

PROSSER

HOLE NUMBER: P54-04

42A14SE2013 2.20736

010

FALCONBRIDGE LIMITED DRILL HOLE RECORD

IMPERIAL UNITS:

11/22/2000 METRIC UNITS: X

PROJECT NAME: KIDD-HBED JV

PROJECT NUMBER: 34

CLAIM NUMBER: 6061 NEC LOCATION: Prosser Twp. PLOTTING COORDS GRID: UTM

COLLAR ASTRONOMIC AZIMUTH: 180° 0' 0"

NORTH: 5402385.00N

EAST: 481497.03E

ALTERNATE COORDS GRID:

NORTH: 156+ 000

EAST: 177+ 000

LENGTH OF THE HOLE: 209.00M START DEPTH: 0.00M

ELEV: 3320.00

GRID ASTRONOMIC AZIMUTH: 180° 0' 0"

ELEV: 3320.00

FINAL DEPTH: 209.00M

COLLAR DIP: -50° 0' 0"

DATE STARTED: 09/21/1999

COLLAR SURVEY: NO

PULSE EM SURVEY: NO PLUGGED: NO CONTRACTOR: Bradley Bros CASING: 70m pulled

DATE COMPLETED: 09/22/1999 DATE LOGGED: 09/23/1999

RQD LOG: NO HOLE MAKES WATER: NO

HOLE SIZE: BQ

CORE STORAGE: Kidd Creek Minesite

UTM COORD .:

COMMENTS: target conductor explained by two narrow sulphidic argillites in sedimentary sequence

WEDGES AT:

DIRECTIONAL DATA:

						1					
Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
101.00	175°30' 0"	-51° 0' 0"	s			-	_	_	-	-	
161.00	179°30' 0"	-50°30' "	S			-	_	_	-	-	
-	-	-	-	-		-	=	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	_	_	-	
-	-	-	-	-		-	-	-	-	-	
~	-	-	-	-		-	-	-	-	-	
-	-	-	_	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
_	-	-	_	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	_	-		-	-	_	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	_	-		1 -	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	_	-		-	-	_	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	_	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		1 -	-	-	-	-	
-	-	-	-	-		i -	-	-	-	-	
_	_	-	-	-		j -	-	-	-	-	
-	-	_	-	-		j -	-	-	_	-	
_	_	-	~	-		j -	-	-	_	-	

HOLE NUMBER: P54-04

DRILL HOLE RECORD

LOGGED BY: Chris Wright

HOLE NUMBER: P54-04

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		 MINERALIZATION	 REMARKS
то	¢OB ≯	Overburden	· 			Deep clay cover.
TO 70.00	¢5,F,*g≯	Intercalated Mudstone and Quartz-Wacke -Fine to medium grained, black to light gray, well laminated sediment. Intercalated mudstone and wacke on 1-10mm scale. Bands of coarse euhedral pyrite, and occasional pseudo-ooitic pyrite grains to 10mm on the side. Bedding 47 degrees on average however locally far more oblique. Excellent preservation of soft sediment deformation, graded and cross-bedding74.83-Fining down-hole77.60-78.70-Three fold hinges with local 0 core axis angles. Facing reversed three times79.35-Fining up-hole80.87-Fining up hole83.00-Ground core84.40-84.75- Pourous carbonate beds 1cm thick88.93-Fining up hole90.05-90.15-Pourous, chloritic beds with fine pyrite to 20% -91.50-91.65-Ground core, locally chloritic sediment100.74-Fining up-hole103.49-Fining up-hole107.3-Load cast of quartz-wacke in mudstone. Tops up-hole109.85-1 mm thick bed of massive-coarse pyrite -101.94-Fining up-hole -119.26-10 cm thick mudstone bed with 0.5 cm wacke pebbles -127.66-Fining up-hole130.20-130.40-Thick quartz-wacke showing tops up-hole133.02-0.5 cm rounded quartz pebbles in fine quartz-wacke.		-Discrete quartz-calcite filled fractures normal TCA spaced roughly 0.5m apartFine stockwork of carbonate veinlets in mudstone beds likely syn-diagenetic.	Coarse bedded pyrite 2%. -Pyrite in quartz-carbonate fractures to 0.1% of total core volume. -Bedded, coarse pyrite in mudstone, probably syn-diagenetic, 1% of total unit volume.	
		-135.84-Fining up-hole. -136.05-136.27-Fine calcite stringer stockwork in mudstone. -137.00-138.50 Shallow core angles. Average 20. -140.06-142.10 Coarse pseudo-ooitic pyrite cubes,	# # - -	 		
		0.5 cm on the side, 2% modally. -151.53-Fold closure reversing facing			-6040ppm Zn/0.70m from 144.40-145.10m	

HOLE NUMBER: P54-04

FROM TO	ROCK	 	ANGLE		MINERALIZATION	
		directions. -155.58-156.05-Very strong carbonate fracture filling oblique to bedding156.7 Fold hinge doughnut159.15-Rip-up clasts of argillite in basal wacke-bed of next sequence, indicating tops up hole.(Two fining up-hole sequences.)				
	 	150.55-155.95-Fractured and calcite filled chloritic mudstone.	 			
181.10 TO 186.50	 « 5,a,g» 	Graphitic Fault Breccia -Bleached mafic? and quartz wacke fragments in carbonaceous mattrix. Bedding is contorted and convoluted to non existant. 20% bedded pyrite181.1-184.7 Well bedded with broken wacke clasts in moderately conductive graphitic matrix184.7-184.85 Carbonate rich, broken wacke and sulphide clast fault gauge184.50-186.50-Extremely conductive massive carbonaceous matrix (60%) with angular white bedded quartz-wacke and massive mafic? fragments.			-Pyrite in ooidic or colliform nodules in the graphite, some bedded massive pyrite to 5mm. 20%	-Strongly conductive as a result of pyrite and graphite content.
186.50 TO 187.25	 « 7,a,m» 	Mafic Intrusive -Fine grained, massive, medium gray mafic intrusive. Very sharp upper and lower contacts at 30 degrees TCA. Small black lath to needle shaped pyroxene crystals visible at lower contact in very fine matrix.		-Silicified to a pale gray colour at upper and lower contacts.		-Unit may have intruded into wet sediment.
187.25 TO 187.80	 « 5,g» 	Graphitic Argillite		 -Possibly silicified at lower contact. 	 -20% Pyrite in nodules, ooids and beds. 	 -Strongly conductive due to graphite and pyrite.
187.80 TO 188.60	«7,a,m» 	Mafic Intrusive -Fine grained and massive with fine white plagioclase crystals. Sharp upper and lower contacts at 38-40 degrees TCA. Fine black coloured laths in very fine matrix at lower contact.		-Silicification at lower contact.		
188.60 TO 209.00	 «2,a,e» 	Amygdaloidal Mafic Volcanic -Pale gray-green fine grained mafic volcanic. Blue quartz filled amygdales, interflow breccias and sediment throughout unit.		-Strong carbonatization at interflow breccias and sediments. -Chloritization is pervasive until about 200.45, then sharply decreases		

HOLE NUMBER: P54-04 DRILL HOLE RECORD DATE: 11/22/2000

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		-187.70-189.90 Pyritic, muddy interflow sediment -189.27-189.48 Sub cm size ovoid, quartz filled amygdales189.76-190.13 Amygdales195.25-195.60 Amygdales198.75-198.95 Interflow breccia, chloritized with mafic fragments in pyritic mudstone200.45-EOH-Mafic volcanic with chloritized-carbonatized pillow selvages and rare amygdales. Noticibly less chloritized than above.		to EOH.		
209.00	«E.O.H.»	End Of Hole	ļ			
TO 209.00	# #					

HOLE NUMBER: P54-04 LOGGED BY: Chris Wright PAGE: 4

HOLE NUMBER: P54-04 ASSAYS SHEET DATE: 22/11/2000

Sample	From	To	Leng.	∥ Cu	Zn	Pb	Ni	Au	Ag	Cu/Zn	Co	Pt	Pd	S	Se	As	Нg	Sb	Est.	Ni Est.l	Po Est.	y Est.	Cp Est.	Sp Est	.Gn ROCK TYPE	Comments
	(M)	(M)	(M)	ppm	ppm	ppm	ppm	ppb	ppm		ppm	ppb	ppb	ppm	ppm	ppm	ppb	ppm	8	8	*	*	者	米		
KA03005 KA03006	144.40 187.35			7 11	4 6040		5 1	00 12	7 0. 58 0.		3	:5 :5		1.3	8	2	2							7. · · · · · · · · · · · · · · · · · · ·	5,F,*g 5,g	

5

HOLE NUMBER: P54-04 GEOCHEMICAL ASSAY DATE: 22/11/2000

Sample	From (M)	To (M)	Leng. (M)	\$102	AL203	CAO %	MGO %	NA20 %	K20 %	FE203	TIO2	P205 %	MNO %	*	LOI	SUM %	Y PPM	ZR PPM	BA PPM	RB PP M	SR PPM	CO2	CU PPM	ZN PPM	NI PPM	CR FIELD CHEM PPM NAME ID	ALUM
KA03001 KA03002				56.87												99.42 99.71	20 15	110 110					35 25	140 140	105 85	210 5,F,*g 5 240 5,F,*g 5	200 175
KA03003	184.10	187.10	3.00	59.25	9.25	5.81	2.52	1.11	0.84	9.01	0.50	0.07	0.11	1	1.05	99.52	20	70					35	590	100	340 5,a,g 5!	119
KA03004	197.00	200.00	3.00	47.72 	15.46	5.57	2.59	1.77	0.87	15.25	2.12	0.32	0.29		7.76	99.72	40	140					35	175	40	110 2,a,e 2(h)yz	188

HOLE NUM	BER : P54	1-04									GEOCH	EMICAL	ASSAYS															DATE:	22/11/2000
Sample	(M)	To (M)	Leng.	AG PPM	AU PPB	CO PPM	PB PPM	S PPM	V PPM	AS PPM	SN PPM	CD PPM	SB PPM	BI PPM	SE PPM	HF PPM	TA PPM	W PPM	MO PPM	TH PPM	U PPM	B PPM	CS PPM	LA PPM	CE PPM	ND PPM	SM PPM	EU PPM	GD PPM
KA03001	161.00 184.10	77.00 164.00 187.10	3.00 3.00			40 30 35 45		0.66 1.95 2.86 0.53	160 110 85 255				* 455																
•																													

HOLE NUM	BER : P54	1-04								GEOCH	EMICAL	ASSAYS															DATE:	22/11/2000
Sample	From (M)	To (M)	Leng.	DY PPM	ER I PPM		IR PPB	RU PPB	RH PPB	PT PPB	PD PPB	LI PPM	BE PPM	MIN PPM	GA PPM	GE PPM	IN PPM	TL PPM	SC PPM	BR PPM	YB PPM	NB PPM	HG PPB	MGO#	CA/AL N	II/MGO I	SHIKW Z	N/NA2
KA03001 KA03002 KA03003 KA03004	161.00 184.10	187.10	3.00 3.00										5 5 5 10						20 15 10 30			10 10 10 20		0.49 0.45 0.40 0.29	0.25 0.25 0.63 0.36	30 32 40 15	38 30 33 32	45 33 532 99
,																												
																											•	

TIMMINS EXPLORATION - AMENDED ROCK LEGEND - v8.0

1. MAIN ROCK DIVISIONS

I. MAIN RUCK DIVISIONS
15 To be Announced
14 Huronian Supergroup
13 Metamorphic (Unknown)
12 Gneiss
11 Schist
10 Diabase
9 Felsic Intrusive
8 Intermediate Intr. Rocks
7 Mafic Intrusive Rocks
6 Ultramafic Intr. Rocks
5 Sedimentary Rocks
5,s Sulphide (>40%)
4 Felsic Volcanic Rocks
3 Intermediate Volcanic Rocks
3,C Heterolithic Volcanic Rocks
2 Mafic Volcanic rocks

2. TEXTURA	AL/GEOCHEMICAL MODIFIERS		
а	Fine Grained	Α	Primitive (Y<20)
b	Medium Grained	В	Evolved (Y>20<60)
bx	Breccia		,
С	Coarse Grained	С	Heterolithic
đ	Quartz-Feldspar Phyric	D	Feldspar Phyric
8	Amygdaloidal/Vesiculer	E	Chert
f	Primary Fragmentals	F	Wacke
g	Graphitic/Argillaceous	G	Leucoxene Bearing
h	Tholeittic	н	Basaltic Komatiite
İ	Alkalic		
j	Calc-Alkalic	J	Pyroxenite
k	Komatiitic	ĸ	Net Textured
1	Flows (banded)	L	Peridotite
m	Massive	M	Dunite
n	Variolitic/Spherulitic	N	Ophitic
Р	Pillowed	P	Porphyritic
q	Quartz Phyric	Q	
r	Oxide Iron Formation	R	Polysutured
S	Sulphides, Exhallites	S	Fractured
t	Pyroclastic	T	Gabbroic Textured
u	High Mg	U	Pyroxene Spinifex
٧	High Fe	٧	Olivine Spinifex
w	High Al	W	Skeletal/Crescumulate
×	Andesite	X	Adcumulate
y	1celandite	Υ	Mesocumulate
Z	Highly Evolved (Y>60)	Z	Orthocumulate

ROCK NAMES MUST HAVE ALL MODIFIERS
COMMA DELIMITED AND CAN BE NO LONGER
THAN 15 CHARACTERS, COMMAS INCLUDED.
Example: 3,*y,d,<DAC>,*t

3. ALTERATION MODIFIERS

1 Ultramafic Volcanic Rocks

Ab	Albitization
BI	Bleached
C>	Carbonaceous
Сь	Carbonatization
Ch	Chloritization
Eρ	Epidotization
F>	Iron Carbonatization
He	Hematization
K>	Potassic Alteration
Ka	Kaolinitization
Rs	Rust Stained
Se	Sericitization
Si	Silicification
Sr	Serpentinization
Tc	Talc-Carbonatization
Tk	Talc

. TEXTUR	RAL/STRUCTURAL MODIFIERS		
*a	Tuff (67% <2mm)	*n	Graded Bedding
*b	Lapilli Tuff (2-64mm)	*0	Cross bedding
*c	Lapillistone (76% <264mm	*р	Fault Gouge
*ct	Cataclastic	*q	Augen
*d	Block (>64mm)/Xenolith	*r	Porphyroblastic
*е	Autoclastic/Hyaloclastic	*8	Homfels
*f	Thickly Laminated	*t	foliated/sheared
*9	Thinly Laminated	*u	folded
*h	Clast Supported	*v	boudinage
*1	Matrix Supported	*w	fragmental (felsic>mafic)
*j	Granule (grit 2-4mm)	*x	fragmental (mafic>felsic)
*k	Pebble (4-64mm)	*у	Crystal Tuff (>50% of frags)
1	Cobble (64-256mm)	*z	Lithic Tuff (>50% of frags)
*m	Boulder (>256)	_	

FO	RM	FORM		PERCENTAGE
S	Spots	lo	Disseminated/Blebs	
F	Fracture/vein controlled	F	Fracture/vein controlled	Numeric pecentage, or
Р	Pervasive	M	Massive	percentage range (i.e. 1-3%),
STRENGTH		В	Bedded	must always be specified
S	Strong	lc	Clasts/Fragments	
М	Moderate			
w	Weak	l .		

5. MINERALOGICAL NAMES						
	4.0. 12 13 13124					
Ak	Actinolite	Fc	Fuchsite	Pn	Pentlandite	
Alb	Albite	Gn	Galena	Py	Pyrite	
Al	Almandine	Gt	Garnet	Px	Pyroxene	
Am	Amphibolite	VG	Gold	Po	Pyrrhotite	
Ah	Anhydrite	Gf	Graphite	Qt	Quartz	
Ad	Andalusite	GS	Gravel & sand	Ro	Rhodochrosite	
Ay	Anthophyllite	Gyp	Gypsum	Ru	Rutile	
Ap	Apatite	Hem	Hematite	Sur	Serpentine	
Ar	Argentite	Hb	Homblende	Sc	Sericite	
Asp	Arsenopyrite	Hy	Hypersthene	Sh	Scheelite	
Asb	Asbestos	n	Ilmenite	Sid	Siderite	
Aug	Augite	I-F	Iron Formation	Sil	Silica	
Az	Azurite	Jr	Jarosite	Slm	Silliminite	
Ва	Barite	Ky	Kyanite	Sps	Spessarite	
bi	Bismuthite	Ls	Limestone	Sph	Sphalerite	
Bi Bi	Biotite	Lm	Limonite	Ti	Sphene (Titanite)	
Во	Bomite	Mag	Magnetite	Ag	Silver	
Ca	Calcite	Mc	Malachite	Sp	Spinel	
Cn	Chalcedony	Ma	Marcasite	Spd	Spodumene	
Cc	Chalcocite	Mi	Mica	Št	Staurolite	
Ср	Chalcopyrite	Mk	Microcline	Sb	Stibnite	
Chl	Chlorite	Mi	Millerite	Sul	Sulphides	
Ch>	Chloritoid	Mo	Molybdenite	S-M	Mass.Sulphides	
Cr	Chromite	Mu	Muscovite	S-D	Diss.Sulphides	
Срх	Clinopyroxene	Ne	Nepheline	Tk	Taic	
Co	Cobalt Minerals	Nc	Niccolite	Te	Telluride	
Cv	Covellite	Ni	Nickel minerals	Tt	Tertrahedrite	
Ct	Cordierite	Ov	Olivine	Ta-Cl	Tantalite-Columbite	
Dp	Diopside	Or	Orthoclase	TI	Tourmaline	
Dol	Dolomite	Opx	Orthopyroxene	Tr	Tremolite	
Epi	Epidote	Ŕ	Phlogopite	Wo	Wollastonite	
Fel	Feldspar	Pg	Plagioclase	Zr	Zircon	
FI	Fluorite	-	-	_	• •	

<qfg></qfg>	Quartzofeldspathic	<per></per>	Peridotite	<chm></chm>	Chem. Precip.
<qtz></qtz>	Quartzite	<ser></ser>	Serpentinite	<sla></sla>	Slate
<mar></mar>	Marble	<dun></dun>	Dunite	<kim></kim>	Kimberlite
<ska></ska>	Skam(Calc-Silicate)	<prx></prx>	Pyroxenite	<car></car>	Carbonatite
<phy></phy>	Phyllite	<lmp></lmp>	Lamprophyre	<amp></amp>	Amphibolite
<ton></ton>	Tonalite	<sst></sst>	Sandstone	<mig></mig>	Migmatite
<syn></syn>	Syenite	<ark></ark>	Arkosic sandstone	<peg></peg>	Pegmatite
<gra></gra>	Granite	<wck></wck>	Graywacke	<leu></leu>	Leucocratic
<mon></mon>	Monzonite	<cgl></cgl>	Conglomerate	<mel></mel>	Melanocratic
<grd></grd>	Granodiorite	<slt></slt>	Siltstone	<unk></unk>	Unknown Protolith
<apl></apl>	Aplite	<arg></arg>	Mudstone-argillite	<umf></umf>	Ultramatic
<fel></fel>	Felsite	<exh></exh>	Chert/exhalite	<maf></maf>	Mafic
<qdi></qdi>	Quartz Diorite	<qif></qif>	Silicate IF	<and></and>	Andesite
<gab></gab>	Gabbro	<oif></oif>	Oxide IF	<dac></dac>	Dacite
<nor></nor>	Norite	<sif></sif>	Sulphide IF	<ryd></ryd>	Rhyodacite
<ant></ant>	Anorthosite	<cif></cif>	Carbonate IF	<rhy></rhy>	Rhyolite
<dio></dio>	Diorite	<sha></sha>	Shale	<scl></scl>	Sulphide Clasts
		<lst></lst>	Limestone	<rwv></rwv>	Reworked Volcanic Deb

Declaration of Assessment Work Performed on Mining Land

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

Transaction Number (office use) w∞60.00481

Assessment Files Research Imaging

P.O. Box 1140, Timmins Ontario, P4N 7H9

Address

0241 (03/97)

900

y of subsection 65(2) and 66(3) of the Mining Act. Under section 8 of the Mining Act, he assesment work and correspond with the mining land holder. Questions about this of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury,

Instructions: - For work performed - Please type or prin	d on Crown Lands befor t in ink.	re recordin g			. •	
1. Recorded holder(s) (Attach	a list if necessary)		2	2		
Name Fal	conbridge Limited			Client Number 1	30679	
Address Suit	te 1200 – 95 Wellington Stree	et West	******	Telephone Numbe	r (416) 956-5700	
Tor	onto, Ontario, M5J 2V4			Fax Number	(416) 956-5757	
Name				Client Number		
Address				Telephone Number		
		******	· · · · · · · · · · · · · · · · · · ·	Fax Number		
2. Type of work performed: Ch	eck (✔) and report on o	nly ONE of t	he following	g groups for this	declaration.	
Geotechnical: prospecting, surveys, Physical: drilling striates assays and work under section 18 (regs) Physical: drilling striates assays and work under section 18 (regs)						
Work Type					Office Use	
209m of Diamond Drilling				Commodity		
		1		Total \$ Value of Work Claimed	11,021	
	1999 To 22 Year Day		1999 Year	NTS Reference		
Global Positioning System Data (if available)	Township/Area Prosser Township			Mining Division	Porcusine	
	M or G-Plan Number G 3965				ist	
- complete ar - provide a m	per notice to surface rig nd attach a Statement o nap showing contiguous copies of your technica	hts holders to f Costs, form mining lands	pefore start n 0212;	ing work;	g work;	
3. Person or companies who p	repared the technical (report (Atta	ch a list if n	ecessary)		
Name Gary De Schutter – Falconbridge Limited				Telephone Number 705 264 5200 ext 8231		
Address				Fax Number		
P.O. Box 1140, Kidd Creek Minesite, Timmin				705 267 8874		
	RECE	IVED		Telephone Number		
Address	NOV 2	4 2000		Fax Number		
Name	1,00			Telephone Number		
Address GEOSCIENCE OFF		SSESSMENT		Fax Number		
4. Certification by Recorded Ho I,Gary De Schutter	, do h	orkyto be perf	ormed or w	ritnessed the san	edge of the facts set forth in ne during or after its	

Telephone Number 705 264 5200

Fax Number 705 267 8874

e of work gned to other g claims	Bank. Value of to be distributed at a future date
\$24,000	\$2,825
0	0
0	\$4,892
\$3,200	\$7,821
0	0
0	0
0	0
0	0
<u> </u>	
\$3,200	\$7,821
ove work cred	its are eligible un
	ation to the claim
0	
s below to sho	ow how you wish
4 as indicated	<u>.</u>
wards; or	•
ог	
lows (describe	e):
the Bank fire	••
n the Bank firs	,
Date Notific	ation Sent
Total Value	of Credit Approved
ecorder (Signatur	re)
- (

Statement of Costs for Assessment Credit

Transaction Number (office use)

1. 3

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Units of work Depending on the type of work, list the number of **Cost Per Unit Total Cost Work Type** hours/day worked, metres of drilling, kilometres of of work grid line, number of samples, etc. \$48/m \$10,032 209m **Diamond Drilling** \$14.50/sample \$29 Geochem Sampling 2 samples 4 samples \$24.50/sample \$98 Whole Rock Sampling \$600 \$200/day 3 days Geologist supervision Associated Costs (e.g. supplies, mobilization and demobilization). \$6.50/lid \$162.50 Core box lids (25) **Transportation Costs** \$100 Truck fuel **Food and Lodging Costs** \$11,021.50 **Total Value of Assessment Work Calculations of Filing Discounts:** 1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work. 2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below: x 0.50 =Total \$ value of worked claimed. TOTAL VALUE OF ASSESSMENT WORK Note: Work older than 5 years is not eligible for credit. A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for

- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification is not made, the or part of the assessment work submitted.

A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification is not made, the or part of the assessment work submitted.

Certification verifying costs:

	• •					
i,	Gary De Schutter	, do hereby certify, that the amounts shown are as accurate as may reasonably				
be de	(please print full name) termined and the costs we	ere incurred while conducting assessment work on the	lands indicated on the accompanying			
Decla		Senior Field Geologist, Falconbridge Limited	I am authorized to make this certification.			
		(recorded holder, agent, or state company position with signing authority)	1			

0212 (03/97)

NOV 2 4 2000 GEOSCIENCE ASSESSMENT OFFICE Signature

Mon 22/90

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

December 20, 2000

FALCONBRIDGE LIMITED SUITE 1200, 95 WELLINGTON STREET WEST TORONTO, ONTARIO M5J-2V4

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9845 Fax: (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm

Dear Sir or Madam:

Submission Number: 2.20736

Status

Subject: Transaction Number(s):

W0060.00481 Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact JIM MCAULEY by e-mail at james.mcauley@ndm.gov.on.ca or by telephone at (705) 670-5858.

Yours sincerely,

ORIGINAL SIGNED BY

Lucille Jerome

Acting Supervisor, Geoscience Assessment Office

Lucille Jerome

Mining Lands Section

Work Report Assessment Results

Submission Number:

2.20736

Date Correspondence Sent: December 20, 2000

Assessor: JIM MCAULEY

Transaction

First Claim

Number

Township(s) / Area(s)

Status

Approval Date

W0060.00481

6061

PROSSER

Approval

December 20, 2000

Section:

Number

16 Drilling PDRILL

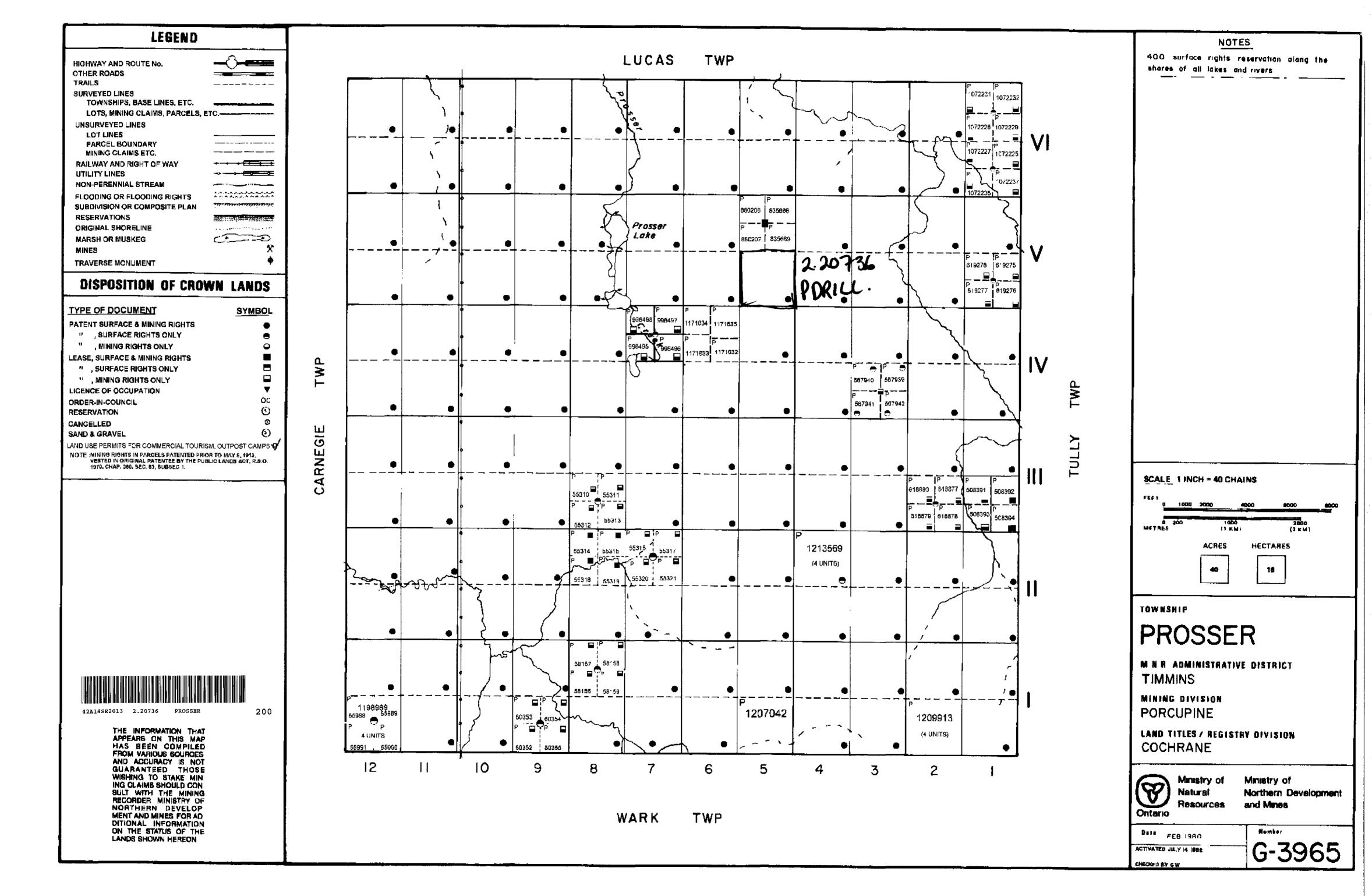
At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

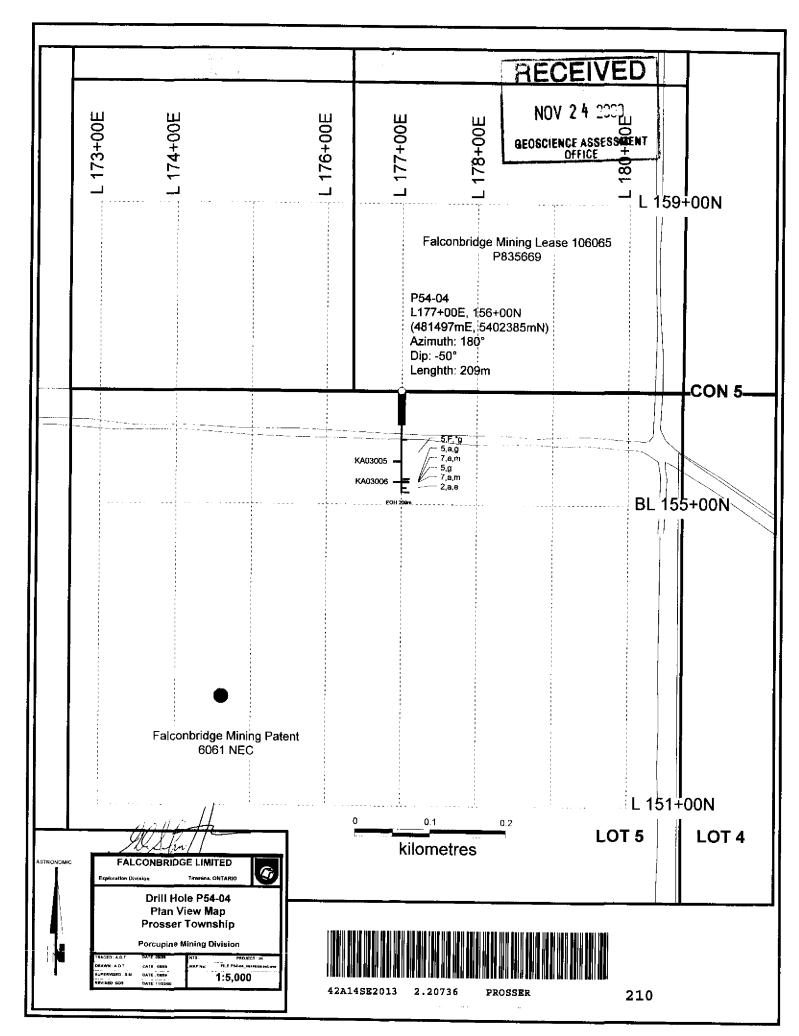
Correspondence to:

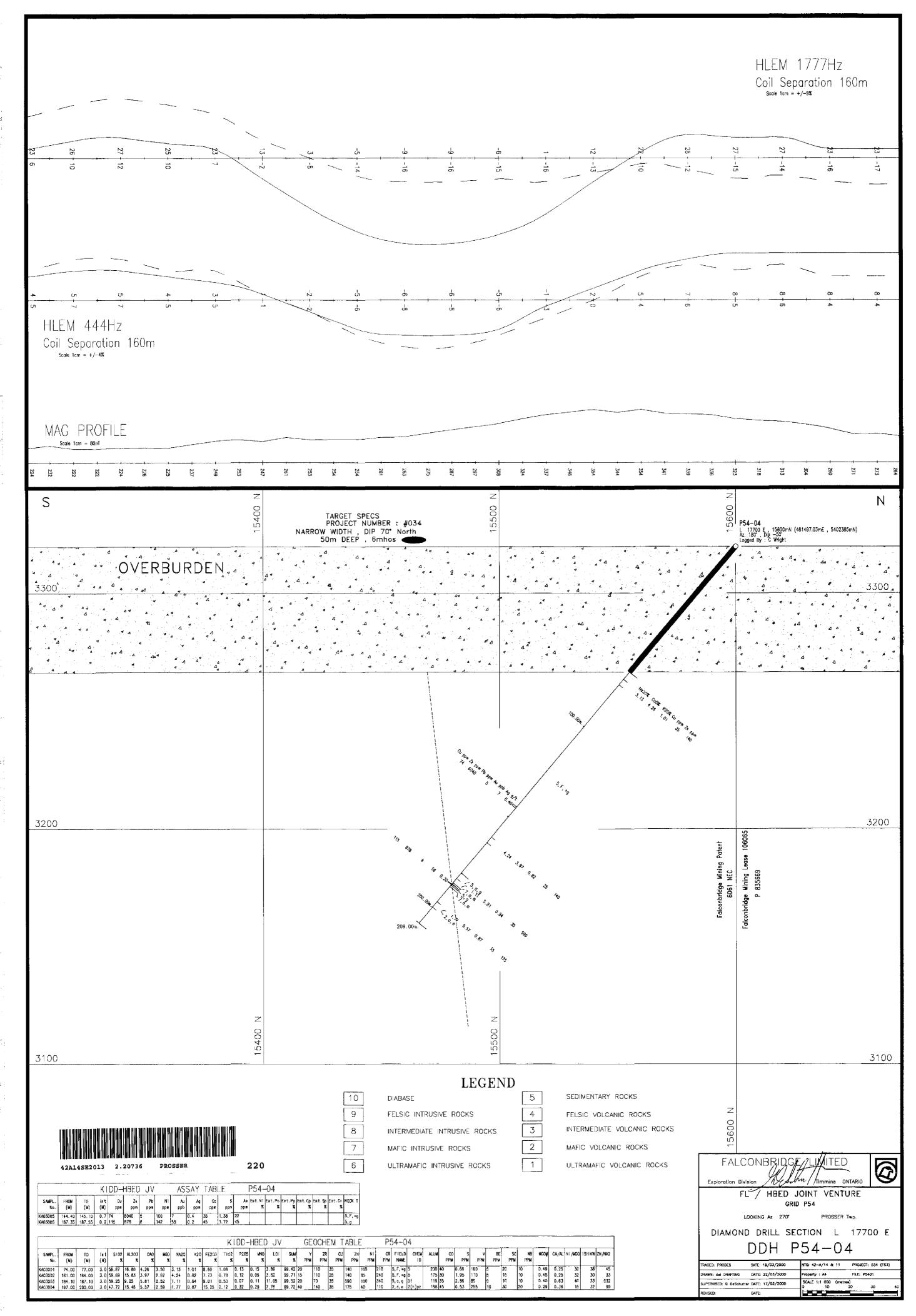
Recorded Holder(s) and/or Agent(s):

Resident Geologist

Gary Deschutter


South Porcupine, ON


TIMMINS, ONTARIO, CANADA


Assessment Files Library

Sudbury, ON

FALCONBRIDGE LIMITED TORONTO, ONTARIO

