REPORT ON
 GEOPHYSICAL WORK
 ON
 MAHAFFY 12
 MAHAFFY TOWNSHIP

NTS: 42-A12
PROJ \#: 8036
for
FALCONBRIDGE LIMITED

SUMMARY AND RECOMMENDATIONS

HLEM and magnetic surveys were carried out on the Mahaffy 12 property for Falconbridge Limited in December of 1998.

The magnetic survey mapped north-south to northwest-southeast striking diabase dikes. The EM survey mapped a number of conductors which strike northeast in the south half of the property, east-west through the central area and southeast in the north half.

All of the anomalies, except for ' G ' and ' K ' have been previously tested with diamond drill holes. The source of anomaly ' G ' is a narrow zone of poor conductivity, however, it is the only conductor on the property with a coincident magnetic response. Anomaly ' K ' is a partially defined response on the north edge of the grid at 2200 East; the source of this anomaly is also a narrow zone of poor conductivity.

It is recommended that anomaly ' G ' is drilled on Line 2250 East and that the grid is extended to the north to determine the strike and extent of anomaly ' K '.

TABLE OF CONTENTS

page
Summary and Recommendations i
Introduction 1
General Geology 3
Previous Work 3
Survey Descriptions 6
Magnetic Results 7
EM Results 9
References 17

LIST OF FIGURES

page
1.(a) Location Map 2
(b) Claim Map 2
2. Location of Previous Drill Holes 5
3. Total Magnetic Field 8
4. HLEM Results, 444 HZ 13

LIST OF TABLES

page

1. Property Description 1
2. Summary of Previous Work 4
3. Summary of Conductors 10
4. EM Anomaly ' B ' Interpretation 11
5. EM Anomaly ' C ' Interpretation 11
6. EM Anomaly 'D' Interpretation 12
7. EM Anomaly 'E' Interpretation 14
8. EM Anomaly 'F' Interpretation 14
9. EM Anomaly ' G ' Interpretation 15
10. EM Anomaly 'H' Interpretation 15
11. EM Anomaly 'J' Interpretation 16
12. EM Anomaly 'K' Interpretation 16

LIST OF MAPS

1. Total Magnetic Field
2. HLEM Results, 222 HZ, 200 Metre Coil Separation
3. HLEM Results, $\mathbf{4 4 4}$ HZ, 200 Metre Coil Separation
4. HLEM Results, 1777 HZ, 200 Metre Coil Separation

INTRODUCTION

During December 1998, magnetic and horizontal loop electromagnetic (HLEM) surveys were carried out on the Mahaffy 12 property for Falconbridge Limited.

The property is located 37 kilometres northwest of the city of Timmins in the southwest portion of Mahaffy Township, Porcupine Mining Division (Figure 1(a)). It was accessed by snowmobile from a logging road which runs north from Highway 576 at Kamiskotia. Thorburn Creek flows north directly to the west of the property.

The surveys covered parts of 10 claims (Figure 1(b)) which are comprised of a total of 92 , forty acre claim units; the claim numbers are listed in Table 1.

The magnetic survey was carried out by J. derWeduwen and the HLEM survey was run by B. Pigeon and L . Eden.

CLANH:	turbungs	RECOROMCDAT	bescrurion	Tomberfe
1207794	13	July 09, 1996		Reid
1211742	4	July 10, 1998		Reid
1211743	8	July 10, 1998		Reid
1218745	16	June 20, 1997		Reid
1218746	7	June 20, 1997		Reid
1226430	12	Dec. 05, 1997		Reid
1227611	8	Nov. 25, 1997		Reid
1227612	3	Nov. 25, 1997		Reid
1227613	6	Nov. 25, 1997		Reid
1228069	15	May 27, 1997		Reid

Table 1 : Property Description
KIRKLAND KINGSMILL

Figure 1(a): Location Map

Figure 1(b): Claim Map

GENERAL GEOLOGY

Mahaffy Township is located near the west end of the Abitibi greenstone belt which consists of predominantly east-west striking, steeply dipping Archean sediments and ultramafic to felsic volcanics. These rocks have been intruded by ultramafic to felsic bodies, north-south striking Matachewan diabase dikes and east northeast striking Keweenawan diabase dikes.

The geology of Mahaffy Township is presented on map 2205 at a scale of 1 inch to 4 miles (Pyke etal, 1973) and on map P3379 at a scale of 1:100,000 (Ayer etal, 1998).

Previous work in the area indicates that the Mahaffy 12 property is underlain by east southeast to east northeast striking intermediate to felsic volcanics and sill-like, ultramafic bodies. North-south striking magnetic anomalies suggest that all of the rocks are cut by diabase dikes. The Mattagami River Fault strikes north-south along the western edge of the present Mahaffy 12 grid.

PREVIOUS WORK

Interest in this area began in the 1960's after the discovery of the Texasgulf orebody to the east southeast, in Kidd Township. Since 1960, a number of companies have carried out work using a variety of geophysical techniques in the search for base metal deposits (Table 2).

All of the early electromagnetic work, before 1973, used dip angle techniques including the fixed vertical loop transmitter method (VLEM) and the "shoot-back" method of Crone's. After 1973 most of the electromagnetic work involved the horizontal loop method, with coil separations between 500 and 600 feet or 160 and 200 meters. A PEM survey was run along widely spaced lines in the 1970's by Rosario Resources; it was conducted with a moving transmitter loop at a distance of 300 metres from the receiving coil. In the early 80 's, PEM surveys were run by Utah with a fixed 400 by 400 foot transmitter loop.

YEAR	COMPANY	GEOPHYSICS	DRILL HOLES	ASSESSMENT/ AFRI FILE
1964	Mespi Mines Limited	Amag, AEM		T-787
1964	Texasgulf Inc	None filed	M12-1	T-442
1964	Black River Mining Limited	Mag, JEM	$64-1$ to 6	T-928
1971	Newmont Mining Corp of Canada Ltd	Amag, Rad		T-40
1972	Caltor Syndicate	Mag, VLEM	72-1 to 4	T-235
Summer 1977	Rosario Resources Canada Limited	Mag, HLEM (300'), PEM, IP, Grav		T-1841
Winter 1978	Rosario Resources Canada Limited	Mag, HLEM (200m)		T-1841
Summer 1978	Rosario Resources Canada Limited	Mag, HLEM (150, $200 \mathrm{~m})$	RM-1 to6	T-1841
Winter 1979	Rosario Resources Canada Limited		RM79-1, 2	T-1841
1980	Utah, Rosario, Aquitaine JV	Mag, HL, IP, PEM	UR80-1 to 6	T-1841
1981	Utah, Rosario, Aquitaine JV		23 OB holes	T-1841
1987	Kidd Creek Mines Ltd	Mag, HL (160m)	MF12-1,2	T-2844
1988	Falconbridge Limited		MF12-3 to 7	42A13SE0345
1990	Falconbridge Limited		MF12-12,13	$42 A 13 S E 0060$
1991	Falconbridge Limited		MF12-26,27	

Table 2 : Summary of Previous Work

In 1964, Black River Mines Limited carried out magnetic and EM surveys over the west half of the Mahaffy 12 survey area. The surveys were run along lines spaced every 400 feet and oriented northwest southeast. Black River drilled six holes (64-1 to 64-6) to test three conductors on the property.

In 1972, Caltor Syndicate carried out magnetic and VLEM surveys over most of the present survey area. These surveys were run along north-south lines spaced every 400 feet. Caltor drilled four holes ($72-1$ to 4) to test conductivity in the southwest corner of the present grid.

The most extensive work was done by Rosario Resources Canada Limited between 1977 and 1979 and by a subsequent joint venture between Rosario, Utah Mines Ltd. and Aquitaine of Canada Ltd. in 1980 and 1981.

Figure 2: Approximate Location of Previous Drill Holes

In 1977, Rosario carried out a PEM survey on north-south lines spaced every 800 feet using a coil separation of 300 feet. In 1978, they ran an HLEM survey along north-south lines spaced every 400 feet with a coil separation of 500 feet. In 1978, Rosario drilled hole RM-5 and in 1979 drilled holes RM79-1 and RM79-2 to test conductors on the property.

In 1980, Utah detailed some of the conductors with a PEM survey, using 400×400 foot transmitter loops. During the same year, Utah also ran an induced polarization (IP) survey along selected lines on the property using a pole dipole array with an "a" spacing of 200 feet; readings were taken for $n=1$ to 4 . The surveys were followed by three drill holes (UR80-2,3 and 6) to test two of the conductors.

Between 1987 and 1991, Kidd Creek Mines Ltd/Falconbridge Limited drilled a number of holes on the property (MF12-1 to 7, 12, 13, 26 and 27) to test the conductors at a greater depth.

The area has been covered by several airborne magnetic and electromagnetic surveys including Keevil Mining Group Ltd in 1966, Mespi Mines Limited in 1971 and Phelps Dodge Corporation of Canada in 1974. A magnetic and radiometric survey in Reid Township was flown for Newmont Mining Corporation of Canada Ltd. in 1971.

In 1987, the Ontario Geological Survey flew a combined airborne magnetic and EM survey over the Timmins area which included Mahaffy Township. This survey was flown along north-south lines spaced approximately every 200 metres.

SURVEY DESCRIPTIONS

The grid on the property consists of north south lines spaced every 100 metres over the west half of the survey area and every 50 metres over the east half. East-west tie lines were established every 400 metres and east-west grid lines were cut every 200 metres in the west central portion of the grid; all of the lines were picketed every 20 metres.

The magnetic readings were taken every 10 metres with a Scintrex IGS-2/MP-4. This instrument is a proton precession magnetometer which measures the earth's total magnetic field to an accuracy of 0.1 nT .

Diurnal variations were monitored every 10 seconds with a Scintrex MP-3 base station magnetometer, located off the grid at 10200 East, 10360 North; the base station value to which all of the readings were levelled is 59237 nT . A total of 5484 readings were taken along 54.4 kilometres of line.

The horizontal loop EM survey was carried out with the Apex Parametrics MaxMin 1-5. This instrument measures the in-phase and quadrature components of the secondary field as a percentage of the primary field; the depth of penetration is approximately one half of the coil separation. Readings were taken every 20 metres using a coil separation of 200 metres and frequencies of 222, 444 and 1777 Hertz. A total of 2171 stations were read along 53.6 kilometres of line.

MAGNETIC RESULTS

The total magnetic field is contoured every 25 nT on map 1 at a scale of 1:5000. The results are also presented in Figure 2 at a scale of $1: 12,500$.

The magnetic field trends northeast in the south half of the property and southeast in the north half of the property. These trends are interrupted by linear, north-south to north northwest striking, high magnetic anomalies which represent diabase dikes. They are located at 2500 East, between the south end of Line 1900 East and the north end of 1500 East, along the east side of the survey area and along the west side of the survey area. Magnetic high anomalies, with a short strike length, extend from the central diabase dike (at 2500 East) in an east northeast direction at 11500 North and in an east southeast direction at 12100 North. These coincide with slight offsets in the diabase and may represent branches of the main diabase intruded along geological contacts. A third anomaly, with a similar amplitude and strike length, strikes east from the diabase at 11950 North and coincides with EM anomaly ' G '.

A partially defined, east northeast striking magnetic high anomaly located between 11600 North on Line 3000 East and 11800 North on Line 3400 East may represent an ultramafic body. The high frequency, isolated magnetic high at 2200 East, 11700 North is likely cultural and may reflect the collar of hole 64-6.

Figure 3 : Total Magnetic Field, Mahaffy 12 Property

EM RESULTS

The results of the HLEM survey are profiled on maps 2,3 and 4 at a scale of 1:5000; the profile scale used for all of the frequencies is $\mathbf{1 ~ c m ~ = ~} \mathbf{2 5} \%$. The results using 444 Hertz are also presented in Figure 3 at a scale of $1: 12,500$.

The following is a description of the conductors detected in the survey and labelled ' A ' to ' K ' on the maps.

Anomaly ' A ' is a poorly defined, low amplitude response which strikes northeast between 1480 East on Line 11000 north and 11240 North on Line 1800 East. It is difficult to interpret any parameters for the source because the anomaly is incomplete to the south and because of the influence of the much stronger response of anomaly ' B ' to the north. The anomaly is mainly a quadrature response indicating poor conductivity.

Hole 72-1, drilled by Caltor in 1972 to investigate felsic pyroclastics to the north of anomaly ' A ', did not reach the conductor.

Anomaly 'B' strikes northeast between 1520 East on Line 11300 North and 1900 East on Line 11600 North. The source of the anomaly is a narrow zone of good conductivity at a depth which varies from less than 20 metres on Line 11400 North to greater than 100 metres at the northeast end (Table 4).

Conductor ' B ' was first drilled by Texas Gulf in 1961 (Hole M21-1). Black River located this zone in their 1964 JEM survey and drilled four holes (Holes 64-1, 2, 3,5) to test it. The source of the EM anomaly is pyritic graphite, however, two of the Black River holes, 64-2 and 64-3, returned base metal values; the best intersection ran $.15 \%$ copper, $.52 \%$ lead, 1.05% zinc and .54 oz/ton silver over 2.9 feet.

The conductor was detected in a VLEM survey carried out by Caltor in 1972 and the west end was tested with two diamond drill holes. Hole 72-2 was stopped after 175 feet because of poor ground conditions and Hole 72-4 intersected a graphitic tuff unit. Hole 72-3 , drilled to the southwest of the previous two described holes, was entirely in an ultramafic unit.

CONDUCTOR	COMPANY, YEAR	SURVEYS	ot	DRILL HOLE	SOURCE	ASSESSMENT/ AFRI FILE
A	Caltor, 1972 Rossario, 1977 Falconbridge, 1990	VLEM PEM	POOR	$72-1$ MF12-13	No conductor intersected	$\begin{gathered} \mathrm{T}-235 \\ \mathrm{~T}-1841 \\ \text { 42A13SE0060 } \end{gathered}$
B	Black River, 1964 Caltor, 1972 Rossario, 1977 Utah, 1980 Falconbridge, 1990	JEM VLEM PEM IP	GOOD	$\begin{aligned} & 64-1,2,3,5 \\ & 72-2,4 \\ & \text { RM79-1 } \\ & \text { MF12-12,13 } \end{aligned}$	Pyritic Graphite	$\begin{gathered} \text { T-928 } \\ \text { T-235 } \\ \text { T1841 } \\ \text { T-1841 } \\ \text { 42A13SE0060 } \end{gathered}$
C	Black River, 1964 Caltor, 1972 Rossario, 1977 Rossario, 1978 Utah, 1980	JEM VLEM HLEM,PEM HLEM IP	GOOD	64-6 RM-5	Graphite \& 7\% Pyrite	$\begin{aligned} & \text { T-928 } \\ & \text { T-235 } \\ & \text { T-1841 } \\ & \text { T-1841 } \end{aligned}$
D	Black River, 1964 Caltor, 1972 Rossario, 1977 Rossario, 1978 Utah, 1980 Falconbridge, 1987/88	JEM VLEM HLEM, PEM HLEM PEM, IP	POOR	64-4 UR80-2,6 MF12-3,4,5	Graphite \& Massive Pyrite	$\begin{gathered} \mathrm{T}-928 \\ \mathrm{~T}-235 \\ \mathrm{~T}-1841 \\ \mathrm{~T}-1841 \\ \mathrm{~T}-1841 \\ \text { 42A13SE0345 } \end{gathered}$
E	Black River, 1964 Caltor, 1972 Rossario, 1977 Rossario, 1978 Utah, 1980 Falconbridge, 1987/88	JEM VLEM PEM HLEM PEM, IP	GOOD	MF12-4,5	Graphite \& Massive Pyrite	$\begin{gathered} \mathrm{T}-928 \\ \mathrm{~T}-235 \\ \mathrm{~T}-1841 \\ \mathrm{~T}-1841 \\ \mathrm{~T}-1841 \\ \text { 42A13SE0345 } \end{gathered}$
F	Black River, 1964 Caltor, 1972 Rossario, 1977 Rossario, 1978 Utah, 1980 Falconbridge, 1987	JEM VLEM HLEM,PEM HLEM PEM, IP	POOR	MF12-1,2,3	Massive Pyrite \& Graphite	$\begin{gathered} \mathrm{T}-928 \\ \mathrm{~T}-235 \\ \mathrm{~T}-1841 \\ \mathrm{~T}-1841 \\ \mathrm{~T}-1841 \\ \text { 42A13SE0347 } \end{gathered}$
G	Caltor, 1972 Rossario, 1977	VLEM HLEM,PEM	POOR			$\begin{aligned} & \mathrm{T}-235 \\ & \mathrm{~T}-1841 \end{aligned}$
H	Rossario, 1977 Rossario, 1978 Utah, 1980 Falconbridge, 1988	HLEM HLEM IP	POOR	UR80-3 MF12-6,7	Graphite \& 25\% Pyrite	$\begin{gathered} \mathrm{T}-1841 \\ \mathrm{~T}-1841 \\ \mathrm{~T}-1841 \\ \text { 42A13SE0345 } \end{gathered}$
J	Rossario, 1978 Utah, 1980	HLEM PEM, IP	POOR	RM79-2	Graphite \& Massive Pyrite	$\begin{aligned} & \mathrm{T}-1841 \\ & \text { T-1841 } \end{aligned}$
K	Rossario, 1978 Utah, 1980	HLEM PEM, IP	POOR			$\begin{aligned} & \mathrm{T}-1841 \\ & \mathrm{~T}-1841 \\ & \hline \end{aligned}$

Table 3 : Summary of Conductors

$\mathbf{M}=1$							
11300 N	1520 E	narrow	-6	-11	26	4	
1600 E	11335 N	narrow	-31	-12	34	54	
11400 N	1700 E	narrow	-42	-13	<20	67	
1700 E	11400 N	narrow	-44	-12	<20	74	
11500 N	1800 E	narrow	-34	-16	22	37	
1800 E	11500 N	narrow	-33	-11	34	62	
11600 N	1900 E	narrow	-4	-3	100	14	
1900 E	11600 N	narrow	-3	-2	120	21	

Table 4: Anomaly 'B' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly 'C' strikes northeast between 11560 North on Line 2100 East and 2270 East on Line 11700 North. The source of the anomaly is a narrow zone of good conductivity at a depth which ranges from 40 metres on Line 2200 East to 100 metres on Line 11700 North (Table 5). This conductor has been interpreted by some of the previous companies to be the same stratigraphic horizon as conductor ' B ', separated by a diabase dike/fault.

	cuntren						
2100 E	11560 N	narrow	-9	-7	72	16	
11600 N	2180 E	narrow	-14	-7	58	18	
2200 E	11610 N	narrow	-23	-12	42	31	
11700 N	2270 E	narrow	-5	-3	106	21	

Table 5: Anomaly 'C' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

In 1964, Black River drilled Hole 64-6 to test anomaly ' C ' and intersected graphite with disseminated pyrite. The conductor was detected in a VLEM survey carried out by Caltor in 1972, however, they did not drill it. In 1977/78, Rosario carried out HLEM and PEM surveys and drilled Hole RM-5 which also intersected pyritic graphite.

Anomaly ' D ' is a low amplitude response which strikes east-west between Lines 11800 East and 12000 East at 11800 North. The source of the anomaly is a narrow zone of poor conductivity at a depth of 40 metres (Table 6).

Hole 64-4, drilled by Black River in 1964, intersected 19 feet of graphite with massive pyrite and marcasite. It was also drilled by Utah (Holes UR80-2 and UR80-6) in 1981 and Kidd Creek (Holes MF12-3, 4 and 5) in 1988.

		NuTHAK 4 wisw (19)					
1800 E	11800 N	narrow	-2	-4	40	2	
1900 E	11810 N	$?$	-3	-5	40	2	
2000 E	11800 N	narrow	-2	-3	64	3	
11800 N	2000 E	narrow	-2	-4	40	2	

Table 6: Anomaly ' D ' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly ' E ' strikes northeast between 1850 East on Line 11900 North and 11940 North on Line 1900 East. The source of the anomaly is good conductivity at a depth of 80 metres on Line 11900 North and 120 metres on Line 1900 East (Table 7).

This anomaly was tested with two holes by Kidd Creek (MF-4 and 5) in 1988. Both holes intersected widely spaced graphite zones with massive pyrite, explaining both anomalies ' D ' and ' E '.

Figure 4 : HLEM Results, 444 Hertz, Mahaffy 12 Property

UNE	$\begin{aligned} & \text { givonyy } \\ & \text { cerriter } \end{aligned}$		14 (S)	9 (*)	Cisptive		
11900 N	1850 E	20	-9	-6	80	18	
1900 E	11920 N	?	-3	-2	120	21	

Table 7: Anomaly 'E' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly ' F ' is a very low amplitude anomaly which strikes east-west between 11940 North on Line 2100 East and 11920 North on Line 2400 East. It represents a narrow zone of very poor conductivity at a shallow depth (Table 8).

This anomaly was tested by Kidd Creek with two holes (MF12-01 and MF12-02) in 1987 and one hole (MF12-03) in 1988. The conductivity was explained by intersections of massive pyrite.

2100 E	11940 N	narrow	-1	-3	20	1	
2200 E	11920 N	narrow	-1	-4	<20	1	
2300 E	11910 N	narrow	-1	-4	<20	1	
2400 E	11920 N	narrow	-1	-2	40	1	

Table 8: Anomaly 'F' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly ' \mathbf{G} ' is also a low amplitude response which strikes east-west between Lines 2500 East and 2650 East at 11960 North. The source of the anomaly is a narrow zone of poor conductivity at a shallow depth (Table 9). It has a coincident magnetic response and has not been previously tested.

2500 E	11970 N	narrow	-1	-4	<20	1	
2550 E	11960 N	narrow	-2	-6	20	1	
2600 E	11960 N	narrow	-2	-4	40	2	
2650 E	11960 N	narrow	-1	-3	20	1	

Table 9: Anomaly 'G' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly 'H' strikes southeast between 12340 North on Line 2100 East and 12150 North on Line 2450 East. The source of the anomaly is a narrow zone of poor conductivity at a depth which ranges from less than 20 metres on Line 2450 East to 60 metres on Line 2300 East (Table 10).

Hole UR80-3, which was drilled by Utah in 1980 to test anomaly 'H', intersected graphite with up to 25% pyrite. Kidd Creek also drilled two holes (MF12-6 and 7) in 1988 to test this conductor and intersected a graphite zone with massive sulphides (pyrite).

LINE	Anemety GEVIER		181		peraty (A)		comaturs
2100 E	12340 N	narrow	-3	-7	24	2	
2300 E	12200 N	narrow	-3	-4	64	4	
2400 E	12160 N	narrow	-1	-3	20	1	
2450 E	12150 N	narrow	-1	-4	<20	1	

Table 10: Anomaly 'H' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly 'J' strikes east-west between 480 North on Line 3000 West and 460 west on Line 2500 West. It is a poorly defined anomaly because of the low amplitude and affect from the higher amplitude response of anomaly ' H ', to the south; the in-phase/quadrature ratio, however, suggests poor conductivity (Table 11).

An EM survey by Rosario in 1978 also outlined poor conductivity which was tested by diamond drilling in the winter of 1979; Hole RM79-2 intersected graphite and massive pyrite.

4HE					 (4)		
2300 E	12520 N	?	-2	-8	<20	1	
2400 E	12480 N	narrow	-7	-8	60	7	
2450 E	12480 N	?	-2	-4	40	2	

Table 11: Anomaly 'J' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Anomaly 'K' is a one line anomaly centered at 2000 West on Line 800 North. The source of the anomaly is poor conductivity at a depth of 20 metres (Table 12). More work would have to be carried out in order to determine the strike and extent of this zone.

Wive							
12600 N	2300 E	narrow	-2	-7	<20	1	

Table 12: Anomaly ' K ' Interpretation, $444 \mathrm{~Hz}, 200$ metre coil separation.

Timmins Geophysics Ltd.

REFERENCES

Ayer, J.A. and Trowell, N.F.

1998: Geological Compilation of the Timmins Area, Abitibi Greenstone Belt; Ontario Geological Survey, Preliminary Map P.3379, scale 1:100,000.

Ontario Geological Survey

1988: Airborne Electromagnetic and Total Intensity Survey, Timmins Area, Reid Township, Districts of Cochrane and Timiskaming Ontario; by Geoterrex Limited, for Ontario Geological Survey, Geophysical/Geochemical Series Map 81053. Scale 1:20,000. Survey and Compilation from 1987 to October 1987.

Pyke, D.R., Ayres, L.D. and Innes, D.G.
1973: Timmins-Kirkland Lake Sheet, Districts of Cochrane, Sudbury and Timiskaming; Ontario Div. Mines, Map 2205, Geol. Comp. Ser., Scale 1 inch to 4 miles.

Geophysical Survey Report

 coveringBorehole Pulse EM Surveys over the
Mahaffy Township
for
Falconbridge Exploration Ltd. during
February - April, 1999.
by

CRONE GEOPHYSICS \& EXPLORATION LTD.

Survey Area:	Mahaffy Township, Timmins, Ontario.
Survey Type:	3D Borehole Pulse EM Survey.
Survey Operator:	Henry Odwar.
Survey Period:	February - April, 1999.
Report By:	Henry Odwar.
Report Date:	May, 1999.
Submitted To:	Falconbridge Exploration Ltd. Timmins, Ontario.

TABLE OF CONTENTS

PULSE ELECTROMAGNETIC SURVEY

1.0 INTRODUCTION

2.0 PROPERTY LOCATION AND ACCESS
3.0 PERSONNEL
4.0 SURVEY PARAMETERS
5.0 SURVEY METHOD
6.0 PRODUCTION SUMMARY

APPENDICES

APPENDIX A:	Plans, Sections \& Pulse EM Data Profiles (Linear, 5-axis)
APPENDIX B:	Pulse EM Data profiles (Lin-log)
APPENDIX C:	Crone Instrument Specifications

1.0 INTRODUCTION

This geophysical survey report outlines the survey parameters for the 3D Borehole Pulse EM survey which was carried out for Falconbridge Exploration Ltd. 11 holes were surveyed.

2.0 PROPERTY LOCATION AND ACCESS

Mahaffy Township is located near Timmins, Ontario. The survey crew accessed the property on a daily basis by road from the city of Timmins.

3.0 PERSONNEL

The personnel involved in this project included:

Henry Odwar	Operator	Toronto, Ontario
Henry Odwar	Data Presentation	Toronto, Ontario

4.0 SURVEY PARAMETERS

Table 1: Survey Parameters

Grid	Tx Loop	Loop Co-ordinates	Loop Size	Current	Time Base	Ramp Time	Channels
MAH12	MF1	$1700 \mathrm{E}-2400 \mathrm{E}$ $11700 \mathrm{~N}-12200 \mathrm{~N}$	$\sim 700 \times 500 \mathrm{~m}$	15 amps	16.66 ms	1.5 ms	20
MAH12	MF2	$2000 \mathrm{E}-2500 \mathrm{E}$ $12200 \mathrm{~N}-12600 \mathrm{~N}$	$\sim 500 \times 400 \mathrm{~m}$	15 amps	16.66 ms	1.5 ms	20
MAH12	MF3	$1500 \mathrm{E}-1900 \mathrm{E}$ $11100 \mathrm{~N}-11500 \mathrm{~N}$	$\sim 400 \times 400 \mathrm{~m}$	15 amps	20 ms	1.5 ms	20
MAH12	MF4	$1700 \mathrm{E}-2000 \mathrm{E}$ $11500 \mathrm{E}-11800 \mathrm{~N}$	$\sim 300 \times 300 \mathrm{~m}$	15 amps	20 ms	1.5 ms	20
MAH13	MF5	$2500 \mathrm{E}-2700 \mathrm{E}$ $11960 \mathrm{~N}-12200 \mathrm{~N}$	$\sim 200 \times 220 \mathrm{~m}$	18 amps	20 ms	1.5 ms	20
MAH16	MF16-1	$250 \mathrm{E}-600 \mathrm{E}$ $1260 \mathrm{~N}-1600 \mathrm{~N}$	$\sim 340 \times 350 \mathrm{~m}$	16 amps	20 ms	1.5 ms	20
MAH16	MF16-2	$900 \mathrm{E}-1200 \mathrm{E}$ $1100 \mathrm{~N}-1400 \mathrm{~N}$	$\sim 300 \times 300 \mathrm{~m}$	16 amps	20 ms	1.5 ms	20
MAH16	MF16-3	$1900 \mathrm{E}-2100 \mathrm{E}$ $18000 \mathrm{~N}-18200 \mathrm{~N}$	$\sim 200 \times 200 \mathrm{~m}$	16 amps	16 ms	1.5 ms	20

Table II: Survey Coverage: Borehole

Hole	Survey Date	Loop	Collar CO-ordinates	Dip ${ }^{\circ}$	Aximuth ${ }^{\circ}$	Depth (m)	Surveyed Section	Comp.
MF12-02	22/02/99	MF1	$2145 \mathrm{E} / 12100 \mathrm{~N}$	55°	180°	660	40-660 m	X, Y, Z
MF12-03	24/02/99	MF1	2055E/12050N	55°	180°	800	30-800 m	X, Y, Z
MF12-05	02/03/99	MF1	$1850 \mathrm{E} / 12000 \mathrm{~N}$	55°	180°	897	30-897m	X, Y, Z
MF12-06	05/03/99	MF1	2095E/12500N	55°	180°	628	40.628 m	X, Y, Z
MF12-07	11/03/99	MF2	$2360 \mathrm{E} / 12300 \mathrm{~N}$	57°	$189{ }^{\circ}$	828	30-828m	X, Y, Z
MF12-13	21/03/99	MF3	$1640 \mathrm{E} / 11515 \mathrm{~N}$	50°	145°	545	30-545 m	X, Y, Z
MF12-28	26/03/99	MF4	$1800 \mathrm{E} / 11660 \mathrm{~N}$	50°	135°	325	20.325 m	X, Y, Z
MF13-04	27/03/99	MF5	$2600 \mathrm{E} / 12100 \mathrm{~N}$	50°	180°	245	10-240 m	X, Y, Z
MF16-01	01/04/99	MF16-3	$1950 \mathrm{E} / 18100 \mathrm{~N}$	50°	180°	263	50-260m	X, Y, Z
MF16-02	25/03/99	MF16-2	1050E/1240N	50°	180°	255	50-255 m	X, Y, Z
MF16-03	24/03/99	MF16-1	505E/1400N	45°	210°	254	30-254 m	X, Y, Z

5.0 SURVEY METHODS

The Crone Pulse EM system is a time domain electromagnetic method that utilizes an alternating pulsed primary current with a controlled shut-off and measures the rate of decay of the induced secondary field across a series of time windows during the offtime. The system uses a transmit loop of any size or shape. A portable 120VDC, 4.5hp Motor Generator powers the PEM $2.4 \mathbf{k W}$ Transmitter which provides a precise current waveform through the loop. The receiver apparatus is moved along surface lines or down boreholes.

The transmitter cycle consists of slowly increasing the current over a few milliseconds, a constant current, abrupt linear termination of the current ("Ramp Time"), and finally, zero current for a selected length of time in milliseconds ("Time Base"). The EMF created by the shutting-off of the current induces eddy currents in nearby conductive material thus setting-up a secondary magnetic field. When the primary field is terminated, this magnetic field will decay with time. The amplitude of the secondary field and the decay rate are dependent on the quality and size of the conductor. The receiver, which is synchronized to the off-time of the transmitter, measures this transient magnetic field where it cuts the receiver apparatus. These readings are across fixed time windows or "Channels" and are recorded with the PEM Digital Receiver. Synchronization between the receiver and transmitter is maintained by a direct cable, radio link, or crystal clock.

Borehole PEM: The 3D borehole equipment uses an axial component (Z) probe and a cross-component (XY) probe to measure the three components of the induced secondary field. The first pass with the ' Z ' probe detects any in-hole or off-hole anomalies and gives information of size, conductivity, and distances to the edges of conductors. The second pass with the ' XY ' probe measures two orthogonal components of the EM field in a plane orientated at right angles to the borehole. These results give directional information to the center of the conductive body. While being lowered down the hole, the probe will rotate about its axis. This rotation will cause a change in the measurement of the X and Y components of the EM field.

The correction can be made by comparing the measurement of the 'PP' channel to theoretical values and calculating the amount of probe rotation. To calculate the theoretical 'PP' value requires knowing the co-ordinates of the loop and the hole, and the hole deviations. A second method of rotation correction involves the use of the orientation tool. This attachment for the XY probe uses dipmeters to calculate the rotation and the dip of the probe at every survey point. The dipmeters are accurate to 0.5 degrees from vertical.

Specifications of the equipment used for the survey can be found in Appendix C at the end of the report.

6.0 PRODUCTION SUMMARY

Table IV: Production Summary

Date	Description
February 19	Mobilization and arrival in Timmins.
February 20	Met with Sharon and went to find Mahaffy grid.
February 21	Located MF12-02, MF12-03 and MF12-05. Laid 500x700 m loop.
February 22	Surveyed MF12-02
February 23	Completed surveying MF12-02 and part of MF12-03
February 24	Completed surveying MF12-03.
February 25	Acquired Z component for MF12-05.
March 02	Completed surveying MF12-05
March 03	Dummy probed MF12-06, MF12-07. Pulled loop MF1.
March 04	Pulled equipment form REID, Laid MF2.
March 05	Surveyed MF12-06.
March 11	Pulled equipment from REID, Surveyed MF12-07.
March 12	Pulled loop and equipment from Mahaffy.
March 20	Laid MF3.
March 21	Surveyed MF12-13.
March 23	Went to look for MAH16 grid.
March 24	Surveyed MF16-03.
March 25	Surveyed MF16-02.
March 26	Surveyed MF12-28.
April 01	Surveyed MF16-01.

Respectfully submitted,

Henry Odwar, M.Sc.
Crone Geophysics \& Exploration Ltd.

APPENDIX A:

Plans, Sections \& Pulse EM Data Profiles (Linear, 5-axis)

FALCONBRIDGE LTD. MAH12
3-D Borehole Pulse EM Survey Hole Section with Primary Field

Hole: MF12-02
Survey Date: Feb 22, 1999
Crone Geophysics \& Exploration Ltd.

FALCONBRIDGE LTD.
MAH12

3-D Borehole Pulse EM Survey Hole Section with Primary Field

Hole: MF12-03
Survey Date: Feb 23, 1999

FALCONBRIDGE LTD. MAH12
3-D Borehole Pulse EM Survey Hole Section with Primary Field

Hole: MF12-05
Survey Date: Feb 25, 1999

FALCONBRIDGE LTD.
MAH12
3-D Borehole Pulse EM Survey
Hole Section with Primary Field
Hole: MF12-06
Survey Dote: Mar 5, 1999

Crone Geophysics \& Exploration Ltd.

Scale 1:5000

FALCONBRIDGE LTD.
MAH12
3-D Borehole Pulse EM Survey
Hole Section with Primary Field
Hole: MF12-07
Survey Date: Mar 11, 1999
Crone Geophysics \& Exploration Ltd.

FALCONBRIDGE LTD.
MAH12
3-D Borehole Pulse EM Survey Hole Section with Primary Field
Hole: MF12-13
Survey Date: Mar 21, 1999
Crone Geophysics \& Exploration Ltd.

FALCONBRIDGE LTD.
MAH12
3-D Borehole Pulse EM Survey
Hole Section with Primary Field
Hole: MF12-28
Survey Date: Mar 26, 1999
Crone Geophysics \& Exploration Ltd.

2500E	2600E	2700E
2500		

Scale 1:2500

FALCONBRIDGE LTD. MAH13
3-D Borehole Pulse EM Survey Hole Section with Primary Field

(metres)
FALCONBRIDGE LTD. MAH16
3-D Borehole Pulse EM Survey Hole Section with Primary Field

FALCONBRIDGE LTD.
MAH16
3-D Borehole Pulse EM Survey
Hole Section with Primary Field
Hole: MF16-02
Survey Date: Mar 25, 1999
Crone Geophysics \& Exploration Ltd.

FALCONBRIDGE LTD. MAH16
3-D Borehole Pulse EM Survey Hole Section with Primary Field

Hole: MF16-03
Survey Date: Mar 24, 1999

APPENDIX B

Pulse EM Data Profiles (Lin-log)

CRONE GEOPHYSICS \& EXPLORATION LTD BOREHOLE PEM
 | Client | $:$ FALCONBRIDGE LTD. | Hole | MF12-02 |
| :--- | :--- | :--- | :--- |
| Grid | $:$ MAH12 | Tx Loop | MF1 |
| Date | $: ~ F e b ~ 22, ~$ | 1999 | File name |

Data Corrected for Probe Rotation using Orientation Tool \#20 X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500
\qquad $-10^{3} \ldots$ $-10^{2} \quad-10 \quad<R(t) N E$ $10 \quad+10$ $+10^{2} \quad+10^{3}$ $+10^{3} \quad+10^{4}$ 10^{4}

CRONE GEOPHYSICS \& EXPLORATION LTD

Client	: FALCONBRIDGE LTD.	Hole	MF12-02
Grid	MAH12	Tx Loop	MF1
Date	$:$ Feb 22, 1999	File name	$:$ M1202XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool \#20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500

Client : FALCONBRIDGE LTD.
Grid : MAH12
Date : Feb 22, 1999

Hole : MF12-02
Tx Loop : MF1
File name : MF1202Z.PEM
Z COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP
Scale: 1:2500
\qquad

$\left[\begin{array}{l}40 \mathrm{~m} \\ 50 \mathrm{~m}\end{array}\right.$
60 m
mm
80 m
90 m
0 m
120 m
138 m
0 m
150 m
160 m
170 m
180 m
190 m
200 m
210 m
220m
230m
240m
250m
260m
270m
280m
290m
300 m
310 m
320m
330 m
340m
350m
360m
370m
380m
Om
400m
0 m
0m
430m
40 m
50m
460m
470 m
480 m
490 m
500 m
510 m
520m
530m
540m
550 m
560m
570m
580m
590m
600m
610 m
620m
630 m
640m
58 m

CRONE GEOPHYSICS \& EXPLORATION LTD BORFHOTE PEM

Client	$:$ FALCONBRIDGE LTD.	Hole	MF12-03
Grid	$:$ MAH12	Tx Loop	MF1
Date	$: ~ F e b ~ 24, ~ 1999 ~$	File name	$:$ M1203XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool \#20
x COMPONENT $\mathrm{dBx} / \mathrm{dt}$ nanoTesla/sec - 20 channels and PP
1:2500
Scale

CRONE GEOPHYSICS \& EXPLORATION LTD
BORERMOIEFEMM

Client	$:$ FALCONBRIDGE LTD.	Hole	MF12-03
Grid	$:$ MAH12	Tx Loop	
Date	$:$	Feb 24, 1999	File name

Data Corrected for Probe Rotation using Orientation Tool \#20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP 1:2500

Scale:

CRONE GEOPHYSICS \& EXPLORATION LTD
BOREFOTEM

Client	FALCONBRIDGE LTD.	Hole	MF12-03
Grid	MAH12	Tx Loop	MF1
Date	Feb 23, 1999	File name	MF1203Z.PEM

Z COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD
BOREMOEFEM

Client	: FALCONBRIDGE LTD.	Hole	MF12-05
Grid	MAH12	TX Loop	MF1
Date	$: ~ M a r ~ 2, ~$	Ma	File name

Data Corrected for Probe Rotation using Orientation Tool \#20 X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD
 BOREMOIE PEM

Client	: FALCONBRIDGE LTD.	Hole	MF12-05
Grid	MAH12	TX Loop	MF1
Date	: Mar 2, 1999	File name	M1205XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool \#20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP

CRONE GEOPHYSICS \& EXPLORATION LTD
 BOREFPOTFM

Client	FALCONBRIDGE LTD.	Hole	MF12-05
Grid	MAH12	Tx Loop	MF1
Date	Feb 25, 1999	File name	MF1205Z.PEM

CRONE GEOPHYSICS \& EXPLORATION LTD BOREHOLE PEM

Client	$:$ FALCONBRIDGE LTD.	Hole	MF12-06
Grid	$:$ MAH12	Tx Loop	MF1
Date	$:$	Mar 5, 1999	File name

Data Corrected for Probe Rotation using Orientation Tool \#20
Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD
 BOREHOIEF PEM

Client	FALCONBRIDGE LTD.
Grid	MAH12
Date	Mar 5, 1999

Hole : MF12-06
Tx Loop : MF1
File name : MF1206Z. PEM
Z COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP
Scale: 1:2500

CKUNE GHUYHYゆ」CD \＆EXYLUKA＇UN L＇リ BOREFOIE PFM

Client	FALCONBRIDGE LTD．	Hole	MF12－07
Grid	MAH12	Tx Loop	MF2
Date	$:$	Mar 11， 1999	File name

Data Corrected for Probe Rotation using Orientation Tool \＃20 X COMPONENT dBx／dt nanoTesla／sec－ 20 channels and PP
Scale：

CRONE GEOPHYSICS \& EXPLORATION LTD BOREFMOIE: PEM

Client	$:$	FALCONBRIDGE LTD.	Hole	MF12-07
Grid	MAH12	Tx Loop	MF2	
Date	$: ~ M a r ~ 11, ~ 1999 ~$	File name	1207XYT.PEM	

Data Corrected for Probe Rotation using Orientation Tool \#20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP
Scale
1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD BOREFMOLEM

Client	$:$ FALCONBRIDGE LTD.	Hole	MF12-07
Grid	$:$ MAH12	Tx Loop	MF2
Date	$:$ Mar 11, 1999	File name	1207Z.PEM

[^0]Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD
 BOREFOLE: PFM

Client	: FALCONBRIDGE LTD.	Hole	MF12-13
Grid	MAH12	Tx Loop	MF3
Date	$: ~ M a r ~ 21, ~$	M	File name

Data Corrected for Probe Rotation using Orientation Tool \#20 X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP
Scale:
1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD BOREFOLF: PM

Client	: FALCONBRIDGE LTD.	Hole	$:$ MF12-13
Grid	: MAH12	Tx Loop	MF3
Date	Mar 21, 1999	File name	M1213XYT. PEM

Data Corrected for Probe Rotation using Orientation Tool \#20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP

Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD BOREHOLE PEM

Client	: FALCONBRIDGE LTD.	Hole	MF12-13
Grid	MAH12	Tx Loop	MF3
Date	$:$ Mar 21, 1999	File name $:$ MF1213Z. PEM	

CRONE GEOPHYSICS \& EXPLORATION LTD BOREHOLE
 PEM

Client	$:$ FALCONBRIDGE LTD.	Hole	MF12-28
Grid	MAH12	Tx Loop	MF4
Date	$:$	Mar 26, 1999	File name $: ~ 1228 X Y T . P E M ~$

Data Corrected for Probe Rotation using Orientation Tool \#20 X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD BOREHOLE PEM

| Client | $:$ FALCONBRIDGE LTD. | Hole | MF12-28 |
| :--- | :--- | :--- | :--- | :--- |
| Grid | : MAH12 | Tx Loop | MF4 |
| Date | $: ~ M a r ~ 26, ~ 1999 ~$ | File name | 1228XYT. PEM |

Data Corrected for Probe Rotation using Orientation Tool \#20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD BOREMOIF: PEM

Client	$:$	FALCONBRIDGE LTD.	Hole
Grid	$:$ MAH12	MF12-28	
Date	$:$ Mar 26,1999	File name	$: 1228 Z$. PEM

Z COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD
 BOREHOLE PEM

Client	$:$ FALCONBRIDGE LTD.	Hole	$:$ MF13-04
Grid	$:$ MAH13	Tx Loop	MF5
Date	$:$ Mar 27, 1999	File name $: ~ M F 134 X Y T . P E M ~$	

Data Corrected for Probe Rotation using Orientation Tool \#20 X COMPONENT $\mathrm{dBx} / \mathrm{dt}$ nanoTesla/sec - 20 channels and PP
Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD BOREHOLE PEM

Client	$:$ FALCONBRIDGE LTD.	Hole	MF13-04
Grid	MAH13	Tx Loop $:$ MF5	
Date	$:$ Mar 27, 1999	File name $: ~ M F 134 X Y T . P E M ~$	

Data Corrected for Probe Rotation using Orientation Tool \#20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP
Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD
 BOREFOLE PEM

Client	$:$ FALCONBRIDGE LTD.	Hole	MF13-04
Grid	$:$ MAH13	Tx Loop $:$ MF5	
Date	$:$ Mar 27, 1999	File name $:$ MF1304Z.PEM	

Z COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP
Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD BOREFMOIFEM

Client	$:$ FALCONBRIDGE LTD.	Hole	MF16-01
Grid	$:$ MAH16	Tx Loop	MF16-3
Date	$:$ Apr 1, 1999	File name	$:$ MF161XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool \#10 x COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

CRONE GEOPHYSICS \& EXPLORATION LTD BOREHOLE PEM

Client	$:$ FALCONBRIDGE LTD.	Hole	MF16-01
Grid	: MAH16	Tx Loop	MF16-3
Date	$:$ Apr 1, 1999	File name	MF161XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool \#10 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP
Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD BOREFOLE PEM

Client	$:$ FALCONBRIDGE LTD.	Hole	MF16-01
Grid	$:$ MAH16	Tx Loop $:$ MF16-3	
Date	$: ~ A p r ~ 1, ~$	999	File name

Z COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD BOREMOIF PEM

Client	$:$ FALCONBRIDGE LTD.	Hole	$:$ MF16-02
Grid	MAH16	Tx Loop	MF16-2
Date	$:$ Mar 25, 1999	File name $: 1602 X Y T$. PEM	

Data Corrected for Probe Rotation using Orientation Tool \#20 x COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP
Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD BOREHOLE PEM

Client	$:$ FALCONBRIDGE LTD.	Hole	MF16-02
Grid	$:$ MAH16	Tx Loop $:$ MF16-2	
Date	$: ~ M a r ~ 25, ~ 1999 ~$	File name	1602XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool \#20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP
Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD BOREHOIFEPEM

Client	: FALCONBRIDGE LTD.	Hole	MF16-02
Grid	MAH16	Tx Loop	MF16-2
Date	$:$	Mar 25, 1999	File name

Z COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD BOREHOLE PEM

Client	$:$ FALCONBRIDGE LTD.	Hole	MF16-03
Grid	MAH16	Tx Loop	
Date	$:$ Mar 24, 1999	File name : 1603XYT.PEM	

Data Corrected for Probe Rotation using Orientation Tool \#20 X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP
Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD BOREFOLEPM

Client	$:$ FALCONBRIDGE LTD.	Hole	$:$ MF16-03
Grid	: MAH16	Tx Loop	MF16-1
Date	$:$ Mar 24,1999	File name	1603XYT. PEM

Data Corrected for Probe Rotation using Orientation Tool \#20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500

CRONE GEOPHYSICS \& EXPLORATION LTD BOREFOLE: PEM

Client	$:$ FALCONBRIDGE LTD.	Hole	MF16-03
Grid	$:$ MAH16	Tx Loop $:$ MF16-1	
Date	$:$ Mar 24, 1999	File name $:$ MF1603Z.PEM	

Z COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500

APPENDIX C

Crone Instrument Specifications

CRONE PULSE EM SYSTEM

SYSTEM DESCRIPTION

The Crone Pulse EM system is a time domain electromagnetic method (TDEM) that utilizes an alternating pulsed primary current with a controlled shut-off and measures the rate of decay of the induced secondary field across a series of time windows during the off-time. The system uses a transmit loop of any size or shape. A portable power source feeds a transmitter which provides a precise current waveform through the loop. The receiver apparatus is moved along surface lines or down boreholes.

The transmitter cycle consists of slowly increasing the current over a few milliseconds, a constant current, abrupt linear termination of the current, and finally zero current for a selected length of time in milliseconds. The EMF created by the shutting-off of the current induces eddy currents in nearby conductive material thus setting-up a secondary magnetic field. When the primary field is terminated, this magnetic field will decay with time. The amplitude of the secondary field and the decay rate are dependent on the quality and size of the conductor. The receiver, which is synchronized to the off-time of the transmitter, measures this transient magnetic field where it cuts the surface coil or borehole probe. These readings are across fixed time windows or "channels".

SYSTEM TERMINOLOGY

Ramp Time

"Ramp time" refers to the controlled shut-off of the transmitter current. Three ramp times are selectable by the operator, $0.5 \mathrm{~ms}, 1.0 \mathrm{~ms}$, and 1.5 ms . By controlling the shut-off rather than having it depend on the loop size and current ensures that the same waveform is maintained for different loops so data can be properly compared.

The 1.5 ms ramp is the normally used setting for good conductors. It keeps the early channel responses on scale and decreases the chance of overload. The faster ramp times of 1.0 ms and 0.5 ms will enhance the early time responses. This can be useful for weak conductors when data from the higher end of the frequency spectrum is desired.

Time Base

Time base is the length of time the transmitter current is off (it includes the ramp time). This also equals the on time of the current. Eight time bases are selectable by the operator. They include the original time bases used in the analog system as well as time bases to eliminate the effects of powerline interference. The eight time bases are as follows: compatible to analog Rx: $10.89 \mathrm{~ms}, 21.79 \mathrm{~ms} ; 60 \mathrm{hz}$ powerline noise reduction: $8.33 \mathrm{~ms}, 16.66 \mathrm{~ms}$, \& 33.33 ms ; 50 hz powerline noise reduction: 10.00 ms , $20.00 \mathrm{~ms}, \& 40.00 \mathrm{~ms}$

Since readings are taken during the off cycles, the time base will have an effect on the receiver channels. Normally, a standard time base is selected for the type of system and survey being used, but this can be changed to suit a particular situation. A longer time base is preferred for conductors of greater time constants, and in surveys such as resistive soundings where more channels are desired.

Zero Time Set

The term "zero time set" or "ZTS" refers to the starting point for the receiver channel measurements. It is manually set on the receiver by the operator thus allowing adjustments for the ramp times and fine tuning for any fluctuations in the transmitter signal.

Receiver Channels

The rate of decay of the secondary field is measured across fixed time windows which occupy most of the off-time of the transmitter. These time windows are referred to as "channels". These channels are numbered in sequence with " 1 " being the earliest. The analog and datalogger receivers measured eight fixed channels. The digital receiver, being under software control, offers more flexibility in the channel positioning, channel width, and number of channels.

PP Channel

The PEM system monitors the primary field by taking a measurement during the current ramp and storing this information in a "PP channel". This means that data can be presented in either normalized or unnormalized formats, and additional information is available during interpretation. The PP channel data can provide useful diagnostic information and helps avoid critical errors in field polarity.

Synchronization

Since the PEM system measures the secondary field in the absence of the primary field, the receiver must be in "sync" with the transmitter to read during the off-time. There are three synchronization methods available: cable connection, radio telemetry, and crystal clock. This flexibility enhances the operational capabilities of the system.

SURVEY METHODS

The wide frequency spectrum of data produced by a Pulse EM survey can be used to provide structural geological information as well as the direct detection of conductive or conductive associated ore deposits. The various types of survey methods, from surface and borehole, have greatly improved the chances of success in deep exploration programs. There are eight basic profiling methods as well as a resistivity sounding mode.

Moving Coil

A small, multi-turn transmitter loop (13.7 m diameter) is moved for each reading while the receiver remains a fixed distance away. This method is ideal for quick reconnaissance in areas of high background conductivity.

Moving Loop

Same as Moving Coil method, but with a larger transmit loop (100 to 300 meters square). This method provides deeper penetration in areas of high background conductivity, and works best for near-vertical conductors. This method can be used in conjunction with the Moving In-loop survey for increased sensitivity to horizontal conductors.

Moving In-Loop

A transmit loop of size 100 to 300 meters square is moved for each reading while the receiver remains at the center of the loop. This method provides deep penetration in areas of very high background conductivity, and works best for near-horizontal conductors. It can be used in conjunction with the Moving Loop survey.

Large In-Loop

A very large, stationary transmit loop (800 m square or more) is used, and survey lines are run inside the loop. This mode provides very deep penetration (700 m or more) and couples best with shallow dip conductors ($<45 \mathrm{deg}$.) under the loop.

Deepem

A large, stationary transmit loop is used, and survey lines are run outside the loop. This mode provides very deep penetration, and couples best with steeply dipping conductors ($>45 \mathrm{deg}$.) outside the loop.

Borehole (Z Component only)

Isolated Borehole: A drill hole is surveyed by lowering a probe down a hole and surveying it with a number of transmit loops laid out on surface. The data from multiple loops gives directional information. on the conductors.

Multiple Boreholes: One large transmit loop is used to survey a number of closely spaced holes. The change in anomaly from hole to hole provides directional information. These methods have detected conductors to depths of 2500 m from surface and up to 200 m from the hole.

3-D Borehole

Drill holes are surveyed with both the Z and the $X Y$ borehole probes. The X and Y components provide accurate direction information using just one transmit loop.

Since the probe rotates as it moves down the hole a correction is required for the X-Y data. This is accomplished in one of two ways. The standard approach is to use the measurement of the primary field from the "PP" channel, apply a "cleaning" algorithm to remove most of the secondary field contamination, and compare this to theoretical values. The amount of probe rotation is then calculated, and the correction can be made. The second method involves the use of an optional orientation device for the X-Y probe which is produced in co-operation with IFG Corp. This attachment uses dipmeters to calculate the probe rotation.

Underground Borehole

Underground drill holes can be surveyed in any of the above mentioned borehole methods with one or more transmit loops on the surface. Near-horizontal holes can be surveyed using a push-rod system.

Resistivity Soundings

By reading a large number of channels in the centre of a transmit loop it is possible to perform a decay curve analysis giving a best-fit layer earth model using programs such as ARRTI or TEMIX.

EQUIPMENT

Transmit Loops

The PEM system can operate with practically any size of transmit loop, from a multi-turn circular loop 13.7 m in diameter, to a 1 or 2 turn loop of any shape up to 1 or 2 kilometers square using standard insulated copper wire of 10 or 12 gauge. The multi-turn loop is made in two sections with screw connectors. The 10 or 12 gauge loop wire comes on spools in either 300 m or 400 m lengths. The spools can be mounted on packframe winders for laying out or retrieving.

Power Supply

The PEM system normally operates with an input voltage from 24 v to 120 v . Modifications have recently been made to increase the power to 240 volts. The maximum current is still 20 amps . For low power surveys a $20 \mathrm{amp} / \mathrm{hr} 24 \mathrm{v}$ battery can be used. The power supply requires a motor generator and a voltage regulator to control and filter the input voltage to the transmitter.

Specifications: PEM Motor Generator

- 4.5 hp Wisconsin, (2 kw) - 11 hp Honda (4 kw); 4 cycle engine
- belt drive to D.C. alternator
- cable output to regulator
- maximum output: $120 \mathrm{v}, 20 \mathrm{amp}(2 \mathrm{kw}$); 240v, 20amp (4 kw)
- fuse type overload protection
- steel frame
- external gas tank
- unit weight: 33 kg (2 kw); 52 kg (4 kw)
- optional packframe
- wooden shipping box
- shipping weight: 47 kg (2 kw); 80 kg (4 kw)

Specifications: PEM Variable Voltage Regulator

- selectable voltage between 24 v and 120 v or 48 v and 240 v
- 20amp maximum current
- fuse and internal circuit breaker protection
- cable connections to motor generator and transmitter
- anodized aluminum case
- unit weight 10 kg ; shipping weight 18 kg
- padded wooden shipping box

Transmitter
The transmitter controls the bi-polar on-off waveform and linear current shut-off ramp. The latest 2000w PEM Transmitter has the following specifications:

Specifications: PEM Transmitter

- time bases: $10.89 \mathrm{~ms}, 21.79 \mathrm{~ms}, 8.88 \mathrm{~ms}, 16.66 \mathrm{~ms}, 33.33 \mathrm{~ms}, 10 \mathrm{~ms}, 20 \mathrm{~ms}, 30 \mathrm{~ms}$
- ramp times: $0.5 \mathrm{~ms}, 1.0 \mathrm{~ms}, 1.5 \mathrm{~ms}$
- operating voltage: 24 v to $120 \mathrm{v}(2 \mathrm{kw}$); 48 v to $240 \mathrm{v}(4 \mathrm{kw}$)
- output current: 5amp to 20amp
- monitors for input voltage, output current, shut-off ramp, tx loop continuity, instrument temperature, and overload output current
- automatic shut-off for open loop, high instrument temperature, and overload
- fuse and circuit breaker overload protection
- three sync modes: 1) built-in radio and antenna

2) cable sync output for direct wire link to receiver or remote radio
3) connectors for the crystal clock

- anodized aluminum case
- optional packframe
- unit weight 12.5 kg ; shipping weight 22 kg
- padded wooden shipping box

Receiver

The receivers measure the rate of decay of the secondary field across several time channels. Three types of receivers are available with the PEM system: Analog Rx, Datalogger Rx, and Digital Rx. The Analog Rx and Datalogger Rx read eight fixed time channels while the Digital Rx, under software control, offers a variety of channel configurations. The Digital Rx has been used in the field for contract surveys since 1987.

Specifications: Digital PEM Receiver

- operating temperature $-40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
- optional packframe
- unit weight 15 kg ; shipping weight 25.5 kg
- padded wooden shipping box

Hardware:

- 24v rechargeable gel cell battery supply
- two CMOS microprocessors (NSC800)
- alphanumeric keyboard
-2×16 character cold weather display
- 16×40 character (256×128 pixels graphic) display
- 64 k byte solid state memory storage
- cable, radio or crystal clock synchronization
- RS-232 serial I/O

Sampling process features:

- 16 bit A/D conversion
- digital recording of data in nano-tesla/sec
- rejection of atmospheric noise samples based on digital threshold detection
- automatic gain control to optimize receiver signal to noise ratio

Menu driven operating software system offering the following functions:

- controls channel positions, channel widths, and number of channels using a basic slice of 4.5 msec
- time bases: $10.89 \mathrm{~ms}, 21.79 \mathrm{~ms}, 8.88 \mathrm{~ms}, 16.66 \mathrm{~ms}, 33.33 \mathrm{~ms}, 10 \mathrm{~ms}, 20 \mathrm{~ms}$, and 30 ms
- ramp time selectable in 4.5 msec steps
- sample stacking from 512 to 65536
- scrolling routines for viewing data
- graphic display of decay curve and profile with various plotting options
- routines for memory management
- control of data transmission
- provides information on instrument and operating status

Sync Equipment

There are three modes of synchronization available; radio, cable, and crystal clock. The radio sync signal can be transmitted through a booster antenna from either the PEM Transmitter internal radio or through a Remote Radio.

Specifications: Sync Cable

- 2 conductor, 24awg, Teflon coated
- approx. 900 m per aluminum spool with connectors

Specifications: Remote Radio

- operating frequency 27.12 mhz
-12 v rechargeable gel cell battery supply
- fuse protection
- sync wire link to transmitter
- coaxial link to booster antenna
- anodized aluminum case
- unit weight 2.7 kg

Specifications: Booster Antenna

$-8 \mathrm{~m}, 4$ section aluminum mast

- guide rope support
- $1 / 4$ wave CB fiberglass antenna
- range up to 2 km
- coaxial connection to transmitter or remote radio

Specification: Crystal Clocks

- heat stabilized crystals
- 24 v rechargeable gel cell battery supply
- anodized aluminum case
- rx unit can be separate or housed in the receiver
- outlet for external supplementary battery supply

Surface PEM Receive Coil

The Surface PEM Receive Coil picks up the EM field to be measured by the receiver. The coil is mounted on a tripod that can be positioned to take readings of any component of the field.

Specifications: Surface PEM Receive Coil

- ferrite core antenna
- built-in preamplifier
- VLF filter
- 10khz bandwidth
- 23:1 amplifier gain
- two 9 v transistor battery supply
- tripod adjustable to all planes
- unit weight 4.5 kg ; shipping weight 13.5 kg
- padded wooden shipping box

Borehole PEM Z Component Probe

The Z component probe measures the axial component of the EM field. The Z component data is not affected by probe rotation so no correction are required.

Specifications: Borehole PEM Z Component Probe

- ferrite core
- built-in preamplifier
- dimensions: length -1.6 m ; dia -3.02 cm (3.15 cm for high pressure tested probes)
- internal rechargeable ni-cad battery supply
- replaceable heat shrink tubing for abrasion protection
- pressure tested for depths $1300 \mathrm{~m}, 2000 \mathrm{~m}$, and 2800 m
- packaged in padded cover and aluminum tube
- shipped in padded wooden box; total weight 17 kg

Borehole PEM XY Component Probe

The XY probe measures two orthogonal components of the EM field perpendicular to the axis of the hole. Correction for probe rotation can be achieved by two methods. The standard approach is to use the measurement of the primary field from the "PP" channel, apply a "cleaning" algorithm to remove most of the secondary field contamination, and compare this to theoretical values. The amount of probe rotation is then calculated, and the correction can be made. The second method involves the use of an optional orientation device for the $\mathrm{X}-\mathrm{Y}$ probe that uses dipmeters to calculate the probe rotation.

Specifications: Borehole PEM XY Component Probe

- ferrite core
- built-in preamplifier
- dimensions: length -2.01 m ; dia -3.02 cm
- internal rechargeable ni-cad battery supply
- selection of X or Y coils by means of a switch box on surface or automatic switching with Digital receiver
- replaceable heat shrink tubing for abrasion protection
- pressure tested for depths to 2800 m
- packaged in padded cover and aluminum tube
- shipped in padded wooden box; total shipping weight 20 kg

Orientation Device

The orientation device is an optional attachment for the XY probe which measures the rotation of the probe using two dipmeters.

Specifications: Orientation Device

- 2 axis tilt sensors
- sensitivity $+/-0.1 \mathrm{deg}$.
- operating range -89.5 to -10 deg .
- dimensions: length -0.94 m ; dia -28.5 cm
- packaged in padded cover and aluminum tube
- shipped in padded wooden box; total shipping weight 11 kg

Borehole Equipment

To lower the probe down a drill hole requires a cable and spool, winch assembly frame and cable counter. Borehole surveys also require equipment to "dummy probe" the hole before doing the survey.

Specifications: Borehole Cable

- two conductor shielded cable
- kevlar strengthened
- lengths are available up to 2600 m on three sizes of spools.
- shipped in wooden box

Specifications: Slip Ring

- attaches to side of borehole cable spool providing a connection to the receiver while allowing the spool to turn.
- VLF filter
- pure silver contacts

Specifications: Borehole Frame

- welded aluminum frame
- removable axle
- chain driven, 3 speed gear box
- hand or optional power winding
- hand brake and lock
- two sizes: standard for up to 1300 m cable; larger for longer cables
- shipped in wooden box

Specifications: Borchole Counter

- attaches to the drill hole casing
- calibrated in meters
- shipped in wooden box; total weight 13 kg

Specifications: Dummy Probe and Cable

- solid steel or steel pipe
- same dimensions as borehole probe
- shear pin connection to dummy cable
- steel dummy cable on aluminum spool
- cable mounts on borehole frame
- various lengths to 2600 m on 3 spool sizes.

INTERPRETATION OF BOREHOLE EM RESULTS FOR FALCONBRIDGE LIMITED

 HOLES

 HOLES}

MF12-02, MF12-03, MF12-05, MF12-06, MF12-07, MF12-13, MF12-28, MF13-04, MF16-01, MF16-02, MF16-03 LOCATED IN MAHAFFY TOWNSHIP PORCUPINE MINING DIVISION

$$
20201
$$

Introduction

This report documents the results of 3 component borehole EM surveys carried out in holes MF12-02, MF12-03, MF12-05, MF12-06, MF12-07, MF12-13, MF12-28, MF13-04, MF16-01, MF16-02, and MF16-03, all located in Mahaffy Township in the Porcupine Mining Division. All surveys were performed during February and March 2000. The logistical information pertaining to these surveys is documented in the attached report.

Interpretation Notes

In borehole EM, a current is passed through a transmitter loop located on the surface, and a receiver is lowered down a drillhole. The current in the transmitter is an alternating pulse with a controlled ramp shut-off. This shut-off induces eddy currents to flow in conductive bodies, which in turn set up their own magnetic fields which are measured by the receiver apparatus. The currents decay over time, and by taking readings at various times after the transmitter current has turned off, the characteristics of the target can be determined. Currents decay slowly in a good conductor, and quickly in a poor conductor. The amplitude of the secondary currents will be determined by the transmitter current, the geometry between the transmitter and target, and the conductance of the target.

If the hole approaches the side of the conductor located closest to the loop edge, anomalies will be 'normally coupled'. This means that an intersected target will have a positive z component response, and targets lying off the hole will have a negative z component peak with flanking positive shoulders. A positive to negative crossover on the x component indicates that the center of the target lies below the hole, and vice-versa for a negative to positive crossover. On the y component, a negative to positive crossover indicates that the source is located to the left of the hole (looking in the direction of the hole azimuth), and to the right if the polarity is positive to negative. This polarity is typical when transmitter loops are located around the collar of the hole. If the transmitter loop is located in such a position that the hole approaches the side of the target which is farthest from the loop, then the coupling is said to be 'reversed', and one would interpret the data exactly the opposite as described above i.e. in-hole anomalies are negative and off-hole anomalies are positive, and a target located above the hole would have a positive to negative crossover on the x component, and targets to the right would have a y component crossing from negative to positive.

Results

MF16-01 - This hole was surveyed with a collar loop, which will give anomalies of normal coupling. There is a positive peak at 155 m on the z component, indicating an in-hole anomaly. The x component crosses from positive to negative at this depth (center of conductor below hole) and the y component crosses from negative to positive (center of conductor to the left - east). The purpose of surveying this hole was to determine if there were any conductors in the vicinity of the hole in addition to the one intersected in the hole. Since the only anomaly located in the hole correlates with barren sulphides intersected in the hole, no further work is recommended.

MF16-02 - This hole was surveyed with a collar loop, which will give anomalies of normal coupling. The results contain two positive peaks on the early channels on the z component, located at 125 m and 145 m . The anomaly at 145 m is an edge-type anomaly. Both anomalies locate conductors whose center is below (x crosses from positive to negative) and to the left - east (y crosses from negative to positive). No further work is recommended.

MF16-03 - This hole was surveyed with a collar loop, which will give anomalies of normal coupling. There is a 20 channel positive peak at 170 m on the z component, indicating an in-hole anomaly. The x component crosses from negative to positive at this depth (center of conductor above the hole) and the y component crosses from positive to negative (center of conductor to the right - west). The purpose of surveying this hole was to determine if there were any conductors in the vicinity of the hole in addition to the one intersected in the hole. Since the only anomaly located in the hole correlates with barren sulphides intersected in the hole, no further work is recommended.

MF12-02 - Of minor interest is an early channel response at 200 m and a very sharp positive peak at 490 m . The late time results, which are indicative of strong conductors, show an increasing negative value toward the bottom of the hole. This indicates an approach to a large off-hole anomaly, centered approximately 20 m beyond the end of the hole. The y component will cross from positive to negative (source to right of hole), and the x component is expected to peak or cross from positive to negative (source below hole). Looking closely at the profile, there is a change in the slope, indicating a second off-hole target at approx 450 m . This conductor is located above the hole, and to the west (based on mid-time channels). The distance to the conductors is 70 m (anomaly at 450 m) and 150 m (anomaly below hole - approx 680 m). Looking at the drillhole locations, the off-hole at 450 m would have been intersected by MF12-03, and the anomaly at 680 m is interpreted to be caused by the western end of the strongly conductive graphite intersected in MF 12-13.

MF12-03 - There are two significant borehole responses in this hole, a 13 channel off-hole at 230 m and a second off-hole at 640 m . The source of the anomaly at 215 m is located to the right (west) of the hole. There is a small x response, indicating the center of the conductor is primarily beside the hole, but also above. The off-hole at 640 m is present on all 20 channels, and outlines a large conductor located 60 m away, to the right of the hole. The x component has a positive peak, indicating the conductive center lies below the hole.

MF12-05 -There are numerous responses in this hole. There is an 18 channel off-hole at 80 m and a 10 channel off-hole at 110 m . At early times to middle times, there are two relatively symmetrical off-hole anomalies. Both are 20 m away, located below and to the west of the hole. At late times, there is a negative to positive crossover on the z component, indicating a subparallel conductor. The z crossover corresponds to a positive peak on both the x and y components at 100 m , locating the source above and east of the hole. The most significant is an off-hole anomaly at 600 m . This is an extremely conductive target located 20 m away to the right and below the hole. There is also an in-hole at 600 m , but it is a weaker conductor, and extends east of the hole. The next most significant response is an 18 channel in-hole at 185 m . The zone continues downdip.

MF12-06 - Similar to MF12-05, there are very high amplitude anomalies in this hole. The strongest response is an off-hole response at 145 m . The anomaly is very unsymmetrical, almost a z crossover at 130 m . At early times, there are two distinct off-hole anomalies, at 145 m and 170 m . The anomalies are both located approx. 20 m away and show symmetry. The fact that there is rotation indicates that there is significant width to the conductor. The target is located below and to the right (west) of the hole. There is also a 15 channel off-hole anomaly at 560 m . Its source is located 20 m away, below and to the right (west) of the hole. There is also a three channel off-hole anomaly at 165 m .

MF12-07 - This hole was surveyed with a collar loop (normal coupling). There are two anomalies in the results: an in-hole at 140 m , located above and to the right (west). This response is seen over a large distance, and corresponds to a large conductor. Negative late time values on the z component at 135 m are interpreted to correspond to a separate off-hole anomaly, also located above and to the west. It is difficult to calculate a distance because of the in-hole anomaly. There is also an 11 channel off-hole anomaly at 660 m , located 15 m away, above and to the right (west) of the hole.

MF12-13 - This hole was surveyed to help explain the source of the response in MF12-28. The loop location is south of the hole collar, which means that coupling is reversed. The results show two closely spaced anomalies located at 160 m and 170 m . The upper anomaly is an off-hole anomaly at 150 m , located 10 m away above and to the east of the hole. There is a late time in-hole at 165 m whose center is located to the left (east) and below the hole.

MF12-28 - This hole was surveyed with a collar loop. There is a very large, broad negative (offhole) anomaly in the z component along the entire 325 m hole. The shape of the anomaly is very broad, with a flat top, indicating there are two anomalies, located at 160 and 200 m . Both are very good conductors, with the lower conductor being the better target. The y component crosses from positive to negative at both positions, indicating sources located to the right (west). The x component shows a positive peak. The anomaly at 160 m can be correlated to the off-hole response at 150 m in MF12-13 and the lower, more conductive anomaly correlates to the in-hole anomaly at 165 m (graphite).

MF13-04 - This hole was surveyed using a collar loop. The results show a 12 channel off-hole anomaly, with the source located 20 m away, above and to the west of the hole. This conductor correlates with graphite intersected in the hole, and no further work is recommended.

Summary and Recommendations

3 component borehole EM surveys were carried out in holes MF12-02, MF12-03, MF12-05, MF12-06, MF12-07, MF12-13, MF12-28, MF13-04, MF16-01, MF16-02, and MF16-03, all located in Mahaffy Township. No targets were located in MF13-04, MF16-01, MF16-02, and MF16-03. Numerous anomalies were located in the remainder of the holes, and each should be evaluated in a geological context.

Respectfully submitted,

Sharon Taylor

COMMENTS : Semi massive barren Py in altered rhyolite intersected at target depth. Collared on P865387
wedges at:
DIRECTIONAL DATA:

Depth (M)	Astronomic Azimuth	$\underset{\text { degrees }}{\text { Dip }}$	Type of Test	flag	Comments	Depth (M)	Astronomic Azimuth	$\begin{aligned} & \text { Dip } \\ & \text { degrees } \end{aligned}$	Type of Test	FLAG	Corments
20.00	$127^{\circ} 0^{\prime} 00$	-5000 01	s	OK		-	-	-	-	-	
80.00	$130^{\circ} 0^{\prime} 00$	-500010"	s	ок		-	-	-	-	-	
140.00	$132^{\circ} 0^{\circ} 00$	-5000. 01	s	ok		-			-	-	
200.00	$143^{\circ} 0^{\prime} 0^{\prime \prime}$	-490 $0^{\prime} 0^{\prime \prime}$	s	ok		-		-	-	-	
260.00	149030'0"	-440010"	s	ok		-	-	-	-	-	
325.00	$148^{\circ} 0^{\prime} 00$	-430 0101	s	OK		-			-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	$:$	-	-		-	-	-	-	$-$	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-		-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	$-$	-	-	-		-	-	-	-	-	

$\begin{array}{r} \text { FROM } \\ \text { TO } \end{array}$	Rock TYPE	texture and structure	$\left.\begin{array}{\|l\|} \left\lvert\, \begin{array}{l} \text { ANGLE } \end{array}\right. \\ \mid \text { TO CA } \end{array} \right\rvert\,$	alteration	MINERALIZATION	REMARKS	
		- Downhole contact is sharp, $50^{\circ} \mathrm{TCA}$.					
$\begin{gathered} 147.60 \\ \text { TO } \end{gathered}$	«4,*b, c»	HETEROLITHIC FELSIC FRAGMENTALS		-From 147.60 to $154.65 m$, alteration is characterised by moderate to strong	-Minor disseminated and stringer controlled Py.	-Focused chloritic alteration.	
156.60		-Felsic dominated heterolithic fragmental.		pervasive dark green choritization,	-No base metal sulphides observed.		
		-Interval is crosscut by numerous gouge		overprinted by matrix controlled			
		faults/slips, separating the fragemental into two		silicification, and fracture/foliation			
		distinct sub-lithologies.		controlled coarse grained sericitic			
				alteration. Produces alligator skin			
		\| -From 147.6 to 154.65 m , unit is composed of		textures, similar to those associated			
		\| framework supported angular lapilli sized		with copper stringer mineralization at			
		\| fragments. Fragments are dominantly felsic,		Kidd.			
		\| however mafic volcanic and diorite clasts are					
		\| also observed.		- Downhole from 154.65m, chloritic			
		-Interval is strongly overprinted by pervasive		alteration is not as strongly			
		\| chloritic alteration, and matrix controlled		developed.			
		\| introduced strong fracture controlled carbonate		-Fracture controlled carbonate			
		alteration.		alteration is strong thoughout			
				interval.			
		-Gouge faults observed at 152.8m, 154.1m, and					
		154.65 m . Fault at 154.65 m appears to terminate chlorite/silica alteration.					
			\|				
		\#154.60-154.65\\|**FAIF*					
		-From 154.65 to 156.6 m , unit is composed of finer					
		fragments of felsic and mafic material occupy					
		35-50\% of unit. Sub-unit is poorly sorted,			-		
		resembling slump/mixed debris.					
		\| -Interval is strongly schistose, locally					
		\| exhibiting a strong parasitic crenulation					
		\| fabric.					
		-Schistocity rotates from 50° to 0° towards					
		154.9 m around a secondary fold axis, parallel to schistocity.	I				
		- Downhole contact is sharp, marked by 15 cm thick	,				
		axis 35° TCA.					
			I				
		I					

$\begin{aligned} & \text { FROM } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	TEXTURE AND STRUCTURE	$\begin{aligned} & \mid \text { ANGLE } \mid \\ & \mid T O \text { CA } \end{aligned}$	alteration	MINERALIZATION	REMARKS	
318.90	*4, bx, f\%	brecciated felsic volcanic			-20% disseminated euhedral Py observed		
T0 324.05		-Fine grain dark grey insitu brecciated massive		sericite/chlorite alteration occurs throughout interval.	between 318.90 and 319.25 m .		
		to fragmental textured rhyolite.			-15\% disseminated euhedral Py observed		
		-From upper contact to 321.65 m , unit becomes		-10 cm thick qtz/carbonate veinlet	between 321.40 and 322.25 m . Py appears		
		increasingly brecciated, infilled by		observed between 320.1 and 320.2 m .	to replace rhyolite fragments.		
		sericite/chlorite fractures. Rhyolite is					
		extremely hard, and aphanitic.	1				
		-Downhole from 321.65, unit becomes gradationally	I				
		more fragmental intexture.					
		- Downhole contact is sharp $50^{\circ} \mathrm{TCA}$, marked by a	1				
		thin qtz/carbonate veinlet.					
$\begin{array}{r} 324.05 \\ \text { TO } \end{array}$	*3, f, C*	HETEROLITHIC FRAGMENTAL		-Minor wisps of fracture/foliation controlled yellow/brown sericite	-2% medium grained diseeminated euhedral Py.		
326.00		-Matrix supported mixed mafic and rhyolite		observed throughout interval.			
		fragments. Fragments range from sandy ash to					
		lapilli in size.		-Weak fracture controlled to pervasive			
		-Rhyolite fragments occupy 10 to 15% of unit. Remainder of fragments are mafic in composition		sericite.			
		-Unit is moderately foliated, $50^{\circ} \mathrm{TCA}$.	\|				
			,				
$\begin{array}{r} 326.00 \\ \text { T0 } \end{array}$	«EOH*		1				
326.00			- \|				
			I				

Sample	$\begin{gathered} \text { From } \\ (M) \end{gathered}$	$\begin{aligned} & \text { To } \\ & \text { (M) } \end{aligned}$	Leng. (M)	$\begin{aligned} & \mathrm{Cu} \\ & \mathrm{ppm} \end{aligned}$	zn ppm	Pb ppm	Ni ppm	Au ppb	$\begin{aligned} & \mathrm{Ag} \\ & \mathrm{ogm} \end{aligned}$	$\mathrm{Cu} / \mathrm{zn}$	Co ppm	Pt ppb	Pd ppb	$\begin{aligned} & \text { S } \\ & \text { ppm } \end{aligned}$	Se ppm	As ppm	Hg ppb	$\mathrm{Sb}_{\text {ppm }}$

Sample	From (M)	To (M)	Leng. (M)	1	$\begin{gathered} \mathrm{SIO} \\ \% \end{gathered}$	$\begin{array}{r} \text { AL2O3 } \\ \% \end{array}$	$\begin{gathered} \text { CAO } \\ \div \\ \hline \end{gathered}$	$\begin{array}{r} \text { MGO } \\ \% \\ \hline \end{array}$	$\begin{array}{r} \text { NA2O } \\ \% \end{array}$	$\begin{array}{r} \mathrm{K} 2 \mathrm{O} \\ \% \\ \hline \end{array}$	$\begin{array}{r} \text { FE203 } \\ \% \end{array}$	$\begin{array}{r} \mathrm{TIO} \\ \% \end{array}$	$\begin{array}{r} \mathrm{P} 205 \\ \% \end{array}$	$\begin{array}{r} \text { MNO } \\ \% \\ \hline \end{array}$	$\begin{gathered} \text { CR2O3 } \\ \vdots \end{gathered}$	$\begin{array}{r} \text { LOI } \\ \% \end{array}$	$\underset{\vdots}{\mathrm{sum}}$	$\begin{array}{r} \mathrm{Y} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{zR} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { BA } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{RB} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{SR} \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \mathrm{CO} 2 \\ \stackrel{y}{4} \end{gathered}$	$\begin{gathered} \text { CU } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \text { ZN } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { NI } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { CR } \\ \text { PPM } \end{array}$	$\begin{gathered} \text { FIELD } \\ \text { NAME } \end{gathered}$	CHEM ID	ALum	
AU01336	14.00	17.00	3.00	\\|	69.04	11.29	3.68	1.39	0.84	1.53	5.15	0.61	0.15	0.10		5.79	99.57	20	130					10	10	<5	10	2,a,*t	$3(\mathrm{j})$	187	
AU01337	26.95	27.25	0.30	\|		72.87	14.15	1.01	0.94	1.51	1.43	3.78	0.46	0.11	0.06		3.39	99.71	25	190					5	5	<5	15	4,t,*a	4 j B	358
AU01338	50.00	51.40	1.40	\\|	48.19	12.12	5.30	3.80	0.44	0.46	17.55	0.84	0.22	0.66		10.16	99.74	30	150					5	15	5	15	2,p,e	$2(\mathrm{j}) \mathrm{v}$!	195	
AU01339	71.00	74.00	3.00	\\|	53.27	13.84	9.18	2.00	1.95	1.63	6.20	0.85	0.16	0.13		10.67	99.88	15	90					10	15	5	10	2,p,e	$3(\mathrm{j})$!	108	
AU01340	84.55	84.85	0.30	\|		51.48	16.13	4.67	3.99	1.48	1.68	10.43	1.08	0.22	0.12		8.50	99.78	25	120					10	15	5	5	4,t,*a	2 (h)w!	206
AU01341	92.00	95.00	3.00	\\|	54.28	16.47	5.78	2.21	2.97	1.58	6.75	1.00	0.17	0.11		8.12	99.44	20	100					10	15	5	10	2,p,e	$2(\mathrm{j}) \mathrm{w}$	159	
AU01342	99.50	101.00	1.50	II	50.71	13.92	6.46	4.04	1.21	1.30	8.89	0.88	0.18	0.11		11.97	99.67	20	100					10	10	5	10	3,t,*a	$2(j) w!$	155	
AU01343	116.00	119.00	3.00	\\|	47.95	13.14	9.90	2.72	1.57	1.17	7.77	0.78	0.14	0.13		14.62	99.89	15	80					5	10	5	10	2,p,e	3(j)!	104	
AU01344	143.00	146.00	3.00	\\|	53.14	14.83	7.02	3.87	0.90	2.05	7.29	0.94	0.19	0.11		9.10	99.44	20	100					10	15	5	5	2,p,e	$2(\mathrm{j}) \mathrm{w}$	149	
AU03741	152.00	155.00	3.00	\\|	69.43	11.41	4.36	1.59	0.84	1.61	4.37	0.53	0.15	0.08		5.40	99.77	25	170					5	10	<5	20	4,f	3(j)	168	
AU03742	164.00	167.00	3.00	\\|	74.34	10.67	1.01	3.22	0.14	2.52	2.68	0.13	0.01	0.03		4.85	99.60	45	210					5	10	<5	20	4,1,m, b	b4 (h) B	291	
AU03743	182.00	185.00	3.00		75.22	11.96	0.55	3.36	0.16	2.56	2.28	0.15	0.01	0.02		3.49	99.76	50	240					5	5	<5	25	4,1,m, b	b4 (h) B	366	
AU03744	200.00	203.00	3.00		74.15	11.28	0.12	1.77	0.21	2.45	5.44	0.15	0.01	0.10		3.76	99.44	55	220					5	10	<5	20	$4, \mathrm{~m}, \mathrm{l}, \mathrm{b}$	b4 (h) B	406	
AU03745	218.00	221.00	3.00		77.22	11.07	0.91	1.63	0.21	2.20	3.10	0.13	0.02	0.07		3.23	99.79	50	210					10	65	<5	20	4,m, 1 , b	$\mathrm{b}_{4} \mathrm{~h}$) B	333	
AU03745	239.00	242.00	3.00	\\|	76.98	11.03	0.29	2.97	0.18	2.22	2.45	0.13	0.01	0.05		3.17	99.48	45	220					5	<5	<5	15	4,m, $1, \mathrm{~b}$	64 (h) B	410	
AU03747	254.00	257.00	3.00		78.44	10.62	0.14	2.38	0.18	2.21	2.65	0.13	0.02	0.05		2.76	99.58	40	210					5	5	<5	20	4,m, 1, b	$\mathrm{b}_{4}(\mathrm{j}) \mathrm{B}$	420	
AU03748	269.00	272.00	3.00		76.30	12.39	0.04	3.38	0.26	2.21	1.82	0.17	0.02	0.02		2.93	99.54	55	260					5	<5	<5	15	4,m,1,b4	b4(h) B	494	
AU01345	287.00	290.00	3.00		72.73	11.82	0.79	4.54	0.15	2.12	3.21	0.17	0.01	0.08		4.20	99.82	45	240					<5	10	<5	20	$4, m, 1, b$	b4(j) ${ }^{\text {(}}$	386	
AU01346	299.00	302.00	3.00	II	74.62	12.43	0.31	2.32	0.16	3.26	2.41	0.18	0.02	0.03		3.77	99.51	60	250					5	10	<5	20	4,m, 1, b4	b4 (h) z	333	
AU01347	314.00	317.00	3.00		51.73	12.91	5.28	4.97	0.23	3.76	6.54	0.97	0.09	0.14		13.00	99.62	20	70					5	5	5	20	2,a,m	$2(\mathrm{~h}) \mathrm{w}$!	139	
AU01348	319.25	321.40	2.15		79.57	10.40	0.35	1.75	0.12	2.73	1.90	0.12	0.02	0.01		2.65	99.62	105	180						5	<5	15	4,bx, f	4hz	325	
AU01349	322.25	324.05	1.80	II	68.68	11.92	3.24	2.63	0.14	3.43	2.13	0.13	0.03	0.05		7.12	99.50	135	230					5	10	<5	20	4,bx, f	4 hz	175	
AU01350	324.05	325.80	1.75		45.46	13.11	6.24	7.21	0.71	3.27	7.79	1.01	0.12	0.13		14.37	99.42	25	80					5	5	10	15	3,f, C	2 (h) u !	128	

COMMENTS: Intersected conductive argillite at base of felsic volcanic pile. Collared on claims P865379
WEDGES AT: wEDGES AT:
directional data:

Depth (M)	Astronomic Azimuth		$\begin{aligned} & \text { Dip } \\ & \text { degrees } \end{aligned}$		Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	$\begin{aligned} & \text { Dip } \\ & \text { degrees } \end{aligned}$	Type of Test	FLAG	Corments
13.00	1830	O'0"	-51.	$0{ }^{\circ} 0$	s	ок		-			-	-	
73.00	$183{ }^{\circ}$	0' 0	-510	O10"	s	ок		-		-	-	-	
133.00	187°	0' 0"	-50°	0'0"	s	ок		-			-	-	
185.00	$189{ }^{\circ}$	O' 0"	-45 ${ }^{\circ}$	O'0"	s	ок		-			-	-	
245.00	189°	0' 0 "	-45	0'0"	s	ок		-			-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	
-	-		-		-			-	-	-	-	-	
-	-		-		-	-		-	-	-	-	-	

HOLE NUMBER : MF13-04 GEOCHEMICAL ASSAY

Sample	From (M)	$\begin{aligned} & \mathrm{To} \\ & (\mathrm{M}) \end{aligned}$	Leng. (M)	$\begin{array}{r} \mathrm{SIO} \\ \% \end{array}$	$\begin{array}{r} \text { AL203 } \\ \% \end{array}$	$\begin{array}{r} \text { CAO } \\ \% \\ \hline \end{array}$	$\begin{gathered} \text { MGO } \\ \% \\ \hline \end{gathered}$	$\begin{array}{r} \text { NA2O } \\ \% \\ \hline \end{array}$	$\begin{gathered} \text { K20 } \\ \vdots \\ \vdots \end{gathered}$	$\begin{array}{r} \text { FE203 } \\ \% \end{array}$	$\begin{array}{r} \mathrm{TIO} \\ \% \end{array}$	$\begin{array}{r} \mathrm{P} 205 \\ \% \end{array}$	$\begin{array}{r} \text { MNO } \\ \frac{\square}{2} \end{array}$	$\begin{gathered} \text { CR203 } \\ \vdots \end{gathered}$	$\underset{\frac{2}{\mathrm{~L}}}{\mathrm{LOI}}$	$\underset{\vdots}{\text { SUM }}$	$\begin{array}{r} Y \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { 2R } \\ \text { PPM } \end{array}$	$\begin{gathered} \text { BA } \\ \text { PRM } \end{gathered}$	$\begin{gathered} \mathrm{RB} \\ \mathrm{PRM} \end{gathered}$	$\begin{array}{r} \text { SR } \\ \text { PPM } \end{array}$	$\begin{gathered} \mathrm{co2} \\ \% \\ \% \end{gathered}$	$\begin{array}{r} \text { CU } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { ZN } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { NI } \\ \text { PRM } \end{array}$	$\begin{array}{r} \text { CR } \\ \text { PPM } \end{array}$	$\begin{aligned} & \text { FIEID } \\ & \text { NAME } \end{aligned}$	$\underset{\text { ID }}{\substack{\text { IDEM }}}$	${ }^{\text {ALUM }}$
AU04724	11.00	14.00	3.00	73.71	12.10	0.29	0.15	0.21	9.12	2.20	0.14	0.01	0.08		1.42	99.43	55	240					5	5	<5	25	4,L,*e,4	, 4 (h) B	126
AU04725	29.00	32.00	3.00	75.18	11.56	0.20	0.12	0.16	8.79	2.20	0.14	0.02	0.08		1.26	99.71	55	240					5	5	<5	30	4,1,*e,	, 4 (h) B	126
AU04726	44.00	47.00	3.00	76.18	11.48	0.56	0.83	1.96	3.20	2.49	0.14	0.01	0.05		2.59	99.49	55	250					5	15	<5	15	4,m,f	$4(\mathrm{~h}) \mathrm{B}$	201
AU04727	62.00	65.00	3.00	78.14	11.09	0.46	0.26	0.39	5.81	1.81	0.14	0.02	0.07		1.69	99.88	55	220					5	5	<5	20	$4, m, f, b$	b4 (h) B	167
AU04728	71.00	72.00	1.00	77.09	10.34	0.86	0.43	0.83	5.72	2.19	0.13	0.01	0.10		2.10	99.80	55	180					5	10	<5	30	4, q, P	$4(\mathrm{~h}) \mathrm{B}$	140
AU04729	77.00	78.50	1.50	73.18	11.39	1.64	1.09	0.28	4.21	3.68	0.17	0.01	0.12		4.11	99.88	55	250					<5	15	5	20	4,f,*h	$4(\mathrm{~h}) \mathrm{B}$	186
AU04730	95.00	98.00	3.00	74.62	11.58	2.24	0.44	2.00	3.19	2.43	0.16	0.01	0.06		3.18	99.91	55	260					<5	15	<5	10	4,f,*h	$4(\mathrm{~h}) \mathrm{B}$	156
AU04731	113.00	116.00	3.00	76.32	11.20	1.29	0.42	3.51	2.01	3.01	0.13	0.01	0.10		1.87	99.87	55	220					5	20	<5	20	4, f , $\mathrm{h}_{\text {h }}$	4 (h) B	164
AU04732	128.00	131.00	3.00	74.33	11.57	2.23	0.57	2.38	2.80	2.62	0.14	0.01	0.07		3.02	99.74	50	230					5	20	<5	15	4,f,*h	$4(\mathrm{~h}) \mathrm{B}$	156
AU04733	146.00	147.50	1.50	75.35	8.84	3.58	0.71	1.37	2.25	2.87	0.13	0.01	0.11		4.43	99.66	50	180					5	15	<5	20	4, f, *h	$4(\mathrm{~h}) \mathrm{B}$	123
AU04734	156.50	158.00	1.50	73.50	11.58	2.16	0.72	2.60	2.37	2.92	0.18	0.02	0.09		3.52	99.66	50	240					<5	15	5	15	4, f, *h	$4(\mathrm{~h}) \mathrm{B}$	162
AU04735	164.00	165.50	1.50	72.98	11.57	2.56	0.98	1.05	2.86	2.50	0.18	0.01	0.04		4.77	99.50	50	230					5	10	<5	15	4,f,*h	$4(\mathrm{~h}) \mathrm{B}$	179
AU04736	173.00	176.00	3.00	53.57	13.60	7.47	2.30	0.70	2.28	7.55	0.68	0.13	0.34		11.29	99.91	20	120					10	10	5	10	3, D , *a	3(j)!	130
AU04 737	185.00	188.00	3.00	52.66	14.31	7.38	2.13	1.77	2.15	6.63	0.71	0.12	0.23		11.36	99.45	20	120					10	10	5	15	3, e, 1	3(j)!	127
AU04738	194.00	197.00	3.00	55.99	14.01	5.68	2.21	2.18	1.73	6.96	0.98	0.32	0.15		9.60	99.81	25	140					5	10	5	5	3, c, f	$2(j) y$ ¢	146
AU04739	212.00	215.00	3.00	52.72	13.37	7.69	2.52	2.31	0.99	6.82	0.94	0.19	0.15		11.95	99.65	20	100					10	10	5	5	2, p,e, b2	b2(j)w!	122
AU04740	242.00	245.00	3.00	54.65	15.58	5.04	2.49	2.00	1.09	8.00	1.12	0.19	0.10		9.34	99.60	20	120					10	15	5	5	2,p, e, b2	b2 (j) w!	192

HOLE NUMBER : MF13-04 GEOCHEMICAL ASSAYS

COLLAR DIP: $-50^{\circ} 0^{\prime} 0^{\prime \prime}$ OF THE HOLE: 173.00 M $\begin{array}{ll}\text { STARI DEPTH: } & 0.00 \mathrm{M} \\ \text { FINAL DEPTH: } & 173.00 \mathrm{M}\end{array}$

> | PLOTTING COORDS | GRID: UTM | |
| :--- | :---: | :---: |
| NRRTH: | 5405930.00 N | |
| | EAST: | 463760.00 E |
| ELEV: | 290.00 | |

COLLAR ASTRONOMIC AZIMUTH: $180^{\circ} 0^{\circ} 0^{\prime \prime}$

COLLAR SURVEY: NO RQD LOG: NO HOLE MAKES WATER: NO

DATE COMPLETED: $02 / 27 / 1999$ DATE LOGGED: $03 / 10 / 1999$ DATE LOGGED: 03/10/1999
PROJECT NAME: KIDD/HBED/EAL JV
PROJECT NUMBER: 35
RLATM NUMBER:
CLIATM
Location: Mahaffy Twp.

> | ALTERNATE COORDS | GRID: | MF25 grid |
| :--- | :---: | :---: |
| NORT: | $18+40 \mathrm{~N}$ | |
| EAST: | $1+50 \mathrm{E}$ | |
| ELEV: | 290.00 | |

GRID ASTRONOMIC AZIMUTH: $180^{\circ} 0^{\circ} 0^{\prime \prime}$
PULSE EM SURVEY: NO PLUGGED: YES HoLE SIZE: BQ

OMMENTS : Testing spectrem target 553: hit zone of 5-10\% pyrrhotite stringers over 5.5m WEDGES AT:

DIRECTIONAL DATA:

Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	Flag	Comments	Depth (M)	Astronomic Azimuth	$\begin{aligned} & \text { Dip } \\ & \text { degrees } \end{aligned}$	Type of Test	FLAG	Comments
47.00	$182^{\circ} 0^{\prime} 00$	-500 0' 01	s	ок		-	-	-	-	-	
102.00	$187^{\circ} 0{ }^{\circ} 01$	-4600.010	s	ок		-	-	-	-	-	
161.00	$193^{\circ} 0^{\prime} 00$	-440 0' 0 "	s	OK		-			-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	$-$	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-		-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		$=$	-	-	-	-	
-	-	-	-	-		-	-	$-$	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-			-	

CONTRACTOR: Bradley Bros
CASTNG: 37 m
CORE STORAGE: Kidd Creek Mine site

LE NUMBER : MF15-01 GEOCHEMICAL ASSAY																											DATE:	12/04/2000	
Sample	From (M)	$\begin{aligned} & \text { To } \\ & \text { (M) } \end{aligned}$	Leng. (M)	$\begin{array}{r} \text { SIO2 } \\ \% \end{array}$	$\begin{array}{r} \text { AL203 } \\ \% \end{array}$	$\begin{gathered} \text { CAO } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { MGO } \\ \% \end{gathered}$	$\begin{array}{r} \text { NA2O } \\ \vdots \end{array}$	$\begin{array}{r} \text { K2O } \\ \% \end{array}$	$\begin{array}{r} \text { FE203 } \\ \% \end{array}$	$\begin{array}{r} \mathrm{TIO2} \\ \% \end{array}$	$\begin{array}{r} \text { P205 } \\ \% \end{array}$	$\begin{gathered} \text { MNO } \\ \frac{\square}{6} \end{gathered}$	$\begin{gathered} \mathrm{CR} 203 \\ \vdots \\ \hline \end{gathered}$	$\underset{\frac{\%}{\%}}{\text { LOI }}$	$\begin{gathered} \mathrm{SUM} \\ \frac{\square}{\partial} \end{gathered}$	$\begin{array}{r} \mathrm{Y} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { zR } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { BA } \\ \text { PPM } \end{array}$	$\begin{gathered} \mathrm{RB} \\ \mathrm{pPM} \end{gathered}$	$\begin{array}{r} \text { SR } \\ \text { PPM } \end{array}$	$\begin{gathered} \mathrm{CO} 2 \\ \% \end{gathered}$	$\begin{array}{r} \text { CU } \\ \text { PPM } \end{array}$	$\begin{array}{r} 2 N \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { NI } \\ \text { PPM } \end{array}$	$\begin{gathered} \text { CR } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { FIELD } \\ \text { NAMM } \end{gathered}$	CHEM ID	ALUM
AU04707	65.00	68.00	3.00	48.24	13.26	9.59	7.07	2.88	0.08	14.35	1.25	0.12	0.22		2.43	99.49	30	70					125	110	55	190	7 a	7hv	106
AU04708	122.00	125.00	3.00	47.09	15.30	8.79	8.61	3.03	0.03	12.11	0.81	0.07	0.20		3.54	99.58	20	40					80	85	125	385	2 p	2hu	129

COMMENTS : Intersected conductive Po mineralization at 152m. Collared on Claim p1228724
WEDGES AT: wedges at:

DIRECTIONAL DATA:

$\begin{aligned} & \text { Depth } \\ & \text { (M) } \end{aligned}$	Astronomic Azimuth	$\begin{aligned} & \text { Dip } \\ & \text { degrees } \end{aligned}$	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	$\begin{gathered} \text { Dip } \\ \text { degrees } \end{gathered}$	Type of Test	FLag	Comments
59.00	$186^{\circ} 0^{\prime} 00$		s	OK		-	-	-	-	-	
119.00	$189^{\circ} 0{ }^{\circ} 01$	-4200000	s	OK		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-		-	-	-		-	-	-	-	-	
-	$-$	-	-	-		-	-	-	-	-	
-	-	-	$-$	-		-	$-$	$:$	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	$-$		-	-		-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-		-	-	
-	-	-	-	-		-	-		-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		$-$	-	-	-	$-$	
-	-	-	-	-		-	-	-	-	-	

0
0

$\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	TEXTURE AND STRUCTURE	$\begin{aligned} & \mid \text { ANGLE } \\ & \mid \text { TO CA } \end{aligned}$	aLteration	MINERALIZATION	REMARKS
0.00	«- ${ }^{\text {b }}$-*					
то						
50.00						
50.00 T0	* $7, a, m \times$	Leucoxene bearing mafic dyke/SILL		-Minor gash filling chlorite.	-Trace disseminated Po noted	
105.45		-Dark green, fine grained massive leucoxene		-Fracture controlled to pervasive	throughout unit.	
		bearing mafic intrusive. Unit strongly resembles		carbonatization is strongly developed	-3 to 5\% fracture controlled to	
		high level gabbro sill termed A/D1 at the Kidd		between 62.0 and 65.0 m , and 84.5 and	disseminated Po observed between 87.35	
		Creek Mine.		89.0 m .	and 87.7 m .	
		-Unit hosts 1 to 2% disseminated cream coloured			-Assay taken.	
		leucoxene grains.			-	
		- From 50.0 to 65.6 m , unit is relatively fine				
		\| - Intervals of badly broken and leached core				
		\| observed from 62.5 to $62.8 \mathrm{~m}, 63.7$ to 64.0 m , and				
		\| 65.6 to 65.8 m .				
		\| -Gouge material accompanies breccia filling				
		\| qtz/carbonate veining between 65.6 and 65.8 m .				
		\| Brittle fault zone.				
		- From 65.8 to 78.5m, unit becomes more medium				
		\| grain and spotted in texture.				
		-Core becomes increasingly sheared towards 78.6 m .				
		Shear zone is focussed at 78.6 m , and is				
		characterized by strong carbonatization and poor core recoveries.				
			-			
		\|-From 79.5 m to 83.0 m , unit becomes even coarser	,			
		in grain sized, and ophitic in texture.				
		\| Glomeroporpyroblasts of plagioclase are				
		\| observed.	;			
		\| -Downhole from 83.0 m , unit becomes increasingly				
		\| aphanitic. ${ }^{\text {a }}$ (eries of low angle joints running $20^{\circ} \mathrm{TCA}$				
		\| produces blocky core between 90.0 and 95.0 m .				
		\| -Downhole contact is irregular, marked by a thin				
		\| chill zone.				
		I				

$\begin{array}{r} \text { FROM } \\ \text { TO } \end{array}$	Rock TYPE	texture and structure	$\left.\begin{array}{\|l\|} \mid \text { ANGLE } \end{array} \right\rvert\,$	ALTERATION	MINERALIZATION	REMARKS
		-Between 15325 and 1				
		in colour and grainier in texture. Interval				
		appears more mafic in composition.				
		\| From 155.0 to 155.9, unit is dark green in				
		\| colour, but hosts abundant sericite. Foliation is				
		\| so strongly developed that a slatey cleavage, 65°				
		\| TCA is developed.				
		-Downhole contact is sharp but broken, parallel				
		to schistocity.				
155.90	«2,a, p\%	PILLOWED MAFIC VOLCANICS		-Fracture and veinlet controlled	-Minor fracture and selvage controlled	
то				carbonatization is strongly developed	Po.	
263.00		\| -Fine grain dark green to buff coloured pillowed		througout unit.		
		\| mafic volcanics.			-Qtz/carbonate veins commonly host	
		\| -Pillows are non-vesicular, characterized by \| massive unbrecciated interiors rimmed with dark	-	-Between 158.0 and 221.0 m , carbonatization becomes strong, and	trace disseminated Py.	
		\| chloritic selvages.		carbonatization becomes strong, and pervasive.		
		-very little hyaloclastite material is observed				
		\| in selvages.		-Large bull qtz/carbonate vein		
				observed between 161.6 and 152.8 m .		
		-Between 158.0 and 221.0 m , unit is strongly		A smaller vein is observed between		
		\| pervasively carbonatized. Qtz/carbonate veining		163.75 and 163.95m.		
		\| is 5-10\% abundant.				
		- -Mafics become buff to yellow brown in colour		-Qtz/carbonate veining becomes 7-10\%		
		\| between 177.0 and 221.0 m . Buff coloured bleaching		abundant between 176.0 and 186.0 m .		
		\| coincides with the development of weak pervasive		Veinlets commonly host trace		
		\| sericitization in strongly carbonatized mafics.		disseminated Py and po. -wispy, fracture controlled chocolate		
		$\left\lvert\, \begin{aligned} & \text {-Bleaching and carbonatization appear focussed } \\ & \text { around strongly schitose interval between } 182.0\end{aligned}\right.$		-Wispy, fracture controlled chocolate brown mineral observed between 177.0		
		\| and 188.0m. Qtz/carbonate veining occupies 5-10\%		and 177.8 m . Mineral accompanies		
		\| of interval between 182.0 and 188.0 m . Foliation		qtz/carbonate veining that also hosts		
		\| rotates from 50° near 182.0 m , to 30° at 183.7 m .		minor sericite, and an orangish dusty		
		\| Foliation gradually rotates back to 50° downhole		looking mineral resembling orpiment.		
		\| from 183.7m.				
				Interval also hosts trace dissemated		
		\| -Downhole from 221.0m, unit becomes less		Py. Was sampled for Au.		
		schistose. Carbonatization drops off and unit				
		\| becomes darker green in colour.				
263.00	*EOH*	1				
то		I				
263.00		I				
		1				

ER : MF16-01 GEOCHEMICAL ASSAY																												date	12/04/2000		
Sample	$\begin{aligned} & \text { From } \\ & \text { (M) } \end{aligned}$	$\begin{aligned} & \text { To } \\ & \text { (M) } \end{aligned}$	$\begin{aligned} & \text { Leng. } \\ & (M) \end{aligned}$	\\|	$\begin{array}{r} \text { SIO2 } \\ \% \end{array}$	$\begin{array}{r} \text { AL203 } \\ \frac{\%}{6} \end{array}$	$\begin{array}{r} \text { CAO } \\ \% \end{array}$	$\begin{gathered} \text { MGO } \\ \% \end{gathered}$	$\begin{array}{r} \text { NA2O } \\ \% \end{array}$	$\begin{array}{r} \mathrm{K} 2 \mathrm{O} \\ \% \\ \hline \end{array}$	FE2O3 $\%$	$\begin{array}{r} \mathrm{TIO2} \\ \% \end{array}$	$\begin{array}{r} \mathrm{P} 205 \\ \% \end{array}$	MNO $\%$	$\begin{array}{r} \mathrm{CR2O} \\ \% \\ \hline \end{array}$	$\begin{gathered} \text { LOI } \\ \% \end{gathered}$	$\begin{array}{r} \text { SLM } \\ \% \end{array}$	$\begin{array}{r} Y \\ \text { YPM } \end{array}$	$\begin{array}{r} \text { ZR } \\ \text { PPM } \end{array}$	$\begin{gathered} \mathrm{B} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{RB} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { SR } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{CO} 2 \\ \% \\ \hline \end{array}$	$\begin{gathered} \text { CU } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \mathrm{ZN} \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { NI } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { CR } \\ \text { PRM } \end{array}$	$\begin{aligned} & \text { FIELD } \\ & \text { NAME } \end{aligned}$	$\begin{array}{r} \text { CHEM } \\ \text { ID } \end{array}$	ALUM	
AU04625	68.00	71.00	3.00	\|		48.49	13.45	11.32	6.68	2.17	0.09	13.23	1.19	0.10	0.20		2.94	99.86	25	70					10	10	5	30		2,7hv	99
AU04626	107.00	110.00	3.00	\|		45.65	13.67	9.12	4.72	2.23	0.42	14.03	1.37	0.13	0.26		7.96	99.56	30	80					10	10	5	25		2,7hv	116
AU04627	137.00	140.00	3.00	\\|	45.89	14.13	11.01	6.76	1.82	0.02	15.22	1.41	0.14	0.28		2.97	99.65	30	90					15	10	10	25		2,7hv	110	
AU04628	167.00	170.00	3.00	1	43.65	13.82	9.45	7.77	2.39	0.02	10.45	0.75	0.06	0.15		11.11	99.62	15	40					10	15	10	35		2,7hu!	117	
AU04629	191.00	194.00	3.00	\\|	44.28	14.18	11.43	4.84	0.86	0.53	9.70	0.74	0.05	0.21		12.78	99.60	15	40					10	35	15	40		2,7hw!	111	
AU04630	227.00	230.00	3.00	\\|													0.00											2,a,p		***	
AU04631	227.00	230.00	3.00	\|		47.88	15.32	11.99	4.79	2.50	0.05	9.70	0.78	0.05	0.19		6.29	99.54	15	40					10	45	15	40		2,7hw	105
AU04631	254.00	257.00	3.00	\\|													0.00											2,a,p		******	
TU04630	254.00	257.00	3.00	\|		48.17	15.37	11.63	5.30	2.02	0.03	9.85	0.78	0.06	0.18		6.15	99.54	15	40					10	5	15	45		2,7hw	112

HOLE NUMBER: MF16-02	FALCONBRIDGE LIMITED DRILL HOLE RECORD						IMPERIAL UNITS: ${ }^{\text {DATE: }}$		$04 / 12 / 2000$ METRIC UNITS: X	
PROJECT NAME: KIDD/HBED/EAL JV	PLotting coords	GRID		ALTERNATE COORDS	GRID:	MF16 Grid		COLI	LAR DIP:	-500 0101
PROJECT NUMBER: 422		NORTH	5405379.00N		NORTH:	$12+40 \mathrm{mN}$	Length	Of TH	He hole:	256.00M
CLAIM NuMBER: Prop\#AQ26, Spect Targ\#552		EAST	464782.00E		EAST:	$10+50 \mathrm{mE}$		START	DEPTH:	0.00 M
LOCATION: SE Mahaffy twe		ELEV	290.00		elev:	290.00		FINAL	DEPTH:	256.00M

COLLAR ASTRONOMIC AZIMUTH: $180^{\circ} 0^{\prime} 0^{\prime \prime} \quad$ GRID ASTRONOMIC AZIMUTH: $0^{\circ} 0^{\prime \prime} 0^{\prime \prime}$

COLLAR SURVEY: NO
RQD LOG: No
HOLE MAKES WATER: NO
PULSE EM SURVEY: YES
PLUGGED: YES
HOLE SIZE: BQ
CONTRACTOR: Bradley
CASING: 55 m NW CORE STORAGE: Minesite CORE COORD.

COMMENTS : Intersected Po from 125.8 to 126.5 m
wEDGES AT:
directional data:

0
∞
0

HOLE NUMBER: MF16-03

PLOTTING COORDS	GRID:	UTM
NRTM:	5405520.00 N	
	EAST:	464224.00 E
ELEV:	290.00	

COLLAR ASTRONOMIC AZIMUTH: $210^{\circ} 0$ O"

COLLAR DIP: $-45^{\circ} 010$
LENGTH OF THE HOLE: 254.00 M START DEPTH: $\quad 0.00 \mathrm{M}$ FINAL DEPTH: 254.00 M

CONTRACTOR: Bradley Bros

CASING: 28 m NQ rods

COLLAR SURVEY: NO RQD LOG:
HOLE MAKES WATER:

PULSE EM SURVEY: YES
PLUGGED: YES
HOLE SIZE: BQ

COMMENTS : Collared on claim F1228724 wEDGES AT:

DIRECTIONAL DATA:

16-03 GEOCHEMICAL ASSAY DATE: 12/04/200																													
Sample	$\begin{gathered} \text { From } \\ (M) \end{gathered}$	$\begin{aligned} & \mathrm{TO}_{\mathrm{C}} \\ & (\mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { Leng. } \\ & \text { (M). } \end{aligned}$	$\stackrel{\text { SIO2 }}{\stackrel{1}{\circ}}$	$\begin{gathered} \hline \text { AL203 } \\ \frac{8}{8} \end{gathered}$	${ }_{\text {cao }}^{\text {\% }}$	MGO	$\stackrel{\text { NA2O }}{\square}$	K20	$\begin{array}{r} \text { FB2O3 } \\ 8 \end{array}$	$\stackrel{\text { TIO2 }}{\square}$	P205	$\stackrel{\text { Mvo }}{\%}$	$\underset{\substack{\text { CR203 } \\ \hline}}{ }$	$\stackrel{\text { LOI }}{ }$	$\stackrel{\text { sum }}{\square}$	¢ $\begin{array}{r}\text { Y } \\ \text { Pr }\end{array}$	zR PRM	($\begin{gathered}\text { EA } \\ \text { PPM }\end{gathered}$	$\begin{gathered} \text { RB } \\ \text { PRM } \end{gathered}$	($\begin{gathered}\text { SR } \\ \text { PRM }\end{gathered}$	$\stackrel{\mathrm{CO}}{\square}$	cu PPM	${ }_{\text {PRM }}^{\text {zN }}$	${ }_{\text {Nr }}^{\text {NT }}$	$\stackrel{\text { cr }}{\text { PRM }}$	$\begin{aligned} & \text { FIELD D D } \\ & \text { NAME } \end{aligned}$	$\begin{gathered} \text { CHEM } \\ \text { ID } \end{gathered}$	ALUM
A004741	31.00	34.00	3.00	49.13	13.53	7.29	6.29	3.27	0.14	14.25	1.50	0.13	0.18		4.07	99.78	30	90					15	10	5			7 hv	126
AU04742	61.00	64.00	3.00	49.92	12.53	8.36	5.83	2.21	0.05	16.18	1.62	0.15	0.23		2.79	99.87	35	100					20	20	5			7hv	118
AU04743	97.00	100.00	3.00	49.36	13.02	10.79	4.52	1.48	0.15	13.37	1.32	0.12	0.21		5.12	99.46	30	80					15 10 10	15 15	10			${ }_{7}^{2 h v}$	105 115
AU04744	142.00	145.00	3.00	49.05	13.51	9.43	6.44	2.28	0.0	14.12	1.51	0.	1															hv	115 98
AU04745	172.00	175.00	3.00	49.36	14.24	退	4.87	1.5	0.0	9.37	0.75	0.0	0.19		6.25 7.81	99.64	15 15	40 50					15	10	15	40		$2(\mathrm{~h}) \mathrm{v}$	${ }_{96}^{98}$
AU04746	226.00	229.00	3.00	48.02	13.38	12.38							0.20		7.81		15 25												110
AU04747	250.00	253.00	3.00	48.49	12.85	9.03	4.97	2.	0.38	10.79	0.89	0.13	0.20					80					10	10	10			$2(\mathrm{~h}) \mathrm{v}$!	110

2. Type of work performed: Check (\checkmark) and report on only ONE of the following groups for this declaration.

[^1]

Schedule for Declaration of
Assessment Work on Mining Land non Filar Dr．liくミ入l？
\qquad

Schedule for Declaration of Assessment Work on Mining Land

FIN AC REV IS
Mining Claim Number．Or $*$ work wee done on other eligible mining land，show in this column mining land，dhow in this colum on the claim map．

| Number of Claim |
| :--- | :--- |
| Units．For other | Units．For other

mining land，list hectares．
\square

	$\because, 987343$			
	$\ldots .897344$			
	.987345			

	.987345			
	.987346			
	.987347			

	. .987347			
	.1987348			
	.1987349			

	$\cdot 1987349$	
.	$\cdot: 887350$	

－

$\$ 400$
$\$ 400$
$\$ 400$
$\$ 400$
$\$ 400$
－
$\$ 400$
＿ـ＿

$+$

| | | |
| :--- | :--- | :--- | :--- |
| $\$ 400$ | | |
| | | |

Schedule for Declaration of Assessment Work on Mining Land

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Work Type	Units of work Depending on the type of work, list the number of hours/day worked, metres of drilling, kilometres of grid line, number of samples, etc.	Cost Per Unit of work	Total Cost
Linecutting	56 km	\$304/km	\$17,024
HLEM (222,444, 1777 Hz - 200m)	53.6 km	\$176/km	\$9,434
Mag (Scintrex IGS-2/MP-4)	54.4 km	\$107/km	\$5,821
HLEM/ MAG Reports (JS44,JS12)	2 Reports with copies	\$535/ Report	\$535
Diamond Drilling (Holes MF13-04, MF12-28, MF15-01, MF16-01, MF16-02, MF16-03)	1515m	\$60/m	$\$ 90,900$ $\$ 32,100$
Bore-hole Surveys	20 days	\$1,605/day	\$32,100
Surface TEM/BHPEM Report	1 Report with copies	\$500/ Report	\$500
Geological Supervision and Services 25 days		\$200/day	\$5,000
Associated Costs (e.g. supplies, mobilization and demobilization).			
Transportation Costs		-	
Truck Rental and Fuel	25 days	\$35NEita ${ }^{\text {d }}$	\$875
Food and Lodging Costs			
	15		
Total Value of Assessment Work			\$162,189

Calculations of Filing Discounts:

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.
2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total

Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT WORK
$\times 0.50=$
Total \$ value of worked claimed.

Note:

- Work older than 5 years is not eligible for credit.
- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

do hereby certify, that the amounts shown are as accurate as may reasonably be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying Declaration of Work form as \qquad I am authorized to make this certification.

Ministry of Northern Development and Mines

Ministère du
Développement du Nard et dis Mines

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario
P3E 6B5
Telephone: (888) 415-9845
Fax: (877) 670-1555
Visit our website at:
www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm

Submission Number: 2.20231
Status
W0060.00177 Approval

We have reviewed your Assessment Work submission with the above noted Transaction Numbers). The attached summary pages) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section \#6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact BRUCE GATES by e-mail at bruce.gates@ndm.gov.on.ca or by telephone at (705) 670-5856.

Yours sincerely,

Steven B. Bencteaw

ORIGINAL SIGNED BY
Steve B. Beneteau
Acting Supervisor, Geoscience Assessment Office
Mining Lands Section

Work Report Assessment Results

Submission Number: $\quad 2.20231$

Date Correspondence Sent: July 07,2000	Assessor:BRUCE GATES			
Transaction	First Claim			
Number	Number	Township(s) / Area(s)	Status	Approval Date
W0060.00177	987343	REID, MAHAFFY	Approval	July 07, 2000

Section:

16 Drilling PDRILL
18 Other DHGEO
14 Geophysical EM
14 Geophysical MAG

Correspondence to:

Recorded Holder(s) and/or Agent(s):
Resident Geologist
South Porcupine, ON
Assessment Files Library
Greg Collins
TIMMINS, ON, CAN

FALCONBRIDGE LIMITED
Sudbury, ON
TORONTO, ONTARIO

EXPLORERS ALLIANCE CORPORATION TIMMINS, ONTARIO

$\mathrm{Mag} \quad 1 \mathrm{~cm}=50 \mathrm{nT}$
Projected From L 1900 E

EM 1777 1cm=20\%
Projected From L 1900 E

EM $444 \quad 1 \mathrm{~cm}=10 \%$
Projected From L 1900 E

Target Property \#JV37
SectrEM Target \#563

Comments:

EM 1777 1cm $=10 \%$

EM $444 \mathrm{lcm}=10 \%$

Target Width: 40 m
Dip: -55 TO 60° North
Depth: 80 m
MF15-01
18mhos
Centre: $L 1+50 E, \quad 17+40 N$
Az 180, Dip: -50°
$463760 \mathrm{mE}, 5405930 \mathrm{mN}$; L $1+50 \mathrm{E}, 18+40 \mathrm{~N}$

Comments:
\square

	KIDD/HBED/EAL JV					ASSAY TABLE				MF 15-01			
Smers.	$\stackrel{\text { rew }}{\text { cow }}$	(${ }_{\text {M }}$			$\begin{gathered} p_{0} p_{0} \\ p a n d \end{gathered}$					${ }_{x}$			
		cois		(in			$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.5 \\ & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$						

Target Property \#27
SpectrEM target \#: 328

Comments

$\mathrm{Mag} 1 \mathrm{~cm}=100 \mathrm{nT}$

Target Width: narrow
Dip: -90° (HLEM) -40° North (MAG)
Depth: 95 m
100 mhos (high)
Centre: $11+20 \mathrm{~N}$
MF16-02
Az 180°, Dip: -50°
L $10+50 \mathrm{E}$

Target Property \# : AQ27
SectrEM Target

Comments:

KIDD/HBED/EAL JV																																			
sump.		${ }_{\text {(N) }}$		$\stackrel{2}{203}$	${ }_{80}$		Nu20	\| ${ }_{\text {k20 }} \times$	\times	${ }^{108}$	P205	\% \quad \%	cr203		\%		${ }_{\text {Pem }}^{\text {PR }}$	-	${ }_{\text {Pex }}$	n't	Ppu	FiIIO	$\underset{\substack{\text { afw } \\ 10}}{ }$	Num	${ }_{\text {pem }}$	Pex ${ }^{\text {¢ }}$	sew	${ }_{\text {gs }}^{\text {gew }}$	pew		novt				
N007718	70.00	73.00	3.0.50.57	13.98	11,99		$1{ }^{1.72}$			$1{ }^{110}$												7, B, M.	${ }^{\text {7hx }}$								0.54	0.79			
\|N007719	csi.00	${ }_{\text {a }}^{\substack{91.00 \\ 118.00}}$	${ }^{3.0} 8.04 .14 .14$	12.19	${ }_{0}^{10.90}$	4.813	${ }_{1.84}^{1.84}$	${ }_{0}^{0.005}$	${ }_{\text {lis }}^{12} 8.82$	${ }_{1}^{1.28}$	${ }^{0.12}$	${ }^{0.20}$		${ }_{2}^{5,77}$	${ }_{\substack{99.52 \\ 99.80}}$		${ }_{88}^{19}$	${ }_{20}^{20}$	${ }_{1}^{15}$	${ }^{10}$	${ }^{25}$,		(100)			5				0.45	0.87			
N01721	${ }^{128.00}$	129.10	0.751 .65	13.70	9,65	5, 18	${ }_{2.80}^{1.81}$	${ }_{0.08}^{30}$	${ }_{15.27}^{15.93}$	1.72	0.18	${ }_{0.20}^{0.21}$		2.48	99.67		${ }_{120}^{83}$	${ }_{15}^{20}$	${ }_{35}^{15}$	${ }^{10}$	${ }_{5}^{25}$			11875		. 15	20	5			-0.55	${ }^{0.75}$	i	$\begin{gathered} 38 \\ 42 \\ 4 \end{gathered}$	8
N04723	148.00	151.00	3.0 50.88	14.43	12.28	5.11	1.68	0.13	9.41	10.78	a.0.	10.19		1486	95.73	15	40	15	10	15	50			1027		. 09	10			10	a 56	0.85	3.		
Nou7	172.00 199.00 18	124.20		${ }^{13.7}$	$1 \begin{aligned} & 12.09 \\ & 13.12\end{aligned}$			${ }_{0}^{0.13}$						3. 3			${ }_{40}^{50}$	${ }_{20}^{20}$	$1{ }^{10}$	15 15	45			1025 85 5			158			10	0.0.56	-0.98	3		
400378	235	238.00	3.0150.21	4.01	12.42	4.87	1.89	${ }_{0}^{0.06}$	${ }^{9.50}$	-		${ }_{0.20}^{0.10}$		3. 50							4			${ }_{9}^{98}{ }_{9}{ }^{5}$							${ }_{0}^{0.5}$		${ }_{3}^{3}$		
N03370	250,00	33.00	3.014.52	11.06	13.55	4.48	1,18	d. 10	9.11	0.74	0.06	0.18		6.93	99.82		.	15		15.	4			${ }_{35} 5$		15									

EM 1777 Hz
$1 \mathrm{~cm}=20 \%$
EM 444 Hz
$1 \mathrm{~cm}=10 \%$
MF16-03
Az 210, Dip: -45°
Om SURFACE
$-50 \mathrm{~m}$
$-100 \mathrm{~m}$
$-150 \mathrm{~m}$
$-200 \mathrm{~m}$
$-250 \mathrm{~m}$

$$
\begin{aligned}
& \text { Target Width: Narrow } \\
& \text { Dip: } 70 \text { to }-80^{\circ} \text { North } \\
& \text { Depth: } 60 \mathrm{~m} \\
& \text { Conductivity Thickness: } 100 \mathrm{mhos} \\
& \text { Centre: } 12+70 \mathrm{~N}, 4+50 \mathrm{E}
\end{aligned}
$$

Scale: $1 \mathrm{~cm}=200 \mathrm{nT} \quad L 4+50 \mathrm{E}$
waw

Target Property AQ27,AQ26
SectrEM Target 551

Comments: Section centered at $0+00 \mathrm{~N}$ on $\angle 4+50 \mathrm{E}, 12+00 \mathrm{~N}$

FALCONBRIDGE LIMITED
Exploration Division

ROTATED SECTIION LOOKING NORTHWEST
DDH MF16-03

[^0]: Z COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP

[^1]: 0241 (03987)

