 1.52 NIL NIL 131.67 133.20 1.52 NIL NIL -133.20-1-34.72----1.52 NIL---NI-L-134.72 136.25 1.52 NIL NIL 137.77 1.52 NIL NIL 136.25 -137.*-77*-NIL -1-39--29 1- 52 NIL 140.82 NIL 139.29 1.52 NIL 142.34 1.52 NIL 140.82 NIL 142-34--143.87 1.52 -NIL---NIL-1.22 0.010 143.87 145.08 TRACE 145.08 N.S. 146.61 1.52 N.S. -146*-*61----148-. 1-3-1-.-52 ---N .-S .--- N-S-1.52 0.206 148.13 149.66 0.006 149.66 151.18 1.52 0.004 0.137 -1-51-,-1-8--151-.70 0.52 TRACE TRACE-151.70 152.64 0.94 TRACE TRACE 152.64 153.68 1.04 0.002 0.069 -1-54 . 38 0-7-0-153-68 -0 -004 - 0 . 1-3*-*7-154.38 155.20 0.82 TRACE TRACE 155.20 155.75 0.55 TRACE TRACE 0.73--155.-75-156.48⁻ TRACE-TRACE-156.48 156.67 0.18 TRACE TRACE 156.48 157.28 0.79 N.S. N.S. -1-57 - 28--158--80 -1--5-2 N-S-N-S-158.80 159.71 0.91 N.S. N.S. 159.71 160.32 0.61 N.S. N.S. 160-32 161-39 1-.07 N.S. -N-S-N.S. 161.39 162.15 0.76 N.S. 162.15 163.37 1.22 N.S. N.S. 163--37 1-52 1 -577 -1:64-. 90-0.046

164.90

166.30

167.94

166.30

167.18

168.71

1.40

0.88

0.76

0.050

N.S.

N.S.

1.714

N.S.

N.S.

		** BOI	KSURV **			
_ASSAY LOG					Pa	ge_2 of_2_
PROPERTY:						• • • • • • • • • • • • • • • • • • • •
HOLE No.:						
HOLE NO						
	FROM_	то	WIDTH	Au	Au g/t	
	1				5,	— .
	169.47	170.23	0.76	N.S.	N.S.	
	170.99	171.75		N.S	- N.S	
	172.52	173.28	0.76	N.S.	N.S.	
	174.04		0.76	N.S.	N.S.	
	175.56_				_ N.S	
· · · · · ·						
	177.09			N.S.	N.S.	
	178.61		0.76	N.S.	N.S.	
-	180 -14			N.S		
	181.66	182.42	0.76	N.S.	N.S.	
	183.18	183.95	0.76	N.S.	N.S.	•
	184.71.	185.47	0.76		N.S.	-
	186.23	186.99	0.76	N.S.	N.S.	
	187.76	188.52	0.76	N.S.	N.S.	
	189.28-	190.04	0.76	N.S.	N.S.	
	190.80	191.57	0.76	N.S.	N.S.	
	192.33	193.09	0.76	N.S.	N.S.	
	19385					
		196.14		N.S.	N.S.	
	196.90			N.S.	N.S.	
					-N.S	
			U-•-1-0		-N.5-	
	· - · ·					
						 - ·-
· · · · · · · · · · · · · · · · · · ·						
						· - ···· - ·
						
-·						

** BORSURV **	
AVERAGED ASSAY INTERVALS	Page 1 of 1.
PROPERTY: tully	and the second s
HOLE No: 88-2	
NOBE NO. 00 E	
1. MZ (2.93 d.t Core Angle: 90 2.93 t.t.)	The second secon
	EASTINGS: 1493.52
FROM: 163.37	NORTHINGS: -31.39
	ELEVATION: -129.16
0.048 Au	
1.643_Au g/t	
210101111111111111111111111111111111111	FASTINGS: 1193 52
TO: 166.30	-NODTUTNOC: -22 22
10: 100.30	NORTHINGS: -33.23
	ELEVATION: -131-,43
	•
•	
	•
	

CLIENT:

NAME OF PROPERTY:

HOLE NO:

Cyprus Gold Tully Twp. 88-FI-3

FROM TO	DESCRIPTION
296 314.5	Mafic volcanic flow; dark green to black; fine grained; light to moderate pervasive carb. alt. throughout; several irreg. qtz-carb. fractures and veinlets at various orientations; minor whispy chl. stringers; trace sulphides.
	311 - 314.5 Several white qtz. veins < \(\frac{1}{3}\)" - 4" at various orientations; 1-5% chl along fractures; <1% fine dissem. py.
314.5 334	Mafic volcanics; as above - lighter green-grey colour; increased carb. alteration; several white qtz. veins + fractures mainly @ 50° & subparallel to c.a.; <1% fine dissem. py; minor Fe carb. staining in qtz veins.

SSAY LOG		** BOI	RSURV **		Ра	sge .1_of_1
ROPERTY: tul OLE No.: 88-	lly					
========		.======	=======			=======
-	FROM-	ТО	WIDTH	AU .:	VU (GMS)-	*
	94.79			0.001	0.041	
			1.52		-NIL	
			1.52		NIL	
			1.52	NIL 0.026	NIL	
• • • • • •				0.111		
				*****	0,100	
		- -			···· · · · · ·	
						•
					-	
		···-				·
			•			
	·· 					
· ··· ·						
				•		
-						•
ental excellence — establishmental author broken						

AVERAGED ASSAY INTERVALS PROPERTY: tully	Page 1 of 1		
		=======	
1MZ-(-5.00 d.tCore Angle: 90 - 5.00 t.t.)			
FROM: -120.00	EASTINGS: NORTHINGS: ELEVATION:	-26.67	
3- 150-AU-(GMS)	FASTINGS:	1524.00	
TO: 125.00	NORTHINGS: ELEVATION:	-29.78 -99.60	
2. HW (0.58 d.t. Core Angle: 90 0.58 t.t.)	-	•	
FROM: 106.40	EASTINGS:	1524.00 -18.23	
0.026 AU 0.890 AU (GMS)			
TO: 106.98	-EASTINGS: NORTHINGS: ELEVATION:	-18.59	

CLIENT:

NAME OF PROPERTY:

HOLE NO:

Cyprus Gold Tully Twp. 88-FI-4

FROM	M	то	DESC	CRIP	ΠΟΝ	
398.3 480			very t perva string	fine v sive c ers <	white fe arb. in	v; dark green to black; fine grained; speckled with eldspar; light to moderate chloritization; minor places with several irregular qtz-carb. veinlets & various orientations to c.a.; trace fine to medium s.
			408	-	413.5	many very irreg. qtz-carb. veins \(\frac{1}{3}\)" - 1" at various orientations; heavy chl alt; trace py.
			436	-	441	as above.
			451	-	480	increased pervasive carb. alt; nil to trace sulphides; minor irreg. qtz. fractures & veinlets at various orientations.
480	494	.5	light p	perva	sive car	ine tuff fragments < 3mm, banded @ 45° to c.a.; b. alt; light grey-green colour; several white qtz. 15 - 70° to c.a.; trace sulphides throughout.

ASSAY LOG Page 1-of-2

PROPERTY: tully HOLE No.: 88-4

	FROM	ТО	WIDTH	AU	Au -g/t	.
	14.02	15.54	1.52	TRACE	TRACE	
				- TRACE		
	38.10	38.53	0.43	TRACE	TRACE	
		38.95	0.43	TRACE	TRACE	
			098			
		40.78	0.85	TRACE	TRACE	
		41.54	0.76	TRACE	TRACE	
	41.54			N.S.	N.S	
	42.25	42.89	0.64	N.S.	N.S.	
	124.36	126.03	1.68	NIL	NIL	•
	130.00-		5.00	N.S	N.S	
	132.89	134.42	1.52	0.001	0.038	
	143.26	144.78	1.52	NIL	NIL	
	144.78		1.52		-NIL	-
	146.30	147.83	1.52	NIL	NIL	
	151.12	151.42	0.30		TRACE	
				0-012-	- 0 . 4 1-1	
	152.16	153.28		0.002	0.069	
	153.28			TRACE		
	-154.47			TRACE-		
	155.75	157.00		TRACE	TRACE	
	157.00	158.28	1.28	0.002	0.069	
	-158.28			TRACE		
	159.71	160.17	0.46	TRACE	TRACE	
	160.17	161.70	1.52	TRACE	TRACE	
	161.70		0·.·58 ·		-TRACE	
	162.28	163.37		TRACE	TRACE	
	163.37	163.74	0.37	TRACE	TRACE	
_	1-6374-	-1-65 1-4	—- 1 40	0.026	0892	
	165.14	166.42	1.28	0.006	0.206	
	166.42	167.94	1.52	TRACE	TRACE	
· · · · · · · · · · · · · · · · · · ·	16794	-169.47-		N-S	N.S	
	169.47	170.99		N.S.	N.S.	
	170.99	172.52	1.52	N.S.	N.S.	
-	1.7252	-173.71-				·
	173.71	174.28	0.58	0.044	1.509	
	174.28	175.56	1.28	0.032	1.097	
	17556	-177.09-	— 1·52 —	 0.018	0.617	
	177.09	177.79	0.70	N.S.	N.S.	
	177.79	179.37	1.58	N.S.	N.S.	
	18014-	180.90-		N.S	N.S	
	181.66	182.42	0.76	N.S.	N.S.	
	183.18	183.95	0.76	N.S.	N.S.	
-· - -	184:-71		 0:-76			
	186.23	186.99	0.76	N.S.	N.S.	
	187.76	188.52	0.76	N.S.	N.S.	
			 076	N-S		
	190.80	191.57	0.76	N.S.	N.S.	
	192.33	193.09	0.76	N.S.	N.S.	
	193.85	194.61	0.76	N.S.	N.S.	

PROPERTY: tully HOLE No.: 88-4					Page-2-of-2-
			=======	========	========
FROM-	то	WIDTH	AU	Au-g/t	
-19690-	196.14 - 197.66- 199.19	0 - -76 ·	NS	N.S.	
				· · · · · · · · · · · · · · · · · ·	
<u> </u>		-			
					· · · · · · · · · · · · · · · · · · ·
· · · · 	· · · · · · · · · · · · · · · · · · ·			. <u> </u>	· · · · · · · · · · · · · · · · · · ·
					 :
					·
· · · · · · · · · · · · · · · · · · ·					
					
					<u> </u>
					!
					;
					·
					:

--

AVERAGED ASSAY INTERVALS PROPERTY: tully		Page 1 of 1
HOLE No: 88-4		
1MZ-(-1.86-d.tCore-Angle:-901.86 t.t.)	·	
		1554.48
FROM: 1-7371—		
0.036 AU	ELEVATION:	-142.10
	EASTINGS:	1554.48
TO: 175.56	NORTHINGS:	-24.77
na na na na n	ELEVATION:	-143.62
2. HW (5.00 d.t. Core Angle: 90 5.00 t.t.)		•
and the second of the second o	FASTINGS	1554.48
FROM: 130.00	NORTHINGS:	1.52
**** * * * * *	ELEVATION:	-106.41
-0.000 AU -0.000 Au g/t		
-0.000 Au g/t	EASTINGS:	155448
TO: 135.00	NORTHINGS:	-1.36
	ELEVATION:	-110.50
	· 	
	- 	
		
		
	-	
		······································

CLIENT:

NAME OF PROPERTY:

HOLE NO:

Cyprus Gold Tully Twp. 88-FI-5

FROM	то	DESCRIPTION	
351.5 463	;	moderate perva fractures & vein	flow; dark green to black; fine grained; light to sive carb-chl alt. throughout; several qtz-carb. lets <1/16" - \frac{1}{3}" at various orientations to c.a; trace dium sized subhedral cubes in both veinlets & wall
		@ 361 white qtz	-carb. vein 1" wide @ 30° to c.a.; trace pyrite.
		397 - 402	increased qtz-carb. veining <\frac{1}{4} - 1" at various orientations to c.a.; core moderately chl-carb altered; <1% fine subhedral py.
		402 - 422.5	increased pervasive chl-carb. alt; core lighter green colour; <1% - 1% fine to medium py; several irreg. qtz-carb. fractures & veinlets at many orientations.
		422.5 - 463	Mafic volcanic flow as before
		NOTE:	535 - 558 - previously split

ASSAY LOG-	Page-1-of-1-;
PROPERTY: tully	
HOLE No.: 88-5	

-- -- -- AU-- -Au g/t-15.33 15.82 0.49 N.S. N.S. --- 0.002 ---36.82 --37.19-0.37-0.069-37.19 1.37 38.56 TRACE TRACE 38.56 38.95 0.40 TRACE TRACE -108.81-- 110.34 1.52 NIL----NIL 117.96 119.48 1.52 NIL NIL 1.52 119.48 121.01 NIL NIL 121.01-122.53-1.52 ---NIL NIL 122.53 1.52 124.05 NIL NIL 124.05 125.58 1.52 NIL NIL 125.58 127-.10 1.52 0.011-0..381 127.10 128.78 1.68 0.028 0.967 135.33 136.85 1.52 NIL NIL 148.22-149.47--1.25 - N.-S.---N.S. 149.47 150.72 1.25 TRACE TRACE 150.72 1.07 151.79 N.S. N.S. -151--79 -152-.70-- 0--91-N.S.--N-S-152.70 154.23 1.52 N.S. N.S. 154.23 154.96 0.73 N.S. N.S. - ·154 . ·96· 155-75 0.79 N-S.-N.S-155.75 157.28 1.52 N.S. N.S. 1.52 157.28 158.80 N.S. N.S. -158-80- --160-32-N-.S.-· 1. 52··· --N.-S-160.32 161.85 1.52 N.S. N.S. N.S. 161.85 163.37 1.52 N.S. 163.37 164.90-1.52 TRACE--TRACE 164.90 166.42 1.52 TRACE TRACE 166.42 0.91 167.33 TRACE TRACE 0.-30 -167-.-33--1-67-. 64 -N.S.----N.-S-170.23 0.76 N.S. N.S. 169.47 170.99 0.76 171.75 N.S. N.S. 1-7-3.28 172.52-0-.76-N-. S-. --N.-S-174.04 174.80 0.76 N.S. N.S. 175.56 176.33 0.76 N.S. N.S. -177.-09-17.7.85----0.76 N.S. -_N.S. 178.61 179.37 0.76 N.S. N.S. 180.14 180.90 N.S. 0.76 N.S. 181.66 182.42 0-.76-N.S.-- N .- S --183.18 183.95 0.76 N.S. N.S.

AVERAGED ASSAY INTERVALS PROPERTY: tully HOLE No: 88-5		ge 1 of 1
1. MZ (3.96-d.t.—Core-Angle:-903.96-t.t.)		
FROM: 163.37	EASTINGS: NORTHINGS: - ELEVATION:	18.54
0.000 AU		
		· · · · -
	EASTINGS:	1584.96
TO: 167.33		
	ELEVATION:	-142.39
2. HW (15.00 d.t. Core Angle: 90 15.00 t.t.)		
	EASTINGS:	1584.96
FROM: 110.00	NORTHINGS:	10.63
	-ELEVATION:	-94.42
-0.000 AU		
-0.000 Au 'g/t	FASTINGS .	1.584_96_
TO: 125.00	NORTHINGS:	2.64
	ELEVATION:	-107.11
	·	

CLIENT:

NAME OF PROPERTY:

HOLE NO:

Cyprus Gold Tully Twp.

88-FI-6

FROM

TO

DESCRIPTION

262.3 339.3

Mafic - intermediate volcanics; dark green; fine grained; moderate pervasive carbonatization; minor scattered chl. alt; few irreg. qtz-carb. veinlets & stringers @ various orientations; trace py.

ASSAY LOG	·		 		P	age1c	of—1≺
PROPERTY:	tully						
HOLE No.:	88-6						
	· -	••	 				

	Au g/t	AU -	width -	TO	- FROM	
•	NIL	NIL	1.52	85.65	84.12	
	NIL	NIL	1.52	87.17	85.65	
	NIL	NIL	1.52	97.84	96.32	
	NIL	NIL	1.52	99.36	97.84	
	N.S	N.S	1.52 -	119.18	117.65-	
	N.S.	N.S.	1.52	120.70	119.18	
	N.S.	N.S.	1.52	122.22	120.70	
:	N.S.	N.S.	1.52	123.75	122.22	
•	N.S.	N.S.	1.52	125.27	123.75	
	N.S.	N.S.	1.52	126.80	125.27	
	N.S	N.S	1.52 -	128.32	126.80-	
•	N.S.	N.S.	1.52	129.84	128.32	
	TRACE	TRACE	0.46	130.30	129.84	
	0.892			131.37	130.30-	
·	TRACE	TRACE	1,52	132.89	131.37	
				134.42		
		TRACE				- · - ·
				136.25		
				137.77		
	TRACE			-1-3844		
•	8.641	0.252	0.55	138.99	138.44	
i						

** RORSHRV **

** BCRSURV **		
AVERAGED ASSAY INTERVALS	Pa	ge l of 1
PROPERTY: tully	·	
HOLE No: 88-6		
======================================	=======================================	=======
1MZ_(-2.74.d.t.—Core_Angle:_902.74_t.t)		<u></u>
•		
FROM: -1-36.25	EASTINGS:	1630.68
FROM:1-30.25	ELEVATION:	
0.112 AU	LEEVATION.	-101.31
3-824-Au-g/t		
	EASTINGS:	1630.68
TO: 138.99	NORTHINGS:	-28.02
	ELEVATION:	-103.86
2. HW (10.00 d.t. Core Angle: 90 10.00 t.t.)		•
	EASTINGS:	1630.68
FROM: 90.00	NORTHINGS ·	6 11
	ELEVATION: -	69.05
-0.000 AU		
-0.000 Au g/t	PACETNOC.	1600 60
TO: 100.00	RAS-1-INGS:	103 U 08 -0 57
	ELEVATION:	-76.17
	· 	
	· · 	

CLIENT:

NAME OF PROPERTY:

HOLE NO:

Cyprus Gold Tully Twp. 88-FI-7

FRO	м то	DESCI	RIPT	NOI	
161	264.3	volcani 40°-50° various	ics; li to c orie fine	ght gre c.a.; se ntation -mediu	grained intermediate volcanics, tuff, and brecciated by-green; tuff fragments < 1/2" - 1"; lightly banded @ veral very irreg. qtz-carb. fractures & veinlets @ ns to c.a.; minor Fe & Fe-carb. staining throughout; am sized subhedral-anhedral pyrite dissem.
		200	-	223	increased Fe staining along many irreg. micro fractures.
		230	-	264	increased pervasive carb. alt.; less Fe staining; several calcite filled amygdules <1/3" - \frac{1}{3}" across with minor qtz-carb. fracturing & veinlets <1/16" - \frac{1}{3}" @ various orientations; trace - nil sulphides.
NOT	<u>E:</u>	264.3	-	281	previously samples

OPERTY: t	ully					- Page-1-of-
LE No.: 8	•					
					=======================================	
	FROM—	——ТО—	WIDTH	AU	Au-g/-t_	
	8.23	85.65	77.42	N.S.	N.S.	
	4907	-50.60	152	NIL	NIL-	<u>-</u>
	50.60	52.12	1.52	NIL	NIL	
	52.12	53.64	1.52	TRACE	0.010	
	53-64	_5.51.7	152	NIL	NIL_	
	55.17	56.69	1.52	NIL	NIL	
	56.69	58.22	1.52	NIL	NIL	
	- 58.22-				·· NIL-	
	59.74		1.77	NIL	NIL	
	61.51	62.79	1.28	N.S.	N.S.	•
	- 62 - 79					
	64.31		1.52	NIL	NIL	
	65.84		1.52		0.429	
	6736-					
	68.88		1.52	NIL	NIL	
	70.41	71.93	1.52	NIL	NIL	
	7193-					
	73.46	74.98	1.52	TRACE	0.024	
	74.98		1.52	NIL	NIL	
	76.50			NIL-		-
	78.03	79.55	1.52	NIL	NIL	
	79.55	80.56	1.01	NIL	NIL	
	80-56			N-S		
	81.08	82.60	1.52	N.S.	N.S.	
	82.60	84.12	1.52	N.S.	N.S.	
	85.65			- N.S		
	87.17	88.70	1.52	N.S.	N.S.	•
	88.64	90.16	1.52	TRACE	TRACE	
				0020		
	91.23	91.68	0.46	0.151	5.178	
				0.528		
	92 . 1 7	-92 - 69-				
	92.69		0 . 52	0.062	2 -126-	
		94.03	1.34	0.092	3.155	
	94.03	95.34	1.31	0.002	0.069	
	95.34	-9632	0 . 98	TRACE-	TRAGE-	
	96.32	97.84	1.52	TRACE	TRACE	
	97.84	99.36	1.52	0.004	0.137	
		100.16-	0.79	0.002-	- 0:-069-	
		101.65	0.76	N.S.	N.S.	
		103.17	0.76	N.S.	N.S.	
· 	103. -9 4	1-0470	—- 0. 76 -—	NS	NS	

At parameter		
** BORSURV **	Dom	elof 1
AVERAGED ASSAY INTERVALS PROPERTY: tully	Pago	e 1 01 1
PROPERTY: tully		 -
HOLE No: 88-7		
=======================================	=======================================	
1 MZ -(-2.80 d.t.—Core-Angle:-902.80-t.t.)	·	
	EASTINGS:	1684.02
FROM:91-, 23	NORTHINGS:	755-
	ELEVATION:	
0.172 AU		
	EASTINGS:	1684.02
TO: 94.03	NORTHINGS:	-9.28
	ELEVATION:	-73.97
	DDB VIII I O.V.	
2. HW (3.57 d.t. Core Angle: 90 3.57 t.t.)		•
	EASTINGS:	1684.02
FROM: 80.56		
-0.000 AU		
-0.000 Au g/t		
	-EASTINGS:	-1684-02
TO: 84.12		
***	ELEVATION:	-66.18
	· -	·
		- · · - · · - · · · · · · · · · · · · ·
		· ···· ———
		
The second secon		

.

CLIENT:

NAME OF PROPERTY:

HOLE NO:

Cyprus Gold Tully Twp. 88-FI-8

FROM	то	DESCRIPTI	ON	
91 115		pervasive car	rb. alt	diate volcanics; fine grained; dark green; light; a few very irreg. white qtz. veinlets < \f\f\" - \f\" @ s; minor Fe-staining throughout; < 1% fine dissem.
		96.5 - 1	01.5	increased Fe staining; <1% fine dissem. py, trace Asp.
		101.5 - 1	09	CORE MISSING
		109 - 1	09.8	Sulphide band subparallel to c.a.; 10% dissem. py; <1% Asp mottled with white quartz.
		109.8 - 1	.15	<1-2% dissem. py, tr. asp in irreg. band <1/2" at 50° to c.a. light carb. alt.
172 211		pervasive car	rb. alt	ow; dark green-black; fine grained; moderate ; several irreg. qtzcarb. fractures & veinlets at is; trace dissem. py throughout.
211 248		moderately fr qtz-veins 1/8" -	racture - ¾" @	ered mafic volcanics; light grey-green colour; ed & brecciated with qtz-carb. matrix; several white 40-60° to c.a.; light pervasive carbonate alt; lightly ne dissem. py; brown Fe-carb staining throughout.
NOTE:		302-345 prev	iously	sampled.

OPERTY: tu LE No.: 88						
=======		·		======		=======================================
	FROM-	то	WIDTH -	AU -	Au·g/t-	
	27.89	29.41	1.52	NIL	NIL	
	- 29.38	30.18-	079	0.371	-12.722-	
	29.41	30.94	1.52	NIL	NIL	
	33.22	34.75	1.52	NIL	NIL	
- -	——62 7 -9—	64-31	1 5-2	NIL	NI-L-	
	64.31	65.84	1.52	NIL	NIL	
	65.84	67.36	1.52	NIL	NIL	
	6736	-68.88	1- 52	NIL -	··NIL-	
	68.88	70.41	1.52	TRACE	0.010	
	70.41	71.93	1.52	NIL	NIL	•
-	7193-	7-3 . 46-	152	NIL-	NIL	
	73.46	74.98	1.52	NIL	NIL	
	83.52	83.97	0.46	0.002	0.069	
		-84.73-	- 0.76	0.012-	- 0.411-	
	84.73		1.07	0.002	0.069	
	85.80	86.68	0.88	TRACE	TRACE	
	86 68		152			
	88.21	89.73	1.52	TRACE	TRACE	
	89.73	91.26	1.52	TRACE	TRACE	
			101			
	92.26	93.51	1.25	0.064	2.195	
	93.51	94.79	1.28	N.S.		
	9479			N-S		
	96.32	98.02	1.71	0.002	0.069	
	98.02	99.36	1.34	N.S.	N.S.	
	9936-			N.S	- N.S	••
	100.89	102.17	1.28	N.S.	N.S.	
	102.17	103.39	1.22	TRACE	TRACE	
	103 .3 9			TRACE		
	104.33	104.73	0.40	0.048	1.646	
	104.73		0.30	TRACE	TRACE	
			- ·1··52···		-0069	
	106.56	107.17	0.61	TRACE	TRACE	
	107.17	107.17	0.98	N.S.	N.S.	
	107.17	108.14	0.30	N.S.	n.s.	
	· - 					
				 _		

AVERAGED ASSAY INTERVALS PROPERTY: tully	Pa	ge 1 of 1
HOLE No: 88-8		
		========
1HW (0.79-d.t.—Gore Angle: 900.79-t.t.)	· · · · · · · · · · · · · · · · · · ·	
	EASTINGS:	1729.7
FROM:29.38	NORTHINGS: -	311
	ELEVATION:	
0.371 AU		
	· ·	
TO 00.10	EASTINGS:	1729.7
TO: 30.18	NORTHINGS:	30.69
	ELEVATION:	-24.10
2. HW (1.25 d.t. Core Angle: 90 1.25 t.t.)		•
	EASTINGS:	1720 7
FROM: 92.26	NODTHINGS.	0 24
TROM. 32.20	-ELEVATION:	72 39
0.064 AU		
2.195 Au g/t		
	EASTINGS :	1-7297-
TO: 93.51		
	ELEVATION:	
3. MZ (0.40 d.t. Core Angle: 90 0.40 t.t.)		
	EAST-INGS:	—1 729. 74
FROM: 104.33	NORTHINGS:	-16.19
	ELEVATION:	-81.58
0.048-AU		
1.546 Au g/t		
	EASTINGS:	1729.7
TO: 104.73		
	ELEVATION:	-81.88
	·	
— — — — — — — — — — — — — — — — — —		

CLIENT:

NAME OF PROPERTY:

HOLE NO:

Cyprus Gold Tully Twp. 88-FI-9

FROM

TO

DESCRIPTION

361 399.6

ASSAY LOG	
PROPERTY: tully	

HOLE No.: 88-9

· · · · · - · -					
===========	======	=======	======	========	
					;
	— FROM—	ТО	WIDTH	AU	Au-g/t
	15.06	16.25	1.19	N.S.	N.S.
					-0.069 -
	36.97			0.002	0.069
		38.71			
				0-028	
	39.32		0.37		0.274
		41.30		TRACE	
				N-, S	
	46.02	47.55	1.52	N.S.	N.S.
	47.55	49.07	1.52	N.S.	N.S.
				N_S	N.S
	50.60	52.12	1.52	N.S.	N.S.
	52.12	53.64	1.52	N.S.	N.S.
					-N.S
		56.69		N.S.	N.S.
			1.52	N.S.	N.S.
				N-S	
		61.26		N.S.	N.S.
		62.79		N.S.	
				N.S.	N.S.
		65.84		0.008	
					1-303
	66.75	67.36			N.S.
	67.36	68.88	1.52	N.S.	N.S.
		70.41		N:S	N.S
	70.41	71.93	1.52	N.S.	N.S.
	71.93	73.46	1.52	N.S.	N.S.
		74-25-		NS	
	74.25	74.98		N.S.	N.S.
	74.98	75.90		0.012	0.411
				N-S	N.S
	76.50			N.S.	N.S.
				N.S.	
		116.13		NIL	NIL
	116.13	117.65	1.52	TRACE	0.010 NIL-
		-1-19-18		NIL-	
	130.24		1.43	N.S.	N.S.
	134.11	135.94	1.83	N.S.	N.S.
		—1-37 46——			N.S
	137.46	138.99	1.52	N.S.	N.S.
		139.48	0.49	N.S.	N.S.
	140 01	140.91 142.43			N.S.
	140.91	142.43	1.52	N.S.	N.S.
	142.43	143.96 145.48	1.02	N.S. N.S	N.S.
		147.00			N.S.
		148.53			N.S.
	148.53			N.S.	N.S.
	140.00	143.00	1.13	17.0.	11 + 2 +

	149.66 15118 152.70 153.01154.08 155.33 156.76157.89158.80 160.32 16185 163.37 164.90166.42167.94 169.47	TO— 151.18 -152.70 153.01 154.08 -155.33 156.76 157.89 -158.80 -160.32 161.85 -163.37 163.98 165.66 167.18 168.71	1.52 -1.52 0.30 1.07 -1.25 1.43 1.13 0.91 1.52 1.52 1.52 0.61 0.76 0.76 0.76	N.S. N.S. N.S. N.S. 0.030- 0.096 0.002	- Au-g/t- N.S. - N.S N.S. N.S.	
HOLE No.: 8	FROM 149.66 15118 152.70 153.01154.08157.89157.89 160.32 16185 163.37 164.90 166.42 167.94 169.47	TO— 151.18 -152.70 153.01 154.08 -155.33 156.76 157.89 -158.80 -160.32 161.85 -163.98 165.66 167.18 168.71 170.23	1.52 -1.52 0.30 1.07 -1.25 1.43 1.13 0.91 1.52 1.52 1.52 0.61 0.76 0.76 0.76	N.S. N.S. N.S. N.S. 0.030 0.096 0.0020.250 0.170 0.0580.0580.058N.S. N.S. N.S.	N.S. N.S. N.S. N.S. N.S1.029 3.292 0.069 8.572 5.829 1.989 -0.069 TRACE N.S. N.S.	
	FROM 149.66 15118 152.70 153.01154.08157.89157.89158.80 160.32 16185	TO— 151.18 -152.70 153.01 154.08 -155.33 156.76 157.89 -158.80 -160.32 161.85 -163.98 165.66 167.18 168.71 170.23	1.52 -1.52 0.30 1.07 -1.25 1.43 1.13 0.91 1.52 1.52 1.52 0.61 0.76 0.76 0.76	N.S. N.S. N.S. N.S. 0.030 0.096 0.0020.250 0.170 0.0580.0580.058N.S. N.S. N.S.	N.S. N.S. N.S. N.S. N.S1.029 3.292 0.069 8.572 5.829 1.989 -0.069 TRACE N.S. N.S.	
	TROM 149.66 15118 152.70 153.01	TO— 151.18 -152.70 153.01 154.08 -155.33 156.76 157.89 -158.80 -160.32 161.85 -163.98 165.66 167.18 168.71 170.23	1.52 -1.52 0.30 1.07 -1.25 1.43 1.13 0.91 1.52 1.52 1.52 0.61 0.76 0.76 0.76	N.S. N.S. N.S. N.S. 0.030 0.096 0.0020.250 0.170 0.0580.0580.058N.S. N.S. N.S.	N.S. N.S. N.S. N.S. N.S1.029 3.292 0.069 8.572 5.829 1.989 -0.069 TRACE N.S. N.S.	
	149.66 15118 152.70 153.01 	151.18 -152.70 153.01 154.08 -155.33 156.76 157.89 -158.80 -160.32 161.85 -163.37 163.98 165.66 167.18 168.71 170.23	1.52 	N.S. N.S. N.S. 0.030 0.096 0.002 0.250 0.170 0.058 0.002 TRACE N.S. N.S.	N.S. N.S. N.S. N.S. -1.029 3.292 0.069 8.572 5.829 1.989 -0.069 TRACE N.S. N.S.	
	15118 152.70 153.01 	-152.70 - 153.01 154.08 -155.33 - 156.76 157.89 -158.80 - 160.32 161.85 -163.37 - 163.98 165.66 167.18 - 168.71 170.23	1.52 0.30 1.07 1.25 1.43 1.13 0.91 1.52 1.52 1.52 0.61 0.76 0.76 0.76 0.76	N.S. N.S. O-030- 0.096 0.002 	N.S N.S. N.S. -1.029- 3.292 0.069 8.572- 5.829 1.989 -0.069- TRACE N.S N.S	
	15118 152.70 153.01 	-152.70 - 153.01 154.08 -155.33 - 156.76 157.89 -158.80 - 160.32 161.85 -163.37 - 163.98 165.66 167.18 - 168.71 170.23	1.52 0.30 1.07 1.25 1.43 1.13 0.91 1.52 1.52 1.52 0.61 0.76 0.76 0.76 0.76	N.S. N.S. O-030- 0.096 0.002 	N.S N.S. N.S. -1.029- 3.292 0.069 8.572- 5.829 1.989 -0.069- TRACE N.S N.S	
	152.70 153.01 154.08 155.33 156.76 157.89 158.80 160.32 161.85 163.37 164.90 166.42 167.94 169.47	153.01 154.08 -155.33- 156.76 157.89 -158.80- 160.32 161.85 -163.37- 163.98 165.66 167.18- 168.71 170.23	0.30 1.07 -1.25-1.43 1.13 0.91-1.52 1.52 1.52-1.52-0.61 0.76 0.76 0.76	N.S. N.S. 0-030- 0.096 0.002 0.250 0.170 0.058 0.002- TRACE N.S. N.S.	N.S. N.S. 1.029 3.292 0.069 8.572- 5.829 1.989 0-069 TRACE N.S. N.S.	
	153.01 154.08 155.33 156.76 157.89 158.80 160.32 161.85 163.37 164.90 166.42 167.94 169.47	154.08 -155.33- 156.76 157.89 -158.80- 160.32 161.85 -163.37- 163.98 165.66 167.18- 168.71 170.23	1.07 -1.25 1.43 1.13 0.91 1.52 1.52 1.52 0.61 0.76 0.76 0.76	N.S. 	N.S. 1.029 3.292 0.069 8.572- 5.829 1.989 0.069 TRACE N.S. N.S.	
		-155.33- 156.76 157.89 -158.80- 160.32 161.85 -163.37- 163.98 165.66 167.18- 168.71 170.23	1.43 1.13 0.91 1.52 1.52 1.52 0.61 0.76 0.76 0.76		1.029 3.292 0.069 8.572- 5.829 1.989 0.069- TRACE N.S. N.S.	
	155.33 156.76 -157.89 - 158.80 160.32 161.85 - 163.37 164.90 -166.42- 167.94 169.47	156.76 157.89 -158.80- 160.32 161.85 -163.37- 163.98 165.66 167.18- 168.71 170.23	1.43 1.13 0.91 1.52 1.52 	0.096 0.002 0.250 0.170 0.058 0.002 TRACE N.S. N.S.	3.292 0.069 8.572- 5.829 1.989 	
	156.76 -157.89 -158.80 160.32 -161.85 163.37 164.90 166.42 167.94 169.47	157.89 -158.80- 160.32 161.85 -163.37- 163.98 165.66 167.18- 168.71 170.23	1.13 0.91 1.52 1.52 	0.002 0.250 0.170 0.058 0.002 TRACE N.S. N.S.	0.069 8.572- 5.829 1.989 0-069- TRACE N.S N.S	
	157.89 158.80 160.32 161.85 163.37 164.90 166.42- 167.94 169.47	-158.80- 160.32 161.85 -163.37- 163.98 165.66 167.18- 168.71 170.23	0.91 1.52 1.521.52 0.61 0.76 0.76 0.76	0250 0.170 0.058 0.002 TRACE N.S. N.S. N.S.	8.572- 5.829 1.989 0-069- TRACE N.S. N.S.	• • • • • • • • • • • • • • • • • • • •
	158.80 160.32 161.85 163.37 164.90 166.42 167.94 169.47	160.32 161.85 163.37- 163.98 165.66 167.18- 168.71 170.23	1.52 1.52 -1.52 0.61 0.76 -0.76 0.76 0.76	0.170 0.058 0.002 TRACE N.S. N.S.	5.829 1.989 0.069 TRACE N.S. N.S.	-
	160.32 161-85 163.37 164.90 166.42- 167.94 169.47	161.85 -163.37 -163.98 165.66 167.18- 168.71 170.23	1.52 0.61 0.76 0.76 0.76 0.76	0.058 0.002 TRACE N.S. N.S N.S.	1.989 	-
	161-85 163.37 164.90 166.42- 167.94 169.47	163.37 163.98 165.66 167.18- 168.71 170.23	0.61 0.76 0.76 0.76 0.76	0.002 TRACE N.S. N.S. N.S.		
	163.37 164.90 -166.42- 167.94 169.47	163.98 165.66 167.18- 168.71 170.23	0.61 0.76 - 0.76 0.76 0.76	TRACE N.S. N.S. N.S.	TRACE N.S. N.S.	
	164.90 -166.42- 167.94 169.47	165.66 167.18- 168.71 170.23	0.76 - 0.76 - 0.76 0.76	N.S. N.S. N.S.	N.S. N.S N.S.	· · ·
	-166.42- 167.94 169.47	167.18- 168.71 170.23	0.76 0.76 0.76	N.S. N.S. N.S.	N.S N.S.	· · ·
	167.94 169.47	168.71 170.23	0.76 0.76	N.S. N.S.	N.S.	
	169.47	170.23	0.76	N.S.		
					N.S.	
			 /-6		N-S	
		· · · · · · · · · · · · · · · · · · ·				
			•			
					- 	
				-		
			··-			
					-	
						

AVERAGED	ASSAY	INTERVAL	c	BORSURV		Pa	ge 1 of 1
PROPERTY:	tully 88-9	- 		· · ·			
		=======	=======	:=======	========	= = = = = = = = = = = = = = = = = = =	=======
1 MZ -(7	7.77-d-	t.—Core	Angle:-	-907 <i>-</i> -7 <i>7</i>	- t- t -)	· · · · · · · · · · · · · · · · · · · 	
	EDOM.	154.00-				EASTINGS:NORTHINGS: -	1768.00
	raon.	104.00				ELEVATION:	
			0.097	AU		LBEVALION.	110.00
			3.324_	.Au∴g/t			
				5, 0		EASTINGS:	1768.00
	TO:	161.85 -				EASTINGS:NORTHINGS:	10.59
-	-		<u>.</u>	 		ELEVATION:	-121.89
							•
							
		- 					<u>-</u>
				•			
							
			·				
	· - 						
		 :					
							
						· · · · · · · · · · · · · · · · · · ·	<u> </u>
						- 	
					_		- -
	_ -						
						· 	·
							
· 							

--

__

CLIENT:

NAME OF PROPERTY:

HOLE NO:

Cyprus Gold Tully Twp. 88-FI-10

FROM TO	DESCRIPTION
346 372.7	Mafic to intermediate flow; fine-grained; dark green-grey; lightly carbonatized throughout; banded @ 40° to c.a.; trace sulphides.
	346 - 360 Several white-qtz carb. veins <\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	 372.7 Speckled with fine yellow-cream feldspar; less intense carbonatization; <1% fine dissem. py; light sericite alt.
NOTE:	372 - 386 Previously sampled some sections of core missing.
	482 - 503.7 Previously sampled

ASSAY LOG Page 1 of 2
PROPERTY: tully

HOLE No.: 88-10 FROM----- TO ---- WIDTH ---- AU Au-g/t-28.01 29.26 1.25 N.S. N.S. 29.26 31.15 -1.89-N.S.---N.S.-31.15 32.10 0.94 N.S. N.S. 32.10 33.83 1.74 N.S. N.S. 33-83 **35.. 36**. 1-. 52-N-S-- N.-S. 35.36 36.88 1.52 N.S. N.S. 36.88 38.40 1.52 N.S. N.S. 38.40 39.93-1.52-N.S. -- N . S .- -39.93 41.45 1.52 N.S. N.S. 41.45 42.98 1.52 N.S. N.S. 42.98 43.43 0.46-N.S. - N.S. 44.20 43.43 0.76 N.S. N.S. 44.20 45.90 1.71 N.S. N.S. 44.20 44.84 0.64 - N.S. N.S.-45.90 47.55 1.65 N.S. N.S. 47.55 48.92 1.37 N.S. N.S. 48-92 49.35 0.43 N.S.. -N.-S.-49.35 50.44 1.10 N.S. N.S. 110.49 112.01 1.52 0.017 0.576 ---112.-0-1 -113.60-1.58 --TRACE--0.010---113.60 114.06 0.46 0.166 5.692 114.06 115.09 1.04 TRACE TRACE -115.09--1-1-6--52 1--43 -0 --1-1 5 3.943 116.52 117.65 1.13 0.002 0.069 117.65 119.18 1.52 N.S. N.S. 119.18 120.70 1.52 -N-.S.--N - S - 120.70 122.22 1.52 N.S. N.S. 122.22 123.75 1.52 N.S. N.S. -1-23--75 -1-25-. 2-7 -1-. 52 N-S.— N .- S --125.27 126.80 1.52 N.S. N.S. 126.80 127.62 0.82 N.S. N.S. 127.62 128.02 0.40-0.014 0-480 128.02 129.84 1.83 0.022 0.754 129.84 131.37 1.52 0.006 0.206 131.37 131-. 98 0.61 0-034 -1--166 131.98 132.89 0.91 N.S. N.S. 132.89 134.42 1.52 N.S. N.S. 134.42 135.94 1.52 N-S-N.S. 135.94 137.46 1.52 0.002 0.069 137.46 138.99 1.52 N.S. N.S. -1-38--99--140.51--1--52 --N . S .----N--S-140.51 142.19 1.68 N.S. N.S. 142.19 142.74 0.55 TRACE TRACE 142.74 143.56 0.82 TRACE TRACE-143.56 144.84 1.28 0.008 0.274 144.84 146.30 1.46 0.038 1.303 146-30 -1-46-.-9-1-0-61 TRACE TRACE

146.91

148.13

149.66

148.13

149.66

151.18

1.22

1.52

1.52

N.S.

N.S.

N.S.

N.S.

N.S.

N.S.

** BORSURV **				Page-2-of-2		
PROPERTY: t	ully				P	age-2-012
=========		========	======	=======================================	========	
	FROM-	то	WIDTH	·· ·-AU	Au -g/:t	
	151.18 152.70 154.23 155.75		0.82 0.76	N.S. N.S. N.S.	N.S. N.S N.S. N.S.	
	157-28-	15804	0 7 6	N.S	N.S.	
	158.80	159.56	0.76	N.S.	N.S.	:
						•
						•
						_
						<u> </u>
			•			
						,
						
						
						:
						
						
						:
						
						-
					-	
	·					<u> </u>
						:
						i
						:
						

HOLE No: 88-1	0		Page 1 of 1		
=========	` ====================================	=======================================	========		
1 45 4 6 60					
1 MZ- (- 2.93-)	d.t.—Core-Angle:902.93 -t.t.)				
FRO	M: 113.60	EASTINGS: NORTHINGS: ELEVATION:			
		FASTINGS	1913 56		
10.	110.32	ELEVATION:	-93.93		
	·	-			
		 			
					
- · · · 					
		-			
· · · · · · · · · · · · · · · · · · ·			.		

CLIENT:

NAME OF PROPERTY:

HOLE NO:

Cyprus Gold Tully Twp. 88-FI-11

FROM	то	DESCRIPTION
1014.5	1031	Mafic-int volcanic - flow top breccia? dark green-grey; fine grained: heavily brecciated with carb. & qtz. microfractures; lightly chloritized; <1% fine dissem. py.
1031	1062.2	Mafic-ultramafic flow; dark green to black; speckled with very fine white-cream feldspars; several very irreg. white qtz-carb. fractures & veinlets @ various orientations; trace sulphides; mod. talc-chl alt.
1062.2	1090.5	BOX 56 - MISSING; according to old logs the ultramafic ends @ 1085 and the flow breccia starts again.
1090.5	1129	Mafic - int volcanic flow; brecciated in places;; light green-grey colour: many very irreg. qtz-carb. fractures & veinlets at many orientations to c.a.; many carbonate filled amygdules; tr - <1% fine dissem. py.

ASSAY LOG	Page-1-of-3(
PROPERTY: tully	•
HOLE No.: 88-11	:

	FROM	ТО	₩Т.ЛТН		-Aug/t
			"1D111	AU	Hu 8/ 0
			1.49	TRACE	TRACE
# · · · · · ·			1-49		TRACE -
			0.30	TRACE	TRACE
	91.56		0.85		TRACE
					TRACE
	93.60	94.79	1.19		TRACE 0.069
	94.79 96.32		1.52		0.069
	97.84		1.52 1.52		
			0.34	NIL	NIL
	99.36	99.70			TRACE
				TRACE	TRACE
		102.41	1.52	TRACE	TRACE
		103.33	0.91		TRACE
•	10333-	-104.49	1.16	TRACE	TRACE
		105.46	0.98		TRACE
		106.98	1.52	N.S.	N.S.
				NS	
		110.03		N.S.	N.S.
			1.52		N.S.
· · · · ·					N.S.
		114.60		N.S.	N.S.
			1.52		N.S.
			15-2		N .S
	117.65	119.18	1.52	N.S.	N.S.
	119.18	120.70	1.52	N.S.	N.S.
· · ·	 120. - 70	122.22-	1.52	- N.S.	
	122.22	123.75	1.52	N.S.	N.S.
	123.75	125.27	1.52	N.S.	N.S.
		-1 26 - 80-		N-:-S :	
	126.80	128.32	1.52	N.S.	N.S.
		129.84		N.S.	N.S.
	129-84	1-3137-	1.52	N-S	N-S
			1.52	N.S.	N.S.
	132.89	134.42	1.52	N.S.	N.S.
		1 -3594		N-S	N.S
	135.94	137.46	1.52	N.S.	N.S.
	137.46	138.99	1.52	N.S.	N.S.
· · · · · · ·			152	NS	— NS
	140.51	142.04	1.52	N.S.	N.S.
	142.04	143.56	1.52	N.S.	N.S.
	-14356-		152	N S	N-S
	145.08	146.61	1.52	N.S.	N.S.
	146.61	148.13	1.52	N.S.	N.S.
	-148-13	-149.66-	- 152	N.S	N.S.
	149.66	151.18	1.52	N.S.	N.S.
	151.18	152.70	1.52	N.S.	N.S.
					N-S
			1.52	N.S.	N.S.
			1.52		N.S.
			1.52	N.S.	N.S.
			-		

			RSURV **		
ASSAY LOG					Page_2_of_
PROPERTY: t	•				
HOLE No.: 8					
	FROM	ТО	WIDTH	AU	Au-g/t
					g, :
	158.80	160.32	1.52	N.S.	N.S.
	16032			N.S	-N.S
	161.85	163.37	1.52	N.S.	N.S.
	163.37	164 90	1 52	N.S.	N.S.
	164.90	-166-42-	1 52		N.S
	166.42	167.94	1.52	N.S.	N.S.
	167.94	169.47	1.52	N.S.	N.S.
·					
	170.99		1.52	N.S.	N.S.
	172.52				N.S.
					N-S
	175.56			N.S.	
	177.09	178.61	1.52	N.S.	N.S.
		180.14			-N.S
	180.14			N.S.	
	181.66			N.S.	N.S.
·· - · · · · · · · · · · · · · · · · ·	183-18-				N-S
	184.71	186.23	1.52	N.S.	N.S.
	186.23	187.76	1.52	N.S.	N.S.
					N.S
	189.28		1.52	N.S.	N.S.
	190.80	192.33	1.52	N.S.	N.S.
	19233				NS
	193.85		1.52	N.S.	N.S.
	195.38			N.S.	N.S.
	196.90				
			0.49		1.303
			0.73		0.274
· - · · · · · · · · · ·					-0.069
	309.37			NIL	
	310.90	312.42	1.52	NIL	NIL
	312-42	-314-25	183	NIL	NIL
	314.25	315.77	1.52	NIL	NIL
	315.77	317.30	1.52	TRACE	0.010
· + - 	317.30	-318-82	1-52	TRACE	- -0-007
	318.82	320.34	1.52	NIL	NIL
	332.38	334.06	1.68	NIL	NIL
	334.06	-335 . -58	1.52	······································	NIL-
	335.58	337.11	1.52	NIL	NIL
	337.11	338.63	1.52	NIL	NIL
	338.63	-340.16 ~		NIL	NIL
	340.16	341.68	1.52	NIL	NIL
	341.68	343.20	1.52	NIL	NIL
	36149	-363.02 	1.52	N.S	NS
	363.02	364.54	1.52	N.S.	N.S.
	364.54	366.06	1.52	N.S.	N.S.
	3 70 -64	-372 · 16 -		NS	N-S
	372.16	373.68	1.52	N.S.	N.S.
	373.68	375.36	1.68	N.S.	N.S.
	375.36	375.67	0.30	0.006	0.206

ROPERTY: to						age_3_of3
		ТО	WIDTH	AU	Au-g/-t	-
	375.67	376.76	1.10	0.006	0.206	
<u>-</u>			1.40	- 0.591-	20.265-	
	378.16	378.90	0.73	0.265	9.087	
	378.90	379.78	0.88	0.128	4.389	
	379 78					
	381.30	382.83	1.52	0.006	0.206	
	382.83	383.13	0.30	TRACE	TRACE	
	38313		- 0.76		N.S.	
	384.35	385.11	0.76	N.S.	N.S.	
	385.88	386.64	0.76	N.S.	N.S.	•
	387.40	388.16		N.S	- N. S.	
	388.92	389.69	0.76	N.S.	N.S.	
	390.45	391.21	0.76	N.S.	N.S.	
	391.97	392.73		N.S.	- N.S	
	393.50	394.26	0.76	N.S.	N.S.	
	395.02	395.78	0.76	N.S.	N.S.	
					· · · · · · · · · · · · · · · · · · ·	
						···
						•
						· · ·
				 -		· · · · · · · · · · · · · · · · · · ·
					-	
						

** BORSURV ** AVERAGED ASSAY INTERVALS	Pa	ge 1 of 1
PROPERTY: tully		
HOLE No: 88-11		
1MZ (3.02_d.tCore_Angle: 903.02_t.t.)		
FROM: -376.76	EASTINGS:	1645.92
0.376 AU	ELEVATION:	-310.32
12.905_Au_g/t		
	FASTINGS.	1645 92
TO: 379.78	NORTHINGS:	24.11
	ELEVATION:	-312.80
2. HW (0.49 d.t. Core Angle: 90 0.49 t.t.)		•
	EACTINGS.	1645 00
FROM: 220.95	NORTHINGS:	117.29
the second secon	ELEVATION:	-184.17
0.038 AU		
1.303 Au g/t		
TO: 221.44	-EASTINGS:	164592
	ELEVATION:	-184.57
		
	·	
- · · · · · · · · · · · · · · · · · · ·		
		
		·
		

- -

CLIENT:

NAME OF PROPERTY:

HOLE NO:

Cyprus Gold Tully Twp. 88-FI-12

FRON	A 1	ro i	DESCRIPTION
661	670	C	Mafic volcanics; light green-grey; fine grained; moderate pervasive arbonatization; many very irreg. qtz-carb. fractures & veinlets at nany orientations to c.a.; trace py.
670	757	c	Mafic volcanics; dark green to grey; fine-grained weak pervasive arbonatization; few qtz-carb. veinlets & fractures; nil-trace sulphides; ght to mod. talc-chl alt in places.
757	787	n	Mafic volcanics; light green-yellow; very minor pervasive carb; noderate sericite & silicification; several very irreg. white-grey qtz-arb. veinlets @ various orientations to c.a.; red-brown Fe-carb. taining throughout; <1% fine dissem py in veinlets & wall rock.
NOTE	<u>:</u> :	7	77.3-862.3previously sampled.

ASSAY LOG---- Page_1-of-4

PROPERTY: tully HOLE No.: 88-12

· · · · · · · · · · · · · · · · · ·	-FROM	TO	WIDTH	-AU	Au-g/t
		44 50			
	10.97		0.76	N.S.	N.S.
	14.02		0-76 -	N.S.	N. S
	14.02 15.54	16.31	0.76 0.76	N.S.	N.S. N.S.
		1·7 - -83		N.S	
	18.59	19.35		N.S.	N.S.
		20.88		N.S.	N.S.
		-22.40			-N.S
		23.93			N.S.
	24.69	25.45	0.76		N.S.
-	2621	26-97	—0 .76 ——	Ns	N.S
:	27.74	28.50	0.76	N.S.	N.S.
		30.02		N.S.	N.S.
		31.55		- N.S	- N.S.
	32.31	33.07	0.76	N.S.	N.S.
	33.83	34.59	0.76	N.S.	N.S.
	35 36 -	36-1-2	0 ₃ -7-6		
	36.88	37.64	0.76	N.S.	N.S.
	38.40	39.17	0.76	N.S.	N.S.
		-40.69-		NS	
			0.76	N.S.	N.S.
	12.98	43.74	0.76	N.S.	N.S.
		-45. 26		N-S	
	16.02	46.79		N.S.	N.S.
			0.76	N.S.	N.S.
	50.60	51.36	0 . -76		N. S.
	52.12	52.88	0.76 0.76	N.S. N.S.	N.S. N.S.
	5 3.64 -	54.41	0.76	—-N-S	-N-S
		56.17	1.01	N.S.	N.S.
	56.17	56.48	0.30	N.S.	N.S.
			0 . 4 0		
	56.88	57.18	0.30	N.S.	N.S.
	58.22	58.98	0.76	N.S.	N.S.
	59.74	60 -50	0.76	NS	-N.S
	61.26	62.03	0.76	N.S.	N.S.
	62.79	63.55	0.76	N.S.	N.S.
	64-31	-65.07	0.7 6		—N.S.
(65.84	66.60	0.76	N.S.	N.S.
	85.65	87.17	1.52	N.S.	N.S.
	50 . 57	-1-511 8	061	NS	N-S
	51.18	152.70	1.52	N.S.	N.S.
	52.70	154.23	1.52	0.004	0.137
		-155-69-	146	-0.002-	-0.069
	55.69	157.28	1.58	TRACE	TRACE
	57.28	158.80	1.52	TRACE	TRACE
		-16008	128	0.002	0.069
	60.08	160.84	0.76	TRACE	TRACE
	60.84	161.39	0.55	0.002	0.069
13	61.39	163.07	1.68	TRACE	TRACE

SSAY LOG ROPERTY: tu	11v				P	ige_Z_of_
LE No.: 88						
========	=======	========				=======
	FROM_	TO	WIDTH	_A U	Au.g/t	
	163.07	164.59	1.52	TRACE	TRACE	
	16459	166.12	152	- TRACE	TRACE -	· · · · · · ·
	166.12	167.03	0.91	TRACE	TRACE	
	178.61	180.14	1.52	0.002	0.069	
	180-14	18166	1.52	TRACE_	_TRACE	
	181.66	182.27	0.61	0.002	0.069	
	182.27	183.49	1.22	TRACE	TRACE	
	183.49			TRACE	-TRACE	
	184.71	185.99	1.28	TRACE	TRACE	
	185.99	186.78	0.79	TRACE	TRACE	•
	198 .42	1.99.95	1.52	N_S	N-S	
	199.95	201.47	1.52	N.S	N.S.	
	201.47 20300	203.00	1.52	NIL	NIL	
. •			1.52	NIL	NIL	
	207.57	209.09	1.52	TRACE	0.021	
	213.66	215.19	1.52	NIL	NIL	
	218 -54 -	—220.16 —		NIL-		
	219.76	220.16	0.40	0.014	0.480	
	220.16	220.52	0.37	0.016	0.549	
	2205 2	 22080		0:-1:12-	3.840	
	220.80	221.28	0.49	N.S.	N.S.	
	221.28	222.81	1.52	NIL	NIL	
	-222-81-	-224-64	183	NIL-	NI-L	_
	224.64	226.16	1.52	NIL	NIL	
	226.16	227.69	1.52	NIL	NIL	
		-229.21		· ···· NIL	NIL	
		230.73	1.52	NIL	NIL	
	230.73	232.26	1.52	NIL	NIL	
		2-33-, 7 -8	1 5 2	TRACE		
	233.78	235.31	1.52	0.002	0.062	
	235.78	236.92	1.62	TRACE	0.007	
	236 .83	238:41	158	0078-		
	238.41				2-6 75 - -	
		239.39	0.98	0.002	0.069	
	239.39	240.49	1.10	0.088	3.018	
	240-49	-24 1 -8 3-	134	0-004- -	0 -137	
	241.83	242.62	0.79	0.004	0.137	
	242.62	244.14	1.52	0.119	4.081	
· - · · · · · · · · · · · · · · · ·	244.14-	24567 -	15-2	0.078	-2.675	
	245.67	247.19	1.52	0.189	6.481	
	247.19	248.72	1.52	0.105	3.600	
	248 <i></i> 7-2	249, 42	07-0	0-014- -	0.480	
	249.42	250.09	0.67	0.034	1.166	
	250.09	251.09	1.01	0.088	3.018	
·	-25109-		0.67	- 0.016	0.549	
	251.76	252.98	1.22	0.012	0.411	
	252.98	253.62	0.64	0.004	0.137	
	2 53+62	254-81	1 - 1-9	 0+060	-2-057	
	254.81	255.70	0.88	0.026	0.892	
	255.70	256.34	0.64	0.026	1.577	
	256.34	257.86	1.52	0.246	8.435	

OLE No.: 88	3-12				
			· · · · · · · · · · · · · · · · · · ·		
		=======	========		
	EDOM	T/O	LIT DON	A ***	A
	· F ROM	10	WIDTH _	AU	Au .g/t
	257.86	258.53	0.67	0 103	3.532
			1.07		
		260.76			1.440
	260.76				0.343
		262_83 _		N.S	
	263.96	264.72	0.76	N.S.	N.S.
	265.48	266.24	0.76		N.S.
	26700				
	268.53	269.29	0.76	N.S.	N.S.
	270.05	270.81	0.76	N.S.	N.S.
			0-76- -	N.S	N.S
	273.10	273.86	0.76	N.S.	
	274.62	275.39	0.76	N.S.	N.S.
	2761 5 -				
	279.20		0.76	N.S.	
	280.72			N.S.	
···-· · ·-		_283 -01_			N.S
	283.77	284.53	0.76	N.S.	
	285.29	286.05	0.76	N.S.	
	28682				
	288.34	289.10	0.76	N.S.	N.S.
	289.86	290.63	0.76	N.S.	N.S.
	29139		 0 7-6	N-S	
	292.91	293.67	0.76	N.S.	N.S.
	294.44	295.20	0.76	N.S.	N.S.
			0.76 -		
	297.48	298.25	0.76	N.S.	N.S.
	299.01	299.77	0.76	N.S.	N.S.
		-301-29-		N-S	N.S
	302.06 303.58	302.82	0.76	N.S.	N.S.
			0.76		
		307.39		N.S.	N.S.
		307.33		N.S.	N C
			0 .76		
	311.20		0.76	N.S.	
		313.49	0.76		
. <u> </u>	314-25-				N.S
				N.S.	N.S.
	317.30	316.53 318.06	0.76	N.S.	N.S.
· ·	318-82	-319.58-		NS	N.S. N.S
	320.34	321.11	0.76	N.S.	N.S.
		322.63		N.S.	
	323.39	-324.15	0.76	N.S.	N.S
			0.76		
			0.76		
e i trata se consigno do com			0-7.6		
	329.49				N.S.
			0.76		
	332.54	333.30	0.76	N.S.	N.S.

			** BO	RSURV **			!
	- ASSAY LOG PROPERTY:						Page 4 of 4
,	HOLE No.:						
	========		=======	========	=======	=======	========
		FROM—	ТО	WIDTH	AU	-Aug/-t	
j		334.06 335.58	334.82 33635	0.76 0.76	N.S. N.S	N.S. N-S	
C				 			
		· —————					
J						· -	
_			·			-	:
<u> </u>							:
•							· · · · · · · · · · · · · · · · · · ·
~		-	· 4··	· · · · · · · · · · · · · · · · · · ·		-	
į							·
J	· · · · · · · · · · · · · · · · · · ·						
~							
-	<u></u>						
` -	====.		and the second s				·
•-							
-	\$ P 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				

** BORSURV **		·
AVERAGED ASSAY INTERVALS	Pa	ge 1 of 1
PROPERTY:-tully		
HOLE No: 88-12		
	:: :::: :::: ::: :	=========
1HW-(-0.27-d.tGore-Angle:-90-0.27-t.t.)		
1:-nw-(-0:2/-d-t		
	EASTINGS:	
FROM: 220.52		
0.112 AU	ELEVATION:	-180.80
3.112 AU		
-	EASTINGS:	1472.90
TO: 220.80	NORTHINGS:	24.73
	ELEVATION:	-181.01
2. MZ (18.14 d.t. Core Angle: 90 18.14 t.t.)		
	EASTINGS:	1472.90
FROM: 242.62	NORTHINGS:	11.28
	ELEVATION: -	198.20
0.087 AU		
2.971 Au g/t	- EASTINGS:	1472 00
TO: 260.76	NORTHINGS:	0.10
	ELEVATION:	
		
		

_

CLIENT:

NAME OF PROPERTY:

HOLE NO:

Cyprus Gold Tully Twp. 88-FI-13

FROM TO	DESCRIPTION
892 929	Mafic volcanic flow; dark green-black; fine grained; pervasive carb. alt; minor talc-chl alt.; several irreg. qtz-carb. fractures & veinlets <1% sulphides.
929.6 949	Box 48 Missing
949 987.5	Intermediate - mafic tuff; bleached yellow-brown; very minor carb; moderate sericite alt; very fine frags < 1mm-lightly banded @ 40-60° to c.a.; moderately microfractured with qtz-carb. veinlets; <1% fine dissem. py.
NOTE:	The following intervals have been previously sampled:
	820 - 892 911 - 913.5 916 - 918.5 921 - 923.5 926 - 928.5 931 - 933.5 951 - 953.5 966 - 968.5 971 - 973.5 976 - 978.5 981 - 983.5

ASSAY-LOG -----Page-1-of-3-

PROPERTY: tully HOLE No.: 88-13

	======	:======	=======	:=======	
· · ·	FROM_	ТО	WIDTH	AU	Au-g/t
	23.01	23.99	0.98	TRACE	TRACE
	2399	24.54-			-3-360
		25.73		0.002	
		27.65		0.078	
			1-55	N . S	N-S
	195.01			N.S.	N.S.
	210.62	211.38	0.76		N.S.
	21214-	212.90-	0.76 0.76	N.S.	N.S
	213.66	214.43	0.76	N.S.	N.S.
		215.95		N.S.	N.S.
					N.S
			0.76		
			0.76		
			0.76		
		223.57		N.S.	
		225.09		N.S.	
		226.62 -			- N-S
	227.38	228.14		N.S.	
	228.69	229.09		0.026	
		229.67		N-s	
		231.19		N.S.	N.S.
	231.95	232.71	0.76	N.S.	N.S.
		234 24		—-N.S	N.S
				N.S.	N.S.
	236.52	235.76 237.29	0.76	N.S.	N.S.
	-238-:05	-238.35-	0.30	N.S	-N.S
		239.57		N.S.	N.S.
		241.10		N.S.	N.S.
			152	N.S	
		244.14		N.S.	
			1.52		
			1.52		
		248.72	1.52	N.S.	N.S.
		250.24		N.S.	
	251.06	251.76	0.70	0.078	2.675
	251.76	253.29	1.52	N.S.	N.S.
···· · · · · · · · · · · · · · · · · ·	253.29-	-254-81	1.52	—-N.S	-N.S
	254.81	256.34	1.52	N.S.	N.S.
	256.34	257.86	1.52	N.S.	N.S.
·	-25786	2 59+38-	15-2		
	259.38	259.87	0.49	N.S.	N.S.
	259.87	260.82	0.94	0.165	5.658
	-260 - 82	261 - 12			N.S
	261.12	262.43	1.31	N.S.	N.S.
	262.43	263.96	1.52	N.S.	N.S.
	-263 96	265 -4 8	1 52	N.S. N.S	N-S:
	265.48	267.00	1.52	N.S.	N.S.
	267.00	268.92	1.92	N.S.	N.S.
	268.92	269.32	0.40	N.S.	N.S.
		200102	V.10	14.0.	N. O.

ASSAY LOG --- Page-2-of-3-

PROPERTY: tully HOLE No.: 88-13

	FROM-	ТО	WIDTH	AU	-Au-g/t	
	269.32	270.05	0.73	0.056	1.920	
	270.05-	271.58- -	1.52	0.062-	2.126	· - · - · · · - · · · · · · · · · ·
	271.58			N.S.	N.S.	
	271.88		1.52	NIL	NIL	
	273_41			NIL		
	274.93	276.45	1.52	NIL	NIL	
	276.45	277.67	1.22	NIL	NIL	
			0.76	N.S.	N.S.	
	278.43		0.76	TRACE	0.031	
	279.20	279.96	0.76	N.S.	N.S.	
		_ 280.72 -		NIL	· NIL	
	280.72	281.48	0.76	N.S.	N.S.	
	281.48	282.24	0.76	NIL	NIL	
		- 283.01-		N.S.	-N.S	
			0.76	N.S.	N.S.	
	284.84	285.29	0.46	N.S.	N.S.	
· · · · · · - · ·	285-29	_28651 _	1-22		N.S	
	286.51			0.054	1.852	
	288.04	289.13	1.10	0.026	0.892	
	2891-3	-289.74 -	061	0.034	1166	
	289.86	290.63	0.76	N.S.	N.S.	
	290.63	291.39	0.76	TRACE	0.007	
	29139		0- - 76	NS	N.S.	
	292.15	292.91	0.76	NIL	NIL	
	292.91	293.67	0.76	N.S.	N.S.	
	 293 - 67	-294.44			NI-L-	
	294.44	295.20	0.76	N.S.	N.S.	
	295.20	295.96	0.76	NIL	NIL	
<u></u>		_296.72 _		N.S	NTS	
		297.48	0.76	NIL	NIL	
		298.25	0.76	N.S.	N.S.	
				····TRACE		
	299.01		0.76	N.S.	N.S.	
	299.77	300.53	0.76	NIL	NIL	
	300+63	_301-29 _	0.76	N.S	N+S+	
	302.06	302.82	0.76	N.S.	N.S.	
	303.58	304.34	0.76	N.S.	N.S.	
	- 30 5 . 10	-305-87-	 0 76	n.s	N.S	
	306.63	307.39	0.76	N.S.	N.S.	
	308.15	308.91	0.76	N.S.	N.S.	
	309.13	-310-29-	-0-61	N+S	N.S. N.S.	
	314.25	315.01	0.76	N.S.	N.S.	
	315.77	316.53	0.76	N.S.	N.S.	
	317 30	318-06-	0.76	N.S	N.S.	
	318.82	319.58	0.76	N.S.	N.S.	
	319.52					
	319.52 319.83-	319.83	0.30	0.002	0.069 0.823	
	320.95	32 0-9 5 321.96	1.01	0-024 0.066	2.263	
	321.96	322.26	0.30	N.S.	N.S.	

ASSAY LOG	•	- -	Page_3_of_3_
PROPERTY: 1	cully		

HOLE No.: 88-13

FROM	то	WIDTH .	AU	. Au g/t	· · · · · · · · · · · · · · · · · · ·
323.39	324.15	0.76	N.S.	N.S.	
-324 -92-	325.68	076	N.S	·· N.S	
326.44	327.20	0.76	N.S.	N.S.	
327.96	328.73	0.76	N.S.	N.S.	
329_49_				N.S	
331.01	331.16		N.S.	N.S.	
	331.93		0.002	0.069	
				13.887	
332.14	332.44	0.30	0.369	12.653	
				0.480	•
				1_646	
	334.85			0.617	
	336.35				
	337.87				
	339.39		N.S.	N.S.	
	340.92		- · -	N.S.	
	342.44		N-S		
	343.97			N.S.	
	345.49		N.S.		
34625-			N-S		
		0.76		N.S.	
	350.06			N.S.	
	351-59-		NS	——-N-S-	
	353.11		N.S.	N.S.	
	354.63			N.S.	
000.01	551.00	0.10		4.0.	

PROPERTY: tully HOLE No: 88-13 1. HW (3.66-d-t.—Core-Angle:-90—.3.66 t.t.) FROM: -23.99	OLE No: 88-13 . HW (3.66-d-t.—Core-Angle: 90—3.66 t.t.) - —— FROM: -23.99	EASTINGS: 1798.0 NORTHINGS: -231.5 ELEVATION: -18.0 EASTINGS: 1798.0 NORTHINGS: 229.6
1. HW (3.66-d-t.—Core-Angle: 90— 3.66 t.t.) FROM: -23.99	. HW (3.66-d-t.—Core-Angle: 90—3.66 t.t.)	EASTINGS: 1798.0 NORTHINGS: -231.5 ELEVATION: -18.0 EASTINGS: 1798.0 NORTHINGS: 229.6
FROM: -23.99	FROM: -23.99N 0.056 AU 1.931 Au-g/t TO: 27.65N	EASTINGS: 1798.0 NORTHINGS:231.5 ELEVATION: -18.0 EASTINGS: 1798.0 NORTHINGS: 229.6
FROM: -23.99	FROM: -23.99N 0.056 AU 1.931 Au-g/t TO: 27.65N	EASTINGS: 1798.0 NORTHINGS:231.5 ELEVATION: -18.0 EASTINGS: 1798.0 NORTHINGS: 229.6
FROM: -23.99	FROM: -23.99N 0.056 AU 1.931-Au-g/t TO: 27.65N	ORTHINGS:231.5 ELEVATION: -18.0 EASTINGS: 1798.0 FORTHINGS: 229.6
Comparison of the comparison	0.056 AU 1.931 Au-g/t TO: 27.65N	ELEVATION: -18.0 EASTINGS: 1798.0 NORTHINGS: 229.6
0.056 AU	0.056 AU 1.931-Au-g/t TO: 27.65N	EASTINGS: 1798.0
EASTINGS: 1798.0 TO: 27.65	TO: 27.65N	EASTINGS: 1798.0 NORTHINGS: 229.6
ELEVATION: -21.2 2. HW (0.70 d.t. Core Angle: 90 0.70 t.t.) EASTINGS: 1798.0 FROM: 251.06	· · · · · · · · · · · · · · · · · · ·	EASTINGS: 1798.0 NORTHINGS: 229.6 ELEVATION: -21.2
ELEVATION: -21.2 2. HW (0.70 d.t. Core Angle: 90 0.70 t.t.) FROM: 251.06	· · · · · · · · · · · · · · · · · · ·	ORTHINGS: 229.6 ELEVATION: -21.2
2. HW (0.70 d.t. Core Angle: 90 0.70 t.t.) EASTINGS: 1798.0		ELEVATION:
FROM: 251.06		•
FROM: 251.06	. HW (0.70 d.t. Core Angle: 90 0.70 t.t.)	
FROM: 251.06	F	FASTINGS: 1798.0
0.078 AU 2.675 Au ġ/t TO: 251.76		
0.078 AU 2.675 Au ġ/t TO: 251.76		ELEVATION:207.0
TO: 251.76		
TO: 251.76NORTHINGS: 105.3 ELEVATION: -207.6 3. HW (0.94 d.t. Core Angle: 90 0.94 t.t.) FROM: 259.87	2.675 Au ġ/t	
ELEVATION: -207.6 3. HW (0.94 d.t. Core Angle: 90 0.94 t.t.) FROM: 259.87	····	EAST-INGS:1798-0
3. HW (0.94 d.t. Core Angle: 90 0.94 t.t.) FROM: 259.87		
FROM: 259.87	F	ELEVATION: -207.6
FROM: 259.87NORTHINGS: 100.7 ELEVATION: -214.3	. HW (0.94 d.t. Core Angle: 90 0.94 t.t.)	
FROM: 259.87NORTHINGS: 100.7 ELEVATION: -214.3		EASTINGS: 1798-0
0.165-AU 5.658 Au g/t EASTINGS: 1798.0 NORTHINGS: 100.2 ELEVATION: -215.1 4. HW-(-0.73-d.t. Core-Angle: 90-0.73-t.t.) EASTINGS: 1798.0 NORTHINGS: 95-3 ELEVATION: -222.1 0.056 AU 1.920-Au-g/t EASTINGS: 1798.0	FROM: 259.87N	NORTHINGS: 100.7
0.165-AU 5.658 Au g/t EASTINGS: 1798.0 NORTHINGS: 100.2 ELEVATION: -215.1 4. HW-(-0.73-d.t. Core-Angle: 90-0.73-t.t.) EASTINGS: 1798.0 NORTHINGS: 95-3 ELEVATION: -222.1 0.056 AU 1.920-Au-g/t EASTINGS: 1798.0	F	ELEVATION: -214.3
EASTINGS: 1798.0 TO: 260.82		
TO: 260.82		
ELEVATION: -215.1 4. HW-(-0.73-d.t. Core-Angle: 90-0.73-t.t.) EASTINGS: 1798.0 **PROM: -269.32		
4. HW-(-0.73-d.t. Core-Angle: 90-0.73-t.t.) EASTINGS: 1798.0 FROM: -269.32		
EASTINGS: 1798.0	r ·	ELEVATION: -215.1
FROM: -269.32	. HW-(-0.73-d.tCore-Angle:-900.73-t.t.)	
FROM: -269.32	I .	EASTINGS: 1798.0
0.056 AU 	FROM:	NORTHINGS:95-3
1.920-Au-g/t EASTINGS: 1798.0	A 050 AT	ELEVATION: -222.1
EASTINGS: 1798.0	0.056 AU	
TO: 270.05	1.920 Au g/t	PACTINCS. 1700 0
	TO: 270.05	MARTHINGS: 1/98.U
BBEVALIONEEE		74.5 71.EVAT-TON

: .

ASSAY LOG	
DDADFDTV. +11**	

PROPERTY: tully HOLE No.: 89-3

 FROM	то	WIDTH	U	Au-g/t
				-
143.29	143.44	0.15	N.S.	N.S.
252.07	-253.59 -	152	N.S	N.S
253.59	255.12	1.52	N.S.	N.S.
255.12	256.64	1.52	N.S.	N.S.
 25664				
258.17	259.69	1.52	N.S.	N.S.
259.69	261.21	1.52	N.S.	N.S.
261.21	-262.74	1.52	N.S.	N.S
262.74	264.26	1.52	N.S.	N.S.
264.26	265.79	1.52	N.S.	N.S.
 265.79	-267-31-	152	N.S	N_S
267.31			N.S.	
268.83			N.S.	
 270.36				
			N.S.	
			N.S.	
 -274.93				
	277.98		N.S.	
			N.S.	N.S.
 -279.50-				
		1.52	N.S.	N.S.
282.55	284.07	1.52	N.S.	N.S.
 284 -07		152	N.S	N.S.
	287.12	1.52	N.S.	N.S.
	288.65	1.52	N.S.	N.S.
	-29017		N.S	—N.S.————
290.17	291.69	1.52	N.S.	N.S.
	293.22	1.52	N.S.	N.S.
		152	N.S	-N.S
294.74	296.27	1.52	N.S.	N.S.
296.27	297.79	1.52	N.S.	N.S.
 297.79	-299 31 	1 5 2	N.S	-N.S
299.31	300.84	1.52	N.S.	N.S.
300.84		1.52	N.S.	N.S.
 30 2.36	-303-89-	—1-52	NS	-N-S-
303.89	305.41	1.52	N.S.	N.S.
305.41	306.93	1.52	N.S.	N.S.
	-308 -46-	1-5 2	N-S	N S
308.46	309.98	1.52	N.S.	N.S.
309.98	311.51	1.52	N.S.	N.S.
 31151	-313.03-	152	N.S	N.S
313.03	314.55	1.52	N.S.	N.S.
314.55	316.08	1.52	N.S.	N.S.
	-317.60 -		N.S	N.S
317.60	319.13	1.52	N.S.	N.S.
319.13	320.65			
 320.65	-320.65 3221-7	1.52 1 - 52	N.S. N.S	N.S.
 322.17	323.70	1.52		-N-S
323.70	325.70		N.S.	N.S.
		1.52	N.S.	N.S.
325.22	326.75	1.52	N.S.	N.S.

- ASSAY-LOG-PROPERTY: tully HOLE No.: 89-3

-Page-2-of-3

	EDOM	mo.	LIT DOU	477	A	
		TO	WIDIH	AU	-Au ·g/t	·
	326.75	327.66	0.91	N.S.	N.S.	
	343.51			N.S.	N.S	••
	345.03	346.56	1.52	N.S.	N.S.	
	346.56	348.08	1.52	N.S.	N.S.	
	348.08	- 349 - 60		N.S	N-S	· ·
	349.60	350.82	1.22	N.S.	N.S.	
	354.91	355.40	0.49	N.S.	N.S.	
	—396.42				-0.549	····-
	397.40		1.83	0.008	0.274	
	399.23				1.303	•
				0-020-		
	401.42		1.52	0.018		
	402.94			0.026		
				0.016		 -
	405.23	405.99		0.042	1.440	
	405.99	407.52	152	0.012	0.411	
	408.13	-408-13 409.04	0.91	0.008	-0-343 0.274	
	409.04	410.56	1.52	0.008	0.960	
	410 - 56			0.002		
	411.39	412.09		0.016	0.549	
		413.55	1.46	0.002	0.069	
	45510					
	456.13		1.01	N.S.	N.S.	
	501.36		0.85	N.S.	N.S.	1
	502.22				-N-S	
	502.52		1.01	N.S.	N.S.	•
	503.53	504.57		N.S.	N.S.	
 -	504.57	-5 05 - 30-			N-S	
	505.30	505.91	0.61	N.S.	N.S.	;
	505.91	506.97	1.07	N.S.	N.S.	
	527 .9 1	-52 9 .44-	152	TRACE-	TRACE	
	529.44	530.96	1.52	TRACE	TRACE	
	530.96	532.48	1.52	0.026	0.892	
	532-48	53319				
	533.09	533.86	0.76		0.069	
	533.86	534.19	0.34	0.042	1.440	
					-1.714	
	534.95			TRACE	TRACE	
	558.33 550.76			0.022	0.754	
				0.112-		
	559.55 560.07	560.07 560.71	0.52	0.014 0.108	0.480	
					3.703 0.617	
	561.35	561.75	0.40	0.008	0.274	
	561.75	562.90	1.16	0.022	0.754	
	5 6290-				-7.475	
	563.30	563.79	0.49	0.044	1.509	
	563.79	564.09	0.30	0.693	23.763	
	564.09	564.40	0.30	0.481	16.493	
					+	

ASSAY LOG	Page-3-of-3-
PROPERTY: tully	_
HOLE No.: 89-3	

564.40 565.25 0.85 0.074 2.537 565.25566.501.25 0.2649.053 566.50 566.84 0.34 0.148 5.075	
566.50 566.84 0.34 0.148 5.075	
599.51 599.88 0.37 0.018 0.617	
599-88600.580.700.0240.823	
600.58 600.88 0.30 0.034 1.166	
600.88 602.59 1.71 0.002 0.069	
603.29 604.75 1.46 0.180 6.172	
604.75 605.15 0.40 0.006 0.206	
605.15605.640.490.30210-356	·
605.64 606.06 0.43 0.176 6.035	
606.06 607.16 1.10 0.002 0.069	
- 607-16 607.770.61 0.072 2.469	· · · · · ·
607.77 608.68 0.91 0.018 0.617	
608.68 609.29 0.61 0.058 1.989	
609-29-609-900-610-1485-075	
609.90 610.21 0.30 0.472 16.185	
610.21 610.51 0.30 0.400 13.716	
610 .5 1610.940.430.91831 .4 78	
610.94 611.34 0.40 0.048 1.646	
611.34 611.85 0.52 0.428 14.676	
611.85-612.19-0.34-0.0461.577	
612.19 613.26 1.07 0.342 11.727	
613.26 614.78 1.52 0.114 3.909	
614.78615.150.37 0.230 7.887	· — · · · · · · · · · ·
615.15 615.45 0.30 0.288 9.876	
615.45 616.30 0.85 0.312 10.698	i
616.30 617.83 0.188 6.447	
617.83 619.35 1.52 0.068 2.332	:
619.35 620.05 0.70 0.236 8.092	
620.05620.880.820.062	
620.88 622.40 1.52 0.028 0.960	
622.40 623.38 0.98 0.006 0.206	
623-38624-350+980.0140+480	
624.35 625.08 0.73 0.018 0.617	
625.08 625.94 0.85 0.414 14.196	
626.97 627.61 0.64 TRACE TRACE	
627.61 627.98 0.37 TRACE TRACE	į

Attn:

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

1W-2132-RA1

Company: A.C.A. HOWE INTERNATIONAL

Project: CYPRUS GOLD

MR. A. JACKSON/MR. K. JOHNSON

Date: JAN-25-91
Copy 1. 1810-1055 W.HASTINGS ST. VANCOUVER B.C.

2. VGE 2E9 FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W. TORONTO ONT.M5J 1C4

We hereby certify the following Assay of 38 CORE samples submitted JAN-23-91 by MURRAY C. ROGERS.

Sample Number	Au g/tonne	Au oz/ton	Au check g/tonne	Au check oz/ton	Au 2nd g/tonne	Au 2nd oz/ton
7001 7002	Ni l Ni l					
7002	Ni l					•
7004	Nil	001				
7005	0.01	.001				
7006	0.04	.001	0.05	.001		
7007	Nil					
7008	Nil		•			
7009	Ni l					
7010	Nil					
7011	Nil					
7012	Ni l 0. 17	.005	•			
7013	0.17	.000				
7014	0.17	.008		.014		
7015	0.16	.00	5			·
7016	0.10	.00				
7017 7018	0.33	.01				
7018 7019	0.07	.00				
7020	0.02	.00	l 			
7021	0.95	.02		- 000	3.60	. 105
7022	3.47	. 10		5 .098	5.00	
7023	0.02	.00				
7024	0.03	.00. 00.				
7025	0.04					
7026	Nil					
7027	Nil					
7028	Ni 1 0. 13	.0	04			
9814	V. 13 Ni l	. •	•			
9815	1411					

certified by Land Dardner

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244

FAX (705) 642-3300

Swastika Laboratories

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-2132-RA1

Company: Project:

Attn:

A.C.A. HOWE INTERNATIONAL

CYPRUS GOLD

MR. A. JACKSON/MR. K. JOHNSON

Date: JAN-25-91 Copy 1. 1810-1055 W.HASTINGS ST. VANCOUVER B.C.

2. VGE 2E9 FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W. TORONTO ONT.MSJ 1C4

We hereby certify the following Assay of 38 CORE samples submitted JAN-23-91 by MURRAY C. ROGERS.

Sample Number	Au g/tonne	Au oz/ton	Au check g/tonne	Au check oz/ton	Au 2nd g/tonne	Au 2nd oz/ton	
9816 9817 9818 9819 9820	0.15 0.73 0.04 Ni 1 Ni 1	.004 .021 .001					
9821 9822 9823	0.62 0.03 Ni l	.018 .001	0.42	.012			

P.O. Box 10, Swastika, Ontario P0K 1T0 FAX (705)642-3300 Telephone (705) 642-3244.

Project:

Attn:

Swastika Laboratories

Assaying - Consulting - Representation

Page 1 of 2

Assav Certificate

1W-2154-RA1

A.C.A. HOWE INTERNATIONAL

CYPRUS GOLD

MR. A. JACKSON/MR. K. JOHNSON

Date: JAN-31-91 Copy 1. 1810-1055 W.HASTINGS ST. VANCOUVER B.C.

2. VGE 2E9 FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W.TORONTO ONT MSJ 1C4

We hereby certify the following Assay of 53 ROCK samples submitted JAN-25-91 by MURRAY ROGERS.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
7029	Ni l		
7030	Ni l		
7031	0.01		
7032	1.07	1.15	
7033 .	Nil		
7034	Nil		
7035	Ni l		
7036	0.14		
7037	0.02		•
7038	Ni l		
7039	Ni l		
7040	0.01		
7041	0.06		
7042	0.01		
7043	0.01		
7044	Nil		
7045	Nil		
7046	0.62	0.50	
7047	0.01		·
7048	0.07		
7049	Nil		
7050	0.01		
7051	Nil		
7052	0.01		
7053	0.03		
7054	0.04		
7055	0.04		
7056	0.01		
7057	0.02		
7058	0.01		

P.O. Box 10, Swastika, Ontario Pok 1T0 Telephone (705) 642-3244 FAX (705)642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-2154-RA1

Company:

A.C.A. HOWE INTERNATIONAL

Project:

CYPRUS GOLD

Attn:

MR. A. JACKSON/MR. K. JOHNSON

Date: JAN-31-91

Copy 1. 1810-1055 W.HASTINGS ST. VANCOUVER B.C.

2. VGE 2E9 FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W.TORONTO ONT M5J 1C4

We hereby certify the following Assay of 53 ROCK samples submitted JAN-25-91 by MURRAY ROGERS.

Sample Number	Au g/tonne	Au check g/tonne	
7059	0.01		
7060	0.01		
7061	0.01		
7062	0.01		
7063	0.01		
7064	0.01		
7065	0.01		
7066	0.01		
7067	0.01		•
7068	0.02		
7069	0.01	0.01	
7070 ·	0.02		
7071	0.01		
7072	Nil		
7073	Nil		
7074	Ni l		
7075	Nil		
7076 '	Nil		
7077	Nil		
7078	Nil		
7079	Nil		
7080	Nil		
7081		Ni l	
7081	Ni l	Ni l	

Certified by Candin

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244 FAX (705) 642-3300

Assaying - Consulting - Representation

Page 1 of 2

Assav Certificate

1W-2170-RA1

Project:

A.C.A. HOWE INTERNATIONAL

CYPRUS GOLD

MR. A. JACKSON/ MR. K. JOHNSON

Date: FEB-07-91

Copy 1. 1810-1055 W.HASTINGS ST. VANCOUVER, B.C. 2. VGE 2E9 FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W.TORONTO.ONT M5J 1C4

We hereby certify the following Assay of 35 ROCK samples submitted JAN-28-91 by MURRAY ROGERS.

Sample Number	Au g/tonne	Au check g/tonne	Au 2nd g/tonne	Au check g/tonne	As ppm	
7082	Ni I				1	• • • • • • • • • • • • • • • • • • • •
7083	0.01				1	
7084	Nil				1	•
7085 .	Nil	0.05			10	
7086	0.06	0.07			150	
7087	0.04				120	
7088	0.07				140	
7089 7090	0.20				170	
7090 7091 ·	3.70 8.30	8.23	7.47	7.34	4300	
	•	0.23	/:7/	7.34	>10000	
7092	4.47				7800	
7093 7094	0.71 5.55	5 40			2200	
709 4 7095	0.01	5.42			9500 80	
7095 7096	Ni I				60	
						•••••
7101	Nil					
	Nil				·	••••••
7103						
7104	Ni l				42	
	0.01				42	
7106	0.01				45	
7107	0.37	0.36			200	
7108	0.25				300	
	0.01				50	
7111	Ni l		•••••			•••••
7097 7098 7099 7100 7101 7102 7103 7104 7105 7106	0.07 0.01 0.13 Ni 1 Ni 1 Ni 1 0.01 0.01 0.37 0.25	0.36			90 40 60 60 60 50 60 42 42 45 200 300	

P.O. Box 10, Swastika, Ontario PoK 1T0 Telephone (705) 642-3244 FAX (705)642-3300

Bell-White analytical laboratories Ltd.

P.O. BOX 187, POJ 1KO

HAILEYBURY, ONTARIO

FAX: (705) 672-5843

Certificate of Analysis

0121

DATE: March

08, 1991

SAMPLE(S) OF:

Pulp (18)

RECEIVED: March

1991

SAMPLE(S) FROM: A.C.A. Howe International,

	Oz.
Sample #	Gold
7083	Trace
7084	0.006
7085	Trace
7086	0.002
7087	0.002
7088	Trace
7089	0.008
7090	0.082
7091	0.223**
7092	0.122**
7093	0.022
7094	0.146**
7095	Trace
7096	Trace
7097	0.002
7098	Trace
7099	0.004
7100	Trace

NOTE: ** denotes checked.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

THESE SATE FOR LOSSES AND GAINS INHERENT IN THE PIRE ASSAY PROCESS.

Assaying - Consulting - Representation

Page 2 of 2

Assav Certificate

1W-2170-RA1

A.C.A. HOWE INTERNATIONAL

Date: FEB-07-91

CYPRUS GOLD Project:

Copy 1. 1810-1055 W.HASTINGS ST. VANCOUVER, B.C.

MR. A. JACKSON/ MR. K. JOHNSON Attn:

2. VGE 2E9 FAX 604-685-3635 & 416-368-2579 3. 1400-22 FRONT ST.W.TORONTO,ONT MSJ 1C4

We hereby certify the following Assay of 35 ROCK samples submitted JAN-28-91 by MURRAY ROGERS.

Sample Number	Au g/tonne	Au check g/tonne	Au 2nd g/tonne	Au check g/tonne	As ppm	
7112	Ni l				18	
7113	Nil				3	
7114	Nil				1	
7115	Nil				<1	•
7116 not rec'd						

P.O. Box 10, Swastika, Ontario PoK 1T0 FAX (705)642-3300 Telephone (705) 642-3244.

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 4

Assay Certificate

1W-2213-RA1

Company: A

A.C.A. HOWE INTERNATIONAL

Project:

CYPRUS GOLD

Attn:

K. JOHNSON/A. JACKSON

Date: FEB-14-91

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

2. FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W.TORONTO, ONT.

We hereby certify the following Assay of 97 ROCK samples submitted FEB-04-91 by MURRAY ROGERS.

Sample	Au	Au	Au check	Au check	Au 2nd	Au 2nd	As
Number	g/tonne	oz/ton	g/tonne	oz/ton	g/tonne	oz/ton	ppm
7117	Ni l						
7118	Ni I						
7119	Ni l						
7120	Nil						•
7121	0.01	.001					
7122	Ni l						
7123	Ni I						
7124	Ni l						
7125	Nil						
7126	0.01	.001	•				
7127	Ni l						
7128	Ni I						
7129	Ni l						
7130	Ni l						
7131	0.09	. 003	0.13	.004			
7132	0.05	.001	*******				
7133	Ni 1						
7134	Ni l						
7135	0.25	. 007	0.24	.007		•	
7136	Ni l						
7137	Ni l						
7138	Ni l						
7139	Ni I						
7140	Ni l						
7141	Ni l						
7142	Nil						
7143	Ni l						
7144	Ni l						
7145	Ni 1						
7146	Ni I						

Certified by Donna Landon

P.O. Box 10, Swastika, Ontario P0K 1T0
Telephone (705) 642-3244 FAX (705) 642-3300

Swastika Laboratories

Assaying - Consulting - Representation

Page 2 of 4

Assay Certificate

1W-2213-RA1

A.C.A. HOWE INTERNATIONAL

CYPRUS GOLD Project: Attn:

K. JOHNSON/A. JACKSON

Date: FEB-14-91

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

2. FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W.TORONTO, ONT.

We hereby certify the following Assay of 97 ROCK samples submitted FEB-04-91 by MURRAY ROGERS.

Sample	Au	Αυ		Au check	Au 2nd	Au 2nd	As
Number	g/tonne	oz/ton	g/tonne	oz/ton	g/tonne	oz/ton	ppm
7147	Nil						
7148	Ni l						
7149	Ni l						
7150	0.02	.001					•
7151	Ni l						
7152	Ni l						
7153	Nil						
7154	Ni l						
7155	0.09	.003	0.07	.002			
7156	0.04	.001					
7157	0.08	.002					
7158	Ni l						
7159	Ni l						
7160	Ni l						
7161	0.05	.001					
7162	Ni l						
7163	0.03	.001					
7164	0.07	.002					
7165	0.32	.009					
7166	0.33	.010					
7167	0.05	.001					
7168	0.33	.010	0.41	.012			
7169	0.02	.001					
7170	Ni l						
7171	Ni l						
7172	Nil						
7173	Ni l						
7174	Ni l						0.7
7175	Ni l						27
7176	Ni l						29

P.O. Box 10, Swastika, Ontario PoK 1T0 FAX (705)642-3300 Telephone (705) 642-3244

A Division of Assayers Corporation Ltd

Assaying - Consulting - Representation

Page 3 of 4

Assay Certificate

1W-2213-RA1

Company: A.C.A. HOWE INTERNATIONAL

Date: FEB-14-91

Project: CYPRUS GOLD

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

3. 1400-22 FRONT ST.W.TORONTO, ONT.

Atta: K. JOHNSON/A. JACKSON

2. FAX 604-685-3635 & 416-368-2579

We hereby certify the following Assay of 97 ROCK samples submitted FEB-04-91 by MURRAY ROGERS.

Sample	Au	Au	Au check	Au check	Au 2nd	Au 2nd	As
Number	g/tonne	oz/ton	g/tonne	oz/ton	g/tonne	oz/ton	ppm
7177	Nil						40
7178	0.03	.001					160
7179	3.77	. 110					8800
7180	10.01	. 292	9.74	.284			>10000
7181	0.57	.017					1400
7182	0.55	.016					2300
7183	10.97	. 320	10.63	.310	10.77	.314	>10000
7184	0.02	.001					90
7185	Ni l		•				70
7186	0.02	.001					90
7187	Nil						60
7188	0.04	.001					80
7189	0.04	.001					55
7190	Ni l						55
7191	Ni I						60
7192	Nil						60
7193	Ni I						50
7194	Ni l						29
7195	Nil						32
7196	0.25	.007					30
7197	0.04	.001					80
7198	1.51	. 044					3200
7199	3.02	. 088	2.95	. 086			3900
7200	0.11	.003					240
7201	0.03	.001					70
7202	Ni l						27
7203	Ni l						14
7204	Ni l						19
7205	Ni l						70
7206	Ni l						9

Certified by Dina Landner

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244. FAX (705) 642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 4 of 4

Assay Certificate

1W-2213-RA1

Сотралу:

A.C.A. HOWE INTERNATIONAL

Project: (

CYPRUS GOLD

Attn:

K. JOHNSON/A. JACKSON

Date: FEB-14-91

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

2. FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W.TORONTO, ONT.

We hereby certify the following Assay of 97 ROCK samples submitted FEB-04-91 by MURRAY ROGERS.

Sample Number	Au g/tonne	Au oz/ton	Au check g/tonne	Au 2nd g/tonne	Au 2nd oz/ton	As ppm
7207 7208 7209	Ni l Ni l Ni l Ni l		Ni l			3 <1
7210 7211 7212 7213	Ni l Ni l Ni l Ni l			 		

Cenified by Dana Hardine

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244 FAX (705) 642-3300

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Assay Certificate

Page

1W-:

Company: A.C.A. HOWE INTERNATIONAL

Date: FE

Project:

Copy 1. VANCOUVER

Attn:

2. TORONTO

We hereby certify the following Assay of 59 ROCK samples submitted FEB-06-91 by.

Sample Number	Αu	Au	check	
Number	ppb		ppb	
07214	Nil		NII	
07215	Nil			
07216	NII			•
07217	NII			
07218	NII			
07219	NII			
07220	Nil			
07221	Ni l			
07222	Nil			
07223	NII			
07224	Nil	••••		
07225	10		NII	
07226	Nil		• • • •	
07227	Nil			
07228	NII			
07229	NII .		•••••	
07230	Ni l			
07231	Nil			
07232	Nii			
07233	NII			
07234	Nii	• • • •		
07235	10			
	Nil			
07237	10			
	NII			
******************				•
	Ni l			
07241	Nil			
	315		278	
07243	NII			
V/47j	65	••••		••••••••

P.O. Box 10, Swastika, Ontario PoK 1T0 Telephone (705) 642-3244 FAX (705)642-3300 SENT BY: XEROX Telecopier 7017; 2-12-91; 13:39;

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Assay Certificate

Page

1W-

Company: A.C.A. HOWE INTERNATIONAL

Date: FF

Project:

Copy 1. VANCOUVER

Attn:

2. TORONTO

We hereby certify the following Assay of 59 ROCK samples submitted FEB-06-91 by .

Sample Number p	Αu	Αш	check	
••••	pb		ppb	
	li 1 34			
	48			•
07247 8	64			
07248 13	95		1378	
07249 12		,	1347	
	11 1			
	li 1			
	H 1 H 1			

	41			
	i i			
	11			
	11		• • • • • •	
	43 ·		257	
	11			
	ii 1 ii 1			•
	ii			
**********	ii			
	ii			
	i I			
	11			
	34		::=-	
	47 27		117	
	37 03			
_ ·	11			
	- - 			

P.O. Box 10, Swastika, Ontario POK 1T0 FAX (705)642-3300 Telephone (705) 642-3244.

Project:

Attn:

Swastika Laboratories

Assaying - Consulting - Representation

Page 1 of 3

Assav Certificate

1W-2265-RA1

A.C.A. HOWE INTERNATIONAL

K. JOHNSON/A. JACKSON

CYPRUS GOLD

Date: FEB-13-91 Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

2. FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W. TORONTO, ONT.

We hereby certify the following Assay of 75 SPLIT CORE samples

submitted FEB-07-91 by.

	As
Number ppb ppb p	bw -
7274 Ni I	
7275 Ni l	
7276 Ni l	
7277 254 206	•
7278 190	
7279 130	
7280 Ni l	
7281 Ni I	
7282 Ni l	
7283 24	,
7284 Ni l	
7285	
7286 219 240	
7287 99	
7288 Ni l	
7289 Ni l	
7290 Ni l	
7291 Ni l	
7292 Ni l	
7293 Ni l	
7294 41	
7295 744	
7296 1330 1029	
7297 780	
7298 31	
7299 Ni l	
7300 Ni l	
7558 Ni 1	
7559 Ni l	
7560 Ni l	

certified by Lonna Handner

P.O. Box 10, Swastika, Ontario P0K 1T0 FAX (705)642-3300 Telephone (705) 642-3244

Assaying - Consulting - Representation

Page 2 of 3

Assav Certificate

1W-2265-RA1

A.C.A. HOWE INTERNATIONAL

CYPRUS GOLD

Date: FEB-13-91 Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

Project:

2. FAX 604-685-3635 & 416-368-2579

K. JOHNSON/A. JACKSON Atta:

3. 1400-22 FRONT ST.W. TORONTO, ONT. We hereby certify the following Assay of 75 SPLIT CORE samples

submitted FEB-07-91 by.

Sample	Au Au o	check	As	
Number	ppb	ppb	ppm	
7561	Ni l			
7562	Ni l			
7563	Ni l			
7564	Ni l			•
7565	Ni l			
7566	Ni l			
7567	Ni l			
7568	Ni l			
7569	Ni l			
7570	7	Ni l	•	
7571	Ni l			
7572	Ni l			
7573	Ni l			
7574	Ni l			
7575	Ni I			
7701	Ni l			
7702	Ni l			
7703	14			
7704	Ni l			
7705	Ni l			
7706	Ni l			
7707	62			
7708	Ni l			
7709	Ni l			
7710	17			
7711	1865	1875		•••••••
7712	819			
7713	730			
7714	1474			
7715	38			
				• • • • • • • • • • • • • • • • • • • •

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705)642-3300

Project:

Attn:

Swastika Laboratories

A Division of Assayers Corporation Ltd

Assaying - Consulting - Representation

Page 3 of 3

Date: FEB-13-91

Assay Certificate

1W-2265-RA1

Company: A.C.A. HOWE INTERNATIONAL

CYPRUS GOLD K. JOHNSON/A. JACKSON Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

2. FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W. TORONTO, ONT.

We hereby certify the following Assay of 75 SPLIT CORE samples submitted FEB-07-91 by .

7716 Ni I 7717 Ni I 7718 Ni I 7719 7337 7543 6789 7720 823 7721 127 7722 3158 2949 7723 Ni I 7724 600 7725 213 7726 874 7727 1920 2191 7728 Ni I 7729 Ni I 7730 Ni I	Sample Number	Au ppb	Au check ppb	As ppm	
7718 Ni 1 7719 7337 7543 6789 7720 823 7721 127 7722 3158 2949 7723 Ni 1 7724 600 7725 213 7726 874 7727 1920 2191 7728 Ni 1 7729 Ni 1	7716				• • • • • • • • • • • • • • • • • • • •
7719 7337 7543 6789 7720 823 7721 127 7722 3158 2949 7723 Ni 1 7724 600 7725 213 7726 874 7727 1920 2191 7728 Ni 1 7729 Ni 1	7717	Ni l			
7719 7337 7543 6789 7720 823 7721 127 7722 3158 2949 7723 Ni 1 7724 600 . 7725 213 7726 874 7727 1920 2191 7728 Ni 1 7729 Ni 1	7718	Ni 1			
7721 127 7722 3158 2949 7723 Ni 1 7724 600 . 7725 213 7726 874 7727 1920 2191 7728 Ni 1 7729 Ni 1	7719	7337	7543	6789	•
7722 3158 2949 7723 Ni 1 7724 600 . 7725 213 7726 874 7727 1920 2191 7728 Ni 1 7729 Ni 1	7720	823			
7723 Ni l 7724 600 7725 213 7726 874 7727 1920 2191 7728 Ni l 7729 Ni l	7721	127			
7724 600 . 7725 213 7726 874 7727 1920 2191 7728 Ni I 7729 Ni I	7722	3158	2949		
7725 213 7726 874 7727 1920 2191 7728 Ni I 7729 Ni I	7723	Ni l			
7726 874 7727 1920 2191 7728 Ni I 7729 Ni I	7724	600		•	
7727 1920 2191 7728 Ni I 7729 Ni I	7725	213			
7728 Ni l 7729 Ni l	7726	874			
7729 Ni I	7727	1920	2191		
	7728	Ni l			
7730 Ni I	7729	Ni I			
	7730	Ni l			

Certified by Lionna Hardner

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244. FAX (705) 642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

A.C.A. HOWE INTERNATIONAL

Project: **CYPRUS GOLD** Atta:

K. JOHNSON/A. JACKSON

1W-2298-RG1

Date: FEB-14-91

2. 1400-22 FRONT ST.W.TORONTO.ONT.

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

3. FAX 604-685-3635 & 416-368-2579

We hereby certify the following Geochemical Analysis of 36 ROCK samples submitted FEB-12-91 by.

Sample	Au	As	
Number	ppb	ppm	
7576	Nil		
7577	31		
7578	55/65		
7579	Ni I		•
7580	Ni l		
7581	Ni l	••••••••••••••••	
7582	Nil		
7583	Ni l		
7584	Nil		
7585	Ni l	•	
7586	Ni I		•••••
7587	Nil		
7588	Nil		
7589	Ni l		
7590	Ni l		
7591	Ni l /Ni l		
7592	Ni l		
7593	Ni l		
7594	7		
7595	Ni l		
7596	Ni l	***************************************	
7597	Ni l		
7598	Ni l		
7599	Nil		
7600	Nil		
7601	Nil		
7602	Nil		
7603	Nil		
7604	Nil		
7605	Ni I/Ni I		

P.O. Box 10, Swastika, Ontario PoK 1T0 Telephone (705) 642-3244 FAX (705)642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

1W-2298-RG1

Company: A.C.A. HOWE INTERNATIONAL

Date: FEB-14-91

Project: CYPRUS GOLD

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

Attn: K. JOHNSON/A. JACKSON

1400-22 FRONT ST.W.TORONTO,ONT.
 FAX 604-685-3635 & 416-368-2579

We hereby certify the following Geochemical Analysis of 36 ROCK samples

submitted FEB-12-91 by.

Sample Number	Au ppb	As ppm	
7606	Ni l		••••••••••••••••
7731	Ni l	2	
7732	Ni I	5	
7733	Nil	3	•
7734	Ni l	1	
7735	Ni I	3	

Certified by Donna Landia

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244. FAX (705) 642-3300

Assaying - Consulting - Representation

Page 1 of 4

Geochemical Analysis Certificate

1W-2299-RG1

A.C.A. HOWE INTERNATIONAL

Date: FEB-15-91

CYPRUS GOLD Project:

Copy 1. 1810-1055 W.HASTINGS ST. VANCOUVER B.C.

K. JOHNSON/A.JACKSON Atta:

2. FAX 604-685-3635 & 416-368-2579 3. 1400-22 FRONT ST.W.TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 95 ROCK samples submitted FEB-12-91 by.

Sample Au	Au check	
Number ppb	ppb	
07607 Ni i		
07608 Ni l		
07609 Ni l	Nil	
07610 Ni l		
07611 Nil		
07612 Ni I		
07613 Ni l		
07614 Ni l		
07615 Ni l		•
07616 Ni l		
07617 Ni 1	Ni l	
07618 Ni l		
07619 Ni 1		
07620 10		
07621 Ni l		
07622 Ni l		
07623 7		
07624 Ni l		
07625 Ni l		
07626 Ni l		
07627 31		
07628 17		
07629 137	117	
07630 Ni 1		
07631 75		
07632 936	874	
07633 243	2	
07634 Ni l		
0763 <u>5</u> Ni l		
>07651 Ni l		

P.O. Box 10, Swastika, Ontario P0K 1T0 FAX (705)642-3300 Telephone (705) 642-3244

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

1W-2356-RG1

Company: A.C.A. HOWE INTERNATIONAL

Date: FEB-22-91

Project: CYPRUS GOLD

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C. 2. FAX TO 604-685-3635 & 416-368-2579

Attn: K. JOHNSON/A. JACKSON

3. 1400-22 FRONT ST.W. TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 15 SPLIT CORE samples submitted FEB-19-91 by MURRAY ROGERS.

07636 21 07637 10 07638 10 07639 14 07640 34 27 07641 21 07642 14 07643 17 07644 14 07645 14 07646 14 07647 Ni1 07648 Ni1 07649 1111 1087	Sample Number	Au ppb	Au check ppb	
07638 10 07639 14 07640 34 27 07641 21 07642 14 07643 17 07644 14 07645 14 07646 14 07647 Ni 1 07648 Ni 1 07649 1111 1087		21		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
07638 10 07639 14 07640 34 27 07641 21 07642 14 07643 17 07644 14 07645 14 07646 Ni 1 07647 Ni 1 07648 Ni 1 07649 1111 1087		10		
07639 14 07640 34 27 07641 21 07642 14 07643 17 07644 14 07645 14 10 07646 14 07647 Ni1 07648 Ni1 07649 1111 1087	07638			
07640 34 27 07641 21 07642 14 07643 17 07644 14 . 07645 14 10 07646 14 . 07647 Ni 1 07648 Ni 1 07649 1111 1087	07639			·
07642 14 07643 17 07644 14 07645 14 07646 14 07647 Ni 1 07648 Ni 1 07649 1111 1087	07640		27	
07642 14 07643 17 07644 14 07645 14 07646 14 07647 Ni 1 07648 Ni 1 07649 1111 1087	07641	21		***************************************
07643 17 07644 14 07645 14 07646 14 07647 Ni 1 07648 Ni 1 07649 1111 1087				
07644 14 07645 14 07646 14 07647 Ni 1 07648 Ni 1 07649 1111 1087				
07645 14 10 07646 14 07647 Ni l 07648 Ni l 07649 1111 1087				
07647 Ni l 07648 Ni l 07649 1111 1087			10	
07647 Ni l 07648 Ni l 07649 1111 1087	07646	14	•••••	••••••••••••••••••••••••••••••••••••
07648 Ni l 07649 1111 1087	07647			
07649 1111 1087	07648			
••••			1087	
07650 10	07650	10		

Certified by Donna Handner

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244 FAX (705) 642-3300

Assaying - Consulting - Representation

Page 2 of 4

Date: FEB-15-91

Geochemical Analysis Certificate

1W-2299-RG1

A.C.A. HOWE INTERNATIONAL

CYPRUS GOLD

K. JOHNSON/A.JACKSON Attn:

Copy 1. 1810-1055 W.HASTINGS ST. VANCOUVER B.C.

2. FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W.TORONTO. ONT.

We hereby certify the following Geochemical Analysis of 95 ROCK samples

submitted FEB-12-91 by.

Sample	Au	Au check	
Number	ppb	ppb	
07652	10		
07653	Ni l		
07654	24		
07655	Ni l		•
07656	Nil		
07657	58		
07658	Ni I		
07659	147	189	
07660	10		
07661	Nil		•
07662	Nil		
07663	Ni l		
07664	Ni l		
07665	Ni l		
07666	Nil		
07667	38		
07668	10		
07669	216		
07670	161		
07671	182		
07672	727	706	
07673	123		
07674	Ni I		
07675	339		
07676	374		
07677	127		
07678	243		
07679	223		
07680	2033	1985	
07681	151		

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244. FAX (705)642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 3 of 4

Geochemical Analysis Certificate

1W-2299-RG1

Company: A.C.A. HOWE INTERNATIONAL

Date: FEB-15-91

Project: CYPRUS GOLD

07744

07745

Copy 1. 1810-1055 W.HASTINGS ST. VANCOUVER B.C.

Attn: K. JOHNSON/A.JACKSON

FAX 604-685-3635 & 416-368-2579
 1400-22 FRONT ST.W.TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 95 ROCK samples submitted FEB-12-91 by.

Ni l Ni l

Sample	Au	Au check	
Number	ppb	ppb	
07682	Ni l		
07683	Ni l		
07684	Ni l		
07685	Ni l		
07686	Ni l		
07687	Ni l		
07688	Ni l		
07689	Ni l		
07690	147		•
07691	254	278	
07692	Ni l		
07693	Nil		
07694	27		
07695	Nil		
07696	175	178	
07697	Ni l		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
07698	Nil		
07699	Ni l		
07700	Ni l		
07735	Nil		
07736	Ni I		
07737	Ni I		
07738	Ni I		
07739	34	41	
07740	Nil		
07741	Ni l		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
07742	Nil		
07743	Nil		
1 · T			

certified by Donna Hardren

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244 FAX (705) 642-3300

Atta:

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 4 of 4

Geochemical Analysis Certificate

1W-2299-RG1

Company: A.C.A. HOWE INTERNATIONAL

K. JOHNSON/A.JACKSON

Date: FEB-15-91

Project: CYPRUS GOLD

Copy 1. 1810-1055 W.HASTINGS ST. VANCOUVER B.C.

2. FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W.TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 95 ROCK samples

submitted FEB-12-91 by .

Au Au ppb	check ppb		
Ni l			
Ni l			
Nil			
Ni l	Ni l		•
	ppb Ni l Ni l Ni l	ppb ppb Ni l Ni l Ni l	ppb ppb Ni l Ni l Ni l

Certified by Donna Landner

P.O. Box 10, Swastika, Ontario P0K 1T0
Telephone (705) 642-3244
FAX (705) 642-3300

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

1W-2358-RG1

A.C.A. HOWE INTERNATIONAL Соправу:

Date: FEB-21-91

CYPRUS GOLD Project:

Copy 1. 1810-1055 W.HASTINGS ST. VANCOUVER B.C.

2. FAX TO 604-685-3635 & 416-368-2579

K. JOHNSON/A. JACKSON

3. 1400-22 FRONT ST.W. TORONTO, ONT

We hereby certify the following Geochemical Analysis of 47 SPLIT CORE samples submitted FEB-19-91 by MURRAY ROGERS.

Sample	Au	Au check	Au 2nd	As	
Number	ppb	ppb	ppb	ppm	
07751	24				
07752	Nil				
07753	Nil				•
07754	21				
07755	21				
07756	17	10			
07757	27				
07758	34				
07759	14		•		
07760	21				
07761	10				
07762	14				
07763	10				
07764	14				
07765	17				
07766	7				
07767	27				
07768	24				
07769	3350	3370			
07770	357		•		
07771	1896				
07772	415				
07773	240				
07774	127				
07775	857				
07776	8297	8572	8194		,
07777	24	•			
07778	62	65			
07779	243				
07780	8503	8091	7989		

Arsenic results to follow.

P.O. Box 10, Swastika, Ontario P0K 1T0 FAX (705)642-3300 Telephone (705) 642-3244

A Division of Assayers Corporation Ltd

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

1W-2358-RG1

Company:

A.C.A. HOWE INTERNATIONAL

Date: FEB-21-91

Project:

CYPRUS GOLD

Copy 1. 1810-1055 W.HASTINGS ST. VANCOUVER B.C.

Attn:

K. JOHNSON/A. JACKSON

FAX TO 604-685-3635 & 416-368-2579
 1400-22 FRONT ST.W. TORONTO, ONT

We hereby certify the following Geochemical Analysis of 47 SPLIT CORE

samples submitted FEB-19-91 by MURRAY ROGERS.

Sample Number	Au ppb	Au check ppb	Au 2nd ppb	As ppm	
07781	4197				
07782	45				
07783	14				
07784	7				•
07785	62				
07786	785	960			
07787	41				
07788	638				
07789	381		•		
07790	415				
07791	422				
07792	1593				
07793	2205	2537			
07794	45				
07795	17				
07796	24				
07797	10				

Arsenic results to follow.

certified by Doma Hardin

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244. FAX (705) 642-3300

Swastika Laboratories

Assaying - Consulting - Representation

Page 1 of 3

Geochemical Analysis Certificate

1W-2290-RG1

A.C.A. HOWE INTERNATIONAL Company:

Project: **CYPRUS-TULLY**

Date: FEB-14-91 Copy 1. 1810-1055 W, HASTINGS ST. VANCOUVER B.C.

K. JOHNSON/A. JACKSON Attn:

2. FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W. TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 80 ROCK samples submitted FEB-11-91 by .

Number ppb 9201 Ni1 9202 38 9203 Ni1 9204 Ni1 9206 Ni1 9207 Ni1 9208 Ni1 9209 381/322 9210 967/861 9211 Ni1 9212 Ni1 9212 Ni1 9214 Ni1 9215 Ni1 9215 Ni1 9216 Ni1 9217 Ni1 9218 Ni1 9217 Ni1 9218 Ni1 9219 Ni1 9220 Ni1 9220 Ni1 9220 Ni1 9222 10 9223 41/41 9224 Ni1 9224 Ni1 9224 Ni1 9225 Ni1 9226 Ni1 9227 Ni1 9228 Ni1 9228 Ni1 9229 Ni1 9220 Ni1 9220 Ni1 9221 Ni1 9222 10 9223 41/41 9224 Ni1 9225 Ni1 9226 Ni1 9227 Ni1 9228 Ni1 9228 Ni1 9229 Ni1 9220 Ni1 9220 Ni1 9220 Ni1 9220 Ni1	Sample	Au	
9202 38 9203 Ni1 9204 Ni1 9205 Ni1 9206 Ni1 9207 Ni1 9209 381/322 9210 967/861 9211 Ni1 9212 Ni1 9213 Ni1 9214 Ni1 9215 Ni1 9215 Ni1 9216 Ni1 9217 Ni1 9218 Ni1 9218 Ni1 9219 Ni1 9219 Ni1 9219 Ni1 9220 Ni1 9220 Ni1 9220 Ni1 9221 Ni1 9222 10 9223 41/41 9225 Ni1 9226 Ni1 9226 Ni1 9227 Ni1 9228 Ni1 9228 Ni1 9229 Ni1	Number	ppb	
9202 38 9203 Ni1 9204 Ni1 9205 Ni1 9206 Ni1 9207 Ni1 9209 381/322 9210 967/861 9211 Ni1 9212 Ni1 9213 Ni1 9214 Ni1 9215 Ni1 9215 Ni1 9216 Ni1 9217 Ni1 9218 Ni1 9218 Ni1 9219 Ni1 9219 Ni1 9219 Ni1 9220 Ni1 9220 Ni1 9220 Ni1 9221 Ni1 9222 10 9223 41/41 9225 Ni1 9226 Ni1 9226 Ni1 9227 Ni1 9228 Ni1 9228 Ni1 9229 Ni1	9201	Ni I	
9204 Nil 9205 Nil 9206 Nil 9207 Nil 9208 Nil 9209 381/322 9210 967/861 9211 Nil 9212 Nil 9213 Nil 9214 Nil 9215 Nil 9216 Nil 9217 Nil 9218 Nil 9219 Nil 9219 Nil 9220 Nil 9220 Nil 9220 Nil 9221 Nil 9222 10 9223 41/41 9224 Nil 9224 Nil 9225 Nil 9225 Nil 9226 Nil 9227 Nil 9226 Nil 9227 Nil 9227 Nil 9228 Nil		38	
9206 Ni I 9207 Ni I 9208 Ni I 9209 381/322 9210 967/861 9211 Ni I 9212 Ni I 9213 Ni I 9214 Ni I 9215 Ni I 9216 Ni I 9217 Ni I 9218 Ni I 9219 Ni I 9219 Ni I 9219 Ni I 9220 Ni I 9220 Ni I 9221 Ni I 9222 I O 9223 41/41 9224 Ni I 9225 Ni I			
9206 Ni I 9207 Ni I 9208 Ni I 9209 381/322 9210 967/861 9211 Ni I 9212 Ni I 9213 Ni I 9214 Ni I 9215 Ni I 9216 Ni I 9217 Ni I 9218 Ni I 9219 Ni I 9220 Ni I 9220 Ni I 9222 I O 9223 41/41 9224 Ni I 9224 Ni I 9225 Ni I 9226 Ni I 9227 Ni I 9228 Ni I 9227 Ni I 9228 Ni I 9227 Ni I 9228 Ni I 9229 Ni I			•
9207 Nil 9208 Nil 9209 381/322 9210 967/861 9211 Nil 9212 Nil 9213 Nil 9214 Nil 9215 Nil 9216 Nil 9217 Nil 9218 Nil 9219 Nil 9220 Nil 9220 Nil 9222 10 9223 41/41 9224 Nil 9225 Nil 9226 Nil 9227 Nil 9228 Nil 9228 Nil 9229 Nil	9205	Ni 1	
9207 Nil 9208 Nil 9209 381/322 9210 967/861 9211 Nil 9212 Nil 9213 Nil 9214 Nil 9215 Nil 9216 Nil 9217 Nil 9218 Nil 9219 Nil 9220 Nil 9220 Nil 9222 10 9223 41/41 9224 Nil 9225 Nil 9226 Nil 9227 Nil 9228 Nil 9228 Nil 9229 Nil	9206	Ni l	
9208 Nil 9209 381/322 9210 967/861 9211 Nil 9212 Nil 9213 Nil 9214 Nil 9215 Nil 9216 Nil 9217 Nil 9218 Nil 9219 Nil 9220 Nil 9220 Nil 9222 l0 9223 41/41 9224 Nil 9225 Nil 9226 Nil 9227 Nil 9227 Nil 9228 Nil 9229 Nil 9229 Nil 9229 Nil			
9209 381/322 9210 967/861 9211 Ni 1 9212 Ni 1 9213 Ni 1 9214 Ni 1 9215 Ni 1 9216 Ni 1 9217 Ni 1 9218 Ni 1 9219 Ni 1 9220 Ni 1 9220 Ni 1 9222 10 9223 41/41 9224 Ni 1 9225 Ni 1 9226 Ni 1 9227 Ni 1 9228 Ni 1 9228 Ni 1 9229 Ni 1 9229 Ni 1			
9211 Nil 9212 Nil 9213 Nil 9214 Nil 9215 Nil 9216 Nil 9217 Nil 9218 Nil 9219 Nil 9220 Nil 9222 10 9222 10 9223 41/41 9224 Nil 9225 Nil 9226 Nil 9227 Nil 9228 Nil 9229 Nil 9229 Nil	9209		
9212 Ni 1 9213 Ni 1 9214 Ni 1 9215 Ni 1 9216 Ni 1 9217 Ni 1 9218 Ni 1 9219 Ni 1 9220 Ni 1 9220 Ni 1 9222 10 9223 41/41 9224 Ni 1 9225 Ni 1 9225 Ni 1 9226 Ni 1 9227 Ni 1 9228 Ni 1 9228 Ni 1 9229 Ni 1	9210	967/861	·
9212 Ni 1 9213 Ni 1 9214 Ni 1 9215 Ni 1 9216 Ni 1 9217 Ni 1 9218 Ni 1 9219 Ni 1 9220 Ni 1 9220 Ni 1 9222 10 9223 41/41 9224 Ni 1 9225 Ni 1 9225 Ni 1 9226 Ni 1 9227 Ni 1 9228 Ni 1 9228 Ni 1 9229 Ni 1	9211	Ni l	
9213 Nil 9214 Nil 9215 Nil 9216 Nil 9217 Nil 9218 Nil 9219 Nil 9220 Nil 9221 Nil 9222 10 9223 41/41 9224 Nil 9225 Nil 9226 Nil 9227 Nil 9228 Nil 9229 Nil	9212		
9215 Ni l 9216 Ni l 9217 Ni l 9218 Ni l 9219 Ni l 9220 Ni l 9221 Ni l 9222 10 9223 41/41 9224 Ni l 9225 Ni l 9226 Ni l 9227 Ni l 9228 Ni l 9229 Ni l	9213		
9216 Nil 9217 Nil 9218 Nil 9219 Nil 9220 Nil 9221 Nil 9222 10 9223 41/41 9224 Nil 9225 Nil 9226 Nil 9227 Nil 9228 Nil 9229 Nil			
9217 Nil 9218 Nil 9219 Nil 9220 Nil 9221 Nil 9222 10 9223 41/41 9224 Nil 9225 Nil 9226 Nil 9227 Nil 9228 Nil 9229 Nil	9215	Ni l	
9217 Nil 9218 Nil 9219 Nil 9220 Nil 9221 Nil 9222 10 9223 41/41 9224 Nil 9225 Nil 9226 Nil 9227 Nil 9228 Nil 9229 Nil	9216	Ni l	
9219 Ni l 9220 Ni l 9221 Ni l 9222 10 9223 41/41 9224 Ni l 9225 Ni l 9226 Ni l 9227 Ni l 9228 Ni l 9229 Ni l		Ni l	
9221 Nil 9222 10 9223 41/41 9224 Nil 9225 Nil 9226 Nil 9227 Nil 9228 Nil 9229 Nil			
9221 Nil 9222 10 9223 41/41 9224 Nil 9225 Nil 9226 Nil 9227 Nil 9228 Nil 9229 Nil			
9222 10 9223 41/41 9224 Ni 1 9225 Ni 1 9226 Ni 1 9227 Ni 1 9228 Ni 1 9229 Ni 1	9220	Ni l	
9223 41/41 9224 Ni l 9225 Ni l 9226 Ni l 9227 Ni l 9228 Ni l 9229 Ni l	9221	Ni I	
9224 Ni l 9225 Ni l 9226 Ni l 9227 Ni l 9228 Ni l 9229 Ni l			
9225 Ni l 9226 Ni l 9227 Ni l 9228 Ni l 9229 Ni l			
9226 Ni l 9227 Ni l 9228 Ni l 9229 Ni l			
9227 Ni l 9228 Ni l 9229 Ni l	9225	Ni l	
9227 Ni l 9228 Ni l 9229 Ni l	9226	Ni l	
9228 Ni l 9229 Ni l	9227	Nil	
9229 Ni I 9230 Ni I	9228	Ni l	
9230 Ni I	9229		
	9230	Ni l	

P.O. Box 10, Swastika, Ontario Pok 1T0 Telephone (705) 642-3244 FAX (705)642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 3

Geochemical Analysis Certificate

1W-2290-RG1

Company: A.C.A. H

Attn:

A.C.A. HOWE INTERNATIONAL

Project: CYPRUS-TULLY

K. JOHNSON/A. JACKSON

Date: FEB-14-91

Copy 1. 1810-1055 W,HASTINGS ST.VANCOUVER B.C. 2. FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W. TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 80 ROCK samples submitted FEB-11-91 by .

Sample	Au	
Number	ppb	
9231	Ni I	
9232	Ni l	
9233	Ni l	
9234	Ni l	•
9235	Ni l	
9236	10	
9237	Ni l	
9238	Ni l	
9239	Ni l	•
9240	Ni l	
9241	Ni I	
9242	38	
9243	NI I	
9244	429/449	
9245	14	
9246	Ni I	
9247	Ni l	
9248	Ni l	
9249	24	
9250	Ni l	
9251	Ni l	
9252	Nil	
9253	Ni l	
9254	Ni l	
9255	Ni 1/Ni 1	
9256	Ni I	
9257	Ni l	
9258	Nil	
9259	Ni l	
9260	Nil	

Certified by Dona Hard-o-

P.O. Box 10, Swastika, Ontario P0K 1T0
Telephone (705) 642-3244. FAX (705) 642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 3 of 3

Geochemical Analysis Certificate

1W-2290-RG1

Company: A.C.A. HOWE INTERNATIONAL

Date: FEB-14-91

Project: CYPRUS-TULLY

Copy 1. 1810-1055 W, HASTINGS ST. VANCOUVER B.C.

Attn: K. JOHNSON/A. JACKSON

2. FAX 604-685-3635 & 416-368-2579
3. 1400-22 FRONT ST.W. TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 80 ROCK samples submitted FEB-11-91 by.

Sample	Au	
Number	ppb	
9261	10	
9262	Nil	
9263	Nil	
9264	Ni l	
9265	Nil	
9266	10	
9267	Ni l	
9268	576/566	
9269	10	
9270	Ni l	
9271	Ni l	
9272	Ni l	
9273	Nil	
9274	10	
9275	7	
9276	Ni l	
9277	Ni l/Ni l	
9278	Ni l	
9279	Ni l	
9280	Ni l	

certified by Lines Handre

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244. FAX (705) 642-3300

Swastika Laboratories

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

1W-2291-RG1

Company:

Attn:

A.C.A. HOWE INTERNATIONAL

CYPRUS-TULLY Project: K. JOHNSON/A. JACKSON Date: FEB-14-91

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

2. FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W.TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 46 ROCK samples

submitted FEB-11-91 by .

Sample	Αu	Au check	
Number	ppb	ppb	
9281	Ni l		
9282	Ni l		
9283	Ni l		
9284	Ni l		·
9285	Ni l		
9286	21	34	
9287	Ni l		
9288	Ni l		
9289	Nil		
9290	Nil		
9291	Nil		
9292	Ni l		
9293	Ni l		
9294	Ni l		•
9295	Ni I		
9296	17		
9297	62	34	
9298	7		
9299	Ni l		
9300	Nil		
9301	Ni l		
9302	Ni I		
9303	31	45	
9304	Ni l		
9305	Ni l		
9306	7		
9307	Ni l		
9308	Ni l		
9309	Ni l		
9310	Ni l		

P.O. Box 10, Swastika, Ontario P0K 1T0 FAX (705)642-3300 Telephone (705) 642-3244.

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

1W-2291-RG1

Project:

Attn:

A.C.A. HOWE INTERNATIONAL

CYPRUS-TULLY

K. JOHNSON/A. JACKSON

Date: FEB-14-91

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

2. FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W.TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 46 ROCK samples

submitted FEB-11-91 by.

Sample Number	Au ppb	Au check ppb	
9311	10		
9312	Ni 1		
9313	53		
9314	31		•
9315	1008	1015	
9316	17		
9317	34		
9318	Ni I		
9319	Ni l		
9320	10		•
9321	Ni l		***************************************
9322	Ni l		
9323	Ni l		
9324	Ni l		
9325	Ni l		
9326	Ni l		

P.O. Box 10, Swastika, Ontario PoK 1T0 Telephone (705) 642-3244 FAX (705)642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

1W-2359-RG1

 A.C.A.	HOWE INTERNATIONAL

Date: FEB-21-91

CYPRUS GOLD Project:

Copy 1. 1810-1055 W.HASTINGS ST.VANCOUVER B.C.

K, JOHNSON/A. JACKSON Atta:

2. FAX TO 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W. TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 14 SPLIT CORE samples submitted FEB-19-91 by MURRAY ROGERS.

Au ppb	Sample Number
Nil 14 Nil	3901 3902 3903
 10 Ni 1	3904 3905
17 14/10 10 10 14	3906 3907 3908 3909 3910
Ni 1 27 24 Ni 1	3911 3912 3913 3914

7056423300→

SENT BY: XEROX Telecopier 7017; 2-22-91; 11:53;

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 3

Geochemical Analysis Certificate

1W-2355-RG1

A.C.A. HOWE INTERNATIONAL

Dete: FEB-22-91

CYPRUS GOLD Project:

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

K. JOHNSON/ A. JACKSON Attn:

2. FAX TO 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W. TORONTO, ONT

We hereby certify the following Geochemical Analysis of 63 SPLIT CORB samples submitted FEB-19-91 by MURRAY ROGERS.

Sample Number	Au	
	ppb	
3915	17	
3916	NI 1	
3917	243/243	•
3918	198	
3919	27	
3920	134	
3921	24	
3922	17	
3923	48	•
3924	17	
3925	NII	
3926	Ni i	
3927	425/442	•
3928	31	•
3929	14	'
3930	41	
3931	31	i i
3932	878/912	• •
3933	387	
3934	319	•••••
3935	213	1
3936	24	
3937 3938	38	:
3939	113	
•	75	
3940	48	
3941	72/69	
3942	34	·
3943 3944	144	
J 777	86	

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705)642-3300

Assaying - Consulting - Representation

Page 2 of 3

Dete: FEB-22-91

Geochemical Analysis Certificate

1W-2355-RG1

A.C.A. HOWE INTERNATIONAL

SEAR SEA AEROA (ELECUPSE FOLIA AFEETS) A

CYPRUS GOLD

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

Project: K. JOHNSON/ A. JACKSON Attn:

2. FAX TO 604-685-3635 & 416-368-2579 3. 1400-22 FRONT ST.W. TORONTO, ONT

We hereby certify the following Geochemical Analysis of 63 SPLIT CORE samples submitted FEB-19-91 by MURRAY ROGERS.

Sample	Aı	
Number	ppl	b
3945	2	
3946	Ni	
3947	14	
3948	10)
3949	24	4
3950	2	7
3951	17/14	
3952	14	•
3953	10	
3954	NI	<u> </u>
3955	14	4
3956	10	
3957		7
3958	Ni	
3959	1()
3960		1
3961	NI	
3962	10	
3963	Ni	
3964	1()
3965	14	
3966	Ni!	
3967	NI	
3968	NI I/NI	
3969	NI	
3970	Ni	
3971	10	
3972	10	
3973	NI	
3974	Nil	

P.O. Box 10, Swastika, Ontario PoK 1T0 Telephone (705) 642-3244. FAX (706)642-3900

Assaying - Consulting - Representation

Geochemical Analysis Certificate

Page 3 of 3

1W-2355-RG1

Company:

A.C.A. HOWE INTERNATIONAL

Project:

CYPRUS GOLD

Data: FEB-22-91 Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

K. JOHNSON/ A. JACKSON

2. FAX TO 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W. TORONTO, ONT

We hereby certify the following Geochemical Analysis of 63 SPLIT CORE samples submitted FEB-19-91 by MURRAY ROGERS.

Sample	Au
Number	dag
3975	Nil
3976	10/14
3977	10

P.O. Box 10, Swastika, Ontario PoK 1T0 Telephone (705) 642-3244 FAX (705)642-3300

Assaying - Consulting - Representation

Geochemical Analysis Certificate

1W-2389-RG1

A.C.A. HOWE INTERNATIONAL

Date: FEB-27-91

CYPRUS GOLD Project:

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C. 2. FAX TO 604-685-3635 & 416-368-2579

K. JOHNSON/A. JACKSON

3. 1400-22 FRONT ST.W.TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 23 SPLIT CORE

samples submitted FEB-22-91 by MURRAY ROGERS.

Sample Number	Au ppb	Au check ppb	Au 2nd ppb		
3978	41				
3979	48	69			
3980	Ni l				
3981	Ni l				•
3982	10				
3983	10				
3984	Ni l				
3985	Ni l			1)	
3986	1591	1920	_	Hde 91-8	
3987	Nil		•		
3988	10				
3989	10				
3990	17				
3991	Nil				
3992	Ni l				
3993	10				
3994	5280	4639	5177		
3995	65				
3996	21				
3997	Ni l				
3998	10				
3999	10				
4000	Ni l				

Certified by Donna Haring

P.O. Box 10, Swastika, Ontario P0K 1T0 FAX (705)642-3300 Telephone (705) 642-3244

Assaving - Consulting - Representation

Page 1 of 3

Geochemical Analysis Certificate

1W-2357-RG1

Company:

A.C.A. HOWE INTERNATIONAL

Date: FEB-21-91

Project:

CYPRUS GOLD

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

Attn:

K. JOHNSON/A. JACKSON

2. FAX TO 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W.TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 71 SPLIT CORE samples submitted FEB-19-91 by MURRAY ROGERS.

Sample	Au	
Number	ppb	
9701	10	
9702	Nil	
9703	Ni l	
9704	Ni l	
9705	Ni 1/10	
9706	10	
9707	Ni l	
9708	Ni l	
9709	Ni l	•
9710	Nil	
9711	Ni l	
9712	14	
9713	Ni l	
9714	Ni l	
9715	Ni I /Ni I	***************************************
9716	10	·
9717	10	
9718	14	
9719	Nil	
9720	Ni l	***************************************
9721	14	
9722	Ni l	
9723	10	
9724	14	
9725	10	
9726	21	
9727	Ni l	
9728	7	
9729	14	
9730	14/10	

Certified by Dona Landings

P.O. Box 10, Swastika, Ontario Pok 1T0 FAX (705)642-3300 Telephone (705) 642-3244.

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 3

Geochemical Analysis Certificate

1W-2357-RG1

Company: A.C.A. HOWE INTERNATIONAL

Date: FEB-21-91

Project: CYPRUS GOLD

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

Atta: K. JOHNSON/A. JACKSON

2. FAX TO 604-685-3635 & 416-368-2579
3. 1400-22 FRONT ST.W.TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 71 SPLIT CORE samples submitted FEB-19-91 by MURRAY ROGERS.

Sample	Au	
Number	ppb	
9731	14	
9732	Nil	
9733	Ni l	•
9734	Ni l	
9735	391/398	
9736	Ni l	
9737	Nil	
9738	10	
9739	14	•
9740	7	
9741	21	
9742	10	
9743	Ni l	
9744	Ni l	
9745	10/10	
9746	7	
9747	10	
9748	Ni I	
9749	Ni l	
9750	Ni l	,
9751	Ni l	
9752	75	
9753	Ni l	
9754	Ni l	
9755	Ni l	
9756	710	
9757	24	
9758	219	
9759	14	
9760	487/507	

Certified by Dona Haranes

Assaying - Consulting - Representation

Page 3 of 3

Geochemical Analysis Certificate

1W-2357-RG1

Attn:

A.C.A. HOWE INTERNATIONAL

Project:

CYPRUS GOLD

K. JOHNSON/A. JACKSON

Data: FEB-21-91

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

2. FAX TO 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W.TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 71 SPLIT CORE samples submitted FEB-19-91 by MURRAY ROGERS.

Sample	Au	
Number	ppb	
9761	631	
9762	89	
9763	Ni l	
9764	14	·
9765	10	
9766	14	
9767	10	
9768	7	
9769	14	•
9770	24/21	
9771	17	

Certified by Long Hardner

P.O. Box 10, Swastika, Ontario PoK 1T0 FAX (705)642-3300 Telephone (705) 642-3244.

A Division of Assayers Corporation Ltd

Assaying - Consulting - Representation

Geochemical Analysis Certificate

1W-2360-RG1

Company: A.C.A. HOWE INTERNATIONAL

Detc: FEB-21-91

Project: CYPRUS GOLD

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

Atta: K. JOHNSON/A. JACKSON

2. FAX 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W.TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 11 SPLIT CORE samples submitted FEB-19-91 by .

Sample	Au		
Number	ppb		
501	247/267		
9772	Nil		
9773	Ni l		
9774	Ni l		
9775	10		
9776	Ni l		
977 7	10		
9797	381		
9798	Ni l	•	
9799	21		
9800	442/408		

Certified by Long Landner

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244

FAX (705) 642-3300

Established 1928

Swastika Laboratories

Assaying - Consulting - Representation

Geochemical Analysis Certificate

1W-2353-RG1

Date: FEB-21-91

A.C.A. HOWE INTERNATIONAL

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

CYPRUS GOLD Project: K. JOHNSON/A/ JACKSON

2. FAX TO 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W. TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 19 SPLIT CORE samples submitted FEB-19-91 by MURRAY ROGERS.

Sample	Au	Au check	
Number	ppb	ppb	
9778	12		
9779	Ni l		
9780	Ni l		
9781	Ni l		•
9782	Ni l		
9783	1310	1365	
9784	17		
9785	69		
9786	34		
9787	86		•
9788	38		
9789	Ni l		
9790	Ni I		
9791	29		
9792	Ni l		
9793	576	621	
9794	17		
9795	21		
9796	Ni l		

Certified by Donna Landner

P.O. Box 10, Swastika, Ontario P0K 1T0 FAX (705)642-3300 Telephone (705) 642-3244.

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

1W-2354-RG1

A.C.A. HOWE INTERNATIONAL

CYPRUS GOLD

Project: K. JOHNSON/A. JACKSON Date: FEB-21-91

Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

2. FAX TO 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W. TORONTO, ONT

We hereby certify the following Geochemical Analysis of 38 SPLIT CORE

samples	submitted	FEB-19-91	by MURRAY	ROGERS.
---------	-----------	-----------	-----------	---------

Sample	Au	Au check	As	
Number	ppb	ppb	ppm	
502	363	285		
503	79			
504	79			
505	902			•
506	1197			
507	10			
508	14			
509	27			
510	17		•	
511	10			
512	14			
513	254			
514	93			
515	31			
516	45			
517	10			
518	7			
519	27			
520	2129	2064		
521	1368			
522	58			
523	2321			
524	243			
525	329			
526	446			
527	1440			
528	2431			
529	3233	3312		
530	216			
531	363			

P.O. Box 10, Swastika, Ontario PoK 1T0 FAX (705)642-3300 Telephone (705) 642-3244

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

1W-2354-RG1

A.C.A. HOWE INTERNATIONAL

Date: FEB-21-91

Project: **CYPRUS GOLD** Copy 1. 1810-1055 W. HASTINGS ST. VANCOUVER B.C.

2. FAX TO 604-685-3635 & 416-368-2579

K. JOHNSON/A. JACKSON Attn:

3. 1400-22 FRONT ST.W. TORONTO, ONT

We hereby certify the following Geochemical Analysis of 38 SPLIT CORE

samples submitted FEB-19-91 by MURRAY ROGERS.

Sample Number	Au ppb	Au check ppb	As ppm	
532	631			
533 534	1779 58			
535 536	14 717			·
537 538 539	106 51 17		••••••	•••••••••••••••••••••••••••••••••••••••
			•	

P.O. Box 10, Swastika, Ontario P0K 1T0 FAX (705)642-3300 Telephone (705) 642-3244.

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

1W-2391-RG1

Company: A.C.A. HOWE INTERNATIONAL

Date: FEB-27-91
Copy 1. 1810-1055 W.HASTINGS ST.VANCOUVER B.C.

Project: CYPRUS GOLD

2. FAX TO 604-685-3635 & 416-368-2579

Attn: K. JOHNSON/A. JACKSON

3. 1400-22 FRONT ST.W. TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 52 SPLIT CORE

samples submitted FEB-22-91	by MURRAY ROGERS.
-----------------------------	-------------------

Sample	Au	Au check	Au 2nd	
Number	ppb	ppb	ppb	••••••
540	7			
541	Nil			
542	82	79		
543	93			•
544	Ni l			***************************************
545	10			
546	Nil			
547	106			
548	103	1646	•	
549	1440	1646		•••••
550	41			
551	51			11.1
552	237	1 471		Hde 91-9.
553 554	1714 48	1471		
555	Nil			
556 557	72			
557 558	233			
558 559	31 10			•
560	17			
561	38			
562 563	10 3			
564	Ni l			
565	17			
566 567	123	621		
567 568	734 758	631		
569	103			
JUJ	103		+	

Certified by Donna Landing

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244

FAX (705) 642-3300

Attn:

Swastika Laboratories

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

1W-2391-RG1

A.C.A. HOWE INTERNATIONAL Company:

K. JOHNSON/A. JACKSON

Date: FEB-27-91

CYPRUS GOLD Project:

Copy 1. 1810-1055 W.HASTINGS ST. VANCOUVER B.C. 2. FAX TO 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W. TORONTO, ONT.

We hereby certify the following Geochemical Analysis of 52 SPLIT CORE

samples submitted FEB-22-91 by MURRAY ROGERS.

Sample	Au	Au check	Au 2nd	
Number	ppb	ppb	ppb	
570	230			
571	117			
572	51			
573	175			
574	24			
575	312			
576	576			
577	3651	4183	40 11	
578	523		•	
579	453			
580	518			
581	1646	1539		
582	209			Hde: 91-9
583	285			
584	31			
585	10			
586	10			
587	Ni l			
588	14			
589	24			
590	147	137		
591	10			

P.O. Box 10, Swastika, Ontario P0K 1T0 FAX (705)642-3300 Telephone (705) 642-3244.

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 3

Geochemical Analysis Certificate

1W-2428-RG1

Company: A.C.A.HOWE INTERNATIONAL

Date: MAR-13-91

Project: CYPRUS GOLD

Copy 1. 1810-1055 W.HASTINGS ST. VANCOUVER B.C.

Atta: K.JOHNSON/A.JACKSON

2. FAX TO 604-685-3635 & 416-368-2579
3. 1400-22 FRONT ST.W.TORONTO,ONT.

We hereby certify the following Geochemical Analysis of 86 SPLIT CORE samples submitted FEB-27-91 by MURRAY ROGERS.

Sample Au	Au check	Au 2nd	Au check	As	
Number ppb	ppb	ppb	2nd ppb	ppm	
592 10					
593 Ni l					
594 Ni l					•
595 106	123				
596 202					
597 72					
598 45					
599 363					
600 511	453	•			
601 199					
602 292					
603 110					
604 38					
605 141					
606 24					
607 21					
608 17					
609 117					
610 31					
611 58			-		
612 21					
613 27					
614 175					
615 38					
616 34					
617 130					
618 86					
619 34					
620 17					
621 10					

Certified by Doma Lander

P.O. Box 10, Swastika, Ontario P0K 1T0
Telephone (705) 642-3244 FAX (705) 642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 3

Geochemical Analysis Certificate

1W-2428-RG1

Company: A.C.A.HOWE INTERNATIONAL

Date: MAR-13-91

Project: CYPRUS GOLD

Copy 1. 1810-1055 W.HASTINGS ST.VANCOUVER B.C. 2. FAX TO 604-685-3635 & 416-368-2579

Attn: K.JOHNSON/A.JACKSON

3. 1400-22 FRONT ST.W.TORONTO.ONT.

We hereby certify the following Geochemical Analysis of 86 SPLIT CORE samples submitted FEB-27-91 by MURRAY ROGERS.

Number ppb ppb ppb 2nd ppb ppm 622 14 623 34 624 627 747 625 Ni1 626 10 627 10 628 291 629 Ni1 630 10 631 14 632 10 633 17 634 10 635 Ni1 636 21 637 Ni1 638 123 120 639 34 640 Ni1 641 Ni1 641 Ni1 642 Ni1 644 21 645 10 646 10 647 Ni1 750 10 751 Ni1 Ni1 750 10 751 Ni1 Ni1 752 Ni1	Sample	Au	Au check	Au 2nd	Au check	As	
622 14 623 34 624 627 747 625 Ni1 626 10 627 10 628 291 629 Ni1 630 10 631 14 632 10 633 17 634 10 635 Ni1 636 21 637 Ni1 638 123 120 639 34 640 Ni1 641 Ni1 642 Ni1 642 Ni1 644 21 645 10 646 10 647 Ni1 646 10 647 Ni1 750 10 751 Ni1 Ni1				ppb	2nd ppb	ppm	
623 34 624 627 747 625 Ni1 626 10 627 10 628 291 629 Ni1 630 10 631 14 632 10 633 17 634 10 635 Ni1 636 21 637 Ni1 638 123 120 639 34 640 Ni1 641 Ni1 642 Ni1 643 Ni1 644 21 645 10 647 Ni1 749 Ni1 750 10 751 Ni1 Ni1		, 					
624 627 747 625 Ni1 626 10 627 10 627 10 628 291 629 Ni1 630 10 631 14 632 10 633 17 634 10 635 Ni1 636 21 637 Ni1 638 123 120 639 34 640 Ni1 641 Ni1 642 Ni1 642 Ni1 644 21 643 Ni1 644 21 645 10 646 10 647 Ni1 749 Ni1 750 10 751 Ni1 Ni1							
625 Ni 1 626 10 627 10 628 291 629 Ni 1 630 10 631 14 632 10 633 17 634 10 635 Ni 1 635 Ni 1 636 21 637 Ni 1 638 123 120 639 34 640 Ni 1 641 Ni 1 642 Ni 1 642 Ni 1 644 643 Ni 1 644 643 Ni 1 644 644 21 645 10 646 10 647 Ni 1 749 Ni 1 750 10 751 Ni 1 Ni 1 11 651 10 6751 Ni 1 Ni 1 Ni 1 6751 Ni 1 Ni 1			747				_
626 10 627 10 628 291 629 Ni 1 630 10 631 14 632 10 633 17 634 10 635 Ni 1 636 21 637 Ni 1 638 123 120 639 34 640 Ni 1 641 Ni 1 641 Ni 1 642 Ni 1 644 21 643 Ni 1 644 21 645 10 646 10 647 Ni 1 749 Ni 1 750 10 751 Ni 1 Ni 1		Ni l					
627 10 628 291 629 Ni1 630 10 631 14 632 10 633 17 634 10 635 Ni1 636 21 637 Ni1 638 123 120 639 34 640 Ni1 641 Ni 641 Ni 642 Ni 644 21 645 10 646 10 647 Ni 640 751 Ni Ni 750 10 751 Ni Ni	626	10					
628 291 629 Ni1 630 10 631 14 632 10 633 17 634 10 635 Ni1 636 21 637 Ni1 638 123 120 639 34 640 Ni1 641 Ni 642 Ni 643 Ni 644 21 643 Ni 644 21 645 10 646 10 647 Ni 749 Ni 750 10 751 Ni Ni 1		10	•••••				
629 Ni 1 630 10 631 14 632 10 633 17 634 10 635 Ni 1 636 21 637 Ni 1 638 123 120 639 34 640 Ni 1 641 Ni 1 642 Ni 1 642 Ni 1 644 21 645 10 646 10 646 10 647 Ni 1 749 Ni 1 750 10 751 Ni 1 Ni 1		291					
630	629	Ni l					
632 10 633 17 634 10 635 Ni1 636 21 637 Ni1 638 123 120 639 34 640 Ni1 641 Ni1 642 Ni1 643 Ni1 644 21 645 10 646 10 647 Ni1 749 Ni1 750 10 751 Ni1 Ni1	630			•			
633 17 634 10 635 Ni I 636 21 637 Ni I 638 123 120 639 34 640 Ni I 641 Ni I 642 Ni I 643 Ni I 644 21 645 10 646 10 647 Ni I 750 10 751 Ni I	631	14					
633 17 634 10 635 Ni I 636 21 637 Ni I 638 123 120 639 34 640 Ni I 641 Ni I 642 Ni I 643 Ni I 644 21 645 10 646 10 647 Ni I 750 10 751 Ni I	632	10					
635 Ni I 636 21 7 7 7 7 7 7 7 7 7	633						
636 21 637 Ni 1 638 123 120 639 34 640 Ni 1 641 Ni 1 642 Ni 1 643 Ni 1 644 21 645 10 646 10 647 Ni 1 749 Ni 1 750 10 751 Ni 1 Ni 1							
637 Nil 638 123 120 639 34 640 Nil 641 Nil 642 Nil 643 Nil 644 21 645 10 646 10 647 Nil 749 Nil 750 10 751 Nil Nil Nil	635	Nil					
638 123 120 639 34 640 Ni I 641 Ni I 642 Ni I 643 Ni I 644 21 645 10 646 10 647 Ni I 749 Ni I 750 10 751 Ni I Ni I	636	21					
639 34 640 Ni I 641 Ni I 641 Ni I 642 Ni I 643 Ni I 644 21 645 10 646 10 647 Ni I 749 Ni I 750 10 751 Ni I Ni I	637						•
640 Ni l 641 Ni l 642 Ni l 643 Ni l 644 21 645 10 646 10 647 Ni l 749 Ni l 750 10 751 Ni l Ni l Ni l			120				
641 Ni I 642 Ni I 643 Ni I 644 21 645 10 646 10 647 Ni I 749 Ni I 750 10 751 Ni I Ni I Ni I							
642 Ni 1 643 Ni 1 644 21 645 10 646 10 647 Ni 1 749 Ni 1 750 10 751 Ni 1 Ni 1 Ni 1		Nil					
643 Ni l 644 21 645 10 646 10 647 Ni l 749 Ni l 750 10 751 Ni l Ni l							
644 21 645 10 646 10 647 Ni 1 749 Ni 1 750 10 751 Ni 1 Ni 1		Ni l					
645 10 646 10 647 Ni l 749 Ni l 750 10 751 Ni l Ni l							
646 10 647 Ni l 749 Ni l 750 10 751 Ni l Ni l							
647 Ni l 749 Ni l 750 10 751 Ni l Ni l		10					
749 Ni l 750 10 751 Ni l Ni l							
750 10 751 Ni l Ni l							
751 Nil Nil							
	750	10	21. 2				
/32 NII			NII				
	132	NII			•••••		

Certified by Dona Javins

P.O. Box 10, Swastika, Ontario P0K 1T0
Telephone (705)642-3244. FAX (705)642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 3 of 3

Geochemical Analysis Certificate

1W-2428-RG1

Company: A.C.A.HOWE INTERNATIONAL

Date: MAR-13-91

Project: CYPRUS GOLD

Copy 1. 1810-1055 W.HASTINGS ST. VANCOUVER B.C.

K.JOHNSON/A.JACKSON

2. FAX TO 604-685-3635 & 416-368-2579
3. 1400-22 FRONT ST.W.TORONTO.ONT.

We hereby certify the following Geochemical Analysis of 86 SPLIT CORE

samples submitted FEB-27-91 by MURRAY ROGERS.

Sample Number	Au ppb	Au check ppb	Au 2nd ppb	Au check 2nd ppb	As ppm	
753	Nil					
754	Ni l					
755	Nil					
756	Nil					•
757	10					
758	Ni l					
759	17					
760	10				50	
761	21				60	
762	41				60	
763	3497	3634	4183	3703	3800	
764	1029				2500	
765	75				80	
766	363				680	
767	350				420	
768	14				70	
769	21				17	
770	17				120	
771	10				10	

Certified by Dona Harden

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244

FAX (705) 642-3300

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

1W-2390-RG1

Company: A.C.A. HOWE INTERNATIONAL

Date: FEB-26-91

Project: CYPRUS GOLD

Copy 1. 1810-1055 W.HASTINGS ST.VANCOUVER,B.C.

Atta: K. JOHNSON/A. JACKSON

2. FAX TO 604-685-3635 & 416-368-2579
3. 1400-22 FRONT ST.W. TORONTO, ONT

We hereby certify the following Geochemical Analysis of 39 SPLIT CORE samples submitted FEB-22-91 by MURRAY ROGERS.

Sample	Au	Au check	^
Number	ppb	ppb	
701	27	31	
702	Nil		
703	Ni l		
704	Nil		·
705	Nil		
706	Ni l	,000	
707	Ni l		
708	Ni l		11. 0. 0
709	27		. Hole 91-8.
710	17		
711	Ni l	_	
712	511	542	
713	62		
714	Ni l		
715	Ni l		
716	Ni l		
717	Ni l		
718	Ni 1		
719	Nil		
720	Nil		
721	Ni l		
722	Nil		
723 724	Ni l Ni l		
72 4 725	17	17	
726	Nil		
727 728	62 Ni I		
728 729	Ni l		
730	Ni l		
, JV			

Certified by Dona Landna

P.O. Box 10, Swastika, Ontario P0K 1T0
Telephone (705) 642-3244 FAX (705) 642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

1W-2390-RG1

Company: A.C.A. HOWE INTERNATIONAL

CYPRUS GOLD

Date: FEB-26-91
Copy 1. 1810-1055 W.HASTINGS ST.VANCOUVER.B.C.

Project: CYP

K. JOHNSON/A. JACKSON

2. FAX TO 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W. TORONTO, ONT

We hereby certify the following Geochemical Analysis of 39 SPLIT CORE samples submitted FEB-22-91 by MURRAY ROGERS.

Sample	Au		
Number	ppb	ppb	
731	Nil		
732	Nil		
733	103		
734	127		•
735	Nil		
736	93		
737	590		
738	3038	3182	
739	1413		
			-

Certified by Long Lands

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244. FAX (705) 642-3300

Attn:

Swastika Laboratories

Assaying - Consulting - Representation

Geochemical Analysis Certificate

1W-2405-RG1

A.C.A. HOWE INTERNATIONAL Company:

Date: FEB-27-91

CYPRUS GOLD Project: K.JOHNSON/A.JACKSON Copy 1. 1810-1055 W.HASTINGS ST. VANCOUVER, B.C.

2. FAX TO 604-685-3635 & 416-368-2579

3. 1400-22 FRONT ST.W.TORONTO.ONT.

We hereby certify the following Geochemical Analysis of 9 SPLIT CORE samples submitted FEB-22-91 by .

Sample Number I	Au Au pb	check ppb	
740 741	21 10		
742	li l	Ni l	11 91-8 ·
743 744	10 48		Hd <u>e 91-</u> 8.
745	10	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
746	17		
747	63		
748	35	1025	•

P.O. Box 10, Swastika, Ontario PoK 1T0 FAX (705)642-3300 Telephone (705) 642-3244.

APPENDIX 2

PETROGRAPHIC DESCRIPTIONS OF SELECTED CORE SAMPLES

DESCRIPTIONS OF REPRESENTATIVE SAMPLES DRILL HOLE NO. 90-4 TULLY TOWNSHIP PROPERTY, ONTARIO

Sample No. TU-1

1218.7

1233.7

Graphitic Horizon (Interflow)

- Up to 10% nodular sulfide clasts? of fine-grained pyrite w trace pyrrhotite, 70% black amorphose graphite cut by irreg. qtz.-carbonate stringers and discontinuous stringers and fracture fillings of pyrite/po.; occ. fragment of andesitic lava up to 4 inches; rounded pyrite & qtz-carb. clasts indicates brecciation of zone after deposition.

Sample No. TU-2

1346.9

1353.2

Carbonatized Andesite Flow

- as previous; yellow-brown to beige colouring w up to 10% interstitial iron carbonate and 15% random qtz-carbonate stringers.

Sample No. TU-3

1630.0

1696.3

Carbonatized Andesite

- tan to beige with green tinge, cut by thin irregular fractures, appears silicified (but is soft & can easily be cut by a knife); 20% interstitial iron carbonate throughout; fracturing increases in intensity down-hole; trace euhedral growths of fine pyrite; fine grained as is unaltered andesite, prob. carbonatized unit which is footwall to GIF, and thus indicates folding?

Sample No. TU-4

1696.3

1713.8

Graphitic Interflow Horizon

- black graphitic sediments, fine grained amorphous cut by 30% white qtz. carbonate veins up to 1.75 feet in width at random orientations; graphitic seds at 70° to c.a.; host up to 20% coarse nodules of fine pyrite; pyrite nodules up to 0.75 inch diameter & are subangular.

Sample No. TU-5

1713.8

1754.7

Graphitic Tuffs

- green-grey to black, mottled and schistose texture w slight schistosity at 60° to c/a; up to 5% graphitic component w 3 to 5% white/grey interstitial carbonate; unit cross-cut by occasional white qtz. vein up to 0.5 inch with sideritic alteration along vein selvages, at 40 to 45° to c/a; fragmental texture to unit indicative of tuffaceous derivation; could possibly be reworked tuffs w graphitic component being derived from underlying graphitic interflow (again suggesting fold w ranging now to south).

Sample NO. TU-6,7 and 8

1850.3

1870.2

Carbonated Tuff Horizon (MAIN ZONE)

- Fine grained, siliceous in appearance but soft; tan to yellow beige, lithic tuff horizon cut by thin dark grey qtz-filled fractures; 60% fine interstitial iron carbonate gives rise to beige colouring; up to 4% pyrite/pyrrhotite in this discont. stringers; sharp contact w lavas above at 60° to C/A; becomes slightly brecciated at 1852; qtz injection at 1857.4 to 1861.5; white qtz. carb - tarm. vein from 1861.5 to 1866.0.

Sample No. TU-9

1882.1

1965.1

Andesite Flow

dk green, medium grained flow; massive w 8% interstitial carbonate (white, calcite); chlorotic, w mottled texture, prob. med-grained flow; equigranular texture.

Sample No. TU-10 to TU-14

2025.9

2081.0

Carbonatized Tuff Horizon (Welded Tuff?)

- as prev. unit @ 1850.3 feet but exhibits much less iron carbonate alteration @ 3 to 5%; very fine gr. lithic tuff, med. grey to black (dark grey) w grnd. section to wispy bands of light tan to beige-iron carbonate altered sections @ 50° to C/A.
- Up to 15% finely disseminated pyrite in carbonate altered sections over core widths of up to 0.8 feet; secondary pyrite along irreg. fractures @ 5%; <2% white qtz.- carb. veining up to 0.75 inch widths at 45° to C\A.

2028.9 to 20320: slight cataclastic brecciation w minor qtz. injection; 3% qtz. cb; 2% pyrite w wispy schlerin of iron-cb alteration; trace v. fine arsenopyrite.

2032.0 to 2043.3: minor iron - cb. alt. of v. fine lithic tuffs; 3% fine-med pyrite disseminations; 25 to 35% paragonitic? partings minor qtz.injection.

2043.3 to 2046.5: 20% iron cb. alter. over short sections to 0.3 feet, 5% diss & stringers pyrite, trace arsenopyrite.

(Min. Zone) 2048.1 to 2052.7: 10% to 15% v. fine pyrite diss. throughout w up to 5% v. fine needles arsenopyrite barely distinguishable in matrix. Good iron carbonate alteration in partings and brecciated bands; 3% red hematite noted on fractures which exhibit graphite on slips; carb. & sulfides well bonded at 45° to C/A.

- from 2052.7 grades into dk. grey lithic tuff w 1% med. pyrite in diss. stringers slight iron cb. alteration foliation at 450 to C/A.

Sample No. TU-15

2086.018 2192.0

- Talc Peridotite (Serpentinite)
- black grey, cut by random qtz-cb (calcite) filled fractures, non-magnetic, talcose; trace pyrite.

SAMPLE No. TU-1 (core sample & polished thin section)

SUMMARY & TEXTURAL DESCRIPTION

This sample is so heavily altered - mainly sericitized and pyritized - that there is almost nothing recognizable remaining from the protolith. It could be an intensely altered intermediate volcanic or volcanic breccia, or possibly a tuffaceous or volcanogenic sediment, although the evidence is sketchy. The protolith was probably dominated by felsic minerals - there is only a small amount of chlorite and essentially no other mafic minerals in the alteration assemblage. Feldspar was definitely an important component of the protolith. Some of the relict feldspars are reasonably coarse-grained, sometimes almost euhedral, and ranging up to 1.5 mm or more, possibly remnants of original phenocrysts. There are suggestions of relict angular fragments, which could be a texture inherited from a brecciose or tuffaceous protolith, although alternatively it could be a deformational texture. The remainder of the sample is extremely fine-grained and intensely sericitized, sometimes with suggestions of layering or banding.

The sulphide assemblage is overwhelmingly dominated by pyrite, with only minor sphalerite. The pyrite occurs as masses of fine, predominantly idiomorphic cubes, which coalesce into coarser, rounded masses. Some of the coarsest masses have a nodular to almost framboidal appearance, with suggestions of concentric and radial growth zonations, speckled textures, and sawtooth overgrowth rims of fine, euhedral pyrite grains. Minor graphite was also observed, mainly concentrated in one intensely sericitized zone or band which cuts across the thin section. It is possible that this is a remnant of a band of interlayered graphitic sedimentary material, although again the evidence for this is sketchy.

The coarsest pyrite masses are typically fractured, with well-developed chalcedonic fringes developed in pressure shadows around the edges and within pulled-apart fractures. Also associated with chalcedonic material in the pressure shadows is some carbonate, and fibrous chlorite forming micaceous "beards" on the pyrite masses. The fibrous grains in the pressure shadow fringes are typically curved, indicating continued deformation.

Aside from the heavy pyritization and associated pressure shadows, the alteration assemblage is mainly characterized by intense, pervasive sericitization. In the graphitic band, this material is so fine-grained that it is more properly referred to as "micaceous" because it is very difficult to identify; it tends to be stained reddish buff-coloured, with suggestions of colloform textures. Sericite in this band is also concentrated into fine, criss-crossing, stringer-like veinlets. Carbonate is also present throughout the sample, typically in irregular masses associated with remobilized quartz. There may also have been minor recrystallization of feldspar associated with the alteration.

MINERALOGY

≈50% Opaques, consisting (in order of decreasing abundance) of:

Pyrite: overwhelmingly the dominant opaque mineral; idiomorphic to subidiomorphic grains (mostly cubes), ranging from extremely fine to 1 mm, and coalescing into much coarser, blocky to rounded masses of several mm to cm; some of the coarser masses are clearly composed of finer grains which have coalesced, sometimes creating a slightly framboidal-looking texture; other coarse pyrite masses look nodular, with concentric and/or radiating growth zonations, and sometimes a rim or corona of euhedral grains around the edge; some of the coarsest masses have been fractured and pulled apart, with pressure shadow fringes of chalcedonic-textured quartz, carbonate and chlorite, and later growth of euhedral crystals around the outer edges.

Oxide: minor; probably ilmenite; noticeably lighter and less brown in colour than the sphalerite, with distinct anisotropy; occurs in small (0.2 mm and much less), irregular masses or clusters of finer grains, does not tend to show the platy habit typical of graphite, nor the characteristic very strong bireflectance, although it is possible that minor graphite is present.

Sphalerite: accessory; very easy to miss; similar to the graphite but distinctly browner, and isotropic, with internal reflections; occurs as fine (0.1 mm and much less), irregular inclusions in pyrite; mainly honey-coloured internal reflections (rather than red) indicate a relatively iron-poor composition.

- ≈30% Sericite: ranges from very fine (0.2 mm), platy grains, to masses of extremely fine (e.g. 10 μ or less), essentially unidentifiable micaceous material (probably mainly sericite); some concentration of sericite into fine, stringer-type veinlets, and minor occurrence of platy sericite in micaceous pressure shadow "beards" around coarse pyrite masses; otherwise it is predominantly a heavily pervasive alteration; the sericitic material in the graphitic band mentioned above is typically stained reddish-buff, and displays a colloform-type banding.
- ≈7% Quartz & Quartzofeldspathic Material: occurs mainly as fibrous, chalcedonic-textured material forming well-developed pressure shadow fringes around the coarsest pyrite masses, and in pulled-apart fractures cutting these masses; some of these pressure shadow fringes are very well-developed; the fibrous grains are typically strongly curved, indicating continued deformation; associated with carbonate + chlorite; some quartz also occurs in irregular, vein-like masses, associated with carbonate and minor recrystallized feldspar; finally, there is some extremely fine-grained, essentially unidentifiable felsic material in some of the heavily sericitized portions of the sample; this is probably a mixture of very fine-grained feldspar ± quartz, inherited from the protolith.

- ~5% Carbonate: clear and colourless; effervesces in cold HCl, hence at least some calcite is present; occurs in pressure shadows around coarse pyrite masses, associated with chalcedonic quartz and chlorite; carbonate also occurs as coarse (e.g. 1-1.5 mm), irregular masses, typically associated with quartz + recrystallized feldspar.
- ~5% Feldspar: probably much more abundant prior to alteration; occurs as fragments of grains, and occasionally as preserved subhedral to almost euhedral grains up to 1.5 mm; only plagioclase (no alkali feldspar) was definitely identified; there also appears to have been some vein-type recrystallization of feldspar associated with the alteration, i.e. minor recrystallized albitic feldspar occurring in irregular masses with quartz and carbonate.
- 2-3% Chlorite: occurs mainly or exclusively as micaceous "beards", associated with fibrous quartz and carbonate, in pressure shadows around coarse, fractured pyrite masses; elongated, almost fibrous grains, with long dimensions oriented perpendicular to grain boundaries; weak to moderate pleochroism, colourless to pale green, with low, slightly anomalous interference colours.

SAMPLE No. TU-2 (core sample & polished thin section)

SUMMARY & TEXTURAL DESCRIPTION

This is an intensely altered sample, with clear indications of pressure solution (refer to Photos 1 & 2). The alteration assemblage is dominated by a carbonate which does not effervesce in cold HCl, hence probably an iron carbonate. Extremely fine-grained sericitic material is also moderately to heavily pervasive. Veinlets and stringers criss-cross the sample. Some of the stringers are typical of pressure solution residue, marked by extremely fine-grained opaque material, with sericite and/or carbonate and/or traces of tourmaline associated.

There is very little that can be said with confidence about the protolith, except that it contained predominantly felsic minerals (e.g. feldspar and/or quartz), and was probably reasonably fine-grained.

MINERALOGY

- =40% Carbonate: no sign of effervescence in cold HCl, so it is most likely an iron carbonate; heavily pervasive, and also concentrated into cross-cutting veinlets; irregular masses, up to 0.5 mm, mostly much finer.
- ≈30% Quartz, Feldspar & Quartzofeldspathic Material: much of this is very finegrained, and heavily overprinted by the carbonate-sericite alteration, therefore very difficult to identify; however, both quartz and feldspar (plagioclase) are definitely present; some identifiable quartz occurs as part of the alteration assemblage, in lenses and veinlets associated with carbonate and/or sericite and/or opaque stringers and/or pyrrhotite.
- =25% Sericite: very fine to extremely fine (0.1 mm and <u>much</u> less), platy, flaky and needle-like grains; moderately to heavily pervasive, and also concentrated into veinlets and stringers, associated with opaque material.
- ≈5% Opaques, consisting (in order of decreasing abundance) of:

Pyrite: occurs mainly as slightly poikilitic, subidiomorphic to idiomorphic cubes and siz-sided grains, sometimes with rough or jagged grain boundaries; ranges from 1 mm or slightly coarser, down to very fine, ave. =0.5 mm.

Pyrrhotite: slightly less abundant than pyrite; occurs as very fine, irregular inclusions in pyrite, and as coarser (0.3 mm, up to 1 mm), irregular, poikilitic masses.

Oxide: minor, tends to be extremely fine-grained (e.g. $20~\mu$ and less), fairly evenly distributed throughout, and concentrated into trails and stringers associated with pressure solution; irregular grains (generally not platy or needle-like); grey, low reflectivity, with distinct anisotropy; internal reflections are present, which is not consistent with graphite, although it could be the result of the extremely fine grain size (i.e. an anomalous optical effect).

Chalcopyrite: trace to accessory; very fine, irregular inclusions in pyrrhotite, and as free grains.

- Acc. Chlorite: very pale and weakly pleochroic, colourless to pale green, with low, slightly anomalous interference colours; small, irregular clusters of fine, platy to almost fibrous grains; associated with sericite.
- Tr. Tourmaline: very fine (e.g. 0.1 mm and less), stubby prismatic grains, closely associated with trails of opaque material marking pressure solution; strongly pleochroic, clear to brown; there may also be some cryptocrystalline (i.e. submicroscopic) tourmaline associated with the pressure solution stringers.

SAMPLE No. TU-3 (core sample & polished thin section)

SUMMARY & TEXTURAL DESCRIPTION

This sample, described as andesitic footwall material, is completely unlike sample TU-9 (the other footwall sample), but it is similar in many respects to the preceding sample TU-2 (refer to Photos 3 & 4). It is an intensely carbonatized sample, but with no sign of effervescence in cold HCl (hence probably an iron carbonate). The protolith, which is almost completely obscured by the alteration, appears to have been feldspathic or quartzofeldspathic, and probably relatively fine-grained. There are some discrete carbonate masses which may be pseudomorphs after originally coarser (e.g. 0.5 mm) feldspar grains. There are also some patches with an unusual texture, of reddish-brown iron carbonate apparently pseudomorphing an originally fine-grained, needle-like, felty-textured mineral, probably also feldspar.

The evidence, which is very sketchy, therefore points towards an intermediate (or possibly felsic?) volcanic rock with intense iron carbonate-dominated alteration.

MINERALOGY

- ≈60% Carbonate: heavily pervasive; does not effervesce in cold HCl, which suggests an iron carbonate; many grains display a reddish-brown colour in plane polarized light, which is also consistent with iron carbonate; the carbonate occurs in a number of forms: (1) heavily pervasive, fine, irregular masses; (2) discrete masses with straight edges, which could be pseudomorphs after original feldspars; (3) dark, reddish-brown, needle-like forms, which appear to be carbonate pseudomorphs after an originally acicular, fine-grained mineral, probably also feldspar; (4) cross-cutting veinlets, often associated with chlorite ± quartz.
- ≈35% Quartz, Feldspar & Quartzofeldspathic Material: both quartz and feldspar are present, although much of the felsic material is so fine-grained and/or so heavily altered that it is impossible to identify with certainty; the protolith appears to have been fine-grained, although there are suggestions that some coarser feldspars may once have been present; quartz in the alteration assemblage occurs in lenses and veinlets, usually associated with carbonate ± chlorite; there also may have been minor recrystallization of feldspar associated with the alteration.
- 2-3% Chlorite: weakly pleochroic, colourless to pale green, with very low, slightly anomalous interference colours; very fine, flaky grains; usually associated with carbonate veining.

Acc. Opaques, consisting (in order of decreasing abundance) of:

Pyrite: the occurrence of a single relatively coarse grain (1.5 mm) immediately makes this the most abundant sulphide; the coarse grain is subidiomorphic, finely poikilitic, associated with quartz veining; there are other extremely fine (e.g. 5μ) pyrite grains scattered throughout the sample.

Sphalerite: only a few fine (e.g. 0.2 mm), irregular grains; strong red internal reflections indicates an Fe-rich composition; associated with carbonate veining; in one case, chalcopyrite, pyrite and sphalerite occur in a small cluster together.

Oxide: grey, low reflectivity, extremely fine (e.g. 5μ), lightly scattered throughout; some grains show internal reflections, although this could be an artifact of the extremely fine grain size.

Chalcopyrite: trace; extremely fine.

Pyrrhotite(?): trace; extremely fine.

Arsenopyrite(?): trace; extremely fine.

Acc. Sericite: very fine (0.1 mm), flaky grains; associated with clusters of carbonate.

SAMPLE No. TU-4 (core sample & polished thin section)

SUMMARY & TEXTURAL DESCRIPTION

Of the samples described so far, this one is most similar to TU-1, although there are noticeable differences between the two samples (refer to Photos 5 - 8). This sample is intensely altered, with essentially no convincing evidence as to the nature of the protolith. The thin section is dominated by roughly alternating bands of pyritic and graphitic material. The pyritic material varies from masses of very fine grains, to very coarse, blocky, fractured masses. Where it is fractured, the pyrite is associated with well-developed chalcedonic-textured quartz and carbonate in gashes and pressure shadows. The interbanded graphitic material ranges from strongly foliated but extremely fine-grained, almost sub-microscopic material, to coarser (e.g. 0.4 mm), discrete platy grains of graphite.

Aside from the chalcedonic quartz associated with fractured pyrite masses, there is clear evidence of silicification, in the form of fine criss-crossing quartz veinlets, and possibly even quartz flooding. Iron carbonate is also abundant.

MINERALOGY

≈50% Opaques, consisting (in order of decreasing abundance) of:

Graphite: in strongly foliated bands; ranges from extremely fine, almost submicroscopic but heavily graphitic material, to discrete, relatively coarse, platy grains (individual, platy grains of 0.4 mm or more); shows the strong bireflectance and anisotropy which are characteristic of graphite; (note: this is distinctly browner, less grey than the "oxides" described in other samples, clearly identifiable as graphite; also distinctly brown by comparison with the much greyer sphalerite).

Pyrite: almost as abundant as the graphitic material; the pyrite varies from masses and clusters of extremely fine (0.05 mm and less), subidiomorphic grains, to very coarse, blocky, fractured masses; pyritic bands alternate with graphitic bands, and sometimes they are closely intergrown.

Sphalerite: accessory; slightly reddish to golden internal reflections; irregular masses.

~35% Quartz, Feldspar & Quartzofeldspathic Material: only traces of feldspar were definitely identified, but there is quite a lot of very fine-grained to extremely fine-grained felsic material, which could include appreciable feldspar; a few very fine feldspar grains were observed in association with quartz-carbonate veining; quartz is definitely the dominant felsic mineral (occurring mainly in the

alteration assemblage), and there is clear evidence of silicification; quartz occurs in very fine, criss-crossing veinlets throughout the sample; in coarser-grained masses associated with carbonate; and in well-developed, chalcedonic-textured pressure shadows and pulled-apart gashes associated with coarse, fractured pyrite masses.

≈15% Carbonate: the lack of effervescence in cold HCl suggests an iron carbonate; heavily but unevenly pervasive; associated with pyrite masses; in gashes and veinlets, associated with graphitic material, and with chalcedonic-textured quartz.

Acc. Sericite.

Tr. Chlorite: in very fine stringers; iron-stained.

SAMPLE No. TU-5 (core sample & polished thin section)

SUMMARY & TEXTURAL DESCRIPTION

This thin section does not contain any of the graphitic material described in TU-4, but instead is dominated by a strongly foliated alteration assemblage consisting of iron carbonate + sericite + chlorite + quartz. Aside from a few augen of relict fractured feldspar grains, there is essentially no indication as to the nature of the protolith. The foliation is strong but rough, defined mainly by anastomosing stringers of chlorite and, to a lesser extent, by sericitic stringers and lenses.

MINERALOGY

- ≈35% Carbonate: lack of effervescence in cold HCl suggests an iron carbonate; heavily pervasive throughout; relatively even grain size, ≈0.2-0.4 mm, with a few slightly coarser-grained lenses and bands.
- ≈35% Chlorite: very fine, almost fibrous, in anastomosing stringers and lenses, defining the foliation; weak pleochroism, colourless to pale green, with very low, slightly anomalous greyish-green interference colours.
- ≈20% Sericite: occurs in clumps, clusters and lenses of platy grains; not as strongly foliated as the chlorite; ave. grain size ≈0.3 mm and less; much of the sericite is iron-stained.
- ~10% Quartz, Feldspar & Quartzofeldspathic Material: there are some augen up to 0.8 mm in length, which appear to be relict fractured feldspar grains; there are also a few lenses of quartz, and minor quartz occurs in association with carbonate lenses.

Acc. Opaques, consisting (in order of decreasing abundance) of:

Pyrite: fine subidiomorphic to irregular grains; ave. ≈0.2-0.3 mm.

Pyrrhotite: approximately the same abundance as pyrite; irregular masses, elongated parallel to foliation; ave. ~0.2 mm, occasionally coarser.

Sphalerite: accessory; strong red internal reflections indicate an iron-rich composition; 0.3 mm and less, roughly equant grains.

Chalcopyrite: accessory to trace.

Arsenopyrite: accessory to trace; very fine, irregular grains; can be closely intergrown with pyrite ± pyrrhotite ± sphalerite.

Oxide: trace; extremely fine grain size; very lightly disseminated; low reflectivity, grey.

Pentlandite(?): trace; flame-like exsolution within pyrrhotite grains.

Tr.-Acc. Tourmaline: clusters of fine (e.g. 0.2 mm), euhedral prismatic hexagonal grains; strong colour and pleochroism, colourless to yellowish-brown, with strong colour zonation (colourless core, brown rim); the colour suggests elbaite to dravite composition, although colour in tourmalines can be quite variable and is not always a reliable indicator of composition; seems to be associated with chloritic stringers.

SAMPLE No. TU-6 (core sample & polished thin section)

SUMMARY & TEXTURAL DESCRIPTION

This is another sample which is so intensely altered that nothing convincing remains of the protolith. The sample is dominated by an alteration assemblage consisting of an iron carbonate + an (apparently) iron-rich sericite, with less abundant chlorite. Patches of very fine-grained quartzofeldspathic material may be the only thing left of the protolith; remobilized and recrystallized quartz in veins and irregular masses also forms part of the alteration assemblage. The alteration overall is patchy and complex, with pervasively carbonatized, strongly foliated sericitic and chloritic material cut by later carbonate veins, which are in turn cut by foliated sericitic material. The carbonate veins, which range from semi-conformable to cross-cutting, show open-space-filling textures, such as comb structure with quartz running along the centerline. The intensely sericitized and chloritized material shows evidence of pressure solution.

The sulphide assemblage in this sample differs from those previously described, in the lack of pyrite, the dominance of pyrrhotite, and the presence of appreciable arsenopyrite. The pyrrhotite, which is by far the dominant sulphide, occurs as irregular, poikilitic lenses, elongated parallel to the banding or foliation. Arsenopyrite typically occurs as euhedral, rhomb-shaped grains, included in pyrrhotite masses.

MINERALOGY

- ≈45% Carbonate: no effervescence in cold HCl, suggests an iron carbonate; finely and intensely pervasive, closely associated with sericitic and chloritic material; also occurs in coarser-grained, semi-conformable to cross-cutting masses and veinlets; the largest vein (≈1 mm wide) shows open-space-filling textures, with quartz down the centerline; this vein cross-cuts intensely carbonatized and sericitized material, but is in turn cut off by foliated sericitized material.
- ≈25% Quartz, Feldspar & Quartzofeldspathic Material: mostly extremely fine-grained (e.g. 20 μ and less), essentially unidentifiable quartzofeldspathic material; this may be inherited from the protolith, but there are no convincing relict textures; coarser-grained quartz occurs in irregular, obviously recrystallized masses, and in veinlets associated with carbonate; the only clearly identifiable feldspar appears to be minor recrystallized albitic feldspar, associated with masses of quartz in the alteration assemblage.
- ==15% Sericite: very pale buff colour suggests an iron-rich composition; strongly foliated, pervasive and in bands and stringers; very fine, needle-like to fibrous grains.

- ==10% Chlorite: (difficult to distinguish from sericite, because the section is cut a bit too thin); occurs in very fine stringers of fibrous material; pale, weakly pleochroic, with very low, slightly anomalous interference colours; associated with sericite stringers.
- ~5% Opaques, consisting (in order of decreasing abundance) of:

Pyrrhotite: overwhelmingly the dominant sulphide; relatively coarse (1 mm and more), very irregular, poikilitic masses, elongated parallel to foliation or banding.

Arsenopyrite: distinctly less abundant than pyrrhotite; fine (0.1-0.2 mm), euhedral rhomb-shaped grains; often occurs as inclusions in pyrrhotite.

Chalcopyrite: minor to accessory; irregular masses, often associated with pyrrhotite.

Oxide: minor to accessory; extremely fine grain size (e.g. 10μ and less); strong anisotropy, strong internal reflections (which is not typical of graphite); irregular grains, lightly disseminated and confined to certain bands, trails and stringers; there is one surface on the hand sample which is graphitic-looking, suggesting that there may be thin bands of graphitic material throughout the sample (which would appear as thin trails or stringers in the thin section), although there is nothing that strikes me as looking graphitic in the thin section.

Pyrite: trace; irregular masses, closely associated with pyrrhotite.

SAMPLE No. TU-7 (core sample & polished thin section)

SUMMARY & TEXTURAL DESCRIPTION

Although it is similar mineralogically to the preceding sample (TU-6), this sample differs from TU-6 in being coarser-grained overall, and dominated by vein quartz. The sample could almost be described as a breccia, with small, angular fragments of intensely carbonatized and sericitized quartzofeldspathic material, floating in a matrix of coarse-grained vein quartz (this texture is easily observed by holding the thin section up to the light).

The carbonate, which does not effervesce in cold HCl and is thus probably an iron carbonate, seems to belong predominantly to a relatively early stage of alteration. That is, the angular fragments represent material which was intensely carbonatized, then subsequently overprinted and engulfed by the vein quartz. However, there appears to have been some later sparry-textured recrystallization of carbonate, forming sawtooth-like rims along the edges of some of the vein quartz material. Much of the carbonate is rather dark, reddish-brown in colour, which is also consistent with iron carbonate.

The sulphides and other opaque material are concentrated within the angular carbonatized fragments; the vein quartz is essentially free of sulphides, although the quartz is cloudy due to abundant fluid inclusions. Pyrite and arsenopyrite are the two most abundant sulphides.

MINERALOGY

- ≈75% Quartz, Feldspar & Quartzofeldspathic Material: coarse-grained (e.g. several mm) vein quartz accounts for at least 70% of the thin section; good-sized (e.g. 10-30 μ) fluid inclusions are abundant in the vein quartz, and it would definitely be feasible to do a fluid inclusion study on this quartz if desired; the fluid inclusions, some of which are "dirty", define concentric growth zonations in many of the quartz grains, and cause the cloudy appearance of the quartz; aside from the vein quartz, there is some very fine-grained (e.g. 0.2 mm and less) felsic material which contains a small amount of identifiable feldspar (plagioclase); this material, which apparently represents what little is left of the protolith, has been intensely carbonatized, and broken into angular fragments as described above.
- ≈15% Carbonate: intense, pervasive, fine-grained carbonatization of quartzofeldspathic material in the angular fragments; much of this is a relatively dark, cloudy, reddish-brown colour in plane polarized light; no effervescence in cold HCl, suggests an iron carbonate; there is also some coarser-grained (e.g. 0.3-0.4 mm),

sparry-textured carbonate which forms rims along the edges of some of the vein quartz.

- ~5% Sericite: tends to occur as discrete masses or clusters of fine (e.g. 0.2 mm and less), platy to flaky grains; occasionally as stringers.
- 3-5% Opaques, consisting (in order of decreasing abundance) of:

Pyrite: fine (e.g. 0.2-0.3 mm), irregular to subidiomorphic grains, often closely associated with arsenopyrite.

Arsenopyrite: almost as abundant as pyrite (difficult to judge, because they are very unevenly distributed); clusters of fine (e.g. 0.2 mm), idiomorphic, rhombshaped grains.

Oxide: and/or possibly minor graphite; minor to accessory; fine (0.1 mm and much less), irregular grains, with strong anisotropy; grey, low reflectivity; associated with angular fragments of material with dark banding and sericitic stringers.

Sphalerite: trace to accessory; fine (0.1 mm), irregular grains, usually adjacent to pyrite; honey-coloured internal reflections suggests a relatively iron-poor composition.

Chalcopyrite: trace; very fine, irregular grains, as inclusions in pyrite.

Pyrrhotite: trace; very fine, irregular inclusions in pyrite.

SAMPLE No. TU-8 (core sample & polished thin section)

SUMMARY & TEXTURAL DESCRIPTION

This sample consists of relatively fine-grained quartzofeldspathic material (both minerals are present, but not always distinguishable), with a heavily overprinted alteration assemblage that is dominated by iron carbonate and sulphides (refer to Photos 9 & 10). Textures in the protolith are obscured, but there are suggestions of relict feldspar grains up to almost 1 mm; could this suggest an intrusive protolith? The iron carbonate is fairly evenly disseminated throughout the sample, along with abundant fine-grained arsenopyrite. Pyrite is also abundant, but coarser-grained and less evenly disseminated than the arsenopyrite, tending to occur in clusters and coarse masses. Sericite and chlorite occur mainly or exclusively in pressure shadows around the coarse pyrite masses.

MINERALOGY

≈35% Quartz, Feldspar & Quartzofeldspathic Material: although both quartz and feldspar are definitely present, much of the felsic material is difficult to identify because of heavy alteration overprinting and fine grain size (typically 0.2 mm and less); relict feldspar grains up to almost 1 mm are discernible; some quartz occurs in pressure shadows around coarse pyrite grains, sometimes with chalcedonic or fibrous texture.

=30% Opaques, consisting (in order of decreasing abundance) of:

Pyrite: medium-sized (ave. \approx 0.2-0.5 mm) subidiomorphic to idiomorphic grains (cubes), ranging up to very coarse (several mm) masses; the coarsest masses are not conformable to the foliation; inclusions of arsenopyrite are common, suggesting pyrite crystallized later than the arsenopyrite.

Arsenopyrite: almost as abundant as pyrite, but much finer-grained, relatively evenly disseminated; can occur as inclusions in pyrite, but more commonly occurs as "free" grains (i.e. in gangue); fine (ave. =0.2, but up to 0.8 mm or more in length), elongated idiomorphic rhomb-shaped and needle-like grains.

Oxides: and/or possibly some graphite(?); masses or clusters of extremely fine-grained, almost flocky-textured material; low grey, with internal reflections; I strongly suspect this is an iron oxide associated with the iron carbonate, but difficult to identify because of the very fine grain size.

Sphalerite: trace to accessory; strong red internal reflections suggest an iron-rich composition; very fine, irregular grains as inclusions in pyrite.

Chalcopyrite: trace to accessory; very fine, irregular inclusions in pyrite.

Pyrrhotite: trace; very fine, irregular inclusions in pyrite.

- ≈30% Carbonate: evenly and heavily pervasive; mostly fine-grained (0.2 mm); some concentration into coarser-grained conformable lenses and veinlets; no sign of effervescence in cold HCl, suggests an iron carbonate; some of the carbonate is reddish-brown in colour, other grains are associated with clusters of extremely fine-grained iron oxide; both of these features are typical of iron carbonates.
- 3-5% Sericite: occurs mainly as flaky to platy grains, up to 0.5 mm or more, in pressure shadows around coarse pyrite grains; associated with chlorite.
- 2-3% Chlorite: weak pleochroism, colourless to pale green, with low, slightly anomalous interference colours; platy and flaky grains up to 0.4 mm occur with sericite, in pressure shadows around coarse pyrite grains.
- Tr. Biotite: or possibly iron-stained chlorite.

SAMPLE No. TU-9 (core sample & polished thin section)

SUMMARY & TEXTURAL DESCRIPTION

Although logged as a medium-grained andesitic flow, I would be inclined to describe this as an intrusive rock, and possibly closer to gabbro (or diabase) than to diorite (andesite) in composition (refer to Photos 11 - 14). The rock consists of tabular subhedral plagioclase grains (ave. ≈1 mm, ranging up to 2 mm in length), with a relatively coarse-grained (1-3 mm) mafic mineral. The composition of the plagioclase cannot be reliably determined because of its alteration (mainly epidotization, which indicates that it was a relatively calcic plagioclase to begin with). The mafic mineral is green with moderate pleochroism; it appears to be an amphibole now (probably actinolite), but judging by its occurrence and relict crystal outlines the amphibole may be pseudomorphous after an original calcic clinopyroxene. The relict actinolite-pyroxenes sometimes partially to totally enclose plagioclase laths, in what is referred to as subophitic to ophitic texture.

The alteration assemblage is characteristic of greenschist facies metamorphism of a mafic protolith. In addition to the apparent actinolite pseudomorphism of clinopyroxenes, the alteration assemblage includes chlorite + epidote + leucoxene + minor carbonate. Both chlorite and carbonate occur as patchy alteration of the actinolite-pyroxenes. The "leucoxene" is typical of rutile-dominated alteration pseudomorphous after skeletal ilmenite. Epidote occurs throughout the sample, and causes the cloudiness that is characteristic of altered calcic plagioclases.

MINERALOGY

- ≈40% Feldspar: exclusively plagioclase; ranges from fine (e.g. 0.3 mm) to 2 mm or more in length (ave. length ≈1 mm); elongated, tabular, subhedral grains; cloudy due to epidote-dominated alteration; composition not determined, but the predominance of epidote in the alteration assemblage indicates an originally calcic composition.
- ≈30% Amphibole/Pyroxene: as discussed above, the dominant mafic mineral now appears to be an amphibole, but may have originated as pseudomorphous alteration of pyroxene; occurs as relatively coarse (1-3 mm) grains, interstitial to and partially or totally enclosing plagioclase laths; original crystal outlines are mostly either irregular against feldspars, or obscured by alteration, so it is difficult to tell whether the original mineral was an amphibole or a pyroxene (although this mode of occurrence is more typical of pyroxene); now shows moderate pleochroism, almost colourless to yellowish-green, and I suspect actinolite; needle-like to fibrous crystals growing out of the ends of many of the grains would also be consistent with actinolite.

- ≈10% Chlorite: patchily intergrown with actinolite + carbonate, in what appear to be pseudomorphs after pyroxene; chlorite also occurs alone, in very fine-grained, interstitial masses; the chlorite is slightly paler in colour than the amphibole, with weak to moderate pleochroism, pale yellow to light green, with distinctly anomalous purple interference colours.
- ≈10% Epidote: (more abundant than it looks at first glance); occurs as extremely fine-grained alteration of plagioclase, causing the characteristic cloudiness; also occurs throughout as fine (e.g. 0.2-0.3 mm), prismatic grains; most of the prismatic grains show the pale greenish-yellow pleochroism typical of epidote.
- ≈5% Opaques, consisting (in order of decreasing abundance) of:

"Leucoxene": actually semi-transparent, rather than opaque; occurs as medium-grained (e.g. 0.5-0.8 mm), irregular grains and masses, typically with well-developed skeletal internal structures; reddish-brown colour in plane polarized light; in reflected light, a mixture of low reflectivity grays, with variable anisotropy and abundant internal reflections; this is almost certainly a rutile-dominated, "leucoxene"-type alteration pseudomorphous after ilmenite, probably with minor ilmenite remaining.

Chalcopyrite: accessory; extremely fine-grained (e.g. 20 μ and less).

Pyrrhotite: trace.

- 2-3% Carbonate: the sample shows minor effervescence in cold HCl, indicating that at least some calcite is present; occurs as patchy alteration of amphibole/pyroxene; clear and colourless; also alters feldspars; some discontinuous carbonate veinlets.
- Acc. Quartz(?) and/or Apatite(?): colourless mineral filling interstices between plagioclase and amphibole grains; looks like quartz, except that most grains display one or more of the following features: (1) slightly anomalous bluish interference colours, (2) biaxial, off-centered and/or optically negative interference figures, (3) twinning, (4) zonation; all of these features are uncharacteristic and, in fact, probably contraindicative of quartz; however, I cannot get a good uniaxial negative interference figure on any of the grains in order to confirm an alternative identification, the most likely of which would be apatite.

Tr.-Acc. Sericite(?): extremely fine-grained as alteration of feldspars.

SAMPLE No. TU-10 (core sample & polished thin section)

SUMMARY & TEXTURAL DESCRIPTION

This sample is similar in some respects to samples TU-8 and TU-7 (refer to Photo 15). It resembles TU-7 in that relatively coarse-grained vein quartz is an important part of the assemblage, although not as dominant as it is in TU-7. In terms of mineralogy, this sample is probably most similar to TU-8, but the alteration is much more patchy and unevenly distributed than in that sample. The texture of the protolith has been almost entirely obscured by the alteration assemblage, although it is clear that felsic minerals (feldspar and/or quartz) were the major components of the protolith. For the first time in this group of samples, both plagioclase and alkali feldspar were tentatively identified, which may suggest a felsic (rather than intermediate) protolith.

The alteration is dominated by a heavily pervasive iron carbonate. There may be more than one generation of carbonatization represented; for example, reddish-brown, cloudy, coarse-grained iron carbonate is often cut by veinlets of a clear, colourless carbonate. There also appears to have been some sparry-textured recrystallization of clear carbonate along the edges of the vein quartz masses, as described in sample TU-7. Cloudy quartz with abundant fluid inclusions occurs in irregular, coarse-grained masses and veinlets, which appear to post-date most (but not all) of the carbonatization.

Both carbonate and quartz masses are cut by stringers and foliated lenses of heavily sericitized material, also associated with minor chloritic stringers and with trails and anastomosing stringers of extremely fine-grained oxide material. The occurrence of sericitic and chloritic stringers in association with irregular, anastomosing opaque stringers clearly suggests pressure solution. This also happens to be the main sulphide environment in this sample; very fine, idiomorphic arsenopyrite rhombs, as well as coarse, subidiomorphic pyrite grains are both closely associated with, and concentrated in, the heavily sericitized material.

MINERALOGY

~35% Quartz, Feldspar & Quartzofeldspathic Material: fine-grained, heavily overprinted, essentially unidentifiable felsic material is quite abundant; some of the felsic material is identifiable as feldspar; at least one grain of alkali feldspar was tentatively identified, which may suggest a relatively felsic protolith composition; there has clearly been minor recrystallization of (albitic) feldspar in association with alteration; recognizable quartz occurs mainly in irregular, relatively coarse-grained masses and veinlets; as in TU-7, this quartz tends to be cloudy due to the presence of abundant fluid inclusions.

- ~30% Carbonate: heavily pervasive in certain parts of the sample, but at least partially overprinted by vein quartz alteration, and also overprinted by intense sericitization; the carbonate does not effervesce in cold HCl; much of it is quite reddish-brown in colour, which also suggests an iron carbonate; there is apparently some later carbonate as well, since veinlets of clear carbonate cut some of the reddish-brown masses; there is also some relatively clear, sparry-textured carbonate associated with some of the quartz veins.
- ≈20% Sericite: concentrated into heavily foliated masses and stringers; very fine (0.1 mm and much less), flaky to fibrous grains; close association with arsenopyrite and pyrite.
- ≈10% Opaques, consisting (in order of decreasing abundance) of:

Pyrite: relatively coarse, subidiomorphic cubes, e.g. 0.5-1.0 mm, coalescing into very coarse (several mm), blocky, irregular masses; usually slightly poikilitic, especially at the centers of grains; fine inclusions of chalcopyrite, pyrrhotite and arsenopyrite.

Arsenopyrite: distinctly less abundant, also much finer-grained than the pyrite; fine (e.g. 0.1-0.2 mm), idiomorphic, rhomb-shaped grains; can occur as inclusions in pyrite; with pyrite, concentrated within heavily sericitized material and in association with chloritic stringers.

Oxides: minor to accessory; extremely fine grain size; disseminated and in trails and stringers, closely associated with heavy sericitization; this is almost certainly an oxide residue related to pressure solution.

Pyrrhotite: trace; fine, irregular inclusions in pyrite.

Chalcopyrite: trace; fine, irregular inclusions in pyrite; occasional free grains.

3-5% Chlorite: occurs in very fine, irregular, anastomosing stringers, associated with sericitization and with very fine stringers of oxide and other opaque material; the chlorite is very fine-grained, essentially fibrous; weakly pleochroic, colourless to very pale green, with very low, slightly anomalous interference colours; also forms pressure shadow fringes around some coarse pyrite grains; there is quite a close association of chlorite stringers with arsenopyrite.

SAMPLE No. TU-11 (core sample & polished thin section)

SUMMARY & TEXTURAL DESCRIPTION

This sample is similar in many respects to the preceding sample, TU-10 (refer to Photos 16 - 21). It consists of fine-grained quartzofeldspathic material (apparently all that remains of the protolith, largely obscured), with heavy but patchy carbonatization. The carbonate is probably mainly an iron carbonate, but signs of minor effervescence in HCl suggest at least a small amount of (possibly late-stage) calcite. Cross-cutting this fine-grained material are irregular masses and veinlets of relatively coarse-grained, cloudy vein quartz, associated with a coarse-grained carbonate.

As in TU-10, the quartz-carbonate masses and veinlets are abruptly cut by masses of foliated and stringer-type material, which in this case are mainly concentrations of blade-like arsenopyrite grains, associated with irregular, anastomosing stringers of chlorite. The intense sericitization observed in sample TU-10 is not present in this sample; in fact, no sericite at all was observed in this sample. A minor but possibly interesting note is that some of the chlorite in this sample has a distinctly buff-brown colour, which may be transitional to the more intense, unusual pink colour observed in samples TU-13 and particularly TU-14.

MINERALOGY

- =40% Quartz, Feldspar & Quartzofeldspathic Material: (1) very fine-grained (e.g. 0.1 mm and less), heavily overprinted felsic material, essentially unidentifiable (although probably both quartz and feldspar are present); (2) coarse-grained, cloudy vein quartz with abundant (but mostly small) fluid inclusions, occurring in irregular masses and veinlets, associated with iron carbonate; (3) minor occurrences of recrystallized (alibitic) feldspar in association with quartz-carbonate masses and veinlets; (4) minor chalcedonic-textured quartz, forming in pressure shadows around coarse pyrite grains.
- ~40% Carbonate: fine-grained, heavily pervasive (in what appears to be a relatively early stage of alteration); cut by masses and veinlets of quartz + coarse-grained carbonate (grain sizes up to 1 mm or more); much of the coarser-grained carbonate, in particular, is distinctly reddish-brown in colour, which (along with the general lack of effervescence in HCl) suggests that an iron carbonate is dominant; there may be a small amount of calcite present.
- ≈15% Opaques, consisting (in order of decreasing abundance) of:

Arsenopyrite: mostly fine (e.g. 0.2 mm), idiomorphic rhombs and blade-like grains, ranging up to 0.6 mm or more; concentrated in foliated bands, often (but

not always) associated with chloritic stringers; can occur as inclusions in pyrite; in some areas, the fine arsenopyrite grains coalesce into coarser, elongated, blocky masses.

Pyrite: slightly less abundant, but much coarser-grained than the arsenopyrite; clusters of coarse (up to several mm), subidiomorphic cubes; a number of the finer pyrite grains (e.g. 0.2-0.3 mm) display atoll structures (i.e. hollow cores) with carbonate at the core, which may suggest carbonatization of the pyrite.

Oxides: minor to accessory; grain sizes are <u>extremely</u> fine (on the order of a couple of microns and less, almost sub-microscopic); associated with stringer-type material, in this case mainly arsenopyrite and chlorite; this is almost certainly an oxide residue related to pressure solution.

Chalcopyrite: trace; very fine, irregular inclusions in pyrite; occasional free grains.

- anomalous interference colours ranging from bluish to greyish-green; essentially fibrous grains, occurring mainly in fine, irregular, anastomosing stringers, closely associated with arsenopyrite; some of the chlorite occurs as platy grains forming pressure shadow fringes around coarse pyrite grains; this chlorite tends to have a distinctly buff-brown to pinkish-brown colour, with very low birefringence (almost isotropic; compare to the unusual pink chlorite(?) described in TU-13 and TU-14.
- Tr. Tourmaline: small clusters of very fine, prismatic grains, associated with stringers of chlorite and arsenopyrite; brownish colour.

SAMPLE No. TU-12 (core sample & polished thin section)

SUMMARY & TEXTURAL DESCRIPTION

This sample is very similar in most respects to the preceding (TU-11), except that the chloritic stringers associated with arsenopyrite are much more fully developed in this sample. Another difference is that the occurrence of recrystallized (albitic) feldspar in association with quartz-carbonate lenses and veinlets is much more common in this sample than in any of the previously described samples (refer to Photos 22 & 23). The sample consists of fine-grained, heavily carbonatized quartzofeldpathic material (much of which is identifiable as feldspar in this case). Veins and lenses of coarser-grained quartz, carbonate and feldspar criss-cross the sample. Some of these are rimmed by thin bands or coronae of fibrous chlorite. As in TU-11, sericite is almost totally absent from the assemblage, except for a small piece of sericitized material in one corner of the thin section.

MINERALOGY

- ≈50% Quartz, Feldspar & Quartzofeldspathic Material: more feldspar is identifiable in this sample than in any others of this group (except for TU-9, which is different); feldspar was clearly a major component of the fine-grained quartzofeldspathic material which is the only relict from the protolith; the texture of the protolith is unclear, due to heavy overprinting and some deformation; recrystallized (albitic) feldspar is quite common in the alteration assemblage, occurring as tabular grains, mainly in coarse-grained lenses associated with carbonate + quartz; quartz occurs in relatively coarse-grained, irregular veinlets, masses and lenses, mainly associated with carbonate.
- ≈35% Carbonate: minor, localized effervescence in cold HCl suggests the presence of at least some calcite, but the majority of the carbonate appears to be an iron carbonate (non-effervescent, distinctly reddish-brown in plane polarized light); occurs as moderately to heavily pervasive, fine-grained carbonatization, and also in coarser-grained lenses, associated with quartz and feldspar, and rimmed by fibrous chlorite; the coarser-grained, later-stage carbonate may be the calcite (it is clear and colourless).
- ~10% Chlorite: occurs mainly in fibrous stringers, associated with arsenopyrite and with irregular oxide trails and stringers (pressure solution); platy grains also form rims and pressure shadows around coarse pyrite grains; chlorite is pale green, weakly pleochroic, with low, slightly anomalous interference colours; there is also an occurrence of fibrous chlorite forming a rim or corona around some of the coarse-grained carbonate-quartz-feldspar lenses (see photos).
- 2-3% Opaques, consisting (in order of decreasing abundance) of:

Pyrite: mainly concentrated in one clusters of coarse, subidiomorphic cubes and fractured, blocky masses; slight growth zonations are suggested in some grains.

Arsenopyrite: minor; clusters of fine (0.2 mm and less), idiomorphic, rhomb-shaped and bladed grains.

Sphalerite: accessory; fine, roughly equant grains; honey-coloured internal reflections suggest a relatively iron-poor composition.

Oxides: accessory; extremely fine grain size; in trails and stringers; this is clearly an oxide residue related to pressure solution.

Chalcopyrite: trace.

Pyrrhotite: trace.

Acc. Sericite: mostly confined to one corner of the thin section; very fine, almost fibrous, in stringers and foliated bands.

SAMPLE No. TU-13 (core sample & polished thin section)

SUMMARY & TEXTURAL DESCRIPTION

The style and mineralogy of alteration in this sample is somewhat different than in preceding samples, more like that in TU-14, described below (refer to Photos 24 - 28). The sample (i.e. what is left of the protolith) consists of very fine-grained rather intensely strained quartzofeldspathic material. Moderate to heavy carbonate alteration is unevenly distributed, in irregular masses and veinlets. As in TU-12, recrystallized (albitic) feldspar is common in this sample, occurring mainly in irregular lenses, masses and veinlets associated with quartz + carbonate. In fact, the albitic feldspar is probably more important than quartz in the alteration assemblage.

Associated with, and partially superimposed on the carbonate-feldspar-quartz alteration is a network of fine, very irregular, anastomosing stringers of what appears to be a very green biotite (probably the Fe³⁺-rich biotite, called annite; refer particularly to Photos 27 & 28). The annite is very fine-grained, needle-like to almost fibrous. A network of fibrous to almost colloform-textured annite is also characteristic of the alteration in sample TU-14. In some cases it forms rims around carbonate-feldspar masses, in what may be an extension or variation of the chlorite-rimming texture described in TU-12.

Fine-grained arsenopyrite is heavily disseminated throughout much of the sample, usually concentrated in bands. Although some of the arsenopyrite is associated with chloritic stringers as in preceding samples, much of it is superimposed directly on the quartzofeldspathic material. Subidiomorphic pyrite cubes, typically much coarser-grained than the arsenopyrite, are also disseminated throughout the sample, often concentrated in bands with arsenopyrite. Many of the pyrite cubes display well-developed atoll textures (i.e. hollow cubes). This is usually interpreted as a replacement texture, although in this case it is not clear what is replacing the pyrite, and it could be a growth texture instead (refer particularly to Photos 24 - 26).

Another point of similarity between this sample and TU-14 is the presence in both samples of a pink mineral, which may be an unusual composition of chlorite. In this sample, the mineral is platy to fibrous, occurring in small, irregular masses and stringers. It resembles chlorite in every way, including the slightly anomalous interference colours, except that it ranges from buff-coloured to distinctly pink, instead of green. Note that chromian chlorite is typically pink in colour. A green chlorite is also present, mainly in stringers associated with arsenopyrite.

MINERALOGY

=40% Quartz, Feldspar & Quartzofeldspathic Material: at least 10% of the sample consists of recrystallized feldspar, i.e. albitic feldspar which is clearly part of

the alteration assemblage; it occurs in irregular, relatively coarse-grained masses, closely associated with carbonate and (to a lesser extent) quartz; the albitic feldspar is typically tabular, subhedral, ranging up to 1 mm or more in length; the only part of the "protolith" that is still visible is a very fine-grained, quite strongly strained quartzofeldspathic material, with heavy alteration, particularly arsenopyrite, obscuring the original textures and mineralogy; quartz also occurs in irregular masses and veinlets, but in this sample it is not as abundant as the feldspar.

- ≈25% Carbonate: no effervescence in cold HCl, indicates that an iron carbonate is probably dominant; concentrated in relatively coarse-grained, irregular masses, bands and veinlets, mainly associated with recrystallized (albitic) feldspar and, to a lesser extent, with quartz; carbonate masses are often rimmed by fibrous or needle-like annite; most of the carbonate is clear, some is distinctly reddishbrown in plane polarized light.
- =25% Opaques, consisting (in order of decreasing abundance) of:

Arsenopyrite: heavily disseminated throughout the sample, typically concentrated in bands; elongate rhomb-shaped to blade-like idiomorphic grains, ave. ≈0.1-0.4 mm

Pyrite: slightly less abundant than arsenopyrite; subidiomorphic grains, typically coarser-grained than the arsenopyrite (ave. pyrite \approx 0.4-1.0 mm); many grains show atoll structures, i.e. hollow cores; it is not clear whether it is a growth texture or a replacement texture in this case.

Oxide: minor; extremely fine grain size; occurs in trails, associated with chloritic stringers and with arsenopyrite; probably a sign of pressure solution; also associated with iron carbonate, possibly a replacement feature.

Sphalerite: trace; predominantly honey-coloured internal reflections indicates a relatively iron-poor composition; fine, roughly equant grains; minor chalcopyrite "disease".

Chalcopyrite: trace; mainly as very fine, irregular inclusions in pyrite.

~5% Chlorite: there may be a range of compositions of chlorite present; the "normal" chlorite is very fine-grained, essentially fibrous, weakly pleochroic, pale green, occurring in fine, anastomosing stringers closely associated with arsenopyrite, and forming pressurre shadow fringes on pyrite grains; there appears to be a colour gradation into a more buff-coloured chlorite, ranging into a mineral which is distinctly pink, with moderate pleochroism; this mineral looks like a chlorite, but the colour is unusual and may indicate high chromium content; the pink mineral is slightly more abundant than the "normal" chlorite.

- 3-5% Biotite: looks like the Fe³⁺-bearing biotite endmember, called annite; very fine (e.g. 0.1 mm and much less), needle-like to fibrous grains, in a network of very irregular, anastomosing stringers; sometimes forms rims around carbonate-feldspar masses; moderate to strong pleochroism, typical of biotite but very green; can also be closely intergrown with the pink chlorite (see below); the only other possible interpretation of this mineral would be a green sericite, but even the most strongly coloured sericites would not normally be this dark in plane polarized light.
- Tr. Allanite or Piedmontite(?): looks like an orange-coloured epidote mineral.

SAMPLE No. TU-14 (core sample & polished thin section)

SUMMARY & TEXTURAL DESCRIPTION

The style and mineralogy of the alteration in this sample is quite similar to that described in sample TU-13 above, except that coarse-grained vein quart is more important in this sample (refer to Photos 29 - 32). The sample consists of a very fine-grained, quite strongly strained quartzofeldspathic material (the last remnants of the protolith), with heavy, patchy but roughly banded alteration superimposed. The alteration in this sample is dominated by coarse-grained bands and irregular masses of cloudy vein quartz. The vein quartz, as well as the fine-grained quartzofeldspathic material, exhibits signs of strain, such as kink banding and strong undulatory extinction. The carbonate in this sample, some of which is iron carbonate (although minor localized effervescence in cold HCl indicates that some calcite must also be present), is typically associated with a network of green biotite stringers (see below). Also as in TU-13, sericite is almost totally absent from the alteration assemblage. Recrystallized (albitic) feldspar was also not observed, which distinguishes this sample from TU-13, in which albite is an important part of the alteration assemblage.

Associated with and/or superimposed on the carbonate-quartz alteration is an irregular, interconnected network of stringers, of the green biotite (annite) discussed in the description of TU-13. In this sample, the annite network is quite well-developed, to the extent that some of the stringers exhibit almost colloform banding. Carbonate, some of which is quite coarse-grained, is quite closely associated with this annite banding. Also associated with the network of annite stringers are very fine, irregular opaque stringers, which seem to be composed of extremely fine-grained oxide material, clearly suggesting pressure solution.

Fine-grained arsenopyrite is heavily disseminated throughout the sample, typically as irregular patches and bands. In much of the sample it is closely associated with the annite-carbonate network, but in some cases it is superimposed directly on the strained quartzofeldspathic material (as in TU-13). Pyrite, typically slightly coarser-grained, is also associated with the arsenopyrite.

A final point of similarity between this and TU-13 is the presence of the pink chromian chlorite(?) described above. In this case, the pink colour and pleochroism are even stronger than in TU-13.

MINERALOGY

≈50% Quartz, Feldspar & Quartzofeldspathic Material: unlike sample TU-13, only a very small amount of feldspar was definitely identified in this sample, although feldspar may be a major component of the strained, fine-grained quartzofeldspathic material which seems to be the only remnant of the protolith;

- Tr.-Acc. Tourmaline: clusters of very fine, prismatic grains; brownish to deep reddish-brown colour; associated with the annite-carbonate-opaque network; also indicative of pressure solution.
- Tr. Sericite: extremely fine needles, closely intergrown with the annite (which strengthens the identification of this mineral as a biotite and not a green muscovite).

SAMPLE No. TU-15 (core sample & polished thin section)

SUMMARY & TEXTURAL DESCRIPTION

This sample is distinctly different from the others described in this group of samples (refer to Photos 33 & 34). This is a medium-fine-grained ultramafic intrusive which has undergone hydrous alteration. The mineral assemblage now is dominated by serpentine + talc + carbonate. There may be some sericite intergrown with the talc; when fibrous and fine-grained the two minerals are essentially impossible to distinguish optically. There could also be minor chlorite intergrown with the serpentine; a magnesian chlorite would be colourless with low anomalous bluish interference colours and, if fibrous, would be difficult to distinguish from the serpentine. However, the serpentine-talc assemblage is typical of hydrous metamorphism of an ultramafic protolith.

Nicely preserved relict olivine grain outlines are clearly visible within the fibrous serpentine (although the olivine itself has been totally serpentinized). The relict texture indicates an original grain size for the olivines of ≈0.3 mm, with subhedral to euhedral, equant to slightly elongated habit and cumulate texture. The material interstitial to the relict olivines (now mostly talc) was probably originally a coarse-grained pyroxene.

A magnesian carbonate (magnesite) would be expected in an assemblage like this if there was some CO₂ in the metamorphic fluid. However, the carbonate in this sample tends to be concentrated in lenses and veinlets, and effervesces in cold HCl, suggesting instead late-stage calcite alteration.

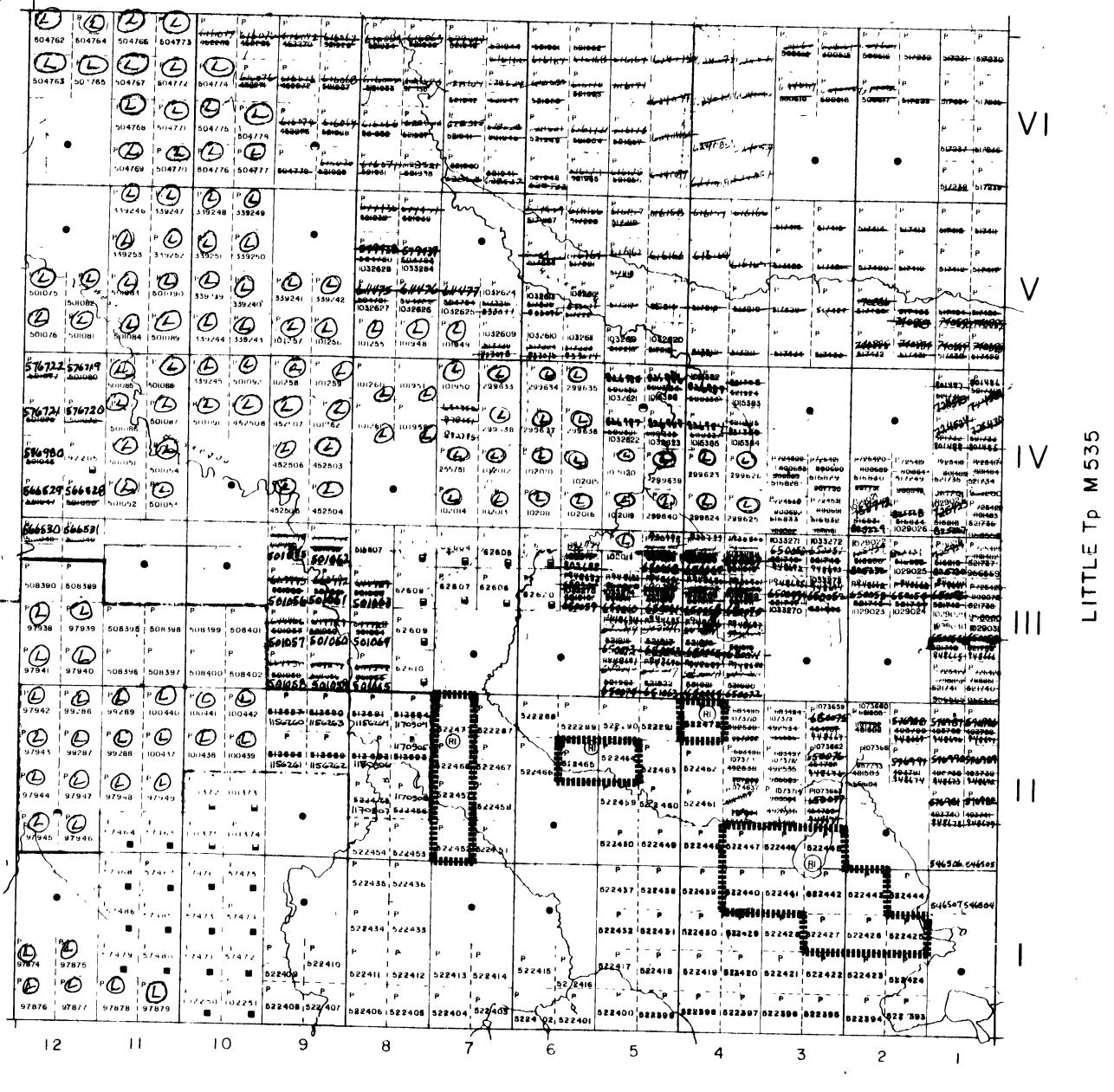
MINERALOGY

- ~50% Talc: very fine-grained, fibrous; essentially impossible to distinguish from sericite.
- ~30% Serpentine: colourless, fibrous, with low, slightly anomalous bluish interference colours; forms pseudomorphs after equant to slightly elongated, euhedral to subhedral olivines.
- =20% Carbonate: effervesces in cold HCl, probably indicating calcite rather than magnesite or an iron carbonate; occurs in irregular lenses, gashes and veinlets; clear and colourless.
- Acc. Opaques, consisting (in order of decreasing abundance) of:

Pyrite: fine, irregular to subidiomorphic masses.

Ilmenite(?): approximately the same abundance as pyrite; a brownish-grey oxide with moderate anisotropy; elongated, very fine tabular to needle-like grains; chromite would be more typical in a rock of this composition, but chromite would be isotropic, and most likely equant rather than needle-like.

Pyrrhotite: trace; fine, irregular, elongated masses.


Chalcopyrite: trace; fine, irregular masses.

NOTES

400' surface rights reservation along the shores of all lakes and rivers.

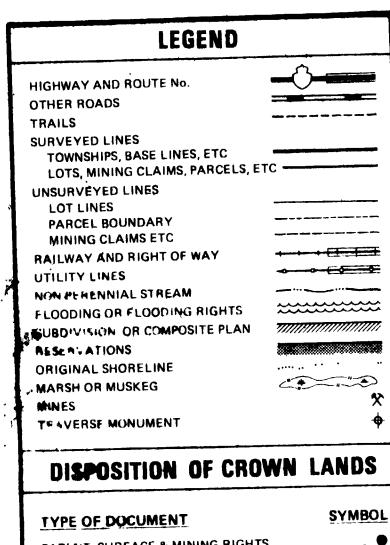
PROSPECTING, STAKING, SALE OR LEASE,
SECTION 36 THE MINING ACT R30 1980

DUFF Tp. M 466

HIGHWAY AND ROUTE No. SURVEYED LINES TOWNSHIPS BASE LINES ETC LOTS, MINING CLAIMS PARCELS, ETC UNSURVEYED LINES LOT LINES PARCEL BOUNDARY MINING CLAIMS ETC RAILWAY AND RIGHT OF WAY NON-PERENNIAL STREAM FLOODING OR FLOODING RIGHTS C-10 MARSH OR MUSKEG DISPOSITION OF CROWN LANDS PATENT SURFACE & MINING RIGHTS RESERVATION CANCELLED SAND & GHAVEL ACRES HEOTARES 40 Received Oct 1/79 TOWNSHIP DISTRICT COCHRANE MINING DIVISION PORCUPINE Ministry of Natural Resources Ontario Surveys and Mapping Branch
Date No. 1978 Pinn No. Date No. 1978 Whitney Block Queen's Park, Toronto M. 607

LEGEND

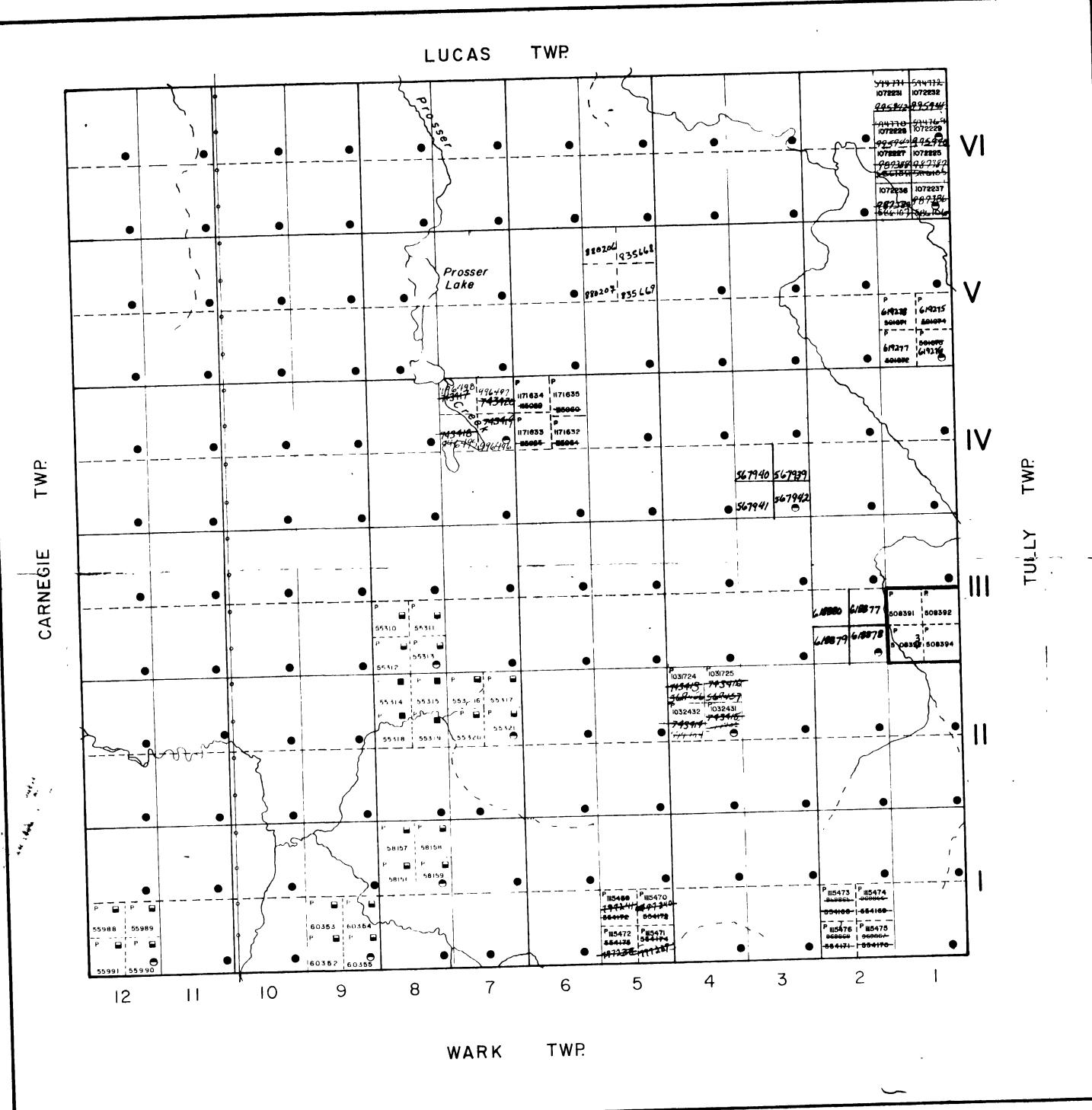
GOWAN Tp M. 285



S

ш

S


ROS

PATENT, SURFACE & MINING RIGHTS _____ , SURFACE RIGHTS ONLY..... " MINING RIGHTS ONLY LEASE SURFACE & MINING RIGHTS..... , SURFACE RIGHTS ONLY.____ " MINING RIGHTS ONLY..... LICENCE OF OCCUPATION SAND & GRAVEL NOTE: MINING RIGHTS IN PARCELS PATENTED PRIOR TO MAY 6, 1913, VESTED IN ORIGINAL PATENTEE BY THE PUBLIC LANDS ACT, R.B.O. 1970; CHAP. 380, SEC. 63, SUBSEC 1

THE INFORMATION THAT APPEARS ON THIS MAP
HAS BEEN COMPILED FROM VARIOUS SOURCES, AND ACCURACY IS NOT GUARANTEED THOSE WISHING TO STAKE MIN-ING CLAIMS SHOULD CON-SULT WITH THE MINING RECORDER, MINISTRY OF NORTHERN DEVELOP-MENT AND MINES, FOR AD-DITIONAL INFORMATION ON THE STATUS OF THE LANDS SHOWN HEREON.

NOTES.

400' surface rights reservation along the ... shores of all lakes and rivers.

SCALE: 1 INCH + 40 CHAINS

ACRES

16

TOWNSHIP OF

PROSSER

DISTRICT

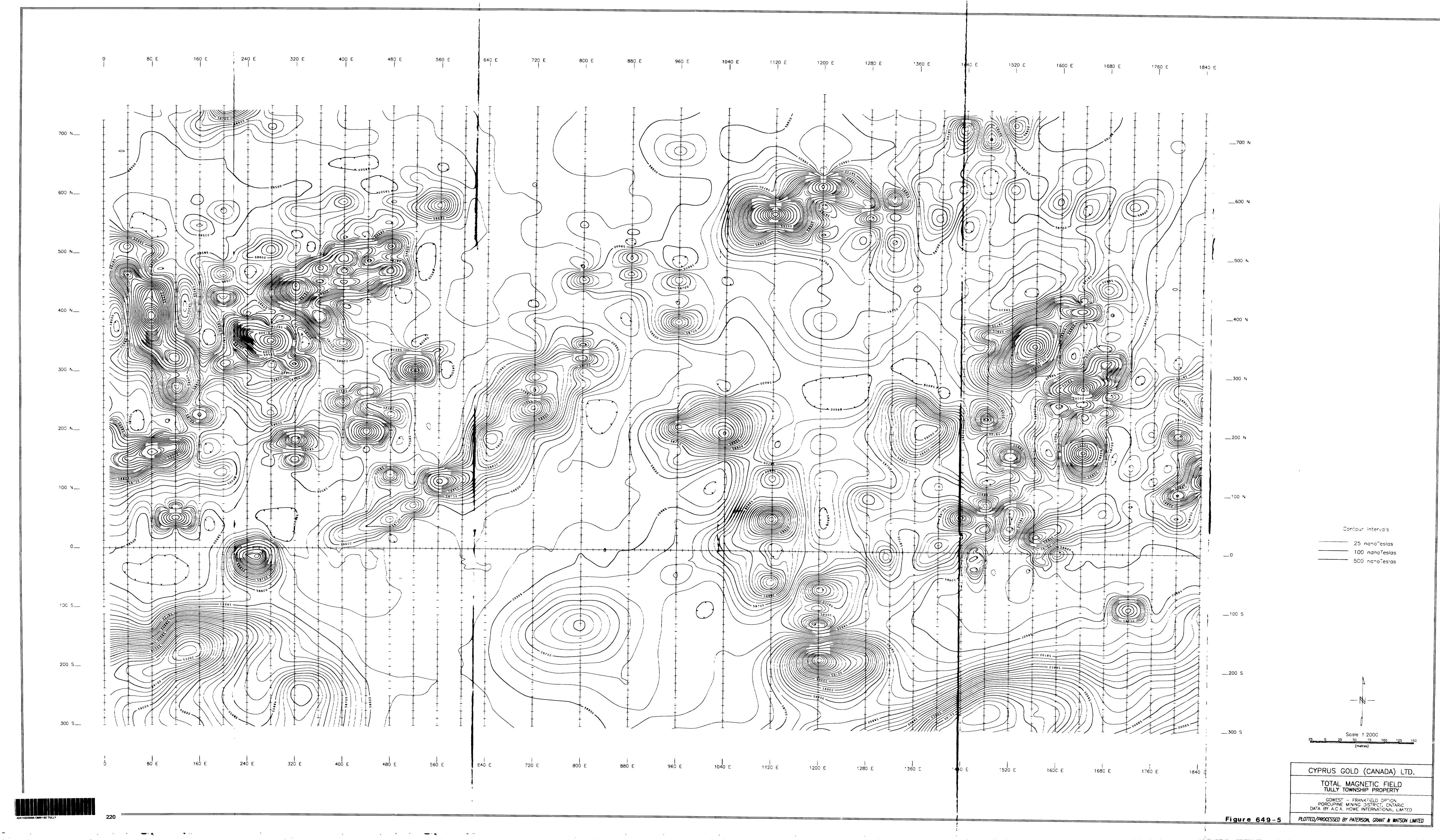
COCHRANE

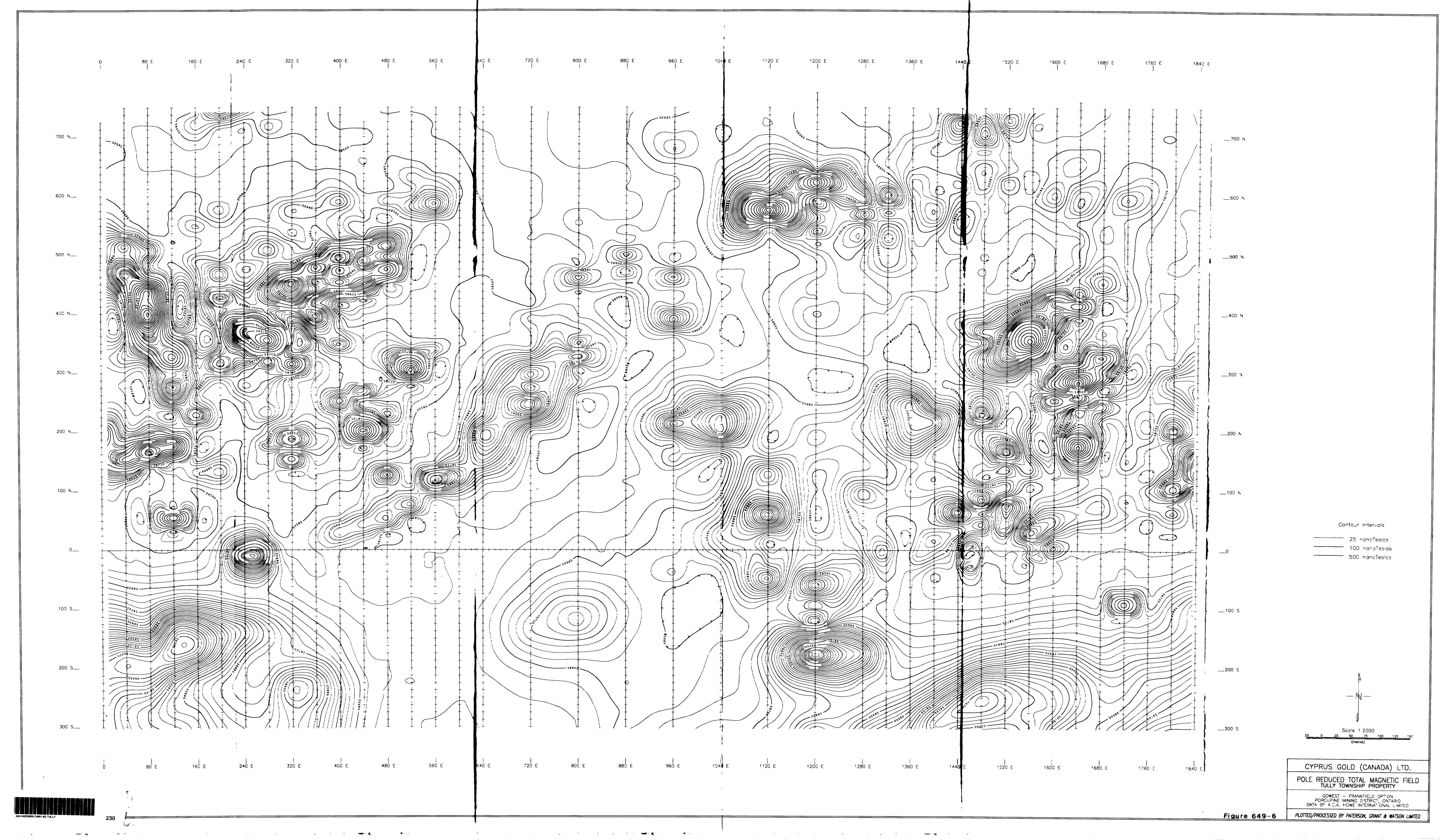
MINING DIVISION 6M91-62 PORCUPINE

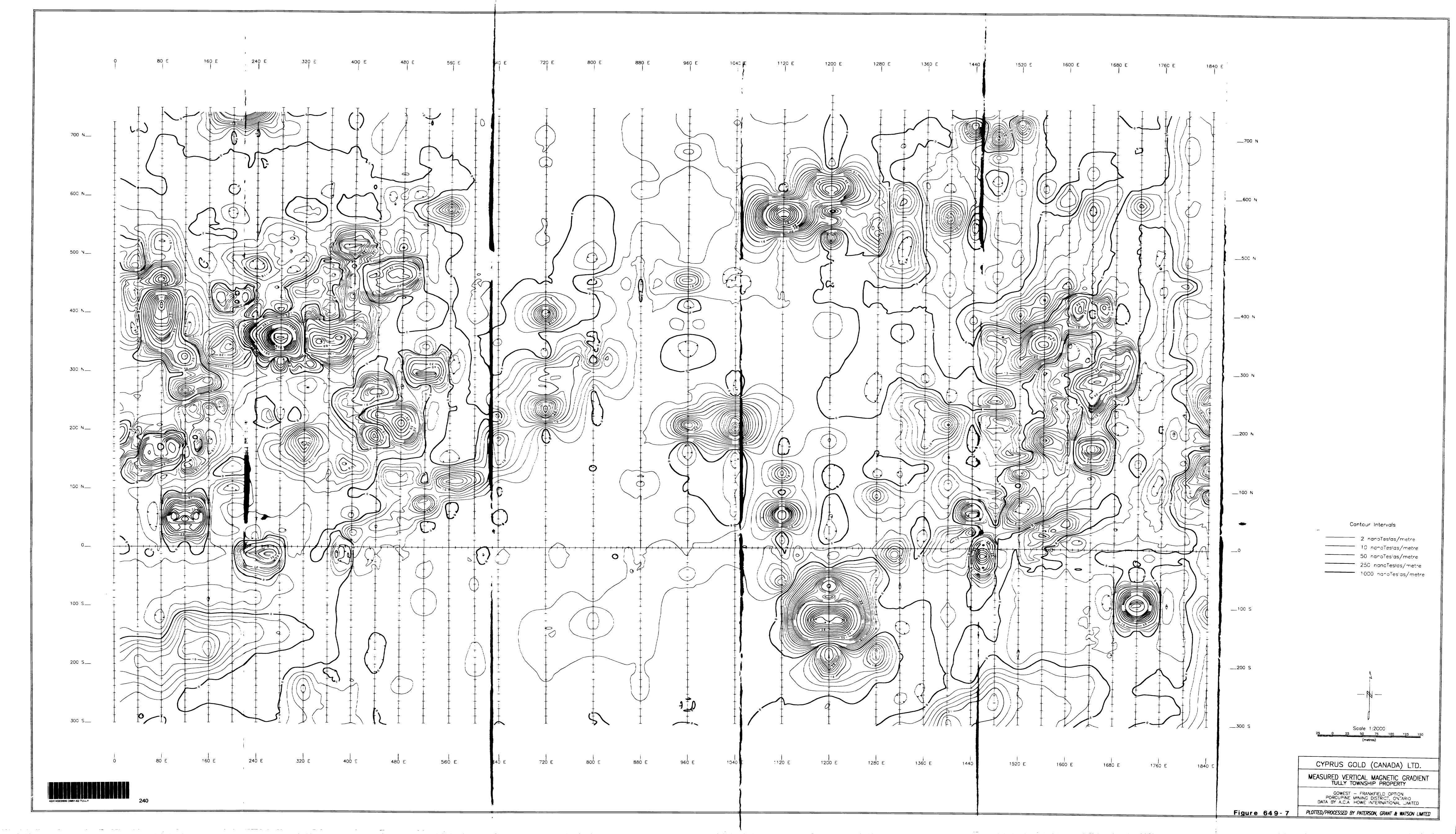
Ministry of Natural Resources

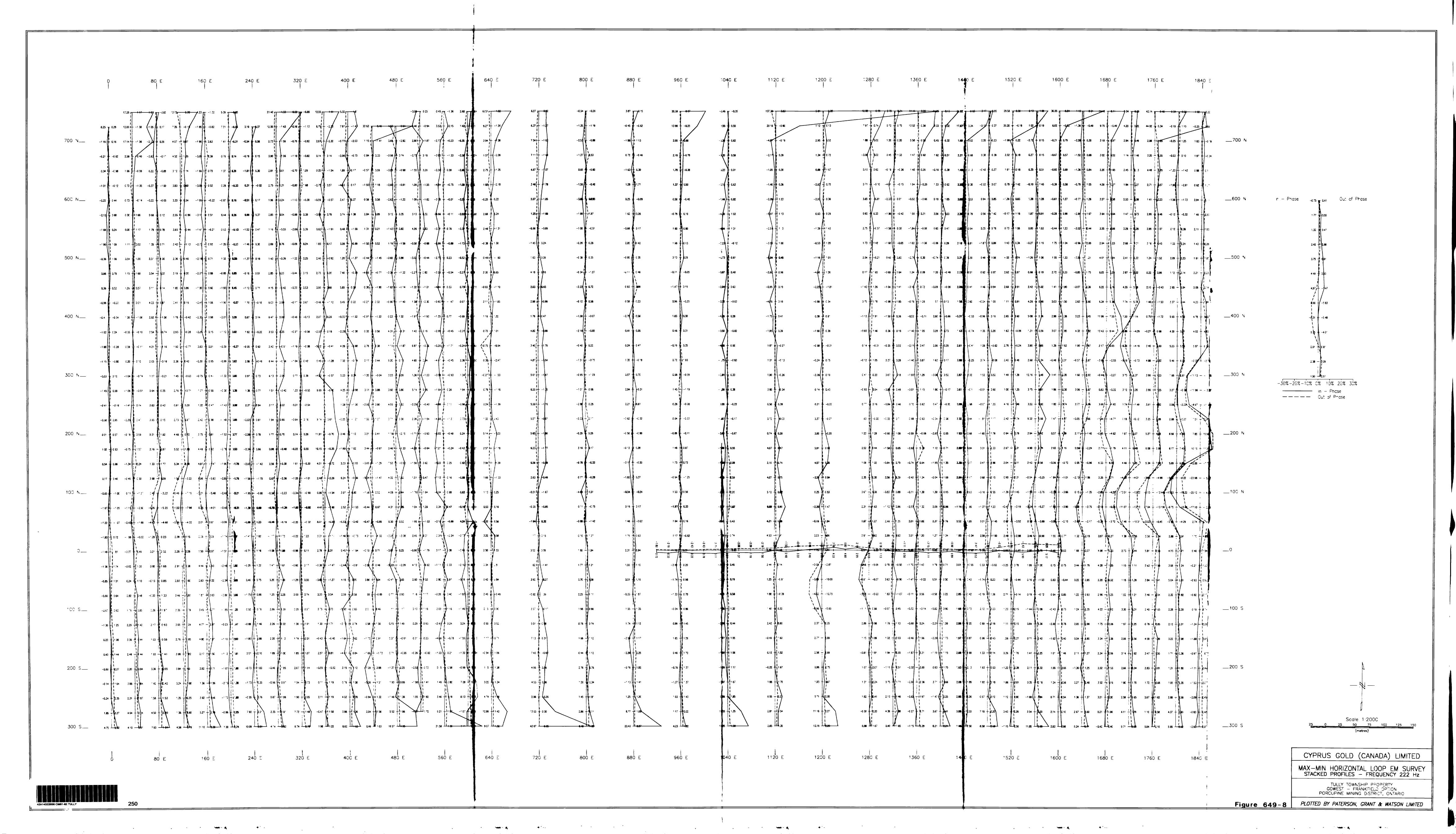
Surveys and Mapping Branch

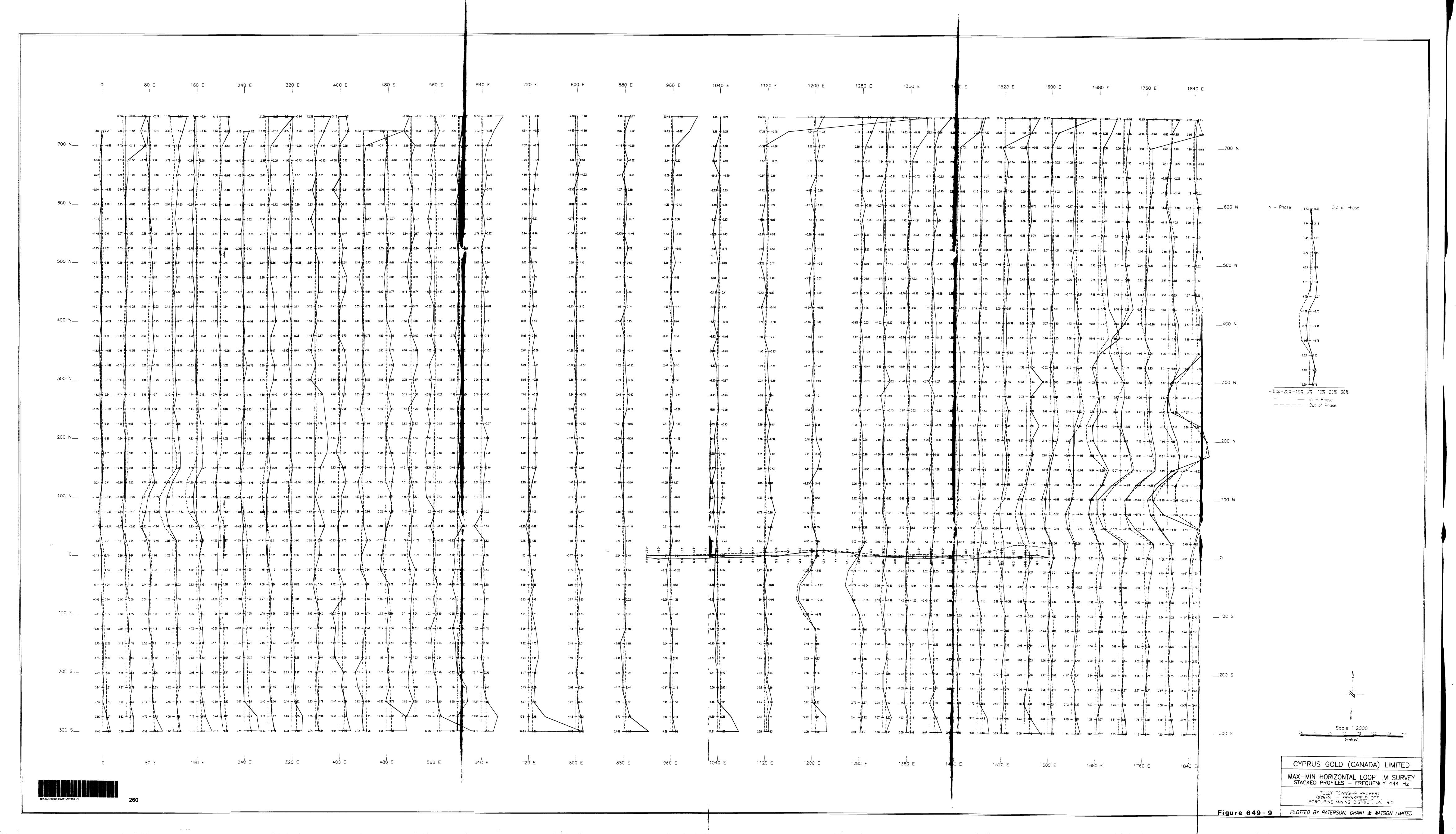
Ontario Feb /80

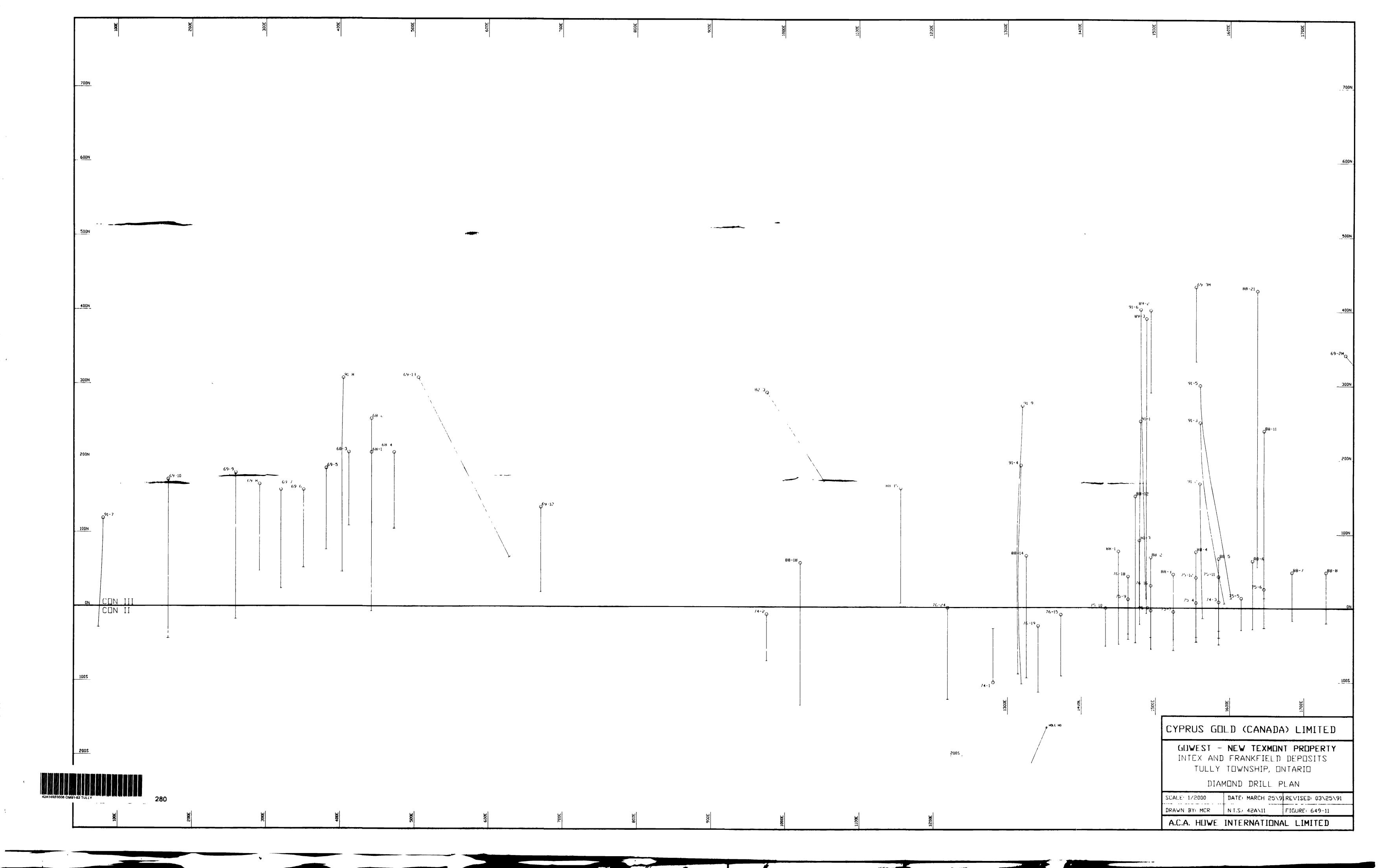

Plan No


National Topographic Series

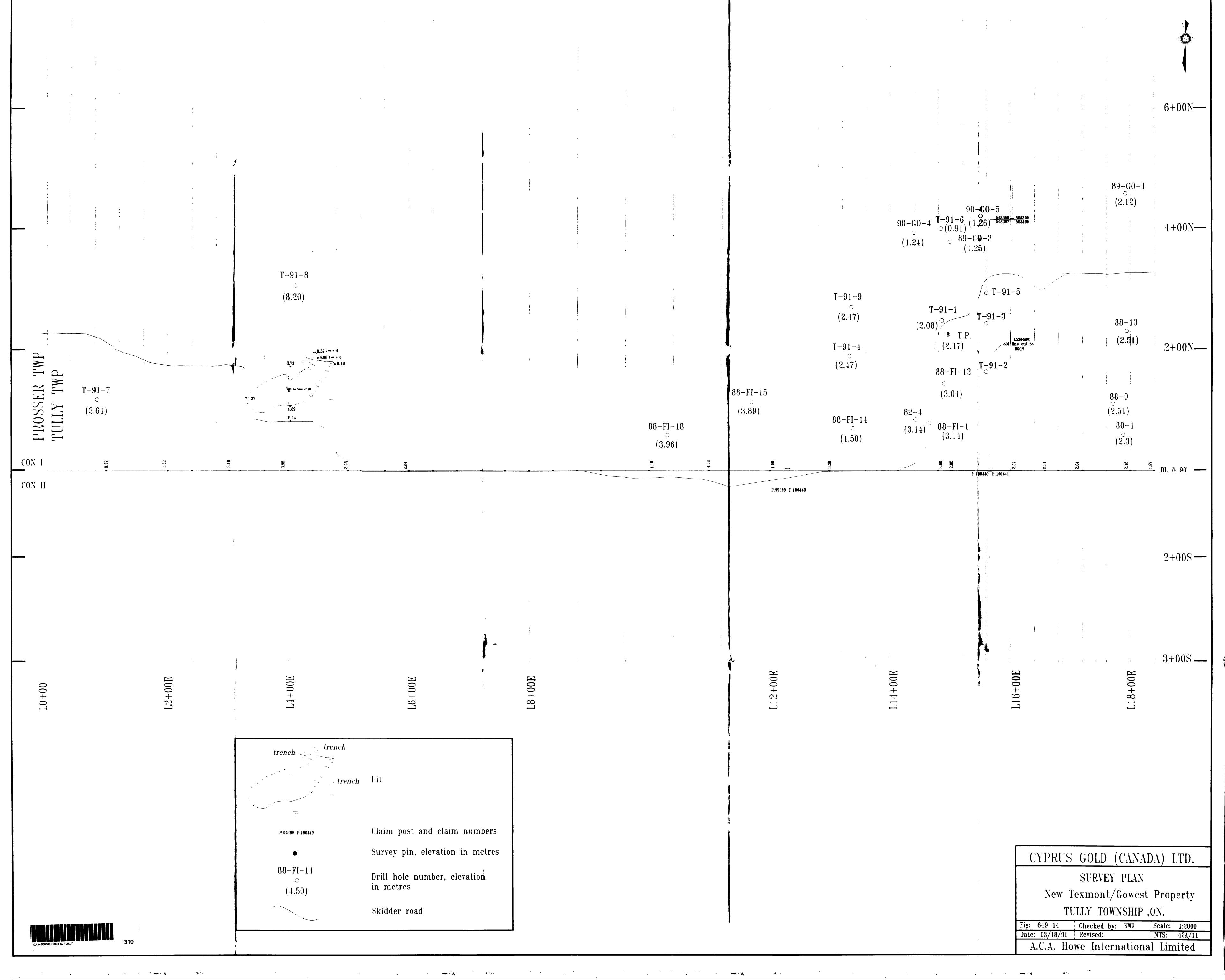

M - 571

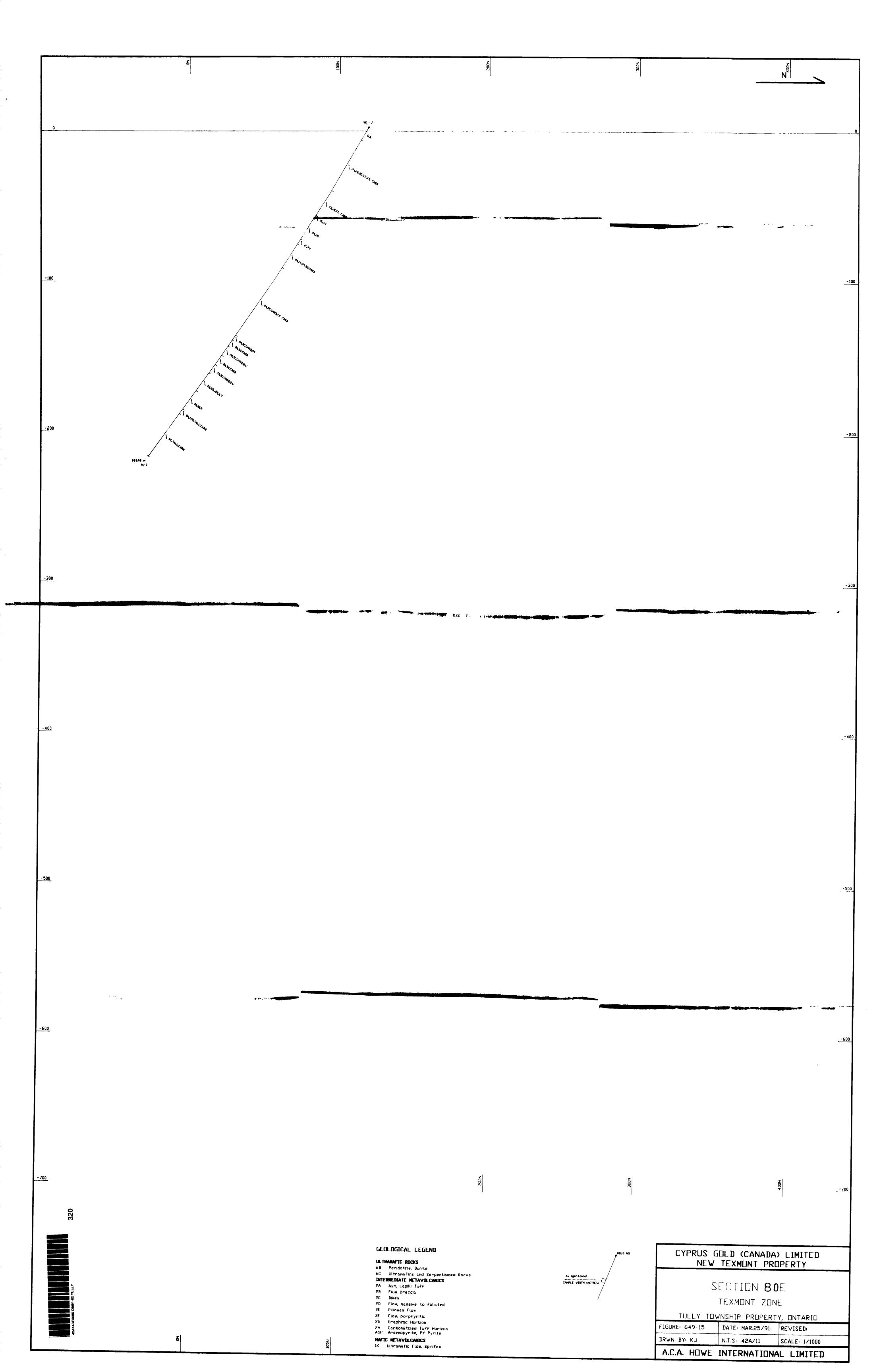


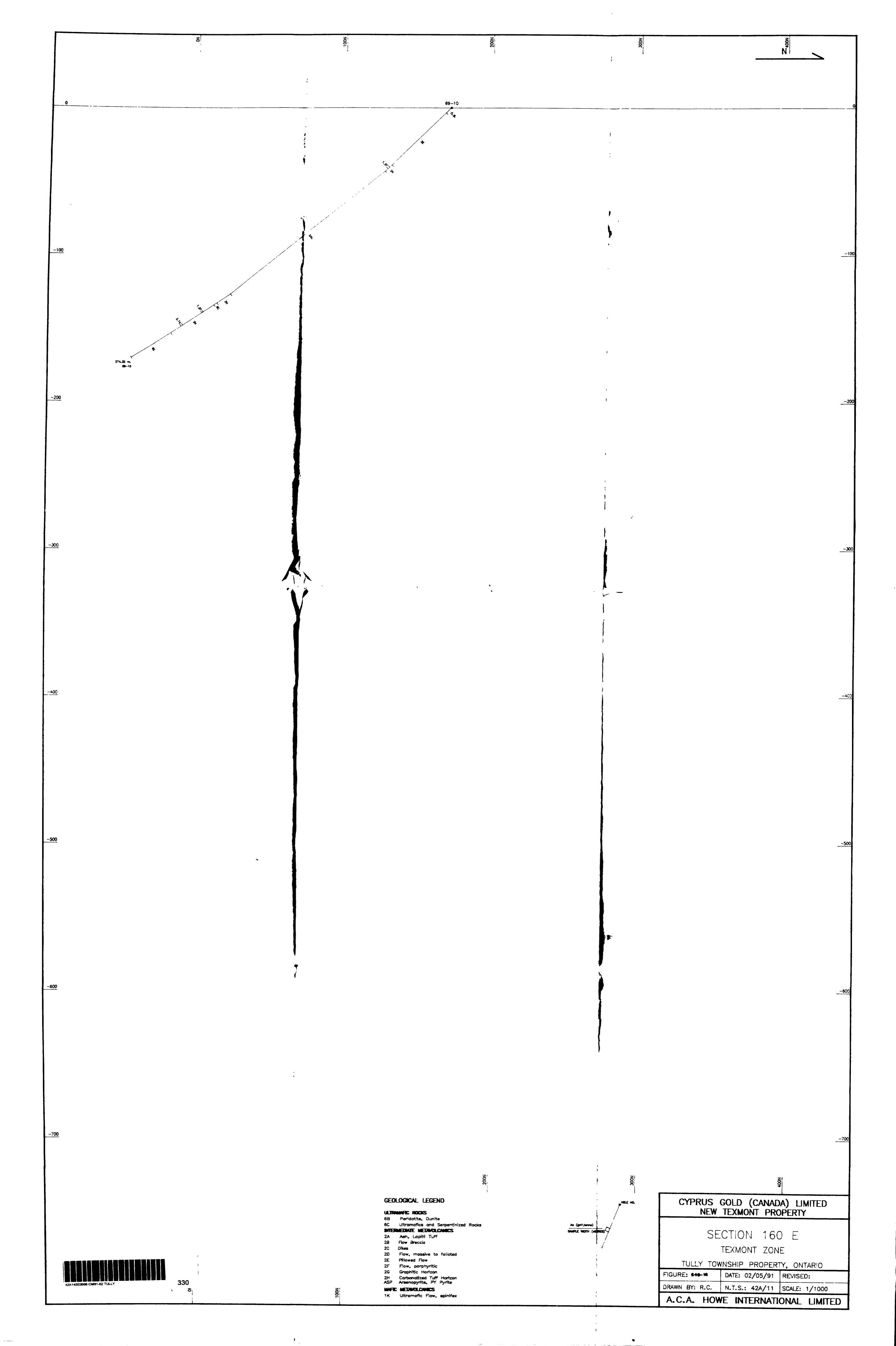

1

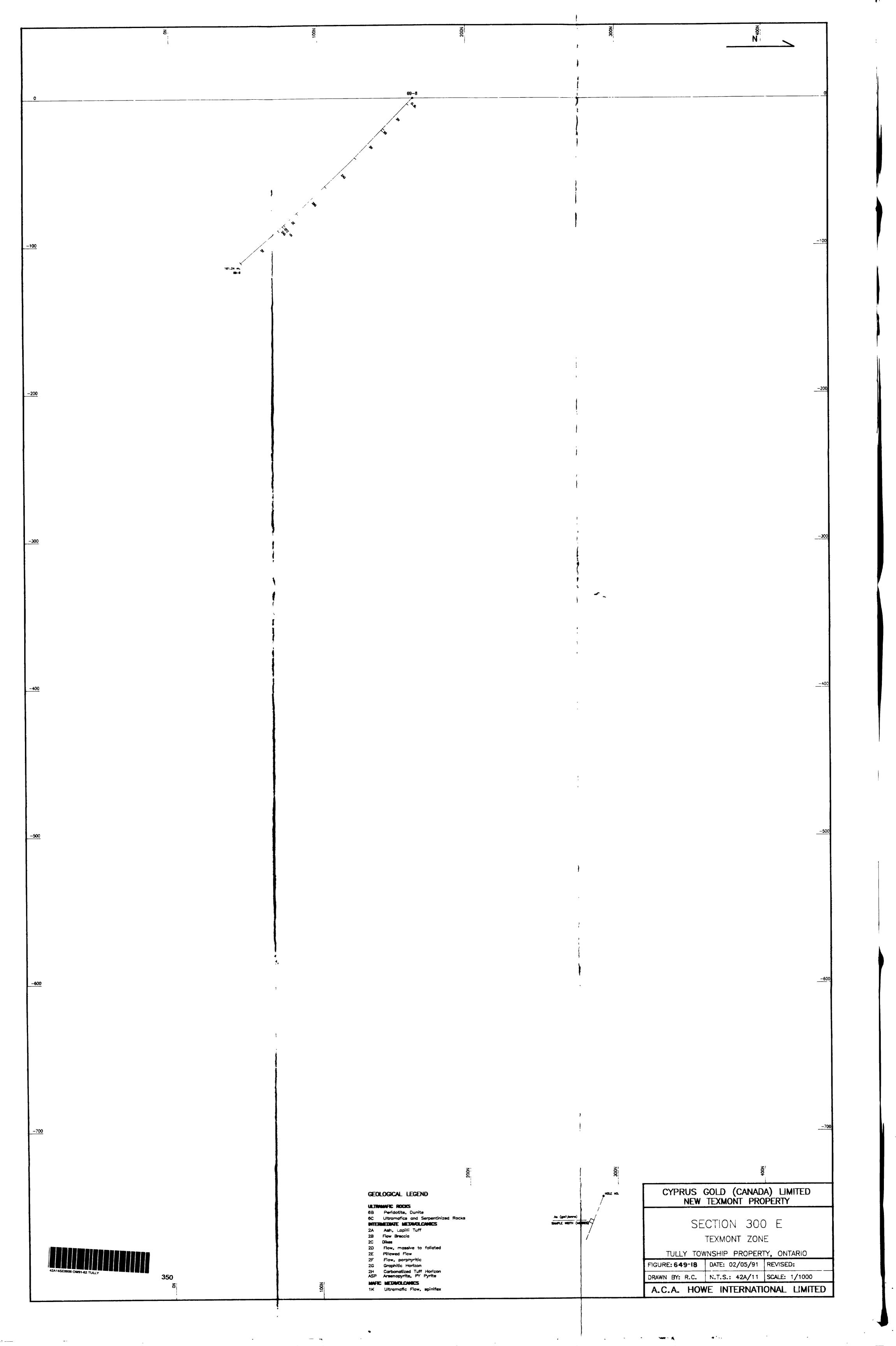


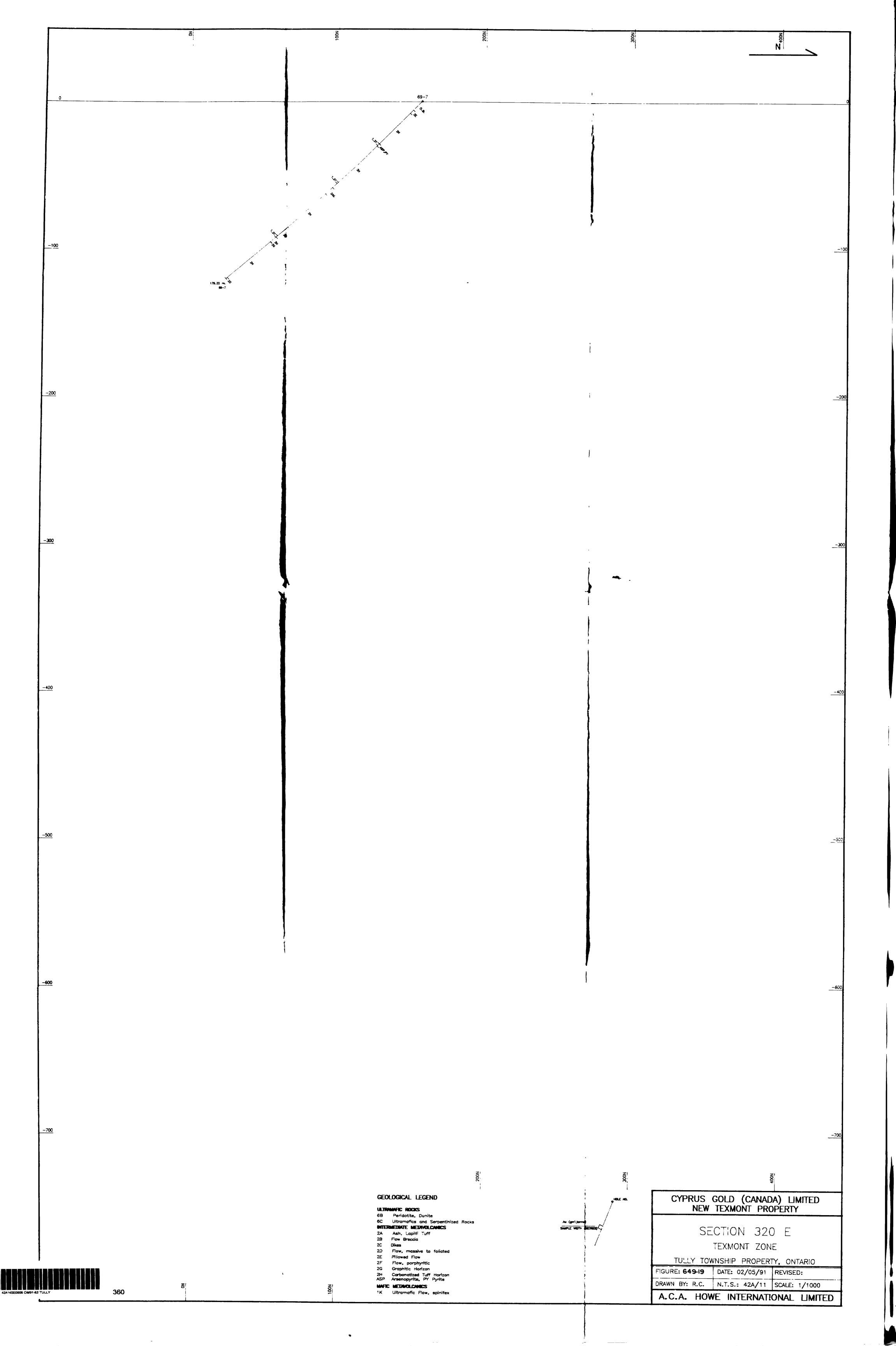


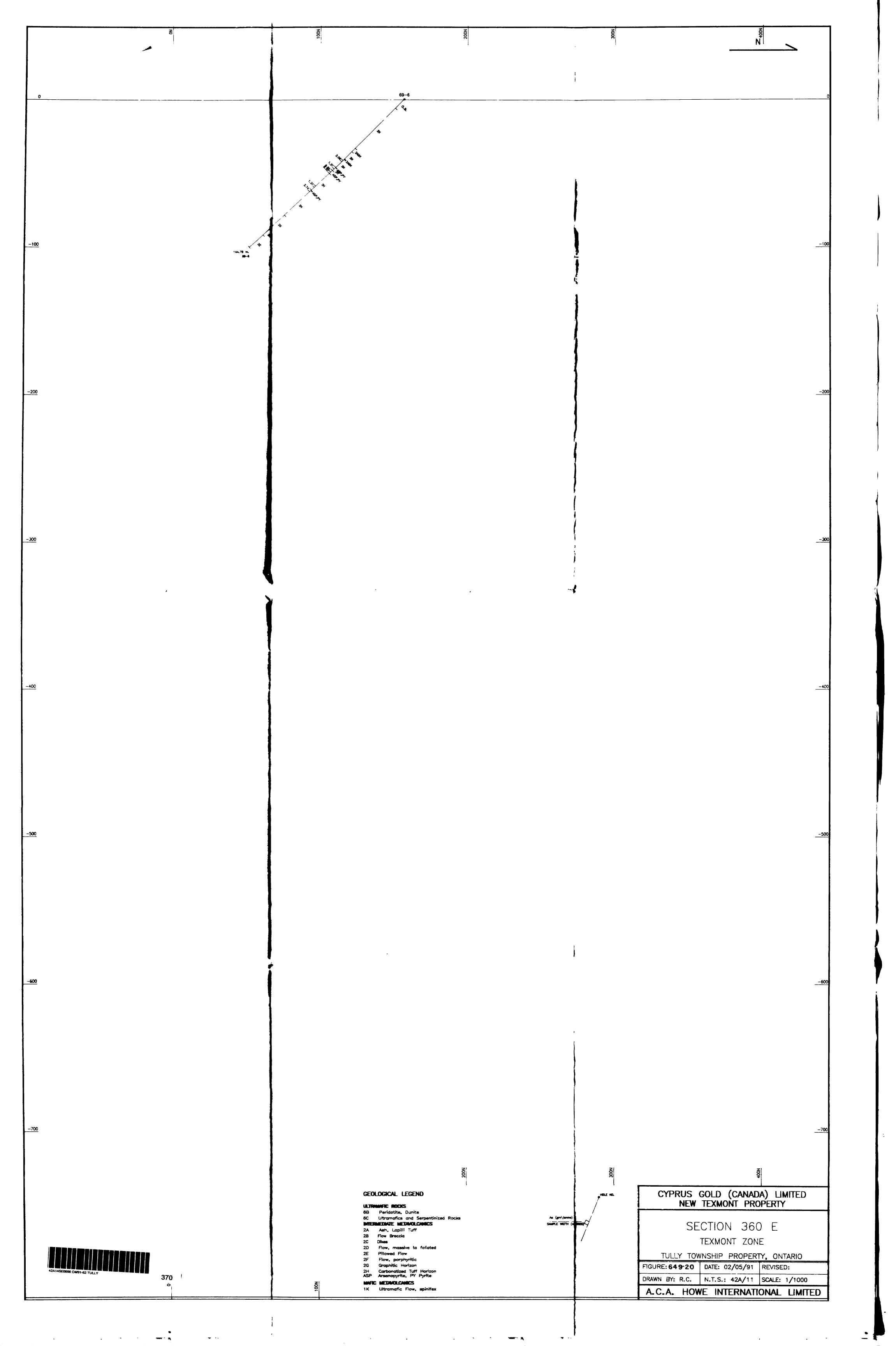


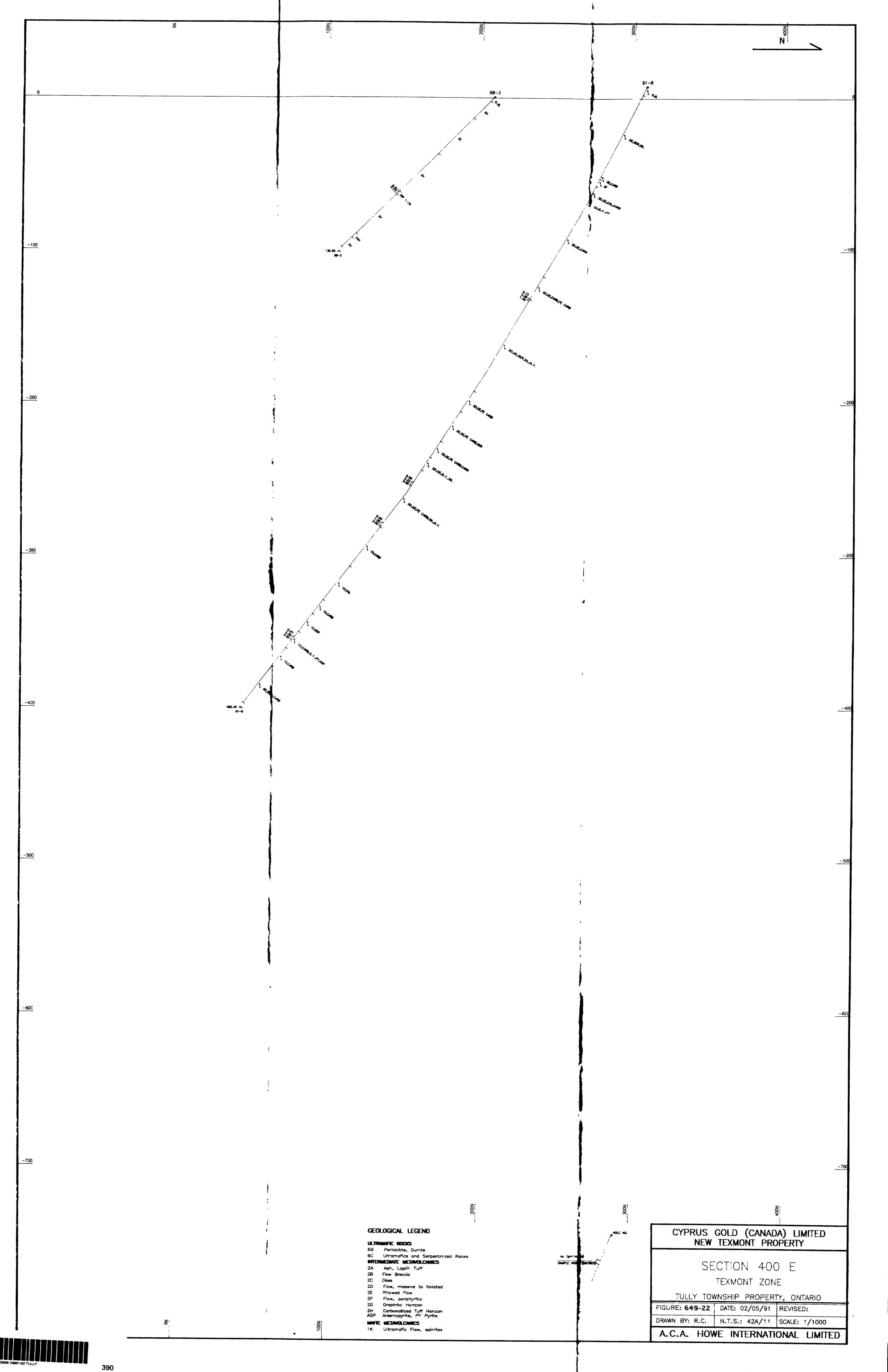


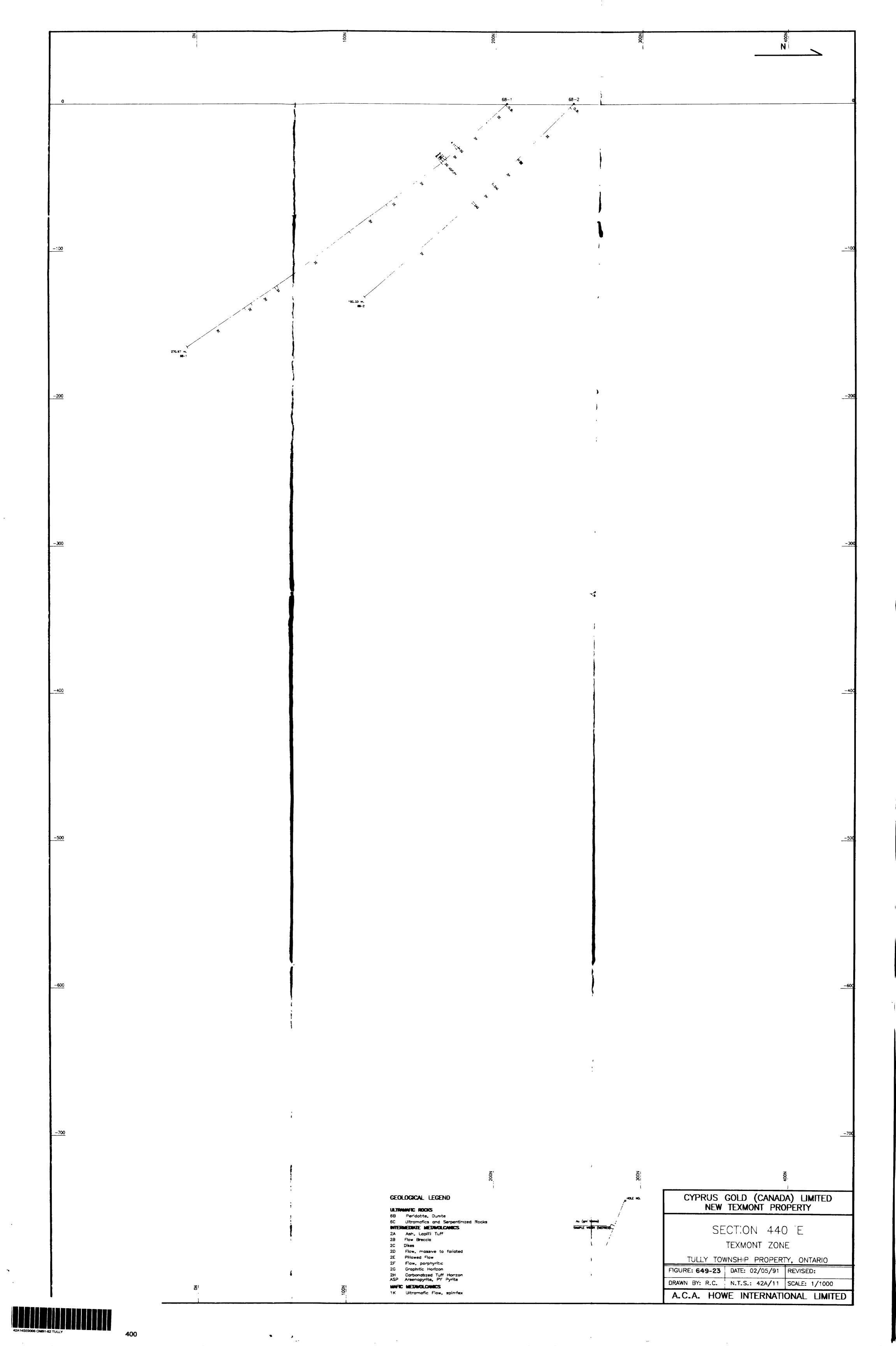

303 + f. 42 2.37 + c.49 522 + 178 0.52 + 0.61 .77 - 0.67 2.08 + 0.48 -0.86 + -0.08 -1.97 + -0.32 0.05 + -1.43 -1.57 + -0.48 +66 + -0.29 +76 + 0.3 5.92 + 0.89 2.08 + 0.03 2.41 + -2.12 0.37 14 -0.86 163 + -0.29 341 + 27 242 + -0.70 240 - 16 0.85 + 0.34 319 + 0.44 0.83 + -0.32 -0.55 + -0.42 -0.24 -0.26 3.91 + -0.15 447 + 0.18 6.39 + 0.56 114 + -1.42 : 49 + -2.00 -a.+ -3.98 2.45 + 400 -1.99 (cas 6.25 + 4+) -2.64 + 420 0.96 + 0.06 -0.52 + -2.12 2.78 + -3.82 -1.73 + -2.13 -0.20 + -0.90 -0.93 + 1.36 0.46 + 1.27 -1.49 + -2.07 -0.73 + -0.42 -3.64 + -1.46 -0.44 0.32 1.25 + (-0.54) 022 \$ -0.75 049 \$ -0.80 196 \$ -0.97 0.74 \$ -12 1.87 -0.24 0.52 \$ 3.74 2.79 \$ 6.09 \$ 0.96 0.17 \$ 0.96 -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 5.39 \$ 1.45 6.09 \$ 2.21 9.51 \$ 12.12 \$ -3.56 2.61 \$ -0.80 \$ 0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ -0.90 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.96 \$ 0.17 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 \$ 0.96 -0.70 + -5.37 2.50 + 3.53 -0.00 + -2.52 459 + 2.65 -1.50 + 2.67 2.02 + -1.50 + 2.67 2.02 + -2.29 2.49 10.75 -2.27 + 1:80 C42 10.77 1.35 + 1.38 0.80 + 2.53 -2:44 + 2.25 -1.90 + 1.40 -2.83 + 0.19 -1.94 + -0.19 13.5° + 1.79 135 + 1.04 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 1.07 - 10.56 1 -0.95 0.56 1 -3.46 444 1 -74 -2.50 10.84 0.73 1 -1 0.19 1 -1.68 3.08 1 15 -0.32 1 1.59 -2.90 1 1.36 -562 1 1.21 -0.46 1 1.22 -2.15 + 1.2 1.30 1 1.21 -3.67 -1.8 3.14 1 -0.38 1 2.18 1 -0.75 -1.05 H a.65 1.73 Ha.05 2.15 H -3.7 -3.5 4 -0.66 0.96 H -5.4 0.19 + -0.46 3.18 H 20 -0.68 H 27 -4 4 1.30 -0.72 H 0.79 1.85 + 1.47 0.18 + 1.52 2.57 + 1.92 4.53 + 104 -1.55 + -1.29 -0.93 + -1.34 148 + 162 3.30 46 161 + 1.65 185 + 1.19 0.89 + 1.160 1.34 + 1.234 -0.70 + 1.250 5.79 + 1.01 813 + 4.15 } 3.76 + 1/101 443 + 4/12 6.66 + 2.54 140 + \$03 -0.11 \$ 0.64 -0.08 \$\frac{1}{2} -1.29 0.25 \$\frac{1}{2} 0.36 \ 1.97 \$\frac{1}{2} 122 \ -1.33 \$\frac{1}{2} 1.23 \ 2.88 \$\frac{1}{2} 1.38 \ 0.72 \$\frac{1}{2} 1.55 \ 2.75 \$\frac{1}{2} 1.94 \ 0.16 \$\frac{1}{2} 1.75 \ 5.85 \$\frac{1}{2} 1.4 \frac{1}{2} \frac{1}{2} 5.35 \ 5.22 + 4\$\$\$\$\$ 5.82 \$\frac{1}{2} 2.25 \$\frac{1}{2} 1.41 \$\frac{1}{2} 0.25 \$\frac{1}{2} 0. 323 + 123 -0.57 + 177 -2.14(1) -0.86 -0.67 -0.70 4.24 - 0.86 0.98 + 108 5.02 + 177 0.59 + 111 324 + 152 -167(+ 0.56 7.30 + 1.53) 566 + 1.94 2.61 + 19 5.08 + 15 399 + 12/24 135 + 1250 -038 + 1243 041 + 0.2 1.93 + 1-17 3.13 - 190 ·42 + 158 3.93 + 1255 163 + 1705 396 + 1/24 0.72 + 1/266 878 + 12.27 \ 847 + 4 4 1 1.14 + 10.37 5.35 + 1 1 1 362 + 1 1.03 \$\frac{1}{2.36}\$ 0.20 \$\frac{1}{4}05\$ 3.91 \$\frac{1}{4}05\$ 4.3 \$\frac{1}{1}19\$ -2.54 \$\frac{1}{1}179\$ -0.54 \$\frac{1}{1}26\$ 2.65 -1.25 \$\frac{1}{1}36\$ 2.49 \$\frac{1}{1}6*4\$ -0.0 \$\frac{1}{1}02\$ 6.82 \$\frac{1}{1}202\$ -3.16 \$\frac{1}{1}6*1\$ -1.53 \$\frac{1}{1}79\$ -2.54 \$\frac{1}{1}56\$ -2.50 \$\frac{1}{2}45\$ -1.97 \$\frac{1}{1}39\$ \$\frac{1}{2}\$ -0.15 + 1.38 1.58 + 2.55 + 1.57 + 72 + 1.28 -1.32 + 1.43 -1.66 + 1.68 -1.62 + 0.58 5.46 + -0.08 -0.76 + 0.58 2.95 + 1) 7' 5.14 + 1.58 -0.92 + 1.68 0.13 + 1.62 -5(19 + 2.36 0.60 + 1.53 + 0.37 287 + 13 045 + 107 0.24 + 7167 .721 + -215 245 - 65 082 + 1096 240 + 17 548 + 017 144 + 208 443 + 376 1175 + 6.43 \ 3.80 + 6.42 \ 2.75 + -4.75 7.74 + 368 \ -1.02 -0.60 145 -0.58 401 -1.66 :62 -0.57 -0.31 -2.24 -0.31 -2.24 -0.32 146 -0.32 6.84 -0.09 -1.16 -0.38 6.63 -0.54 -1.54 -0.32 +1.57 6.43 -1.57 -0.32 +1.65 -0.57 +1.98 -0.44 +1.42 -0.32 +1.57 6.43 +1.69 17 +1.65 -0.57 +1.98 -0.44 +1.42 -0.32 +1.57 6.43 +1.69 17 +1.65 -0.57 +1.98 -0.44 +1.42 -0.32 +1.57 6.33 +1.58 +1.57 6.43 +1.69 17 +1.65 -0.57 +1.98 -0.44 +1.42 -0.32 +1.57 6.33 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 +1.58 + 152 H -001 -C 30 H 067 116 H 366 3.62 H 174 -0.016 -2.05 -0.59 f 0.01 3.26 H 10.89 6.52 f -0.91 418 + 1246 5.26 + 447 18.45 + 746 340 H 227 -0.55 f -3.60 1196 + 5.93 8.89 + 5.34 -0.65 -0.23 + -2.25 414 + 58 3.24 + 52 -2.50 + 3.67 -1.29 + 0.38 141 + -1.06 3.27 + 0.55 305 + 0.38 -1.5 + 1.51 -0.45 + 1.51 -0.52 + 0.52 4.90 + 1.75 1.70 + 1.50 -2.7 + 1.72 -2.8 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.24 | 0.31 + 1.2 288 H -109 151 H -039 -063 H 120 2.76 + 26 461 1 - 130 401 + 1247 388 + 0107 486 + 1100 46 + 1248 385 + 123 -447 H -1*9 -250 + 103 -014 1 063 1340 + 6.42 -135 -395 -395 -396 229 + -1225 279 + -1398 -3.83 + 2.52 -638 + 31 + 300 + -139 + 300 + -139 + 300 + -139 + 300 + -139 + 300 + -139 + 300 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139 + -139-30%-20%-10% 0% 10% 20% 30% -0.82 \$ 0.76 -0.74 \$\frac{1}{2}\$ 0.76 -0.74 \$\frac{1}{2}\$ 2.97 0.64 \$\frac{1}{2}\$ 2.57 \$\frac{1}{2}\$ 0.66 \$\frac{1}{2}\$ 1.50 -0.63 \$\frac{1}{2}\$ 1.50 -0.52 \$\frac{1}{2}\$ 1.66 1.76 \$\frac{1}{2}\$ 1.54 1.57 \$\frac{1}{2}\$ 1.54 1.57 \$\frac{1}{2}\$ 1.54 1.57 \$\frac{1}{2}\$ 1.55 0.66 \$\frac{1}{2}\$ 2.65 5.43 \$\frac{1}{2}\$ 5.4 5/1 -24: -0981 -183 0.50 1 -096 130 1 (0.75 160 1 144 -134 1 165 1 147 2.65 1 053 -0.14 1 -108 +1 1.57 -173 + 1.57 -173 + 1.57 -173 + 1.57 -173 + 1.57 -173 + 1.57 -173 + 1.57 -173 + 1.57 -173 + 1.57 -173 + 1.57 -173 + 1.57 -173 + 1.57 -173 + 1.57 -173 + 1.57 -173 + 1.57 -173 + 1.57 -173 + 1.57 -1.57 + 1.57 -1.57 + 1.57 -1.57 + 1.57 -1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.57 + 1.5 322 + 1·c- 52 + -057 158 + -1:49 361 + -2:3 458 = 3|2 -0.24 + 2:30 450 + 4|10 12:09 + 6:24 > 5:70 + 12|15 > 328 + 792 0 -10:88 + -12:60 -6:90 + -3:71 766 + 2:09 2 25 + 4:12 11:71 + 2:52 1 -0.30 1 102 -0.92 1 0.30 2.58 1 0.81 471 1 1 0 42° +1 125 -1 13 1 1 66 -1 39 1 156 2.99 +1 02 -0.09 1 9.54 + 100 0.86 1 222 '28 1 404 16' 1 53 221 -1 191 -3 39 + -0.25 170 1 196 1:55 1 0.45 139 + 1078 and -034 -034 -022 + -201 -172 + -132 A34 - 155 and + 1400 279 + 144 5.50 + 440 4.53 + 1458 / -1651 / -1651 / -1651 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 / -1652 200 N __ 0.87 \$\frac{1}{1}\$ 13 05 \$\frac{1}{1}\$ 205 \$\frac{1}{2}\$ 205 \$\frac{1}{2}\$ 206 \$\frac{1}{2}\$ 435 + 143 -030 1 -139 172 1 223 1 058 455 1 2 268 + 100 531 + 8 1 712 + 639 376 + 127 + 32(+ -8.00 - 3.15 + -8.36 13.83 + 9.97 \ 192 + 780 \ 1938 + 1165 \ 21) 4 + 1489 \ 1 360 ft dro 339 ft 018 a.83 ft 1.54 2.00 ft 265 + 44 ft 16 4.5 + 5/10 4.54 + 6/10 -0.20 ft -2.55 -2/159 + -4.93 -0.22 ft 0.43 -4.3 ft 6/10 -8/10 + 4.31 -8/10 + -4.31 -8/10 + -3.95 123 # -0.04 c.03 } -0.04 c.57 \$ 2.79 \$ -7.29 -5\$24 + -12.85 \$ 5\$05 + -- 3 = -2.50 \$ -5.70 \$ -3.4 \$ -7.45 -1.47 \$ -4.23 \$ 6.02 \$ -0.26 \$ 5.67 \$ -0.86 \$ 5.47 \$ -0.90 \$ 1.05 \$ 1.026 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -7.06 \$ -491 # 0 10 0 78 # 210 2.38 + 1/1 42 3.34 + 1/24 488 # 1/0 274 + 1/24) 081 1/202 /-1/95 + -9181 1/7 13 + -1080 -092 1 -1 95 1/03 + -496 -25 1/2 + -1/2.57 -24 47 + -15.20 -23 18 + -12.58 -38 45 + -10 48 -150ff -3.33 -175/f -455 /46 + -860 -17.55 + -1411 700 + -13.53 -42 + -6.24 -3.00 + -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2.24 + -4.00 -2 1800 + -5.22 130 + -694; 1674 + -1600 - 2.80 + -3.85 -465 + -9.60 -175 + -160 - -1.46 + -0.60 - -1.46 + -0.27 -1.81 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 - 1.51 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.74 + -0.20 2.96 + -0.20 2.96 + -0.20 2.96 + -0.20 2.96 + -0.20 2.96 + -0.20 2.96 + -0.20 2.96 + -0.20 2.96 + -0.20 2.96 + -0.20 2.96 + 382 +11/2 488 +11/2 137 +1/63 460 + 1/3 203 +1/64 253 + 576 -481 + -1229 -486 + -957 -348 + -527 -344 + -259 -481 + -13994 -2038 + -1438 + -1252 +920 + -779 1046 + -16 + -25 -316 + -457 (-1056 + -1056) 207 + -992 3.4 + 253 0.67 + -992 3.4 + 255 0.67 + -24 0.50 + 265 0.65 + -024 -0.50 + -0.50 -0.15 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 + -0.00 1.53 684 + 1270) 502 + 1290 255 - 153 304 - 17 205 - 086 67 - 6.5 - 1364 - 951 228 + 286 343 + 137 355 + 180 803 + 1024) 1310 + 9.81 76.33 + 1024 -0.56 + -0.35 -0.25 + (1.51 -2.24) 071 4.97 + 241 716 + 865) C56 + 664 072 + 534 230 + 407 0.28 + 13 3.57 + 185 -0.08 + C.78 4.83 + -) 11 -364 + -3.07 17 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.54 4.3 + +-3.5 /-9 14 + -1.48 · 26 + 0.59 -0.62 + 1.21 3.36 + 5.59 3.27 + 2.93 3 + 42 1.81 + 0.07 + 01 / f + 0.92 2.33 / f | 6.33 2.64 + 0.56 7.41 / f -0.61 + 3.91 + 0.40 9.49 / f -0.24 | 6.00 + 0.24 1.22 + 1.74 / 71 495 1 1 6 633 - 1 8 -067 1 2.25 212 + 1265 350 + 207 3.96 1 085 0.99 1 049 047 2.13 -398 1 156 -3 4 -277 547 4.05 -394 1 480 .9. + 14 50 1 -17.22 + -11.45 146 + 179 192 + 167 2.55 + 1688 462 + 15 480 + 177 -303 + 194 1 1.84 + 1243 684 + 1249 073 + 160 - 03 + 1207 481 + 191 567 + 7.38 378 + 1241 406 + 449 4.30 + 614 - 3.78 + 594 2 - + 594 1 + -584 1 + -42 2 270 + -146 -2.06 + 3.35 + 08 - 27 + 212 148 + -2.51 2.57 + -2.61 418 + 18 + 120 407 + 120 407 + 120 686 + 2.93 5.35 + 4.40 1 -18.99 + -11 74 1.54 +10.90 468 +1 \$:95 + 10.58 5.00 +1 46 3.80 +1 168 3.55 +1 3. -0.25 +1 3.3 410 + 164 .90 +10.5 1.54 +10.90 3.55 + 10.58 3.59 + 450 3.59 + 450 3.59 + 450 3.16 + 10.90 4.2" + 611 0.2" + 6.4 4.36 - 5.17 0.42 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -1.7 + -7.05 + 0.96 3.38 + 0.23 - 0.62 + -1.58 - 0.44 + 2.97 5.79 + 0.28 <math>4.96 - 5.96 5.31 + 5.12 4.77 + 5.18 1.80 + 6.819 5.58 + 5.04 5.74 + 5.86 5.04 + 5.18 4.53 + 4.15 5.25 + 3.42 2.40 + 12.8140 + 150 456 + 12 2 2.15 + 12.37 569 + 44 755 + 444 29 - 14 16 141 + 10 459 + 410 316 + 145 248 + 100 -0.84 + 5.27 4:5 + 349 242 + 5.55 183 - 3462 - 14 + 12.46 - 2.94 + 12.65 2.24 + 13.50 456 + 3 pt 462 + 4 264 + 1 252 124 + 1 37 543 = 344 47 + 4 pt 632 + 5 pt 511 + 6 pt 325 + 4 pt 470 + 4 pt 701 + 5 pt 6.00 + 5.2 pt 8.04 + 385 \ 592 + 2 pt 255 + 2 pt 511 + 6 pt 512 pt 6.00 + 5.2 pt 3.02 + 56 5.80 + 366 449 + \$6 5.29 + 5 3 8 18 + 5 45 132 + 4 53 5 40 + 4 1 453 + 4 10 2.10 + 4 10 2.79 + 63 197 + 4 10 197 + 4 10 2.79 + 63 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 + 4 10 197 335 + 4 533 + 61 248 + 59 245 + 1960 6.66 = 136 5.76 + 369 440 + 4 6.35 + 54 5.22 + 4 6.68 + 3/7 6.03 + 4 6.03 + 4 7.25 + 4 90 4.57 + 4 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 1 1.64 + 13.48 + 42 $6.84 + 4.84 + 4.24 + 4.96 <math>7.5^{\circ} + 4.21 + 6.12 + 3.73 + 1.40 + 4.96 + 4.52 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.56 + 4.97 + 4.97 + 4.97 + 4.97 + 4.97 + 4.97 + 4.97 + 4.97 + 4.97 + 4.97 + 4.97 +$ 200 5 ___ 233 + 453 597 + 134 296 + 400 545 + 5 \$ 51 + 390 153 + 380 3.22 + 35 4.99 + 340 2.54 + 458 5.88 + 48 -3.04 + 543 2.42 + 624 0.36 + 431 2.05 + 233 3.04 + 488 3.64 + 488 3.64 + 488 3.64 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 3.04 + 488 4.06 + staz 776 + 573 506 + 148 745 + 1490 5.44 + 47 9.2 \$ 65 4 2.04 + 1420 401 + 1420 5.05 + 485 2.50 + 1390 4.22 + 547 4.24 + 145 :00 + 570 506 + 502 10.6 + 565 3.35 + 126 569 + 29 548 + 4 127 + 497 266 + (45) 727 = 483 522 + 528 597 + 629 277 + 414 517 + 549 490 + 423 712 + 357 628 + 424 477 + 549 595 + 528 099 + 535150 + de3 6.60 + 5.00 536 + 95 6.08 + 474 8.20 + 479 211 + 466 3.26 + 409 5.53 + 6.00 4.05 + 475 777 + 764 291 + 306 267 + 29 585 + 729 579 + 704 1151 + 7731 1-27 + 751 $9.33 + \frac{1}{4}51$ 4.43 + 5 1.38 + 5.35 7.67 = 5.68 11.98 + 6.17 1.98 + 6.17 1.98 + 6.17 1.98 + 6.17 1.98 + 6.17 1.98 + 6.17 1.98 + 6.17 1.98 + 6.17 1.98 + 6.17 1.98 + 6.176.42 + 45 9.5 + 581 8.03 + 5.42 7.32 + 5.36 10.80 + 5.96 1.30 + 7.51 1440 + 6.81 7.50 + 6.11 12.61 + 5.45 223 + 6.29 9.06 + 7.20 \ 1.62 + 5.40 19.64 + 7.80 10.23 + 6.81 8.43 + 8.19 2.18 + 6.11 1.595 + 8.10 CYPRUS GOLD (CANADA) LIMITED MAX-MIN HORIZONTAL LOOP EM SURVEY STACKED PROFILES - FREQUENCY 888 Hz TULLY TOWNSHIP PROPERTY
GOWEST — FRANKFIELD OPTION
PORCUPINE MINING DISTRICT, CATARIC PLOTTED BY PATERSON, GRANT & WATSON LIMITED Figure 649-10

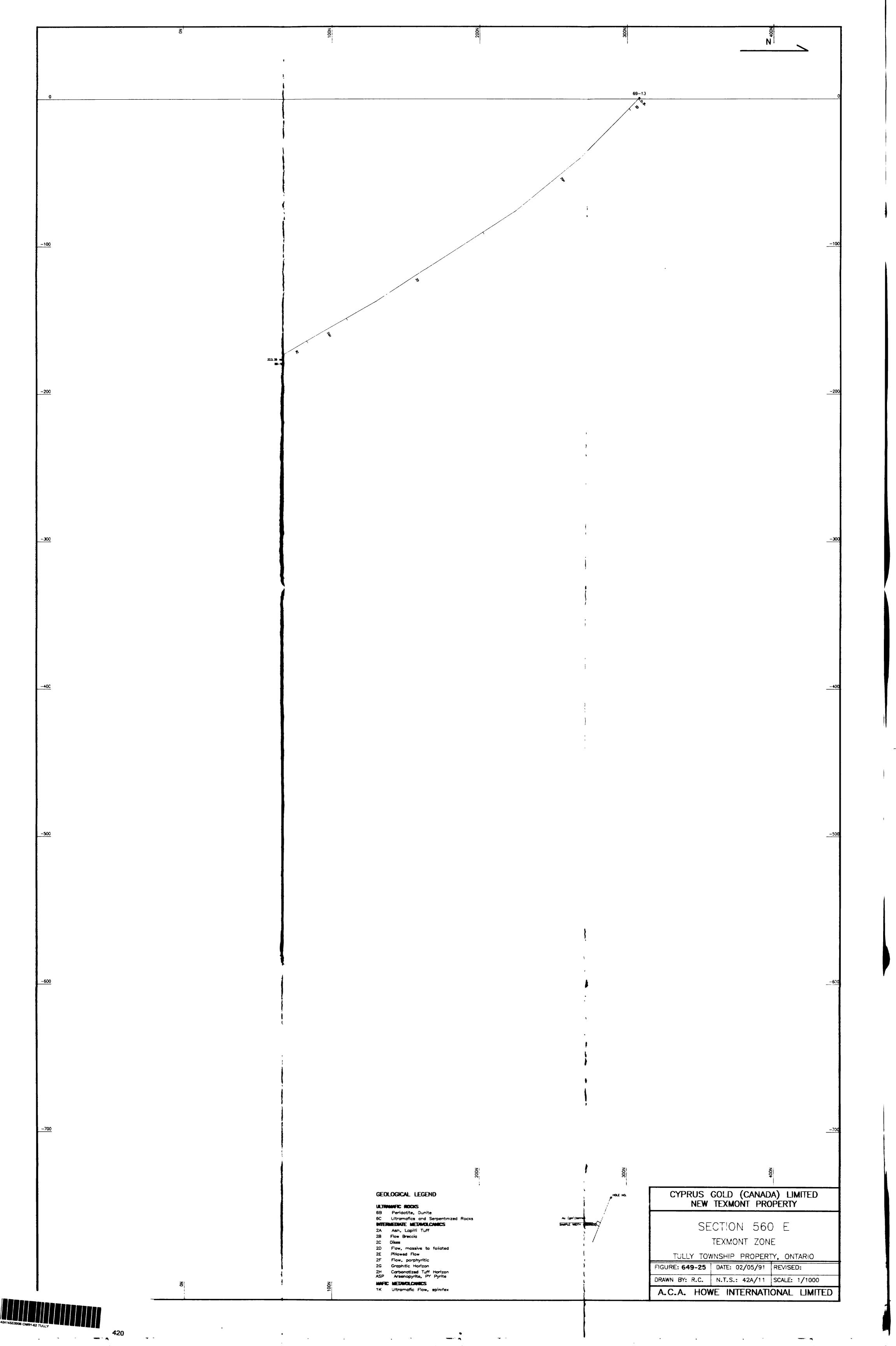




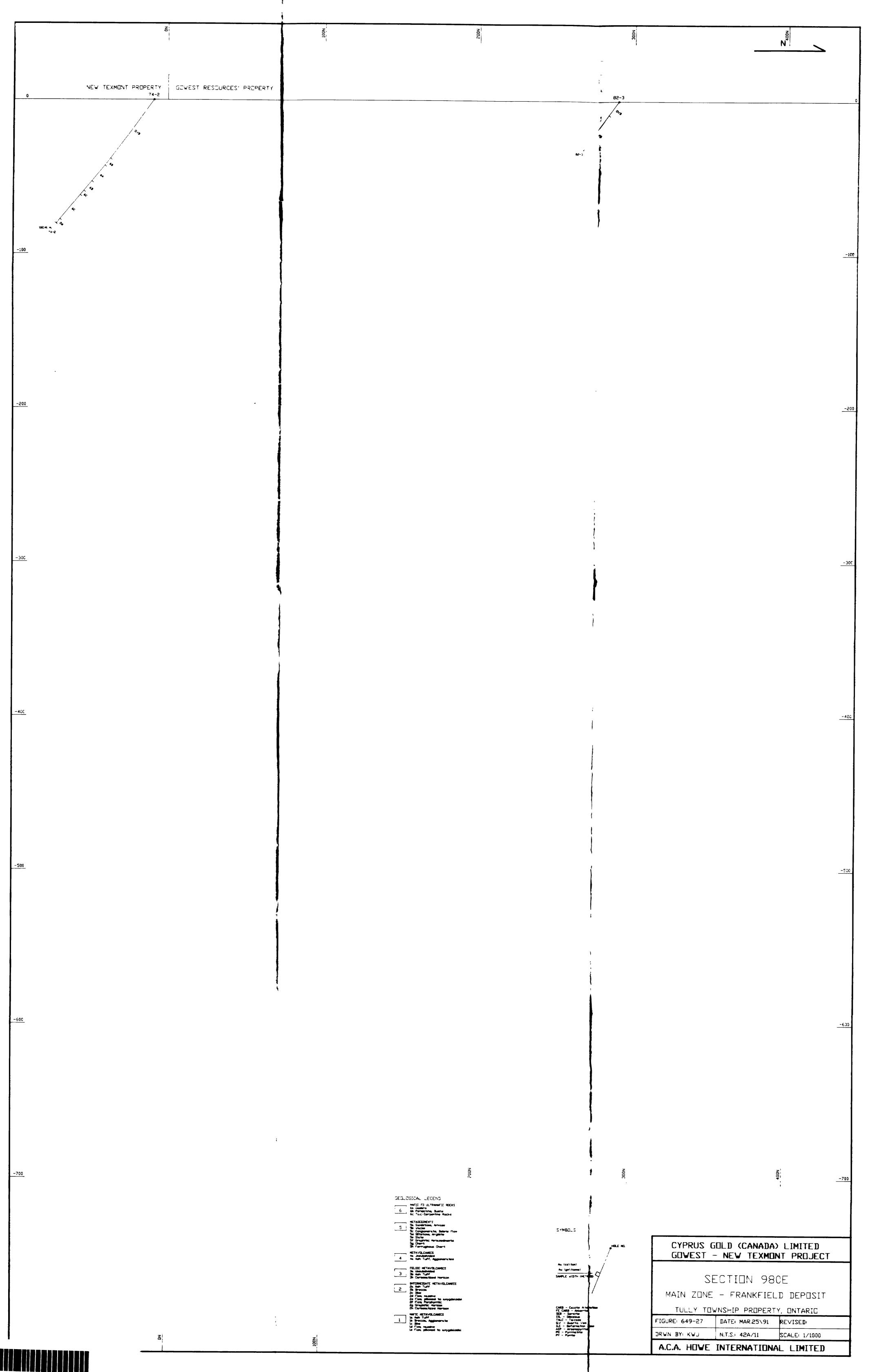



-700 CYPRUS GOLD (CANADA) LIMITED NEW TEXMONT PROPERTY GEOLOGICAL LEGEND ULTRAWATIC ROCKS 68 Peridotite, Dunite
6C Ultramatics and Serpentinized Rocks
MIFFREDIATE METABOLICASES SECTION 260 E 2A Ash, Lapilli Tuff 2B Flow Breccia TEXMONT ZONE 2D Flow, massive to foliated 2E Pillowed Flow TULLY TOWNSHIP PROPERTY, ONTARIO 2F Flow, porphyritic 2G Graphitic Horizon
2H Carbonatized Tuff Horizon
ASP Arsenopyrite, PY Pyrite FIGURE: 649-17 DATE: 02/05/91 REVISED: DRAWN BY: R.C. N.T.S.: 42A/11 SCALE: 1/1000 MARIC MEDINOLONGS
1K Ultramatic Flow, spinifex A.C.A. HOWE INTERNATIONAL LIMITED

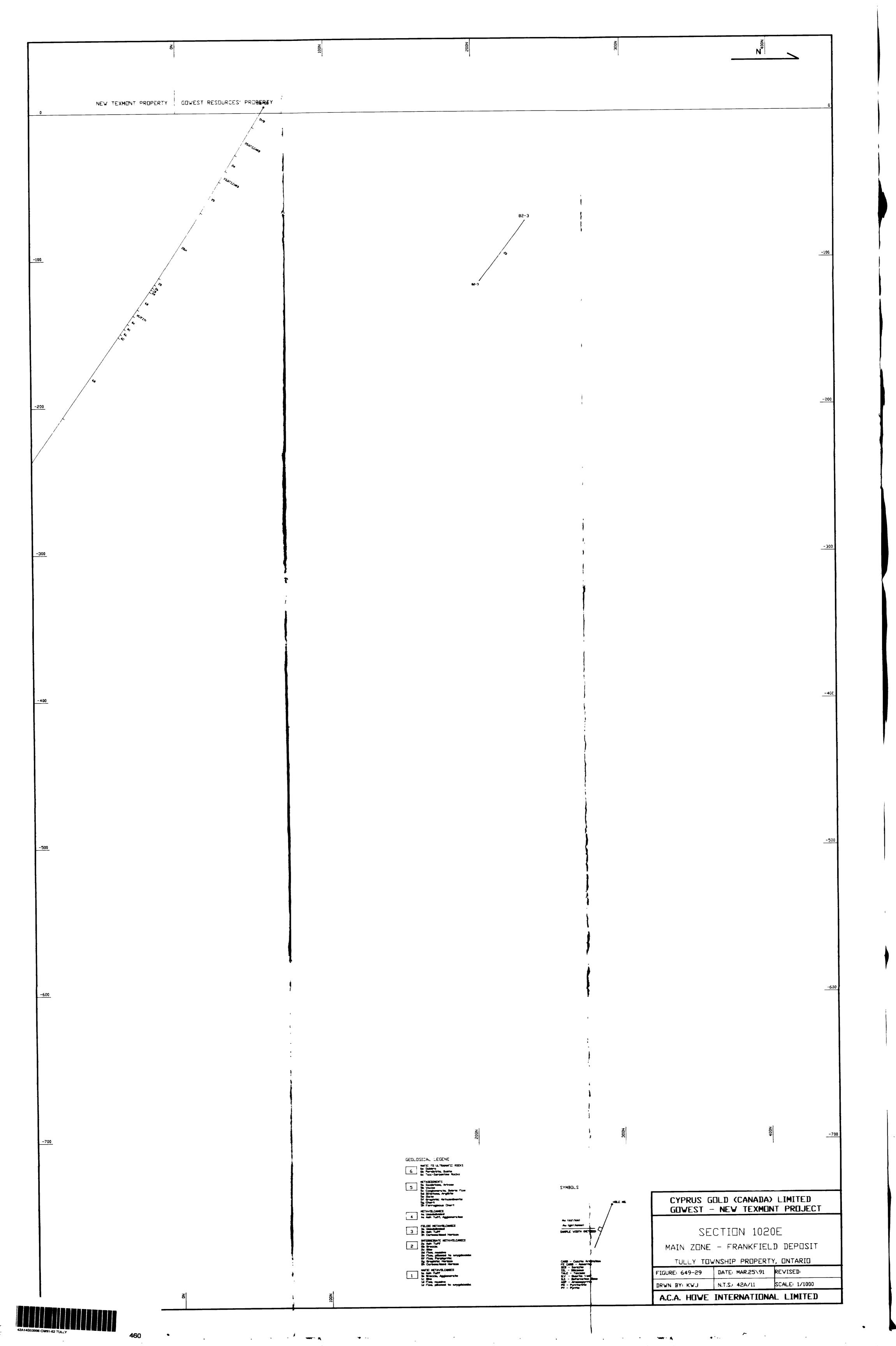




-600 -700 CYPRUS GOLD (CANADA) LIMITED NEW TEXMONT PROPERTY GEOLOGICAL LEGEND ULTRAWATIC ROCKS 6B Peridotite, Dunite 6C Ultramatics and Serpentinized Rocks
NTERMEDIATE METAVOLCANICS SECTION 380 E TEXMONT ZONE Flow, massive to faliated TULLY TOWNSHIP PROPERTY, ONTARIO Flow, porphyritic Graphitic Horizon FIGURE: 649-21 DATE: 02/05/91 REVISED: 2H Carbonatized Tuff Horizon ASP Arsenopyrite, PY Pyrite DRAWN BY: R.C. N.T.S.: 42A/11 SCALE: 1/1000 NATIC METAVOLCINICS 1K Ultramatic Flow, spinifex A.C.A. HOWE INTERNATIONAL LIMITED



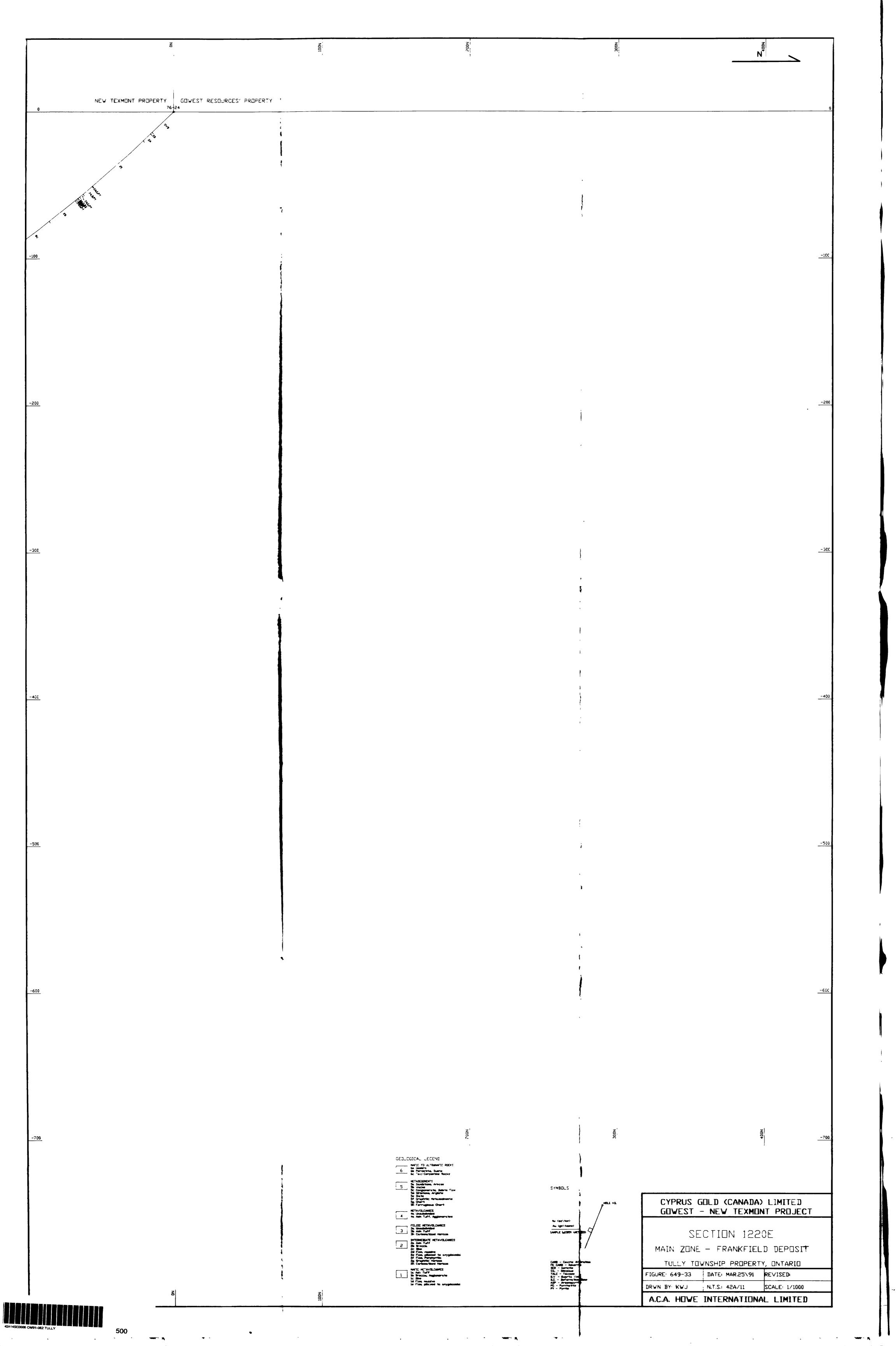
-700 CYPRUS GOLD (CANADA) LIMITED NEW TEXMONT PROPERTY GEOLOGICAL LEGEND ULTRAMATIC ROCKS 68 Peridotite, Dunite 6C Ultramafics and Serpentinized Rocks
MTERMEDIATE METAVOLCANICS SECTION 480 E Ash, Lapilli Tuff Flow Breccia Dikes TEXMONT ZONE Flow, massive to foliated Pillowed Flow TULLY TOWNSHIP PROPERTY, ONTARIO 2F Flaw, porphyritic 2G Graphitic Horizon FIGURE: 649-24 DATE: 02/05/91 REVISED: Carbonatized Tuff Horizon Arsenopyrite, PY Pyrite N.T.S.: 42A/11 SCALE: 1/1000 DRAWN BY: R.C. WHIC METANOLONICS 1K Ultramafic Flow, spinifex A.C.A. HOWE INTERNATIONAL LIMITED



-600 **-700** CYPRUS GOLD (CANADA) LIMITED NEW TEXMONT PROPERTY GEOLOGICAL LEGEND ULTRAMATIC ROCKS 68 Peridotite, Dunite 6C Ultramatics and Serpentinized Rocks
MTERMEDIATE METAVOLCANCS SECTION 680 E 2A Ash, Lapilli Tuff 2B Flow Breccia 2C Dikes TEXMONT ZONE 2D Flow, massive to foliated 2E Pillowed Flow TULLY TOWNSHIP PROPERTY, ONTARIO 2F Flow, porphyritic 2G Graphitic Horizon FIGURE: 649-26 DATE: 02/05/91 REVISED: 2H Carbonatized Tuff Horizon ASP Arsenopyrite, PY Pyrite DRAWN BY: R.C. N.T.S.: 42A/11 SCALE: 1/1000 MAFIC METANOLONICS 1K Ultramafic Flow, spinifex A.C.A. HOWE INTERNATIONAL LIMITED

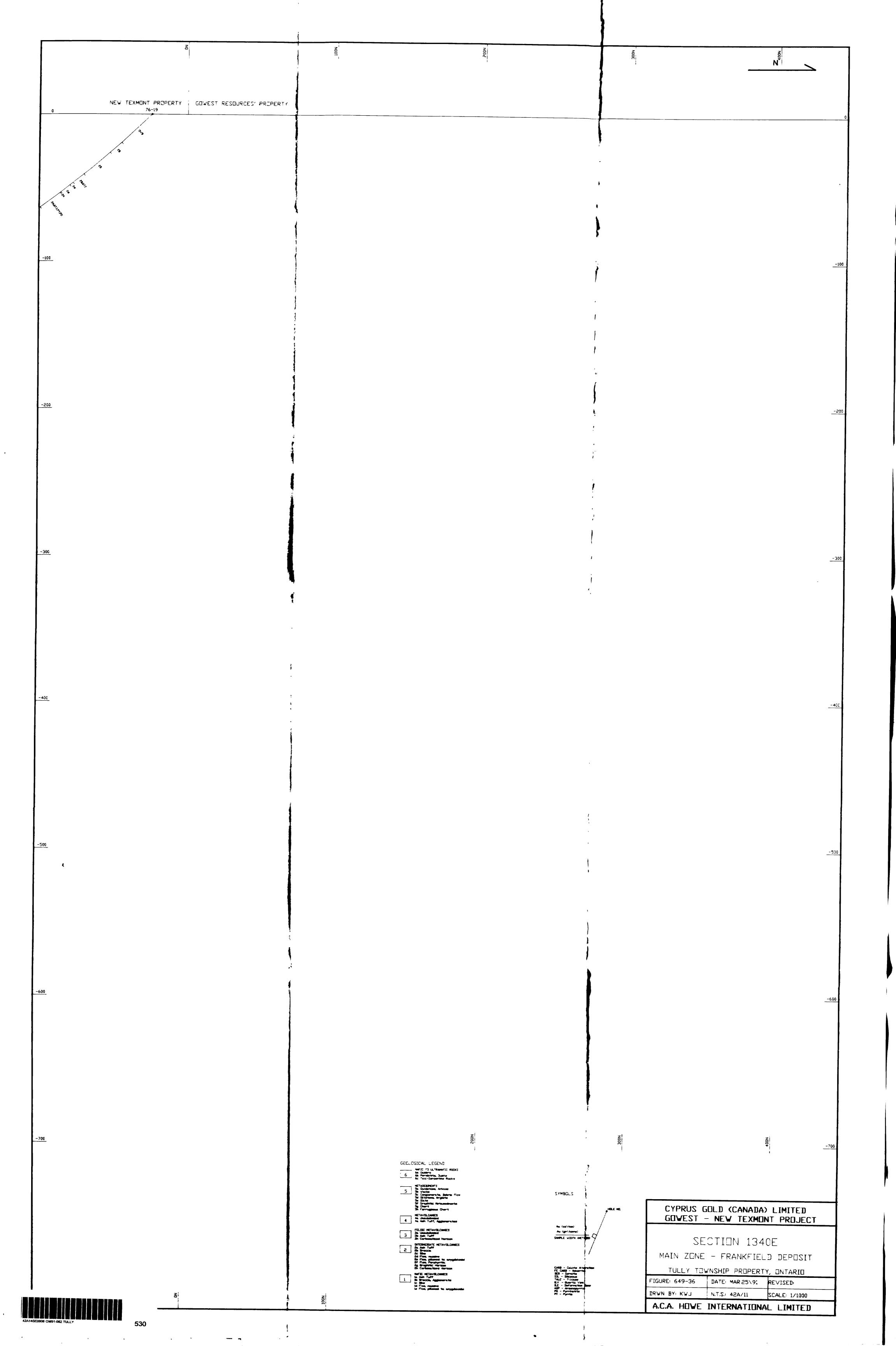
0006 OM91-62 TULLY

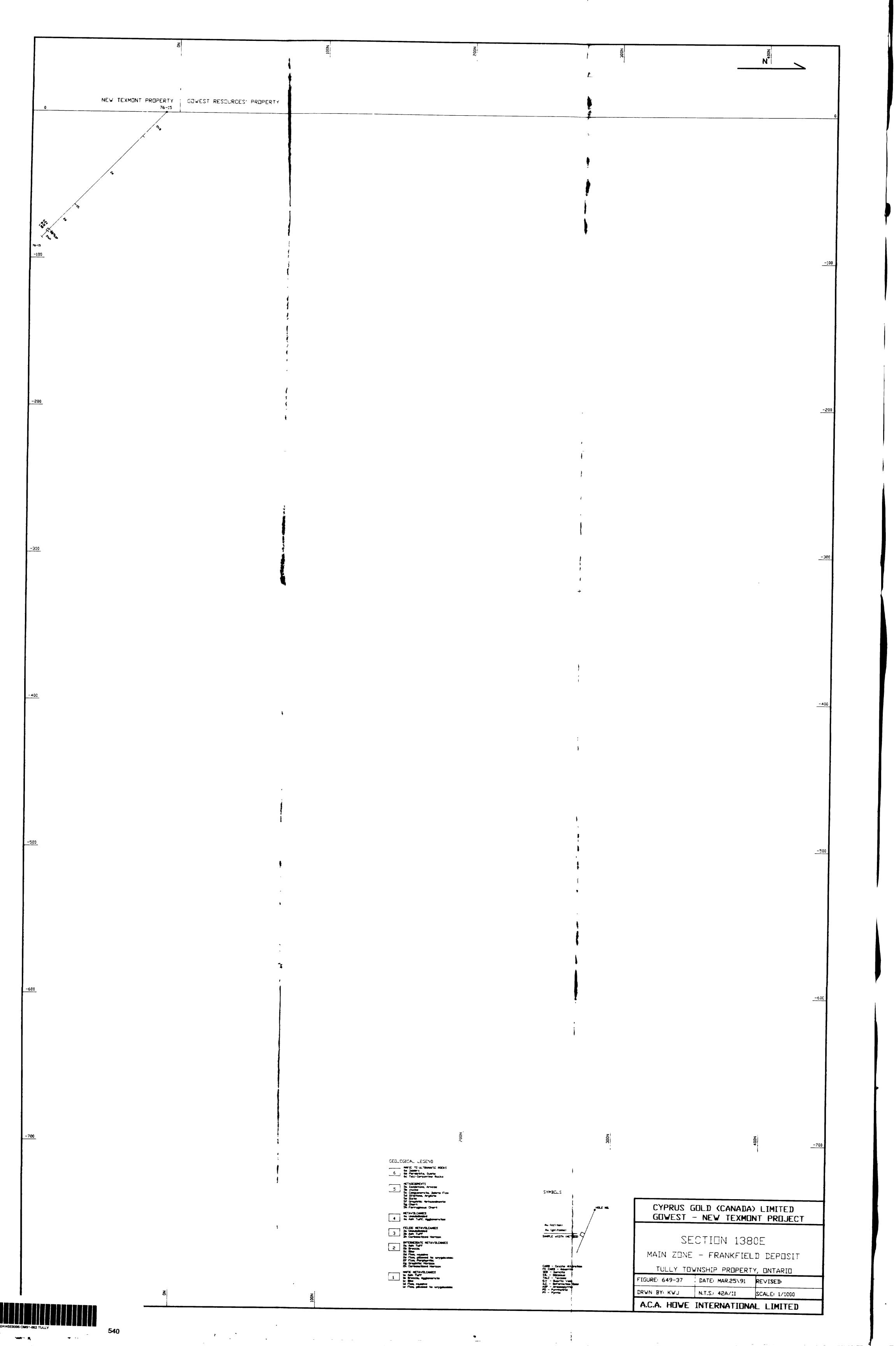
NEW TEXMONT PROPERTY | GOWEST RESOURCES' PROPERTY -600 -700 GEOLOGICAL LECEND SYMBOLS CYPRUS GOLD (CANADA) LIMITED GOVEST - NEW TEXMONT PROJECT Au (02/ton) SECTION 1000E SAUPLE VIETH OFFRED MAIN ZONE - FRANKFIELD DEPOSIT TULLY TOWNSHIP PROPERTY, ONTARIO DATE MAR.25\91 REVISED: FIGURE: 649-28 N.T.S.: 42A/11 SCALE: 1/1000 DRWN BY: KWJ A.C.A. HOWE INTERNATIONAL LIMITED

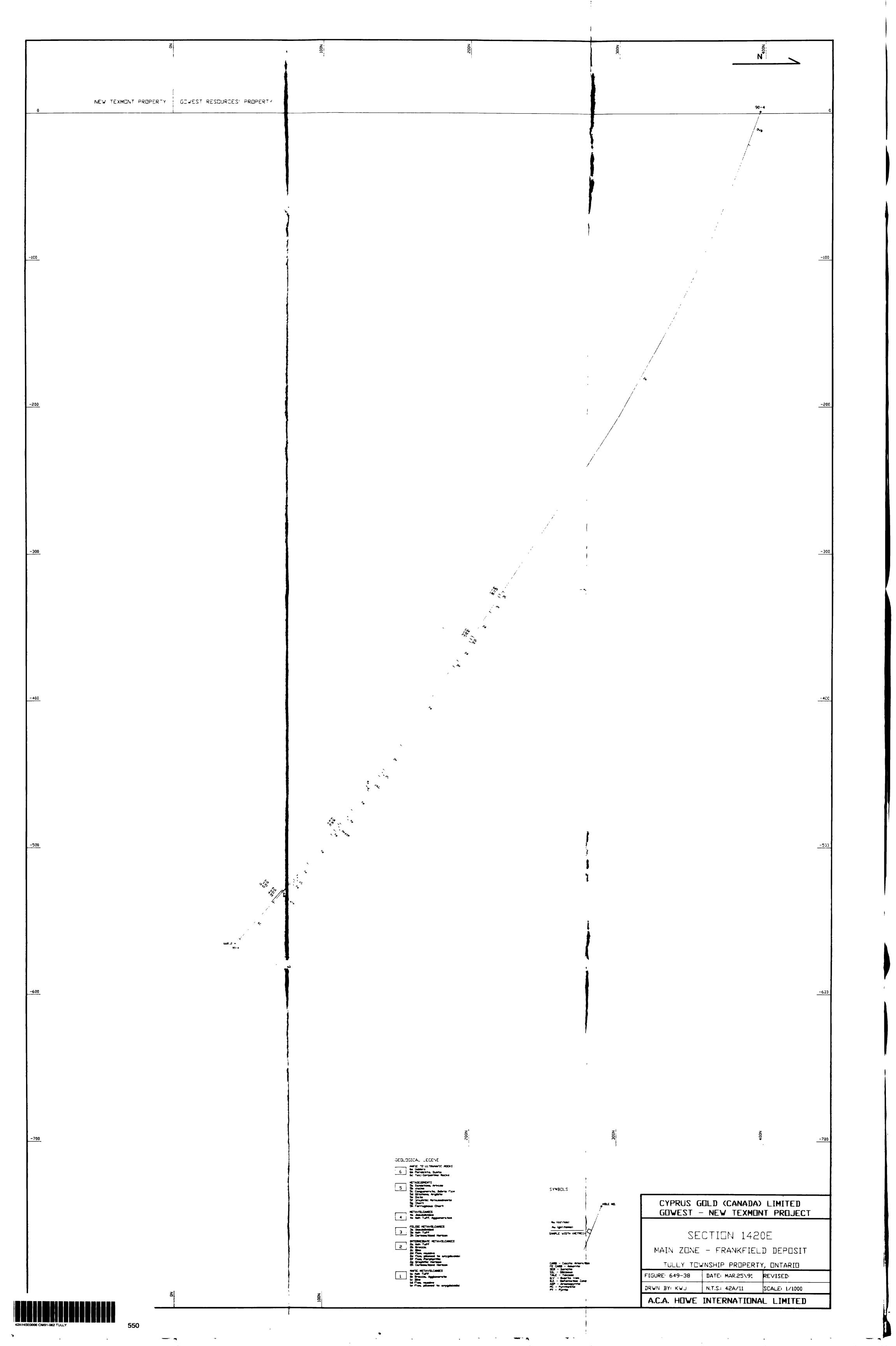


NEW TEXMONT PROPERTY SOWEST RESOURCES' PROPERTY -600 GEBLOGICAL LEGEND SYMBULS CYPRUS GOLD (CANADA) LIMITED GOVEST - NEW TEXMONT PROJECT AL (GZ\ton)
AL (GN\tonne)
SAMPLE VIETH (METS SECTION 1040E MAIN ZONE - FRANKFIELD DEPOSIT TULLY TOWNSHIP PROPERTY, ONTARIO DATE: MAR.25\91 REVISED: FIGURE: 649-30 SCALE: 1/1000 N.T.S.: 42A/11 DRWN BY: KWJ A.C.A. HOVE INTERNATIONAL LIMITED

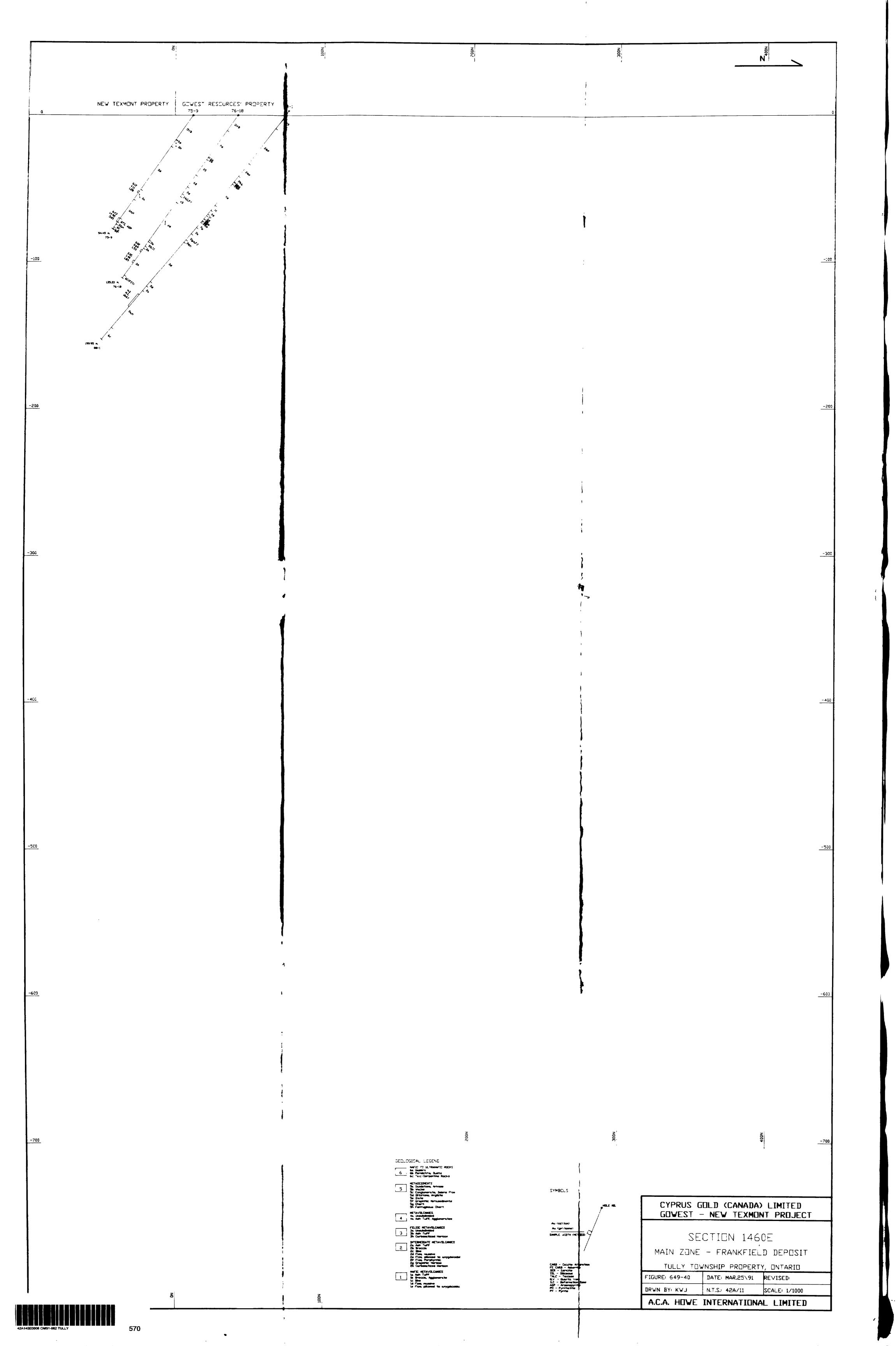

NEW TEXMONT PROPERTY GOWEST RESOURCES' PROPERTY -600 -700 <u>-700</u> GEOLOGICAL LEGEND SUBBOLS CYPRUS GOLD (CANADA) LIMITED GOVEST - NEW TEXMONT PROJECT Au (GE/100)
Au (GE/1000)
SAMPLE VIETH UNETRES) SECTION 1060E MAIN ZONE - FRANKFIELD DEPOSIT TULLY TOWNSHIP PROPERTY, ONTARIO DATE: MAR.25\91 REVISED: FIGURE: 649-31 DRWN BY: KWJ N.T.S.: 42A/II SCALE: 1/1000 A.C.A. HOWE INTERNATIONAL LIMITED

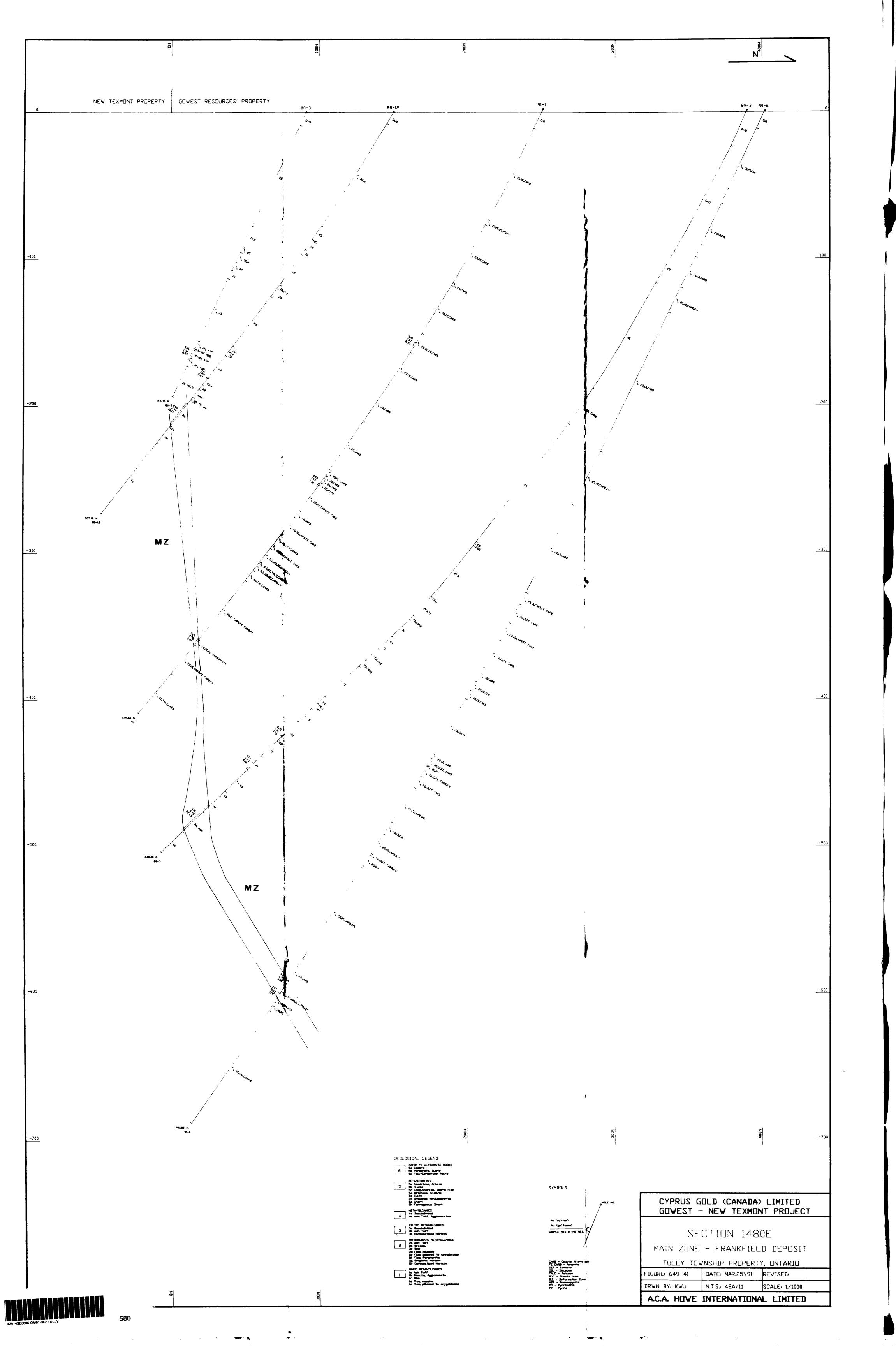

480

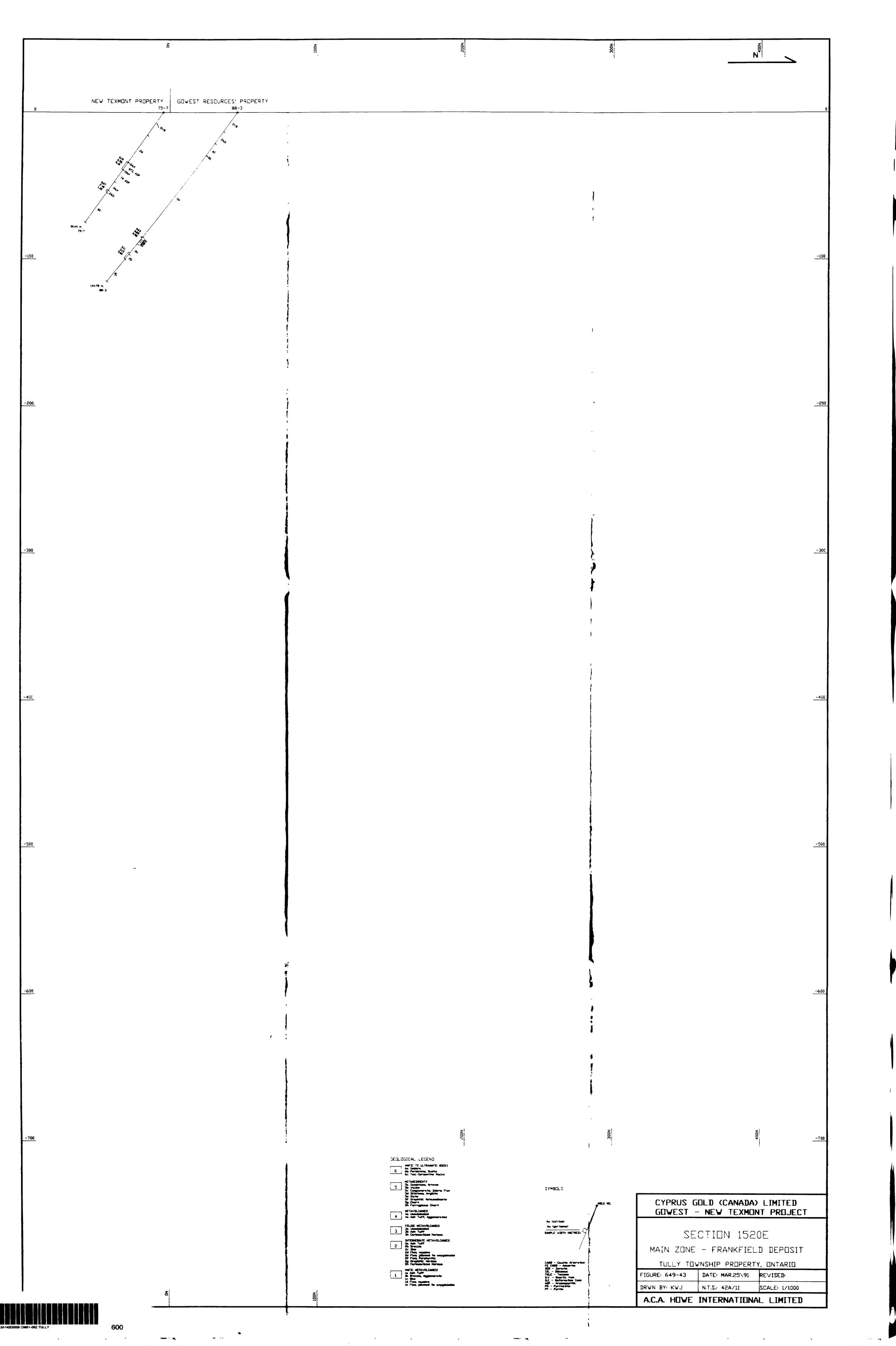

NEW TEXMONT PROPERTY | GOWEST RESOURCES' PROPERTY -600 GECLOGICAL LEGEND SUEBMYS CYPRUS GOLD (CANADA) LIMITED GOWEST - NEW TEXMONT PROJECT Au (az\tan)
Au (gn\tanne)
SAMPLE VIBTH CHETRES SECTION 1160E MAIN ZONE - FRANKFIELD DEPOSIT TULLY TOWNSHIP PPOPERTY, ONTARIO FIGURE: 649-32 DATE: MAR.25\91 REVISED: DRWN BY: KWJ N.T.S.: 42A/11 SCALE: 1/1000 A.C.A. HOVE INTERNATIONAL LIMITED



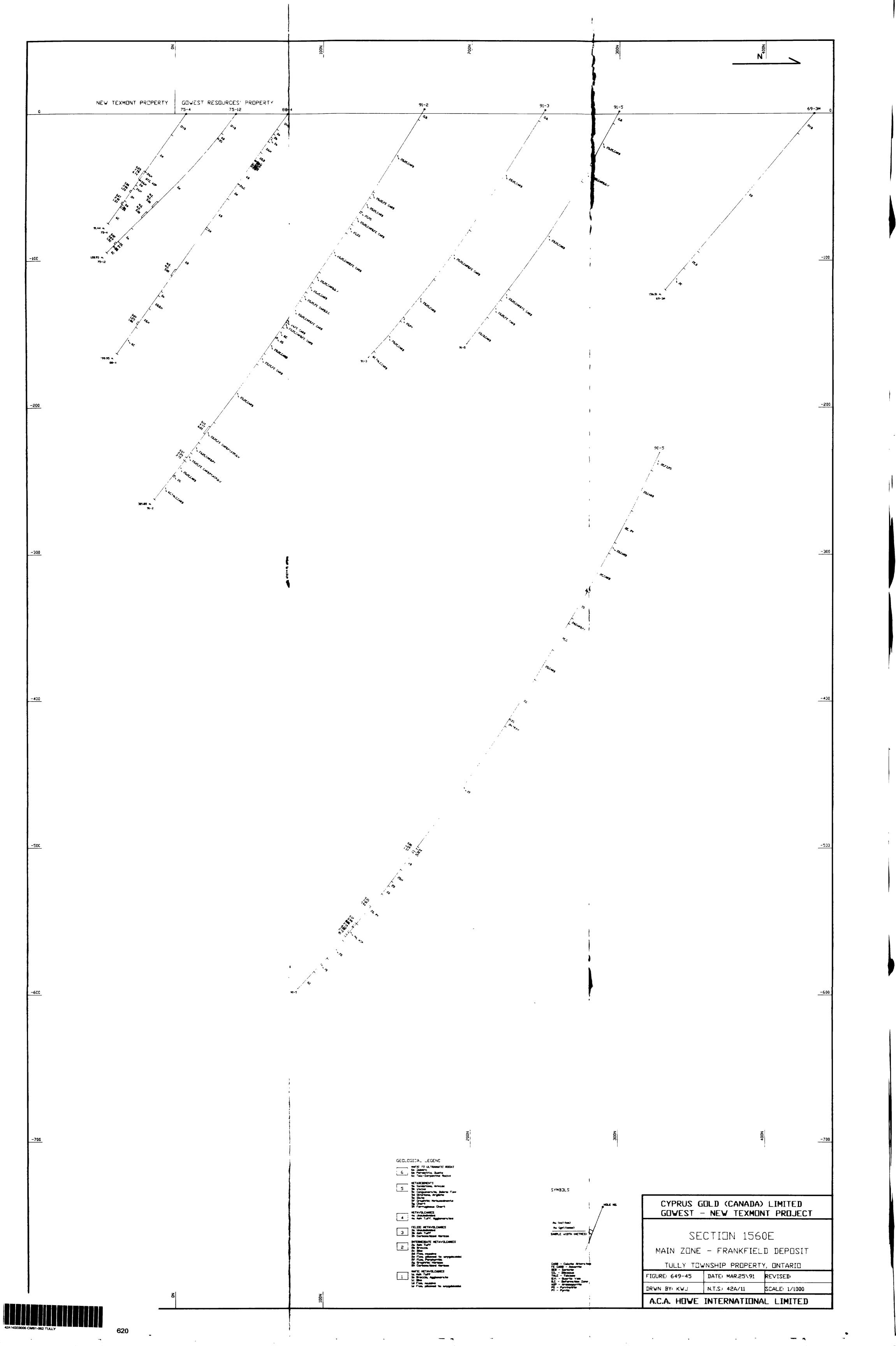
NEW TEXMONT PROPERTY | GOWEST RESOURCES, PROPERTY -6CC -700 SYMBCLS CYPRUS GOLD (CANADA) LIMITED GOWEST - NEW TEXMONT PROJECT Au (oz\ton)
Au (on\tone)
SAMPLE VIBTH (METRE SECTION 1280E MAIN ZONE - FRANKFIELD DEPOSIT TULLY TOWNSHIP PROPERTY, ONTARIO DATE: MAR.25\91 REVISED FIGURE: 649-34 N.T.S.: 42A/11 SCALE: 1/1000 A.C.A. HOWE INTERNATIONAL LIMITED

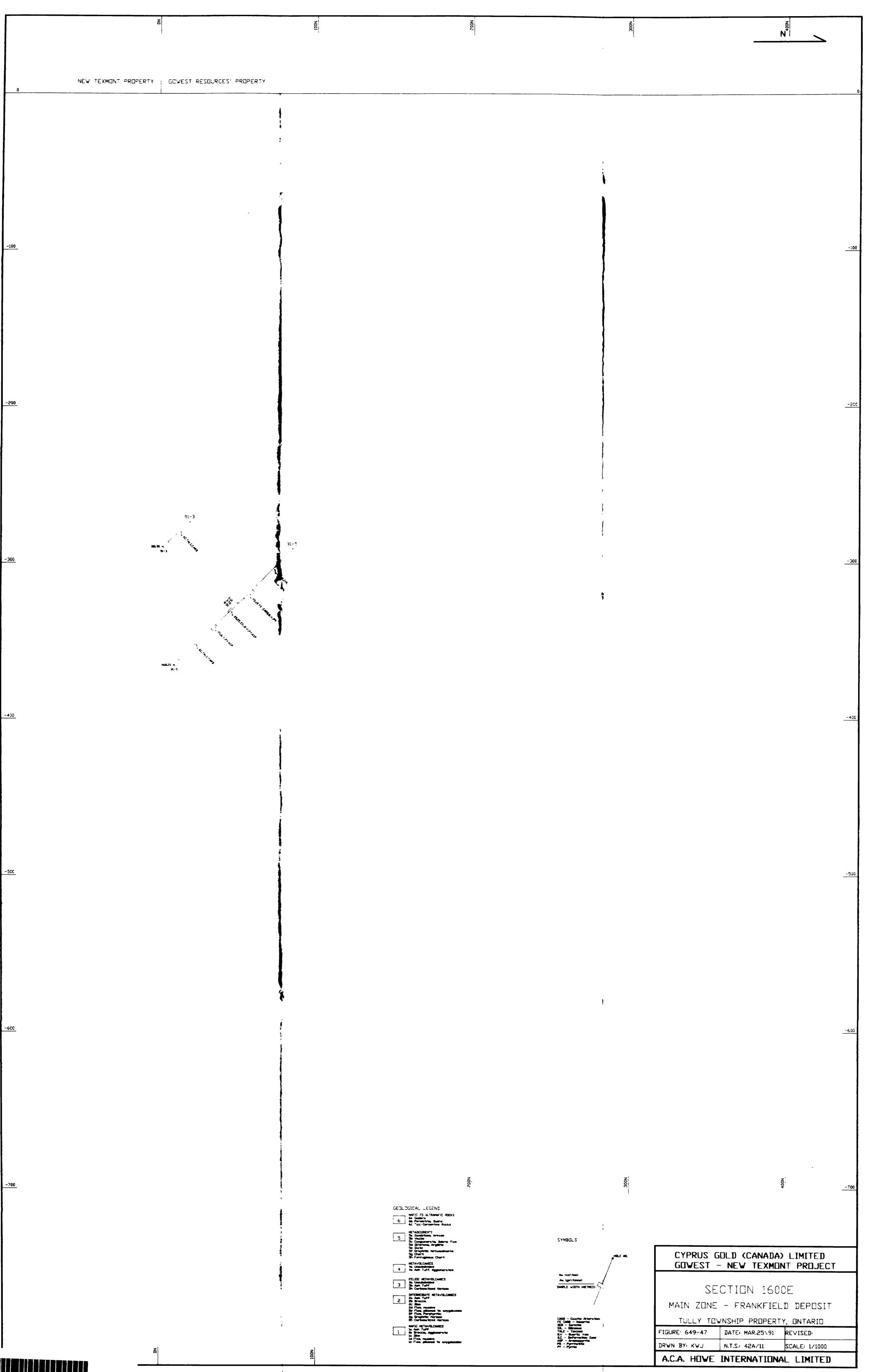




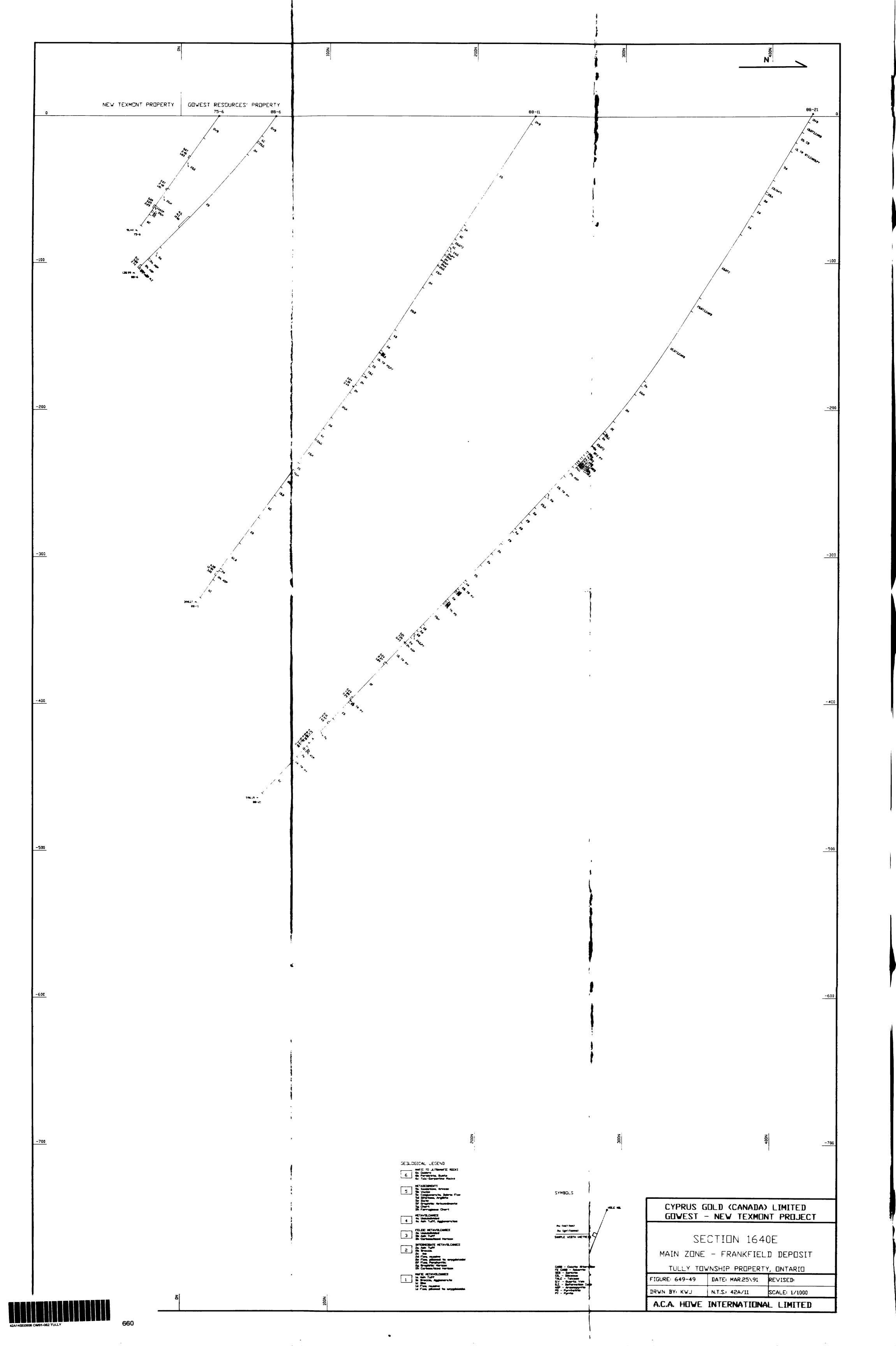


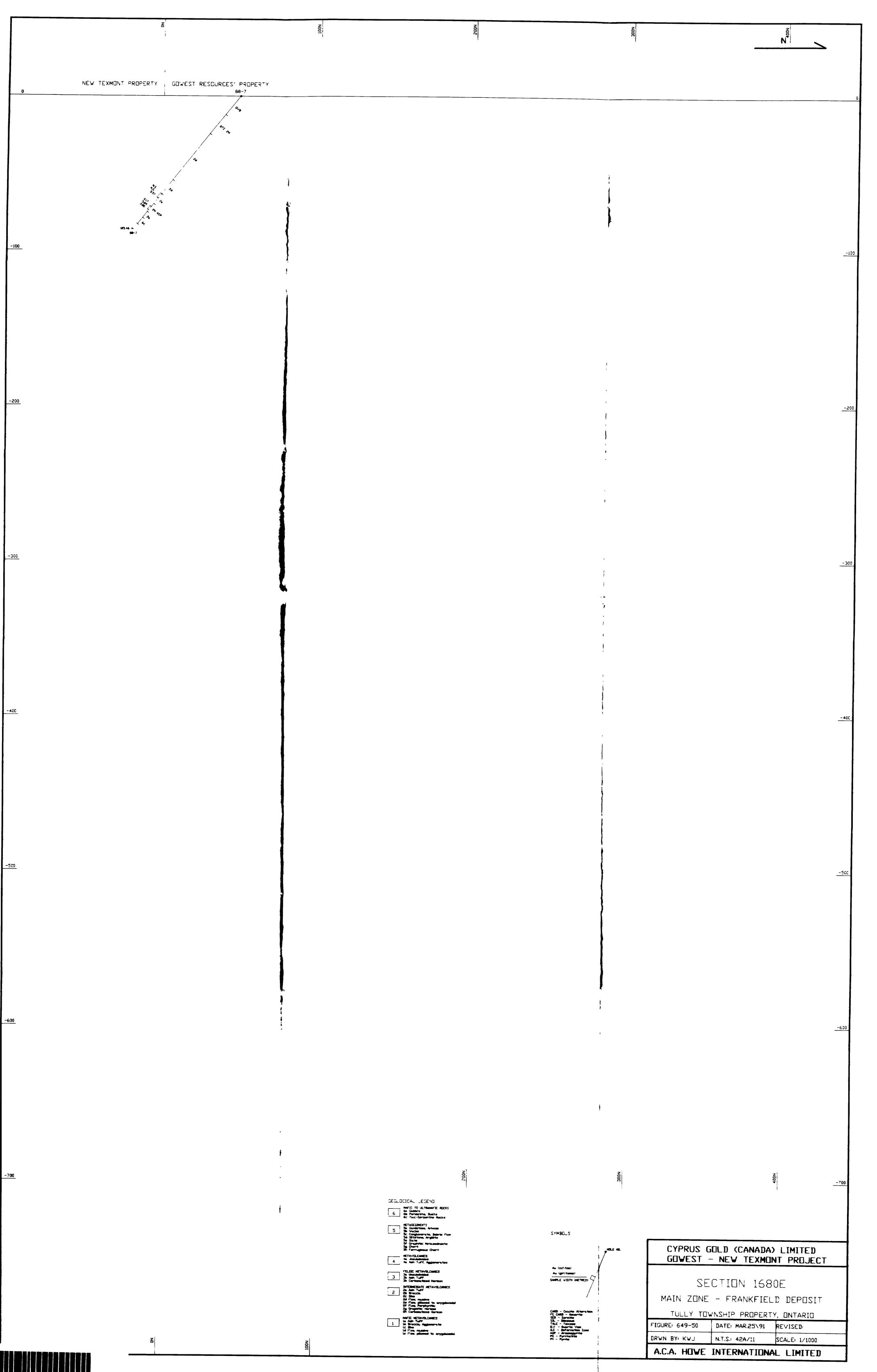
NEW TEXMONT PROPERTY GOWEST RESDURCES' PROPERTY -600 -700 GECLOGICAL LEGEND SYMBOLS CYPRUS GOLD (CANADA) LIMITED GOVEST - NEW TEXMONT PROJECT SECTION 1440E MAIN ZONE - FRANKFIELD DEPOSIT TULLY TOWNSHIP PROPERTY, ONTARIO FIGURE: 649-39 DATE: MAR.25\91 REVISED: DRWN BY: KWJ N.T.S.: 42A/11 SCALE: 1/1000 A.C.A. HOWE INTERNATIONAL LIMITED

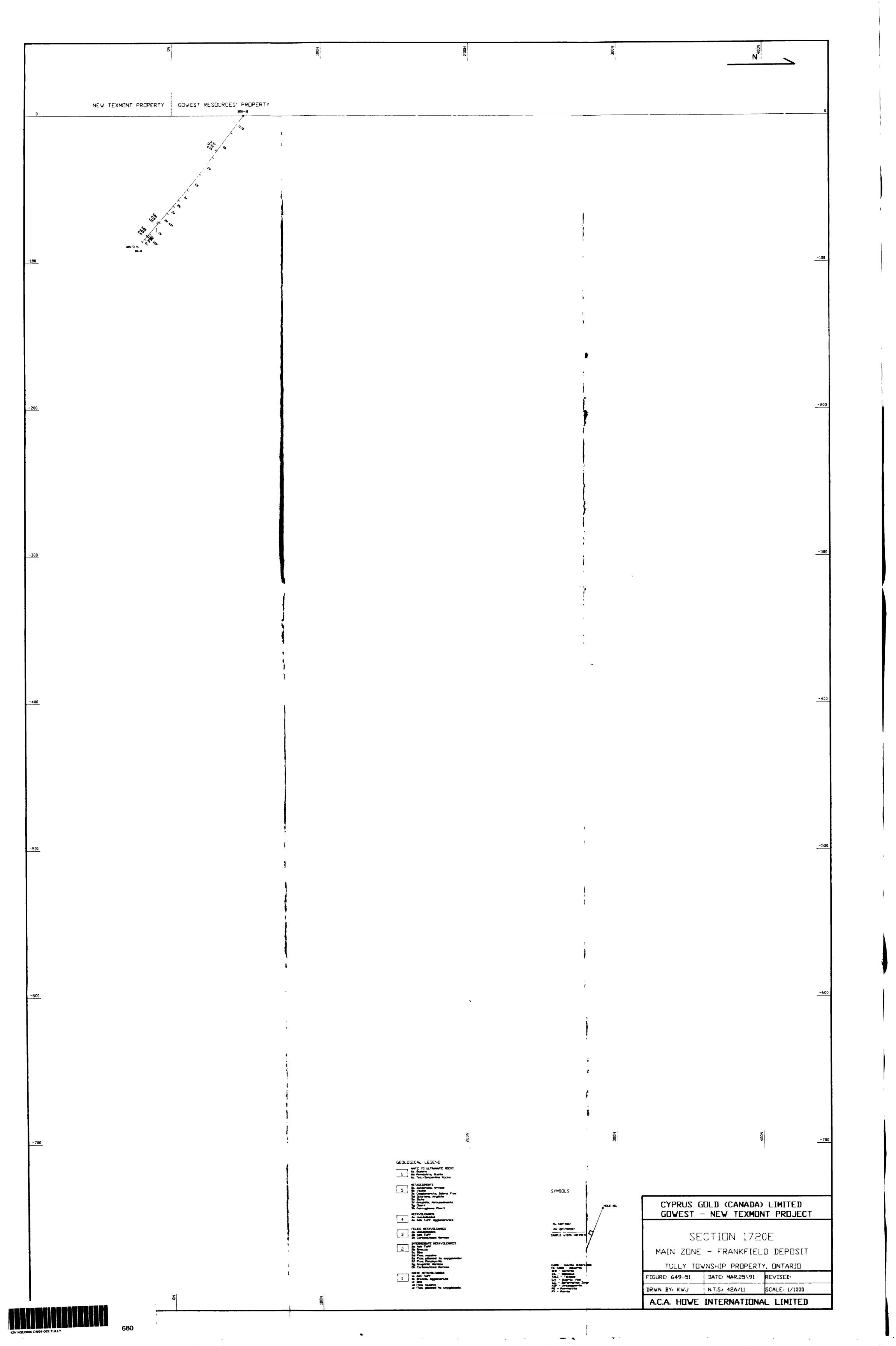



NEW TEXMONT PROPERTY GOWEST RESCURCES' PROPERTY
76-16 98 <u>-600</u> -600 -700 GEBLOGICAL LEGEND SJEEMYS CYPRUS GOLD (CANADA) LIMITED GOWEST - NEW TEXMONT PROJECT Au (az\tan) Au (gn\tame) SECTION 1500E SMPLE VIBTH CHETRESS MAIN ZONE - FRANKFIELD DEPOSIT TULLY TOWNSHIP PROPERTY, ONTARIO DATE: MAR.25\91 REVISED: FIGURE: 649-42 N.T.S.: 42A/11 SCALE: 1/1000 A.C.A. HOWE INTERNATIONAL LIMITED

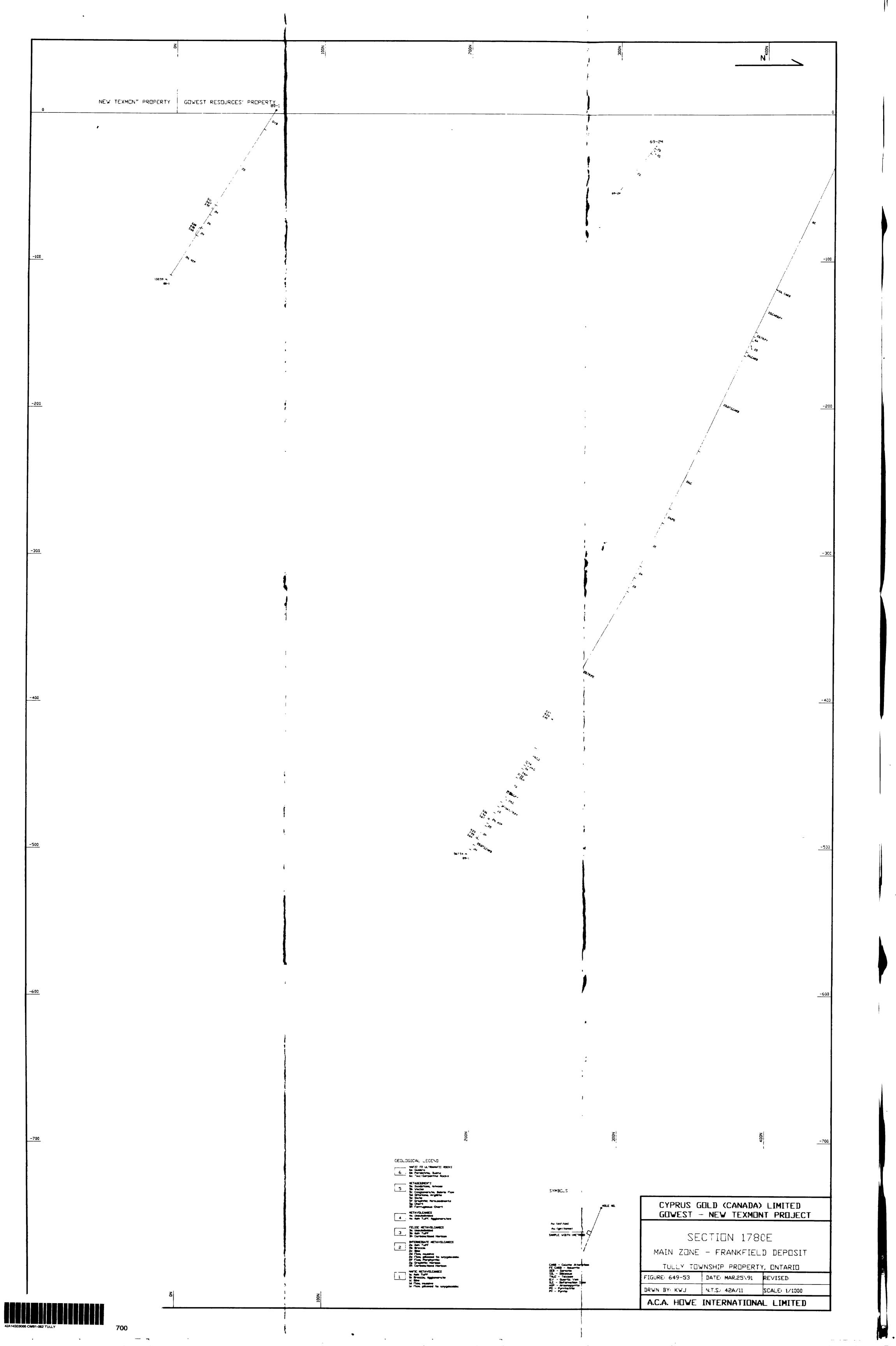
NEW TEXMONT PROPERTY | GOWEST RESOURCES' PROPERTY -630 -700 GEILEGICAL LECEND SYMBOLS CYPRUS GOLD (CANADA) LIMITED GOVEST - NEW TEXMONT PROJECT FELSIC METAVELCAMICS
3s. Unmandrated
3s. Ash Tuff
3h Carbonstized Horizon Au (gn/tosse) SECTION 1540E SWILL VIETH CHETRES MAIN ZONE - FRANKFIELD DEPOSIT TULLY TOWNSHIP PROPERTY, ONTARIO FIGURE: 649-44 DATE: MAR.25\91 REVISED: SCALE: 1/1000 N.T S.: 42A/11 DRWN BY: KWJ A.C.A. HOWE INTERNATIONAL LIMITED 610

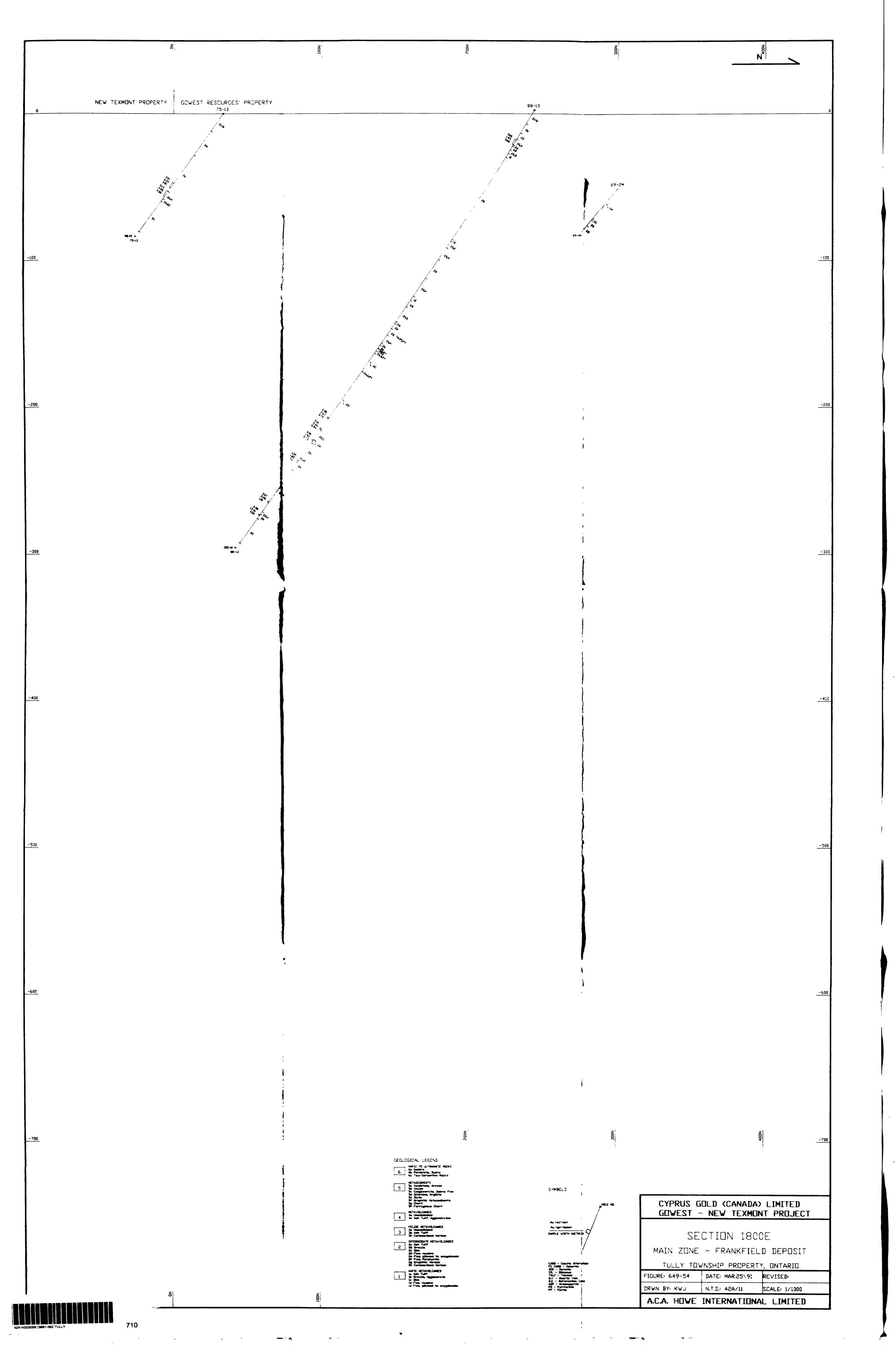


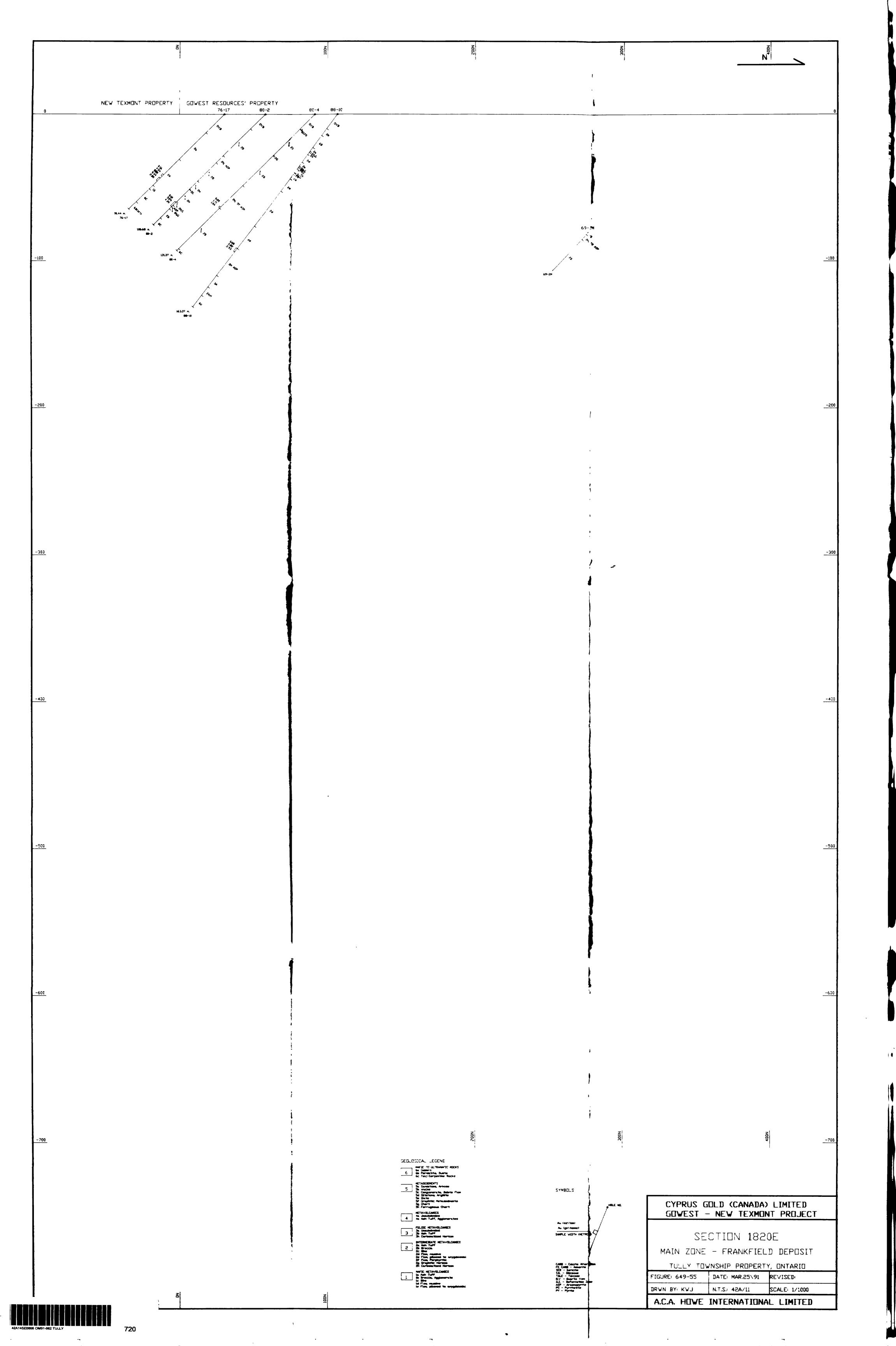

42A14SE0006 OM91-062 TULLY

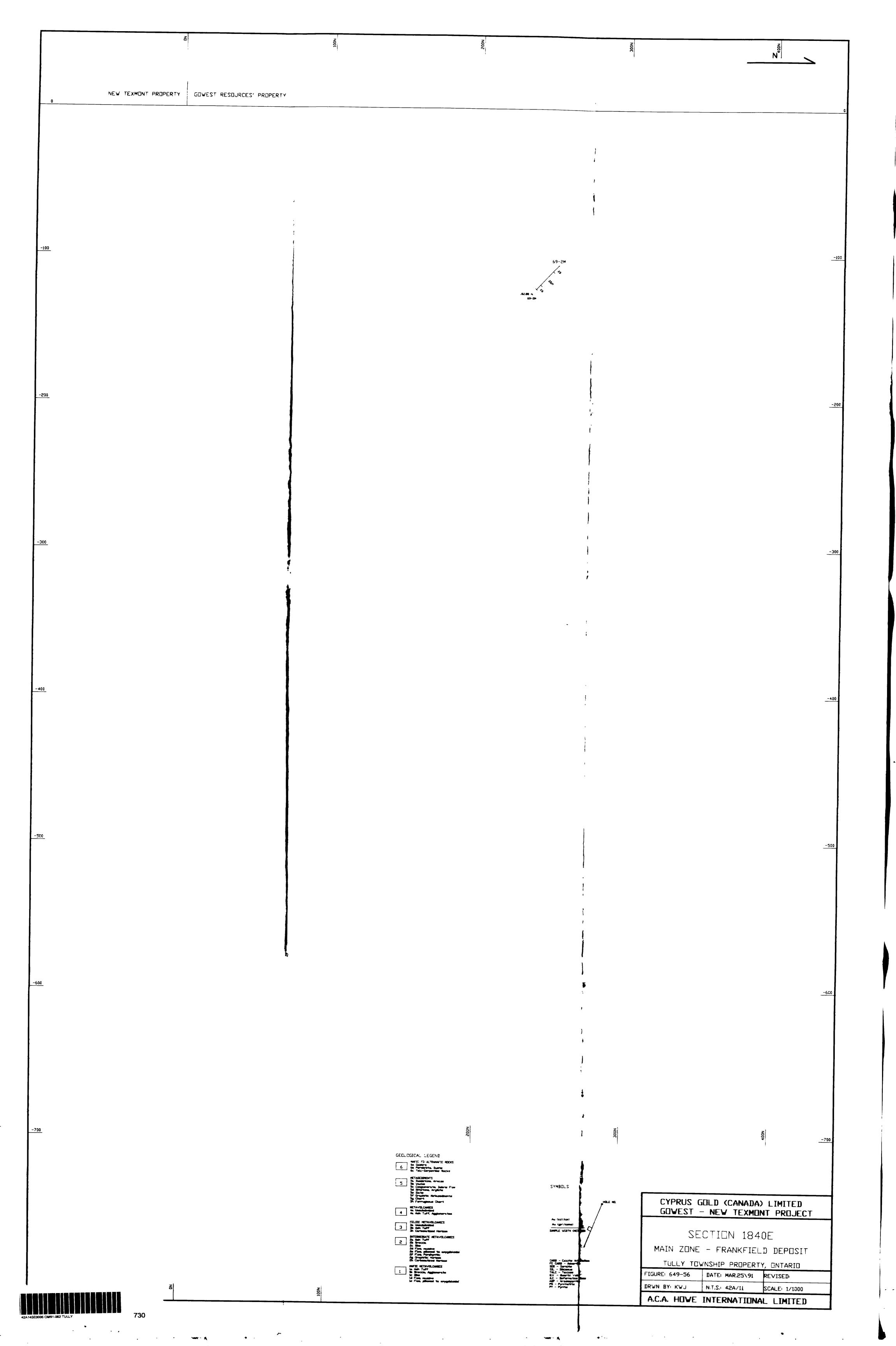

NEW TEXMENT PROPERTY GOWEST RESOURCES' PROPERTY -600 -600 -700 -700 GEOLOGICAL LEGEND SYMBOLS CYPRUS GOLD (CANADA) LIMITED GOVEST - NEW TEXMONT PROJECT ALL (gn/tome)

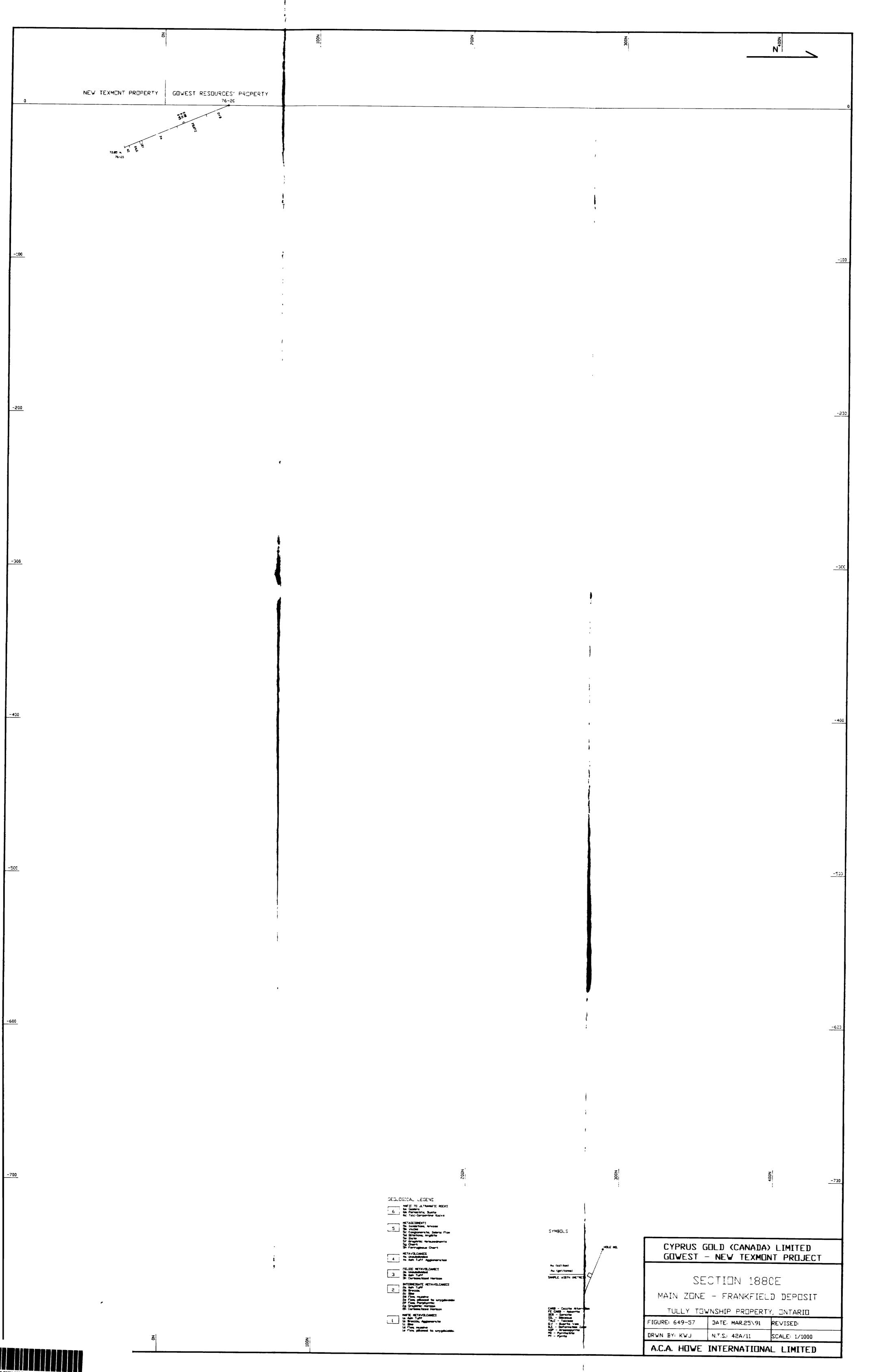
SAMPLE VIBTH CHETRESD SECTION 1620E MAIN ZONE - FRANKFIELD DEPOSIT TULLY TOWNSHIP PROPERTY, ONTARIO DATE: MAR.25\91 FIGURE: 649-48 REVISED: DRWN BY: KWJ N.T.S.: 42A/11 SCALE: 1/1000 A.C.A. HOWE INTERNATIONAL LIMITED

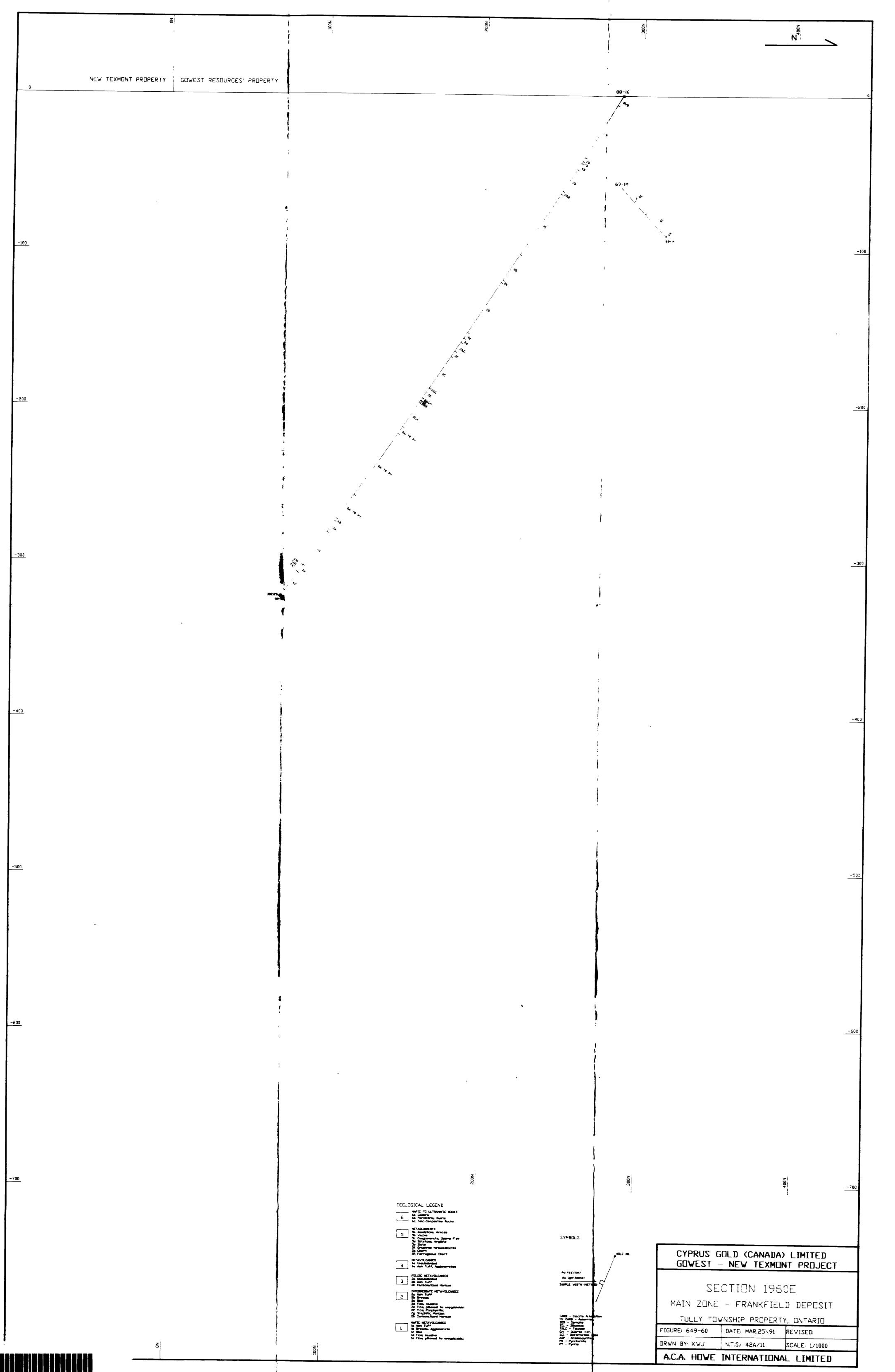

42A14SE0006 OM91-062 TULLY








GOWEST RESDURCES' PROPERTY
75-14 -200 -700 GEBLOGICAL LECEND SYMBC_S CYPRUS GOLD (CANADA) LIMITED GOVEST - NEW TEXMONT PROJECT Au (az\tan) Au (gn\tanne) SECTION 1760E MAIN ZONE - FRANKFIELD DEPOSIT TULLY TOWNSHIP PROPERTY, ONTARIO DATE: MAP.25\91 FIGURE: 649-52 REVISED: N.T.S.: 42A/11 DRWN BY: KWJ SCALE: 1/1000 A.C.A. HOWE INTERNATIONAL LIMITED



NEW TEXMONT PROPERTY GOWEST RESOURCES' PROPERTY -600 -700 GEGLOGICAL LEGEND SYMBOLS CYPRUS GOLD (CANADA) LIMITED GOWEST - NEW TEXMONT PROJECT SECTION 1920E MAIN ZONE - FRANKFIELD DEPOSIT TULLY TOWNSHIP PROPERTY, ONTARIO FIGURE 649-58 DATE: MAR.25\91 REVISED: DRWN BY: KWJ N.T.S.: 42A/11 SCALE: 1/1000 A.C.A. HOVE INTERNATIONAL LIMITED

NEW TEXMONT PROPERTY | GOWEST RESCURCES' PROPERTY -200 -6CC -70C GEGLOGICAL LEGEND SYMBOLS CYPRUS GOLD (CANADA) LIMITED GOWEST - NEW TEXMONT PROJECT Au (gn\tame) SECTION 1940E CHILD HELL THENE MAIN ZONE - FRANKFIELD DEPOSIT TULLY TOWNSHIP PROPERTY, ONTARIO FIGURE: 649-59 DATE: MAR.25\91 REVISED: N.T.S.: 42A/11 SCALE: 1/1000 A.C.A. HOWE INTERNATIONAL LIMITED

NEW TEXMONT PROPERTY GOWEST RESOURCES' PROPERTY -600 -630 -700 GEGLOGICAL LEGEND SYMBELS CYPRUS GOLD (CANADA) LIMITED GOVEST - NEW TEXMONT PROJECT Au (02/ton)
Au (gn/tone)
SAFLE VIETH DET (23) SECTION 1980E MAIN ZONE - FRANKFIELD DEPOSIT TULLY TOWNSHIP PROPERTY, ONTARIO DATE: MAR.25\91 FIGURE 649-61 REVISED DRWN BY: KWJ N.T.S.: 42A/11 SCALE: 1/1000 A.C.A. HOWE INTERNATIONAL LIMITED

107 _75-19 641 75-[4 634 em 673 010 75-11 347 = 5-11 165 _88-8 165 165 ar 75-12 169 ₪ 188 004 88-4 123 € 1**86** -300 113 - 1-1 155 -100 -216 88-2 542 CE 031 91-4 042] 450] _8=-3 -500 -633 -700 CYPRUS GOLD (CANADA) LIMITED GO WEST - NEW TEXMONT PROJECT LONGITUDINAL SECTION MAIN ZONE - FRANKFIELD DEPOSIT TULLY TOWNSHIP PROPERTY, ONTARIO FIGURE: 649-62 REVISED: MAR 25/91 DATE: 03\25\91 DRWN BY KWJ N.T S.: 42A/11 SCALE: 1/1000 A.C.A. HOWE INTERNATIONAL LIMITED