

MAHAFFY

42A14SW2008 2.20231

010

REPORT ON GEOPHYSICAL WORK

ON

MAHAFFY 12 MAHAFFY TOWNSHIP

NTS: 42-A/12

PROJ #: 8036

for FALCONBRIDGE LIMITED

D. LONDRY TIMMINS GEOPHYSICS LTD.

APRIL 2000

SUMMARY AND RECOMMENDATIONS

HLEM and magnetic surveys were carried out on the Mahaffy 12 property for Falconbridge Limited in December of 1998.

The magnetic survey mapped north-south to northwest-southeast striking diabase dikes. The EM survey mapped a number of conductors which strike northeast in the south half of the property, east-west through the central area and southeast in the north half.

All of the anomalies, except for 'G' and 'K' have been previously tested with diamond drill holes. The source of anomaly 'G' is a narrow zone of poor conductivity, however, it is the only conductor on the property with a coincident magnetic response. Anomaly 'K' is a partially defined response on the north edge of the grid at 2200 East; the source of this anomaly is also a narrow zone of poor conductivity.

It is recommended that anomaly 'G' is drilled on Line 2250 East and that the grid is extended to the north to determine the strike and extent of anomaly 'K'.

42A14SW2008 2.20231

.20231 MAHAFFY

010C

TABLE OF CONTENTS

page

ii

Summary and Recommendations	i
Introduction	1
General Geology	3
Previous Work	3
Survey Descriptions	6
Magnetic Results	7
EM Results	9
References	17

LIST OF FIGURES

page

1.(a) Location Map	. 2
(b) Claim Map	. 2
2. Location of Previous Drill Holes	. 5
3. Total Magnetic Field	. 8
4. HLEM Results, 444 HZ	. 13

LIST OF TABLES

page

1.	Property Description 1
2.	Summary of Previous Work 4
3.	Summary of Conductors 10
4 .	EM Anomaly 'B' Interpretation 11
5.	EM Anomaly 'C' Interpretation 11
6.	EM Anomaly 'D' Interpretation
7.	EM Anomaly 'E' Interpretation 14
8.	EM Anomaly 'F' Interpretation
9.	EM Anomaly 'G' Interpretation
10	. EM Anomaly 'H' Interpretation
11	. EM Anomaly 'J' Interpretation
12	. EM Anomaly 'K' Interpretation

LIST OF MAPS

- 1. Total Magnetic Field
- 2. HLEM Results, 222 HZ, 200 Metre Coil Separation
- 3. HLEM Results, 444 HZ, 200 Metre Coil Separation
- 4. HLEM Results, 1777 HZ, 200 Metre Coil Separation

INTRODUCTION

During December 1998, magnetic and horizontal loop electromagnetic (HLEM) surveys were carried out on the Mahaffy 12 property for Falconbridge Limited.

The property is located 37 kilometres northwest of the city of Timmins in the southwest portion of Mahaffy Township, Porcupine Mining Division (Figure 1(a)). It was accessed by snowmobile from a logging road which runs north from Highway 576 at Kamiskotia. Thorburn Creek flows north directly to the west of the property.

The surveys covered parts of 10 claims (Figure 1(b)) which are comprised of a total of 92, forty acre claim units; the claim numbers are listed in Table 1.

The magnetic survey was carried out by J. derWeduwen and the HLEM survey was run by B. Pigeon and L. Eden.

CLAIM #	# of UNITS	RECORDING DATE	DESCRIPTION	TOWNSHIP
1207794	13	July 09, 1996		Reid
1211742	4	July 10, 1998		Reid
1211743	8	July 10, 1998		Reid
1218745	16	June 20, 1997		Reid
1218746	7	June 20, 1997		Reid
1226430	12	Dec. 05, 1997		Reid
1227611	8	Nov. 25, 1997		Reid
1227612	3	Nov. 25, 1997		Reid
1227613	6	Nov. 25, 1997		Reid
1228069	15	May 27, 1997		Reid

Table 1 : Property Description

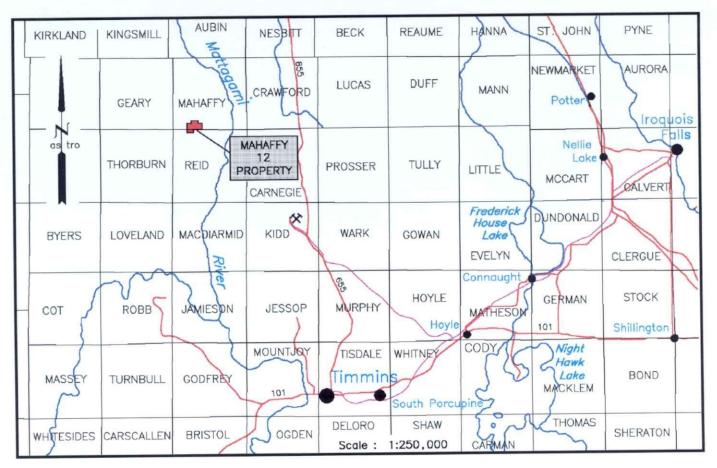


Figure 1(a) : Location Map

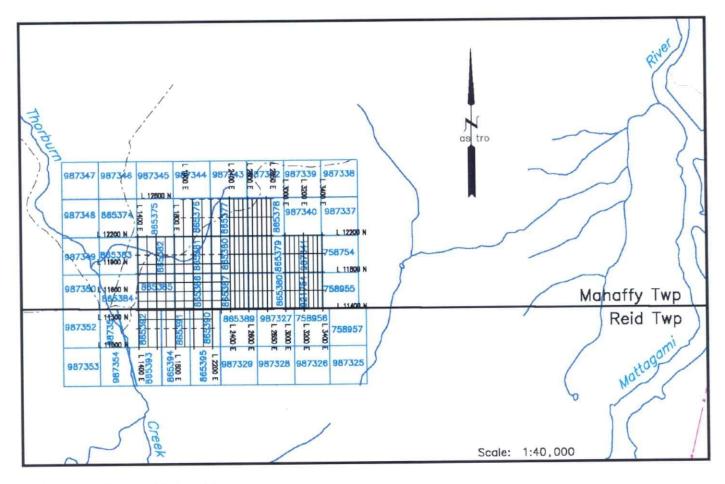


Figure 1(b) : Claim Map

GENERAL GEOLOGY

Mahaffy Township is located near the west end of the Abitibi greenstone belt which consists of predominantly east-west striking, steeply dipping Archean sediments and ultramafic to felsic volcanics. These rocks have been intruded by ultramafic to felsic bodies, north-south striking Matachewan diabase dikes and east northeast striking Keweenawan diabase dikes.

The geology of Mahaffy Township is presented on map 2205 at a scale of 1 inch to 4 miles (Pyke etal, 1973) and on map P3379 at a scale of 1:100,000 (Ayer etal, 1998).

Previous work in the area indicates that the Mahaffy 12 property is underlain by east southeast to east northeast striking intermediate to felsic volcanics and sill-like, ultramafic bodies. North-south striking magnetic anomalies suggest that all of the rocks are cut by diabase dikes. The Mattagami River Fault strikes north-south along the western edge of the present Mahaffy 12 grid.

PREVIOUS WORK

Interest in this area began in the 1960's after the discovery of the Texasgulf orebody to the east southeast, in Kidd Township. Since 1960, a number of companies have carried out work using a variety of geophysical techniques in the search for base metal deposits (Table 2).

All of the early electromagnetic work, before 1973, used dip angle techniques including the fixed vertical loop transmitter method (VLEM) and the "shoot-back" method of Crone's. After 1973 most of the electromagnetic work involved the horizontal loop method, with coil separations between 500 and 600 feet or 160 and 200 meters. A PEM survey was run along widely spaced lines in the 1970's by Rosario Resources; it was conducted with a moving transmitter loop at a distance of 300 metres from the receiving coil. In the early 80's, PEM surveys were run by Utah with a fixed 400 by 400 foot transmitter loop.

YEAR	COMPANY	GEOPHYSICS	DRILL HOLES	ASSESSMENT/ AFRI FILE
1964	Mespi Mines Limited	Amag, AEM		T -787
1964	Texasgulf Inc	None filed	M12-1	T-442
1964	Black River Mining Limited	Mag, JEM	64-1 to 6	T-928
1971	Newmont Mining Corp of Canada Ltd	Amag, Rad		T-40
1 9 72	Caltor Syndicate	Mag, VLEM	72-1 to 4	T-235
Summer 1977	Rosario Resources Canada Limited	Mag, HLEM (300'), PEM, IP, Grav		T-1841
Winter 1978	Rosario Resources Canada Limited	Mag, HLEM (200m)		T-1841
Summer 1978	Rosario Resources Canada Limited	Mag, HLEM (150, 200m)	RM-1 to 6	T-1841
Winter 1979	Rosario Resources Canada Limited		RM79-1, 2	T-1841
1980	Utah, Rosario, Aquitaine JV	Mag, HL, IP, PEM	UR80-1 to 6	T-1841
1981	Utah, Rosario, Aquitaine JV		23 OB holes	T-1841
1987	Kidd Creek Mines Ltd	Mag, HL (160m)	MF12-1,2	T-2844
1988	Falconbridge Limited		MF12-3 to 7	42A13SE0345
1990	Falconbridge Limited		MF12-12,13	42A13SE0060
1991	Falconbridge Limited		MF12-26,27	42A13SE0004

Table 2 : Summary of Previous Work

In 1964, **Black River Mines Limited** carried out magnetic and EM surveys over the west half of the Mahaffy 12 survey area. The surveys were run along lines spaced every 400 feet and oriented northwest southeast. Black River drilled six holes (64-1 to 64-6) to test three conductors on the property.

In 1972, **Caltor Syndicate** carried out magnetic and VLEM surveys over most of the present survey area. These surveys were run along north-south lines spaced every 400 feet. Caltor drilled four holes (72-1 to 4) to test conductivity in the southwest corner of the present grid.

The most extensive work was done by **Rosario Resources Canada Limited** between 1977 and 1979 and by a subsequent joint venture between Rosario, **Utah Mines Ltd.** and **Aquitaine of Canada Ltd.** in 1980 and 1981.

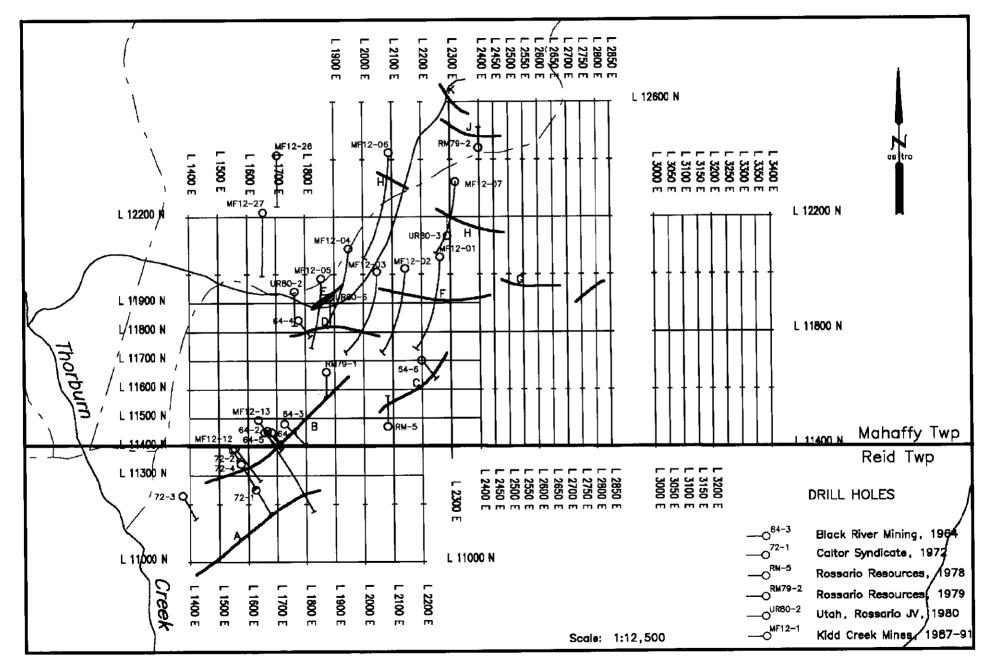


Figure 2: Approximate Location of Previous Drill Holes

In 1977, Rosario carried out a PEM survey on north-south lines spaced every 800 feet using a coil separation of 300 feet. In 1978, they ran an HLEM survey along north-south lines spaced every 400 feet with a coil separation of 500 feet. In 1978, Rosario drilled hole RM-5 and in 1979 drilled holes RM79-1 and RM79-2 to test conductors on the property.

In 1980, Utah detailed some of the conductors with a PEM survey, using 400 x 400 foot transmitter loops. During the same year, Utah also ran an induced polarization (IP) survey along selected lines on the property using a pole dipole array with an "a" spacing of 200 feet; readings were taken for n=1 to 4. The surveys were followed by three drill holes (UR80-2,3 and 6) to test two of the conductors.

Between 1987 and 1991, Kidd Creek Mines Ltd/Falconbridge Limited drilled a number of holes on the property (MF12-1 to 7, 12, 13, 26 and 27) to test the conductors at a greater depth.

The area has been covered by several airborne magnetic and electromagnetic surveys including **Keevil Mining Group Ltd** in 1966, **Mespi Mines Limited** in 1971 and **Phelps Dodge Corporation of Canada** in 1974. A magnetic and radiometric survey in Reid Township was flown for **Newmont Mining Corporation** of Canada Ltd. in 1971.

In 1987, the **Ontario Geological Survey** flew a combined airborne magnetic and EM survey over the Timmins area which included Mahaffy Township. This survey was flown along north-south lines spaced approximately every 200 metres.

SURVEY DESCRIPTIONS

The grid on the property consists of north south lines spaced every 100 metres over the west half of the survey area and every 50 metres over the east half. East-west tie lines were established every 400 metres and east-west grid lines were cut every 200 metres in the west central portion of the grid; all of the lines were picketed every 20 metres.

The magnetic readings were taken every 10 metres with a Scintrex IGS-2/MP-4. This instrument is a proton precession magnetometer which measures the earth's total magnetic field to an accuracy of 0.1 nT.

Diurnal variations were monitored every 10 seconds with a Scintrex MP-3 base station magnetometer, located off the grid at 10200 East, 10360 North; the base station value to which all of the readings were levelled is 59237 nT. A total of 5484 readings were taken along 54.4 kilometres of line.

The horizontal loop EM survey was carried out with the Apex Parametrics MaxMin I-5. This instrument measures the in-phase and quadrature components of the secondary field as a percentage of the primary field; the depth of penetration is approximately one half of the coil separation. Readings were taken every 20 metres using a coil separation of 200 metres and frequencies of 222, 444 and 1777 Hertz. A total of 2171 stations were read along 53.6 kilometres of line.

MAGNETIC RESULTS

The total magnetic field is contoured every 25 nT on map 1 at a scale of 1:5000. The results are also presented in Figure 2 at a scale of 1:12,500.

The magnetic field trends northeast in the south half of the property and southeast in the north half of the property. These trends are interrupted by linear, north-south to north northwest striking, high magnetic anomalies which represent diabase dikes. They are located at 2500 East, between the south end of Line 1900 East and the north end of 1500 East, along the east side of the survey area and along the west side of the survey area. Magnetic high anomalies, with a short strike length, extend from the central diabase dike (at 2500 East) in an east northeast direction at 11500 North and in an east southeast direction at 12100 North. These coincide with slight offsets in the diabase and may represent branches of the main diabase intruded along geological contacts. A third anomaly, with a similar amplitude and strike length, strikes east from the diabase at 11950 North and coincides with EM anomaly 'G'.

A partially defined, east northeast striking magnetic high anomaly located between 11600 North on Line 3000 East and 11800 North on Line 3400 East may represent an ultramafic body. The high frequency, isolated magnetic high at 2200 East, 11700 North is likely cultural and may reflect the collar of hole 64-6.

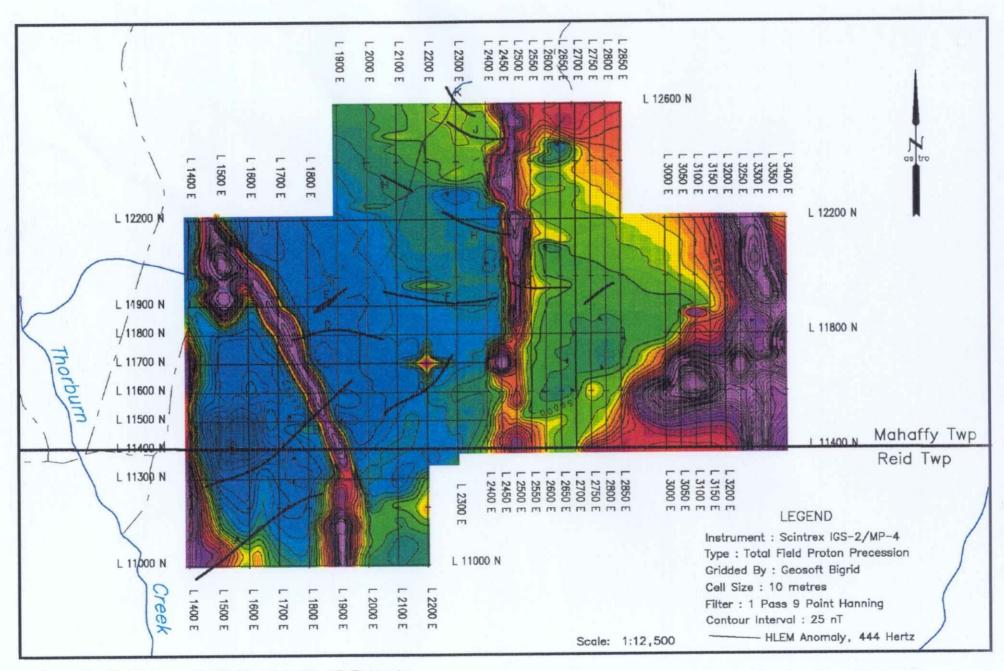


Figure 3 : Total Magnetic Field, Mahaffy 12 Property

EM RESULTS

The results of the HLEM survey are profiled on maps 2, 3 and 4 at a scale of 1:5000; the profile scale used for all of the frequencies is 1 cm = 25 %. The results using 444 Hertz are also presented in Figure 3 at a scale of 1:12,500.

The following is a description of the conductors detected in the survey and labelled 'A' to 'K' on the maps.

Anomaly 'A' is a poorty defined, low amplitude response which strikes northeast between 1480 East on Line 11000 north and 11240 North on Line 1800 East. It is difficult to interpret any parameters for the source because the anomaly is incomplete to the south and because of the influence of the much stronger response of anomaly 'B' to the north. The anomaly is mainly a quadrature response indicating poor conductivity.

Hole 72-1, drilled by Caltor in 1972 to investigate felsic pyroclastics to the north of anomaly 'A', did not reach the conductor.

Anomaly 'B' strikes northeast between 1520 East on Line 11300 North and 1900 East on Line 11600 North. The source of the anomaly is a narrow zone of good conductivity at a depth which varies from less than 20 metres on Line 11400 North to greater than 100 metres at the northeast end (Table 4).

Conductor 'B' was first drilled by Texas Gulf in 1961 (Hole M21-1). Black River located this zone in their 1964 JEM survey and drilled four holes (Holes 64-1, 2, 3, 5) to test it. The source of the EM anomaly is pyritic graphite, however, two of the Black River holes, 64-2 and 64-3, returned base metal values; the best intersection ran .15% copper, .52% lead, 1.05% zinc and .54 oz/ton silver over 2.9 feet.

The conductor was detected in a VLEM survey carried out by Caltor in 1972 and the west end was tested with two diamond drill holes. Hole 72-2 was stopped after 175 feet because of poor ground conditions and Hole 72-4 intersected a graphitic tuff unit. Hole 72-3, drilled to the southwest of the previous two described holes, was entirely in an ultramafic unit.

CONDUCTOR	COMPANY, YEAR	SURVEYS	ot	DRILL HOLE	SOURCE	ASSESSMENT/ AFRI FILE
A	Caltor, 1972 Rossario,1977 Falconbridge, 1990	VLEM PEM	POOR	72-1 MF12-13	No conductor intersected	T-235 T-1841 42A13SE0060
В	Black River, 1964 Caltor, 1972 Rossario, 1977 Utah, 1980 Falconbridge, 1990	JEM VLEM PEM IP	GOOD	64-1,2,3,5 72-2,4 RM79-1 MF12-12,13	Pyritic Graphite	T-928 T-235 T1841 T-1841 42A13SE0060
С	Black River, 1964 Caltor, 1972 Rossario, 1977 Rossario, 1978 Utah, 1980	JEM VLEM HLEM,PEM HLEM IP	GOOD	64-6 RM-5	Graphite & 7% Pyrite	T-928 T-235 T-1841 T-1841 T-1841
D	Black River, 1964 Caltor, 1972 Rossario, 1977 Rossario, 1978 Utah, 1980 Falconbridge, 1987/88	JEM VLEM HLEM, PEM HLEM PEM, IP	POOR	64-4 UR80-2,6 MF12-3,4,5	Graphite & Massive Pyrite	T-928 T-235 T-1841 T-1841 T-1841 42A13SE0345
E	Black River, 1964 Caltor, 1972 Rossario, 1977 Rossario, 1978 Utah,1980 Falconbridge, 1987/88	JEM VLEM PEM HLEM PEM, IP	GOOD	MF12-4,5	Graphite & Massive Pyrite	T-928 T-235 T-1841 T-1841 T-1841 42A13SE0345
F	Black River, 1964 Caltor, 1972 Rossario, 1977 Rossario, 1978 Utah, 1980 Falconbridge, 1987	ack River, 1964 JEM altor, 1972 VLEM ossario, 1977 HLEM,PEM POOR & Graphite ossario, 1978 HLEM ah, 1980 PEM, IP		T-928 T-235 T-1841 T-1841 T-1841 42A13SE0347		
G	Caltor, 1972 Rossario, 1977	VLEM HLEM,PEM	POOR			T-235 T-1841
Н	Rossario, 1977 Rossario, 1978 Utah, 1980 Falconbridge, 1988	HLEM HLEM IP	POOR	UR80-3 MF12-6,7	Graphite & 25% Pyrite	T-1841 T-1841 T-1841 42A13SE0345
J	Rossario, 1978 Utah,1980	HLEM PEM, IP	POOR	RM79-2	Graphite & Massive Pyrite	T-1841 T-1841
к	Rossario, 1978 Utah,1980	HLEM PEM, IP	POOR			T-1841 T-1841

Table 3 : Summary of Conductors

LINE	ANOMALY CENTER	ANOMALY WIDTH: (m)	P (P)	9	0897H (m)	CONQUETENTY THICIONESS (mtos)	COMMENTS
11300 N	1520 E	narrow	-6	-11	26	4	
1600 E	11335 N	narrow	-31	-12	34	54	
11400 N	1700 E	narrow	-42	-13	<20	67	
1700 E	11400 N	narrow	-44	-12	<20	74	
11500 N	1800 E	narrow	-34	-16	22	37	
1800 E	11500 N	narrow	-33	-11	34	62	
11600 N	1900 E	narrow	-4	-3	100	14	
1900 E	11600 N	narrow	-3	-2	120	21	

Table 4: Anomaly 'B' Interpretation, 444 Hz, 200 metre coil separation.

Anomaly 'C' strikes northeast between 11560 North on Line 2100 East and 2270 East on Line 11700 North. The source of the anomaly is a narrow zone of good conductivity at a depth which ranges from 40 metres on Line 2200 East to 100 metres on Line 11700 North (Table 5). This conductor has been interpreted by some of the previous companies to be the same stratigraphic horizon as conductor 'B', separated by a diabase dike/fault.

LINE	ANOMALY CENTER	ANCMALY WIETTH (11)	4 1 - (%)	0 (%)	DÉPTH- (m)	CONDUCTIVITY THICKNESS (mhos)	COMMENTS
2100 E	11560 N	narrow	-9	-7	72	16	
11600 N	2180 E	narrow	-14	-7	58	18	
2200 E	11610 N	narrow	-23	-12	42	31	
11700 N	2270 E	narrow	-5	-3	106	21	

Table 5: Anomaly 'C' Interpretation, 444 Hz, 200 metre coil separation.

In 1964, Black River drilled Hole 64-6 to test anomaly 'C' and intersected graphite with disseminated pyrite. The conductor was detected in a VLEM survey carried out by Caltor in 1972, however, they did not drill it. In 1977/78, Rosario carried out HLEM and PEM surveys and drilled Hole RM-5 which also intersected pyritic graphite.

Anomaly 'D' is a low amplitude response which strikes east-west between Lines 11800 East and 12000 East at 11800 North. The source of the anomaly is a narrow zone of poor conductivity at a depth of 40 metres (Table 6).

Hole 64-4, drilled by Black River in 1964, intersected 19 feet of graphite with massive pyrite and marcasite. It was also drilled by Utah (Holes UR80-2 and UR80-6) in 1981 and Kidd Creek (Holes MF12-3, 4 and 5) in 1988.

LINE	ANOMALY CENTER	ANOMALY WIDTH (m)	19 (%)	Q (%)	DERTH (m)	CONDUCTIVITY THICKNESS (mfca)	COMMENTS
1800 E	11800 N	narrow	-2	-4	40	2	
1900 E	11810 N	?	-3	-5	40	2	
2000 E	11 800 N	narrow	-2	-3	64	3	
11800 N	2000 E	narrow	-2	-4	40	2	

Table 6: Anomaly 'D' Interpretation, 444 Hz, 200 metre coil separation.

Anomaly 'E' strikes northeast between 1850 East on Line 11900 North and 11940 North on Line 1900 East. The source of the anomaly is good conductivity at a depth of 80 metres on Line 11900 North and 120 metres on Line 1900 East (Table 7).

This anomaly was tested with two holes by Kidd Creek (MF-4 and 5) in 1988. Both holes intersected widely spaced graphite zones with massive pyrite, explaining both anomalies 'D' and 'E'.

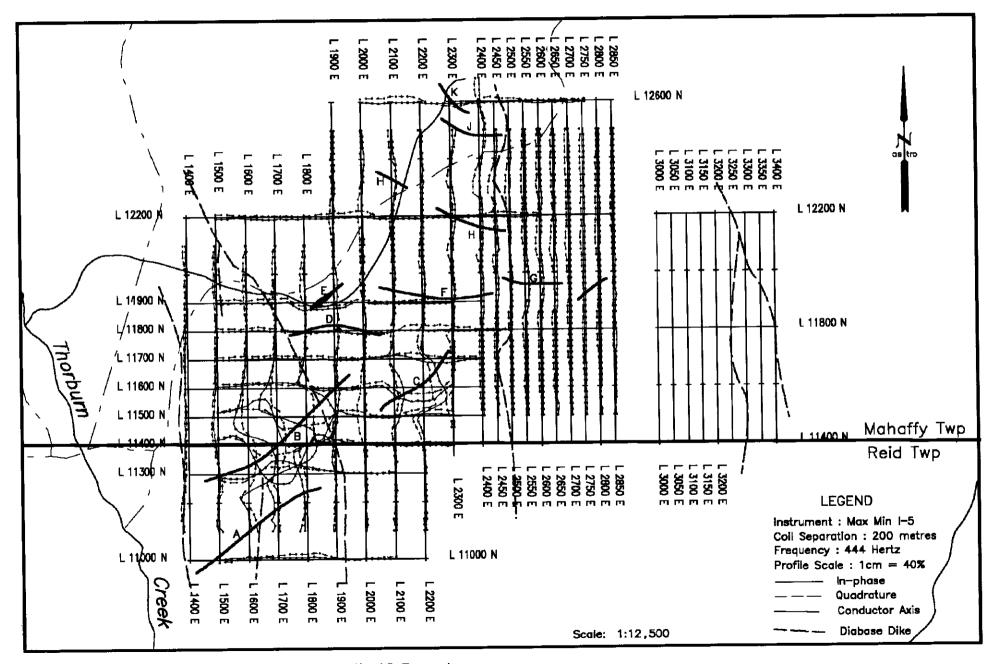


Figure 4 : HLEM Results, 444 Hertz, Mahaffy 12 Property

	ANOMALY CENTER	ANOMALY WIDTN= (m)	₽. \$\$	Q (%)	06971H (79)	CONCLICTIVITY THICRNESS (mhos)	COMMENTS
11900 N	1850 E	20	-9	-6	80	18	
1900 E	11920 N	?	-3	-2	120	21	

Table 7: Anomaly 'E' Interpretation, 444 Hz, 200 metre coil separation.

Anomaly 'F' is a very low amplitude anomaly which strikes east-west between 11940 North on Line 2100 East and 11920 North on Line 2400 East. It represents a narrow zone of very poor conductivity at a shallow depth (Table 8).

This anomaly was tested by Kidd Creek with two holes (MF12-01 and MF12-02) in 1987 and one hole (MF12-03) in 1988. The conductivity was explained by intersections of massive pyrite.

LINE	ANOMALY CENTER	ANCMALY WIOTH (11)	₽ (%)	9 (%)	CEPTH (m)	CONDUCTIVITY THICKNESS (mhos)	COMMENTS.
2100 E	11 940 N	narrow	-1	-3	20	1	
2200 E	11920 N	narrow	-1	4	<20	1	
2300 E	11910 N	narrow	-1	-4	<20	1	
2400 E	11920 N	narrow	-1	-2	40	1	

Table 8: Anomaly 'F' Interpretation, 444 Hz, 200 metre coil separation.

Anomaly 'G' is also a low amplitude response which strikes east-west between Lines 2500 East and 2650 East at 11960 North. The source of the anomaly is a narrow zone of poor conductivity at a shallow depth (Table 9). It has a coincident magnetic response and has not been previously tested.

LINE	ANOMALY CENTER	ANOMALY WISTH (m)	. IP (%)	đ	DEPTH (m)	CONDUCTIVITY THICKNESS (mbs)	COMMENTS
2500 E	11970 N	narrow	-1	-4	<20	1	
2550 E	11960 N	narrow	-2	-6	20	1	
2600 E	11960 N	narrow	-2	-4	40	2	
2650 E	11960 N	narrow	-1	-3	20	1	

Table 9: Anomaly 'G' Interpretation, 444 Hz, 200 metre coil separation.

Anomaly 'H' strikes southeast between 12340 North on Line 2100 East and 12150 North on Line 2450 East. The source of the anomaly is a narrow zone of poor conductivity at a depth which ranges from less than 20 metres on Line 2450 East to 60 metres on Line 2300 East (Table 10).

. Hole UR80-3, which was drilled by Utah in 1980 to test anomaly 'H', intersected graphite with up to 25% pyrite. Kidd Creek also drilled two holes (MF12-6 and 7) in 1988 to test this conductor and intersected a graphite zone with massive sulphides (pyrite).

line	ANOMALY CENTER	ANOMALY WIDTH (m)	P (%)	0 (%)	DEPTH (m)	CONDUCTIVITY THICKNESS (mhos)	COMMENTS
2100 E	12340 N	narrow	-3	-7	24	2	
2300 E	12200 N	narrow	-3	-4	64	4	
2400 E	12160 N	narrow	-1	-3	20	1	
2450 E	12150 N	narrow	-1	-4	<20	1	

Table 10: Anomaly 'H' Interpretation, 444 Hz, 200 metre coil separation.

Anomaly 'J' strikes east-west between 480 North on Line 3000 West and 460 west on Line 2500 West. It is a poorly defined anomaly because of the low amplitude and affect from the higher amplitude response of anomaly 'H', to the south; the in-phase/quadrature ratio, however, suggests poor conductivity (Table 11).

An EM survey by Rosario in 1978 also outlined poor conductivity which was tested by diamond drilling in the winter of 1979; Hole RM79-2 intersected graphite and massive pyrite.

LINE	ANOMALY CENTER	ANOMALY WIDTH (m)	(%) (%)	Q (%)	DEPTH (m)	CONDUCTIVITY THICKNESS (mbse)	COMMENTS
2300 E	12520 N	?	-2	-8	<20	1	
2400 E	12480 N	narrow	-7	-8	60	7	
2450 E	12480 N	?	-2	-4	40	2	

Table 11: Anomaly 'J' Interpretation, 444 Hz, 200 metre coil separation.

Anomaly 'K' is a one line anomaly centered at 2000 West on Line 800 North. The source of the anomaly is poor conductivity at a depth of 20 metres (Table 12). More work would have to be carried out in order to determine the strike and extent of this zone.

Line	ANOMALY	ANOMALY WISTH (m)		0 (%)	DEPTH (m)	CONDUCTIVITY THICKNESS (mpos)	COMMENTS
12600 N	2300 E	narrow	-2	-7	<20	1	

Table 12: Anomaly 'K' Interpretation, 444 Hz, 200 metre coil separation.

<u> April 8,2000</u> Date

¢

Timmins Geophysics Ltd.

REFERENCES

Ayer, J.A. and Trowell, N.F.

1998: Geological Compilation of the Timmins Area, Abitibi Greenstone Belt; Ontario Geological Survey, Preliminary Map P.3379, scale 1:100,000.

Ontario Geological Survey

1988: Airborne Electromagnetic and Total Intensity Survey, Timmins Area, **Reid Township**, Districts of Cochrane and Timiskaming Ontario; by Geoterrex Limited, for Ontario Geological Survey, Geophysical/Geochemical Series **Map 81053.** Scale 1:20,000. Survey and Compilation from 1987 to October 1987.

Pyke, D.R., Ayres, L.D. and Innes, D.G.

1973: Timmins-Kirkland Lake Sheet, Districts of Cochrane, Sudbury and Timiskaming; Ontario Div. Mines, **Map 2205**, Geol. Comp. Ser., Scale 1 inch to 4 miles.

42A14SW2008

2.20231 MAHAFFY

020

Geophysical Survey Report

covering

Borehole Pulse EM Surveys over the Mahaffy Township

for Falconbridge Exploration Ltd. during February - April, 1999.

by

CRONE GEOPHYSICS & EXPLORATION LTD.

Survey	Area:

3.4

Mahaffy Township, Timmins, Ontario.

3D Borehole Pulse EM Survey.

Survey Operator:

Survey Period:

Survey Type:

Report By:

Report Date:

Submitted To:

February - April, 199

Henry Odwar.

Henry Odwar.

May, 1999.

Falconbridge Exploration Ltd. Timmins, Ontario.

TABLE OF CONTENTS

PULSE ELECTROMAGNETIC SURVEY

1.0 INTRODUCTION

- 2.0 PROPERTY LOCATION AND ACCESS
- **3.0** PERSONNEL

- 4.0 SURVEY PARAMETERS
- 5.0 SURVEY METHOD
- 6.0 PRODUCTION SUMMARY

42A14SW2008 2.20231 MAHAFFY

020C

APPENDICES

APPENDIX A: Plans, Sections & Pulse EM Data Profiles (Linear, 5-axis)

- APPENDIX B: Pulse EM Data profiles (Lin-log)
- APPENDIX C: Crone Instrument Specifications

1.0 INTRODUCTION

This geophysical survey report outlines the survey parameters for the 3D Borehole Pulse EM survey which was carried out for Falconbridge Exploration Ltd. 11 holes were surveyed.

2.0 PROPERTY LOCATION AND ACCESS

Mahaffy Township is located near Timmins, Ontario. The survey crew accessed the property on a daily basis by road from the city of Timmins.

3.0 PERSONNEL

S 900 -

 \sim

The personnel involved in this project included:

Henry Odwar	Operator	Toronto, Ontario
Henry Odwar	Data Presentation	Toronto, Ontario

4.0 SURVEY PARAMETERS

Table I: Survey Parameters

Grid	Tx Loop	Loop Co-ordinates	Loop Size	Current	Time Base	Ramp Time	Channels
MAH12	MF1	1700E - 2400E 11700N - 12200N	~700 x 500m	15 amps	16.66 ms	1.5 ms	20
MAH12	MF2	2000E - 2500E 12200N - 12600N	~500 x 400m	15 amps	16.66 ms	1.5 ms	20
MAH12	MF3	1500E - 1900E 11100N - 11500N	~400 x 400m	15 amps	20 ms	1.5 ms	20
MAH12	MF4	1700E - 2000E 11500E - 11800N	~300 x 300m	15 amps	20 ms	1.5 ms	20
MAH13	MF5	2500E - 2700E 11960N - 12200N	~200 x 220m	18 amps	20 ms	1.5 ms	20
MAH16	MF16-1	250E - 600E 1260N - 1600N	~340 x 350m	16 amps	20 ms	1.5 ms	20
MAH16	MF16-2	900E - 1200E 1100N - 1400N	~300 x 300m	16 amps	20 ms	1.5 ms	20
MAH16	MF16-3	1900E - 2100E 18000N - 18200N	~200 x 200m	16 amps	16 ms	1.5 ms	20

Hole	Survey	Loop	Collar	Dip°	Azimuth°	Depth	Surveyed	Comp.
	Date	-	CO-ordinates			(m)	Section	
MF12-02	22/02/99	MF1	2145E/12100N	55°	180°	660	40 - 660 m	X, Y, Z
MF12-03	24/02/99	MF1	2055E/12050N	55°	180°	800	30 - 800 m	X, Y, Z
MF12-05	02/03/99	MF1	1850E/12000N	55°	180°	897	30 - 897 m	X, Y, Z
MF12-06	05/03/99	MF1	2095E/12500N	55°	180°	628	40 - 628 m	X, Y, Z
MF12-07	11/03/99	MF2	2360E/12300N	57°	189°	828	30 - 828 m	X, Y, Z
MF12-13	21/03/99	MF3	1640E/11515N	50°	145°	545	30 - 545 m	X, Y, Z
MF12-28	26/03/99	MF4	1800E/11660N	50°	135°	325	20 - 325 m	X, Y, Z
MF13-04	27/03/99	MF5	2600E/12100N	50°	180°	245	10 - 240 m	X, Y, Z
MF16-01	01/04/99	MF16-3	1950E/18100N	50°	180°	263	50 - 260 m	X, Y, Z
MF16-02	25/03/99	MF16-2	1050E/1240N	50°	180°	255	50 - 255 m	X, Y, Z
MF16-03	24/03/99	MF16-1	505E/1400N	45°	210°	254	30 - 254 m	X, Y, Z

Table II: Survey Coverage: Borehole

5.0 SURVEY METHODS

The Crone Pulse EM system is a time domain electromagnetic method that utilizes an alternating pulsed primary current with a controlled shut-off and measures the rate of decay of the induced secondary field across a series of time windows during the off-time. The system uses a transmit loop of any size or shape. A portable 120VDC, 4.5hp Motor Generator powers the PEM 2.4 kW Transmitter which provides a precise current waveform through the loop. The receiver apparatus is moved along surface lines or down boreholes.

The transmitter cycle consists of slowly increasing the current over a few milliseconds, a constant current , abrupt linear termination of the current ("Ramp Time") , and finally, zero current for a selected length of time in milliseconds ("Time Base"). The EMF created by the shutting-off of the current induces eddy currents in nearby conductive material thus setting-up a secondary magnetic field. When the primary field is terminated, this magnetic field will decay with time. The amplitude of the secondary field and the decay rate are dependent on the quality and size of the conductor. The receiver, which is synchronized to the off-time of the transmitter, measures this transient magnetic field where it cuts the receiver apparatus. These readings are across fixed time windows or "Channels" and are recorded with the **PEM Digital Receiver**. Synchronization between the receiver and transmitter is maintained by a direct cable, radio link, or crystal clock.

Borehole PEM: The 3D borehole equipment uses an axial component (Z) probe and a cross-component (XY) probe to measure the three components of the induced secondary field. The first pass with the 'Z' probe detects any in-hole or off-hole anomalies and gives information of size, conductivity, and distances to the edges of conductors. The second pass with the 'XY' probe measures two orthogonal components of the EM field in a plane orientated at right angles to the borehole. These results give directional information to the center of the conductive body. While being lowered down the hole, the probe will rotate about its axis. This rotation will cause a change in the measurement of the X and Y components of the EM field.

The correction can be made by comparing the measurement of the 'PP' channel to theoretical values and calculating the amount of probe rotation. To calculate the theoretical 'PP' value requires knowing the co-ordinates of the loop and the hole, and the hole deviations. A second method of rotation correction involves the use of the orientation tool. This attachment for the XY probe uses dipmeters to calculate the rotation and the dip of the probe at every survey point. The dipmeters are accurate to 0.5 degrees from vertical.

Specifications of the equipment used for the survey can be found in Appendix C at the end of the report.

6.0 PRODUCTION SUMMARY

Table IV: Production Summary

Date	Description
February 19	Mobilization and arrival in Timmins.
February 20	Met with Sharon and went to find Mahaffy grid.
February 21	Located MF12-02, MF12-03 and MF12-05. Laid 500x700 m loop.
February 22	Surveyed MF12-02
February 23	Completed surveying MF12-02 and part of MF12-03
February 24	Completed surveying MF12-03.
February 25	Acquired Z component for MF12-05.
March 02	Completed surveying MF12-05
March 03	Dummy probed MF12-06, MF12-07. Pulled loop MF1.
March 04	Pulled equipment form REID, Laid MF2.
March 05	Surveyed MF12-06.
March 11	Pulled equipment from REID, Surveyed MF12-07.
March 12	Pulled loop and equipment from Mahaffy.
March 20	Laid MF3.
March 21	Surveyed MF12-13.
March 23	Went to look for MAH16 grid.
March 24	Surveyed MF16-03.
March 25	Surveyed MF16-02.
March 26	Surveyed MF12-28.
April 01	Surveyed MF16-01.

Respectfully submitted,

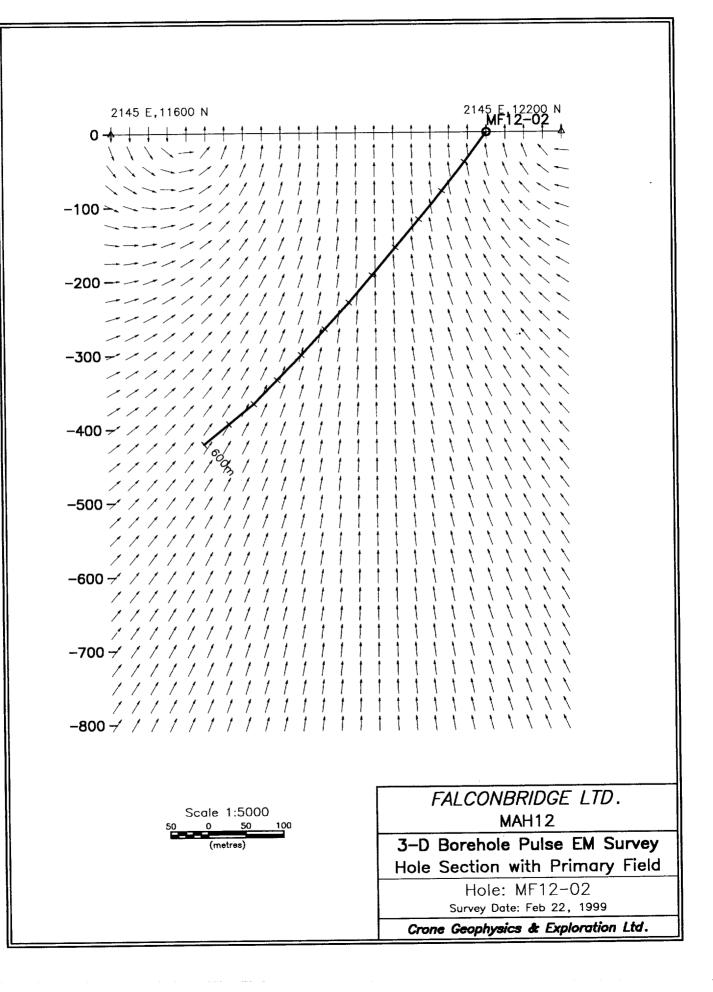
Henry Odwar, M.Sc. Crone Geophysics & Exploration Ltd.

Crone Geophysics & Exploration Ltd.

. .

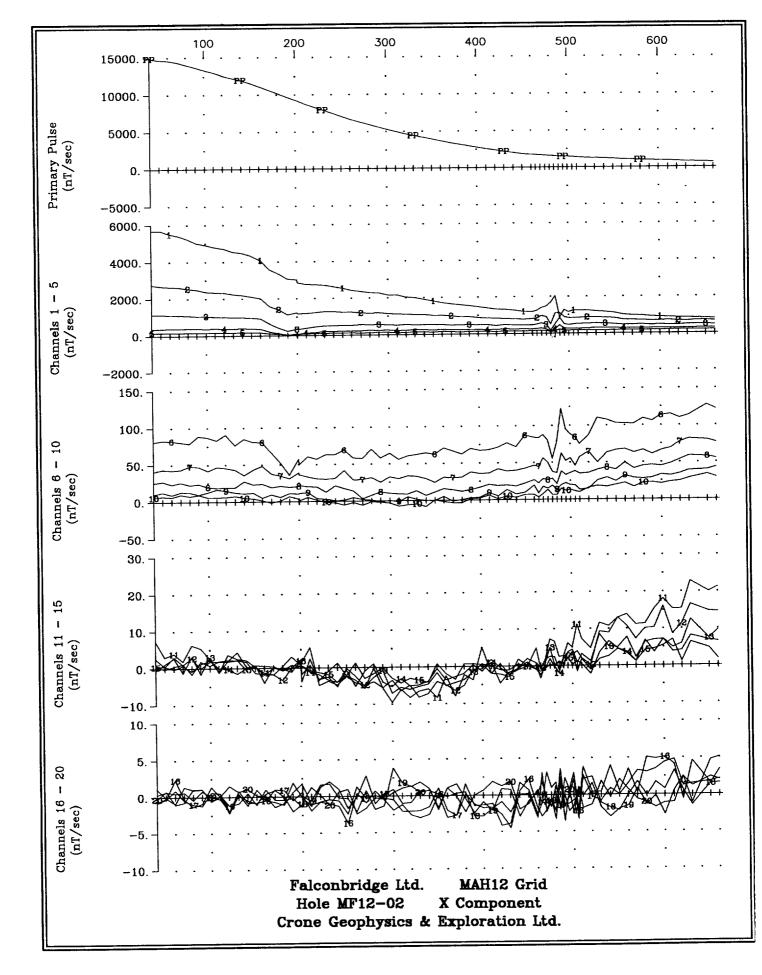
APPENDIX A:

<u>and</u>


÷

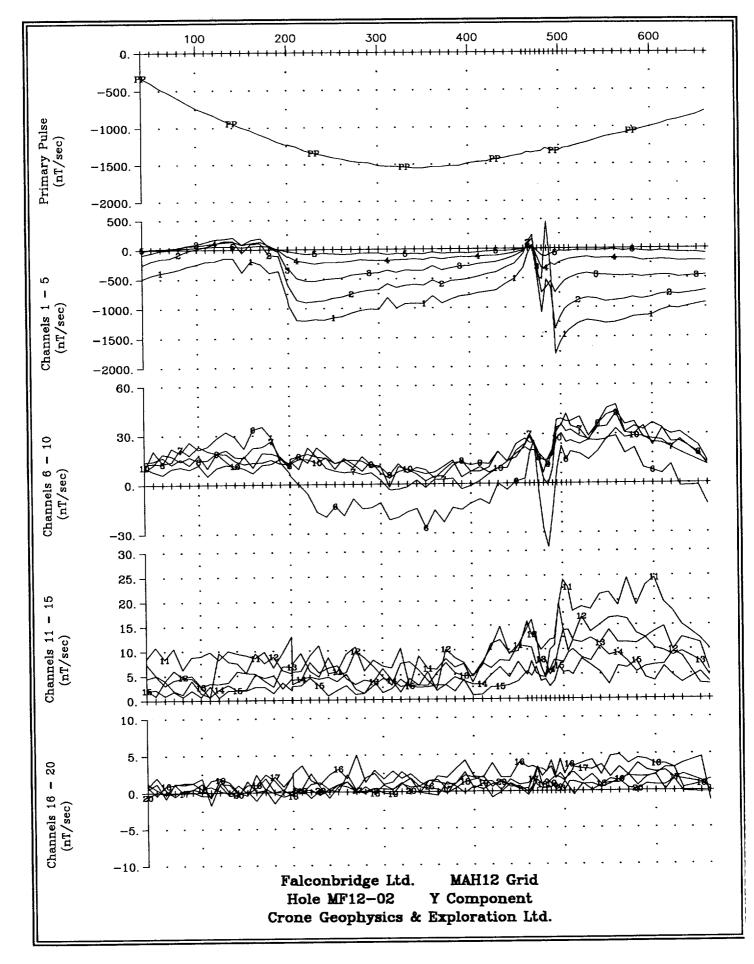
Plans, Sections & Pulse EM Data Profiles (Linear, 5-axis)

2300E 2400E 2200E 2100E 1700E 1800E 1900E 2000E 12200N ωMF12-02 12100N 12000N -Tx Loop MF1 11900N -Scale 1:5000 100 50 11800N -(metres) 600m 11700N -

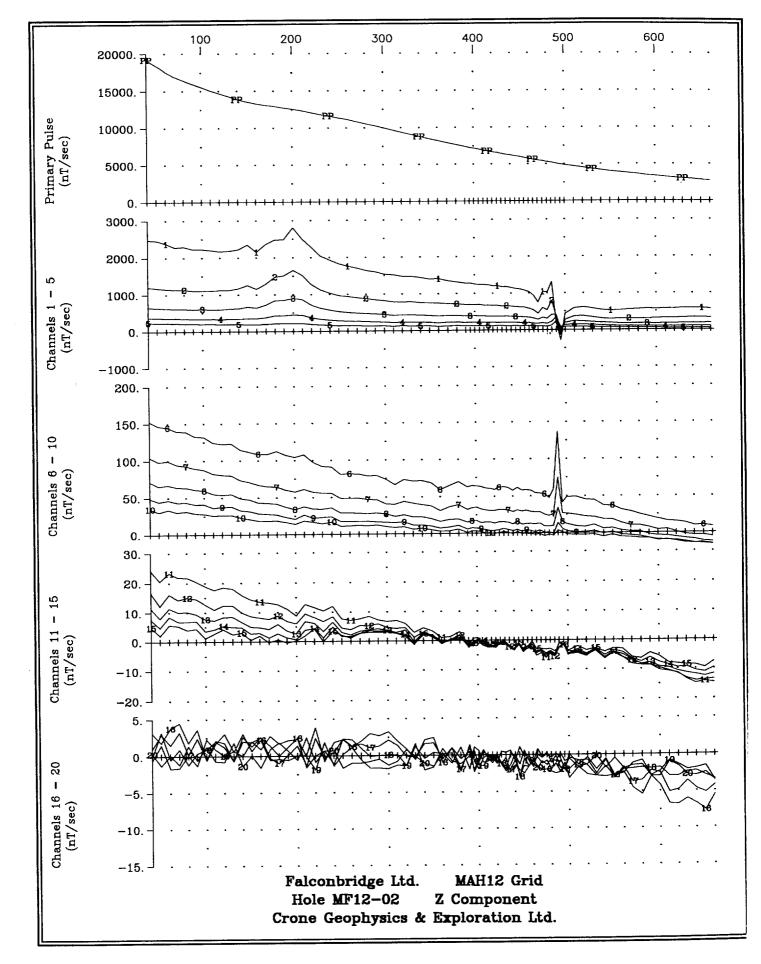

 \mathbb{R}^{1} , where \mathbb{R}^{1} , \mathbb{R}^{1}

11600N -11600N -11500N -11500N - *FALCONBRIDGE LTD.* MAH12 **3-D Borehole Pulse EM Survey** Borehole & Loop Location Map Hole: MF12-02 Survey Date: Feb 22, 1999 *Crone Geophysics & Exploration Ltd.*

•

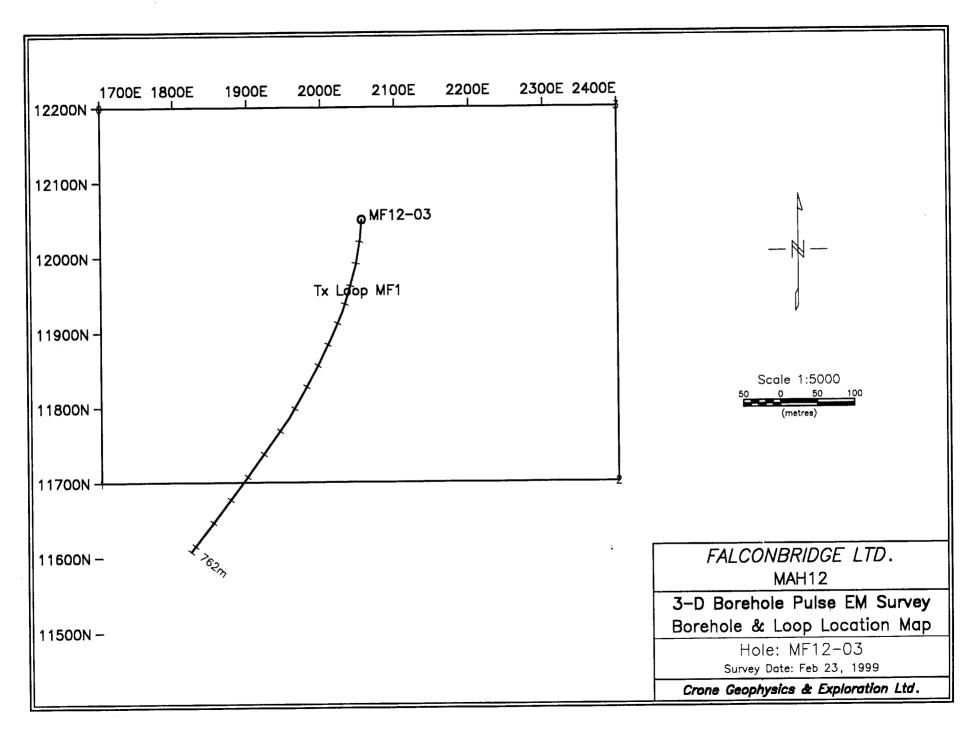

1.33

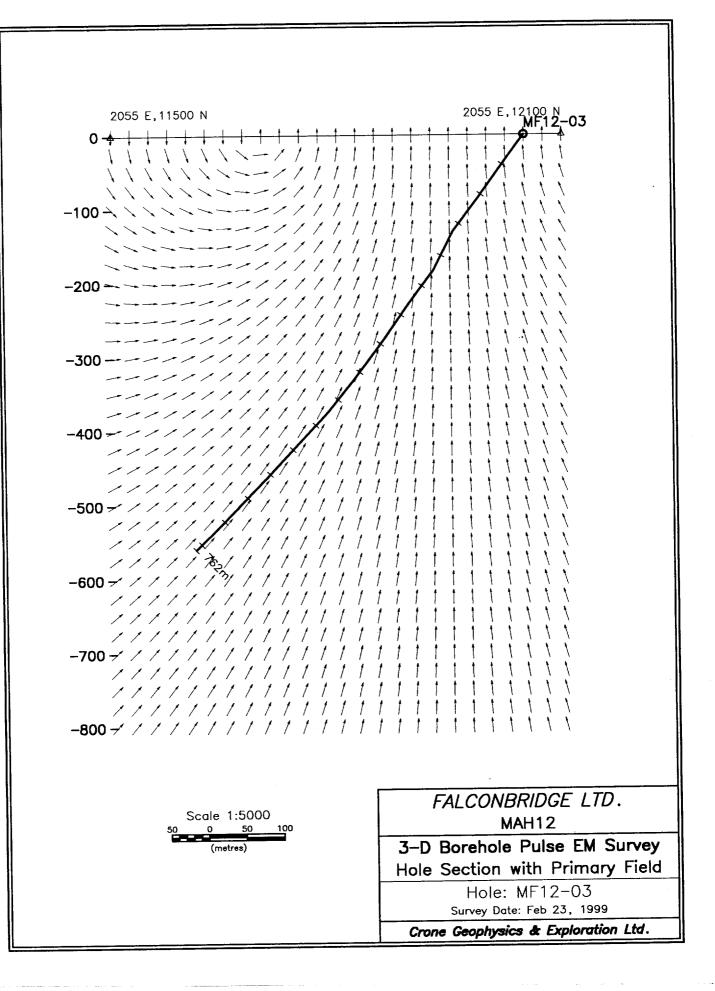
ا ا

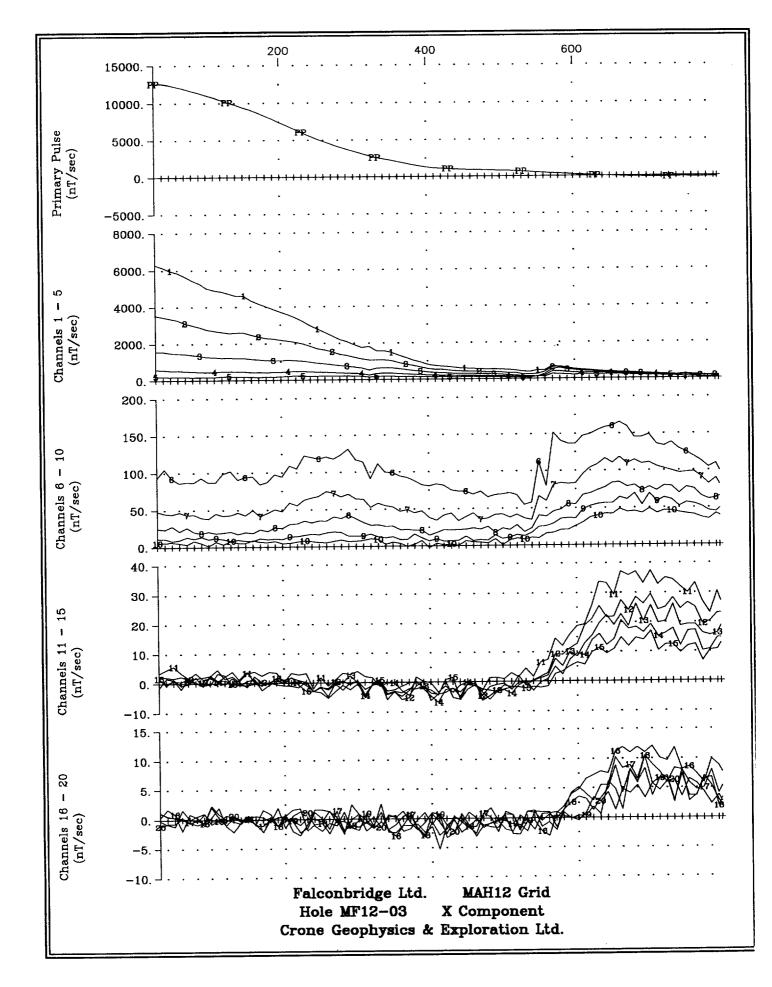


ka H Rođi

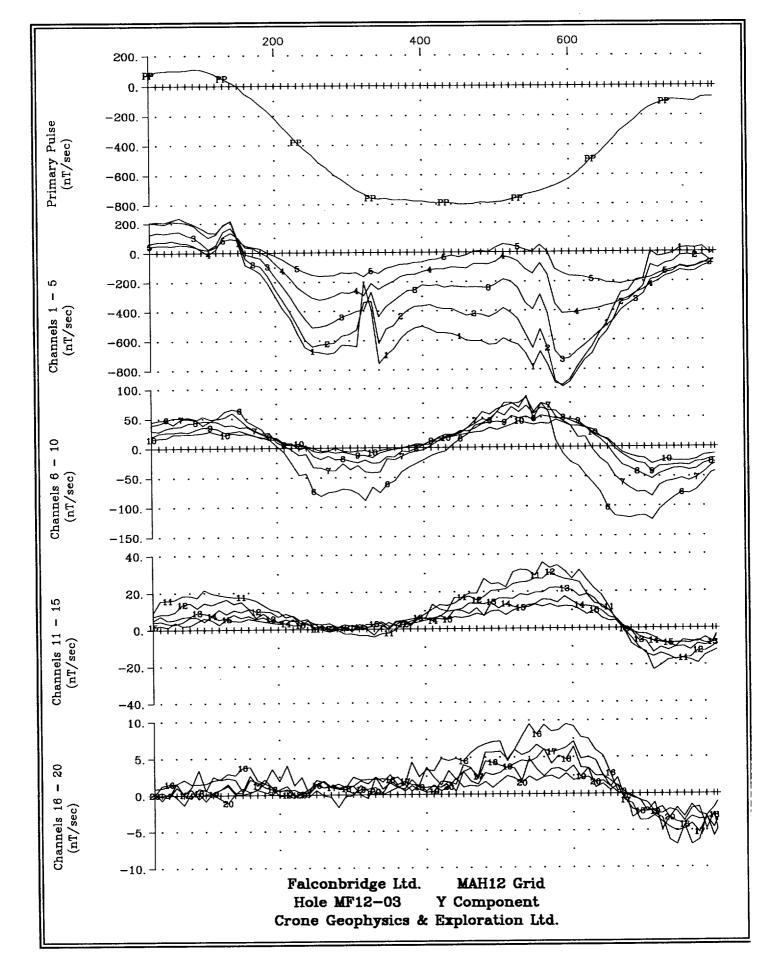
ي. بغيية

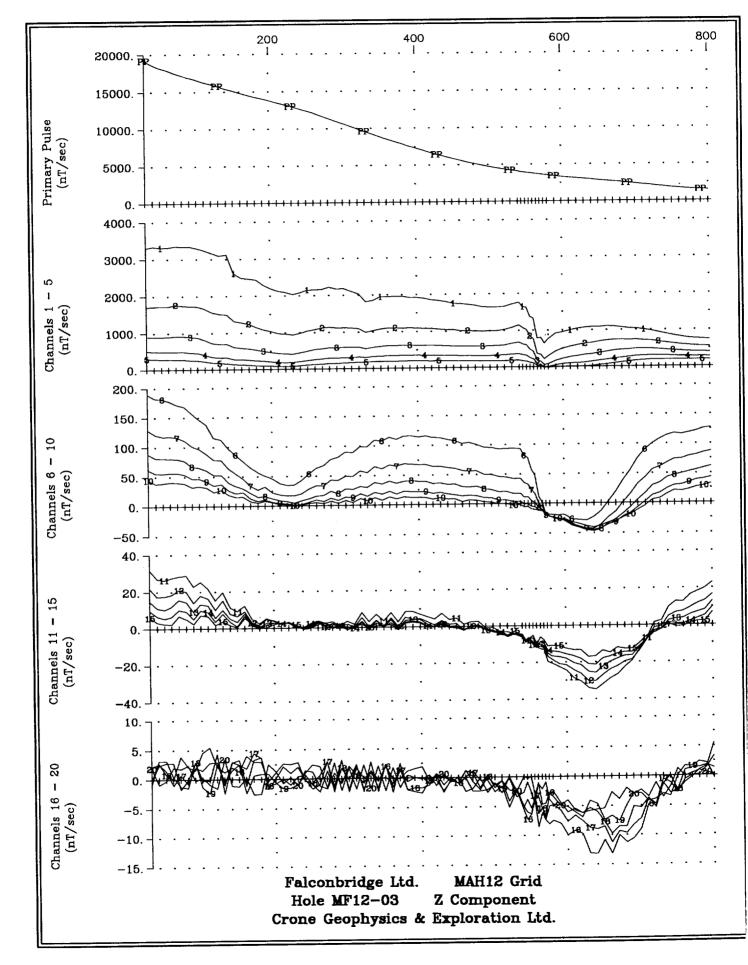



÷-3

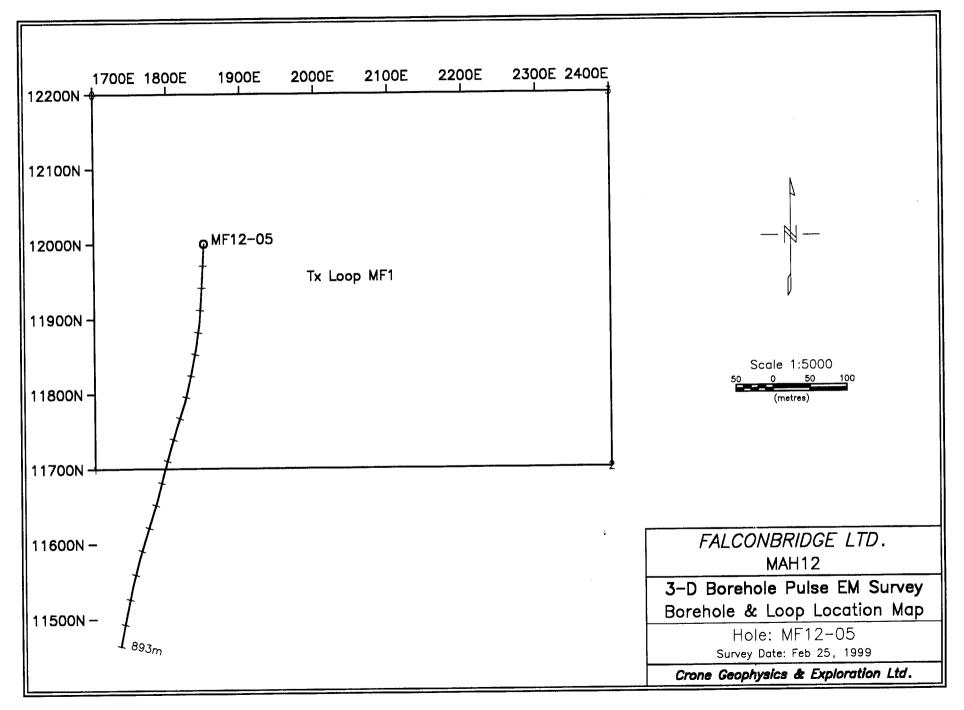

. .

-

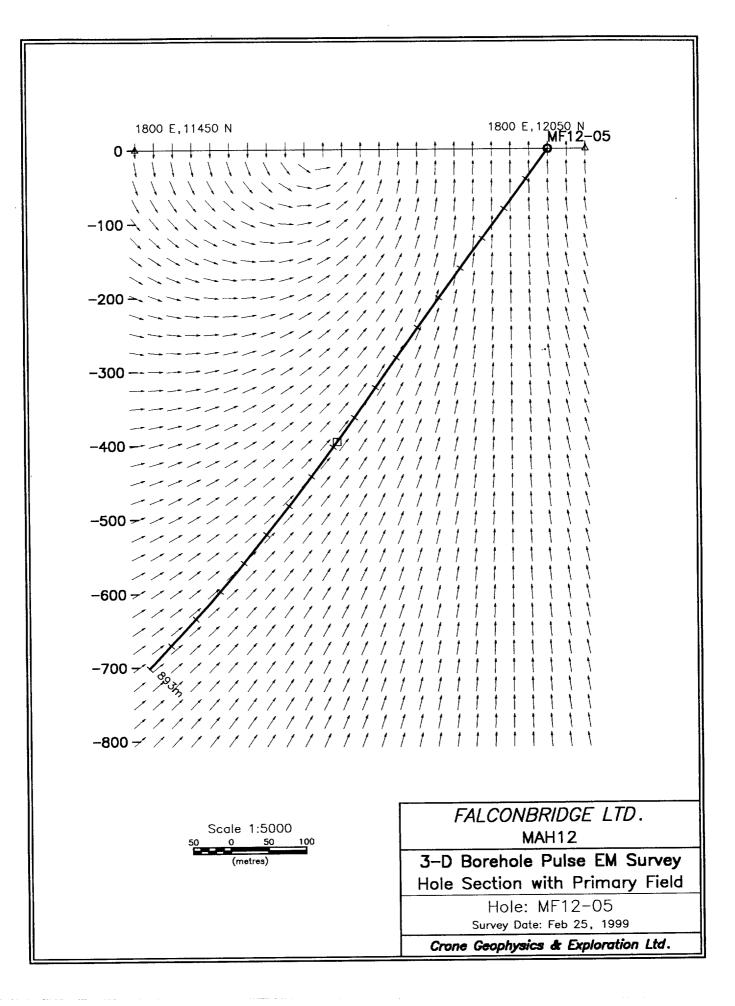

 $\frac{d^2}{\Delta \omega} = \frac{d^2}{d\omega} \left[\frac{1}{2} \left[\frac{1$

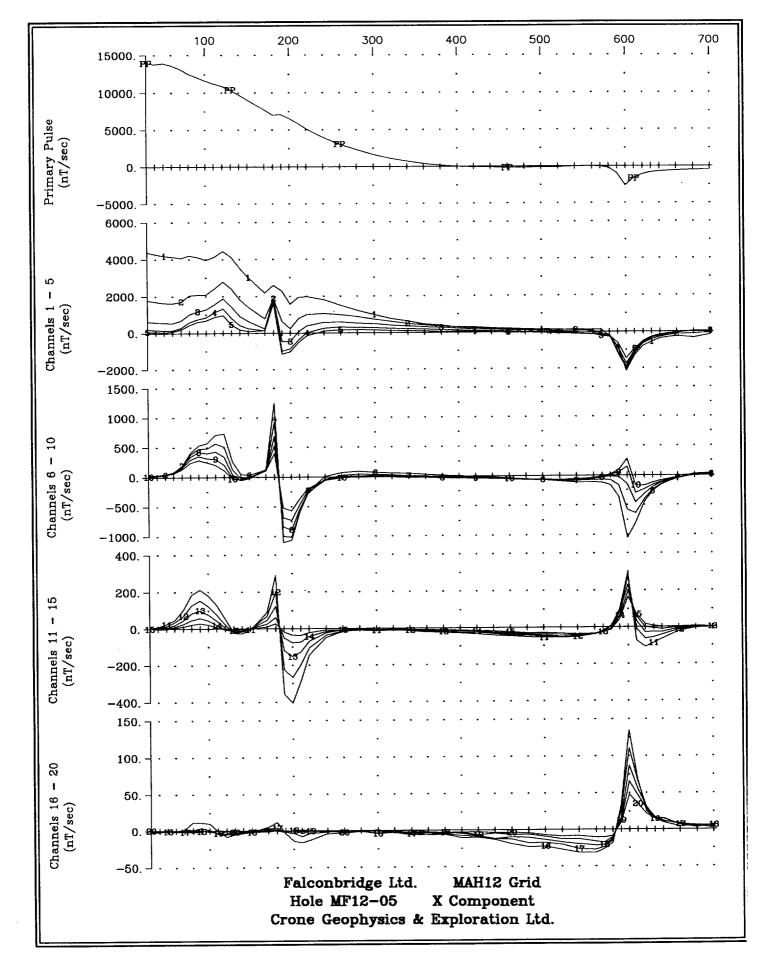


.



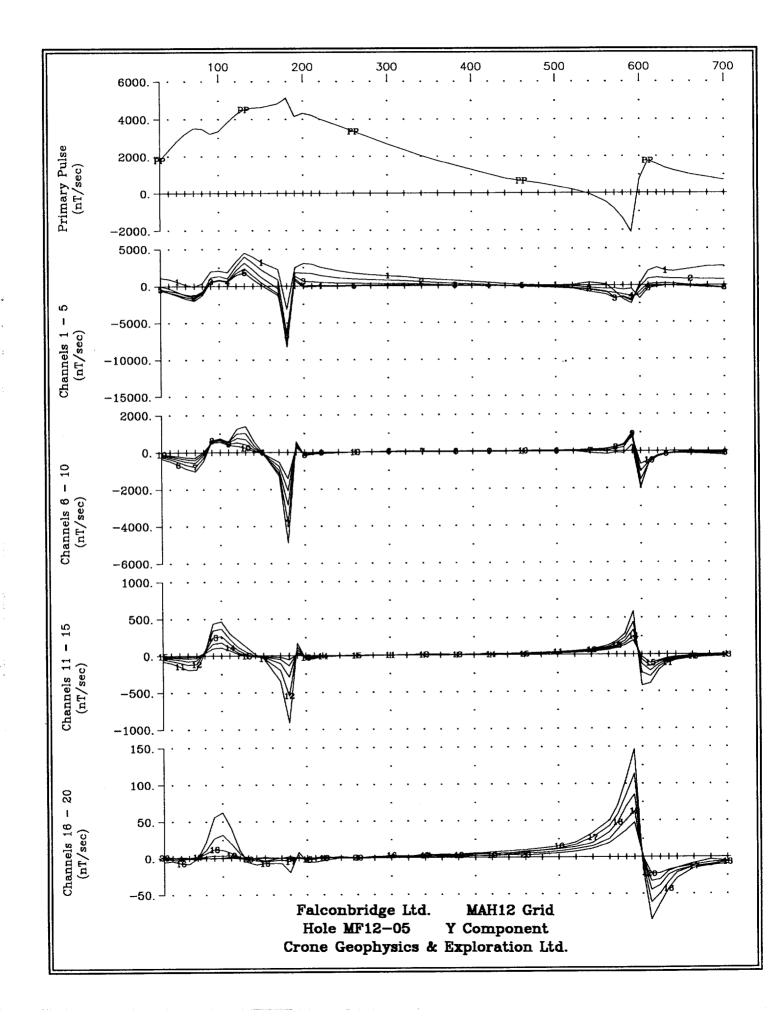
.' • †

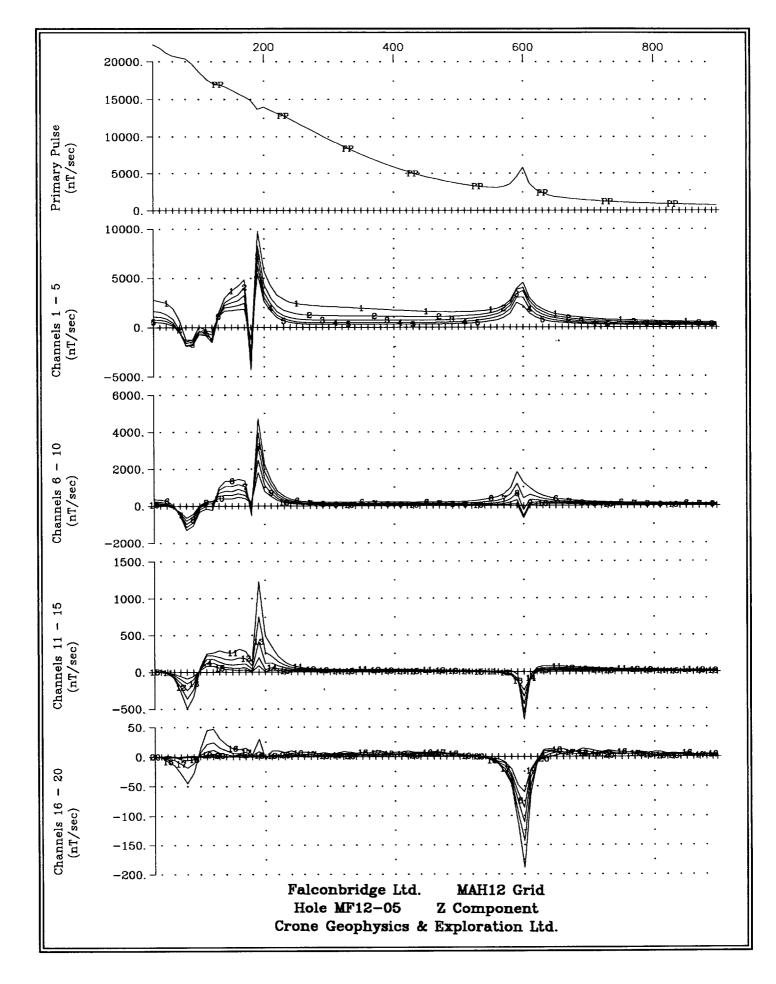

χ : . .



:

.

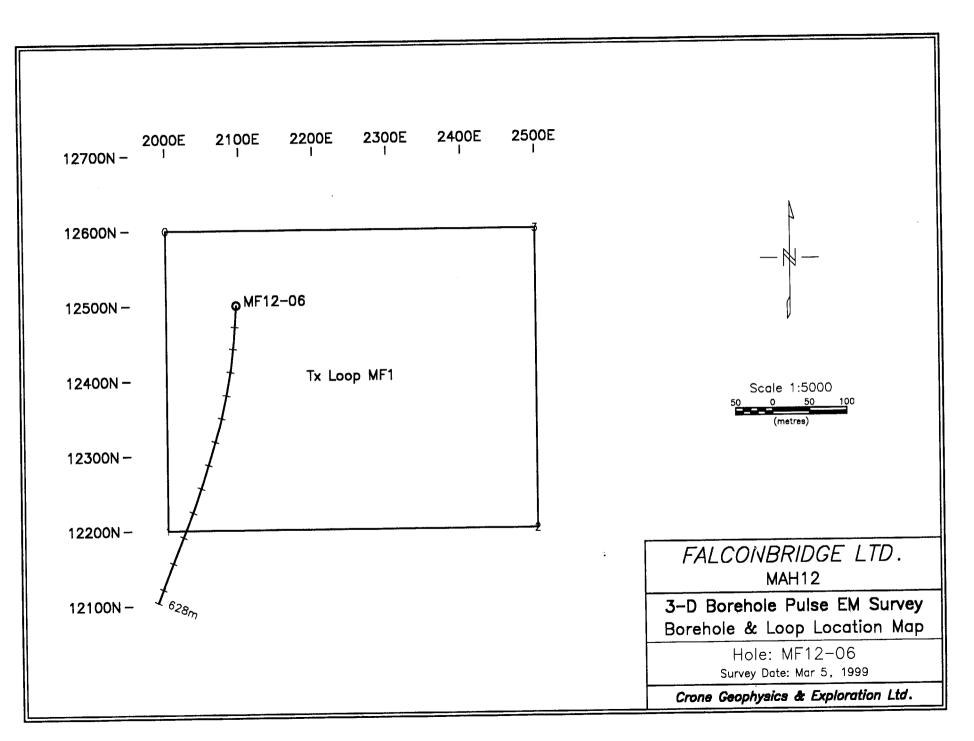

isa) No

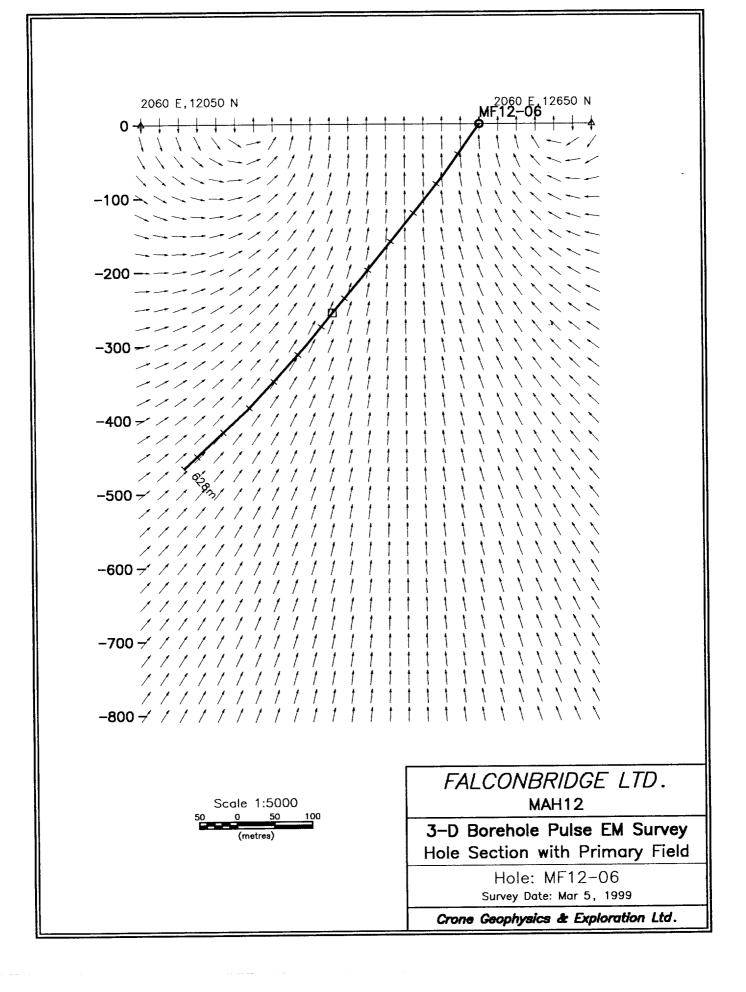

. ..j

•

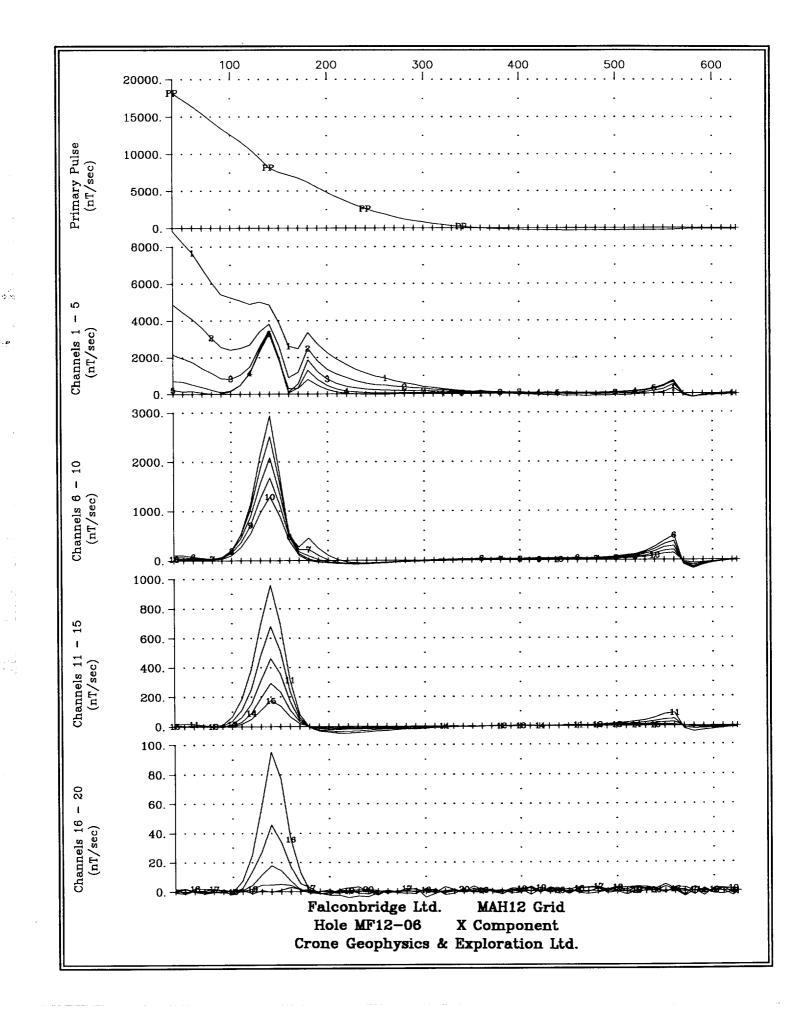
.

۱ د.

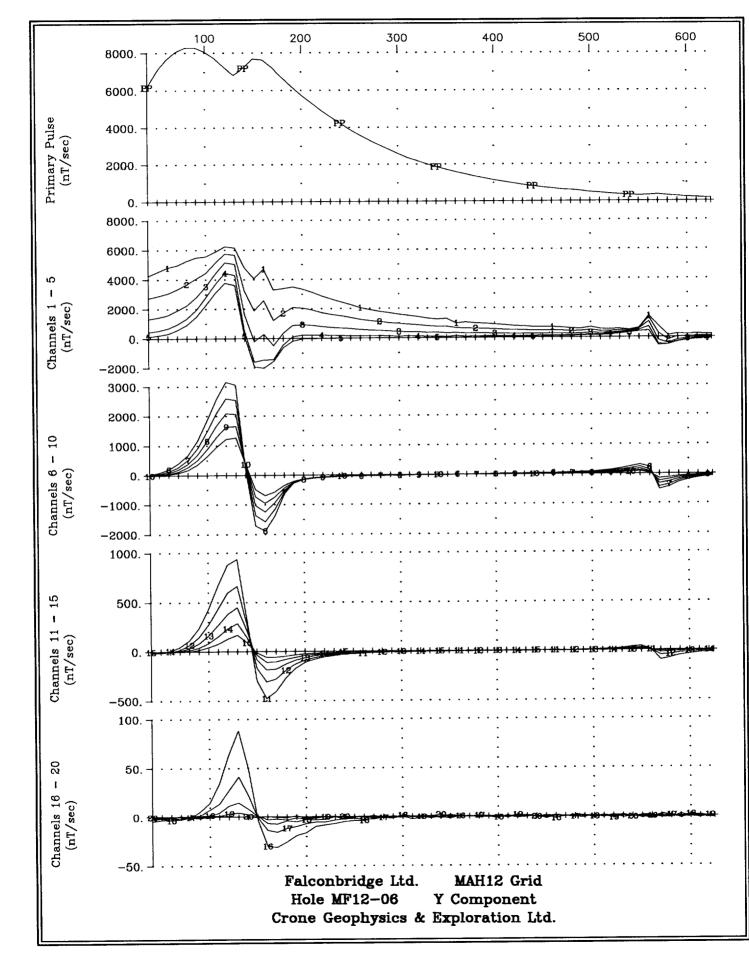




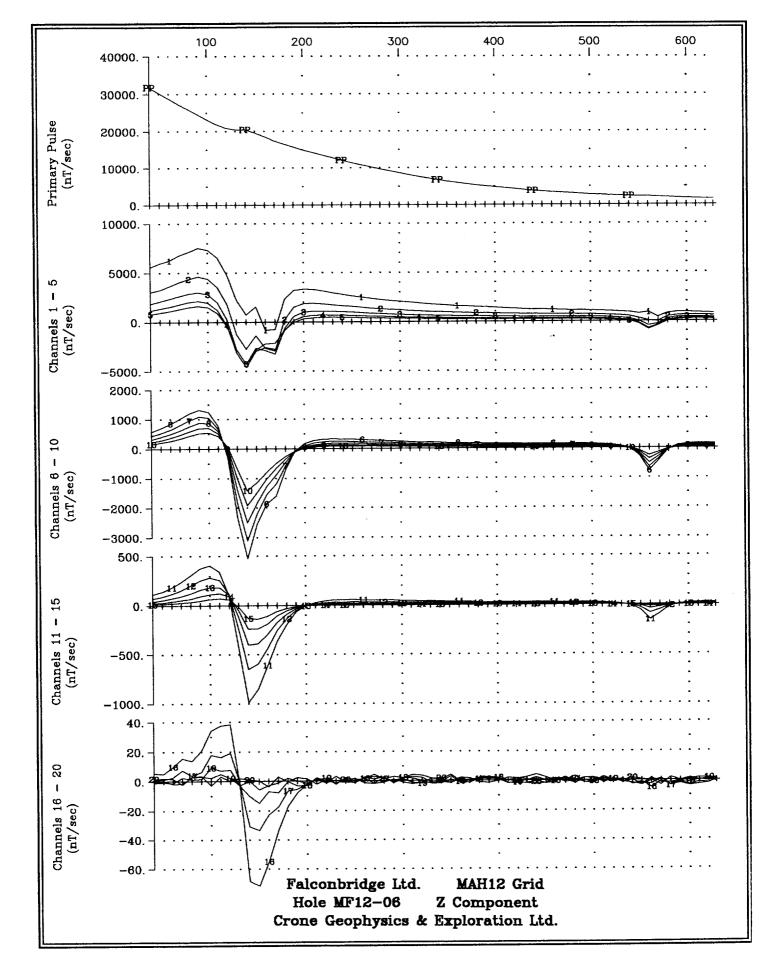
.


ere's

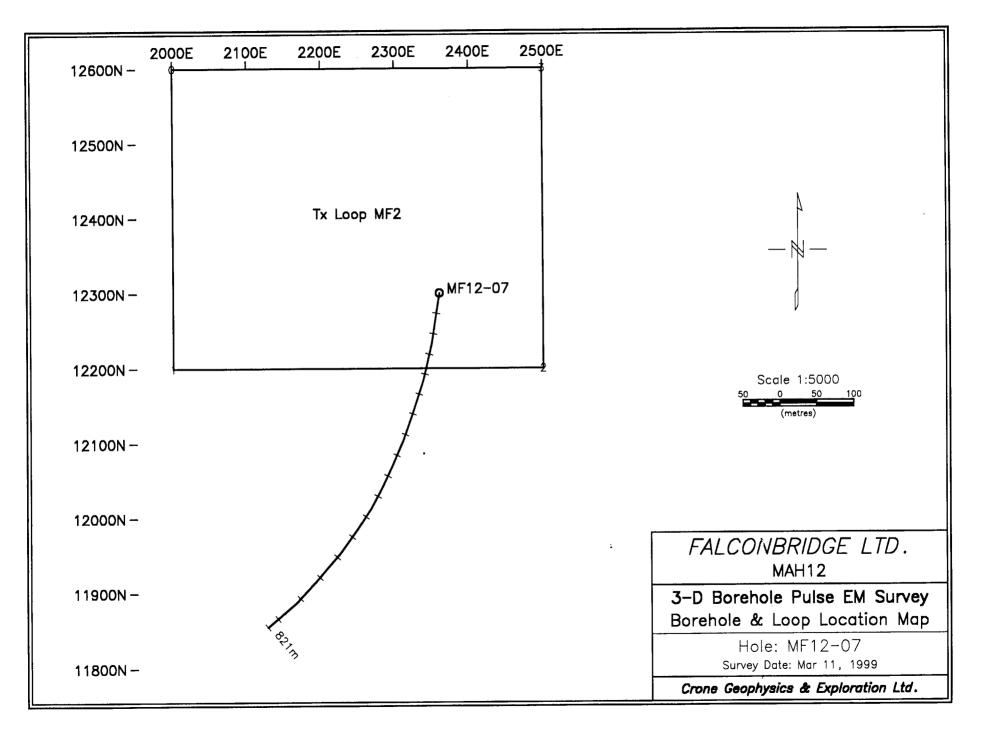
. .

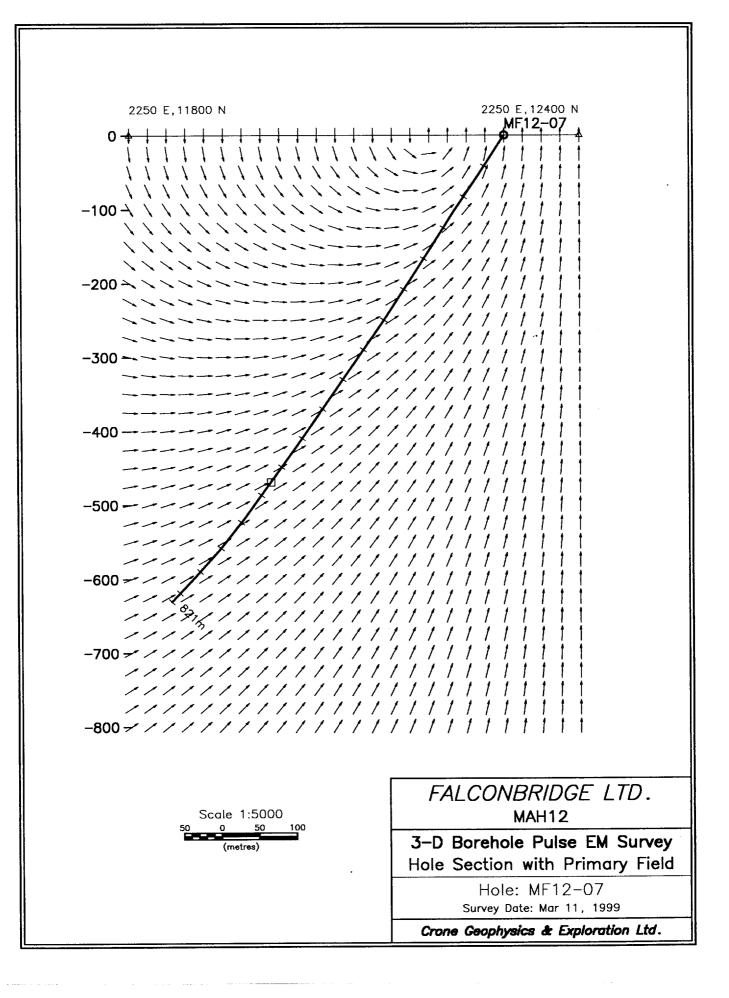


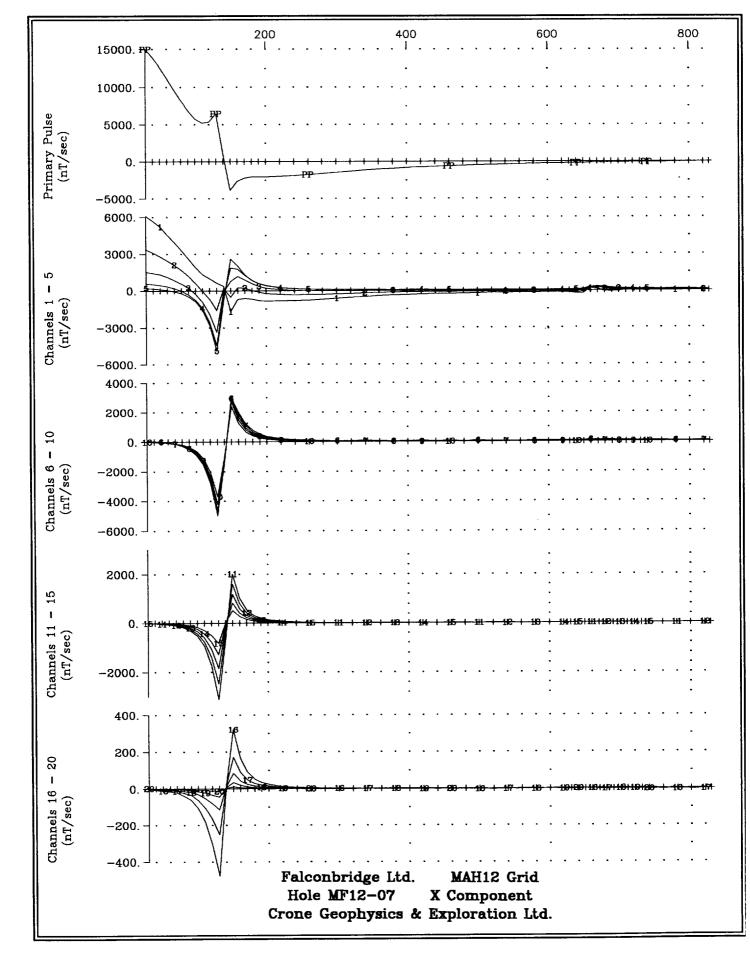
ः. स्वर्थ १


æ

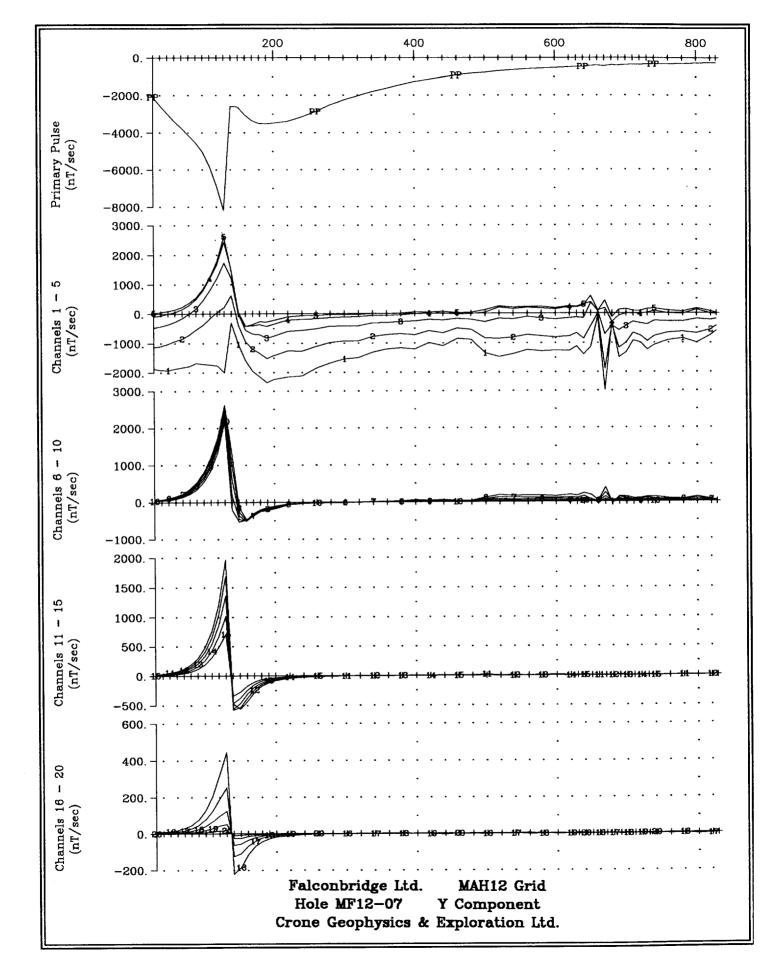
àss‡


.


-


÷

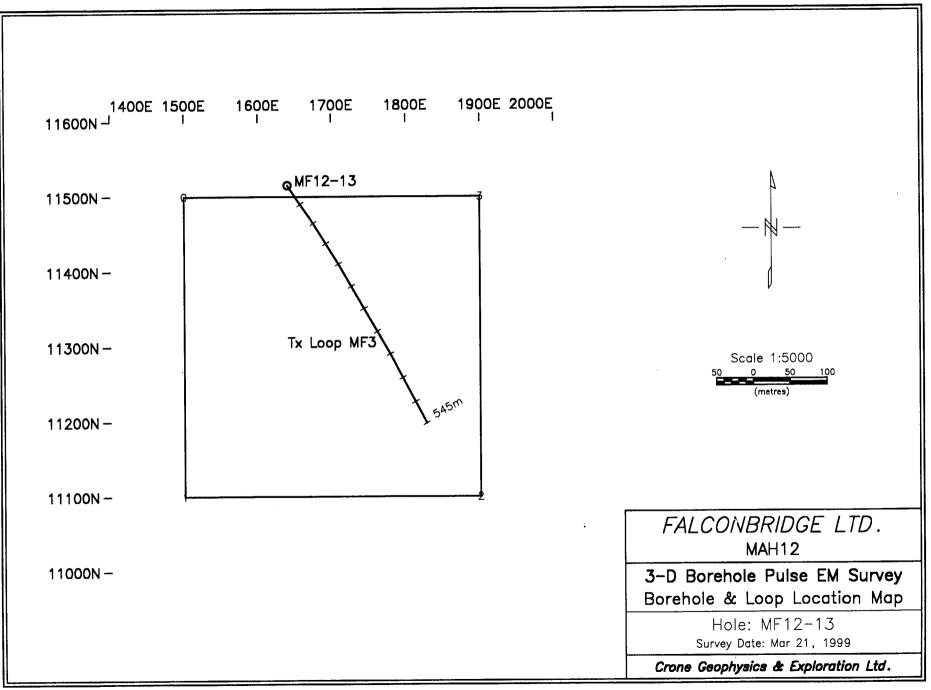
. .

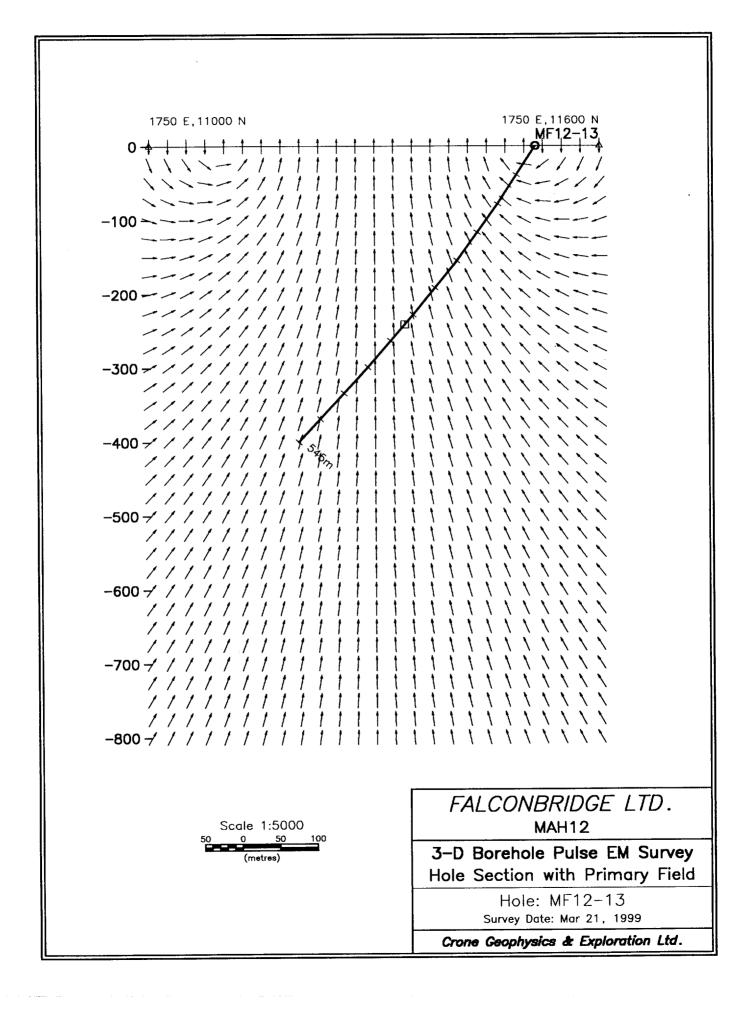


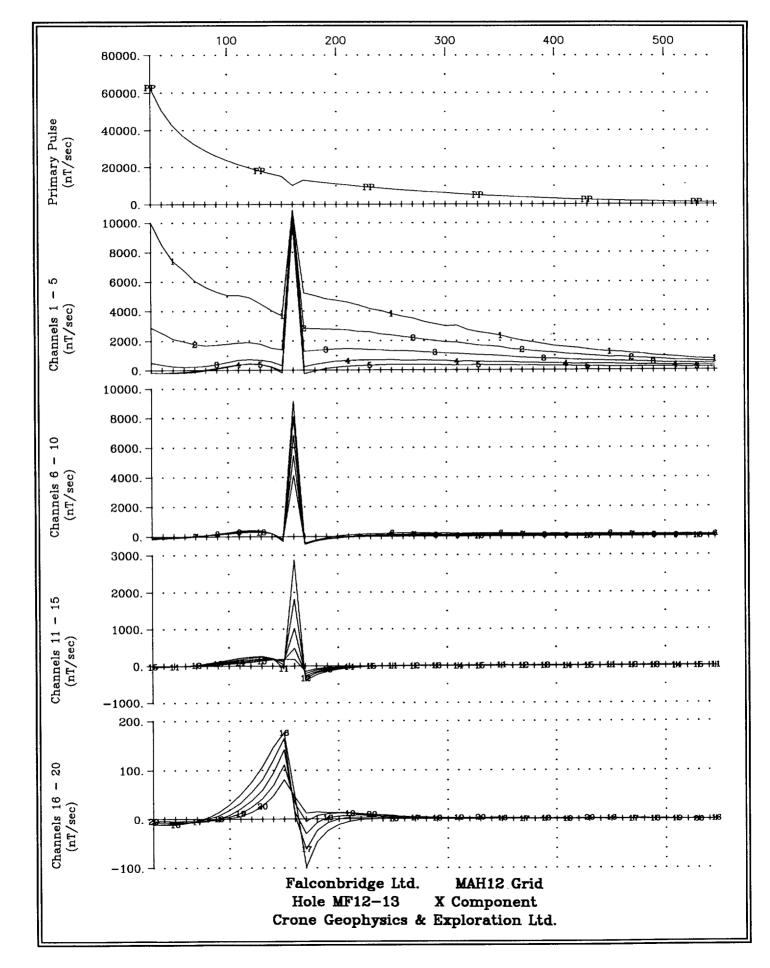
ini Sector


أرموجه

. Бол

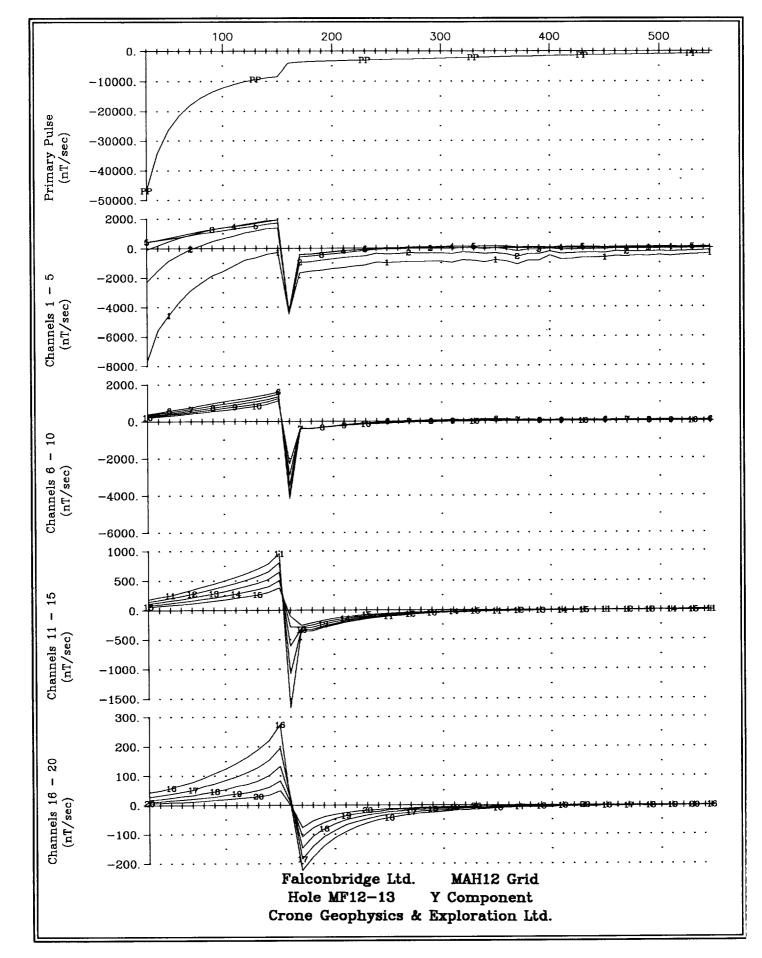


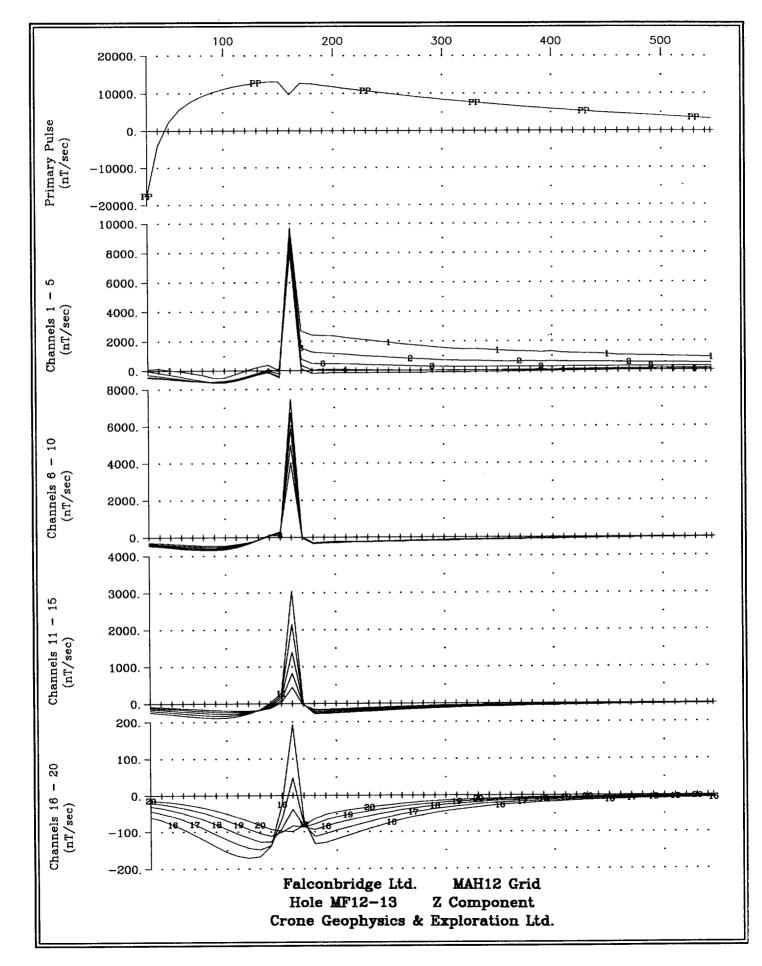

.


أنديو

1

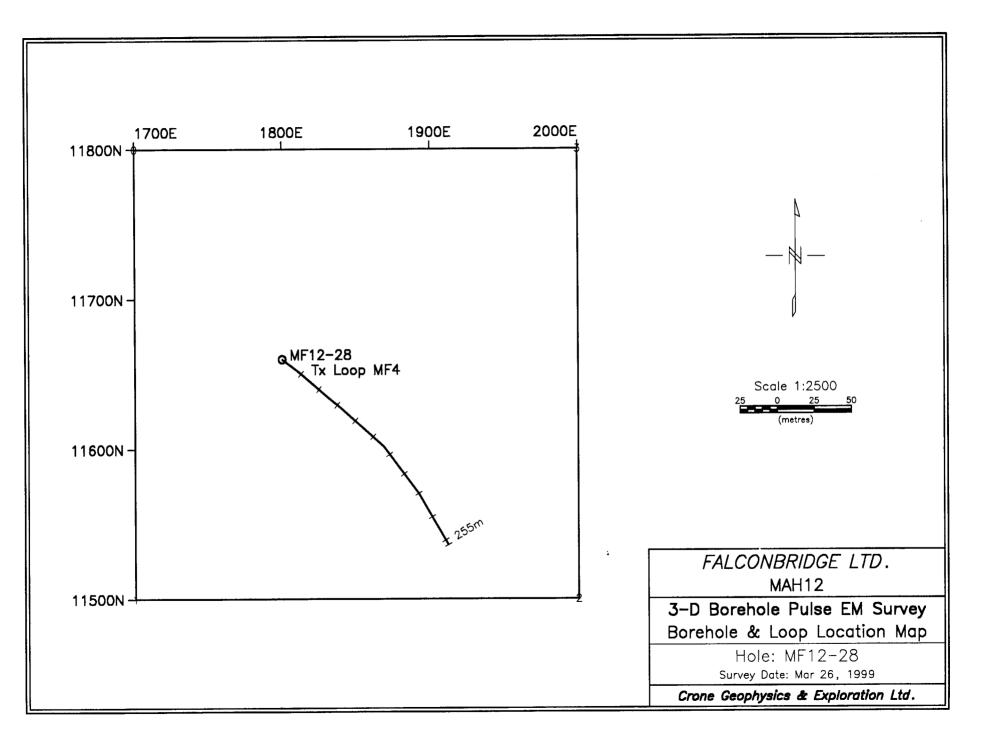
•

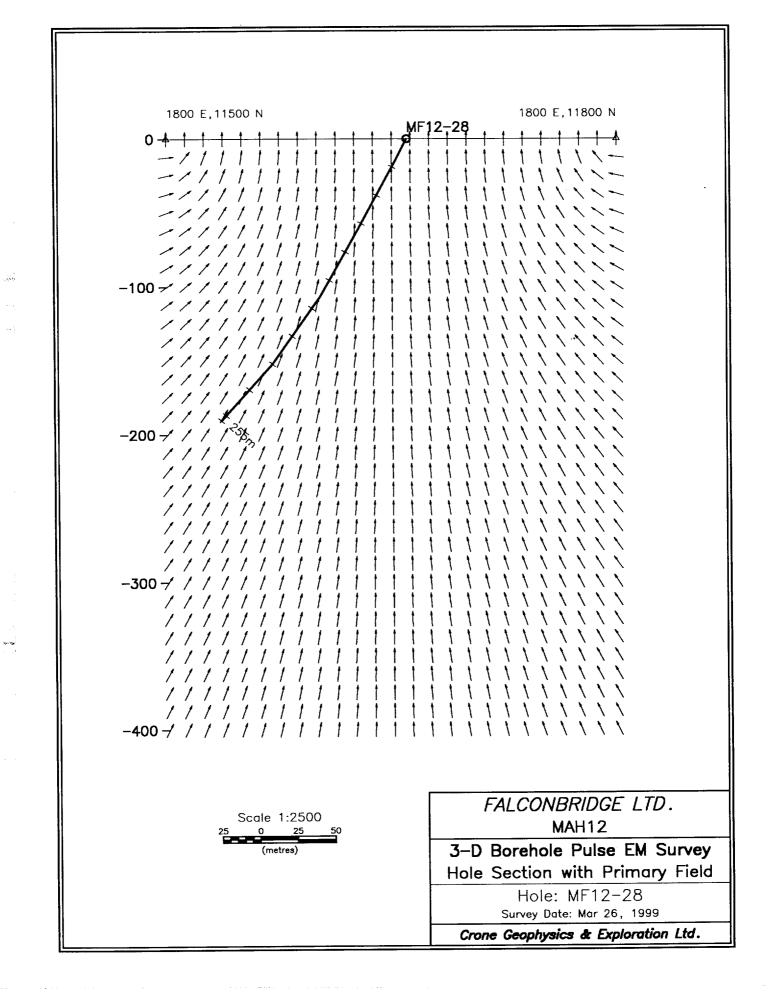


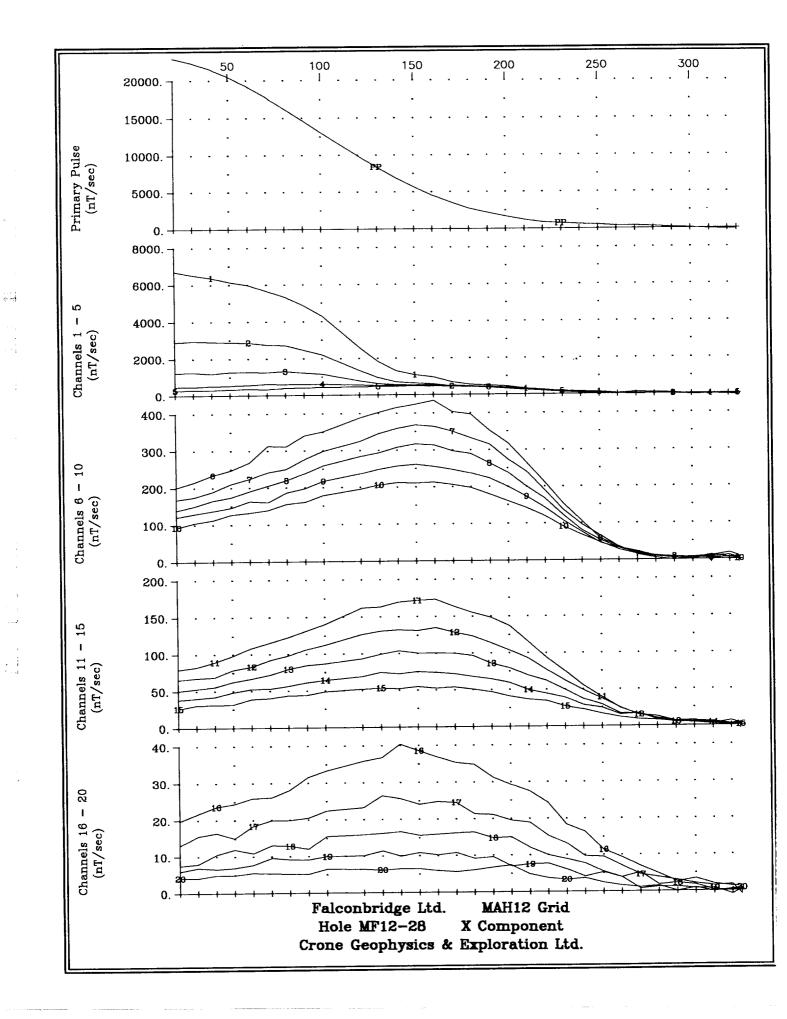

ار یا منطقہ

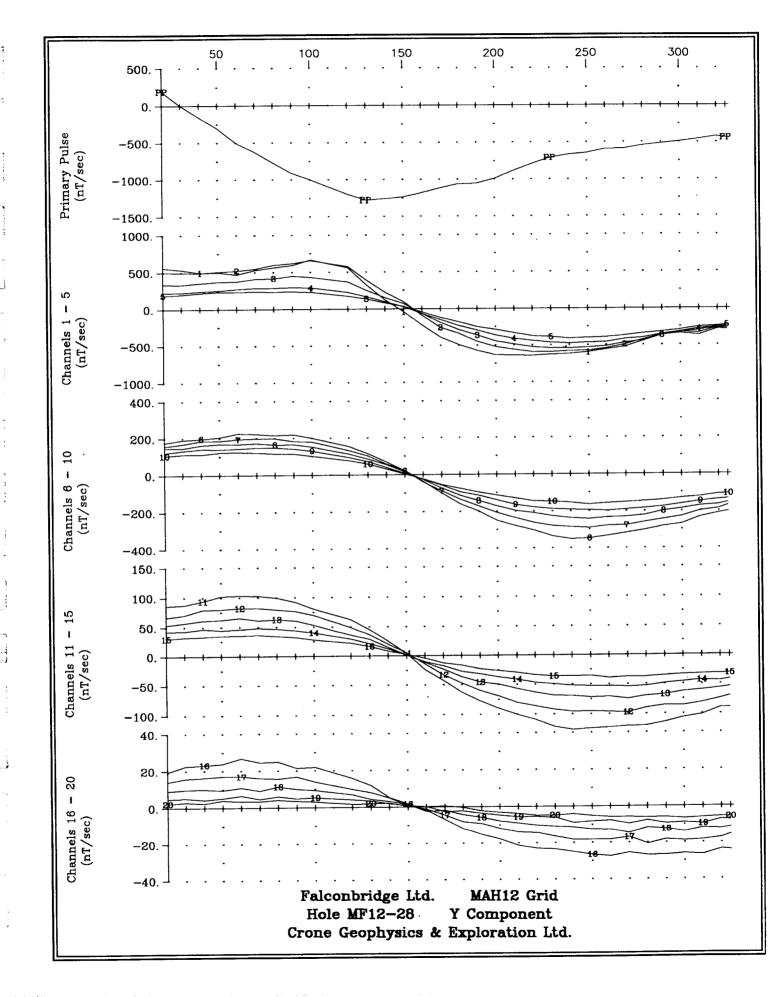
•

<u>م</u>د

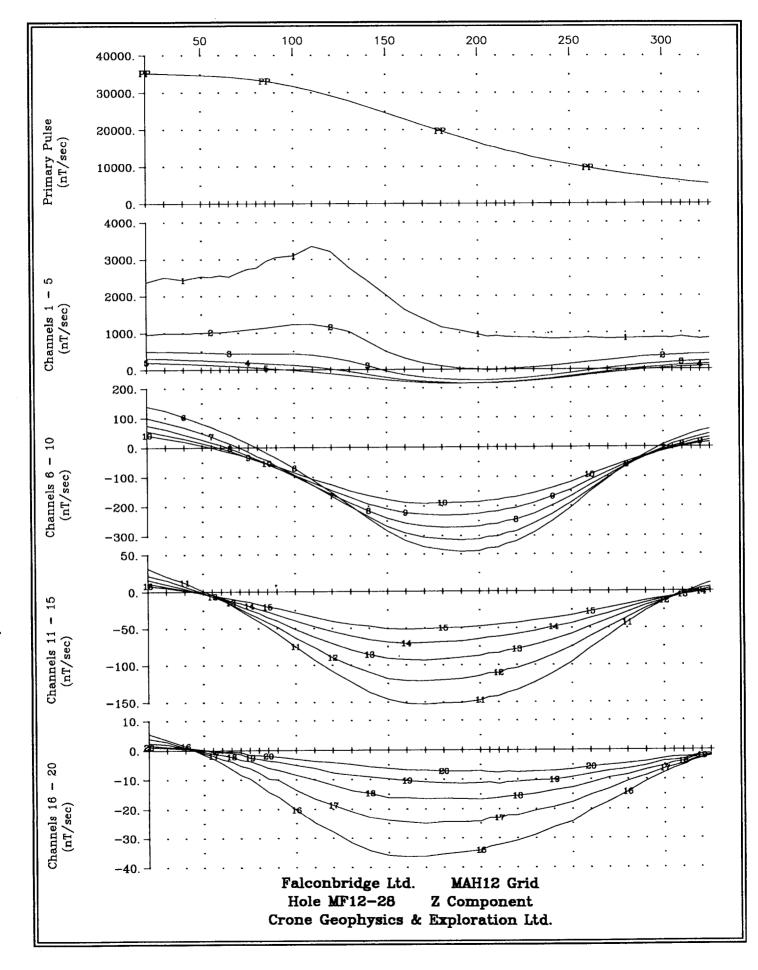

.

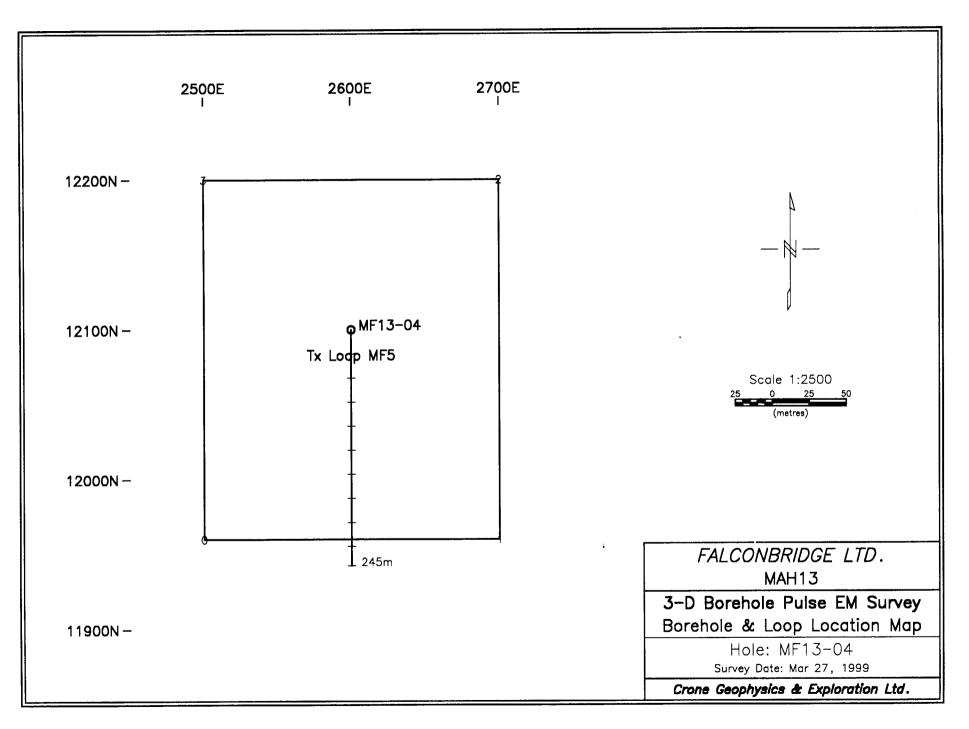


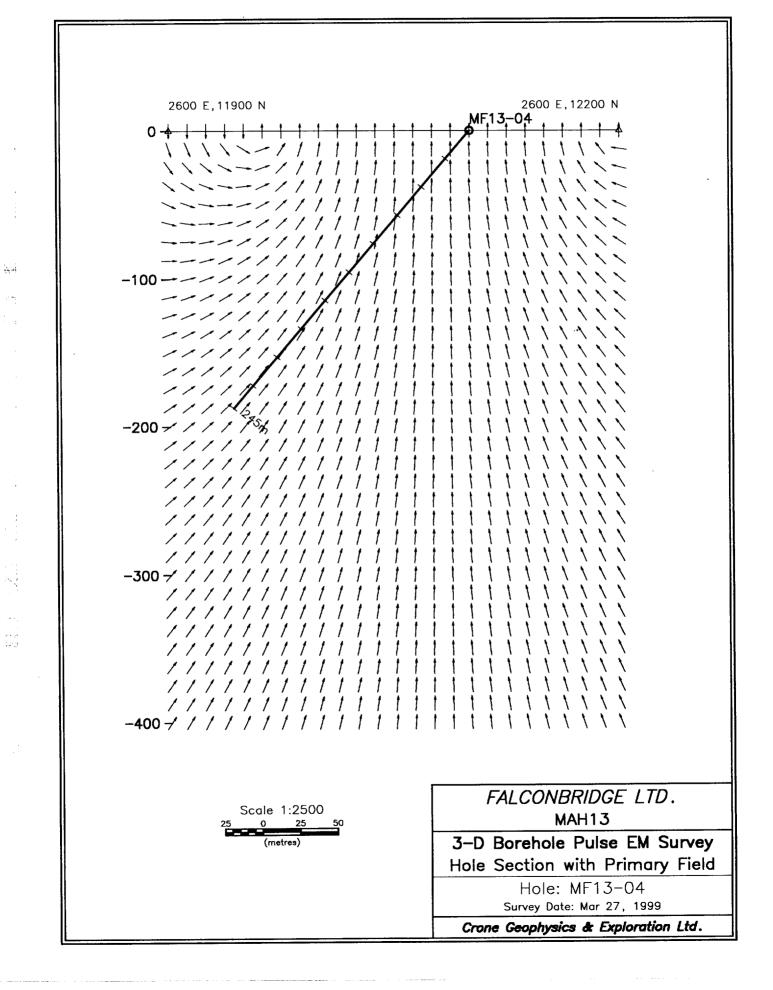

.

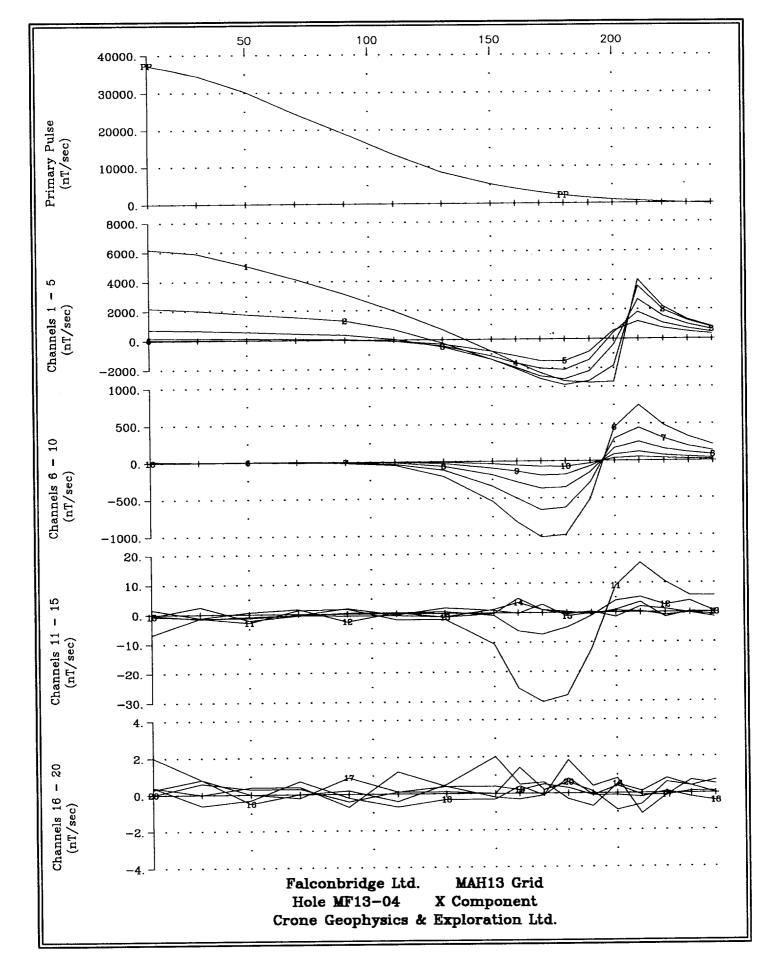

• •

1.000 and 1.000



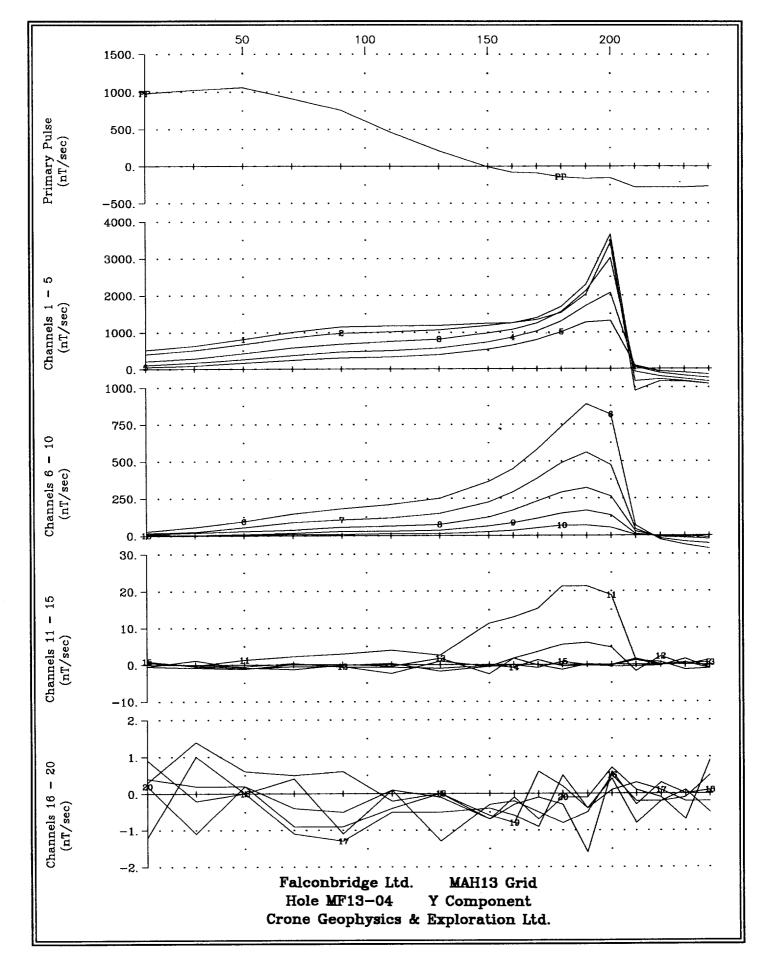



> م د د د د



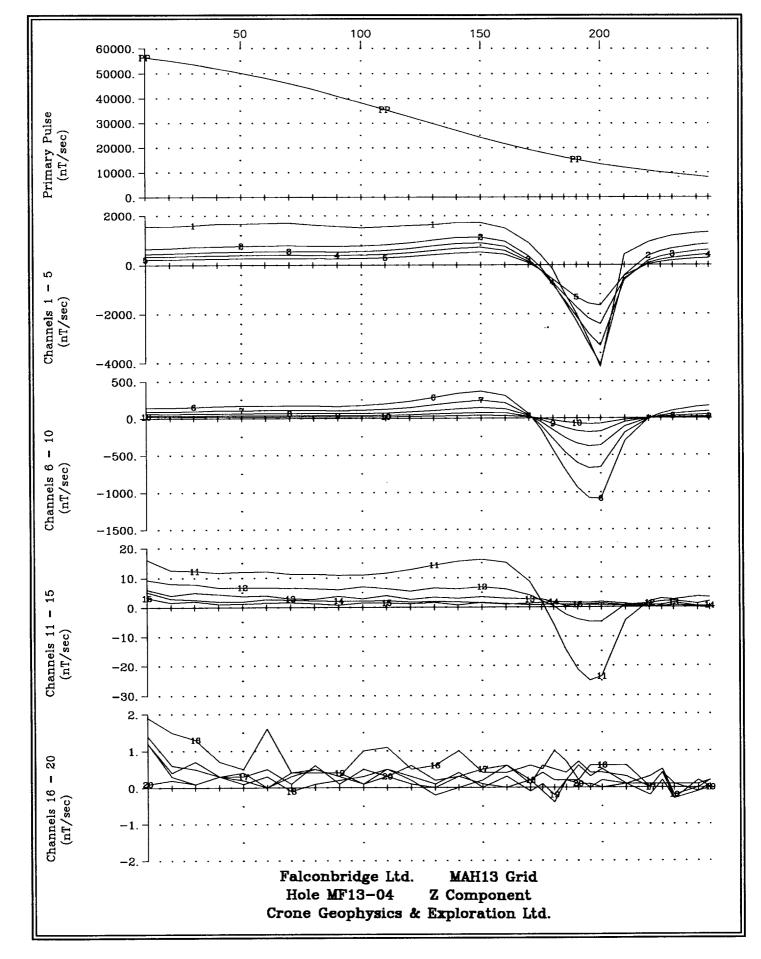
-1

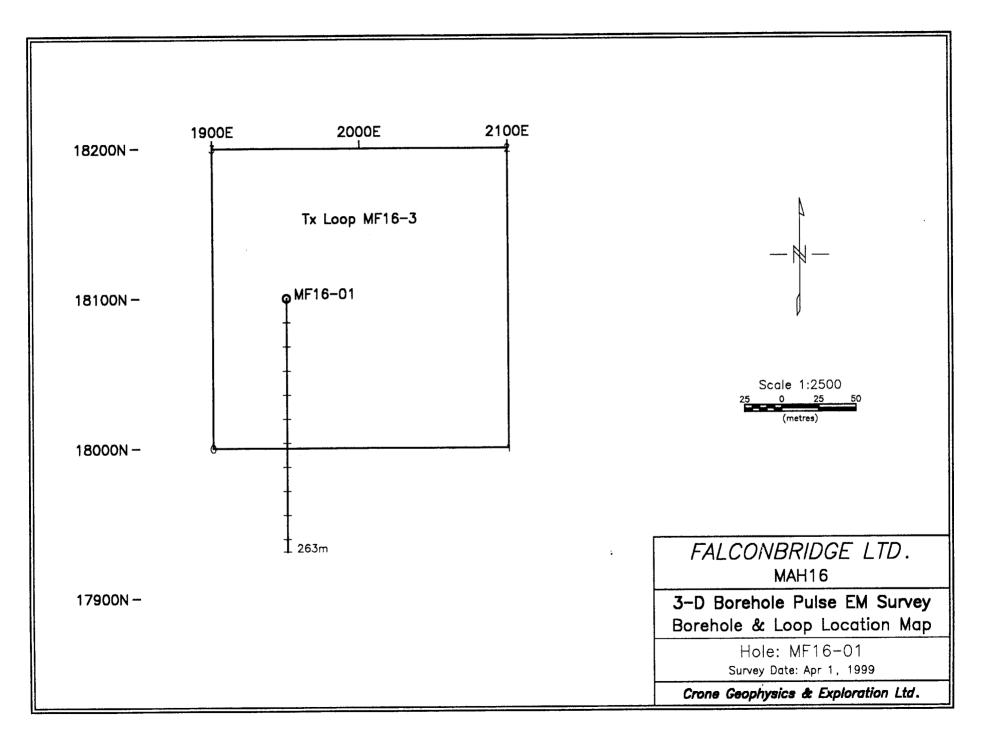
.

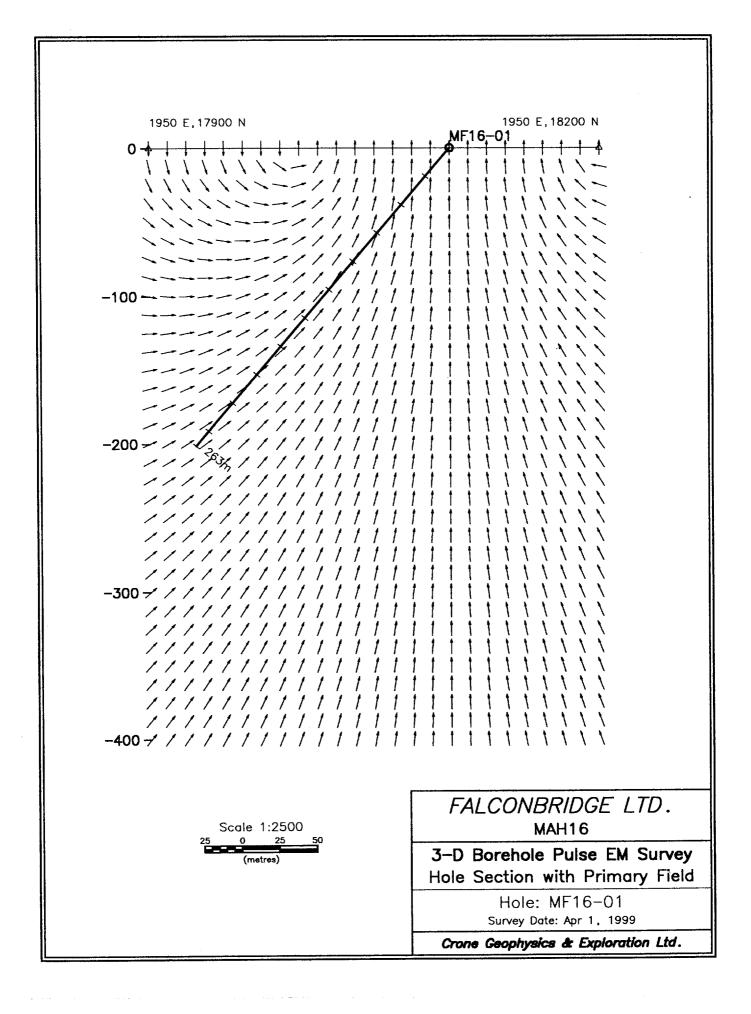


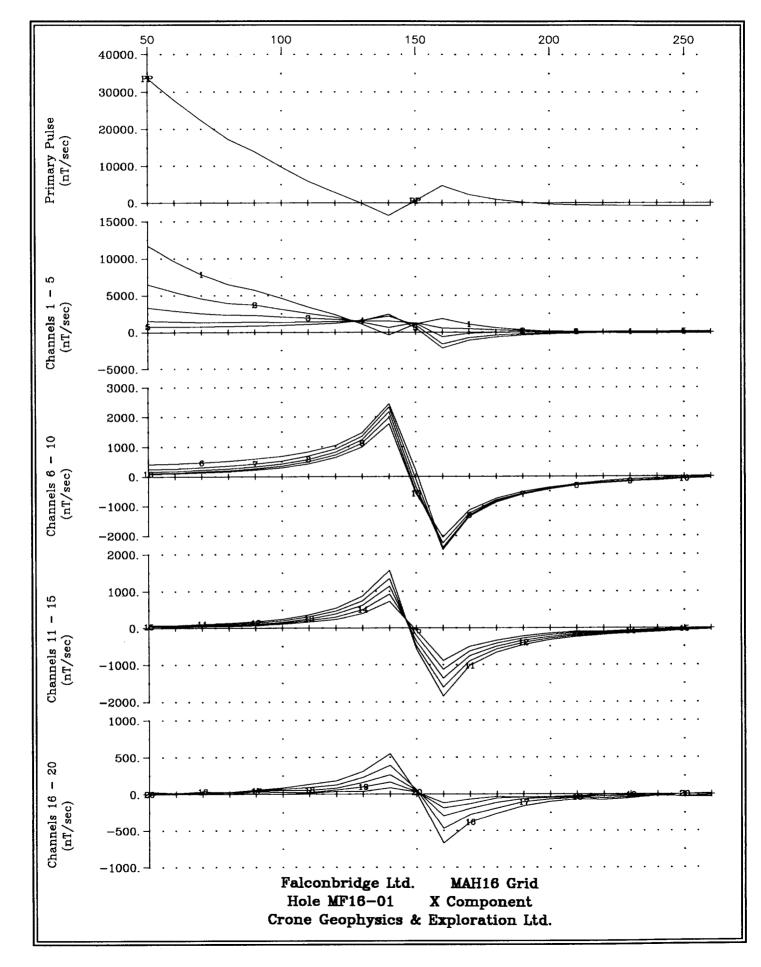
;

1

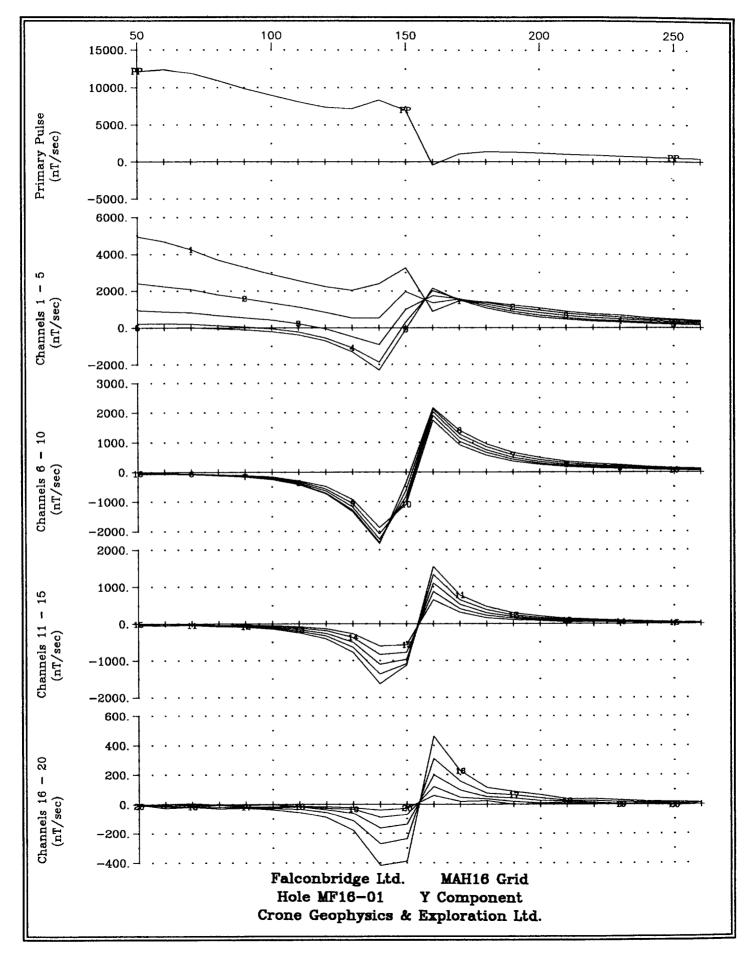

्यः । २.१ २.४२२

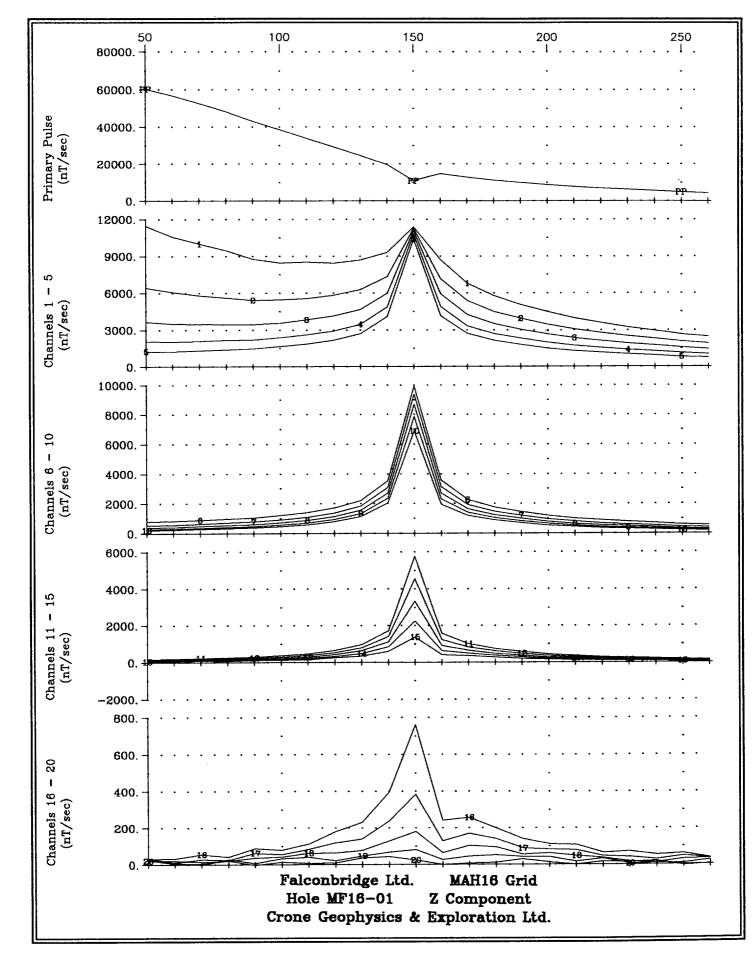

ditin N


.


:

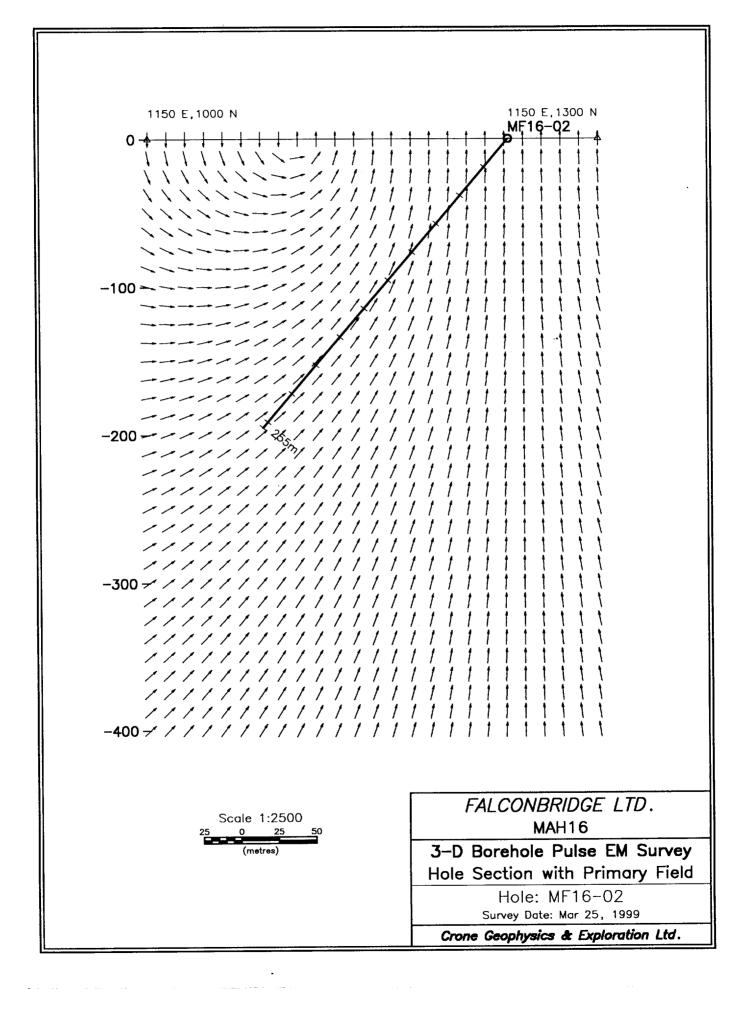
.

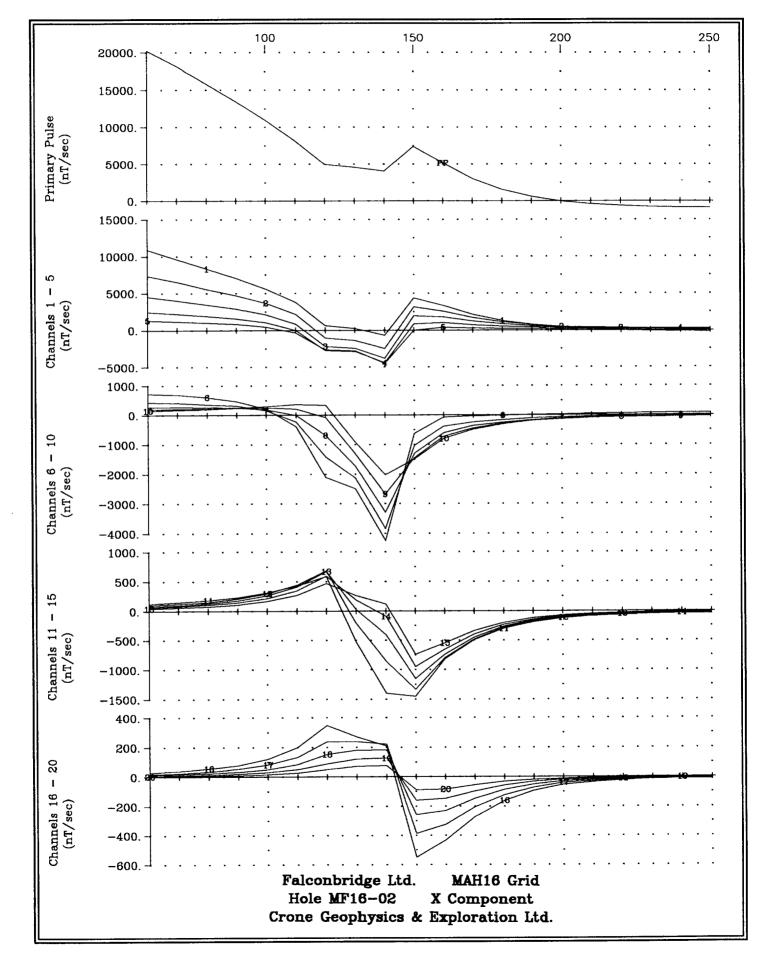




.

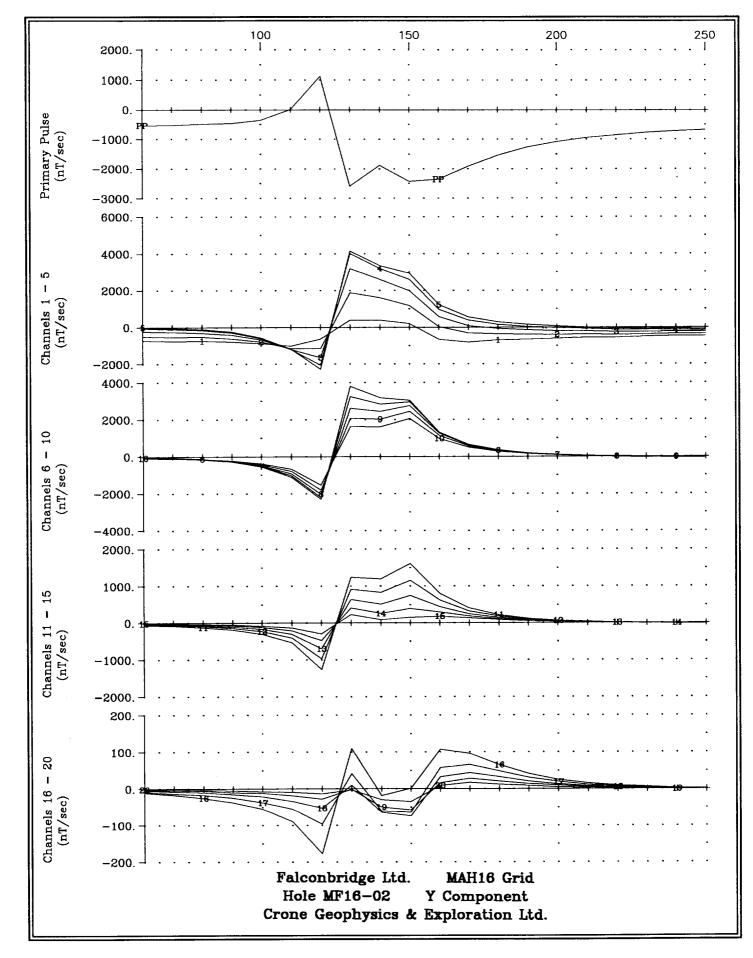
أسنه



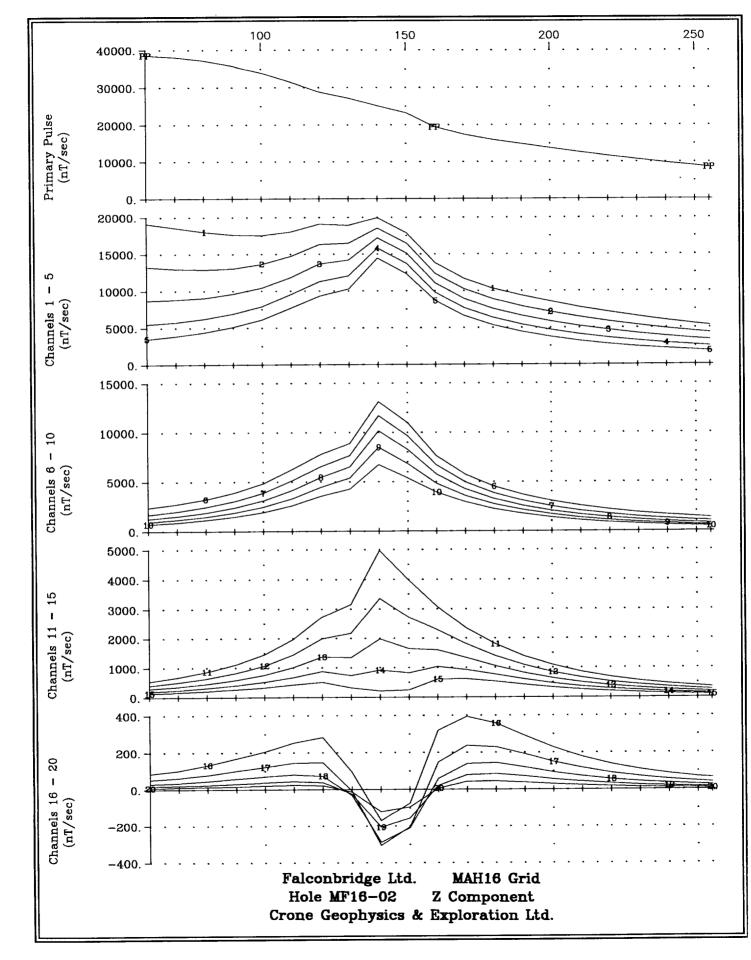


್ಷ

·

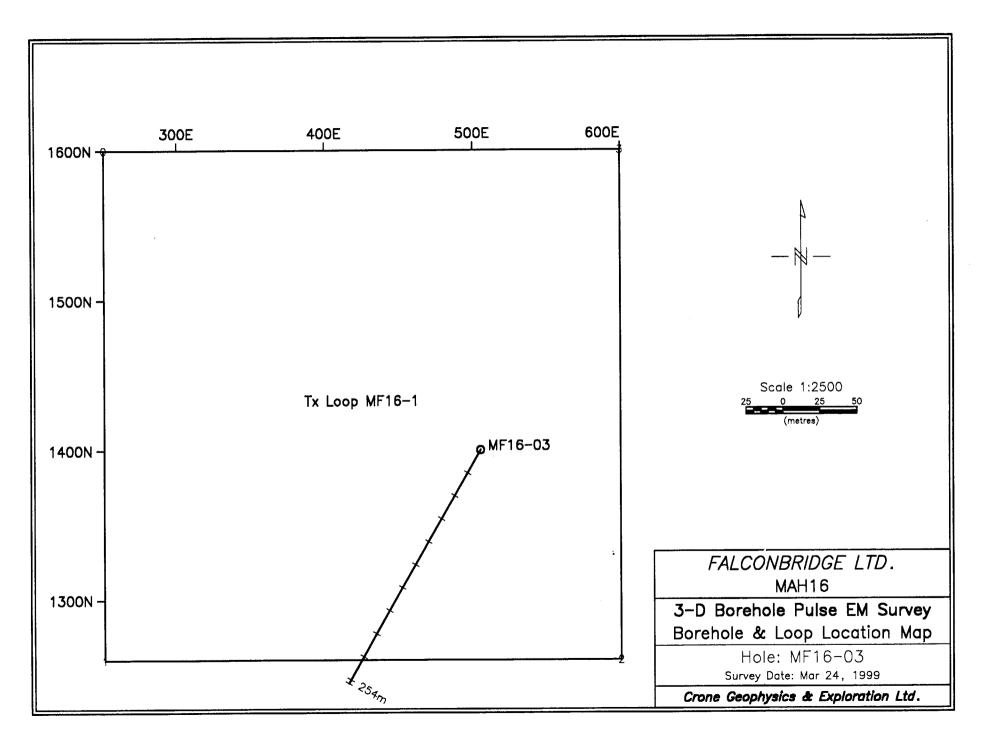

639 -

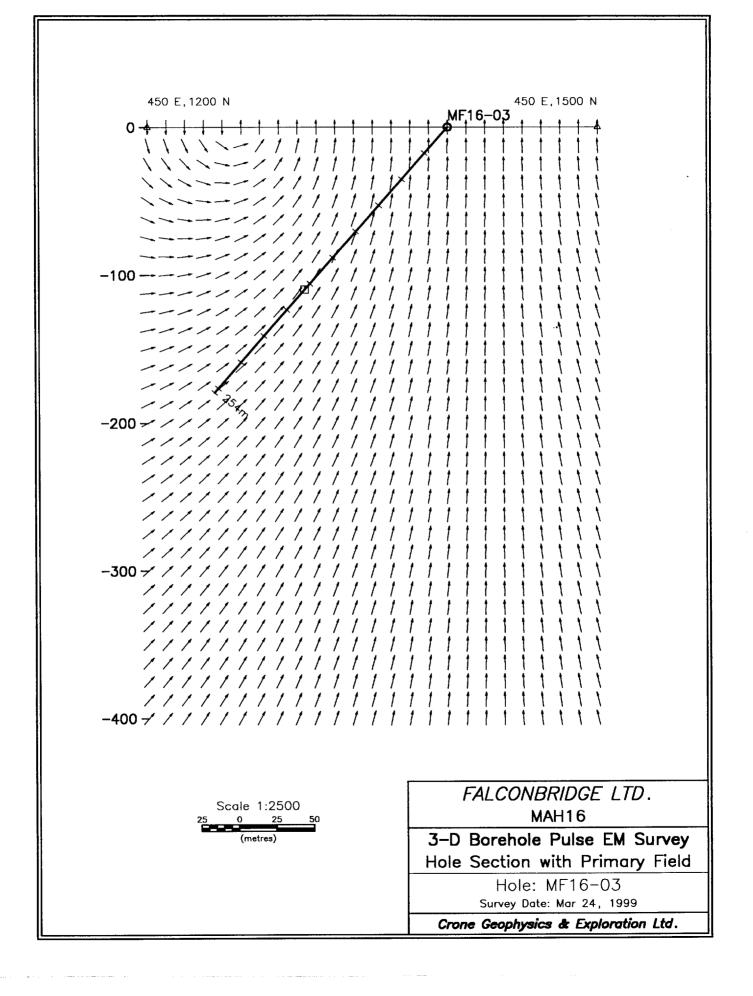
5.5

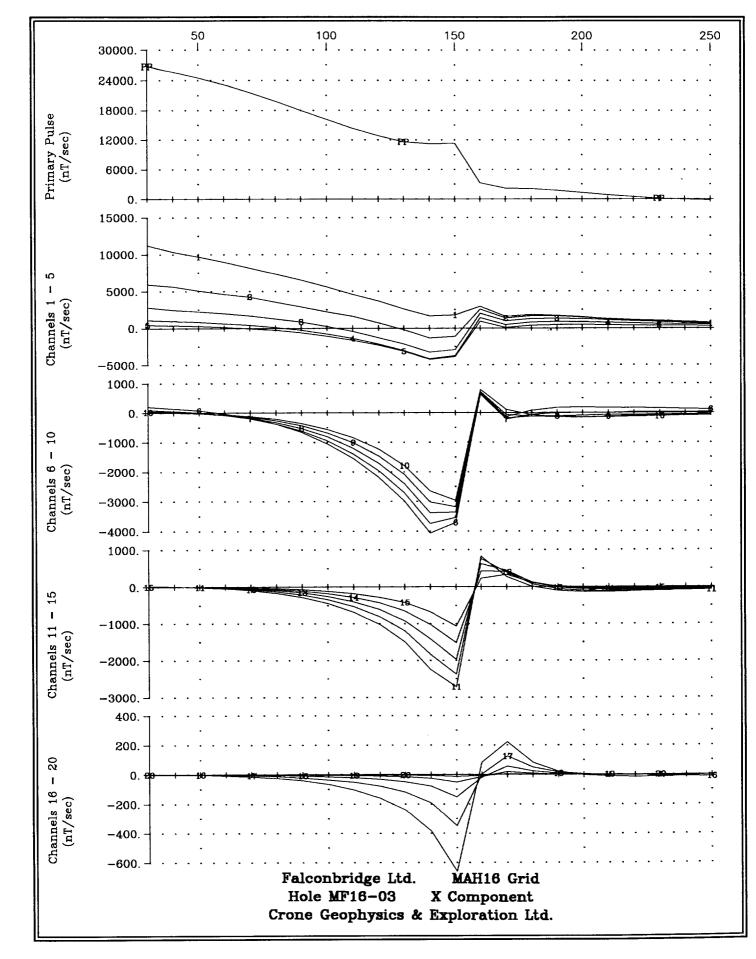

÷

<u>د.</u>

• •

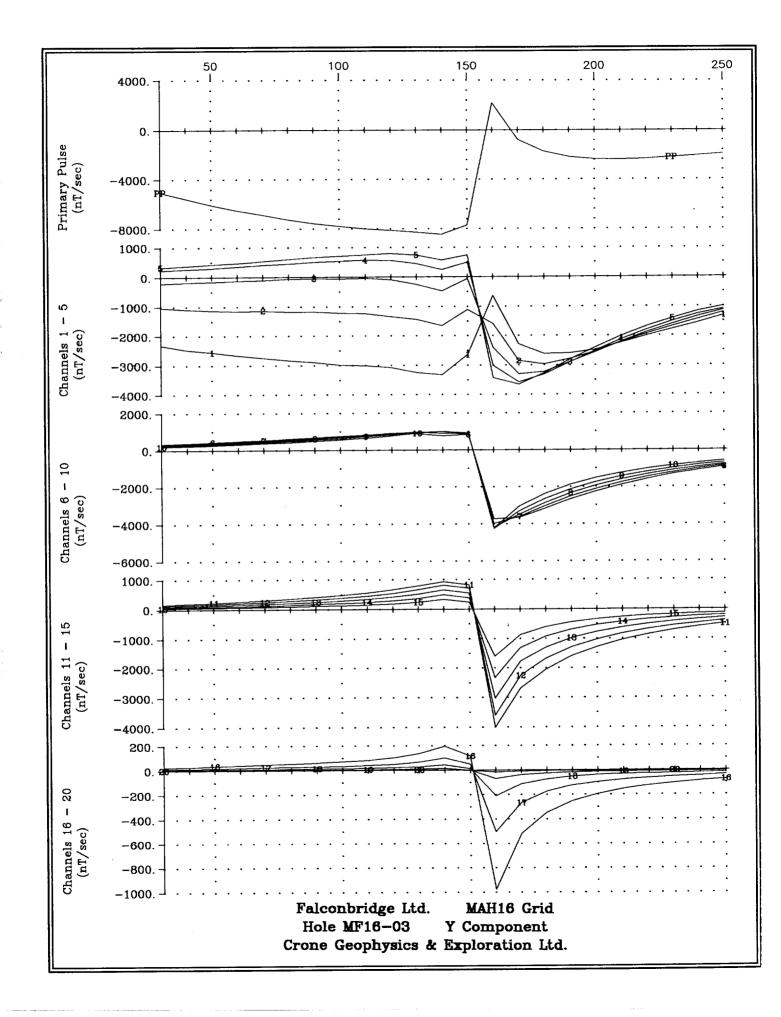


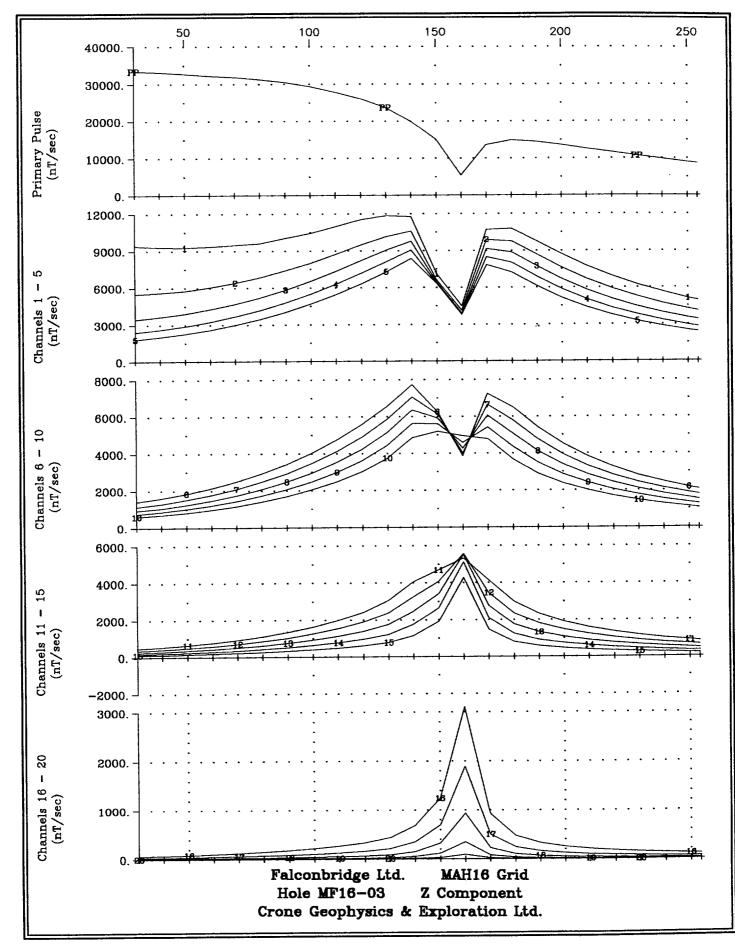

-



and a

. .





.

م. ما دون

.

..

APPENDIX B

. ارت

Pulse EM Data Profiles (Lin-log)

Crone Geophysics & Exploration Ltd.

Client	: FALCONBRIDGE LTD.	Hole : MF12-	-02
Grid	: MAH12	Tx Loop : MF1	
Date	: Feb 22, 1999	File name : M1202	2XYT.PEM

Ĺ.

Ĺ.,

ŧ.

L

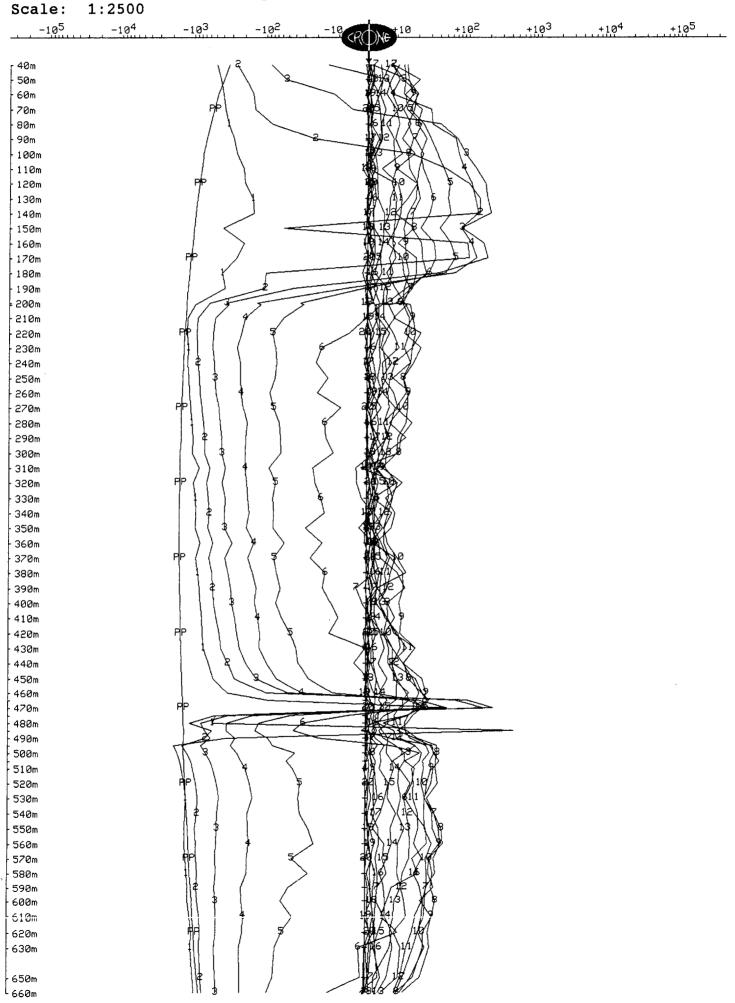
C

L

6.

1999. 1800 -

¥29


Data Corrected for Probe Rotation using Orientation Tool #20 X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

Scale: 1:2500 $\begin{array}{ccc} -10^{5} & -10^{4} & -10^{3} \\ -10^{5} & -10^{4} & -10^{3} \\ \end{array}$	-10 ² , -10 CR(D)(+10	+102	+103	+104	+105
r 40m		1 1 5	t <i>1</i>	I PP	
- 50m) 6)		1	
- 60m		2	4 1 4		
70m			3		
- 80m			4		
- 90m	Liss / be			PP	
- 100m		161	$\{ \mid \}$		
		F			
- 110m		1			
- 120m	TANK \ 4				
- 130m		/ \	T }	PP	
- 140m	Ker \			1 1	
- 150m				t l	
- 160m		1 / /	//		
- 170m				1	
- 180m	CR & L	for a la			
-190m		$\langle \langle \rangle$	{	PP	
⊧200m		The 3	<pre></pre>	1 }	
-210m	2^2	$\gamma \gamma$	\ 2	1	
- 220m		$\{ \setminus \setminus$	\$	ł	
- 230m		1 4		1	
- 240m		(\$ (PP	
- 250m		, , ,		1	
- 260m		$\{ \}$	2		
- 270m	143 146		3	1	
- 280m				1	
- 290m		/] {		PP	
- 300m		1		1	
310m		$\left\{ \right\}$	11	1	
· 320m			1		
330m				4	
· 340m		1 7 1		PP	
350m		₽ <	I I F	1	
360m			1 7 1	1	
370m			3	1	
380m		((4		1	
390m		} \$ [P	
400m		6))			
410m	tation (the second s		2		
420m	<u> 7</u>		3 []]		
430m		} \ 4			
440m		(\$ (
450m		6			
460m		זין ({			
470m		$\langle \langle \rangle \rangle$	\mathcal{F}		
480m		15			
490m					
500m		$\langle \rangle$			
510m		χ	L f		
520m	A A A A	$2 \times 1 \times$	3		
530m	1/10/10/10/10/10/10/10/10/10/10/10/10/10	(){			
540m			PP		
550m	\ ₩\$X }1\< (,) 6)	#		
560m		> 7	\$		
570m		$\{ \{ \{ \{ \} \} \}$	3		
580m		{ } } { 4			
590m	all / lak) { { \$ \$	{ FP		
600m		() & ()	} 1		
610m			1 21		
		<u>}</u>)	± 11		
620m			τM		
630m	W / / / / / / / / / / / / / / / / / / /				
(70)	NKL/////				
650m]]]]]]			
660m	山路)(\ 1シ1 / ン	11611	7 11		

and the second second

Client	: FALCONBRIDGE LTD.	Hole	:	MF12-02
Grid	: MAH12	Tx Loop	:	MF1
Date	: Feb 22, 1999	File name	:	M1202XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool #20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP

×. .

CRONE	GEOPHYS	ICS &	EXPLORATION LTD
	: FALCONBRIDGE : MAH12 : Feb 22, 1999	LTD.	Hole : MF12-02 Tx Loop : MF1 File name : MF1202Z.PEM
	OMPONENT dBz/dt	nanoTesla/s	sec - 20 channels and PP
Scale: 1:2500	-10 ³ -10 ²	-10 RCDNE+10	$+10^2$ $+10^3$ $+10^4$ $+10^5$
40m 50m 60m 70m 80m 90m 100m 110m 120m 120m 130m 140m 150m 160m 170m 180m 190m 200m 200m 200m 200m 200m 200m 200m 200m 200m 200m 200m 200m 200m 300m 310m 320m 300m 310m 320m 300m 310m 320m 300m 340m 400m 440m 440m 440m 440m 440m 440m 440m 440m 440m 440m 440m 440m 440m 500m 500m 500m 510m 520m 500m 500m 510m 500m 500m 510m 500m 500m 510m 500m			

Ľ

[

r-----

,

e . . .

8....

ан) 815

•

ر. س

.....

b.,

Client	: FALCONBRIDGE LTD.	Hole	: MF12-03
Grid	: MAH12		: MF1
Date	: Feb 24, 1999		: M1203XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool #20 X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

Scale:	1:2500	L OIGHT	uba/ uc	nanoresta/sec				
-105	-104	-10 ³	-102	-10 CR(D)NE+10	+102	+103	+104	+105
<u></u>	<u> </u>							
г 30m					$I \rightarrow I$	1 3	1 1 1	
- 40m				1∰ \\ ⋟ 〈		4		
- 50m					5		PP	
- 60m								
- 70m					7		2	
- 80m								
- 90m						T	PP	
-100m					$\ \ \ \ \ \ \ \ \ \ \ \ \ $			
- 110m					\downarrow \backslash \backslash			
-120m						3		
-130m				₩ /, /	$\left(\right)$	4		
-140m					() \$) pp	
- 150m - 160m) 6 /		' f	
170m					え ()	\$ ¢	:	
- 180m				Mage) ((8)		3		
- 190m						4		
- 200m					((\$		PP	
-210m					} 🖣 \		F	
- 220m					$\{ \langle \rangle \}$		1 1	
-230m					\$ \) (
-240m						7	PP	
- 250m							1 T	
-260m					\			
-270m					\$ 1 \	\$	1	
-280m						4		
290m				10	///\$		рþ	
-300m					() \$)	///	1	
-310m				$\mathbf{M} \to \langle$	* { { { { { { { { { { { { { { { { } } } } } } } } }	〈 〈 ≱ 〉	1	
- 320m - 330m) } (1	
- 340m				141 2 2		4		
- 350m)) \$		P	
- 360m					(\$]	I		
- 370m					7	7		
- 380m				₩ > *	{ }]]]]		
- 390m				X × × ×		* / / / pp		
- 400m						///T		
410m					$\langle $	2		
-420m					1 / / /	$\frac{1}{3}$		
-430m						T		
-440m				10 10				
- 450m					\ 6 T			
-460m				7	$\mathbf{z} $	2		
- 470m					$\left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}$	3///		
· 480m								
-490m) \$ / .	/ / PP		
- 500m					(\$)			
-510m					· ¥ } / / /	₽		
- 520m				3 88 ((s	1 { { \$	$\langle $		
- 530m - 540m				1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		$\langle \langle L \rangle$		
- 550m				1/10/10	17.78	(p		
- 550m - 560m				1 the lit I		M.		
570m					1117	112		
- 580m						1411		
- 590m					.el .	6		
600m				The A	じ ししょう	1 #		
-610m					X = X	#		
- 620m				TN8 \) /23	VILLI	1		
-630m				1 Ng (14 Y	#\$111			
- 640m						\$∥∥		
- 650m				KX (A)	$\langle h_1 \rangle \rangle \rangle \rangle \langle \phi \rangle$	181		
- 660m				+ 1947K Ku	ell{[1]]	川		
- 670m - 680m			/	+)(()))))}} <i>)</i> \$} {{	1 (<i>J</i> ^B		
- 690m			/	+ <)>) (++<	1112111	1		
- 700m			P(P	+ 🖗 () 🚈	> <u>}</u>			
710m)	+ (<u>)</u> + ()		1		
- 720m				1 / / X () \ Y	5111111			
- 730m			l	世界1月2月		ſ		
-740m			7-)		
- 750m			PP	T (72 T)		/		
- 760m			{	I W ht	71 Utid			
- 770m]		([] []]			
- 780m			[
290m					17 21 17 17 18			

Client	: FALCONBRIDGE LTD.	Hole :	MF12-03
Grid	: MAH12	Tx Loop :	MF1
Date	: Feb 24, 1999	File name :	M1203XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool #20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP

۰. ..

NA 19

.....

N...

R...

N. -

k...

L.

L. -

ι.

κ.

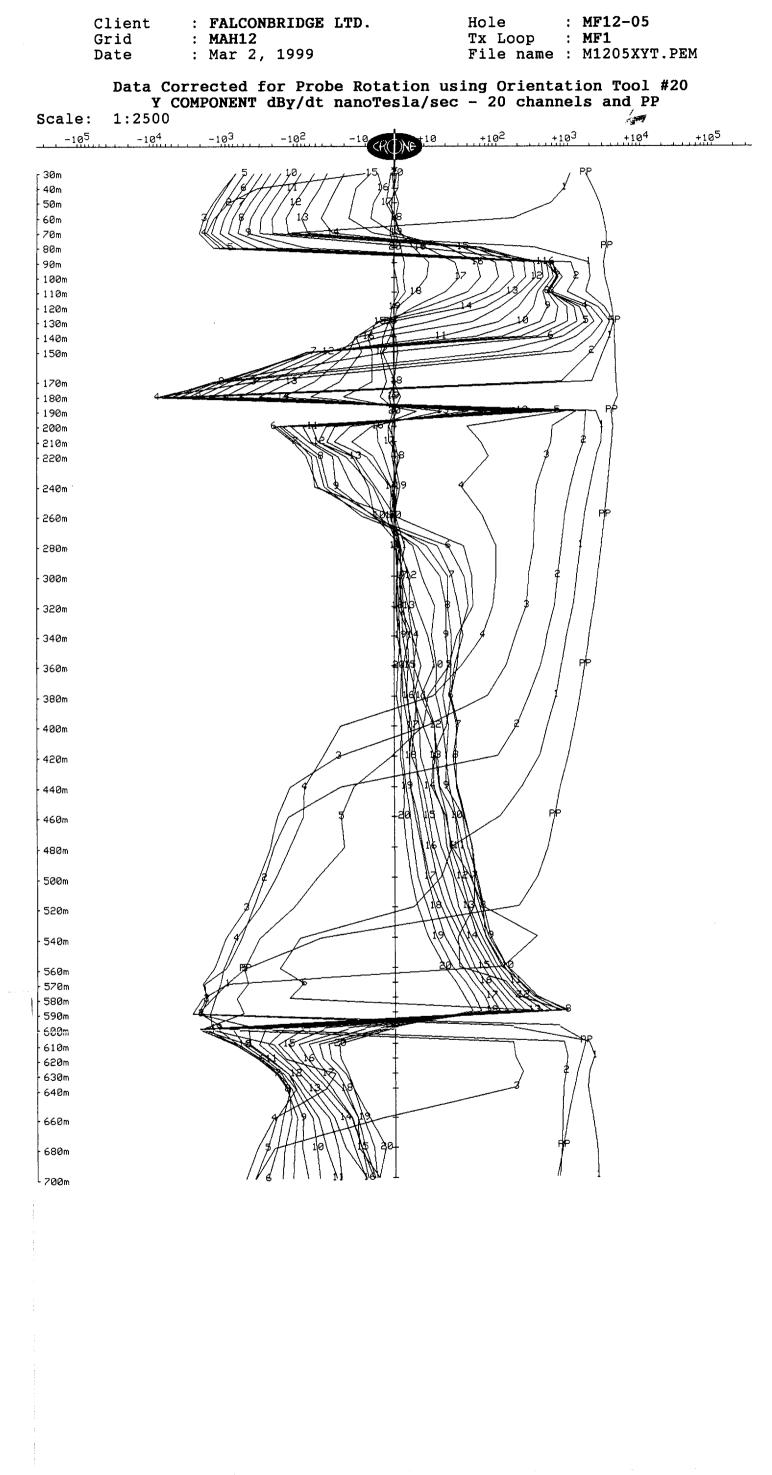
۲.

A. ...

١

k . .

ł,


30m 40m 50m 60m 70m 80m 90m 100m 110m	-105 -104	-10^3 -10^2 -10^2 $+10^3$ $+10^4$ $+10^5$
	SPm	205 1,0 5 PP
		() / / / / / / / / / / / / / / / / / / /
		$\frac{1}{12}$
		a \$ \$\$\$\\ } 1 a\\ \$ }/=1 <i>\$</i> \$/
		B + PETT (PE / P)
	110m	
	120m	
		I I I I I I I I I I I I I I I I I I I
		the second se
		//p/>/ \$ / <
240m 290m 290m 300m 400m 410m		
300n 300n 320n 400n 420n 400n 520n 400n <t< td=""><td>280m</td><td></td></t<>	280m	
330n 930n 360n 480n 430n 500n 500n <t< td=""><td></td><td></td></t<>		
330m 330m 330m 900m 390m 900m 490m 900m 490m 900m 390m 900m <t< td=""><td></td><td></td></t<>		
360n P		
370m 400m 400m 400m 420m 400m 520m 400m <t< td=""><td></td><td></td></t<>		
990n F0 0		
390m 400m 420m 400m 510m 400m 520m 400m 530m 400m 540m 400m 520m 400m 530m 400m 540m 400m 520m 400m <t< td=""><td></td><td></td></t<>		
400m 410m 420m 40m 430m 40m 430m 40m 430m 40m 450m 40m 460m 40m 480m 40m 480m 40m 500m 40m 510m 40m 520m 40m 620m 40m		
410n 420n 420n 430n 440n 450n 450n 470n 490n 500n 500n 510n 530n 540n 530n 540n 550n 550n 560n 560n 560n 560n 560n 560n 560n 560n 560n 560n 560n 560n 560n 560n 560n 560n 560n 560n 570n 560n 570n 590 590n 5900 59000 59000 59000 59000 59000 59000000		
420m P		
438m FP F F F F 440m F F F F F 460m F F F F F 498m F F F F F 500m F F F F F 520m F F F F F 530m F F F F F 630m F F F F F 630m F F F F F		
440m 450m 470m 490m 500m 500m 510m 522m 530m 540m 540m 540m 550m 520m 540m 640m 640m <td></td> <td></td>		
450m 470m 480m 490m 510m 520m 510m 530m 530m 540m 550m 550m 560m 570m 560m 570m 560m 570m 560m 570m 560m 570m 580m 590m 600m 570m 580m 590m 590m <td>440m</td> <td></td>	440m	
440m 470m 490m 500m 510m 520m 530m 530m 530m 530m 540m 550m 560m 560m 560m 560m 560m 500m 560m 570m 610m 620m 630m 640m 630m 640m 630m 640m 640m <td>450m</td> <td></td>	450m	
490m 490m 510m 510m 520m 530m 520m 530m 530m 530m 560m 560m 560m 560m 580m 680m 630m 640m 630m 730m 730m 730m 730m 730m 730m		
499m 510m 512m 522m 530m 544m 550m 570m 572m 572m 580m 580m 580m 580m 580m 580m 580m 580m 580m 610m 620m 630m 640m 640m 650m 640m 650m 640m 640m 640m 640m 640m 640m 640m 640m 650m 70m		
500m 510m 520m 530m 540m 550m 560m 560m 570m 580m 630m 640m 650m 660m 670m 710m 720m 730m 740m 710m 720m		
300m 10 10 10 10 520m 10 10 10 10 530m 10 10 10 10 560m 10 10 10 10 570m 10 10 10 10 580m 10 10 10 10 610m 10 10 10 10 620m 10 10 10 10 630m 10 10 10 10 640m 10 10 10 10 660m 10 10 10 10 690m 10 10 10 10 720m 10 10 10 10		
520m 10 10 10 10 530m 10 10 10 10 560m 10 10 10 10 570m 10 10 10 10 580m 10 10 10 10 580m 10 10 10 10 580m 10 10 10 10 610m 10 10 10 10 620m 10 10 10 10 630m 10 10 10 10 640m 10 10 10 10 660m 10 10 10 10 660m 10 10 10 10 700m 10 10 10 10		
530m 540m 550m 11 560m 10 570m 10 580m 10 580m 10 590m 10 600m 10 620m 10 630m 10 640m 10 630m 10 640m 10 710m 12 730m 12 740m 12		$1/1$ 4 $100 \sqrt{4}$
540m 550m 560m 570m 580m 580m 590m 600m 610m 620m 630m 640m 650m 650m 660m 670m 770m		Here / / Lesse / Lesse /
550m 560m 570m 580m 580m 580m 590m 600m 610m 620m 630m 630m 640m 650m 650m 660m 670m 680m 690m 70m 710m 720m		IV hat III be
560m 572m 580m 590m 600m 610m 620m 630m 640m 650m 660m 670m 680m 690m 730m 730m 730m 750m 750m 750m		12 / L HANET I stellar
570m 580m 590m 620m 620m 620m 630m 640m 650m 660m 670m 720m 720m 720m 720m		1) by > +1/ HeT (THETH)
580m 590m 610m 620m 630m 630m 630m 640m 650m 660m 670m 680m 690m 70m 720m 730m 730m 740m 750m 760m 720m		N/ aHAPT THAT ILLAN
590m 610m 620m 630m 630m 640m 650m 660m 670m 680m 690m 70m 710m 720m 730m 750m 760m 770m		HP 5
600m 610m 620m 640m 650m 660m 660m 660m 6670m 680m 680m 780m 710m 720m 730m 740m 750m 760m 760m		$\{(1) \mid (1) \mid (1)$
610m 620m 640m 650m 660m 6670m 6670m 680m 690m 710m 720m 720m 730m 740m 750m 760m 770m		₹\\
620m 630m 640m 650m 660m 660m 660m 670m 680m 690m 700m 710m 720m 720m 730m 730m 750m 760m 760m 770m		\\$\
630m 640m 650m 660m 660m 670m 680m 690m 700m 710m 720m 720m 720m 730m 730m 730m 740m 750m 750m 760m 760m		114 127 127 127 18
640m 650m 660m 670m 680m 690m 700m 710m 720m 720m 730m 730m 750m 750m 760m 770m		NPP \$ / TRP//29 //299
650m 660m 680m 690m 700m 710m 720m 720m 730m 730m 730m 730m 730m 730m 730m 740m 750m 750m 760m	-640m	HII &
670m 680m 700m 710m 720m 720m 720m 720m 720m 730m 730m 730m 730m 730m 740m 750m 760m 770m	-650m	
- 688m - 760m - 710m - 720m - 720m - 740m - 750m - 740m		
690m 700m 710m 720m 720m 720m 730m 730m 730m 730m 730m 730m 730m 730m 730m 730m 730m 730m 730m 730m 740m 730m 740m 730m 740m 730m 740m		
700m 7 10 710m 7 10 720m 7 14 720m 7 14 730m 7 15 740m 7 12 750m 7 12 760m 7 13 770m 7 13		
710m 8 14/15 720m 14/15 730m 14/15 730m 11 740m 12 750m 12 760m 13 770m 13		
- 720m - 730m - 740m - 750m - 760m - 770m		ATT A A AND
- 730m - 740m - 750m - 760m - 770m		ANN TOH Fridan
- 730m - 740m - 750m - 760m - 770m		North 1 1 201 / 15 200 -
- 750m - 760m - 770m		
- 760m - 770m -		λ \pm \pm λ \pm λ
- 770m		{#{\(\$\$\0\1\$\K}}
		₹ ₹////¥/₹/}}
		$/ \frac{1}{2}$

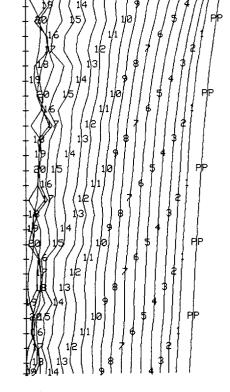
		GEOPHIS BO	IC5 & I REHOLE	PEM	ATION LTD
	Client Grid Date	: FALCONBRIDGE : MAH12 : Feb 23, 1999		Tx Loop	: MF12-03 : MF1 : MF1203Z.PEM
Scale		OMPONENT dBz/dt	nanoTesla/se	c - 20 chan	nels and PP
-10		-103 -102	-10 CRONG+10	+102	+10 ³ +10 ⁴ +10 ⁵
r 30m				2,,,,7,,,	, 2 , ,
- 40m			1 /3		3
- 50m - 60m				10 5	PP
- 70m					
- 80m - 90m					3
- 100m					
- 110m - 120m				{ \$	
-130m				>>]] .	8
- 140m - 150m				{	
-160m			10	/// 1	PP
- 170m - 180m				<i>₹Ĭ</i>	¢ [
- 190m			* \{{}	>////	
-200m -210m				/ \$ 1	PP
220m				6	
- 230m - 240m					
250m				$) \downarrow + $	PP
- 260m - 270m			XXXX \		
- 280m				> 7 \ \	2
- 290m - 300m					
-310m			2010	(([\$	PP
- 320m - 330m				11175	<i>a</i> []
- 340m			1)))) }	
- 350m - 360m				, , , , , , , , , , , , , , , , , , ,	PP
- 370m					
- 380m - 390m					
- 400m			104,09	• 4	
-410m -420m					PP
- 420m - 430m				}	\$
- 440m					
- 450m - 460m			2010	((\$	PP
- 470m					2
- 480m - 490m			148	\$ \$	
- 500m				/ / 4	PP
- 510m - 520m				} € [
- 530m]	
540m 550m				(لو ا کر کر	/// 1
560m					PIP I
- 570m - 580m					$\left\{ \right\}$
- 590m			114/19	× 3)	
-600m -610m			////u=)#= + = =		PP
- 620m		ł			
- 630m - 640m		4			
- 650m		ŧ	A LA LA	5 4	PP
- 660m - 670m			WITHAK 77 ~	$\langle \rangle $	
-680m			Well Ball		2
- 690m - 700m			WHEET -	$ \setminus \setminus \downarrow \downarrow$	
-710m				\ <u></u>	
- 720m - 730m			MAL)	$\left \left \left \right \right \right $	ŧ []
-740m					
- 750m - 760m				a {	PP
- 770m				\	
- 780m - 790m					
7 2011				\\&\]]]4//	1 1

Client	: FALCONBRIDGE LTD.	Hole : MF12-05	
Grid	: MAH12	Tx Loop : MF1	
Date	: Mar 2, 1999	File name : M1205XYT	.PEM

Data Corrected for Probe Rotation using Orientation Tool #20 X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

(Client Grid Date	: FALCONBRIDGE LTD : MAH12 : Feb 25, 1999). Hole : MF12-05 Tx Loop : MF1 File name : MF1205Z.PEM
Scale:	z co 1:2500	OMPONENT dBz/dt nan	oTesla/sec - 20 channels and PP
-10 ⁵	-104	-10 ³ -10 ² -1	$9 + 10 + 10^2 + 10^3 + 10^4 + 10^5$
30m			
10m			
50m			
Øm			PP
'Øm			-/4
30m		Marchell L	
90m 100m			
10m			PP PP
120m		the L) 16) \ ()
130m			the states and the st
140m			
150m			$\frac{110}{200} \begin{pmatrix} 144 \\ 15 \\ 15 \\ 15 \\ 16 \\ 16 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$
160m			
170m 190m	2		
180m 190m			18 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
200m			14
210m			45 15 16 15 PP
220m			4 46 / 1/ / / / / / / / / / / / / / / / / /
230m			$\frac{1}{2}$
240m			$\begin{pmatrix} 196 \\ 197 \\ 197 \\ 197 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 1$
250m ·			
260m 270m			
280m			
290m			₩(A,))) 1/3////#// #/// 3////
300m			+{0}/7 (1/4 ((((/ 9 () 4) 1
310m			
320m			
330m			
340m			
350m 360m			
370m			
380m			$H(\frac{1}{1}))$
390m			
100m			+161 $+184$ $+176$
10m			
120m 130m			
130m 140m			
150m			+{1}\${(44({{{}}
160m			#14(\\\\\\$\$)}}]1 4
170m			
80m			
90m			
00m 10m			
520m			
i30m			$(\mu) \neq (\uparrow \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \downarrow$
i40m			
i50m			
i60m			
70m			
580m			MILLS
590m 500m		a title	
10m			
520m			
30m			(1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
40m			
50m			
-60m			$1 \frac{1}{2} $

- 6	680m		
- 6	590m		
	700m		
- 7	710m		
- 7	720m		
- 7	730m		
	740m		
	750m		
- 7	760m		
- 7	770m		
- 7	780m		
- 7	790m		
	300m		
- i - 8	810m		
- 8	820m		
- 1	830m		
- 1	840m		
ŀ	850m		
_ 4	860m		
	870m		
+ +	880m		
	890m 897m		


660m 670m

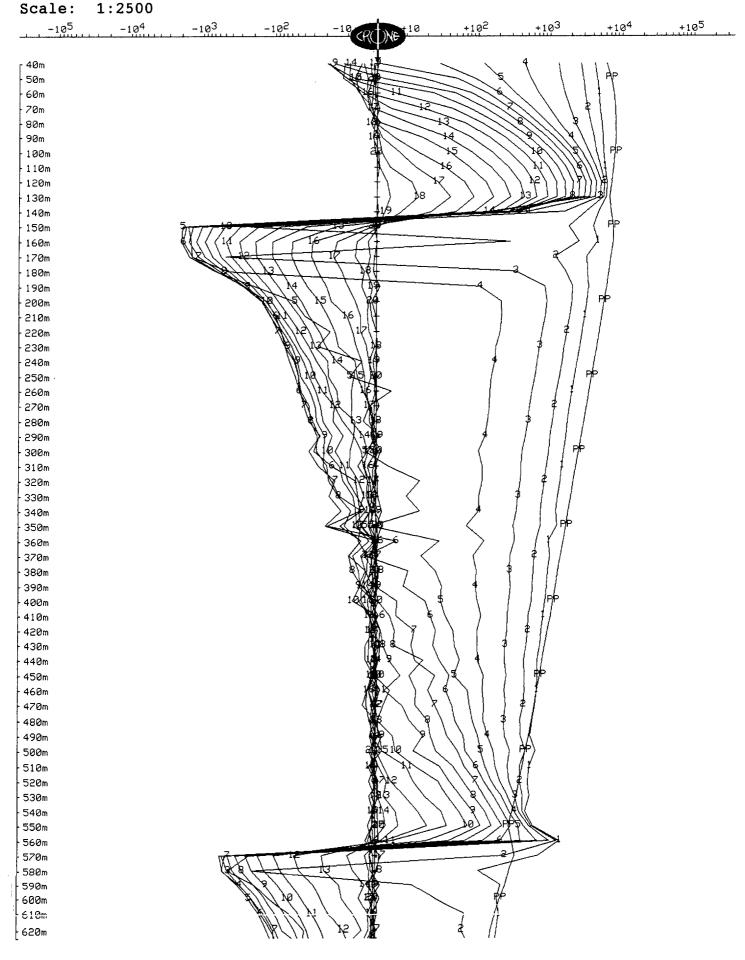
. •••••

L

×....

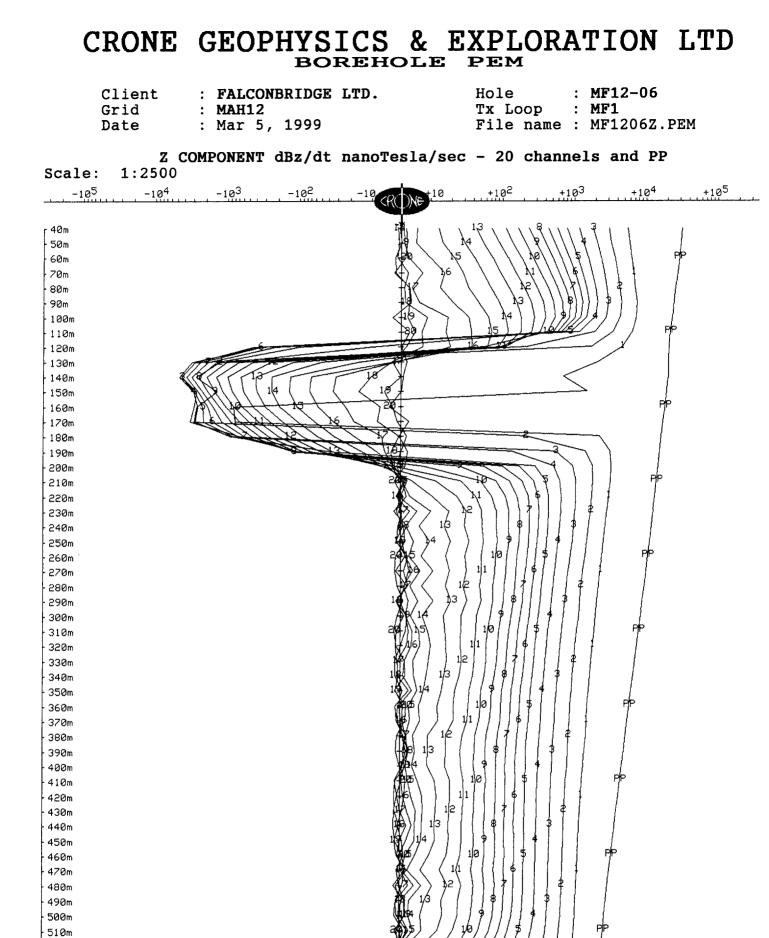
x. .

Client	: FALCONBRIDGE LTD.	Hole : MF1	2-06
Grid	: MAH12	Tx Loop : MF1	
Date	: Mar 5, 1999	File name : M12	D6XYT.PEM


Data Corrected for Probe Rotation using Orientation Tool #20 X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

Scale:	1:2500	OME ONEN I	uba/ut	nanorest	4/360	- 20 0	manners	unu II	
-10 ⁵	-104	-103	-102	-10	+10	+102	+103	+104	+105
<u></u>		<u>````````````````````</u>						<u>, , t t i tītāt.</u>	<u>ل المعامية المالة الممالية ا</u>
r 40m				2015	, 10	·/ L 1 2	5 , ,	, PP	
- 50m				1					
- 60m					еXЛ	1/5		2	
- 70m				14 3			1		
80m						5	/ /		
- 90m								/ pp	
- 100m								{ }	
				ND I					
- 110m				(he			1 delle		
- 120m				A A		14	IIIII -	$ \left\{ \right\} $	
-130m				20	$\langle \rangle$	> > \$5	111411	A PP	
140m				Τl		16]		7.	
-150m				\mathbb{N}^{I}	17				
-160m				The			$\mathcal{L} $	1	
170m							Mer 1		
-180m							/	/ pp	
- 190m			1	The state		/	////	7	
200m			M2	HT A				/	
-210m			KA	S- TA		//	(/	
- 220m			ЖV	14 49			1	/	
-230m			N			/*	/ / р	5	
-240m			Mel	5+15100] 7		
- 250m				' <u>)</u>		1 1	$\downarrow f /$		
-260m			III III	1124			£ / /		
- 270m			S	1 13 78	_				
-280m			9						
- 290m					Z		/ P/P		
-300m]		
-310m				N			f//		
-320m						\ { }/	/		
-330m				PULL	$\langle \langle \rangle$	1 4 1/			
-340m				1	\mathcal{A}	\$ P	D		
-350m				4	6	19			
-360m				1	-	$\rightarrow \mathcal{H}$			
- 370m				1	$\mathbb{R} \setminus \mathbb{C}$	X (18			
-380m					DI	(1)			
- 390m			P/P		$\mathbf{P}(\mathbf{r})$	\mathbb{P}			
- 400m			/	1	ı) Ò ∛	$\langle \rangle$			
-410m		1			(R)	₽} {			
420m				***	>)\$ >/	(3)			
-430m			/	₩ \<	9/11/))*			
-440m		PP	/		14/1	\${			
-450m			1		判〉爻╡	: U			
460m			/	Ŧ MY	९८८१	$\langle \rangle$			
470m			{		() (8) (A (
-480m		(}		11 KK	∦ /			
490m		PP)/ 1/0/	114			
- 500m		1	¥	FN PT	H Vi / ()	1/8/			
-510m			ζ	<pre></pre>	$\left(\frac{1}{2}\right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + $	1171			
- 520m			\backslash	(()))))))))))))))))))))))))))))))))))	1/2 / 4	18181			
- 530m		l			$\langle \langle \rangle \rangle$	11/181			
-540m		PP		A]	J.		
550m		({ }}\$	\rangle	ALIN	NA.		
- 560m		l l	`	₩Y/_	1	12 1 1	APPIN		
- 570m			\ ATT		3				
- 580m			¥777						
590m			Phile						
- 600m									
610m				A DE TAR					
620m				Walt the		<			
L				P INT YMA	- 17	•			

.....


Client	: FALCONBRIDGE LTD.	Hole : M	4F12-06
Grid	: MAH12	Tx Loop : N	4F1
Date	: Mar 5, 1999	File name : M	11206XYT.PEM

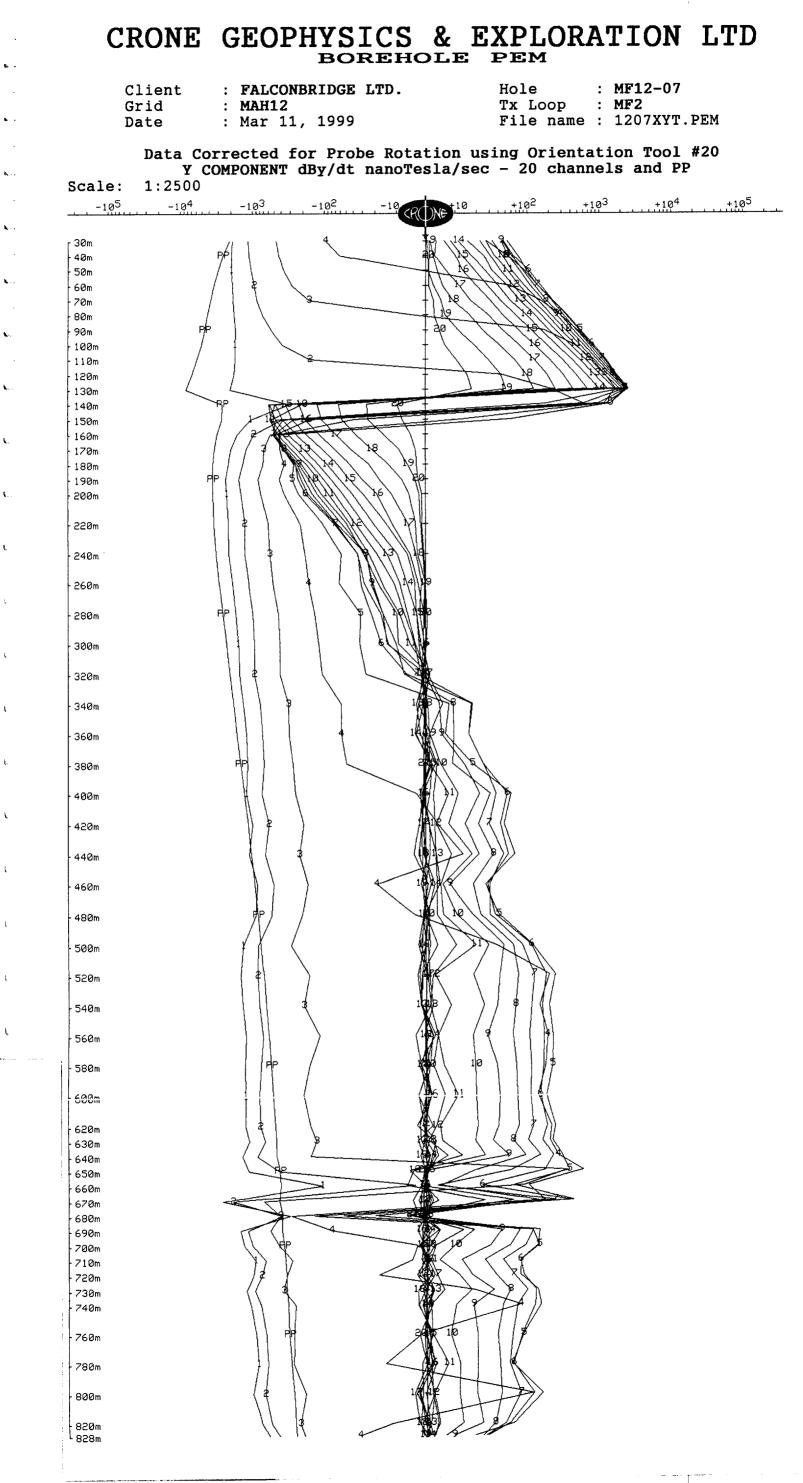
Data Corrected for Probe Rotation using Orientation Tool #20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP

Ĺ.

٢.

v - 1 £. L., ١. L ... ٤. ۴., κ. ι

520m 530m 540m 550m

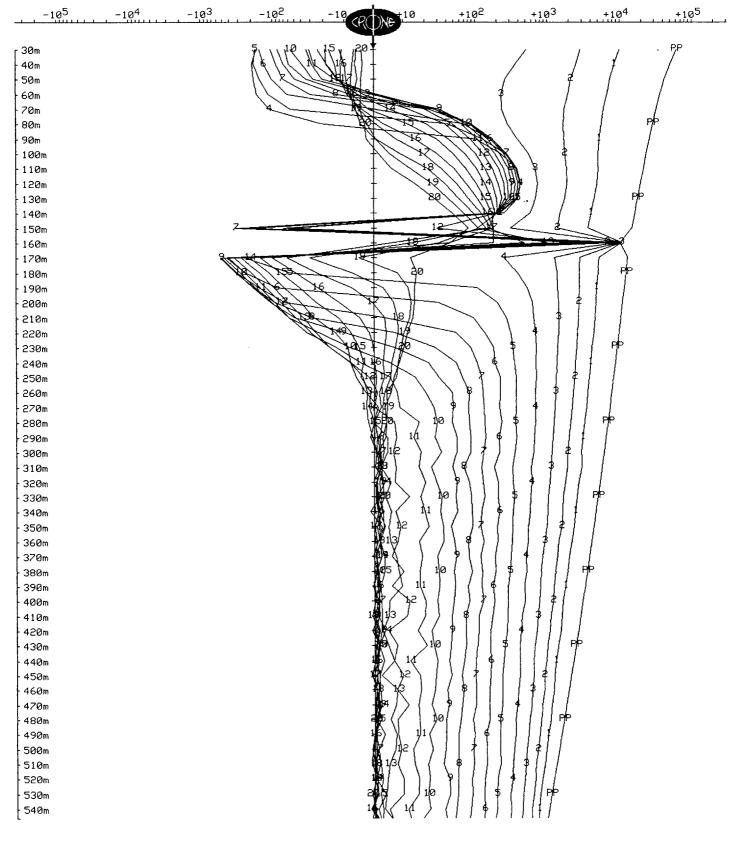

560m 570m 580m 590m 600m 610m 620m 628m

.

P

Client	: FALCONBRIDGE LTD.	Hole : MF12-07	
Grid	: MAH12	Tx Loop : MF2	
Date	: Mar 11, 1999	File name : 1207XYT	.PEM

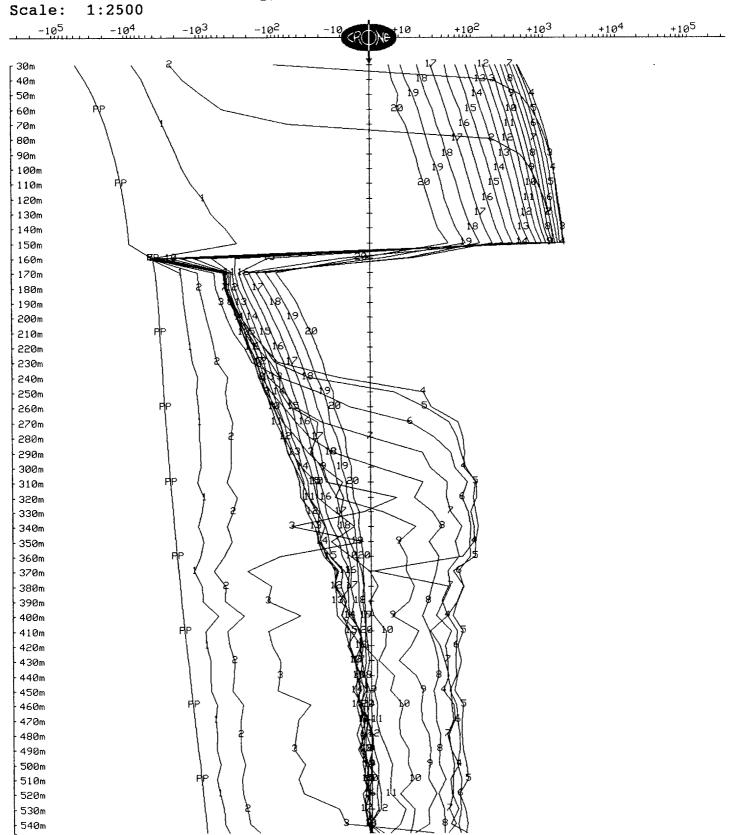
Data Corrected for Probe Rotation using Orientation Tool #20 X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500 +105 -105 +102 +103 +104 <u>-1</u>02 -104 -103 10 SR()Ne **r** 30m 40m 50m 60m 70m 80m 90m 20 100m 110m 120m 130m 140m -150m 80 160m 170m 180m 190m 200m 220m 240m 260m 280m 300m 320m 340m 360m 380m FÌF 400m 420m 440m 460m 480m ŔΡ 500m 520m 540m 560m 580m 600m 620m 630m 640m 650m 660m 670m 680m ¢з) 8 690m 700m 710m 720m 730m 740m 760m 780m 800m 820m L 828m


Scale		: Mar 11	L, 1999	TX File	Loop : e name :	: MF2 : 1207Z.PEM
-16		OMPONENT	dBz/dt na	noTesla/sec - 20) channe	els and PP
<u></u>		-103	-102	19 00 +10 +10	2 +10	³ +10 ⁴
г 30m	-104	-10-		RONE	<u></u>	<u></u>
				· + 20 , , 1,5 , ,	11911171	N N PP
- 40m				+)// te///	\\1\1\\\&	
- 50m						
- 60m - 70m				/// ⁴ er//) 	
- 80m				-26 \ \ \ \	15///14	
- 90m				$+$ \rangle \rangle \backslash \backslash	ye / / / / /	
-100m					EL / / /	
- 110m - 120m				18	14	
- 130m			_		25 L	(Ad III PP
-140m				777	7.7/	7777777
- 150m				1	1/13	
- 160m - 170m				+) 1/9 / /	\4	
- 180m				+36 / / / /	45////Y4/	///#/// PP
190m				10 16	[] [] [] [] [] [] [] [] [] [] [] [] []	17/////
- 200m					\$17/ \$11/	/\$[
-210m -220m				₩ < / ↓	\$ 4	
- 230m				24) / / //	[49] []\$]	/// PP
-240m				12 16 12	"/// <i>/</i> *///	2 1 1
- 250m - 260m					\$ 3	TI I
270m				H 194{ { { { 1/4 } / / / 4	////4/	
-280m				244 ()) 1/5 / / 1/0/	\$	PP
-290m						
- 300m - 310m					\$ [
- 320m				- 40 (14 / / / / タ / /		
- 330m						PP
- 340m						ţ l
- 350m - 360m					3	
- 370m				1		
- 380m					5	PP
- 390m					2	
- 400m - 410m						
- 420m					4	PP
-430m						
- 440m - 450m					2	
450m					3	
- 470m					4	PP
480m						, , , , , , , , , , , , , , , , , , ,
- 490m - 500m					2	
- 510m				¹ ₫ ݤ∳ᢤ〉	3	
- 520m					1	PP
- 530m						
- 540m - 550m						
- 560m					3)
- 570m					T	pp
- 580m - 590m						1
- 600m					\$	
-610m					3	ĺ
- 620m					•	PP
- 630m - 640m					///	
-640m -650m					7 7 (1
-660m			4	HPATTICK,	()	
-670m				Left tert	LIF	
-680m -690m					771	
- 590m - 700m				1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1	2	
-710m					3	
-720m						P
-730m -740m				1		
-740m 750m				₩₩2 >>) *) *)	1 \$	
-760m					3	
- 770m				(1))10)) 5	PP	,
- 780m - 790m				1 (14)		
- 800m						
- 810m					\$	
- 820m 828m				₩7/16////st	pp	

and a set of the set of the second second

Client	: FALCONBRIDGE LTD.	Hole : MF12-13	
Grid	: MAH12	Tx Loop : MF3	
Date	: Mar 21, 1999	File name : M1213XYT.PEN	1

Data Corrected for Probe Rotation using Orientation Tool #20 X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP


Scale: 1:2500

Client	: FALCONBRIDGE LTD.	Hole : MF12-13	
Grid	: MAH12	Tx Loop : MF3	
Date	: Mar 21, 1999	File name : M1213XYT.PEM	

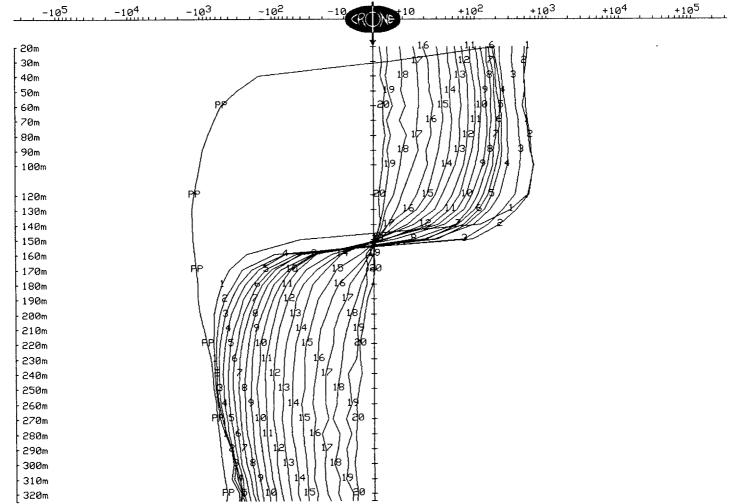
Data Corrected for Probe Rotation using Orientation Tool #20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP

2.47

Grid :	FALCONBRIDGE LTD. MAH12 Mar 21, 1999	Hole : MF12-13 Tx Loop : MF3 File name : MF1213Z.PEM
	PONENT dBz/dt nanoTe	sla/sec - 20 channels and PP
Scale: 1:2500		
-10 ⁵ -10 ⁴	-10^3 -10^2 -10^2	$+10^{+10^2}$ $+10^3$ $+10^4$ $+10^5$
	-10	
г 30m 📉	A941114111149	
40m RP		· .
- 50m	1/1/4/1/1/46/7/7-	
- 60m	MURINE / / VELT	
- 70m	HIII4947748// -	\uparrow \uparrow
- 80m		μ <u>j</u>
- 90m		+ AP
100m		+
- 110m		
- 120m - 130m		
140m		PP
- 150m	A VE	
- 160m	$\langle \rangle$	2.2
- 170m	18	
- 180m	WHITE THE A	
- 190m		
- 200m		†)] [†)
- 210m		† / ↓ f }
- 220m		
- 230m - 240m		
250m		
260m	1111111111111111111111111111111111111	+ / / #
270m	· / /sh / / / £h b	+ / \$
- 280m	k ((1 4) (1 1 9) · ·	+ 4
- 290m		
- 300m		
- 310m		
- 320m - 330m		
- 340m		
- 350m		\downarrow \downarrow \downarrow \downarrow \downarrow
360m		+
- 370m		$+$ \setminus $+$ \downarrow \downarrow \downarrow
- 380m		
- 390m		
- 400m - 410m		
420m		
430m		4 4 4 7 7
- 440m		+ \ } PP
- 450m		$+$ $\{$ $\}$ $\{$ $\}$
- 460m	₩\\I+4 44 	\
- 470m		+ \
- 480m		
- 490m		T
- 500m - 510m		
- 520m		
- 530m		
540m		a, \$ PP
L	44. () () () () () () () () () (· · · · · ·

Client	: FALCONBRIDGE LTD.	Hole : MF12-28
Grid	: MAH12	Tx Loop : MF4
Date	: Mar 26, 1999	File name : 1228XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool #20 X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP


Scale	:	1:	2500
-------	---	----	------

-105	-104	-103	-102	-10 CRONE+10	+102	+10 ³	+104	+10 ⁵
20m				Ť 111 \ 1 ₁ 6.	111 ¹ 11 1161	1 1	1 7 1	
30m				+ + 17	\ \ \14 \\\{\		2 5	
40m				+ [h8 }	1 3 8			
50m				+ 119) { }	(14) 9 1	141		
60m				+ aq { }	15 110110	(\$ \	PP	
70m				+ $)) 1$	6 111(K	1 1 1	
80m				+ 17	1 1 142111	$\{ \} $	₽	
90m				+ (18	13 8	11 3		
100m				+ 19	1 14 1 9	\\\+//		
120m				+ 20	15 110	川朝ノノノ	/ PP	
130m				+ } `	16 111	1141 <i>1/ X</i>		
140m				1 1 1 1 1 1	7	1711117	/	
150m				- 18	13	\$11) } / /		
160m				- 19	1 4] 9			
170m				+ a/a))	15 119		P/P	
180m				+ \ { } /	16 111	\$ 7	/	
190m				$+$ () (ψ	42 //	7781 /	/	
200m				+ / 1/8/	1/3 [\$]	(1) /		
210m				- /1 9 /)	1/4 / / 9/ 1	¥ /		
220m				-{ale}////	451 / / 49/1	´₽¢		
230m				+ / / 16		/		
240m				+ X /47 / /	(\]			
250m				+/18///				
260m				14/11	SK <	(
270m					r >	PP		
280m					× /	/		
290m				2				
300m			5	3				
310m								
320m			PP					

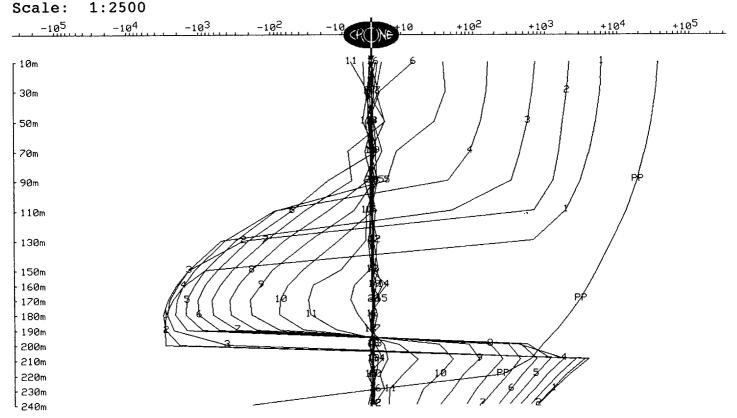
Client	: FALCONBRIDGE LTD.	Hole :	MF12-28
Grid	: MAH12	Tx Loop :	MF4
Date	: Mar 26, 1999	File name :	1228XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool #20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP

Scale: 1:2500

Z COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP

Client	: FALCONBRIDGE LTD.	Hole	:	MF12-28
Grid	: MAH12			MF4
Date	: Mar 26, 1999	File name	:	1228Z.PEM

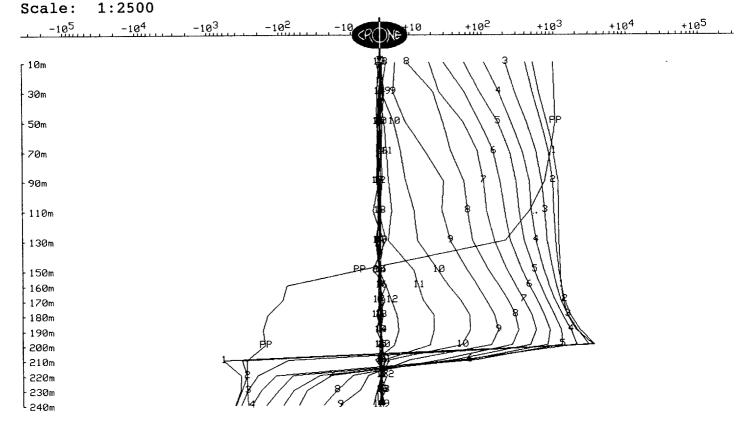

	2500 -10 ⁴ -10 ³	-102	-10 CRDN6+10	+102	+10 ³	+10 ⁴ +10 ⁵
20m			14/16////	11/////	111	1
30m			1////	///オ///	2	
40m				/\$////	3	
50m			15 8	///4		
60m				7	$\{ \}$	PP
70m			AT AT A	6 /	}	1
80m		AS .	HZLYHI		4 \	
90m		AN A	HT / 18/17	- 1	3 1 1	
100m		1 1/14	11++++	4		
110m		Malsty	5////#0-			PP PP
120m		M MATIT	16///		/ ;	1 }
130m		THINELT	F_{1}		. 7 /	1
140m		#1413/1	118 -			
150m					/ /	
160m		\$1/10/115	ala -	/		PP
170m					1	
180m			17 +	e a construction de la construct	(1
190m		\$	18 4		/	1
200m		₩₩				
210m		411101115	111/20-		}	PP
220m					ţ	
230m		W///12///	1211 +	R	}	1
240m					ĺ	1
250m		14911114	+ /e/i / / / /	\backslash	ļ	
260m		HAA TH	4511130 +		}	PP
270m		ALAA I	1116/11/F	\sim \	f	
280m		ALLA .	+++++1716	a di	R	
- 290m		No.	HETTER	- ` ` ` ` `		1
- 300m						1
- 310m			No.	1 1 2		PP
320m				/////	14	1

- 1

2.00

Client	: FALCONBRIDGE LTD.	Hole	: MF13-04
Grid	: MAH13	Tx Loop	: MF5
Date	: Mar 27, 1999	File name	: MF134XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool #20 X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP



a. ;

: و شمان رمین

Client	: FALCONBRIDGE LTD.	Hole :	MF13-04
Grid	: MAH13	Tx Loop :	MF5
Date	: Mar 27, 1999	File name :	MF134XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool #20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP

1.4

	Client Grid Date	: FALCONBRIDG : MAH13 : Mar 27, 199		Hole : MF Tx Loop : MF File name : MF	
Carlo		OMPONENT dBz/d	t nanoTesla/se	c - 20 channels	and PP
Scale		<u> </u>			4 5
-10	5 –10 ⁴	-10 ³ -10 ²	-10 RONE 10	+10 ² +10 ³	+10 ⁴ +10 ⁵
10m 20m 30m 40m 50m 60m 70m 80m 100m 110m 120m 130m 140m 150m 160m 180m 180m		18			PP PP
200m 210m 220m 220m 230m 240m	14		IL C		PP

1

!

Client	: FALCONBRIDGE LTD.	Hole : MF:	L6-01
Grid	: MAH16	Tx Loop : MF	16-3
Date	: Apr 1, 1999	File name : MF:	L61XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool #10 X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500

Scale: 1: 	$\frac{-10^4}{-10^3} - 10^2 - 10^2 + 10^3 + 10^4 + 10^5$
50m	$\frac{18}{18}$
60m	
70m	+ 4 > 35) \\.49 \ \ 5 + / / 90
80m	$+ \rightarrow + \in \langle (\downarrow \downarrow \downarrow) \downarrow $
90m	
100m	
110m	
120m	80 14 1481 5 1/20
130m	
140m	
150m	
160m	
170m	PP - PP
180m	
190m	
200m	
210m	WILLA ALLE T
220m	P ^e Miller S
230m	
240m	All 22 2 2 1
250m	A A A A A A A A A A A A A A A A A A A
260m	1 13 1034 x9 1 14

1

بہ ہے۔ ا

12225

CRONE GEOPHYSICS & EXPLORATION LTD

Client	: FALCONBRIDGE LTD.	Hole : MF16-01	
Grid	: MAH16	Tx Loop : MF16-3	
Date	: Apr 1, 1999	File name : MF161XYT.PEM	

Data Corrected for Probe Rotation using Orientation Tool #10 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500

-10 ⁵ -1	0^4 -10^3 -10^2 -10^2 -10^2 $+10^3$ $+10^4$ $+10^5$
- 50m	HR/// PP -
60m	
70m	
80m	
90m	(M)) D4)) Har (
100m	PP PP
·110m	
120m	The first the first firs
-130m	
-140m	
-150m	Potost 1 1 5 20 PP
-160m	
-170m	
-180m	
-190m	18 / / / //////////////////////////////
- 200m	fe < (// 15)// 19// 15// 19P
-210m	$+ \rangle > \langle 16 \langle (/ A / / B / / J / B / / J / B $
220m	+ / / /////////////////////////////////
230m	<u>{</u> 1 8 { / / / / / / / / / / / / / / / / / /
-240m	₩ \ \ /////////////////////////////////
- 250m	20 + X\$//10///\$//PP
l 260m	$\mathcal{I} \mathcal{M}(\mathcal{M}) = \mathcal{M}(\mathcal{M}) = \mathcal{M}(\mathcal{M})$

1

.

i cher Li cher

Server 1

Client	: FALCONBRIDGE LTD.		: MF16-01
Grid	: MAH16		: MF16-3
Date	: Apr 1, 1999	File name	: MF161Z.PEM

Scale: 1:	2500 -10 ⁴ -10 ³	-102	-18 <p(< th=""><th></th><th>+102</th><th>+10³</th><th>+104</th><th>+105</th></p(<>		+102	+10 ³	+104	+105
50m				1	r \ \ \ ¹ 2		171	1
60m				18	((/13)	\\\\$\\	3	.
70m			1		\rangle	\\\\\$\\\\\		1
80m				+ >>	<u> く1気((</u>	(119) 5		PP
90m			<	K< `	17301	\\1\1\\\\&		/
100m				$\dagger >$	$\langle \psi \rangle$	(17/1////	\	/
110m				+) j8///	/1/18///	\ \$ {	/
120m				18	$\langle \langle \rangle$) / 44 / / / 197 / / /	4	_[
130m				+ `	38 (((12)[[148]]	<u>1////</u>	PP
140m				+	\nearrow \land	16/11		/
150m				†				
160m				<	< 18 T	S (PTTT	977791 }	
170m				+	19 })	/4///_L	
180m				+ 20	$\gamma \gamma \gamma$	/ 45/ / / 49/ / 1	6//// PP	
190m				t >	$\cdot \left(\left\{ \right. \right\} \right)$	>/////////////////////////////////////		
200m				1	-21P(1	([[4]]]]]]4	
210m				<	18}	/ 4/ / / 4/ / /	1	
220m				$\dagger \rightarrow$		(([[]]]]]]		
230m				1 538	/ / 1/5/	[[49]]]\$[]	// PP	
240m				$t \rightarrow q$	< <u>1</u> 6///	[44][] \$ [] [[] [
250m			<	F <	\ <i>}]//M</i>	7///7////	·	
260m				F /	18///1/3//	11811131	1 (

1

اند د. (ای

Client	: FALCONBRIDGE LTD.	Hole : MF16-02
Grid	: MAH16	Tx Loop : MF16-2
Date	: Mar 25, 1999	File name : 1602XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool #20 X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500

-105	-104 -103	-102 -10	CRONE 10	+102	+10 ³	+104	+10 ⁵
_F 50m				16	H	e contraction of the second se	-
- 60m			The second	TTIMIT	TTTI	1777	
-70m			+ \ \ \8	<u> </u>		7 / /	
-80m			/ % / +	///4//18/	1114	/ / / _L	
- 90m			+ 20 \	///4/18	/ \$ /	/// //	
100m			+	ALL THE			
-110m				Harry Harry	12 - 2		
-120m	ATT -		+		13- 13-	(
130m	WA-			- AND		4	
-140m				2018-17		PP	
-150m	ALC: N	H-L				777	
160m	N/ F		Ť		7]]]		
-170m	H.		†				
-180m		1411 / X9 /		4	100		
-190m		98 #K		f	T.		
- 200m		ALANT			Ľ/		
-210m	<pre></pre>		11		1		
- 220m	(MUT HA			ρ		
-230m	1		1991	\ /1 1			
-240m	PP	Y IN 15		χ η			
L 250m	ſ	Y MIN 16		ND 1 11			

1

Client	: FALCONBRIDGE LTD.	Hole : MF16-02
Grid	: MAH16	Tx Loop : MF16-2
Date	: Mar 25, 1999	File name : 1602XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool #20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500

-105	-10^4 -10^3 -10^2 -10^2 $+10^2$ $+10^3$ $+10^4$ $+10^5$
_F 50m	P
- 60m	
- 70m	
- 80m	9P/15//15//19-
- 90m	1/X/////6////+
-100m	
-110m	$\frac{1}{18}$
-120m	
-130m	
-140m	
-150m	
- 160m	
- 170m	AP 20 115 15
- 180m	
- 190m	
- 200m	
210m	A determined
220m	HP J J
- 230m	
- 240m	1
L 250m	

1

. . .

CRONE GEOPHYSICS & EXPLORATION LTD

Client	: FALCONBRIDGE LTD.	Hole	: MF16-02
Grid	: MAH16	Tx Loop	: MF16-2
Date	: Mar 25, 1999	File name	: MF1602Z.PEM

Z COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP Scale: 1:2500 +105 +104 +10² <u>+1</u>0³ -103 -102 -10 CR(D)NE -105 -104 10 60m 1.8 70m dø 80m 90m 100m 18 110m 120m 1 El 130m 140m 150m ≡tr 160m 170m 40 180m 190m 200m 210m 220m 230m 240m 250m

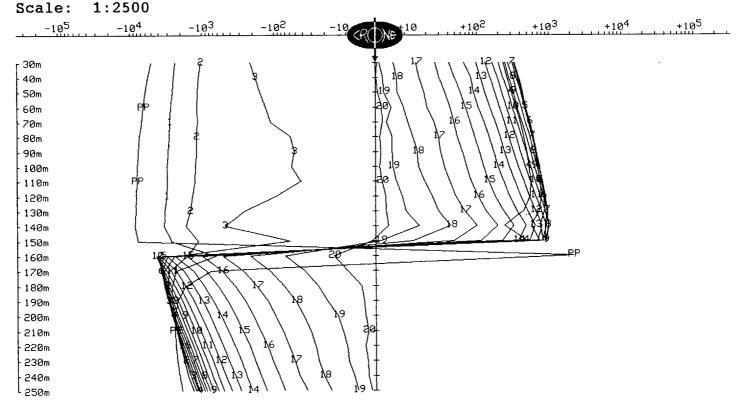
1

1

Client	:	FALCONBRIDGE LTD.	Hole	:	MF16-03
Grid	:	MAH16	Tx Loop	:	MF16-1
Date	:	Mar 24, 1999	File name	:	1603XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool #20 X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

Scale: 1:2500



-105	-10 ⁴ -10 ³	-10 ²		+102	+103	+10 ⁴	+10 ⁵
[^{30m}			9/14	->///	1 1		
- 40m					7		
- 50m					′ /		
- 60m		100	774			f	
-70m		MILLY T			p		
- 80m		T///Y	/ 1 ⁹				
- 90m	A SA	HT 1	- <u>7</u>			/ / PP	
- 100m	MITTY /	1/10	<u> </u>			F	
-110m	MILLET	477	<pre>/</pre>		Å	/ /	
120m	[[\$]][[Y3]]	18	<u></u>			/ /	
-130m	MALLYAL	f-f-f-	7 9 <u>1</u> †		• /	<u> </u>	
-140m		/ / /	90 -		{	PP	
-150m	MAY L LV LA		\leq t				
-160m			Sand HZ		1/1	3/	
-170m			12	2 PA			
-180m							
-190m		10			\$) #P		
- 200m		MX		\$			
-210m		MAX		.	I X JF		
-220m			(/ # B		11		
-230m				1] 11/		
-240m		19 199-14	16		7 [/]]		
L 250m		MINI	16 1	۲ 6	1 111		

1

Client	: FALCONBRIDGE LTD.	Hole : M	F16-03
Grid	: MAH16	Tx Loop : M	F16-1
Date	: Mar 24, 1999	File name : 1	603XYT.PEM

Data Corrected for Probe Rotation using Orientation Tool #20 Y COMPONENT dBy/dt nanoTesla/sec - 20 channels and PP e: 1:2500

•.•. •____

CRONE GEOPHYSICS & EXPLORATION LTD

	Client Grid Date	: FALCONBRI : MAH16 : Mar 24, 1		Hole : MF16-03 Tx Loop : MF16-1 File name : MF1603Z.PEM
Scale		OMPONENT dBz	/dt nanoTesla/	/sec - 20 channels and PP
-10		-10 ³ -10	02 -10 CRONG 1	10 +10 ² +10 ³ +10 ⁴ +10 ⁵
30m 40m 50m 60m 70m 80m 90m 100m 110m 120m 120m 130m 140m 150m 160m 180m 190m 200m 210m				$12 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $
- 220m - 230m - 240m - 250m				9 15 16 10 10 10 10 10 10 10 10 10 10 10 10 10

APPENDIX C

Crone Instrument Specifications

1

CRONE PULSE EM SYSTEM

SYSTEM DESCRIPTION

The Crone Pulse EM system is a time domain electromagnetic method (TDEM) that utilizes an alternating pulsed primary current with a controlled shut-off and measures the rate of decay of the induced secondary field across a series of time windows during the off-time. The system uses a transmit loop of any size or shape. A portable power source feeds a transmitter which provides a precise current waveform through the loop. The receiver apparatus is moved along surface lines or down boreholes.

The transmitter cycle consists of slowly increasing the current over a few milliseconds, a constant current, abrupt linear termination of the current, and finally zero current for a selected length of time in milliseconds. The EMF created by the shutting-off of the current induces eddy currents in nearby conductive material thus setting-up a secondary magnetic field. When the primary field is terminated, this magnetic field will decay with time. The amplitude of the secondary field and the decay rate are dependent on the quality and size of the conductor. The receiver, which is synchronized to the off-time of the transmitter, measures this transient magnetic field where it cuts the surface coil or borehole probe. These readings are across fixed time windows or "channels".

SYSTEM TERMINOLOGY

Ramp Time

أعثناه

"Ramp time" refers to the controlled shut-off of the transmitter current. Three ramp times are selectable by the operator; 0.5ms, 1.0ms, and 1.5ms. By controlling the shut-off rather than having it depend on the loop size and current ensures that the same waveform is maintained for different loops so data can be properly compared.

The 1.5ms ramp is the normally used setting for good conductors. It keeps the early channel responses on scale and decreases the chance of overload. The faster ramp times of 1.0ms and 0.5ms will enhance the early time responses. This can be useful for weak conductors when data from the higher end of the frequency spectrum is desired.

Time Base

Time base is the length of time the transmitter current is off (it includes the ramp time). This also equals the on time of the current. Eight time bases are selectable by the operator. They include the original time bases used in the analog system as well as time bases to eliminate the effects of powerline interference. The eight time bases are as follows: compatible to analog Rx: 10.89ms, 21.79ms; 60hz powerline noise reduction: 8.33ms, 16.66ms, & 33.33ms; 50hz powerline noise reduction: 10.00ms, 20.00ms, & 40.00ms

Since readings are taken during the off cycles, the time base will have an effect on the receiver channels. Normally, a standard time base is selected for the type of system and survey being used, but this can be changed to suit a particular situation. A longer time base is preferred for conductors of greater time constants, and in surveys such as resistive soundings where more channels are desired.

Zero Time Set

The term "zero time set" or "ZTS" refers to the starting point for the receiver channel measurements. It is manually set on the receiver by the operator thus allowing adjustments for the ramp times and fine tuning for any fluctuations in the transmitter signal.

Receiver Channels

The rate of decay of the secondary field is measured across fixed time windows which occupy most of the off-time of the transmitter. These time windows are referred to as "channels". These channels are numbered in sequence with "1" being the earliest. The analog and datalogger receivers measured eight fixed channels. The digital receiver, being under software control, offers more flexibility in the channel positioning, channel width, and number of channels.

PP Channel

The PEM system monitors the primary field by taking a measurement during the current ramp and storing this information in a "PP channel". This means that data can be presented in either normalized or unnormalized formats, and additional information is available during interpretation. The PP channel data can provide useful diagnostic information and helps avoid critical errors in field polarity.

Synchronization

41.4

Since the PEM system measures the secondary field in the absence of the primary field, the receiver must be in "sync" with the transmitter to read during the off-time. There are three synchronization methods available: cable connection, radio telemetry, and crystal clock. This flexibility enhances the operational capabilities of the system.

SURVEY METHODS

The wide frequency spectrum of data produced by a Pulse EM survey can be used to provide structural geological information as well as the direct detection of conductive or conductive associated ore deposits. The various types of survey methods, from surface and borehole, have greatly improved the chances of success in deep exploration programs. There are eight basic profiling methods as well as a resistivity sounding mode.

Moving Coil

A small, multi-turn transmitter loop (13.7m diameter) is moved for each reading while the receiver remains a fixed distance away. This method is ideal for quick reconnaissance in areas of high background conductivity.

Moving Loop

Same as Moving Coil method, but with a larger transmit loop (100 to 300 meters square). This method provides deeper penetration in areas of high background conductivity, and works best for near-vertical conductors. This method can be used in conjunction with the Moving In-loop survey for increased sensitivity to horizontal conductors.

Moving In-Loop

A transmit loop of size 100 to 300 meters square is moved for each reading while the receiver remains at the center of the loop. This method provides deep penetration in areas of very high background conductivity, and works best for near-horizontal conductors. It can be used in conjunction with the Moving Loop survey.

Large In-Loop

A very large, stationary transmit loop (800m square or more) is used, and survey lines are run inside the loop. This mode provides very deep penetration (700m or more) and couples best with shallow dip conductors (<45 deg.) under the loop.

Deepem

A large, stationary transmit loop is used, and survey lines are run outside the loop. This mode provides very deep penetration, and couples best with steeply dipping conductors (>45 deg.) outside the loop.

Borehole (Z Component only)

Isolated Borehole: A drill hole is surveyed by lowering a probe down a hole and surveying it with a number of transmit loops laid out on surface. The data from multiple loops gives directional information on the conductors.

Multiple Boreholes: One large transmit loop is used to survey a number of closely spaced holes. The change in anomaly from hole to hole provides directional information.

These methods have detected conductors to depths of 2500m from surface and up to 200m from the hole.

3-D Borehole

1221

Drill holes are surveyed with both the Z and the XY borehole probes. The X and Y components provide accurate direction information using just one transmit loop.

Since the probe rotates as it moves down the hole a correction is required for the X-Y data. This is accomplished in one of two ways. The standard approach is to use the measurement of the primary field from the "PP" channel, apply a "cleaning" algorithm to remove most of the secondary field contamination, and compare this to theoretical values. The amount of probe rotation is then calculated, and the correction can be made. The second method involves the use of an optional orientation device for the X-Y probe which is produced in co-operation with IFG Corp. This attachment uses dipmeters to calculate the probe rotation.

Underground Borehole

Underground drill holes can be surveyed in any of the above mentioned borehole methods with one or more transmit loops on the surface. Near-horizontal holes can be surveyed using a push-rod system.

Resistivity Soundings

By reading a large number of channels in the centre of a transmit loop it is possible to perform a decay curve analysis giving a best-fit layer earth model using programs such as ARRTI or TEMIX.

EQUIPMENT

Transmit Loops

The PEM system can operate with practically any size of transmit loop, from a multi-turn circular loop 13.7m in diameter, to a 1 or 2 turn loop of any shape up to 1 or 2 kilometers square using standard insulated copper wire of 10 or 12 gauge. The multi-turn loop is made in two sections with screw connectors. The 10 or 12 gauge loop wire comes on spools in either 300m or 400m lengths. The spools can be mounted on packframe winders for laying out or retrieving.

Power Supply

The PEM system normally operates with an input voltage from 24v to 120v. Modifications have recently been made to increase the power to 240 volts. The maximum current is still 20 amps. For low power surveys a 20amp/hr 24v battery can be used. The power supply requires a motor generator and a voltage regulator to control and filter the input voltage to the transmitter.

Specifications: PEM Motor Generator

- 4.5 hp Wisconsin, (2 kw) - 11 hp Honda (4 kw); 4 cycle engine

- belt drive to D.C. alternator
- cable output to regulator

Crone Pulse EM System Description 3

- maximum output: 120v, 20amp (2 kw); 240v, 20amp (4 kw)
- fuse type overload protection
- steel frame
- external gas tank
- unit weight: 33kg (2 kw); 52kg (4 kw)
- optional packframe
- wooden shipping box
- shipping weight: 47kg (2 kw); 80kg (4 kw)

Specifications: PEM Variable Voltage Regulator

- selectable voltage between 24v and 120v or 48v and 240v
- 20amp maximum current
- fuse and internal circuit breaker protection
- cable connections to motor generator and transmitter
- anodized aluminum case
- unit weight 10kg; shipping weight 18kg
- padded wooden shipping box

Transmitter

The transmitter controls the bi-polar on-off waveform and linear current shut-off ramp. The latest 2000w PEM Transmitter has the following specifications:

Specifications: PEM Transmitter

- time bases: 10.89ms, 21.79ms, 8.88ms, 16.66ms, 33.33ms, 10ms, 20ms, 30ms
- ramp times; 0.5ms, 1.0ms, 1.5ms
- operating voltage: 24v to 120v (2 kw); 48v to 240v (4 kw)
- output current: 5amp to 20amp
- monitors for input voltage, output current, shut-off ramp, tx loop continuity, instrument temperature, and overload output current
- automatic shut-off for open loop, high instrument temperature, and overload
- fuse and circuit breaker overload protection
- three sync modes: 1) built-in radio and antenna
 - 2) cable sync output for direct wire link to receiver or remote radio
 - 3) connectors for the crystal clock
- anodized aluminum case
- optional packframe
- unit weight 12.5kg; shipping weight 22kg
- padded wooden shipping box

Receiver

The receivers measure the rate of decay of the secondary field across several time channels. Three types of receivers are available with the PEM system: Analog Rx, Datalogger Rx, and Digital Rx. The Analog Rx and Datalogger Rx read eight fixed time channels while the Digital Rx, under software control, offers a variety of channel configurations. The Digital Rx has been used in the field for contract surveys since 1987.

Specifications: Digital PEM Receiver

- operating temperature -40°C to 50°C
- optional packframe
- unit weight 15kg; shipping weight 25.5kg
- padded wooden shipping box

Hardware:

- 24v rechargeable gel cell battery supply
- two CMOS microprocessors (NSC800)
- alphanumeric keyboard
- 2 x 16 character cold weather display
- 16 x 40 character (256 x 128 pixels graphic) display
- 64k byte solid state memory storage
- cable, radio or crystal clock synchronization
- RS-232 serial I/O

Sampling process features:

- 16 bit A/D conversion
- digital recording of data in nano-tesla/sec
- rejection of atmospheric noise samples based on digital threshold detection
- automatic gain control to optimize receiver signal to noise ratio

Menu driven operating software system offering the following functions:

- controls channel positions, channel widths, and number of channels using a basic slice of 4.5msec
- time bases: 10.89ms, 21.79ms, 8.88ms, 16.66ms, 33.33ms, 10ms, 20ms, and 30ms
- ramp time selectable in 4.5msec steps
- sample stacking from 512 to 65536
- scrolling routines for viewing data
- graphic display of decay curve and profile with various plotting options
- routines for memory management
- control of data transmission
- provides information on instrument and operating status

Sync Equipment

ta á

There are three modes of synchronization available; radio, cable, and crystal clock. The radio sync signal can be transmitted through a booster antenna from either the PEM Transmitter internal radio or through a Remote Radio.

Specifications: Sync Cable

- 2 conductor, 24awg, Teflon coated
- approx. 900m per aluminum spool with connectors

Specifications: Remote Radio

- operating frequency 27.12mhz

- 12v rechargeable gel cell battery supply
- fuse protection
- sync wire link to transmitter
- coaxial link to booster antenna
- anodized aluminum case
- unit weight 2.7kg

Specifications: Booster Antenna

- 8m, 4 section aluminum mast
- guide rope support
- ¼ wave CB fiberglass antenna
- range up to 2km
- coaxial connection to transmitter or remote radio

Specification: Crystal Clocks

- heat stabilized crystals
- 24v rechargeable gel cell battery supply
- anodized aluminum case
- rx unit can be separate or housed in the receiver
- outlet for external supplementary battery supply

Surface PEM Receive Coil

The Surface PEM Receive Coil picks up the EM field to be measured by the receiver. The coil is mounted on a tripod that can be positioned to take readings of any component of the field.

Specifications: Surface PEM Receive Coil

- ferrite core antenna
- built-in preamplifier
- VLF filter
- 10khz bandwidth
- 23:1 amplifier gain
- two 9v transistor battery supply
- tripod adjustable to all planes
- unit weight 4.5kg; shipping weight 13.5kg
- padded wooden shipping box

Borehole PEM Z Component Probe

The Z component probe measures the axial component of the EM field. The Z component data is not affected by probe rotation so no correction are required.

Specifications: Borehole PEM Z Component Probe

- ferrite core
- built-in preamplifier
- dimensions: length 1.6m; dia 3.02cm (3.15cm for high pressure tested probes)
- internal rechargeable ni-cad battery supply
- replaceable heat shrink tubing for abrasion protection
- pressure tested for depths 1300m, 2000m, and 2800m
- packaged in padded cover and aluminum tube
- shipped in padded wooden box; total weight 17kg

Borehole PEM XY Component Probe

The XY probe measures two orthogonal components of the EM field perpendicular to the axis of the hole. Correction for probe rotation can be achieved by two methods. The standard approach is to use the measurement of the primary field from the "PP" channel, apply a "cleaning" algorithm to remove most of the secondary field contamination, and compare this to theoretical values. The amount of probe rotation is then calculated, and the correction can be made. The second method involves the use of an optional orientation device for the X-Y probe that uses dipmeters to calculate the probe rotation.

Specifications: Borehole PEM XY Component Probe

- ferrite core
- built-in preamplifier
- dimensions: length 2.01m; dia 3.02cm
- internal rechargeable ni-cad battery supply
- selection of X or Y coils by means of a switch box on surface or automatic switching with Digital receiver
- replaceable heat shrink tubing for abrasion protection

- pressure tested for depths to 2800m

- packaged in padded cover and aluminum tube

- shipped in padded wooden box; total shipping weight 20kg

Orientation Device

The orientation device is an optional attachment for the XY probe which measures the rotation of the probe using two dipmeters.

Specifications: Orientation Device

- 2 axis tilt sensors
- sensitivity +/- 0.1 deg.
- operating range -89.5 to -10 deg.
- dimensions: length 0.94m; dia 28.5cm
- packaged in padded cover and aluminum tube
- shipped in padded wooden box; total shipping weight 11kg

Borehole Equipment

1.04

To lower the probe down a drill hole requires a cable and spool, winch assembly frame and cable counter. Borehole surveys also require equipment to "dummy probe" the hole before doing the survey.

Specifications: Borehole Cable

- two conductor shielded cable
- kevlar strengthened
- lengths are available up to 2600m on three sizes of spools.
- shipped in wooden box

Specifications: Slip Ring

- attaches to side of borehole cable spool providing a connection to the receiver while allowing the spool to
- turn. - VLF filter
- pure silver contacts

Specifications: Borehole Frame

- welded aluminum frame
- removable axle
- chain driven, 3 speed gear box
- hand or optional power winding
- hand brake and lock
- two sizes: standard for up to 1300m cable; larger for longer cables
- shipped in wooden box

Specifications: Borehole Counter

- attaches to the drill hole casing
- calibrated in meters
- shipped in wooden box; total weight 13kg

Specifications: Dummy Probe and Cable

- solid steel or steel pipe
- same dimensions as borehole probe
- shear pin connection to dummy cable
- steel dummy cable on aluminum spool
- cable mounts on borehole frame
- various lengths to 2600m on 3 spool sizes.

Crone Pulse EM System Description 7

MAHAFFY

42A14SW2008 2.20231

030

INTERPRETATION OF BOREHOLE EM RESULTS FOR FALCONBRIDGE LIMITED HOLES MF12-02, MF12-03, MF12-05, MF12-06, MF12-07, MF12-13, MF12-28, MF13-04, MF16-01, MF16-02, MF16-03 LOCATED IN MAHAFFY TOWNSHIP PORCUPINE MINING DIVISION

2.20231

SHARON TAYLOR APRIL 2000

Introduction

This report documents the results of 3 component borehole EM surveys carried out in holes MF12-02, MF12-03, MF12-05, MF12-06, MF12-07, MF12-13, MF12-28, MF13-04, MF16-01, MF16-02, and MF16-03, all located in Mahaffy Township in the Porcupine Mining Division. All surveys were performed during February and March 2000. The logistical information pertaining to these surveys is documented in the attached report.

Interpretation Notes

In borehole EM, a current is passed through a transmitter loop located on the surface, and a receiver is lowered down a drillhole. The current in the transmitter is an alternating pulse with a controlled ramp shut-off. This shut-off induces eddy currents to flow in conductive bodies, which in turn set up their own magnetic fields which are measured by the receiver apparatus. The currents decay over time, and by taking readings at various times after the transmitter current has turned off, the characteristics of the target can be determined. Currents decay slowly in a good conductor, and quickly in a poor conductor. The amplitude of the secondary currents will be determined by the transmitter current, the geometry between the transmitter and target, and the conductance of the target.

If the hole approaches the side of the conductor located closest to the loop edge, anomalies will be 'normally coupled'. This means that an intersected target will have a positive z component response, and targets lying off the hole will have a negative z component peak with flanking positive shoulders. A positive to negative crossover on the x component indicates that the center of the target lies below the hole, and vice-versa for a negative to positive crossover. On the y component, a negative to positive crossover indicates that the source is located to the left of the hole (looking in the direction of the hole azimuth), and to the right if the polarity is positive to negative. This polarity is typical when transmitter loops are located around the collar of the hole. If the transmitter loop is located in such a position that the hole approaches the side of the target the data exactly the opposite as described above i.e. in-hole anomalies are negative and off-hole anomalies are positive, and a target located above the hole would have a positive to negative crossover on the x component, and targets to the right would have a y component crossing from negative to positive.

Results

<u>MF16-01</u> - This hole was surveyed with a collar loop, which will give anomalies of normal coupling. There is a positive peak at 155m on the z component, indicating an in-hole anomaly. The x component crosses from positive to negative at this depth (center of conductor below hole) and the y component crosses from negative to positive (center of conductor to the left - east). The purpose of surveying this hole was to determine if there were any conductors in the vicinity of the hole in addition to the one intersected in the hole. Since the only anomaly located in the hole correlates with barren sulphides intersected in the hole, no further work is recommended.

<u>MF16-02</u> - This hole was surveyed with a collar loop, which will give anomalies of normal coupling. The results contain two positive peaks on the early channels on the z component, located at 125m and 145m. The anomaly at 145m is an edge-type anomaly. Both anomalies locate conductors whose center is below (x crosses from positive to negative) and to the left – east (y crosses from negative to positive). No further work is recommended.

 $\mathbf{MF16-03}$ - This hole was surveyed with a collar loop, which will give anomalies of normal coupling. There is a 20 channel positive peak at 170m on the z component, indicating an in-hole anomaly. The x component crosses from negative to positive at this depth (center of conductor above the hole) and the y component crosses from positive to negative (center of conductor to the right - west). The purpose of surveying this hole was to determine if there were any conductors in the vicinity of the hole in addition to the one intersected in the hole. Since the only anomaly located in the hole correlates with barren sulphides intersected in the hole, no further work is recommended.

MF12-02 – Of minor interest is an early channel response at 200m and a very sharp positive peak at 490m. The late time results, which are indicative of strong conductors, show an increasing negative value toward the bottom of the hole. This indicates an approach to a large off-hole anomaly, centered approximately 20m beyond the end of the hole. The y component will cross from positive to negative (source to right of hole), and the x component is expected to peak or cross from positive to negative (source below hole). Looking closely at the profile, there is a change in the slope, indicating a second off-hole target at approx 450m. This conductor is located above the hole, and to the west (based on mid-time channels). The distance to the conductors is 70m (anomaly at 450m) and 150m (anomaly below hole - approx 680m). Looking at the drillhole locations, the off-hole at 450m would have been intersected by MF12-03, and the anomaly at 680m is interpreted to be caused by the western end of the strongly conductive graphite intersected in MF12-13.

<u>MF12-03</u> – There are two significant borehole responses in this hole, a 13 channel off-hole at 230m and a second off-hole at 640m. The source of the anomaly at 215m is located to the right (west) of the hole. There is a small x response, indicating the center of the conductor is primarily beside the hole, but also above. The off-hole at 640m is present on all 20 channels, and outlines a large conductor located 60m away, to the right of the hole. The x component has a positive peak, indicating the conductive center lies below the hole.

MF12-05 – There are numerous responses in this hole. There is an 18 channel off-hole at 80m and a 10 channel off-hole at 110m. At early times to middle times, there are two relatively symmetrical off-hole anomalies. Both are 20m away, located below and to the west of the hole. At late times, there is a negative to positive crossover on the z component, indicating a sub-parallel conductor. The z crossover corresponds to a positive peak on both the x and y components at 100m, locating the source above and east of the hole. The most significant is an off-hole anomaly at 600m. This is an extremely conductive target located 20m away to the right and below the hole. There is also an in-hole at 600m, but it is a weaker conductor, and extends east of the hole. The next most significant response is an 18 channel in-hole at 185m. The zone continues downdip.

<u>MF12-06</u> – Similar to MF12-05, there are very high amplitude anomalies in this hole. The strongest response is an off-hole response at 145m. The anomaly is very unsymmetrical, almost a z crossover at 130m. At early times, there are two distinct off-hole anomalies, at 145m and 170m. The anomalies are both located approx. 20m away and show symmetry. The fact that there is rotation indicates that there is significant width to the conductor. The target is located below and to the right (west) of the hole. There is also a 15 channel off-hole anomaly at 560m. Its source is located 20m away, below and to the right (west) of the hole. There is also a three channel off-hole anomaly at 165m.

<u>MF12-07</u> – This hole was surveyed with a collar loop (normal coupling). There are two anomalies in the results: an in-hole at 140m, located above and to the right (west). This response is seen over a large distance, and corresponds to a large conductor. Negative late time values on the z component at 135m are interpreted to correspond to a separate off-hole anomaly, also located above and to the west. It is difficult to calculate a distance because of the in-hole anomaly. There is also an 11 channel off-hole anomaly at 660m, located 15m away, above and to the right (west) of the hole.

MF12-13 – This hole was surveyed to help explain the source of the response in MF12-28. The loop location is south of the hole collar, which means that coupling is reversed. The results show two closely spaced anomalies located at 160m and 170m. The upper anomaly is an off-hole anomaly at 150m, located 10m away above and to the east of the hole. There is a late time in-hole at 165m whose center is located to the left (east) and below the hole.

<u>MF12-28</u> – This hole was surveyed with a collar loop. There is a very large, broad negative (offhole) anomaly in the z component along the entire 325m hole. The shape of the anomaly is very broad, with a flat top, indicating there are two anomalies, located at 160 and 200m. Both are very good conductors, with the lower conductor being the better target. The y component crosses from positive to negative at both positions, indicating sources located to the right (west). The x component shows a positive peak. The anomaly at 160m can be correlated to the off-hole response at 150m in MF12-13 and the lower, more conductive anomaly correlates to the in-hole anomaly at 165m (graphite).

<u>MF13-04</u> – This hole was surveyed using a collar loop. The results show a 12 channel off-hole anomaly, with the source located 20m away, above and to the west of the hole. This conductor correlates with graphite intersected in the hole, and no further work is recommended.

Summary and Recommendations

3 component borehole EM surveys were carried out in holes MF12-02, MF12-03, MF12-05, MF12-06, MF12-07, MF12-13, MF12-28, MF13-04, MF16-01, MF16-02, and MF16-03, all located in Mahaffy Township. No targets were located in MF13-04, MF16-01, MF16-02, and MF16-03. Numerous anomalies were located in the remainder of the holes, and each should be evaluated in a geological context.

Respectfully submitted,

Sharon Taylor

Sharon Taylor

HOLE NUMBER: MF12-28		FALCONBRIDG DRILL HOL	DATE: 04/12/2000 IMPERIAL UNITS: METRIC UNITS: X	
PROJECT NAME: KIDD/HBED/EAL JV PROJECT NUMBER: 36 CLAIM NUMBER: Prop#JV37, Spect Targ#5 LOCATION: Karvinen Property		S GRID: UTM NORTH: 5405203.00N EAST: 458625.00E ELEV: 290.00 AZIMUTH: 135° 0' 0"	ALTERNATE COORDS GRID: MF12 Grid NORTH: 116+60mN EAST: 18+40mE ELEV: 290.00 GRID ASTRONOMIC AZIMUTH: 0°0'0"	COLLAR DIP: -50° 0' 0" LENGTH OF THE HOLE: 326.00M START DEPTH: 0.00M FINAL DEPTH: 326.00M
DATE STARTED: 03/21/1999 DATE COMPLETED: 03/24/1999 DATE LOGGED: 04/28/1999	COLLAR SURVEY: NO RQD LOG: NO HOLE MAKES WATER: NO		PULSE EM SURVEY: YES PLUGGED: YES HOLE SIZE: BQ	CONTRACTOR: Bradley Bros. CASING: 13m NQ left in hole CORE STORAGE: Minesite UTM COORD.:

COMMENTS : Semi massive barren Py in altered rhyolite intersected at target depth. Collared on P865387 WEDGES AT:

DIRECTIONAL DATA:

	pth M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	 Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	20.00	127° 0' 0"	-50° 0' 0"	S	ОК		-			_	_	
	80.00	130° 0' 0"	-50° 0' 0"	S	OK		-	-	_	_	-	
1	40.00	132° 0' 0"	-50° 0' 0"	S	OK		i -	-	-	-	_	
2	00.00	143° 0' 0"	-49° 0' 0"	s	OK		-	-		_	-	
2	60.00	149°30' 0"	-44° 0' 0"	S	OK		-	-	-	_	_	
	25.00	148° 0' 0"	-43° 0' 0"	S	OK		-		-	-	_	
	-	-	-	-	-		i -	-	-	-	_	
	-	-	-	-	-		i -	_	-	_	_	
	-	-	-	-	-		_	-	-	_	-	
	-	-	-	-	-		-	-	-	-	_	
	-	-	-	-	-		-	-	-	_	_	
	-	-	-	-	-			-	-	_		
	-	-	-	-	-		í –	-	-	_	-	
	-	-	-	-	-		i -	-	-	_	-	
	-	_	-	-	-		-	_	-	_	_	
	_	-	-	-	-		 ~	_	-	_		
	_	-	-	-	-		_	_	_	_	-	
	-	_	-	_	-		-	_	_	_	-	
	_	-	_	-	-		1 1 _	_	_	-	-	
	_	_	_	_	_		I –	_	-	-	-	
	_	-	_	_	-		- 	-	-	-	-	
	-	-	_	_	_		-	-	-	-	-	
	_	_	_		_		-	-	-	-	-	
	_	_	_	-	_		-	-	-	-	-	
	_	-	-	_	-		-	-	-	-	-	
	-	-	-	-	-		1 -	-	-	-	-	

1 A . A . - · · · - ·

040

HOLE NUMBER: MF12-28

DRILL HOLE RECORD

LOGGED BY: G Collins

PAGE: 1

DATE: 04/12/2000

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 13.00	«†ор¦»					
13.00 TO 13.55	«4,f,*b» 	 FELSIC LAPILLISTONE -Light grey to white felsic lapillistone. Unit is composed of angular framework supported lapilli sized felsic fragments. -Core is broken and leached due to interaction with ground water. -A moderately strong schistocity defined by flattened fragments and an anastamosing sericitic cleavage, 30° TCA is observed. -Downhole contact is sharp, parallel to schistocity. 		-Unit is strongly silicified, overprinted by minor fracture controlled sericite/chlorite.	-No sulphides are observed, however unit is strongly leached and heavily iron stained.	
13.55 TO 33.00	<pre>«2,a,*t» </pre>	<pre>SHEARED MAFIC VOLCANICS -Light grey to green, fine grained mafic volcanicsUnit is massive and aphanitic in texture, overprinted by a strong schistocity that obscures primary volcanic texturesMassive sections are interspaced gradationally by spotty/clastic looking intervalsSpotted intervals are defined by abundant porphyroblastic carbonatizationSchistocity increases in intensity towards a brecciated interval hosting a 10cm thick seam of gouge material. Schistocity is 30° TCA. (19.6-19.8) «(FAI)» -Interflow felsic ash tuff observed between 26.2 and 28.6m. Tuff is composed of lapilli sized felsic material near the base, to fine, cherty ash near the uphole contact. Upward fining sequence supports north stratigraphic facingTuff intruded by thin mafic dyke between 27.3 and 27.7m. (126.2-28.6) «4,t,*a»</pre>		-Unit overprinted by strong pervasive carbonatization. -Porphyroblasts of carbonate render sections of interval, spotted in texture.	-Isolated patches of Py/Po	-Fining within tuffaceuos section between 26.2 and 28.6m supports an uphole facing direction.

HOLE NUMBER: MF12-28

DATE: 04/12/2000

	<u> </u>					
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE	•	MINERALIZATION	REMARKS
33.00	«2,p,e»	 -Downhole contact is marked by the appearance of a selvage like feature. AMYGDULAR PILLOWED MAFIC VOLCANICS		 -Unit is strongly pervasively	 -Minor disseminated euhedral Py	
33.00 TO 147.60		 Light green to buff/grey pillowed mafic volcanics. -Mafics are highly vesicular, hosting amygdules ranging from 1 to 10mm in diameter that occupy up to 15% of rock. Amygdules are infilled by qtz/calcite. -Unit is pervasively carbonatized. Porphyroblasts 		<pre>carbonatized. -Carbonate filled amygdules occupy 10-15% of core. -Porphyroblasts of calcite render core spotted in appearance. -Wispy buff coloured sericite occurs throughout unit.</pre>	observed locally.	
		of calcite render core spotted in appearance. -Pillows are defined by thin dark green, chloritic selvages. Hyaloclastite/interflow breccia material occurs locally between pillows.				
	 	<pre>-Minor shear zones developed around gouge filled seams are observed between 48.8 and 48.9m, 57.1 and 57.3m, 61.5 and 61.6m, 93.1 and 93.3m, and 95.55 and 95.65m. 448.8-48.9 * FAI *</pre>				
		57.1-57.3 ; « FAI -» 61.5-61.6 ; « FAI -» 93.1-93.3 ; « FAI -» 95.55-95.65]; « FAI -» -Around faults/slips, foliation cleavage becomes				
		stronger commonly rotating oblique to core axis. rotation is believed symptomatic of drag folding.	and and a second a			
		 Interflow tuffaceous sequences identified between 84.0 and 85.65m, and 98.9 and 103.1m. Tuffs poorly graded, composed primarily of granule to lapilli sized, felsic fragments. 				
		∜84.00-84.65╠ «3,t,*a»		1		
		 ╣98.90-103.10╠ «3,t,*a»				

HOLE NUMBER: MF12-28

DATE: 04/12/2000

rom To	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE		MINERALIZATION	REMARKS
.60 TO	«4,*b,C»	-Downhole contact is sharp, 50° TCA. HETEROLITHIC FELSIC FRAGMENTALS	 	-From 147.60 to 154.65m, alteration is characterised by moderate to strong	 -Minor disseminated and stringer	-Focused chloritic alteration.
.60 		 -Felsic dominated heterolithic fragmental. -Interval is crosscut by numerous gouge faults/slips, separating the fragemental into two 		pervasive dark green choritization, overprinted by matrix controlled silicification, and fracture/foliation	-No base metal sulphides observed. 	
		<pre>distinct sub-lithologiesFrom 147.6 to 154.65m, unit is composed of</pre>		controlled coarse grained sericitic alteration. Produces alligator skin textures, similar to those associated		
		<pre>framework supported angular lapilli sized fragments. Fragments are dominantly felsic, however mafic volcanic and diorite clasts are</pre>		with copper stringer mineralization at Kidd.		
 		<pre> also observed. -Interval is strongly overprinted by pervasive chloritic alteration, and matrix controlled silicification. Late brittle fracturing has</pre>		-Downhole from 154.65m, chloritic alteration is not as strongly developed.		
		alteration. Late bittle fracturing has a lateration.	 	-Fracture controlled carbonate alteration is strong thoughout interval.		
İ		-Gouge faults observed at 152.8m, 154.1m, and 154.65m. Fault at 154.65m appears to terminate chlorite/silica alteration.				
		 ╢154.60-154.65╠ «╢FAI┠» 				
		-From 154.65 to 156.6m, unit is composed of finer grained material. Matrix supported lapilli sized fragments of felsic and mafic material occupy				
		35-50% of unit. Sub-unit is poorly sorted, resembling slump/mixed debris. -Interval is strongly schistose, locally			· · ·	
		exhibiting a strong parasitic crenulation fabric. -Schistocity rotates from 50° to 0° towards				
		154.9m around a secondary fold axis, parallel to schistocity.				
		{155.0-156.6 ⊧ «{\$1 45° +» «{\$2 45° +» -Downhole contact is sharp, marked by 15cm thick				
		seam of gouge. Gouge fault appears to cut core axis 35° TCA. 	 			

HOLE NUMBER: MF12-28

PAGE: 4

FROM TO	ROCK TYPE	•	ANGLE	ALTERATION	MINERALIZATION	REMARKS
156.60 TO 160.05	<pre></pre>	 SULPHIDIC CHERT/MUDSTONE-ARGILLITE -Dark grey fine grain meta-siltstone, chert and argillite host 15% brecciated colliform to nodular textured and disseminated Py. -Interval is strongly brecciated, infilled by abundant fracture controlled qtz/carbonate and carbonaceous alteration. Minor amounts of gouge are observed on fracture and slip surfaces. -Bedding/banding occurs at poor angles to core axis. Pyritic bands, are locally co-laminar to to finely layered beds of chert, 10 to 15 deg TCA. -Downhole contact is marked by a strongly sheared gouge filled seam and quartz/albite veining. Veining is observed from 159.4 to 160.05m. -Gouge fault appears to cut core 35° TCA. 		-Fracture and veinlet controlled qtz/carbonate and qtz/albite alteration increase towards lower contact. -65cm thick qtz/albite/carbonate vein hosting 3-5% disseminated Py is observed between 159.4 and 160.05m.	-Banded to colliform, nodular and disseminated Py occupy 15% of unit.	-Sulphides are moderately to strongly conductive. Connectivity is poor between sulphides along core length.
160.05 TO 160.20	<pre>4,f» </pre>	FELSIC VOLCANICLASTIC -Dark grey, felsic lapillistone. Unit is strongly schistose overprinted by strong pervasive sericitic alteration, and minor fracture controlled carbonaceous alteration.		-Strong pervasive sericitic alteration. -Minor fracture controlled carbonaceous alteration.	-Trace Py	
160.20 TO 160.90	 «10,a» 	-Downhole contact is strongly sheared, containing minor amounts of gouge material. DIABASE/MAFIC INTRUSIVE -Fine grained olive coloured, plagioclase phyric mafic intrusive. -Upper and lower contacts are sharp but irregular. Unit appears to chill against uphole and downhole contact. -Stoped fragments of felsic volcaniclastic occur within dyke near lower contact.		-Plagioclase appear weakly saussertised.	-No sulphides observed.	-Unit has magnetic susceptability common to mafic rocks. Interval may be related to synvolcanic mafic sill?
160.90 TO 305.50	 «4,1,m,bx» 	MASSIVE FLOW TEXTURED RHYOLITE -Light grey, massive to curdy textured rhyolite. -Massive to brecciated looking intervals hosting		-Moderate to strongly developed anastamosing fracture controlled to pervasive sericitic and chloritic alteration.	 -Trace disseminated Py observed throughout unit. Rare, isolated specs of fine disseminated Sph observed throughout unit.	-Numerous gouge faults and rotating foliation cleavage suggest major structural complexity, possibly related to large scale regional

HOLE NUMBER: MF12-28

LOGGED BY: G Collins

DATE: 04/12/2000

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE		MINERALIZATION	REMARKS
		<pre>trace disseminated quartz phenocrysts are interspaced by curdy, fragmental textured intervals. -Locally, isolated to coallescing spherulitic textures are developed. -Unit is overprinted by moderate to strong fracture controlled to pervasive sericite and chlorite alteration. -An anastamosing foliation cleavage defined by chlorite/sericite partings is observed throughout interval. -From 160.9 to 164.0m, foliation cleavages range between 40 and 45° TCA. #[160.9-164.0]* *[\$1 45° !* -Between 164.0 and 175.0m, foliation flattens to between 30 and 35° TCA. #[164.0-175.0]* *[\$1 35° !* -From 227.0 to 233.0m, foliation rotates to 50° TCA. #[227.0-233.0]* *[\$1 50° !* -Small brittle faults containg minor gouge observed at 160.2m, 162.1m, 202.65m, 217.5m, 222.0m, 224.85m, 229.65m, 238.15m, 259.0m, 261.5m, and 262.8m. -Fault observed at 202.65 appears to truncate zone of strongly developed coarse grained sericitic alteration. -From 261.0 to 305.5, fracture controlled sericite/chlorite alteration produces exceptional and unique textures within rhyolite. Alteration appears to be controlled by primary permeability controls, becoming most strongly developed within the matrix of hyaloclastitic sections and along flow laminations. -Alteration appears to enhance and produce curdy</pre>		 -Zones of primary permeability are infilled and replaced by chorite and sericite. Sericite appear to be in greater abundance than chlorite. -Qtz/carbonate veinlet containing chlorite and trace disseminated Py observed between 197.25 and 197.40m. -Fracture/matrix controlled dark green sericite/chlorite becomes exceptionally strong between 261.0 and 297.0m. Core alternates between hard, siliceous unaltered qtz/phyric felsic material, and soft green sericite/chlorite filled fractures. -55cm thick qtz/calcite/chlorite vein observed from 286.15 to 286.70m. 	-Section between 263.0 and 263.6m, hosts 2-3% disseminated Py in isolated patches coincedent with fracture controlled sericitic/chloritic alteration. -Rhyolite hosts 1 to 2% fine disseminated euhedral Py between 293.9 and 299.0m.	deformation related to brittle offsets occurring within the Mattagami River fault zone.

HOLE NUMBER: MF12-28

PAGE: 6

.

DATE: 04/12/2000

ROM	ROCK	i	ANGLE		i i i i i i i i i i i i i i i i i i i	
TO	TYPE	TEXTURE AND STRUCTURE	TO CA	ALTERATION	MINERALIZATION	REMARKS
		textures, possibly digesting and rounding	- -		-	
ł		angular hyaloclastite fragments and widening				
i		flow shear laminations.				
i		-Good example of curdy fragmental texture				
i		believed related to altered hyaloclastite	1			
i		interval between 264.0 and 266.0m.	1			
i		-Good example of cm scale flow banding between	i i			
į		274.5 and 276.0m.	ļ			
1		-Between 278.0 and 297.0m, unique textures				
1		interpreted as being related to brittle/ductile	i i			
1		shearing observed. Interval has overall	i i			
		appearance of curdy textured fragmental. Fragment				
·		forms appear strongly flattened, surrounded by				
ļ		strongly developed seams of chlorite/sericite.				
ļ		-Protolith is believed to be similar to intervals				
ļ		of rhyolite logged uphole (i.e. flow textured to	1			
		auto-brecciated and fragmental rhyolite. 				
ĺ		-Multiple slips and gouge faults occur throughout	i i			
ļ		section. Locally, foliation rotates into and out				
ł		of brittle faults.				
i		-More gouge faults noted at 283.2m, 286.05m,	i i			
Í		289.6m, 290.1m, 291.65m, 292.9m, 293.8 to 293.9m,	i i			
1		and 304.15m.	i i			
1		-Qtz/carbonate chlorite vein hosting	1 Ì			
		disseminated Py observed below gouge fault at				
		286.05 from 286.15 to 286.70m.				
		-A strongly crenulated, anastamosing foliation	! !			
ļ		cleavage rotates from 45 to 50° TCA, to 0 to 30°	!!!			
		between 280.7 and 281.3m, and 289.6 and 289.9m.				
		-Crenulation liniations are not consistant, rather occur at erratic orientations.				
1		Sericite/chlorite partings anastamose around				
		brittle, unfoliated fragments of rhyolite.				
		Foliation may be product of crude drag folding				
		into brittle faults.				
i		-Core has poor competancy, and is easily broken,	1			
i		snapped along sericite/chlorite filled	i i		i	
į		fractures.	ļļ		i i	
		-Alteration is strongly developed along fracture				
i		shear surfaces, but does not seem to pervasively	i i			
i		alter rhyolite fragments.	i i		i i	

DATE: 04/12/2000

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
305.50 TO 308.85	«5,a,g,f»	<pre>#278.0-297.0m# *FZ,SZ></pre>		-Moderate to strong fracture controlled to pervasive carbonaceous alteration. -Minor fracture filling qtz/carbonate alteration.	-3-5% fine to medium grained disseminated euhedral Py observed between 306.5 and 306.8m. -1% disseminated Py observed between 306.8 and 308.85m. -No base metal sulphides observed.	-Carbonaceous material renders interval weakly conductive.
308.85 TO 318.90	<2,a,m»	 -Downhole contact is sharp but irregular. MAFIC VOLCANIC -Fine grain buff to green coloured fine grained mafic volcanic. Unit is relatively massive, and featureless in texture, overprinted by a moderate to strong foliation cleavage, 40° TCA. «\slipsible slipsible slipsi		-Minor fracture controlled qtz/carbonate alteration. -Wispy fracture/cleavage controlled yellow/brown sericite observed throughout interval.	-Trace disseminated euhedral Py.	

HOLE NUMBER: MF12-28

PAGE: 8

.0м ТО	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE	1	MINERALIZATION	REMARKS
18.90 TO 24.05	«4,bx,f»	BRECCIATED FELSIC VOLCANIC -Fine grain dark grey insitu brecciated massive to fragmental textured rhyolite. -From upper contact to 321.65m, unit becomes increasingly brecciated, infilled by sericite/chlorite fractures. Rhyolite is extremely hard, and aphanitic. -Downhole from 321.65, unit becomes gradationally more fragmental intexture.	 	-Fracture/cleavage controlled sericite/chlorite alteration occurs throughout interval. -10cm thick qtz/carbonate veinlet observed between 320.1 and 320.2m.	-20% disseminated euhedral Py observed between 318.90 and 319.25m. -15% disseminated euhedral Py observed between 321.40 and 322.25m. Py appears to replace rhyolite fragments.	
24.05 TO 26.00 	«3,f,C»	 -Downhole contact is sharp 50° TCA, marked by a thin qtz/carbonate veinlet. HETEROLITHIC FRAGMENTAL -Matrix supported mixed mafic and rhyolite fragments. Fragments range from sandy ash to lapilli in size. -Rhyolite fragments occupy 10 to 15% of unit. Remainder of fragments are mafic in composition. -Unit is moderately foliated, 50° TCA. 	 	-Minor wisps of fracture/foliation controlled yellow/brown sericite observed throughout interval. -Weak fracture controlled to pervasive sericite.	-2% medium grained diseeminated euhedral Py.	
26.00	«EOH»				1	
то			ļ			

HOLE NUMBER: MF12-28

DRILL HOLE RECORD

LOGGED BY: G Collins

PAGE: 9

DATE: 12/04/2000

Sample	From (M)	То (М)	Leng. (M)	Cu ppm	Zn ppm	Pb ppm	Ni ppm	Au ppb	Ag ppm	Cu/Z	n Co ppm	Pt ppb	Pd ppb	S ppm	Se ppm	As ppm	Hg ppb	Sb ppm
J04551 J04552	155.00	156.60 158.00	1.60	9 16		71 34	3 6 34 28		7 27	0 1								
J04552 J04553	158.00		1.40 1.40	16 18		34 38	34 28 30 41		24	0								
J04554		160.05	0.65	ι – Ξ ε		93	3 25		7	0								
J04555	160.05	161.00	0.95	115		91	3 23		7	0								
J04556	263.00	263.60	0.60	70		66	13 7		21	1								
J03749 J04557	286.00	286.70 305.50	0.70 1.25	e 10		37 16	3 10 4 10		3 7	0 0								
J04558	304.25		0.90	71		65	9 57		0	0								
J04559	306.40		1.60	14		28	2 137		10	0								
J04560	308.00	308.50	0.50	4		6	2 44	. 0	14	0								
U04561	318.90		0.35	92		44	8 54		7	0								
J04562	321.40	322.25	0.85	47 	1	03	1 41	. 0	7	0								
				Ï														
				1														
				1														
				l														
				Ï														
				ll .														
				Ï														
				l														
				ü														
				II.														
				1														
				li fi														
				1														
				1														
				Ï														
				Ï														
				1														

HOLE NUMBER: MF12-28

-

DATE: 12/04/2000

Sample	From (M)	To (M)	Leng. (M)	SI02 %	AL203 %	CAO %	MGO %	NA20 %	K20 %	FE2O3 %	TIO2 %	P205 %	MINO %	CR203 %	LOI %	SUM %	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	CO2 %	CU PPM	ZN PPM	NI PPM	CR FIELD CHEM PPM NAME ID	ALUM
AU01336	14.00	17.00	3.00	69.04	11.29	3.68	1.39	0.84	1.53	5.15	0.61	0.15	0.10		5.79	99.57	20	130					10	10	<5	10 2,a,*t 3(j)	187
AU01337	26.95	27.25	0.30	72.87	14.15	1.01	0.94	1.51	1.43	3.78	0.46	0.11	0.06		3.39	99.71	25	190					5	5	<5	15 4,t,*a 4jB	358
AU01338	50.00	51.40	1.40	48.19	12.12	5.30	3.80	0.44	0.46	17.55	0.84	0.22	0.66	ב	10.16	99.74	30	150					5	15	5	15 2,p,e 2(j)v!	195
AU01339	71.00	74.00	3.00	53.27	13.84	9.18	2.00	1.95	1.63	6.20	0.85	0.16	0.13	1	10.67	99.88	15	90					10	15	5	10 2,p,e 3(j)!	108
AU01340	84.55	84.85	0.30	51.48	16.13	4.67	3.99	1.48	1.68	10.43	1.08	0.22	0.12		8.50	99.78	25	120					10	15	5	54,t,*a2(h)w!	206
AU01341	92.00	95.00	3.00	54.28	16.47	5.78	2.21	2.97	1.58	6.75	1.00	0.17	0.11		8.12	99.44	20	100					10	15	5	10 2,p,e 2(j)w!	159
AU01342	99.50	101.00	1.50	50.71	13.92	6.46	4.04	1.21	1.30	8.89	0.88	0.18	0.11	1	11.97	99.67	20	100					10	10	5	10 3,t,*a 2(j)w!	155
AU01343	116.00	119.00	3.00	47.95	13.14	9.90	2.72	1.57	1.17	7.77	0.78	0.14	0.13	נ	14.62	99.89	15	80					5	10	5	10 2,p,e 3(j)!	104
AU01344	143.00	146.00	3.00	53.14	14.83	7.02	3.87	0.90	2.05	7.29	0.94	0.19	0.11		9.10	99.44	20	100					10	15	5	52,p,e 2(j)w!	149
AU03741	152.00	155.00	3.00	69.43	11.41	4.36	1.59	0.84	1.61	4.37	0.53	0.15	0.08		5.40	99.77	25	170					5	10	<5	204, f 3(j)	168
AU03742	164.00	167.00	3.00	74.34	10.67	1.01	3.22	0.14	2.52	2.68	0.13	0.01	0.03		4.85	99.60	45	210					5	10	<5	20 4,1,m,b4(h)B	291
AU03743	182.00	185.00	3.00	75.22	11.96	0.55	3.36	0.16	2.56	2.28	0.15	0.01	0.02		3.49	99.76	50	240					5	5	<5	25 4,1,m,b4(h)B	366
AU03744	200.00	203.00	3.00	74.15	11.28	0.12	1.77	0.21	2.45	5.44	0.15	0.01	0.10		3.76	99.44	55	220					5	10	<5	20 4, m, 1, b4 (h) B	406
AU03745	218.00	221.00	3.00	77.22	11.07	0.91	1.63	0.21	2.20	3.10	0.13	0.02	0.07		3.23	99.79	50	210					10	65	<5	20 4,m,l,b4(h)B	333
AU03746	239.00	242.00	3.00	76.98	11.03	0.29	2.97	0.18	2.22	2.45	0.13	0.01	0.05		3.17	99.48	45	220					5	<5	<5	15 4,m,l,b4(h)B	410
AU03747	254.00	257.00	3.00	78.44	10.62	0.14	2.38	0.18	2.21	2.65	0.13	0.02	0.05		2.76	99.58	40	210					5	5	<5	20 4,m,l,b4(j)B	420
AU03748	269.00	272.00	3.00	76.30	12.39	0.04	3.38	0.26	2.21	1.82	0.17	0.02	0.02		2.93	99.54	55	260					5	<5	<5	15 4,m,l,b4(h)B	494
AU01345	287.00	290.00	3.00	72.73	11.82	0.79	4.54	0.15	2.12	3.21	0.17	0.01	0.08		4.20	99.82	45	240					<5	10	<5	20 4,m,l,b4(j)B	386
AU01346	299.00	302.00	3.00	74.62	12.43	0.31	2.32	0.16	3.26	2.41	0.18	0.02	0.03		3.77	99.51	60	250					5	10	<5	20 4,m,l,b4(h)z	333
AU01347	314.00	317.00	3.00	51.73	12.91	5.28	4.97	0.23	3.76	6.54	0.97	0.09	0.14	1	13.00	99.62	20	70					5	5	5	20 2,a,m 2(h)w!	139
AU01348	319.25	321.40	2.15	79.57	10.40	0.35	1.75	0.12	2.73	1.90	0.12	0.02	0.01		2.65	99.62	105	180					5	5	<5	15 4,bx,f 4hz	325
AU01349	322.25	324.05	1.80	68.68	11.92	3.24	2.63	0.14	3.43	2.13	0.13	0.03	0.05		7.12	99.50	135	230					5	10	<5	20 4,bx,f 4hz	175
AU01350	324.05	325.80	1.75	45.46	13.11	6.24	7.21	0.71	3.27	7.79	1.01	0.12	0.13	3	14.37	99.42	25	80					5	5	10	15 3,f,C 2(h)u!	128

-

UCLE MIMBER ME12-28

HOLE NUM	BER : MF1	2-28									GEOCH	EMICAL	ASSAYS															DATE :	12/04/20
Sample	From (M)	To (M)	Leng. (M)	AG PPM	AU PPB	CO PPM	PB PPM	S PPM	V PPM	AS PPM	SN PPM	CD PPM	SB PPM	BI PPM	SE PPM	HF P PM	TA PPM	W PPM	MO PPM	TH PPM	U PPM	B PPM	CS PPM	LA PPM	CE PPM	ND PPM	SM PPM	EU PPM	GD PPM
J01336	14.00	17.00	3.00	{ 		<5		0.15	70																				
J01337	26.95					<5		0.07	25																				
01338		51.40		l.		<5		0.15	100																				
01339	71.00			l.		5		0.17	140																				
01340				li.		5		0.14	170																				
01341		95.00		1		5		0.08	160																				
01342		101.00				5 5		0.03	140																				
01343	116.00 143.00			 		5		0.18	140																				
	143.00			11		-5 <5		0.09 0.79	145 35																				
	164.00			11		<5		0.02	5																				
	182.00			11		<5		0.02	5																				
03744						<5		0.13	10																				
03745				**		<5		0.04	15																				
03746				1		<5		<0.01	5																				
03747	254.00					<5		<0.01	5																				
03748	269.00			Ï		<5		<0.01	15																				
01345	287.00	290.00	3.00	li		<5		0.20	5																				
01346	299.00	302.00	3.00	11		<5		0.24	15																				
	314.00					5		0.25	230																				
	319.25					<5		0.08	10																				
	322.25					<5		0.17	10																				
01350	324.05	325.80	1.75			5		0.79	230																				
	BER: MF1											EMICAL			<u></u>													PAGE	

DATE: 12/04/2000

Sample	From (M)	То (M)	Leng. (M)	DY PPM	ER PPM	LU PPM	OS PPB	IR PPB	RU PPB	RH PPB	PT PPB	PD PPB	LI PPM	BE PPM	MN PPM	GA PPM	GE PPM	IN PPM	TL PPM	SC PPM	BR PPM	YB PPM	NB PPM	HG PPB	MGO#	CA/AL	NI/MGO	ISHIKW	IN/NA2
U01336	14.00	17.00	3.00	[<5						<5			<10		0.39	0.33	4	39	12
01337	26.95	27.25	0.30											<5						<5			<10		0.37	0.07	5	48	3
01338	50.00													<5						<5			<10		0.34	0.44	1	43	34
01339	71.00			ł										<5						<5			<10		0.43	0.66	3	25	8
01340	84.55													<5						<5			<10		0.48	0.29	1	48	10
J01341	92.00													<5						<5			<10		0.44	0.35	2	30	5
01342		101.00		[] \$1										<5						<5			<10		0.52	0.46	1	41	8
01343 01344	116.00 143.00			RT										<5 <5						<5			<10		0.45	0.75	2	25	6
	152.00			11 										<5						<5 <5			<10 <10		0.56 0.46	0.47	1	43	17
	164.00			4 1										<5						<5			<10		0.48	0.38 0.09	3 2	38 83	12 71
	182.00			" []										<5						<5			<10		0.74	0.05	1	89	31
	200.00													<5						<5			<10		0.44	0.01	3	93	48
	218.00			" 										<5						<5			<10		0.56	0.08	3	77	310
	239.00			ü										<5						<5			<10		0.75	0.03	2	92	28
	254.00			Ï										<5						<5			<10		0.68	0.01	2	93	28
J03 74 8	269.00	272.00	3.00	Ĭ										<5						<5			<10		0.82	0.00	1	95	19
J01345	287.00	290.00	3.00	Ï										<5						<5			<10		0.77	0.07	1	88	67
J01346	299.00	302.00	3.00	l										<5						<5			10		0.70	0.02	2	92	62
01347	314.00	317.00	3.00	ll										<5						5			10		0.65	0.41	1	61	22
	319.25			I										<5						<5			10		0.69	0.03	3	91	42
J013 49	322.25 324.05													<5 <5						<5 5			10		0.75	0.27	2	64	71

HOLE NUMBER: MF13-04			NBRIDGE LIMITED LL HOLE RECORD		DAT: IMPERIAL UNITS:	E: 04/12/2000 METRIC UNITS: X
PROJECT NAME: KIDD/HBED/EAL JV PROJECT NUMBER: 36 CLAIM NUMBER: Prop#33, Spect Targ#561 LOCATION: Karvinen Property		RDS GRID: UTM NORTH: 5405641.00N EAST: 459377.00E ELEV: 290.00 C AZIMUTH: 180° 0' 0"	EA	TH: 121+ 0mN ST: 26+ 0mE EV: 290.00	LENGTH OF STAL	LLAR DIP: -50° 0' 0" THE HOLE: 245.00M RT DEPTH: 0.00M AL DEPTH: 245.00M
DATE STARTED: 03/18/1999 DATE COMPLETED: 03/21/1999 DATE LOGGED: 04/05/1999	COLLAR SURVEY: NO RQD LOG: NO HOLE MAKES WATER: NO		PULSE EM SURVEY: YES PLUGGED: YES HOLE SIZE: BQ		CONTRACTOR: Bradley Bros CASING: 4m NQ Left in CORE STORAGE: Minesite UTM COORD.:	

i.

COMMENTS : Intersected conductive argillite at base of felsic volcanic pile. Collared on claims P865379 WEDGES AT:

DIRECTIONAL DATA:

Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
13.00	183° 0' 0"	-51° 0' 0"	S	ОК		-			-	-	
73.00	183° O' O"	-51° 0' 0"	S	OK		1 -	-	-	-	-	
133.00	187° 0' 0"	-50° 0' 0"	S	OK		-	-	-	-	-	
185.00	189° 0' 0"	-45° 0' 0"	S	OK		i -	-	_	-	_	
245.00	189° 0' 0"	-45° 0' 0"	S	OK		-	-	-	-	_	
-	-	-	-	-		i -	-	-	-	-	
-	-	-	-	-		i -	-	-	_	-	
-	-	-	-	-		i -	-	-	-	-	
-	-	-	-	-		- I	-	-	_	_	
-	-	-	-	-		-	-	-	_	-	
-	-	-	-	-		-	_	-	_	_	
-	-	-	_	-		· _	_	-	_	-	
-	-	-	-	-		· -	-	_	-	-	
-	-	-	-	-			_		-	-	
-	_	-	-	-			-	-	-	-	
-	_	-	-	_		-	-	-	-	-	
-	_	_	_			-	-	-	-	-	
_	_	-	-	_		-	-	-	-	-	
		-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	

050

HOLE NUMBER: MF13-04

DRILL HOLE RECORD

LOGGED BY: G Collins PAGE: 1 play

DATE: 04/12/2000

						DRIE: 04/12/2000
FROM TO	ROCK	TEXTURE AND STRUCTURE	ANGLE TO CA	•	MINERALIZATION	REMARKS
0.00 TO 4.00	 « ob » 		 			
	<pre>«4,1,*e,<se>> </se></pre>	AUTOBRECCIATED SERICITIC RHYOLITE FLOWS -Light grey to yellow, massive, flow textured and autobrecciated rhyolite. -Rhyolite hosts 1 to 3% disseminated quartz phenocrysts. -Massive sections are weakly brecciated, overprinted by fracture controlled sericitic alteration. -Hyaloclaste intervals interspace massive and flow textured intervals, possibly defining discrete flow lobes. Coarse yellow sericite alteration becomes pervasive within hyaloclastite/interlobe intervals. -Hyaloclastite/interlobe intervals. -Hyaloclastite observed between 14.1 and 14.5m, 27.9 and 28.2m, 35.4 and 35.8m, 38.0 and 38.3m, and 38.5 and 38.6m. -Example of flow shear laminations observed at 24.2m. -Well developed flow banding observed at 32.5. -Fracture filling hematite infills leached and vuggy core near surface. Core is blocky and rust stained from bedrock collar to 26.0m. -Towards downhole contact, rhyolite develops a strong schistocity, 45° TCA. Qtz/carbonate veining, chlorite slips, and gouge material occur within a fault/shear zone between 39.5 and 39.95m. #39.50-39.95 * «+S2 45° +» #39.90-39.95 * «+S2 45° +» #39.90-39.95 * «+FAI+»		 Strong fracture controlled to pervasive yellow-green sericitic alteration. Within fractures, sericite is relatively coarse grained. Sericite is preferentailly concentrated along primary fractures, flow laminations and within hyaloclatitic sections. Sericitic alteration appears to increase in strength towards lower contact. Unit is weakly brecciated, infilled by minor qtz/albite and qtz/carbonate fractures. 	-No sulphides observed.	
39.95 TO 66.30	«4,m,f»	-Downhole contact is faulted. MASSIVE TO FRAGMENTAL TEXTURED RHYOLITE -Dark grey to green, massive, crackle brecciated rhyolite. Towards lower contact, unit becomes more fragmental in texture. Rhyolite hosts 1 to		- Minor fratcure controlled sericitic alteration. -Strong pervasive silicification. -From 58.7 to 61.3m, tensional gashes	-Autobrecciated section between 61.6 and 61.7m hosts disseminated SPH. ∜61.6-61.7∦ «1%SPH»	

HOLE NUMBER: MF13-04

DATE: 04/12/2000

FROM ROCK TO TYPE	TEXTURE AND STRUCTURE	ANGLE		MINERALIZATION	REMARKS
	<pre>3% disseminated quartz phenocrysts, and is similar in appearance to the previous unit, but is less sercicitic. -From 39.95 to 50.8m, vague monolithic fragments/blocks of rhyolite are observed. Wispy fracture controlled sericitic alteration, is observed anastamosing around fragments. -Section is weakly schistose, 50° TCA </pre> <pre>«{S2 50°}»</pre> -From 58.8 to 66.3m, rhyolite becomes more massive, but strongly insitu brecciated. Brecciation produces a crackled texture.		are infilled by erratically oriented qtz/albite veining. Veining occupies 15% of interval.		
	-Downhole contact is marked by a thin seam of gouge.				
5.30 «4,q,n» TO 5.70 	 QUARTZ PORPHYRITIC RHYOLITE -Dark grey to black quartz phyric rhyolite. Unit hosts 3 to 5% disseminated quartz phenocrysts. -Rhyolite is highly siliceous, exhibiting cherty concoidal fracture surface when broken. -Unit is strongly insitu brecciated. Brecciation is infilled by hairline thick seams of sericite. -Uphole contact is sharp but irregular. Fragments/blobs of quartz phyric rhyolite observed several cm above the lower contact of the previous unit indicating transport/remixing of QP fragments into in the previous unit. -Densely packed yellow/green spherulites are observed from 75.4 to 75.7m. -A moderately strong schistocity is developed within spherulitic section, 50° TCA. -Downhole contact is sharp, parallel to schistocity. 		-Strong pervasive silicification renders unit extremely hard. -Well developed network of thin fracture controlled sericite. -Minor qtz/albite veining. Veining occupies less than 5% of interval.	-No sulphides observed.	Unit interpreted as autobrecciated lobe of quartz porphyritic rhyolite intruding into fragmental pile.

HOLE NUMBER: MF13-04

DRILL HOLE RECORD

FROM ROCK	TEXTURE AND STRUCTURE	ANGLE TO CA	MINERALIZATION	REMARKS
	TEXTURE AND STRUCTURE RHYOLITE FRAGMENTAL -Dark grey to green felsic volcaniclastics. -Unit is composed of interbedded sequences of framework supported lapillistones and agglomeratic fragmentals. Fragments are typically vaguely defined, outlined by wispy anastamosing fracture controlled chlorite/sericite. Occasionally, fragments having sharp angular outlines are observed. -Unit is predominantly monolithic, with greater than 95% of volcaniclastic material being felsic. Felsic fragments commonly host 1 to 2% disseminated quartz phenocrysts. Isolated fragments of argillitic material are observed. -Several argillite fragments noted between 78.9 and 81.0m. Argillite fragments are nearly entirely replaced by Po. -A weak schistocity defined by flattened fragments and an anastamosing sericite/chlorite cleavage occurs throughout unit.	•	MINERALIZATION -Trace disseminated Py observed throughout unit. -Argillite fragments are commonly replaced by Po containing trace ammounts of exsolved Cp. -Between 157.5 and 161.0m, minor stringer controlled to disseminated Py and trace disseminated Sph is observed within a strongly silicified interval. Sulphides are accompanied by a dark black amorphous mineral resembling magnetite (non-magnetic), possibly manganese oxide? -Sphalerite ranges in colour from buff to deep red.	REMARKS
	<pre>#78.0-78.1 # « S2 33° +» -Foliation steepens to 45° TCA between 95.0 and 104.0m. #95.0-104.0 # « S2 45° +» -Intervals of broken, leached and vuggy core observed from 113.2 to 113.3m, 118.7 to 119.0m, 119.3 to 119.9m, 131.2 to 131.3m, and 133.3 to 134.2mA strong schistocity is developed around a shear zone focussed at the downhole contact, from 166.0 to 167.25m. A weak lineation raking 80° on the cleavage surface is noted. #166.0-167.25 # « S2 33° +» -Downhole contact is marked by a 2cm thick seam of consolidated gouge material.</pre>			

DRILL HOLE RECORD

FROM	ROCK TYPE		ANGLE			
TO	TYPE	TEXTURE AND STRUCTURE	TO CA -	ALTERATION	MINERALIZATION	REMARKS
167.25 TO 178.70 	«3,D,*a»	<pre>FELDSPAR PHYRIC ASH TUFF -Light grey, fine grain feldspar phyric tuff. Tuff appears to be predominantly composed of ash size mafic material. Some qtz/eyes are observedTuff interpreted to be of intermediate (dacitic) volcanic compositionNear the lower contact, vague lapilli sized fragment forms are apparent, suggesting a downhole coarsening in fragment size. Grading throughout the interval suggests an uphole facing directionUnit is overprinted by a moderately strong foliation cleavage, 30° TCA.</pre>		-Moderate to strong fracture controlled to pervasive carbonatization. -Near uphole contact, carbonaceous material accompanies veining between 167.65 and 167.75m, and 171.2 and 171.5m.	-Minor disseminated Po observed in carbonaceous sections between 167.65 and 167.75 and 171.2 and 171.3m.	
		«¦S2 30°¦»				
 		-2.5cm thick gouge seam observed at 167.9m. -Downhole contact is diffuse, marked by strong pervasive chloritization.				
178.70 TO 201.25	«3,C,f»	<pre>INTERCALATED DACITE FLOWS AND FRAGMENTALS -Brecciated massive and pillowed dacitic flows are interspaced by interflow fragmental sequencesFlows are buff to green in colour, insitu brecciated, and highly vesicular. Insitu brecciation becomes more strongly developed towards the uphole contact of each flow. Brecciated sections grade into dacite fragmental sequences. #178.7-182.3# «3,f» -Dacitic fragmental. Unit grades from matrix supported lapilli sized mafic/dacite fragments observed near the uphole contact grade into larger (1-3cm diameter) framework supported clasts related to the underlying flow. #182.3-188.6.# «3,l,bx,e»</pre>		-Weak to moderately strong pervasive sericitic alteration. -Minor fracture controlled carbonatization.	-Minor disseminated to patchy textured Po. -3cm wide interval occurring at the base of the dacite flow between 182.3 and 188.6m.	-Grading indicates an uphole (north) facing direction.
		" -Breciated dacite flow. Interval hosts up to 1%	1			

HOLE NUMBER: MF13-04

DATE: 04/12/2000

FROM	ROCK		ANGLE			
то	TYPE	TEXTURE AND STRUCTURE	TO CA	ALTERATION	MINERALIZATION	REMARKS
201.25 TO 206.50	 	<pre>disseminated qtz phenocrysts and abundant quartz filled amygdules. Downhole contact is marked by thin band hosting 30% Po.</pre>		-Moderate to strong fracture controlled qtz/carbonate alteration. -Qtz/carbonate filled fractures and veinlets occupy 5% of interval.	-Unit hosts 3-5% patchy to disseminated euhedral PY. -Ground water leaching along fractures and fault seam has lead to the oxidation of Py to hemitite.	-Moderately strong conductor.
206.50 TO 245.00	 *2,p,e,bx» 	<pre>-Unit exhibits a weakly developed cleavage foliation, 40° TCA</pre>		-Minor fracture controlled qtz/carbonate alteration.	-Trace disseminated PY.	

HOLE NUMBER: MF13-0)4		DRILL HOLE RECORD		DATE: 04/12/2000
FROM ROCK TO TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
	<pre>interiors are relatively massive, becoming increasingly brecciated towards pillow margins. Pillow debris and hyaolclastite, is observed in selvagesWeak foliation cleavage observed, 37° TCA. «{S2 37°}»</pre>				
245.00 «EOH»					
TO 245.00				 	
HOLE NUMBER: MF13-0)4		DRILL HOLE RECORD	LOGGED B	Y: G Collins PAGE: 7

DATE: 12/04/2000

Sample	(M)	То (M)		Cu ppm			2b opm	Ni ppm	Au ppb	Ag ppm	Cu/Zr	ı Co ppm	Pt ppb	Pd ppb	S ppm	Se ppm	As ppm	Hg ppb	Sb ppm	
AU01322 AU01323	158.00	159.50	1.50 1.50	 	13 7	207 113	1	3 12. 7 10.	0		0						<u></u>			
AU01323	201.50	203.00	1.50		21	137	:	2 33.	0		0									
AU01325	203.00	204.50	1.50		18	101	:	1 23.	0 :	10	0									
AU01326	204.50	206.00	1.50		28	105	1	36.	0	10	0									
				Ï																
				1																
				ii 👘																
				"																
				Ï																
				Ï																
				Ï																
				Ï																
				ll It																
				Ï																
				1																
				1																
				1																
				"																
				Ï																

DATE: 12/04/2000

Sample	From (M)	То (М)	Leng. (M)	SI02 %	AL203 %	CAO %	MGO %	NA20 ዩ	К2О %	FE2O3 %	TIO2 %	P205 %	MNO %	CR203 %	LOI %	SUM %	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	CO2 %	CU PPM	ZN PPM	NI PPM	CR FIELD CHEM PPM NAME ID	ALUM
AU04724	11.00	14.00	3.00	73.71	12.10	0.29	0.15	0.21	9.12	2.20	0.14	0.01	0.08		1.42	99.43	55	240					5	5	<5	25 4,L,*e,4(h)B	126
AU04725	29.00	32.00	3.00	75.18	11.56	0.20	0.12	0.16	8.79	2.20	0.14	0.02	0.08		1.26	99.71	55	240					5	5	<5	30 4,1,*e,4(h)B	126
AU04726	44.00	47.00	3.00	76.18	11.48	0.56	0.83	1.96	3.20	2.49	0.14	0.01	0.05		2.59	99.49	55	250					5	15	<5	15 4,m,f 4(h)B	201
AU04727	62.00	65.00	3.00	78.14	11.09	0.46	0.26	0.39	5.81	1.81	0.14	0.02	0.07		1.69	99.88	55	220					5	5	<5	20 4,m,f,b4(h)B	167
AU04728	71.00	72.00	1.00	77.09	10.34	0.86	0.43	0.83	5.72	2.19	0.13	0.01	0.10		2.10	99.80	55	180					5	10	<5	30 4,q,P 4(h)B	140
AU04729	77.00	78.50	1.50	73.18	11.39	1.64	1.09	0.28	4.21	3.68	0.17	0.01	0.12		4.11	99.88	55	250					<5	15	5	20 4, f , *h 4(h)B	186
AU04730	95.00	98.00	3.00	74.62	11.58	2.24	0.44	2.00	3.19	2.43	0.16	0.01	0.06		3.18	99.91	55	260					<5	15	<5	10 4,f,*h 4(h)B	156
AU04731	113.00	116.00	3.00	76.32	11.20	1.29	0.42	3.51	2.01	3.01	0.13	0.01	0.10		1.87	99.87	55	220					5	20	<5	20 4,f,* h 4 (h)B	164
AU04732	128.00	131.00	3.00	74.33	11.57	2.23	0.57	2.38	2.80	2.62	0.14	0.01	0.07		3.02	99.74	50	230					5	20	<5	15 4,f,*h 4(h)B	156
AU04733	146.00	147.50	1.50	75.35	8.84	3.58	0.71	1.37	2.26	2.87	0.13	0.01	0.11		4.43	99.66	50	180					5	15	<5	20 4,f,*h 4(h)B	123
AU04734	156.50	158.00	1.50	73.50	11.58	2.16	0.72	2.60	2.37	2.92	0.18	0.02	0.09		3.52	99.66	50	240					<5	15	5	15 4,f,*h 4(h)B	162
AU04735	164.00	165.50	1.50	72.98	11.57	2.56	0.98	1.05	2.86	2.50	0.18	0.01	0.04		4.77	99.50	50	230					5	10	<5	15 4,f,*h 4(h)B	179
AU04736	173.00	176.00	3.00	53.57	13.60	7.47	2.30	0.70	2.28	7.55	0.68	0.13	0.34		11.29	99.91	20	120					10	10	5	10 3,D,*a 3(j)!	130
AU04737	185.00	188.00	3.00	52.66	14.31	7.38	2.13	1.77	2.15	6.63	0.71	0.12	0.23		11.36	99.45	20	120					10	10	5	15 3,e,l 3(j)!	127
AU04738	194.00	197.00	3.00	55.99	14.01	5.68	2.21	2.18	1.73	6.96	0.98	0.32	0.15		9.60	99.81	25	140					5	10	5	53,C,f 2(j)yB	146
AU04739	212.00	215.00	3.00	52.72	13.37	7.69	2.52	2.31	0.99	6.82	0.94	0.19	0.15		11.95	99.65	20	100					10	10	5	5 2,p,e,b2(j)w!	122
AU04740	242.00	245.00	3.00	54.65	15.58	5.04	2.49	2.00	1.09	8.00	1.12	0.19	0.10		9.34	99.60	20	120					10	15	5	5 2,p,e,b2(j)w!	192

HOLE NUMBER: MF13-04

-

DATE: 12/04/2000

HOLE NUM	BER : MFI	13-04										GEOCH	IEMICAL	ASSAYS															DATE :	12/04/2
Sample	From (M)	То (М)	Leng. (M)		AG PM	AU PPB	CO PPM	PB PPM	S PPM	V PPM	AS PPM	SN PPM	CD PPM	SB PPM	BI PPM	SE PPM	HF PPM	TA PPM	W PPM	MO PPM	TH PPM	U PPM	B PPM	CS PPM	LA PPM	CE PPM	ND PPM	SM PPM	EU PPM	GD PPM
J04724		14.00		1			<5		<0.01	5											**************************************									
J04725		32.00					<5		<0.01	5																				
J04726		47.00					<5		<0.01	10																				
J04727		65.00		li.			<5		<0.01	5																				
J04728		72.00					<5		<0.01	5																				
J04729		78.50		l.			<5		0.02	10																				
J04730		98.00					<5		<0.01	5																				
J04731				ll.			<5		0.06	5																				
J04732				ŀ			<5		0.05	5																				
104733	146.00 156.50	147.50	1.50	 			<5		0.06	5																				
	156.50			1) 11			<5 <5		0.03 0.03	10 15																				
	173.00			41 11			<5		0.09	120																				
104737	185.00	188 00	3.00	41 41			<5		0.58	125																				
104738	194.00	197 00	3.00	\$1 F1			<5		0.03	60																				
J04739							5		0.33	150																				
	242.00			Ï			5		0.13	170																				
				li –																										
				li																										
				ï																										
				ü																										
				ü																										
				Ï																										
				Ï																										
				1																										
				ll –																										
				H																										
				li																										
				li -																										
				li i																										
				li li																										
				l.																										

HOLE NUMBER: MF13-04

-

DATE: 12/04/2000

Sample From To (M) (M		Leng. (M)	DY PPM	ER PPM	LU PPM	OS PPB	IR PPB	RU PPB	RH PPB	PT PPB	PD PPB	LI PPM	BE PPM	MN PPM	GA PPM	GE PPM	IN PPM	TL PPM	SC PPM	BR PPM	YB PPM	NB PPM	HG PPB	MGO#	CA/AL N	NI/MGO I	SHIKW Z	N/NA2
U04724 11.00 14	4.00	3.00	ir										<5			·····			<5		and the second second	10		0.14	0 02	33	95	24
		3.00											<5						<5			<10		0.14	0.02	42	95 96	24 31
		3.00	Ï										<5						<5			<10		0.44	0.05	6	62	8
		3.00	Ï										<5						<5			10		0.25	0.04	19	88	13
		1.00	ü										<5						<5			<10		0.32	0.08	12	78	12
U04729 77.00 78	8.50	1.50	Ï										<5						<5			<10		0.41	0.14	5	73	54
U04730 95.00 98			Ĭ										<5						<5			<10		0.30	0.19	11	46	8
U04731 113.00 116			Ï										<5						<5			<10		0.25	0.12	12	34	6
U04732 128.00 131			H										<5						<5			<10		0.34	0.19	9	42	8
U04733 146.00 147			Ĭ										<5						<5			<10		0.37	0.40	7	37	11
U04734 156.50 158													<5						<5			10		0.37	0.19	7	39	6
U04735 164.00 165			1										<5						<5			<10		0.48	0.22	5	52	10
U04736 173.00 176	6.00	3.00	1										<5						<5			<10		0.42	0.55	2	36	14
U04737 185.00 188	8.00	3.00											<5						<5			<10		0.43	0.52	2	32	6
U04738 194.00 197	7.00	3.00	I										<5						<5			<10		0.43	0.41	2	33	5
U04739 212.00 215													<5						<5			<10		0.47	0.58	2	26	4
J04740 242.00 245			1										<5						<5			<10			0.32	2	34	8

HOLE NUMBER: MF15-01		FALCONBRIDGE DRILL HOLE		DATE: 04/12/2000 IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: KIDD/HBED/EAL JV	PLOTTING CO	DORDS GRID: UTM	ALTERNATE COORDS GRID: MF25 grid	COLLAR DIP: -50° 0' 0"
PROJECT NUMBER: 36 CLAIM NUMBER:		NORTH: 5405930.00N	NORTH: 18+40N	LENGTH OF THE HOLE: 173.00M
		EAST: 463760.00E	EAST: 1+50E	START DEPTH: 0.00M
LOCATION: Mahaffy Twp.		ELEV: 290.00	ELEV: 290.00	FINAL DEPTH: 173.00M
	COLLAR ASTRONO	MIC AZIMUTH: 180° 0' 0"	GRID ASTRONOMIC AZIMUTH: 180° 0' 0"	
DATE STARTED: 02/25/1999	COLLAR SURVEY: NO		PULSE EM SURVEY: NO	CONTRACTOR: Bradley Bros.
DATE COMPLETED: 02/27/1999	RQD LOG: NO		PLUGGED: YES	CASING: 37m
DATE LOGGED: 03/10/1999	HOLE MAKES WATER: NO		HOLE SIZE: BQ	CORE STORAGE: Kidd Creek Mine site
				UTM COORD.:

COMMENTS : Testing spectrEM target 553: hit zone of 5-10% pyrrhotite stringers over 5.5m WEDGES AT:

DIRECTIONAL DATA:

Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
47.00	182° 0' 0"	-50° 0' 0"	s	OK		-			-	-	
102.00	187° O' O"	-46° 0' 0"	S	OK		-		-	-	-	
161.00	193° 0' 0"	-44° 0' 0"	S	OK		-		_	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	_	-	-	
-	-	-	-	-		-	-	-	_	-	
-	-	-	-	-		i -	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		i -	-	-	-	-	
-	-	-	-	-		i -	-	-	_	-	
-	-	-	-	-		i -	-	-	-	-	
-	-	-	-	-		i -	-	-	-	-	
-	-	-	-	-			-	_	_	-	
-	-	-	-	-		i -	_	-	-	-	
_	-	_	-	-			-	-	_	-	
_	-	-	-	-		i -	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
_	-	-	_	-		-	_	_	_	-	
-	-	-	-	-		I -	_	_	_	-	
-	-	_	_	_		I -	-	_	-	_	
_	_	_	-	_		I _	_	_	_	_	
_	_	_	_	_			_	-	_	_	
_	-	_	_	-			_	-	-	-	

DRILL HOLE RECORD

PAGE: 1

LOGGED BY: P. Prince G. Colling Son P. Prince

DATE: 04/12/2000

ROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE	1	MINERALIZATION	REMARKS
.00 TO .00			·i 		[
0.00 TO 4.10	mafic	<pre>-Fine to medium grained, dark green coloured mafic intrusion -Fine white coloured leucoxenes are visible throughout -Fractured to massive textured -From 37 to 60m: extensively fractured with abundant quartz-calcite-epidote veining -1 37-60 k+ 50 50° b*: weak to moderate schistosity at 45 to 55° TCA, veining is oriented parallel to foliation -From 60 to 104.1m: intrusion is massive and homogeneous with minor quartz-calcite-epidote veining, grain size of gabbroic rock slightly increases -Minor disseminated euhedral pyrite crystals and blebby pyrrhotite are locally present -From 99.2 to 104.1m: fine grained chilled interval -Lower contact is sharp at 65° TCA</pre>		-Moderate localized fracture controlled calcite and epidote alteration -Quartz-calcite-epidote veining throughout	-Trace disseminated pyrite and pyrrhotite	
4.10 TO 9.60		 Fine grained, pale green coloured, locally tuffaceous, hosting stringer pyrrhotite mineralization -Weak schistosity at 65° TCA, stringers are oriented parallel to foliation -Fractured and veined: abundant fine quartz-calcite veinlets are evident throughout -Very good conductive horizon, strongly magnetic -Lower contact is sharp at 70° TCA with down hole pillow mafics 		-Localized weak pervasive sericite alteration -Quartz-calcite veining throughout	-Stringer pyrrhotite zone, 5 to 10% pyrrhotite, trace to 1% pyrite, rare isolated speck of chalcopyrite -Trace fine disseminated pyrrhotite blebs are visible within tuffaceous intervals	-Excellent conductor, strongly magnetic
9.60 TO 3.00		 Fine grained, pale green coloured mafic volcanics Extensively fractured and veined: abundant quartz, feldspar, carbonate and epidote veining Locally pillowed texture is evident From 109.6 to 139.5m: abundant feldspathic veining, with minor quartz, calcite and epidote veinlets. Veining has no preferred orientation From 139.5 to 173m: dominantly fine quartz-calcite veinlets, oriented parallel to 		<pre>-From 109.6 to 139.5m: fracture controlled feldspar alteration -Weak to moderate fracture controlled calcite alteration throughout -Quartz-calcite-epidote veining is present throughout</pre>	-Trace fracture controlled pyrite mineralization, locally minor fine euhedral pyrite crystals within quartz-calcite veins	

HOLE NUMBER: MF15-01

HOLE NUM	BER: MF15-01			DRILL HOLE RECORD		DATE: 04/12/2000
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		foliation -╣139.5-173╠≪╡S0 70°├»: weak to moderate schistosity at 70° TCA -Minor jointing parallel to foliation at 60-70° TCA				
173.00 TO	l					
173.00	1					

DRILL HOLE RECORD

LOGGED BY: P. Prince

DATE: 12/04/2000

Sample	From (M)	To (M)	Leng. (M)	Cu ppm	Zn ppm	Pb		Ni ppm	Au ppb	Ag ppm	Cu/Zn	Co ppm	Pt ppb	Pd ppb	S ppm	Se ppm	As ppm	Hg ppb	Sb ppm
AU04512 AU04513 AU04514 AU04515 AU04516	105.30 106.00 107.00 108.00	106.00 107.00 108.00 109.00	0.70 1.00 1.00 1.00	31. 9 [°] 23 [°] 42: 24	7 2 4 14 2 17 6 27	980 227 440 770 720	1 34 43 39	75.0 65.0 36.0 45.0 42.0		24 38 17 34 27	1 0 0 1 1								
AU04517	109.00	110.00	1.00	6. 	3 :	108	1	54.0	0	3	0								

HOLE NUM	BER : MF1	5-01									GEOCI	HEMICAL	ASSAY														DATE:	12/04,	/2000
Sample	From (M)	To (M)	Leng. (M)	SI02	AL2O3 %	CAO %	MGO %	NA20 %	K20 چ	FE2O3 %	TIO2 %	P205 ዩ	MINO %	CR2O3 ະ	LOI %	SUM %	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	CO2 %	CU PPM	ZN PPM	NI PPM	CR F PPM	ield Name	CHEM ID	ALUM
AU04707 AU04708		68.00 125.00			13.26 15.30											99.49 99.58	30 20	70 40					125 80	110 85	55 125	190 7a 385 2p			106 129

HOLE NUM	BER : MF1	5-01									GEOCH	EMICAL	ASSAYS															DATE:	12/04/2000
Sample	From (M)	То (M)	Leng. (M)	AG PPM	AU PPB	CO PPM	PB P PM	S PPM	V PPM	AS PPM	SN PPM	CD PPM	SB PPM	BI PPM	SE PPM	HF PPM	TA PPM	W PPM	MO PPM	TH PPM	U PPM	B PPM	CS PPM	LA PPM	CE PPM	ND PPM	SM PPM	EU PPM	GD PPM
AU04707	From (M) 65.00 122.00	(M) 68.00	(M) 3.00			CO PPM 35 30	PB		PPM	AS			SB PPM	BI	SE PPM					TH PPM									
	APD. ME1			 		ii							ACCAVC												·				

HOLE NUM	1BER	: MF1!	5-01			 _			_					GEOCH	IEMICAL	ASSAYS															DATE: 1		000
Sample	F	rom (M)	То (M)	:	Leng. (M)	DY PPM	ER PPM		LU PPM	OS PPB	IR PPB	RU PPB	RH PPB	PT PPB	PD PPB	LI PPM	BE PPM	MN PPM	GA PPM	GE PPM	IN PPM	TL PPM	SC PPM	BR PPM	YB PPM	NB PPM	HG PPB	MGO#	CA/AL N	I/MGO I	SHIKW ZI		
AU04707 AU04708	1	65.00 22.00	68. 125.	00 00	3.00 3.00			<u></u>									5 <5						40 30			10 10			0.72 0.57	8 15	36 42	38 28	
																1997																	

HOLE NUMBER: MF16-01		FALCONBRIDGE DRILL HOLE			94/12/2000 TRIC UNITS: X
PROJECT NAME: KIDD/HBED/EAL JV	PLOTTING CO	ORDS GRID: UTM	ALTERNATE COORDS GRID: Carn61 Grd	COLLAR DI	P: -50° 0' 0"
PROJECT NUMBER: 424		NORTH: 5405020.00N	NORTH: 181+ 0mN	LENGTH OF THE HOI	E: 263.00M
CLAIM NUMBER: Prop#AQ27, Spec Targ#	328	EAST: 465686.00E	EAST: 19+50mE	START DEPI	TH: 0.00M
LOCATION: SE Mahaffy TWP		ELEV: 290.00	ELEV: 290.00	FINAL DEPI	H: 263.00M
	COLLAR ASTRONOM	C AZIMUTH: 180° 0' 0"	GRID ASTRONOMIC AZIMUTH: 0° 0' 0"		
DATE STARTED: 03/29/1999	COLLAR SURVEY: NO	I	PULSE EM SURVEY: NO	CONTRACTOR: Bradley Bros.	
DATE COMPLETED: 03/31/1999	RQD LOG: NO		PLUGGED: YES	CASING: 50m NQ left in hole	<u>!</u>
DATE LOGGED: 04/30/1999	HOLE MAKES WATER: NO		HOLE SIZE: BQ	CORE STORAGE: Minesite	
				UTM COORD.:	

 $\tt COMMENTS$: Intersected conductive Po mineralization at 152m. Collared on Claim <code>P1228724</code> <code>WEDGES AT:</code>

DIRECTIONAL DATA:

...

Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
59.00	186° 0' 0" -	-48° 0' 0"	s	OK		-	_	_	-	-	
119.00	189° 0' 0" -	42° 0' 0"	S	OK		-		_	-	-	
-	-	-	-	-		- 1	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		- 1	-	-	-	-	
-	-	-	-	-		- 1	-	-	-	-	
-	-	-	-	-		- 1	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		- 1	-	-	-	-	
-	-	-	-	-		- 1	-	-	-	-	
-	-	-	-	-		- 1	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		- 1	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	

DRILL HOLE RECORD

LOGGED BY: G Collins

PAGE: 1

have

DATE: 04/12/2000

FROM	ROCK		ANGLE			
TO	TYPE	TEXTURE AND STRUCTURE	TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00	«∤ob¦»					
TO 50.00						
i	_		į			
50.00 TO	≪7,a,m»	LEUCOXENE BEARING MAFIC DYKE/SILL		-Minor gash filling chlorite. 	-Trace disseminated Po noted throughout unit.	
105.45		-Dark green, fine grained massive leucoxene	į	-Fracture controlled to pervasive		
		bearing mafic intrusive. Unit strongly resembles high level gabbro sill termed A/D1 at the Kidd		carbonatization is strongly developed between 62.0 and 65.0m, and 84.5 and	-3 to 5% fracture controlled to disseminated Po observed between 87.35	
		Creek Mine.	1	89.0m.	and 87.7m.	
ļ		-Unit hosts 1 to 2% disseminated cream coloured	Í		-Assay taken.	
		leucoxene grains.	1			
		-From 50.0 to 65.6m, unit is relatively fine	į –			
		grained, and non-foliated. -Intervals of badly broken and leached core				
ļ		observed from 62.5 to 62.8m, 63.7 to 64.0m, and	i			
		65.6 to 65.8m. -Gouge material accompanies breccia filling				
		qtz/carbonate veining between 65.6 and 65.8m.				
		Brittle fault zone.	į			
i 		65.6-65.8 « FAI -»				
		-From 65.8 to 78.5m, unit becomes more medium				
		grain and spotted in texture. -Core becomes increasingly sheared towards 78.6m.	1			
		Shear zone is focussed at 78.6m, and is				
Í		characterized by strong carbonatization and poor	i			
1		core recoveries.				
		╢78.0-79.5╠ «SZ»				
ļ		-From 79.5m to 83.0m, unit becomes even coarser	Ì			
		in grain sized, and ophitic in texture.	1			
		Glomeroporpyroblasts of plagioclase are observed.				
		 -Downhole from 83.0m, unit becomes increasingly				
		aphanitic.	i			
		A series of low angle joints running 20° TCA				
		produces blocky core between 90.0 and 95.0m.				
		-Downhole contact is irregular, marked by a thin	į	ĺ		
		chill zone.				

HOLE NUMBER: MF16-01

DATE: 04/12/2000

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	 REMARKS
105.45 TO 133.30		<pre>PILLOWED MAFIC VOLCANICS -Dark green fine grained pillowed mafic volcanicsMafics are non-vesicular, characterized by thin chloritic selvages, hosting little to no hyaloclastiteLocally selvages host trace amounts of Po. Selvages commonly control minor qtz/carbonate veiningLower contact is sharp, 60° TCA, marked by a thin qtz/carbonate veinlet.</pre>		-Minor fracture and selvage controlled qtz/carbonate veining. -Minor fracture controlled epidote.	-Trace Po observed in selvages.	
133.30 TO 151.05	«7,a,m» 	<pre>MAFIC SILL/DYKE -Dark green, fine grain leucoxene bearing mafic diorite sill. -Diorite is massive and non-foliated, hosting 1% disseminated cream coloured leucoxene grains. -Unit is weakly fractured, infilled by minor qtz/carbonate, albite/epidote veining, and gash filling chlorite. -Similar in appearance to first unit. -Downhole contact is sharp, 65° TCA.</pre>		-Minor fracture controlled qtz/carbonate, and albite/epidote alteration.	-No sulphides observed	
151.05 TO 155.90	 «3,*t,*a» 	<pre>PYRRHOTITE BEARING INTERMEDIATE TUFF/EXHALITE -Light grey to green, strongly foliated aphanitic unit, hosting minor disseminated and fracture controlled PoBleached mafic, and siliceous and sericitic lapilli sized fragments are observed from 151.05 to 151.35mSheared cherty/exhalite intervals hosting 4-6% Po observed between 151.35 and 151.60m, 152.18 and 152.26m, and 153.2 and 153.25m. Po bearing intervals are strongly conductive. Trace fine disseminated reddish Sph is also observedFrom 151.35 to 153.25m, unit is light grey to buff in colour. A strong sercitic cleavage</pre>		-Minor fracture controlled carbonate alteration. -From 151.05 to 153.25m, unit is moderately sericitic. -From 153.25 to 155.0m, pervasive carbonate alteration is moderate to strong. No sericite observed. -From 155.0 to 155.9m, unit appears weakly silicified and chloritized.	-Three intervals hosting 4-10% Po observed. ∬151.35-151.60╠ «7% Po, Tr Sph» ∬152.18-152.26╠ «10% Po, Tr Sph» ∬153.20-153.25╠ «5% Po, Tr Sph»	-Po mineralization is strongly conductive. -On fracture surfaces, mm thick discs of Po are common. Po mineralization appears connective, offering an explaination to target HLEM anomaly.

DATE: 04/12/2000

FROM	ROCK		ANGLE	AT THE ATTON		
	ROCK TYPE 	TEXTURE AND STRUCTURE -Between 153.25 and 155.0m, unit is darker green in colour and grainier in texture. Interval appears more mafic in composition. -From 155.0 to 155.9, unit is dark green in colour, but hosts abundant sericite. Foliation is so strongly developed that a slatey cleavage, 65° TCA is developed. -Downhole contact is sharp but broken, parallel to schistocity. PILLOWED MAFIC VOLCANICS -Fine grain dark green to buff coloured pillowed mafic volcanics. -Pillows are non-vesicular, characterized by massive unbrecciated interiors rimmed with dark chloritic selvages. -Very little hyaloclastite material is observed in selvages. -Between 158.0 and 221.0m, unit is strongly pervasively carbonatized. Qtz/carbonate veining is 5-10% abundant. -Mafics become buff to yellow brown in colour between 177.0 and 221.0m. Buff coloured bleaching coincides with the development of weak pervasive sericitization in strongly carbonatized mafics. -Bleaching and carbonatization appear focussed areau d streatly carbonatized interval	ANGLE	 -Fracture and veinlet controlled carbonatization is strongly developed througout unit. -Between 158.0 and 221.0m, carbonatization becomes strong, and pervasive. -Large bull qtz/carbonate vein observed between 161.6 and 162.8m. A smaller vein is observed between 163.75 and 163.95m. -Qtz/carbonate veining becomes 7-10% abundant between 176.0 and 186.0m. Veinlets commonly host trace disseminated Py and Po. -Wispy, fracture controlled chocolate 	-Minor fracture and selvage controlled Po. -Qtz/carbonate veins commonly host trace disseminated Py.	REMARKS
		 Bleaching and carbonatization appear focussed around strongly schitose interval between 182.0 and 188.0m. Qtz/carbonate veining occupies 5-10% of interval between 182.0 and 188.0m. Foliation rotates from 50° near 182.0m, to 30° at 183.7m. -Foliation gradually rotates back to 50° downhole from 183.7m. -Downhole from 221.0m, unit becomes less 		-		
263.00	«EOH»	schistose. Carbonatization drops off and unit becomes darker green in colour. 				
TO 263.00	 					1

DATE: 12/04/2000

Sample	From (M)	То (M)	Leng. (M)	Cu ppm	Z: P:		b pm	Ni ppm	Au ppb	Ag ppm	Cu/Zn	Co ppm	Pt ppb	Pđ ppb	S ppm	Se ppm	As ppm	Hg ppb	Sb ppm
AU04570 AU04571 AU04572 AU04573 AU04574	150.40 151.35 152.20	152.20 153.50	0.95 0.85 1.30	 :	511 96 108 80 85	106 139 994 286 58	1 17 8	65. 67. 52. 14. 93.	. 0 . 0 . 0	0 0 10 0 17	0 0 0 0 0			<u> </u>	- *****				
AU04574	177.00	177.80	0.80		85	58	T	93.	. 0	17	U								

DATE: 12/04/2000

U04625 6 U04626 10 U04627 13 U04628 16	(M) 68.00	To (M) 71.00	Leng. (M)	\$ 	AL203 %		MGO %	NA20 %	K20 %	FE2O3 %	TIO2 %	P205 %	MINO %	CR203 %	LOI %	SUM %	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	C02	CU PPM	ZN PPM	NI PPM	CR PPM	FIELD	CHEM ID	ALUI
U04626 10 U04627 13 U04628 16		71.00		ir																								10	
U04627 13 U04628 16	07.00		3.00	48.49	13.45	11.32	6.68	2.17	0.09	13.23	1.19	0.10	0.20		2.94	99.86	25	70					10	10	5	30		2,7hv	9
U04628 16			3.00				4.72	2.23			1.37	0.13	0.26		7.96		30	80					10	10	5	25	:	2,7hv	11(
		140.00				11.01		1.82			1.41	0.14	0.28		2.97		30	90					15	10	10	25	:	2,7hv	110
104629 19		170.00					7.77	2.39				0.06	0.15		11.11		15	40					10	15	10	35	:	2,7hu!	11'
		194.00		44.28	14.18	11.43	4.84	0.86	0.53	9.70	0.74	0.05	0.21		12.78		15	40					10	35	15	40		2,7hw!	11
		230.00														0.00											,a,p		****
U04631 22				47.88	15.32	11.99	4.79	2.50	0.05	9.70	0.78	0.05	0.19		6.29	99.54	15	40					10	45	15	40		2,7hw	10!
		257.00		 40.17	15 39	11 62	E 20	0.00	0 00	0.05	0 70	0.00	0 1 0		C 15	0.00	15	4.0						_			,a,p		*****
U04630 25	54.00	257.00	3.00	48.17 	15.37	11.63	5.30	2.02	0.03	9.85	0.78	0.06	0.18		6.15	99.54	15	40					10	5	15	45	2	2,7hw	112
			į																										
			l																										
			1																										
			1																										
			1	1																									
			1	l																									
			1																										
			1																										
				1																									
			1																										
			Í																										
			1																										
]																										

GEOCHEMICAL ASSAYS

DATE: 12/04/2000

HOLE NUM	BER : MFI	10-01									GEUCH	EMICAL	ASSAIS															DATE :	12/04/2000
Sample	(M)	То (M)	Leng. (M)	AG PPM	AU PPB	CO PPM	PB PPM	S PPM	V PPM	AS PPM	SN PPM	CD PPM	SB PPM	BI PPM	SE PPM	HF PPM	TA PPM	W PPM	MO PPM	TH PPM	U PPM	B PPM	CS PPM	LA PPM	CE PPM	ND PPM	SM PPM	EU PPM	GD PPM
AU04625	68.00	71.00	3.00			5		0.13	305																			- <u> </u>	
AU04626	107.00	110.00	3.00			5		0.15	305																				
AU04627	137.00	140.00	3.00			5		0.16	315																				
AU04628	167.00	170.00	3.00			5		0.09	230																				
AU04629						5		0.12	225																				
AU04630 AU04631						5		0.14	235																				
AU04631	254.00	257 00	3.00					0.14	235																				
TU04630	254.00	257.00	3.00			5		0.10	255																				
				Ï																									
				Ï																									
				 1																									
				ŀ																									
				l																									
				K																									
				l																									
				1																									
				l																									

DATE: 12/04/2000

Sample	From (M)	To (M)	Leng. (M)	DY PPM	ER PPM	LU PPM	OS PPB	IR PPB	RU PPB	RH PPB	PT PPB	PD PPB	LI PPM	BE PPM	MN PPM	GA PPM	GE PPM	IN PPM	TL PPM	SC PPM	BR PPM	YB PPM	NB PPM	HG I PPB	MGO#	CA/AL NI	I/MGO IS	SHIKW Z	N/NA2
J04626 J04627 J04628 J04629	68.00 107.00 137.00 167.00 191.00	110.00 140.00 170.00 194.00	3.00 3.00 3.00 3.00 3.00 3.00											<5 <5 <5 <5 <5 <5						5 5 5 5 5			<10 <10 <10 <10 <10 <10		0.51 0.64 0.54	0.67 0.78 0.68	1 1 1 3	33 31 35 40 30	5 4 5 6 41
04631 04631	227.00 227.00 254.00 254.00	230.00 257.00												<5 <5						5 5			<10 <10	(***	0.54 **** *		3	25 **** *	18
74030	254.00	237.00	5.00																	-									

HOLE NUMBER: MF16-02			BRIDGE LIMITED L HOLE RECORD		DATE: IMPERIAL UNITS:	04/12/2000 METRIC UNITS:
PROJECT NAME: KIDD/HBED/EAL JV PROJECT NUMBER: 422 CLAIM NUMBER: Prop#AQ26, Spect Targ#55 LOCATION: SE Mahaffy TWP	2	GRID: UTM DRTH: 5405379.00N EAST: 464782.00E ELEV: 290.00		12+40mN 10+50mE	LENGTH OF THE START	R DIP: -50° 0' 0 HOLE: 256.00M DEPTH: 0.00M DEPTH: 256.00M
	COLLAR ASTRONOMIC AZI	MUTH: 180° 0' 0"	GRID ASTRONOMIC AZIMUTH:	0° 0' 0"		
DATE STARTED: 03/16/1999 DATE COMPLETED: 03/18/1999 DATE LOGGED: 03/20/1999	COLLAR SURVEY: NO RQD LOG: NO HOLE MAKES WATER: NO		PULSE EM SURVEY: YES PLUGGED: YES HOLE SIZE: BQ		CONTRACTOR: Bradley CASING: 55m NW CORE STORAGE: Minesite UTM COORD.:	

,

COMMENTS : Intersected Po from 125.8 to 126.5m. WEDGES AT:

Collared on claim P1211741

DIRECTIONAL DATA:

5

Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
70.00	184° 0' 0"	-49°30' 0"	S	ок		-			_	-	
130.00	191° 0' 0"	-49° 0' 0"	S	OK		-	-	-	-	-	
190.00	190° 0' 0"	-48° 0' 0"	S	OK		-	—	-	_	_	
250.00	191° 0' 0"	-47° 0' 0"	S	ок		-	-	-	-	_	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		i -	-	-	-	-	
-	-	-	-	-		-	-	-	_	_	
-	-	_	-	-		-	-	_	-	-	
-	-	-	-	-		-	-	_	-	_	
-	-	-	-	-		-	-	_	-	_	
-	-	-	-	-		-	-	-	_	_	
-	-	-	-	-		-	-	-	~	_	
-	-	-	-	-		-	-	-	_	-	
-	~	_	-	-		-	-	-	-	-	
-	-	-	-	-		-	_	-	_	_	
_	-	_	_	-		-	_	_	_		
-	_	_	-	-			_	_		_	
-	_	_	_	_		 _			-	-	
_	_	-	_	-			_	-	-	-	
-	_	_	_	_		- -	-	-	-	-	
-	_		_			1 -	-	-	-	-	
		-	_	_		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	

HOLE NUMBER: MF16-02

DRILL HOLE RECORD

LOGGED BY: G Collins

PAGE: 1

They 6

'n

DATE: 04/12/2000

						DAIE: 04/12/2000
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 53.00	i · ·		 			
53.00 TO 85.75	«7,b,N» 	OPHITIC TEXTURED DIORITE -Dark green, medium grained ophitic textured diorite. Rock is composed of chloritized amphibole and sausseritized feldspars phenocrysts occurring in a 50:50 ratio. Unit hosts 1 to 3% fine disseminated cream coloured leucoxene grains.		-Minor fracture controlled qtz/carbonate, and qtz/epidote veining. -10cm wide qtz/epidote veinlet noted between 69.8 and 69.9m. -Strong pervasive carbonatization accompanies schistose interval between 60.3 and 61.6m.	-Trace disseminated PO.	
		-Unit is massive in texture, crosscut by minor qtz/carbonate and qtz/epidote veinlets. Minor gash filling chlorite is also observed. -A weak to moderately strong schistocity, 75° TCA is developed between 60.3 and 61.6m. #60.3 to 61.8# «{S0 75°}» -From 82.0 to 85.75m, fracturing and qtz/epidote veining becomes strongly developed.		-Minor gash filling chorite.		
85.75 TO 102.20	<2,a,p»	 Downhole contact is marked by a rapid reduction in phenocryst size, possibly due to chilling against following unit. PILLOWED MAFIC VOLCANICS Dark green, fine grain pillowed mafic volcanics. 		-Minor fracture controlled qtz/carbonate veining.	 -Trace disseminated and fracture controlled PO. 	-Downhole contact occurs within shear zone.
		<pre>Pillows have massive, weakly insitu brecciated interiors and are rimmed by thin chloritic selvages. -Unit is overprinted by minor fracture filling qtz/carbonate alteration. -Towards lower contact, unit becomes increasingly schistose. 198.5 to 102.2 & <100 >> -Lower contact is indistinct.</pre>		-From 98.5 to 102.2m, strong carbonatization accompanies shear zone.		

HOLE NUMBER: MF16-02

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE		MINERALIZATION	REMARKS
i			- <u> </u>			
102.20 TO 121.60	«7,b,N»	<pre>OPHITIC TEXTURED DIORITE -Dark green fine to medium grained ophitic textured dioriteUnit is similar in appearance to diorite occuring at the top of the holeUnit is massive in texture, overprinted by minor qtz/carbonate, qtz/epidote veining, and gash filling chlorite.</pre>		-Minor fracture controlled qtz/carbonate, and qtz/epidote veining.	-Speck of CP noted in qtz/carbonate veinlet at 120.6m. 	
		-Downhole contact is marked by a gradational reduction in grain size towards a sharp contact, resembling a thin chill zone.				
121.60 TO	«2,a,p»	PILLOWED MAFIC VOLCANICS		-Minor fracture controlled	-Trace fracture controlled PO.	-Flow shear laminations suggest mafics
10 125.80		 -Fine grain dark green pillowed mafics volcanics. -Pillows are non-vesicular with massive fine grained interiors, outlined with darker green chloritic selvages. -Weakly defined flow shear laminations are observed locally within pillows between 124.8 and 125.5m. -Downhole contact is sharp, 45° TCA. 		qtz/carbonate veining. 		are Aluminous. -See WR values.
125.80 TO 126.50 	«5,E,Sul»	SULPHIDIC EXHALITE -Cherty exhalite horizon hosting semi-massive PO and minor fracture controlled to disseminated SPH. -From 125.8 to 126.25m, light grey to green in colour, very hard, and finely laminated. -Interval hosts minor fracture controlled to patchy PO <5% and minor fracture controlled to disseminated SPH, and dusty SPH staining. -From 126.25 to 126.50m, unit hosts 25% PO, and is strongly conductive. -Bedding laminations are 50 to 55° TCA.		-Strongly developed fracture controlled carbonate alteration.	 -From 125.8 to 126.25m, unit hosts 4-6% fracture to patchy textured PO hosting trace ammounts of exsolved textured CP. -Minor fracture controlled and fine disseminated Sph observed throughout unit. Minor Sph staining also observed #125.80 to 126.25# *5%PO,0.5%SPH» -From 126.25 to 126.50m, PO mineralization occupies 25% of core. #126.25 to 126.50# «25% PO» 	-Strongly conductive interval.
		-Bedding familiations are 50 to 55° fCA. 125.8 to 126.25 « LAMS 50° »				

DRILL HOLE RECORD

DATE: 04/12/2000

FROM	ROCK					
TO	TYPE	TEXTURE AND STRUCTURE	ANGLE		MINERALIZATION	REMARKS
	1 		-		-	····
		-From 125.8 to 126.25m				
126.50 TO	«2,p,bx»	BRECCIATED PILLOWED MAFIC VOLCANICS		-Section is strongly pervasively	-Minor selvage controlled PO	
128.70		 -Weakly brecciated pillowed mafic volcanics host minor selvage controlled PO.		carbonatized.	containing trace exsolved textured CP.	
	 	 -Pillows have massive fine grained interiors commonly becoming weakly brecciated near selvages. Selvages contain minor Po. 			126.5 to 128.5	
	 	-Pillow selvage at 128.5m, hosts PO and a 1cm patch of CP with Tr Sph.				
	 	-Upper contact is bleached, and moderately silicified.				
		-Lower contact is defined by minor fault gouge and qtz/carbonate veining.				
128.70 TO	 «7,a,N» 	OPHITIC TEXTURED DIORITE		-Minor fracture controlled gtz/carbonate, gtz/albite, and gash	-No sulphides observed.	
142.65		-Dark green, fine grained massive mafic intrusive/diorite.	1	filling chlorite.		
	 	 Unit is weakly fractured, infilled by minor qtz/carbontate and qtz/albite veining, and gash filling chlorite. 		-Unit is overprinted by strong pervasive carbonatization.		
		-Downhole contact is sharp, and silicified.				
 142.65 TO	 «2,p,m» 	PILLOWED TO MASSIVE MAFIC FLOWS		-Strong pervasive carbonatization.	-0.5% selvage controlled Po observed between 144.9 and 145.5m.	
154.90		-From 142.65 to 146.0m, choritic selvages hosting minor amounts of carbonaceous material and trace Po are observed.		-Minor fracture controlled carbonaeous material enhances weak insitu brecciation.		
		-Downhole from 146.0m, distinct selvage forms are not observed. Unit is more massive in texture.				
		-Mafics are weakly insitu brecciated overprinted with minor fracture controlled carbonaceous alteration, and strong pervasive carbonatization.				

HOLE NUMBER: MF16-02

PAGE: 4

DATE: 04/12/2000

	·····					
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE	•	MINERALIZATION	REMARKS
 		-Downhole contact is sharp, marked by a flow contact, resembling a pillow selvage.	 			
154.90 TO	«2,7,a,bx»	MAFIC VOLCANIC/DIORITE		-Unit is strongly carbonatized near the upper contact. Carbonatization	-No sulphides observed.	
174.70				drops off gradationally away from the upper contact.		
 		<pre> chlorite. -Phenocryst size increases gradationally towards lower contact.</pre>		-Qtz/carbonate +/- chorite veinlets occupy 3-5% of unit. -25cm thick qtz/carbonate vein		
		-Downhole contact is sharp, 50° TCA.		containing chorite and axinite observed between 163.55 and 163.80m.		
74.70 TO	«2,a,p»	PILLOWED MAFIC VOLCANICS	 	 -Minor fracture and selvage controlled chlorite.	-No sulphides observed.	
32.25		Dark green, fine grained pillowed mafic volcanics.	1	-Strong pervasive carbonatization.		
 		 Pillows have massive, non-vesicular interiors and are defined by well developed chloritic selvages. Selvages commonly host minor amounts of hyaloclastite debris. 		-30cm thick qtz/carbonate veinlet observed between 226.56 and 226.95m.		
		-Pillows are weakly insitu brecciated. -Unit is non-foliated.				
		<pre></pre>				
32.25 TO	«2,a,m»	 MASSIVE MAFIC VOLCANICS 	 	 -Moderate to strong fracture controlled to pervasive qtz/carbonate	-No sulphides observed.	
47.10		-Dark green fine grained massive mafic volcanics. -Interval may represent a thicker flow unit within a sequence of pillowed flows.		alteration.		
		 -Unit is non-foliated, but weakly brecciated, infilled by minor fracture controlled qtz/carbonate alteration.				
		 -Downhole contact is sharp, marked by minor qtz/carbonate veining. 	 			
i		İ	İ	i	i l	

HOLE NUMBER: MF16-02

HOLE NUME	3ER: MF16-02			DRILL HOLE RECORD		DATE: 04/12/2	000
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE		MINERALIZATION	REMARKS	
247.10 TO 256.00	«2,p,bx»	BRECCIATED PILLOWED MAFIC VOLCANICS -Dark green, pillowed mafic volcanics. Unit is similar in appearance to previous pillowed mafic units. -Pillow interiors are fine grained and non-vesicular outlined by thin choritic selvages. -Pillows are weakly insitu brecciated, accompanied by fracture controlled qtz/carbonate veining. Fracturing becomes more pronounced towards pillow margins.		-Strong fracture controlled to pervasive carbonatization. -Dark green chlorite is commonly developed within selvages.	-No sulphides observed.		
256.00 TO 256.00	«ЕОН»						
HOLE NUMB	BER: MF16-02			DRILL HOLE RECORD	LOG	GED BY: G Collins	PAGE: 6

DATE: 12/04/2000

Sample	From (M)	То (М)	Leng. (M)	Cu ppm	z p		eb popm	Ni ppm	Au ppb	Ag ppm	Cu/Zn	n Co ppm	Pt ppb	Pd ppb	S ppm	Se ppm	As ppm	Hg ppb	Sb ppm
AU04547 AU04548 AU04549 AU04550	125.00 126.25	126.25 126.50	1.25 0.25	 3	103 86 356 171	99 2200 3480 456	52	L 63. 7 36. 2 71. L 39.	0 0	14 27 65 24	0 0 1 0							······	
				l															

DATE: 12/04/2000

Sample From (M) To (M) Leng. (M) SIO2 % AL203 % CAO % MSO % K2O % FE203 % TIO2 % P205 % MNO CR203 % LOI SUM % Y ZR % BA % RB PPM PPM PDM PDM PDM	8 I	20 20 15 15 20 20 20 20	ZN PPM 10 15 15 35 10 10 10 10 10	NI PPM 5 10 10 5 15 15 15 15 15 15	CR FIELD CHEM PPM NAME ID 40 7,b,N 7hv 25 2,a,p 2hv 25 7,b,N 7(h)v 5 2,p,bx 2(h)v 50 2,p,m 2hw 45 2,7,a,b2(h)u 45 2,a,p 2hw 45 2,a,m 2hw	
AU04719 88.00 91.00 3.00 49.14 12.70 10.99 4.81 1.64 0.05 12.82 1.28 0.12 0.20 5.77 99.52 30 80 AU04720 115.00 118.00 3.00 49.21 13.19 9.90 7.13 1.84 0.19 13.93 1.25 0.12 0.21 2.63 99.60 25 80 AU04721 128.00 128.70 0.70 51.63 13.70 4.63 5.18 2.60 0.08 15.27 1.72 0.18 0.20 4.48 99.67 30 120 AU04722 148.00 151.00 3.00 50.80 14.43 12.28 5.11 1.68 0.13 9.41 0.78 0.06 0.19 4.86 99.73 15 40 AU04723 172.00 174.70 2.70 49.40 13.77 12.09 8.13 1.25 0.13 10.55 0.70 0.06 0.17 3.19 99.44 15 50 AU04733 199.00 202.00 3.00 <		20 20 15 15 20 20 20	15 15 35 10 10 10	10 10 5 15 15 15 15	25 2,a,p 2hv 25 7,b,N 7(h)v 5 2,p,bx 2(h)v 50 2,p,m 2hw 45 2,7,a,b2(h)u 45 2,a,p 2hw	10 11 18 10 10 9
AU04720 115.00 118.00 3.00 49.21 13.19 9.90 7.13 1.84 0.19 13.93 1.25 0.12 0.21 2.63 99.60 25 80 AU04721 128.00 128.70 0.70 51.63 13.70 4.63 5.18 2.60 0.08 15.27 1.72 0.18 0.20 4.48 99.67 30 120 AU04722 148.00 151.00 3.00 50.80 14.43 12.28 5.11 1.68 0.13 9.41 0.78 0.06 0.19 4.86 99.73 15 40 AU04723 172.00 174.70 2.70 49.40 13.77 12.09 8.13 1.25 0.13 10.55 0.70 0.06 0.17 3.19 99.44 15 50 AU04723 199.00 202.00 3.00 50.48 14.02 13.12 4.97 1.61 0.06 9.14 0.75 0.05 0.18 5.46 99.84 15 40 AU03739 235.00 238.00 3.00		20 15 15 20 20 20	15 35 10 10 10	10 5 15 15 15 15	25 7,b,N 7 (h)v 5 2,p,bx 2 (h)v 50 2,p,m 2hw 45 2,7,a,b2 (h)u 45 2,a,p 2hw	11 18 10 10 9
AU04721 128.00 128.70 0.70 51.63 13.70 4.63 5.18 2.60 0.08 15.27 1.72 0.18 0.20 4.48 99.67 30 120 AU04722 148.00 151.00 3.00 50.80 14.43 12.28 5.11 1.68 0.13 9.41 0.78 0.06 0.19 4.86 99.73 15 40 AU04723 172.00 174.70 2.70 49.40 13.77 12.09 8.13 1.25 0.13 10.55 0.70 0.06 0.17 3.19 99.44 15 50 AU03738 199.00 202.00 3.00 50.48 14.02 13.12 4.97 1.61 0.06 9.14 0.75 0.05 0.18 5.46 99.84 15 40 AU03739 235.00 238.00 3.00 50.21 14.01 12.42 4.87 1.89 0.06 9.50 0.77 0.06 0.20 5.50 99.49 15 40		15 15 20 20 20	35 10 10 10 10	5 15 15 15 15	52,p,bx2(h)v 502,p,m2hw 452,7,a,b2(h)u 452,a,p2hw	18 10 10 9
AU04722 148.00 151.00 3.00 50.80 14.43 12.28 5.11 1.68 0.13 9.41 0.78 0.06 0.19 4.86 99.73 15 40 AU04723 172.00 174.70 2.70 49.40 13.77 12.09 8.13 1.25 0.13 10.55 0.70 0.06 0.17 3.19 99.44 15 50 AU03738 199.00 202.00 3.00 50.48 14.02 13.12 4.97 1.61 0.06 9.14 0.75 0.05 0.18 5.46 99.84 15 40 AU03739 235.00 238.00 3.00 50.21 14.01 12.42 4.87 1.89 0.06 9.50 0.77 0.06 0.20 5.50 99.49 15 40		15 20 20 20	10 10 10 10	15 15 15 15	50 2,p,m 2hw 45 2,7,a,b2(h)u 45 2,a,p 2hw	10 10 9
NU04723 172.00 174.70 2.70 49.40 13.77 12.09 8.13 1.25 0.13 10.55 0.70 0.06 0.17 3.19 99.44 15 50 NU03738 199.00 202.00 3.00 50.48 14.02 13.12 4.97 1.61 0.06 9.14 0.75 0.05 0.18 5.46 99.84 15 40 NU03739 235.00 238.00 3.00 50.21 14.01 12.42 4.87 1.89 0.06 9.50 0.77 0.06 0.20 5.50 99.49 15 40		20 20 20	10 10 10	15 15 15	45 2,7,a,b2(h)u 45 2,a,p 2hw	10 9
NU03738 199.00 202.00 3.00 50.48 14.02 13.12 4.97 1.61 0.06 9.14 0.75 0.05 0.18 5.46 99.84 15 40 NU03739 235.00 238.00 3.00 50.21 14.01 12.42 4.87 1.89 0.06 9.50 0.77 0.06 0.20 5.50 99.49 15 40		20 20	10 10	15 15	45 2,a,p 2hw	9
U03739 235.00 238.00 3.00 50.21 14.01 12.42 4.87 1.89 0.06 9.50 0.77 0.06 0.20 5.50 99.49 15 40		20	10	15	45 2,a,p 2hw	9
		20				
						7
					45 2,p,bx 2hw	9

IOLE NUME				·								EMICAL					-											DATE:	12/04/200
Sample	From (M)	To (M)	Leng. (M)	AG PPM	AU PPB	CO PPM	PB PPM	S PPM	V PPM	AS PPM	SN PPM	CD PPM	SB PPM	BI PPM	SE PPM	HF PPM	TA PPM	W PPM	MO PPM	TH PPM	U PPM	B PPM	CS PPM	LA PPM	CE PPM	ND PPM	SM PPM	EU PPM	GD PPM
U04718		73.00				5		0.10	280										<u></u>										
U04719		91.00				5		0.14	300																				
	115.00			1		5 5		0.15	300																				
	128.00 148.00					5		0.65 0.09	315 240																				
J04723	172.00	174.70	2.70	1		5		0.03	215																				
	199.00					5		0.13	225																				
	235.00					5		0.12	225																				
J03740	250.00	253.00	3.00			5		0.15	230																				
				1 1																									
				1																									
				l I																									

DATE: 12/04/2000

ample	From (M)	To (M)	Leng. (M)	DY PPM	ER PPM	LU PPM	OS PPB	IR PPB	RU PPB	RH PPB	PT PPB	PD PPB	LI PPM	BE PPM	MN PPM	GA PPM	GE PPM	IN PPM	TL PPM	SC PPM	BR PPM	YB PPM	NB PPM	HG PPB	MGO#	CA/AL N	II/MGO I	SHIKW Z	N/NA2
04710						LIN				rrD		FFD	<i>F</i> FP 1		r rm	F F PI	r rM	r r'Pi			E FM	PPM		FFR					<u> </u>
04718 04719	70.00	73.00 91.00												<5 <5						5 5			10			0.79	1	32	6
	115.00	118 00	3.00	17 11										<5						5			10		0.47	0.87	2	28	9
4721	128.00	128 70	0.70											<5						5			10		0.55	0.75	1	38	8
4722	148.00	151 00	3 00	1										<5						5			<10		0.45	0.34	1	42	13
4723	172.00	174 70	2 70	1 1										<5						5			<10		0.56	0.85	3	27	6
	199.00			1 										<5						5			<10 <10		0.65 0.56	0.88 0.94	2 3	38 25	8 6
	235.00			a 										<5						5			<10		0.55	0.89	3		5
3740	250.00	253.00	3.00	u 										<5						5			<10		0.55	0.96	3	26 24	8
																				2			<10		0.54	0.96	3	24	8
				1																									
				1																									
				l																									
				ļ																									
				[] 																									
			i	1																									
				1																									
				Ĩ																									
			ĺ	l																									
				I																									
				I																									
				l																									
				1																									

HOLE NUMBER: MF16-03		FALCONBRIDGE LIMITED DRILL HOLE RECORD								
PROJECT NAME: KIDD/HBED/EAL JV PROJECT NUMBER: 424 CLAIM NUMBER: Prop#AQ27, Spect Targ# LOCATION: SE Mahaffy TWP	551	GRID: UTM WORTH: 5405520.00N EAST: 464224.00E ELEV: 290.00	ALTERNATE COORDS GRID: MF15 Grid NORTH: 14+ 0mN EAST: 5+ 5mE ELEV: 290.00	COLLAR DIP: -45° 0' 0 LENGTH OF THE HOLE: 254.00M START DEPTH: 0.00M FINAL DEPTH: 254.00M						
	COLLAR ASTRONOMIC AZI	MUTH: 210° 0' 0"	GRID ASTRONOMIC AZIMUTH: 0° 0' 0"							
DATE STARTED: 03/19/1999 DATE COMPLETED: 03/21/1999 DATE LOGGED: 04/11/1999	COLLAR SURVEY: NO RQD LOG: NO HOLE MAKES WATER: NO		PULSE EM SURVEY: YES PLUGGED: YES HOLE SIZE: BQ	CONTRACTOR: Bradley Bros. CASING: 28m NQ rods CORE STORAGE: Minesite UTM COORD.:						

.

COMMENTS : Collared on claim P1228724 WEDGES AT:

Intersected conductive Po from 158.5 to 159.1m

.

DIRECTIONAL DATA:

De	epth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	40.00	215° 0' 0"	-44° 0' 0"	s	ОК		-	_	_	-	-	
	L00.00	218° 0' 0"	-44°30' 0"	S	OK		-	_	_	-	-	
	L60.00		-44° 0' 0"	A	OK	Bad azimuth due to Po	-	_		-	-	
	220.00	224° 0' 0"	-42° 0' 0"	S	OK		-	_	_	-	-	
	_	-	_	-	-		i -	-	-	-	-	
	-	-	-	-	-		-	-	-	-	-	
	-	-	-	-	-		- 1	-	-	-	-	
	-	-	-	-	-		-	-	-	-	-	
	-	-	-	-	-			-	-	-	-	
	-	-	-	-	-		-	-	-	-	-	
	-	-	-	-	-		-	-	-	-	-	
	-	-	-	-	-		-	-	-	-	-	
	-	-	-	-	-		-	-	-	-	-	
	-	-	-	-	-		-	-	-	-	-	
	-	-	-	-	-		-	-	-	-	-	
	-	-	-	-	-		-	-	-	-	-	
	-	-	-	-	-		-	-	-	-	-	
	-	-	-	-	-		-	-	-	-	-	
	-	-	-	-	-			-	-	-	-	
	-	-	-	-	-		-	-	-	-	-	
	-	-	-	-	-		-	-	-	-	-	
	-	-	-	-	-		-	-	-	-	-	
	-	-	-	-	-			-	-	-	-	
	-	-	-	-	-			-	-	-	-	
	-	-	-	-	-		-	-	-	-	-	

DRILL HOLE RECORD

LOGGED BY: G Collins

PAGE: 1

theor by

DATE: 04/12/2000

FROM	ROCK		ANGLE			
ТО	TYPE	TEXTURE AND STRUCTURE	TO CA		MINERALIZATION	REMARKS
	TYPE «lobl»	TEXTURE AND STRUCTURE OPHITIC TEXTURED DIORITE -Dark green, medium grained ophitic and spotty textured mafic intrusive. -Unit hosts 1-2% fine disseminated cream coloured leucoxene grains. -Unit is massive and non-foliated. Minor fracturing is infilled by qtz/carbonate veinlets and gash filling chlorite. -Joint running subparallel to core produces block core between 48.0 and 49.5m. -Minor gouge is developed along slip surfaces within sheared zone of qtz/carbonate veining.	•		MINERALIZATION -Coarse grain disseminated euhedral Py is observed between 45.3 and 46.8m. -Shiny Py clusters up to 2cm in diameter observed -Interval also hosts minor veinlet controlled Po.	
88.65 TO 134.85	≪2,a,p»	<pre>within sheared zone of qtz/carbonate veining. (45° TCA) -Blocky inclusions of mafic volcanics occur between 71.4 and 72.1m, and 72.8 and 73.25m. -Inclusions interpreted to be xenoliths. -Grain size becomes fine adjacent to the downhole contact, indicating chilling. -Downhole contact is sharp, 50° TCA. PILLOWED MAFIC VOLCANICS -Dark green, fine grain pillowed mafic volcanics. -Pillows have massive non-vesicular interiors and are outlined by well developed chloritic selvages. -Selvages are typically thin (<3cm) and do not contain notable amounts of hyaloclatitic material. -Qtz/carbonate veining occupies 5-7% of unit. -Downhole contact is marked by extensive brecciation and qtz/carbonate veining.</pre>		-Strong selvage and veinlet controlled to pervasive carbonatization. -Qtz/carbonate veining becomes 10-15% abundant between 109.0 and 114.0m. -Qtz/carbonate veining infills breccia, occupying 30% of unit between 131.4 and 137.0m.	-Trace amounts of Po accompanies qtz/carbonate veining. -Assays taken.	

HOLE NUMBER: MF16-03

LOGGED BY: G Collins

HOLE NUMBER: MF16-03

DRILL HOLE RECORD

DATE: 04/12/2000

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE	•	MINERALIZATION	REMARKS
134.85 TO 158.40	«7,a,m»	FINE GRAINED DIORITE -Dark green fine grain leucoxene bearing diorite. -Unit is massive in texture, overprinted by minor fracture filling qtz/carbonate veining. -Uphole contact is brecciated, infilled by extensive qtz/carbonate veining. -Jointing produces blocky core between 147.0 and 147.8m. -Downhole contact is sharp, 65° TCA.	- 	-Minor fracture controlled qtz/carbonate alteration. -Extensive qtz/carbonate veining observed near the upper contact, and between 147.4 and 147.8m.	-Trace stringer controlled Po accompanies qtz/carbonate veining between 147.5 and 147.75m.	
158.40 TO 159.00	≪5,E,g,s» 	CHERT-GRAPHITE HOSTING PYRRHOTITE -Finely laminated light grey siliceous chert and dark grey/black graphitic argillite hosting 30% pyrrhotite. -Bedding laminations appear distorted by strong shearing. Shearing defines a cleavage, 65° TCA. -Interval is strongly conductive. Conductive material is gapped by a 15cm thick interval of tuffaceous mafic material from 158.75 and 158.90m. -Downhole contact is sharp, 65° TCA.		-Fracture/veinlet controlled carbonate alteration is strong. 	-Unit host 30% wispy to laminar patches of Po. -Trace Cp and Sph observed.	-Conductive interval.
159.00 TO 254.00	<pre>«2,a,p» ////////////////////////////////////</pre>	<pre>PILLOWED MAFIC VOLCANICS -Dark green, fine grained pillowed mafic volcanicsPillows are well defined, with thin chloritic selvages, and massive non-vesicular interiorsUnit is similar in appearance to previous pillowed mafic unitMafics are weakly fractured, overprinted by minor fracture controlled qtz/carbonate veiningStrongly developed carbonatized shear zone identified between 237.3 and 238.0m, 70° TCA. #237.3-238.0 & SZ> -1cm thick gouge seam observed at 237.85mLess strongly developed carbonatized shears observed between 220.6 and 221.1m, and 244.3 and</pre>		-Minor fracture and selvage controlled qtz/carbonate alteration. -Downhole from 215.0m, unit becomes strongly pervasively carbonatized. -Pervasive carbonatization is strongest within sheared intervals noted between 220.6 and 221.1m, 237.3 and 238.0m, and 244.3 and 248.5m.	-Trace disseminated and selvage controlled Po.	

HOLE NUMBER: MF16-03

HOLE NUMB	ER: MF16-03			DRILL HOLE RECORD		DATE: 04/1	2/2000
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMA	RKS
		248.5m.					
254.00	«EOH»						
то							
254.00		i					
i		Ì					
HOLE NUMB	ER • MF16-03			DRILL HOLE RECORD		LOGGED BY: G Collins	PAGE: 4

HOLE NUMBER: MF16-03

DRILL HOLE RECORD

LOGGED BY: G Collins

HOLE NUMBER : MF16-03

DATE: 12/04/2000

Sample	From (M)	To (M)		Cu ppm	Zn ppm	Pb ppm	Ni ppm	Au ppb	Ag ppm	Cu/Zn	Co ppm	Pt ppb	Pd ppb	S ppm	Se ppm	As ppm	Hg ppb	Sb ppm
J01327		46.80		24		39	1	4.0		0								
J01328	131.40		1.60	15		03	1 6			0								
J01329	133.00			∥ 4		17	1 8 1 3	2.0		0 0								
	134.50 136.00			4		46 89	1 6	0.0 6 0		0								
J01331 101332	157.00	157.50		7		10	1 8	2.0		ů 0								
J01333		159.00	0.60	32			45 11			1								
U01334	159.00	160.00	1.00	16	1 1	17	1 21	0.0		0								
U01335	160.00	161.00	1.00	6	6	69	1 10	7.0	0	0								
				11 {														
				Ĩ														
				II.														
				l.														
				4 1														
				Ï														
				Ï														
				1														
				1														
				H II														
				II II														
				ï														
				1														
				ll l														
				11														
				и 11														
				ii -														
				Ϊ.														
				1														
				1														
				11 														
				1														
				Ï														
				H														

HOLE NUMBER: MF16-03

_

PAGE: 5

HOLE NUMBER : MF16-03

DATE: 12/04/2000

Sample	From (M)	То (M)	Leng. (M)	SI02	AL203 %		MGO %	NA20 ۴	K20 %	FE2O3 %	TIO2 %	P205 욱	MNO %	CR203 %	LOI %	SUM %	Y PPM	ZR PPM	BA PPM	RB PPM	SR PPM	CO2 १	CU PPM	ZN PPM	NI PPM	CR FIEI PPM NAM		ALUM
AU04741	31.00	34.00	3.00	49.13	13.53	7.29	6.29	3.27	0.14	14.25	1.50	0.13	0.18			99.78	30	90					15	10	5	15 7,b,N		126 118
AU04742		64.00	3.00		12.53			2.21		16.18	1.62	0.15	0.23			99.87	35 30	100 80					20 15	20 15	5 10	10 7,b,b 25 2,a,p		105
AU04743						10.79	4.52 6.44	1.48		13.37 14.12		0.12 0.15				99.46 99.79	35	100					10	15	10	25 7,a,r		115
AU04744	142.00 172.00	145.00	3.00 3.00			9.43 13.01	4.87	1.52			0.75	0.05	0.19			99.64	15	40					20	10	15	45 2,a,p	p 2hw	98
	226.00			48.02	13.38	12.38	5.17	1.51	0.07	10.25	0.87	0.07	0.20		7.81	99.73	15	50					15	10	15	40 2,a,p		96
	250.00			48.49 	12.85	9.03	4.97	2.31	0.38	10.79	0.89	0.13	0.20		9.48	99.52	25	80					10	10	10	30 2,a, <u>I</u>	o 2(h)v!	110
				14 11																								

HOLE NUMBER: MF16-03

HOLE NUM	IBER : MF1	L6-03									GEOCH	EMICAL	ASSAYS															DATE :	12/04/2000
Sample	From (M)	To (M)	Leng. (M)	AG	AU PPB	CO PPM	PB PPM	S PPM	V PPM	AS PPM	SN PPM	CD PPM	SB PPM	BI PPM	SE PPM	HF PPM	TA PPM	W PPM	MO PPM	TH PPM	U PPM	B PPM	CS PPM	LA PPM	CE PPM	ND PPM	SM PPM	EU PPM	GD PPM
AU04742 AU04743 AU04744 AU04745 AU04746	31.00 61.00	34.00 64.00 100.00 145.00 175.00 229.00	3.00 3.00 3.00 3.00 3.00 3.00	PPM	PPB	PPM 5 5 5 5 5 5 5 5 5 5		PPM 0.03 0.07 0.22 0.09 0.16 0.29 0.13	PPM 315 350 295 230 225 170	PPM	PPM	PPM	PPM	PPM															

_

DATE: 12/04/2000

LE NUME	BER : MF1	6-03							GEOCH	IEMICAL	ASSAYS															DA18. 1	
ample	From (M)	То (М)	Leng. (M)	DY PPM		IR PPB	RU PPB	RH PPB	PT PPB	PD PPB	LI PPM	BE PPM	MN PPM	GA PPM	GE PPM	IN PPM	TL PPM	SC PPM	BR PPM	YB PPM	NB PPM	HG PPB	MGO#	CA/AL N	I/MGO I	SHIKW ZI	NA2
				¦	 	 						<5						5			<10		0.51	0.54	1	38	3
4741	31.00		3.00	11 11								<5						5			<10		0.46	0.67	1	36	9
	97.00			к 11								<5						5			10			0.83	2	28	10
4743	142.00	145 00	3.00									<5						5			<10		0.52		2	36	7
	172.00			" 								<5						5			<10		0.55		3	25	7
4746	226.00	229.00	3.00	1								<5						5			<10			0.93	3	27	7 4
	250.00			Ĩ								<5						5			<10		0.52	0.70	2	32	4
				Ï																							
				1 1																							
				ļ																							
				1																							
				Ï																							
				1																							
				Ï																							
				li li																							
				и 15																							
				Ï																							
				ii																							
				H																							
				# 11																							
				1																							
				Ï																							
				Ï																							
				ļ																							
				H K																							
				н 																							
				ii ii																							
				1																							

HOLE NUMBER: MF16-03

Southario Northern Development and Mines	Performed on Mining Land	Assessment Files Research Imaging
_	Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990	V.I. Dall
	subsection 65(2) and 66(3) of the M ssesment work and correspond with orthern Development and Mines, 3r	the mining lang looser. Durations about the mining lang looser. Durations about d Floor, 933 Ramsey Lake Road, Suc
42A14SW2008 2.20231 MAHAFFY	900	

Instructions: - For work performed on Crown Lands before recording a claim, use form 0240. - Please type or print in ink.

Ministry of

ataria

1 . Recorded holder(s) (Attach a list if necessary) 1. **Client Number** Name 130679 FALCONBRIDGE LIMITED **Telephone Number** Address (705) 267-1188 HWY 655 NORTH, BOX 1140 KIDD CREEK MINESITE Fax Number (705) 267-8874 P4N 7H9 TIMMINS ONTARIO, **Client Number** Name 303065 EXPLORERS ALLIANCE CORPORATION Telephone Number Address (416) 360-5333 8th FLOOR, 350 BAY STREET Fax Number (416)360-4419 M5H 2S6 TORONTO, ONTARIO

Declaration of Assessment Work

Type of work performed: Check (\checkmark) and report on only ONE of the following groups for this declaration. 2.

Geotechnical: prospecting, assays and work under sec	surveys, tion 18 (regs) Physical: drilling strip trenching and associ	ated assays
Work Type:		Office Use
		Commodity
Linecutting, HLEM/Mag, Diamond Drilling, E	Borehole PEM Surveys	Total \$ Value of \$1/12 153 Work Claimed \$1/12 153
Dates Work From Performed Day 01 Month 08	To Year 1998 Day 14 Month 04 Year 2000	NTS Reference
Global Positioning System Data (if available)	Township/Area REID/MAHAFFY TWPS	Mining Division Porrupun
See Drill Logs	M or G-Plan Number G3966, 3024	Resident Geologist
Please remember to: - obtain a wo - provide pro - complete a - provide a n - include two	per notice to surface rights holders before star nd attach a Statement of Costs, form 0212; nap showing contiguous mining lands that are l copies of your technical report.	District
3. Person or companies who p	repared the technical report (Attach a list if I	liecessaly)
Name GREG COLLINS		Telephone Number (705) 267-1188 ext.(6)
Address KIDD CREEK MINESITE, BOX	1140, TIMMINS ONTARIO P4N 7H9	Fax Number (705) 267-8874
Name DOUG LONDRY		Telephone Number (705) 523-5479
Address 547 Loach's Road, Sudbury Ont.	, P3E 2R3	Fax Number (705) 523-5479 D F C E U F D
Name CRONE GEOPHYSICS AND EXI		Telephone Number (905) 270-0096
Address 3607 WOLFEDALE ROAD, MISS	ISSAUGA ON, L5C 1V8	Fax Number APR 17 2000 C (905) 270-3472
completion and, to the best of my l	, do hereby certify that I have persor ork having caused the work to be performed or nowledge, the annexed report is true.	witnessed the same during or after its
Signature of Recorded Holder or Ager	men lo n	Date Apr 19 2000
Agent's Address Box 1140 Tim	mins PYN 749 (705) 264-	52000 (Eat 8245) Fax Number 267 - 8874
0241 (03/97)		•

Transaction Number (office use)

y Lake Road, Sudbury,

about this

20	Dontario Ministry of Northern Devel and Mines	onment	edule for Dec essment Wo			Transaction Number (office use) $\frac{56}{77}$
		· · · · · · ·	s ø .	···· · ·	Sle i	FINAL RE	VISED [
	FAGE. 02	7789 735 287				66:12 ,00 IC:34	
			1 6 1				-
		R	id Malafi	by Correc	fins .	and the second second second second second second second second second second second second second second second	• • • •
	Ontorio "		Chedule for Dec			ion Number (office use)	
	🛞 Ontario 🗄	orthem Development nd Mines	Assessment Wor			D_{10} , D_{11}	
	Mining Claim Number. Or if	Number of Claim	Value of work	Value of work	Value of work	Bank. Value of work	EVY
	work was done on other sligible mining land, show in this column the location number indicated on the claim map.	Units. For other mining land, list hectares.	Performed on this claim or other mining land.	Applied to this Cleim.	easigned to oil mining claims.		
	865389			\$400			V
	/, 865393			\$400			
	, , 865394	-		\$400			
	, 1 865395			\$400			_
	, . 987327			\$400			
	, , 987328	·		\$400	+		_
	, 987329			\$400	-		
	987361		-	\$400			_
	, . 987354			\$400			
	, , 758956			\$400			
	, 758957			\$400			-
	, 758958			\$400	+		-
	, / 987320			\$400			_
	, , 98732 1			\$400			_
	··· 967322			\$400			
	/ 987323			\$400			
	. , 967324			\$400			_
	1987325			\$400		*****	
	,987326			\$400	+		-
	• 987352			\$400	<u> </u>		-
	1 987353			\$400			
	, 865374			\$400	1		_
	865375		4	\$400			_
	, 866376		\$1,823 Zi 083	\$400		\$1.423	_
	. , 865377		2,083 \$4,787	\$400	<u> </u>	\$4,387	-
	965378		417	\$400		\$1,423	
	, 865382		\$1,823_	\$400			_
	. 865383	l	51,825 2,053	\$400		¥1,687	-
	, 865384			\$400			-
	865387		\$1,823	\$400	<u> </u>	\$1:423	-
	, 965388		\$1,823 2,07} \$1,823	\$400		\$1.423 71,673 \$1,425 \$1,425	-
	, 987339		2,083	\$400		<u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>	-
	, 1 987340			\$400			-
	, 987341		\$2,735	\$400		\$2,335	-
	. · 987342		 	\$400			- .
			a	<u> </u>	L	<u>I</u>	-
		Column Totals	\$18,637-	\$14,0007	02	\$13.837-	-
	0290 (02/08)		\$ 15,854	913,600		13,454	
	9007 2 00 Ø	EXP	LALCONBRIDG	\$188 L97	52 Q 102	ST 00/27/70	
	_	1					
	Column 1	Cotale	\$16,637	\$14,000		\$ 0	\$13,701

0290 (02/96)

ari	Ministry of Northern Develo and Mines	prent Schec Asses	lule for Dec sment Wor	k on Mining	Land \mathcal{U}	saction Number (off
				\cap	EINAI	Drili
	20.3049	7288 292 502				00. LI 844
						· · ·
Ø) Ontario :	Anistry of S Anthem Development A	chedule for Dec ssessment Wo	claration of rk on Mining La	and // OCC	$O \cdot O / P$
Ċ					FIALA	I REI
Mining	Claim Number. Or if	Number of Claim	Value of work	Value of work	Value of work	Bank. Value of work
work w mining the loc	as done on other eligible land, show in this column ation number indicated claim map.	Units. For other mining land, list hectares.	Performed on this claim or other mining land.	Applied to this Claim.	assigned to other mining claims.	at a future date.
	· , 987343			\$400		
	987344			\$400		
<u> </u>	, 967345			\$400		
<u> </u>	, 987346			\$400		
	, 987347			\$400		
	· 1 987348			\$400	1	
	. 1 987349			\$400		
	. 1987350			\$400 \$400		
	758754		# \$1,823 9 2,083	\$400		\$1,653
	, 758755			\$400		
	, 758756			\$400		
	758757			\$400		
	768065		11 \$1.823-	\$400	_	11.423
	987315		4 2,083	\$400		1,685
	987316			\$400		
	, 987317		<u></u>	\$400		
	987318			\$400		
<u> </u>	987319	+		\$400		-
	987330			\$400		
	• 987331		1	\$400		
	987332			\$400		
	. 987333			\$400		
	• 987334			\$400		
	1 987335			\$400		· · · · · · · · · · · · · · · · · · ·
	* 987336			\$400		
	' 987337			\$400		
	• 987338			\$400		\$20,164
	, 865379		\$20,564	\$400 \$400		\$26,910
	, 885385		\$27,310	\$400		\$3,668
	865386	1	\$4,068	\$400		4-51-423-
•	, 865378 , 865381	<u> </u>	4 \$1,829 2,086 \$5,685	\$400		\$5,285
	865381		\$5,864	\$400	\$400	\$5,064
	, 865390	1		\$400		
			\$85,597		\$400	
		Column Totals				

	\$25,200	 \$0	\$81,861
Column Totals \$8	\$5,597 \$25,200	\$ 0	\$81,861

0290 (02/95)

•

.

रू) Or	tario Ministry of Northern De and Mines	velopment Sche Asse	dule for Dec ssment Wor			bold ()	fice use) /77
~				0	Ale FIL	JAL AE	UISF [
ning Claim N	umber. Or if Num	ber of Claim V	alue of work	Value of work	Value of v	work i Ban	k. Value of work
	P9.3049	202 502 8824			92:3	1 00. 11 AGA	
					•		
					Transation Mu	-bår (office use)	
	🛞 Ontario	Miniatry of Nonthern Development and Mines	Schedule for Dec Assessment Wo	laration of k on Mining La	1.1.4.5	$\frac{1}{60.007}$	71
	0	-		-	FIALK	Y-REVIS	EDF.
	Mining Claim Number. Or if	Number of Claim Units. For other	Value of work Performed on this	Value of work Applied to this	Value of work assigned to other	Bank. Value of work to be distributed	
	work was done on other eligible mining land, show in this colum the location number indicated		cialm or other mining land.	Claim.	mining claims.	at a future date.	V
	on the claim map.	1	\$3,170	\$400		\$2,770	-
	- 1211741	16	\$23,053	5	\$21,600	\$1,453	-
	1228724	16	\$47,905		-	\$47,905	-
	921754	1	\$2,464		\$400	\$2,064	_
	865392	1		\$400			_
		•					-
							-
							-
							_
							<u> </u>
							-
							-
							_
				-			-
							-
R							_
L							_
							_
							_
ι.					_		
							_
				·			_
		Column Totale	\$162,189		\$22,400		
	6280 (02/96)			\$ 28,400		\$ 133,789	
	900/1002	ď	EVICONBRIDCE EX	PL88	.52 .2 2.02 587	ST 00/LT/70	
		mn Totals	\$162,189	\$25,20	ې 10	21,000	\$136,989
0 (02:58)		L		\$ 25,6	00 \$.	500,27	136,58
0 (02/96)					• (6.C.	
						(c	

١

Ministry of Northern Development and Mines

Statement of Costs for Assessment Credit

Transaction Number (office use) CULD CO177

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Depending on the type of work, list the number	r of Cost Per Unit s of of work	Total Cost
56 km	\$304/km	\$17,024
53.6 km	\$176/km	\$9,434
54.4 km	\$107/km	\$5,821
2 Reports with copies	\$535/ Report	\$535
1515m	\$60/m	\$90,900
20 days	\$1,605/day	\$32,100
1 Report with copies	\$500/ Report	\$500
s 25 days	\$200/day	\$5,000
	AP EILE	
portation Costs	Croscient B. CD	\$
25 days	\$357459775SF3S4447	\$875
d Lodging Costs		
RECEIVEM		
<u>APR 17 2000</u>	otal Value of Assessment Work	\$162,189
PORCUPINE MINING DIVISION	a Total Value of Assessment Work	
	hours/day worked, metres of drilling, kilometres grid line, number of samples, etc. 56 km 53.6 km 54.4 km 2 Reports with copies 1515m 20 days 1 Report with copies 25 days 25 days 25 days 25 days 25 days 25 days	Depending on the type of work, list the number of hours/day worked, metres of drilling, kilometres of grid line, number of samples, etc. Cost Per Unit of work 56 km \$304/km 53.6 km \$176/km 54.4 km \$107/km 2 Reports with copies \$535/ Report 1515m \$60/m 20 days \$1,605/day 1 Report with copies \$500/ Report 25 days \$200/day 25 days \$20/day 25 days \$200/day 25 days \$350/With State 27 days \$350/With State 28 days \$350/With State 29 days \$350/With State 20 days \$350/With State 20 days \$350/With State 25 days \$350/With State

If work is filed after two years and up to five years after performance, it

Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT WORK	x 0.50 =	Total \$ value of worked claimed.

Note:

1.

Work older than 5 years is not eligible for credit.

A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

(steg

Coll.

, do hereby certify, that the amounts shown are as accurate as may reasonably int full name)

(pi be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying

Field Geologist I am authorized to make this certification. Senior Declaration of Work form as signing authority) nt, or state co older

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

July 7, 2000

FALCONBRIDGE LIMITED SUITE 1200, 95 WELLINGTON STREET WEST TORONTO, ONTARIO M5J-2V4

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9845 Fax: (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm

Dear Sir or Madam:

Submission Number: 2.20231

Status
Subject: Transaction Number(s): W0060.00177 Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact BRUCE GATES by e-mail at bruce.gates@ndm.gov.on.ca or by telephone at (705) 670-5856.

Yours sincerely,

teren B. Beneterin

ORIGINAL SIGNED BY Steve B. Beneteau Acting Supervisor, Geoscience Assessment Office Mining Lands Section

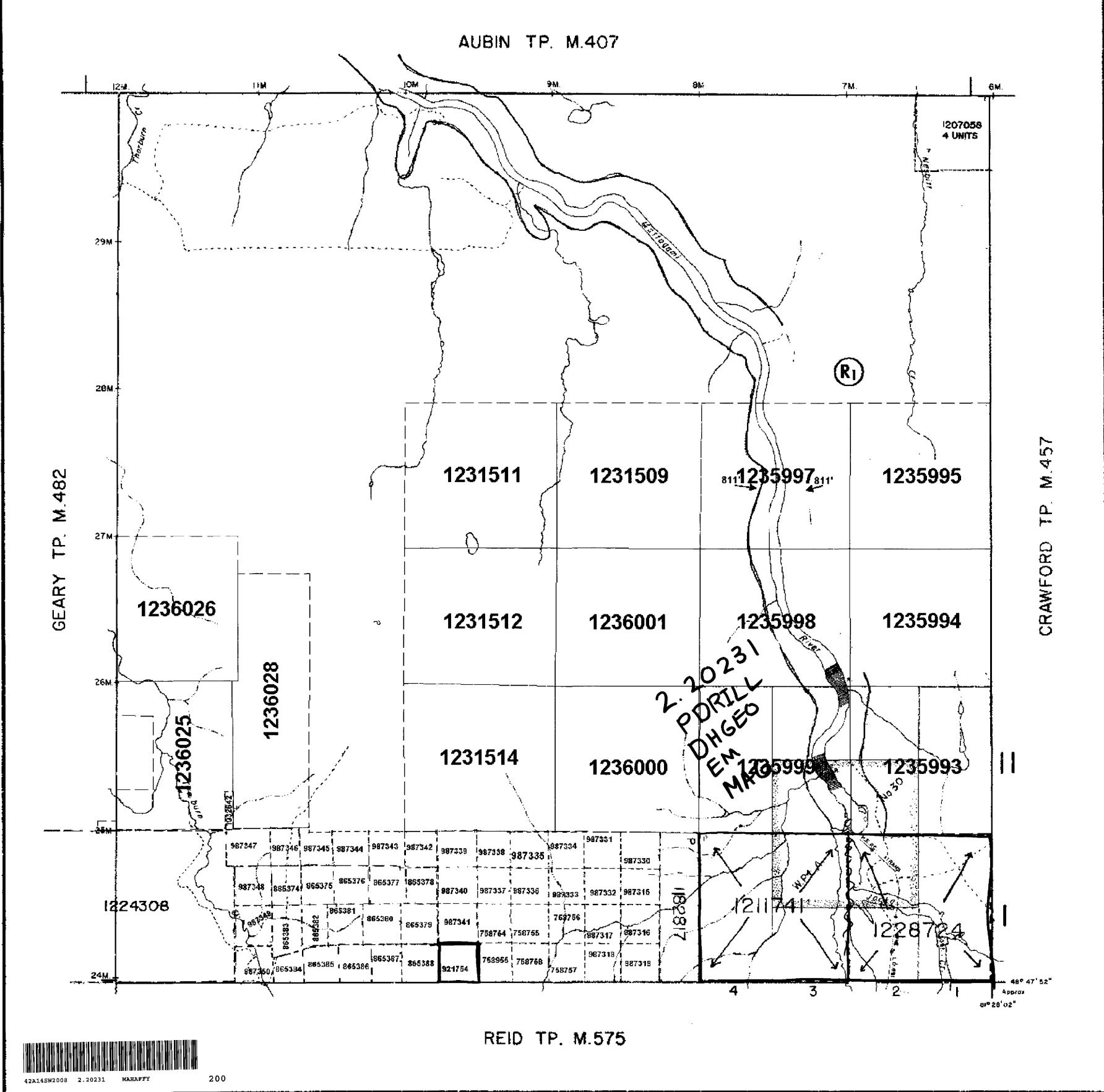
Correspondence ID: 15037 Copy for: Assessment Library

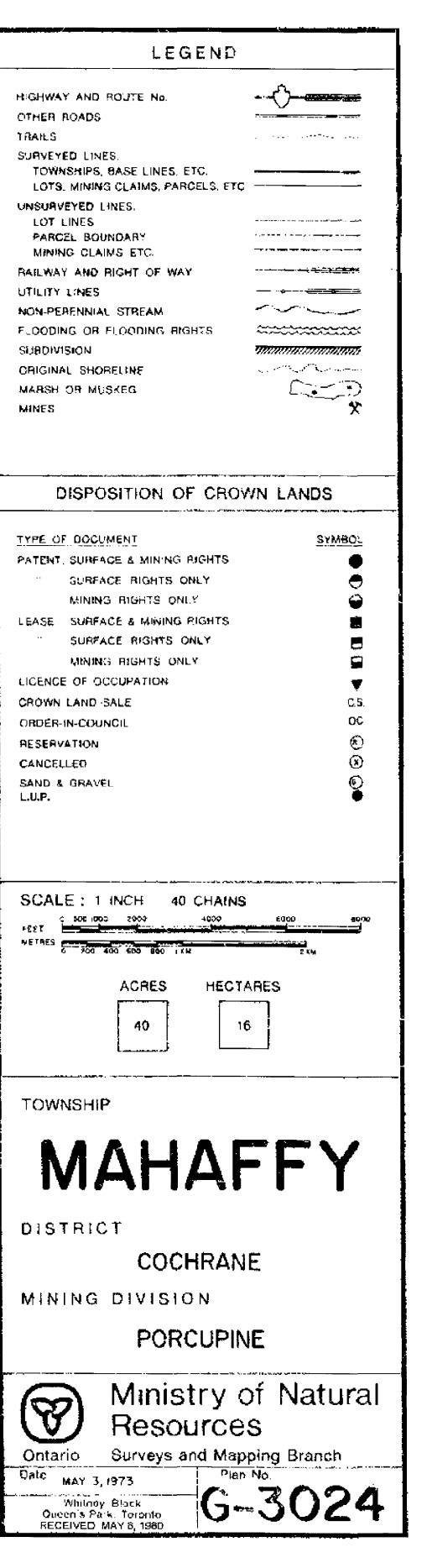
Work Report Assessment Results

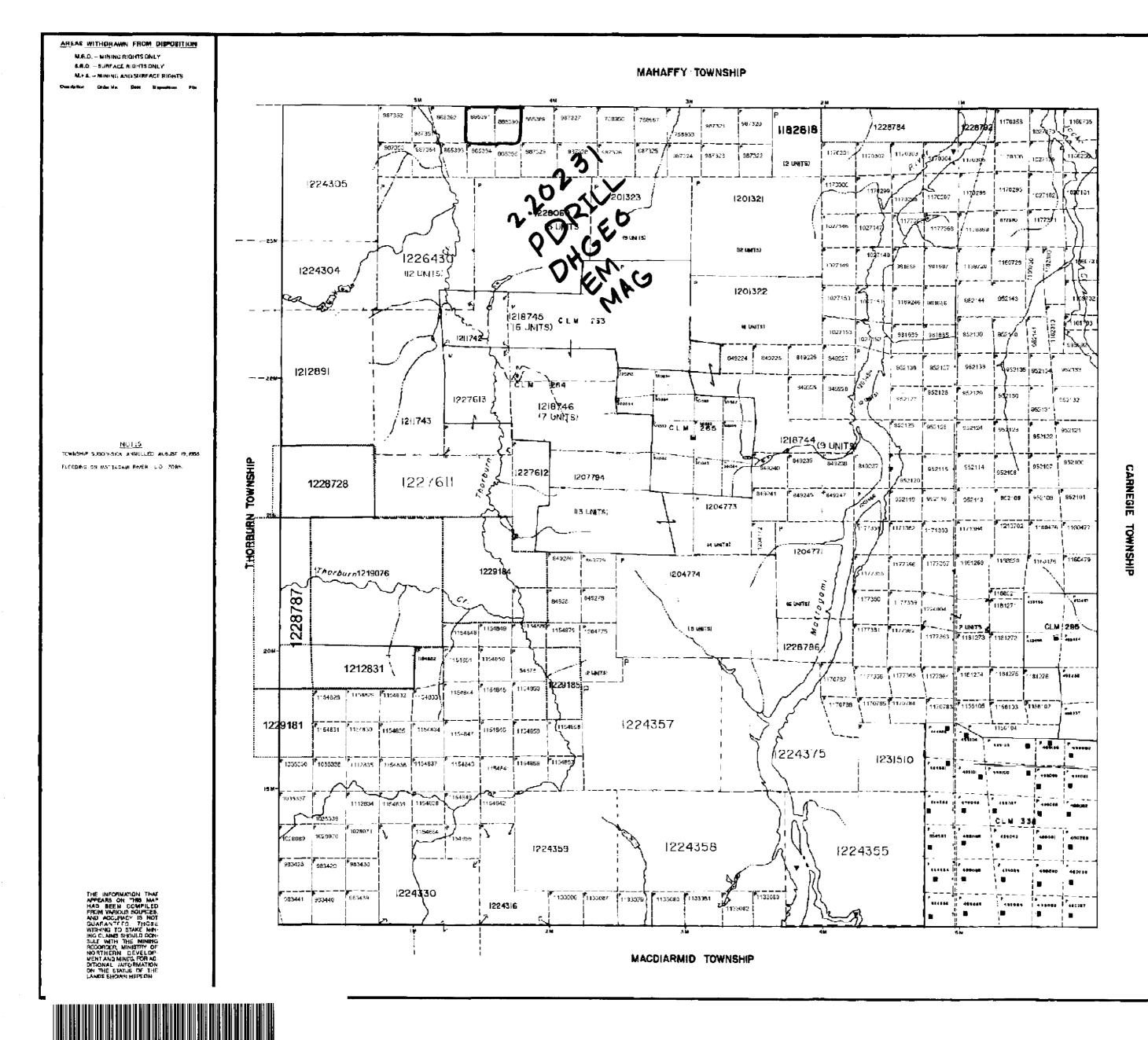
Date Correspond	dence Sent: July 07,	2000	Assessor:BRUC	E GATES	
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date	
W0060.00177	987343	REID, MAHAFFY	Approval	July 07, 2000	
Section: 16 Drilling PDRIL 18 Other DHGEO 14 Geophysical E 14 Geophysical M) . :М				
Correspondence	e to:		Recorded Hold	ler(s) and/or Agent(s):	
Resident Geologi	st		Greg Collins		
South Porcupine,	ON		TIMMINS, ON, O	CAN	
Assessment Files	s Library		FALCONBRIDG	GE LIMITED	
Sudbury, ON			TORONTO, ON	ITARIO	
				LLIANCE CORPORATION	
			TIMMINS, ONT	AKIO	

NOTES

400' surface rights reservation along the shores of all takes and rivers.

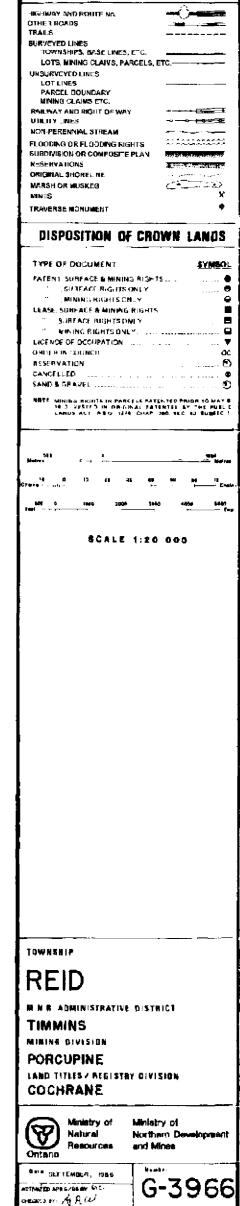

Subdivision of this township into lots and consessions is partially annulled July 2,63.

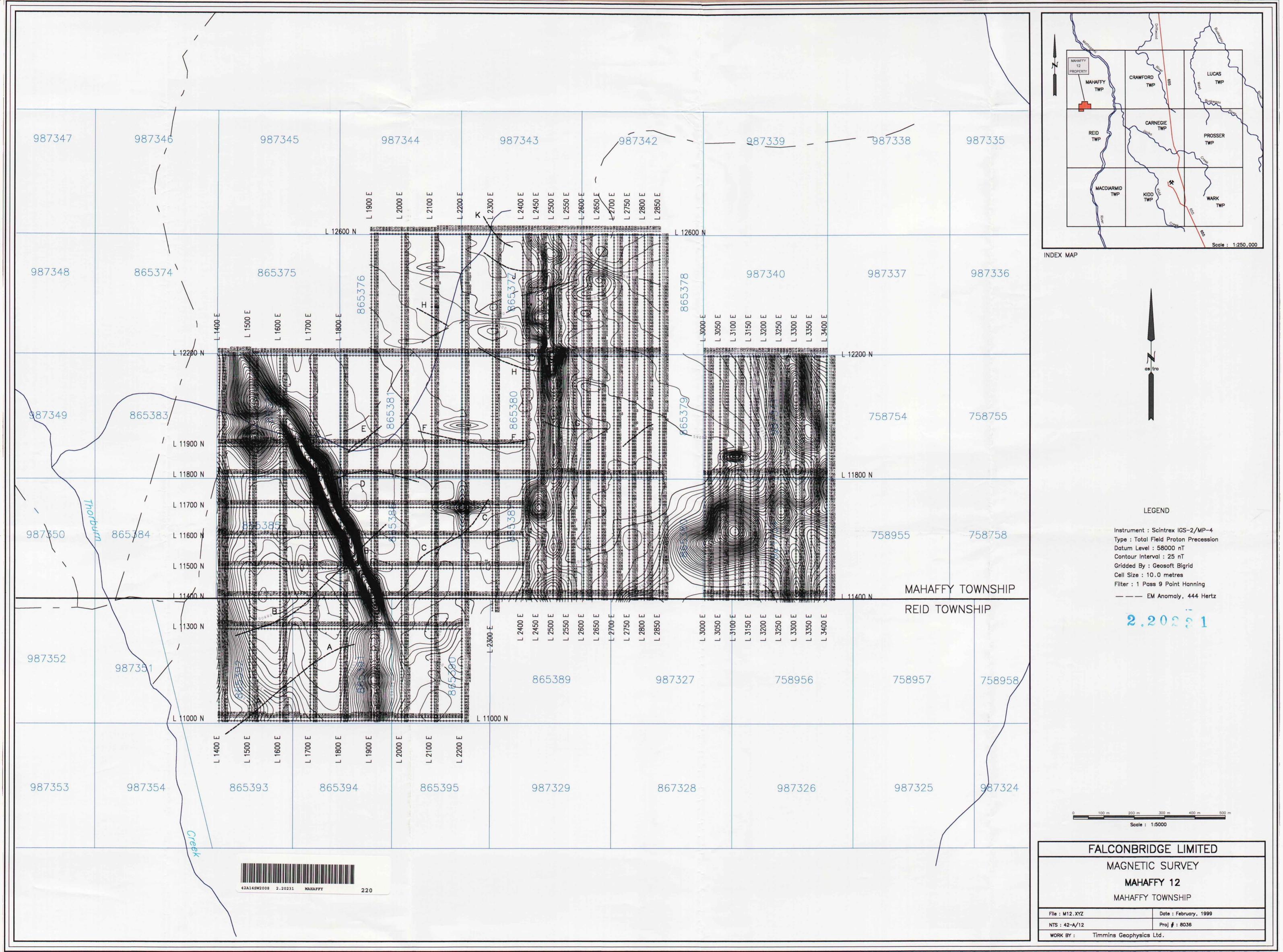

1.0.7085 Flooding Rights in lots 1,2 and 3, Con. 1 to H.E.P.C.

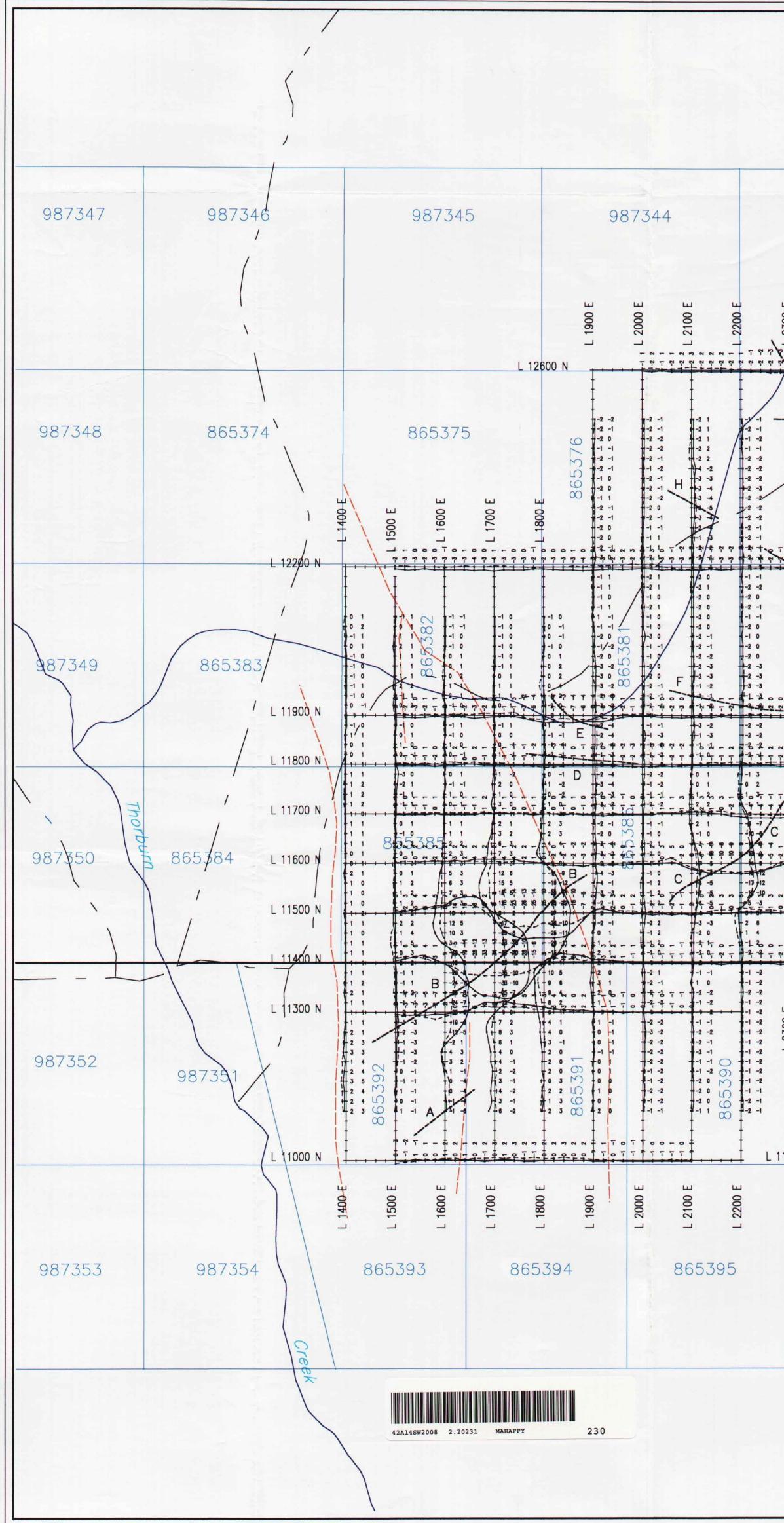

FLOODING RESERVATION TO CONTOUR ELEVATION 811 ft ON MATTAGAMI RIVER RESERVED TO ONTARIO HYDRO

(R1)Sec. 35	W - LL - C 1586/99	07/05/99	M+S

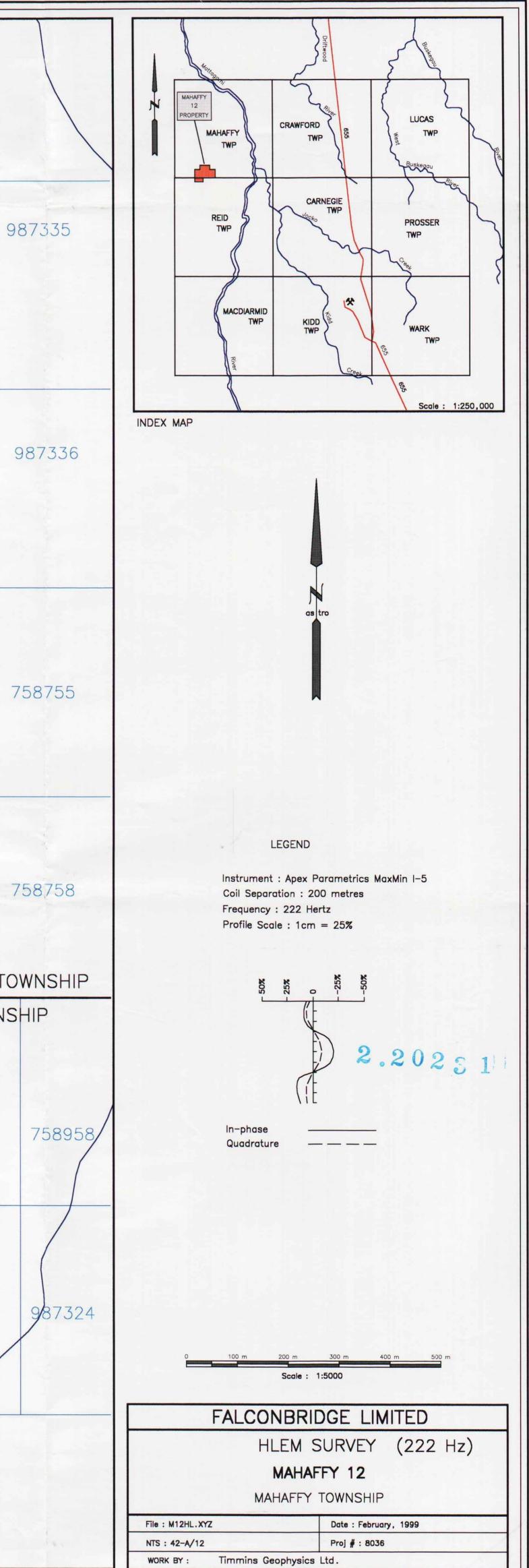
THE INFORMATION THAT APPEARS ON THIS MAP HAS BEEN COMPILED FROM VARIOUS SOURCES, AND ACCURACY IS NOT GUARANTEED, THOSE WISHING TC STAKE MIN-ING CLAIMS SHOULD CON-SULT WITH THE MINING RECORDER, MINISTRY OF NORTHERN DEVELOP-MENT AND MINES, FOR AD-DITIONAL INFORMATION ON THE STATUS OF THE LANDS SHOWN HEREON.

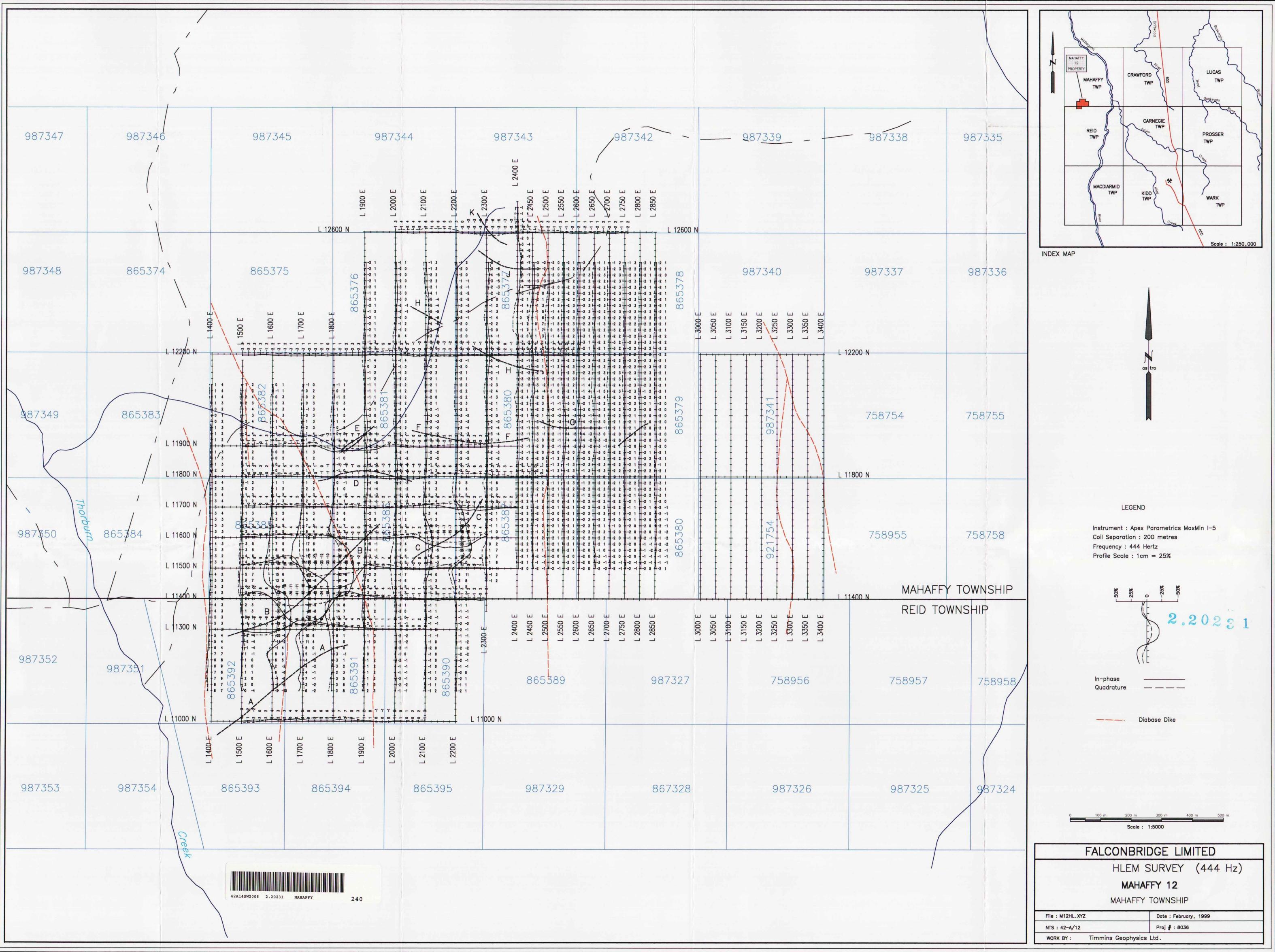


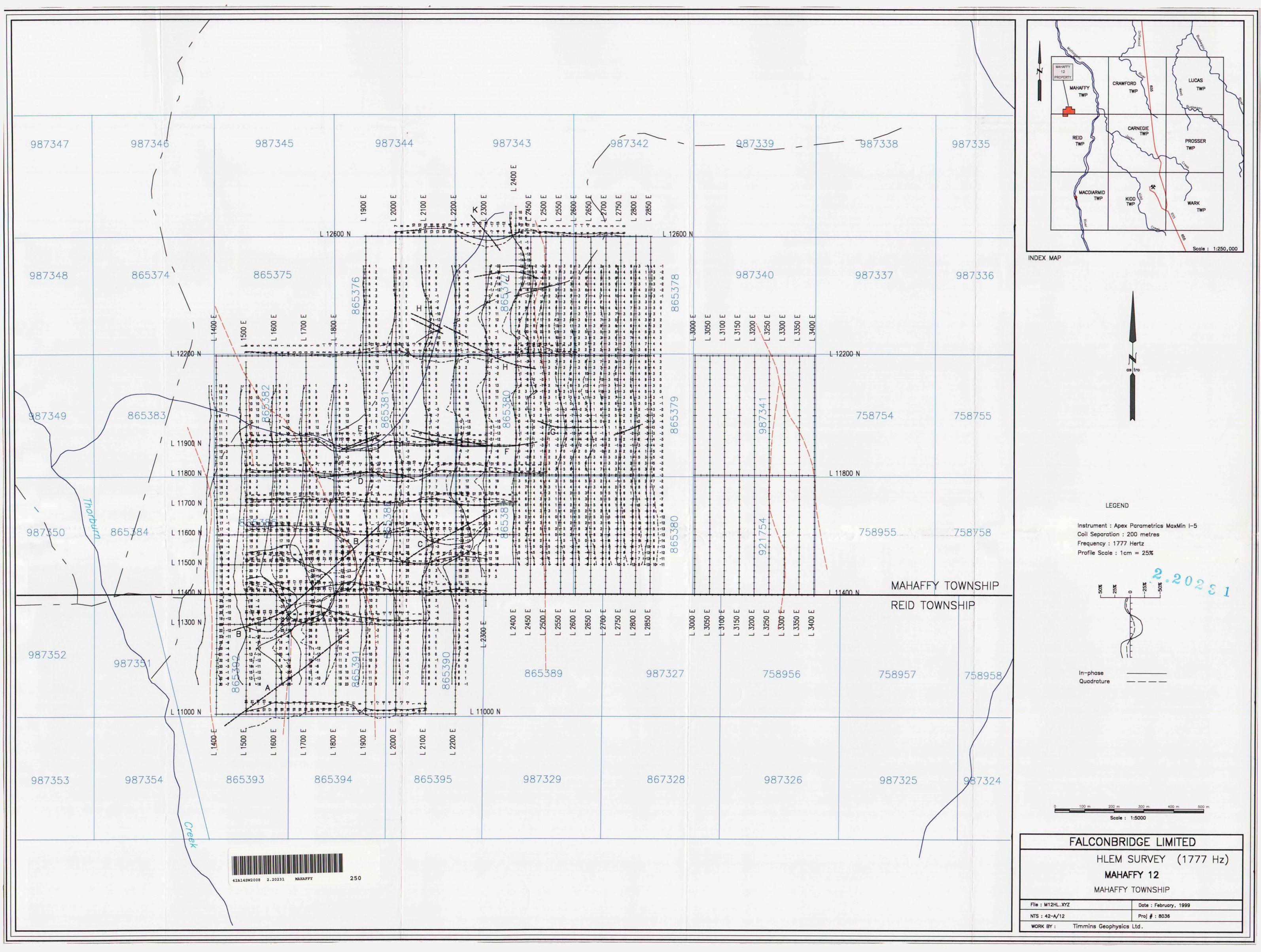


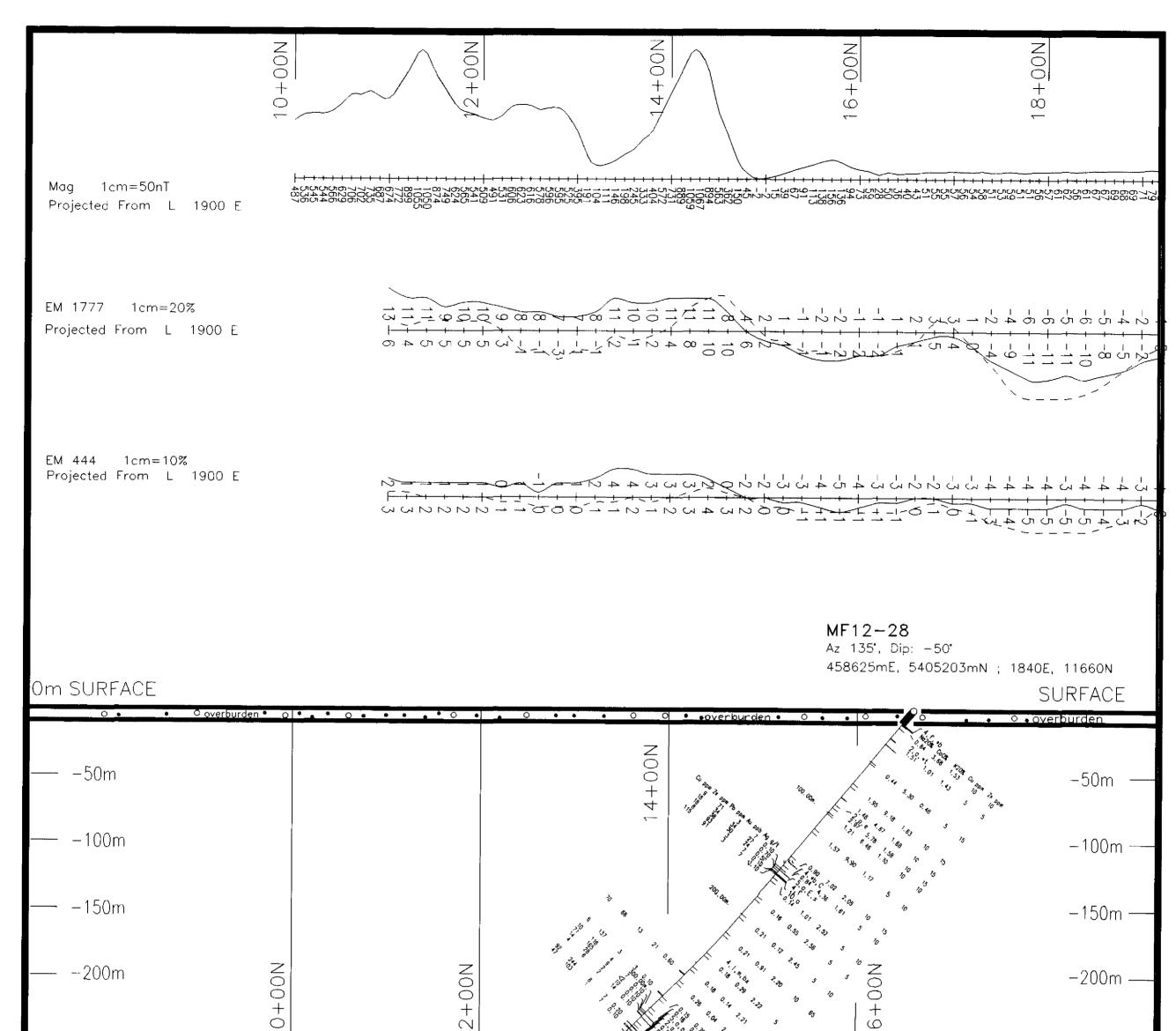

42A14SW2008 2.20231 MAHAFFY

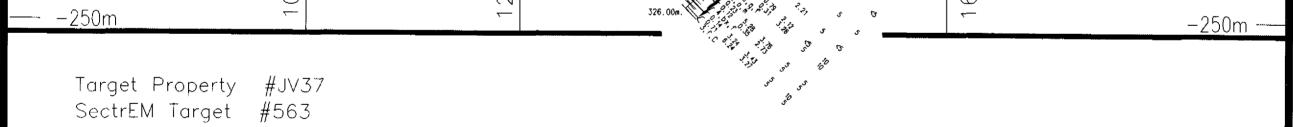
210




LEGEND



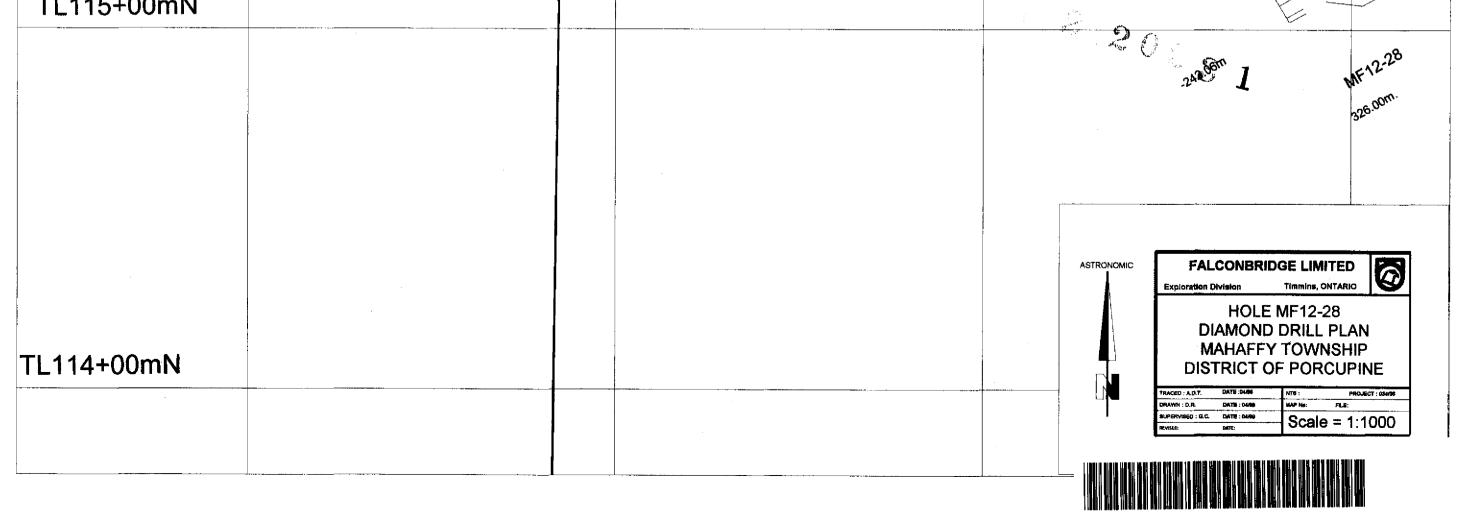



987343 ^ш	987342 -	<u>987339</u>	- 987338
2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 3 3 2 3 3 2 3 4 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2		4	
$\begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$		L 3050 E L 3050 E L 3150 E L 3150 E L 3250 E L 3350 E L 3400 E L 3400 E	987337
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12200 N 758754 11800 N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		758955
			MAHAFFY TO REID TOWNS
L 2450 E L 2450 E L 2450 E L 2450 E L 2550 E L 2550 E L 2550 E	Г 2600 E L 2600 E L 2700 E L 2700 E L 2700 E L 2850 E L 2850 E L 2850 E	L 3000 E L 3050 E L 3100 E L 3150 E L 3150 E L 3200 E L 3350 E L 3350 E L 3400 E	758957
987329	867328	987326	987325

Comments:

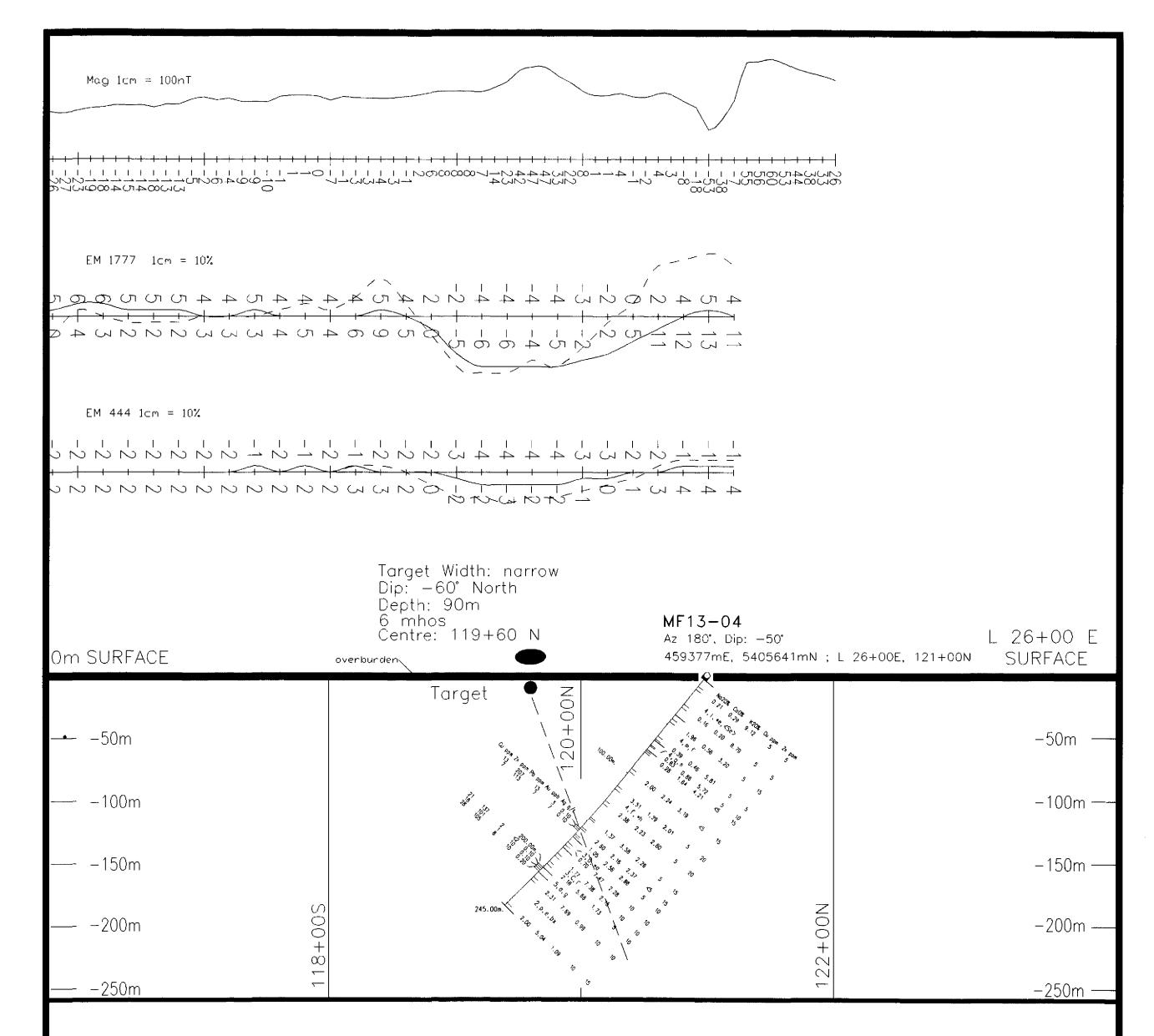
$\frac{187 \cdot 00}{199 \cdot 00} \frac{300}{30} \frac{172}{19} \frac{1132}{19} \frac{1}{124} \frac{1}{19} \frac{1}{112} \frac{1}{10} \frac{1}{1$			-																																	
(u) (u) <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>KI</th> <th>DD,</th> <th>/HBE D</th> <th>/EAL</th> <th>JV.</th> <th></th> <th>GE (</th> <th>OCHE</th> <th>MT</th> <th>ABLE</th> <th>-</th> <th>N</th> <th>(F 12</th> <th>-28</th> <th></th> <th>7</th>											KI	DD,	/HBE D	/EAL	JV.		GE (OCHE	MT	ABLE	-	N	(F 12	-28												7
18:89 22:80 3.72.89 1.72.90			1∎† 5 (N)	102 AL20	03 C X	X0 HC	0 NA2	C #2	0 FE20	3 1102 X 1	2 P205	5 I X	100 CR203	L04	SUNA X	Y PP¥					i N P			EM ALU			S PM P					o r c	a/al ni,	/MC0 15	HIKW ZN/NA	2
9.00 9.00										0.61	0.15							10	10	<5				18	17 (5		70	ক					0.33		39 1	2
$ \begin{array}{r} 1, 0, 7, 0, 1, 0, 5, 5, 7, 10, 1, 5, 10, 1, 5, 10, 1, 5, 10, 10$										0.40	0.11							5	5	<5 K					58 (5 5 (5		25	0						5		3
$ \begin{array}{c} $					9.18	2.00		1.63	6.20	0.85								10		5								0						3		8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																		1 G		5	5		•a 2(h)	w! 20	X6 5	Q. 14		- I		<10	0.			1		ŏ
$ \begin{bmatrix} 18.00 & 30 & 1/2 & 5/$											1							10		5				w! 15	95		160							2		5
	343 1 16.00	0 119.00															10	5		5		F					140	1.5						2		8
$ \begin{array}{ 44.00 \\ 167.00 \\ 167.00 \\ 167.00 \\ 107.00$			3.0 53.											9.10	99.44	20 1		10	15	5	5			w! 14	9 5	0.09	145							1		7
etc. org. 105: org			3.0169.		- I													5		6				16	10 8		35							3		- 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	743 182.00	0 185.00	3.0 75.				0.16				1 · ·							5	5	5		4	n, 4(h) n, 4(h)	8 29 A 36	6 6		5							2		
$ \frac{193}{940} & 092 & 000 & 3.0 \\ 724 & 000 & 700 & 000 & 10 \\ 724 & 000 & 700 & 000 & 10 \\ 724 & 000 & 700 & 000 & 10 \\ 724 & 000 & 700 & 000 & 10 \\ 724 & 000 & 700 & 000 & 10 \\ 724 & 000 & 700 & 000 & 10 \\ 724 & 000 & 100 & 000 & 10 \\ 724 & 000 & 100 & 000 & 10 \\ 724 & 000 & 100 & 000 & 10 \\ 724 & 000 & 100 & 000 & 10 \\ 724 & 000 & 100 & 000 & 10 \\ 724 & 000 & 100 & 000 & 10 \\ 724 & 000 & 100 & 000 & 10 \\ 724 & 000 & 100 & 000 & 10 \\ 724 & 000 & 100 & 000 & 10 \\ 724 & 000 & 100 & 000 & 10 \\ 724 & 000 & 100 & 000 & 100 & 000 & 100 \\ 724 & 000 & 100 & 000 & 100 & 000 & 100 & 000 & 100 \\ 724 & 000 & 100 & 000 & 100 & 000 & 100 & 000 & 100 & 000 & 100 & 000 & 100 & 000 & 100 & 000 & 100 & 000 & 100 & 000 & 100 & 000 & 000 & 100 & 000 & 100 & 000 & 100 & 000 & 100 & 000 & 100 & 000 & 100 & 000 & 100 & 000 & 000 & 100 & 000 & 100 & 000 & 000 & 100 & 000 & 000 & 100 & 000 & 000 & 100 & 000 & 000 & 100 & 000 & 000 & 100 & 000 & 000 & 100 & 000 & 000 & 100 & 000 & 000 & 100 & 000 & 000 & 100 & 000 &$			3.0 74.															5		6	20	4, 6,	1. 4(h)	B 40	8 <5	0.13			<5					3		
24:00 30 30 22:1 2:45 0:30 0:00 0:00 2:00 5<																		10		<5		4. 8.), <mark>4(h)</mark>											3		
abs. 00 372.00 3.0 1.0 1.0 1.0 0.00 1.0.00 0.00 0.00 0.00 0.00 0.00 <td>3747 254.00</td> <td>257.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td>5</td> <td>0</td> <td></td> <td>2</td> <td></td> <td></td>	3747 254.00	257.00									1							5	5	0														2		
$\frac{99 \cdot 60}{99 \cdot 60} \frac{30}{3} \frac{91}{9} \frac{1}{12}$						3.38		2.21	1.82		0.02	0.02	2		99.54	55 2	60	5			15	4, 8,	I. 4(h)	B 49	¥ <5	<0.01	1 15	15						1		
$\frac{1}{914.00} \begin{bmatrix} 317.00 \\ 317.$																		d																1	-	
$\frac{1392}{1222}55 \frac{121.40}{222.55} \frac{121.40}{22.45} \frac{12}{124} \frac{12}{125} \frac{12}{125} \frac{10.40}{10} \frac{12}{125} \frac{122}{125} \frac{123.4}{125} \frac{123.5}{10} \frac{12}{125} \frac{123.5}{125} \frac{123.65}{10} \frac{12}{125} \frac{123.5}{125} \frac{123.65}{10} \frac{12}{125} \frac{123.5}{125} \frac{123.65}{10} \frac{123}{125} \frac{123.5}{125} \frac{123.65}{125}																		5				1, n, 2, a	1. 4(h) 2(h)	z 35 wi 13	3 43			1.5	5					2	-	
$\frac{1324.05}{325.00} \frac{13}{325.00} \frac{14}{18} \frac{45.46}{13.11} \frac{15}{6.24} \frac{17.21}{17.10} \frac{10.71}{13.27} \frac{17.9}{1.01} \frac{10.12}{0.13} \frac{14.37}{14.37} \frac{199.42}{99.42} \frac{22}{25} \frac{10}{50} \frac{15}{5} \frac{10}{10} \frac{15}{15} \frac{17.2}{17.10} \frac{172}{120} \frac{15}{5} \frac{10}{10} \frac{17}{120} \frac{15}{5} \frac{10}{10} \frac{17}{120} \frac{11}{120} \frac{11}{120} \frac{11}{120} \frac{11}{10} $					0.35	1.75	0.12	2.73	1.90	0.12	0.02	0.01	1		99.62	105 1	80	5	L			4, bx	f 4hz	32	5 <5				á					3	-	
$\frac{\text{KIDD}/\text{HBED}/\text{EAL JV}}{\text{(W)}} \xrightarrow[Pb]{V} \text{ASSAY TABLE} \\ \frac{\text{KIDD}}{\text{(W)}} \xrightarrow{10}{V} $			1.8 68.0	8 11.92	3.24	2.63												5	10	<5				17	5 13			10	4					2		t
FROM TO Ist Cu Zn Pb NI Au Age Est. NI Est. Py Est. Cp Est. C		KID					AS					1		1					<u> </u>	1.5	1.5	5.1.1	<u>, 121-7</u>	<u></u>	<u> </u>	0.75	230							'		<u></u>
(W) (W) ppn ppn <td>PL. FROM</td> <td>T</td> <td><u> </u></td> <td><u> </u></td> <td></td> <td>_</td> <td>T</td> <td>T</td> <td>T</td> <td>T</td> <td>T</td> <td>——</td> <td></td> <td>E (A</td> <td></td> <td>FΔ</td> <td></td> <td>СC</td> <td>)NI</td> <td>BRII</td> <td>ŊĠĔ</td>	PL. FROM	T	<u> </u>	<u> </u>		_	T	T	T	T	T	— —		E (A																	FΔ		СC)NI	BRII	ŊĠĔ
156.60 158.00 1.4 16 34 34 28 27 0.7 158.00 1.4 18 38 30 41 24 0.5 159.40 1.4 18 38 30 41 24 0.5 159.40 100.55 0.7 8 93 3 25 7 0.1 180.05 161.00 0.9 115 91 3 23 7 0.1 283.00 286.70 0.7 6 137 7 10.1 4.7-10 304.25 305.50 1.2 100 116 4 1.4 b.x 305.50 306.40 0.9 71 165 9 57 <2	10. (M)	(M)	(M) p					ppn		L91.P0		EST.	LID EST. SP X X	Est.Ga	ROCK																• •	`-	••			- ~ L
158.00 159.40 1.4 18 38 30 41 24 0.5 159.40 160.05 0.7 8 93 3 25 7 0.1 190.05 100.05 0.7 8 93 3 25 7 0.1 283.00 283.60 0.6 70 66 13 7 21 0.6 283.00 286.70 0.7 6 137 5 10 3 0.1 280.00 286.70 0.7 6 137 7 0.1 4.7-10 4.71.10x 4.7.10x 4.7.10x 4.7.10x 4.7.10x 4.7.10x 4.7.10x 305.50 306.40 0.971 185 9 57<				71 34	3 34	6 28	27																						1	Explo	oratio	n D	ivisio	ń		
159.40 160.05 0.78 93 3 25 7 0.1 180.05 161.00 0.9 115 91 3 23 7 0.1 283.00 286.70 0.78 137 3 10 3 0.1 286.00 286.70 0.78 137 3 10 3 0.1 304.25 305.50 1.2 10 116 4 1.6x 0V 304.25 305.50 1.2 10 116 4 0.7 0.1 4.n.1 305.50 306.40 0.9 171 165 9 57<	53 158.00	159.40	1.4 18		30	41	24																													
283.60 283.60 0.6 70 66 13 7 21 0.6 4.1, bx 288.00 286.70 0.7 6 137 3 0.1 6 6 13 7 21 0.6 6 13 7 21 0.6 6 13 7 21 0.6 6 13 7 21 0.6 6 13 7 21 0.6 6 13 7 21 0.6 6 13					3	25	7	0.1							FZ, QV														1							
288.00 286.70 0.7 6 137 3 10 3 0.1 304.25 305.50 1.2 10 116 4 10 7 0.1 305.50 306.40 0.9 71 165 9 57 <2					13	7	21		ł																				1							
305.50 306.40 0.9 71 165 9 57 <2	19 286.00	286.70	0.76	137	3		3	0.1																							1	RC	TA(TF	D S	SECT
306.40 308.00 1.6 14 28 2 137 10 0.1 5.0.9. 308.00 308.50 0.5 4 6 2 44 14 0.1 5.0.9. 318.90 319.25 0.4 92 244 8 54 7 0.2 4.ba.f 321.40 322.25 0.9 47 103 1 41 7 0.1 4.ba.f					4		7																						1							
308.00 308.50 0.5 4 6 2 44 14 0.1 318.90 319.25 0.4 92 244 8 54 7 0.2 321.40 322.25 0.9 47 103 1 41 7 0.1 4.ba.f								1			1	1]															1						NC)RTI
	60 308.00	308.50	0.54	6	2	44	1 -	0.1		1				Í																				-		
					8		7			ł																			1					I	JDH	M
		1 955.19		105	<u> </u>		14.	10.1		_	L	- L		I	9.0X.T														1						-	

Exploration Division Timmins ONTARIO ROTATED SECTIION LOOKING NORTHWEST DDH MF12-28 GRID MF12 Az 225 MahaffyTwp.	FALCONBR	IDGE LIMITED	
NORTHWEST DDH MF12-28 GRID MF12	Exploration Division	Timmins ONIARIO	N
DDH MF12-28 GRID MF12			G.



42A14SW2008 2.20231

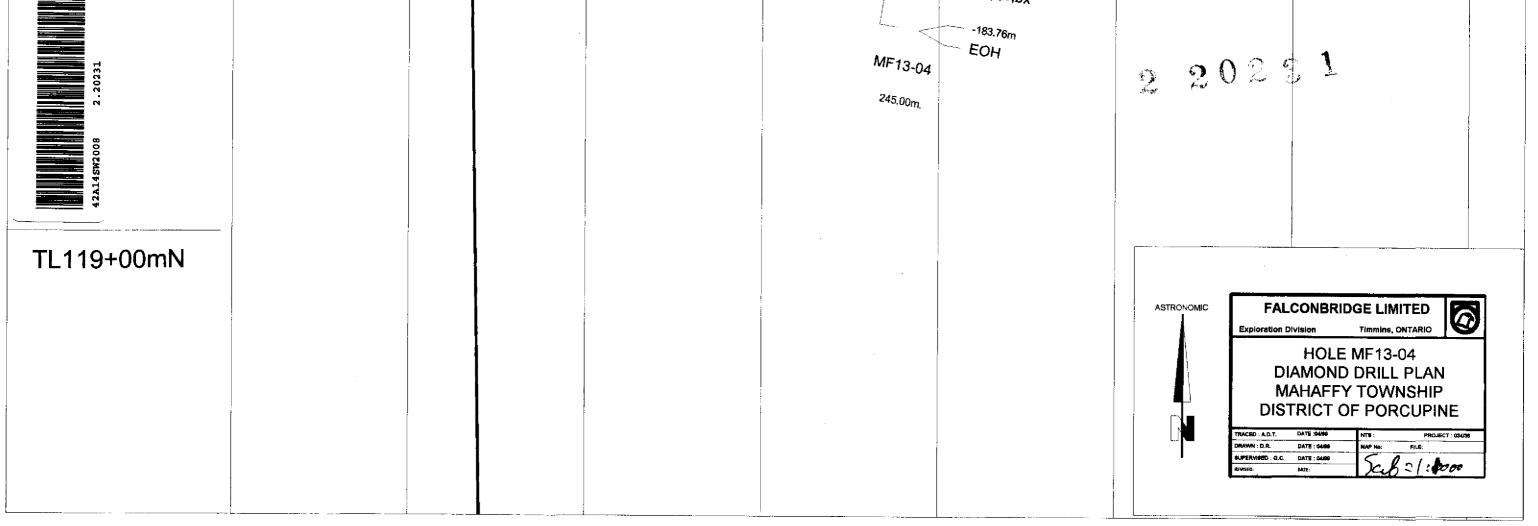
MAHAFFY

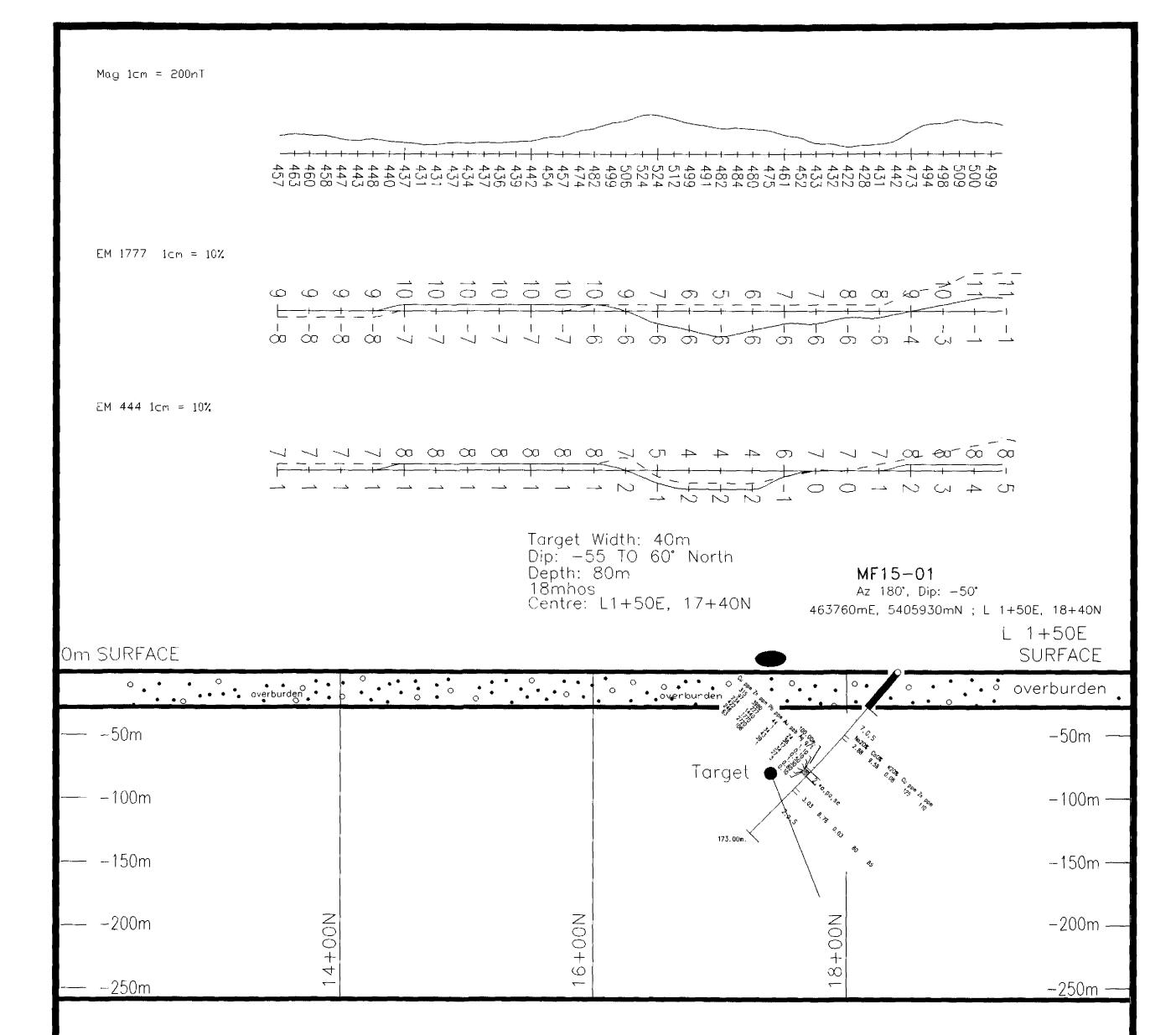

260

· · · · · · · · · · · · · · · · · · ·					
TL118+00mN)	L17+00mE	L18+00mE	Ш 00 66 1 1	L20+00mE
TL117+00mN			~8		
			NK1228 NK1228 ()	7. ^{9.}	
TL116+00mN				4,10,2 (4,1,0,2	
		P8653 85		A.I.M.DX P865386	
TL115+00mN					a.g.f 2.a.m 4.bx,f 3.f.C EOH

42A148W2008 2.20231 MAHAFFY

270

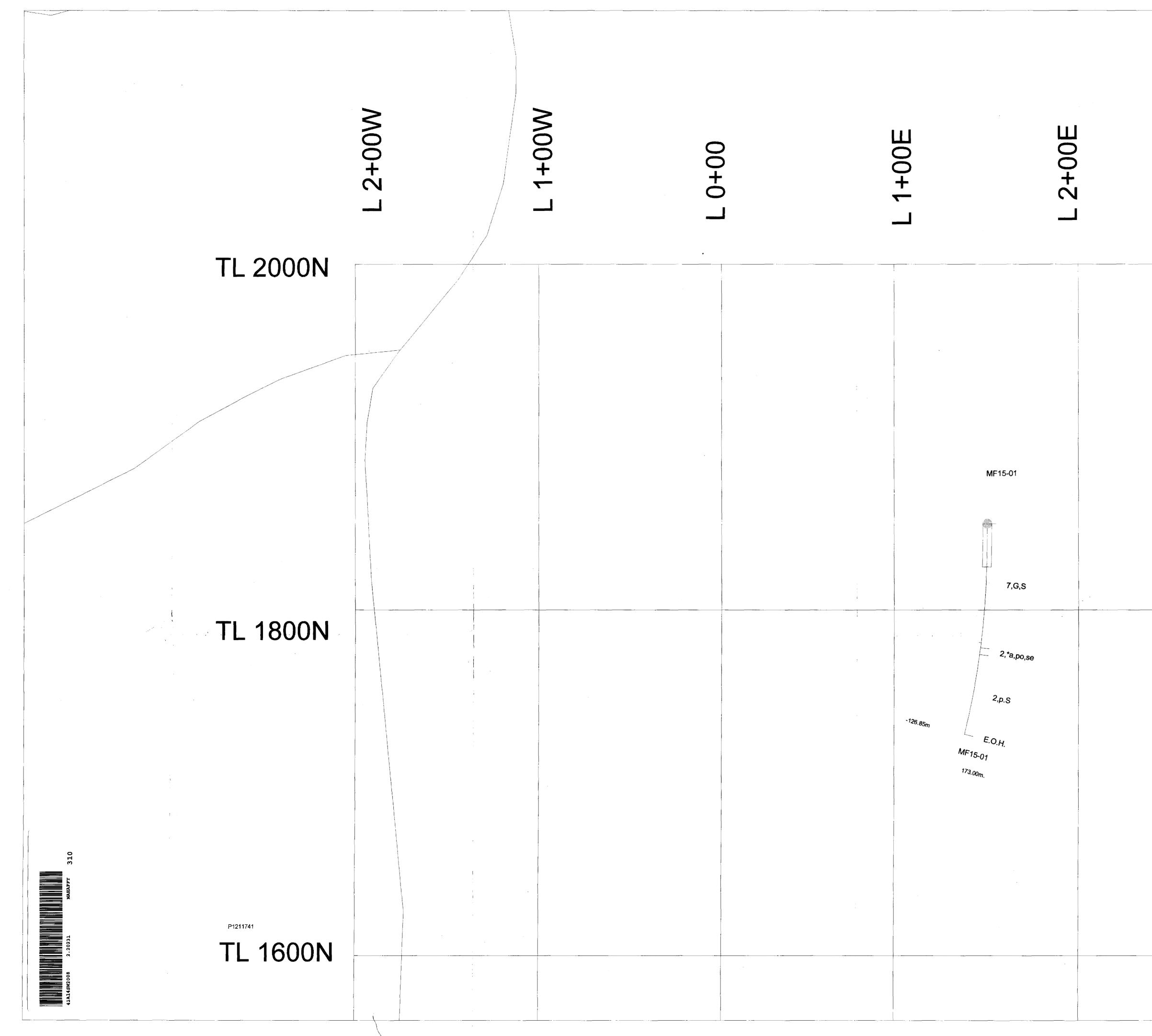



Target Property JV33 SectrEM Target 561

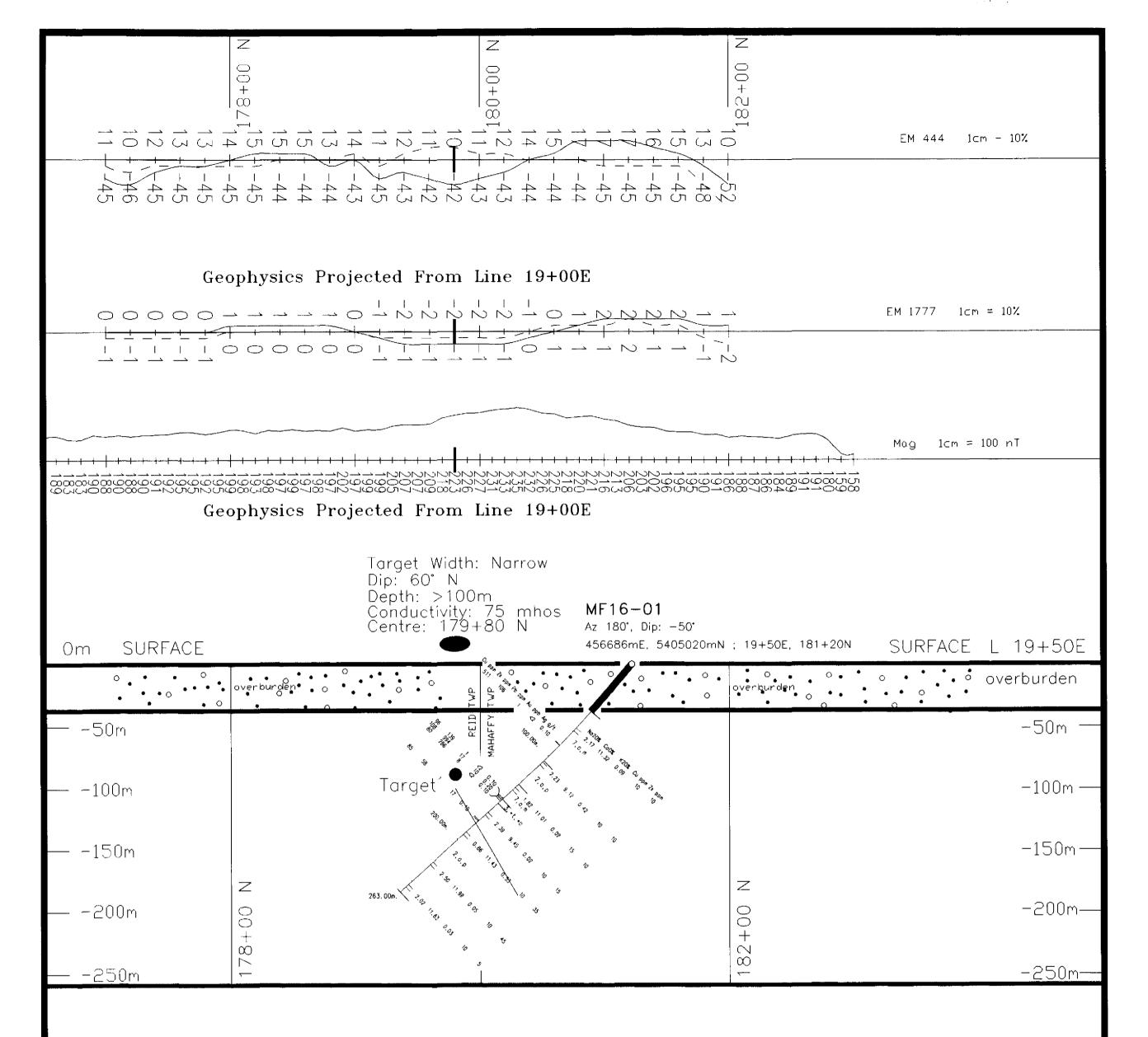
Comments:

													KIDE	D/H	BED,	/E AL	JV.		GE	OCH	EM	TABL	E		VE 13	-04]						
SAMPL. No.	FROM (M)	TO (₩)	lit (M)	\$102 %	AL 203 %	CA	0 M X	GO MJ X	20 X	K20. FE X	203 1 %	T102 F %	205 ≭	MNÚ X	CR2O3 %	L01 3		Y PPM	Z? PPN				U Ú W PÍ	CR FIE PM NA	LD CH	EN ALU	W (CO PN PP	S Nu pr	V E NA PR		C NE		CA/AL	NI/MCO	ISHIKW	ZN/HA2							
AU04724 AU04725 AU04725 AU04726 AU04727 AU04728 AU04729 AU04730 AU04730 AU04731 AU04732 AU04733 AU04735 AU04735 AU04735 AU04736 AU04738 AU04738	11.00 29.00 44.00 62.00 71.00 77,00 95.00 113.00 128.00 146.00 156.50 164.00 173.00 185.00	14.00 32.00 47.00 65.00 72.00 78.50 98.00 116.00 131.00 147.50 158.00 165.50 176.00	(M) 3.0 7 3.0 7 3.0 7 1.0 7 1.5 7 3.0 7 3.0 7 3.0 7 3.0 7 3.0 7 1.5 7 1.5 7 1.5 7 3.0 5 3.0 5 3.0 5 3.0 5 3.0 5	5, 18 6, 18 8, 14 7, 09 3, 18 4, 62 6, 32 4, 33 5, 35 5, 35 3, 50 2, 98 3, 57 2, 66	11.56 11,45 11,09 10.34 11,59 11,58 11,20 11,57 8.84 11,58 11,57 13.60 14.31	0.86 1.64 2.24 1.29 2.23 3.58 2.16 2.56 7.47 7.38	0,72 0,98 2,30 2,13	0, 1(1, 9(0, 3(0, 2(2, 0) 3, 5 2, 3(1,	5 3.20 5.8 5.7 4.2 3.1 2.0 3.2 2.2 5.2 5.2 5.2 5.2 5.2 5.2 5	9 2.2 0 2.4 1 1.8 2 2.1 1 3.6 9 2.4 1 3.6 9 2.4 1 3.0 0 2.6 8 2.8 7 2.9 8 2.5 8 7.5 5 6.6 3 6.9 9 6.8	0 0. 9 0. 1 0. 9 0. 3 0. 1 0. 7 0. 2 0. 5 0.6 3 0.	14 0.0 14 0.0 14 0.0 14 0.0 13 0.0 17 0.0 18 0.0 18 0.0 58 0.1 71 0.1 98 0.2	02 0.4 01 0.4 02 0.4 014 0.4 015 0.4 016 0.4 017 0.4 018 0.4 019 0.4	08 05 07 10 12 06 10 07 11 09 04 34 23 15		1,42 1,26 2,59 1,69 2,10 4,11 3,48 1,87 3,52 4,43 3,52 4,77 11,29 11,36 9,60	7 99.43 99.71 99.88 99.88 99.88 99.88 99.88 99.87 99.87 99.87 99.66 99.66 99.50 99.91 99.91 99.91 99.45 99.85 99.60	55 55 55 55 55 55 55 55 50 50 50 50 20 20 25 20	240 240 250 220 180 250 250 250 230 180 230 120 120 140 120 120	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	N P1 5 5 15 5 10 15 20 15 15 10 10 10 10 10 15 15	H 10 </th <th>M PP 25 30 15 20 10 20 15 20 15 15 15 15 5 5 5</th> <th>4, L, 4, 1, 4, m, 4, m, 4, m, 4, f, 4, f, 4, f, 4, f, 4, f, 4, f, 3, D, 3, C, 3, C,</th> <th>$\begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$</th> <th>B 15/ B 16/ B 15/ B 12/ B 16/ B 17/ ! 13/ ! 13/ ! 12/ vB 14/</th> <th>6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>PP PP <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.03 <0.33 <0.13</th> <th>5 5 10 5 5 10</th> <th>* PF 555555555555555555555555555555555555</th> <th>R S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th> <th>IO FPP 10 <10 <10 <10</th> <th></th> <th>0, 05 0, 04 0, 08 0, 14 0, 19 0, 12 0, 19 0, 40 0, 19 0, 22 0, 55 0, 52 0, 52 0, 54 1 0, 58</th> <th>33 42 6 19 12 5 5 11 12 9 7 7 7 5 2 2 2 2 2 2 2 2 2 2 2 2</th> <th>96 62</th> <th>24 31 8 13 12 54 8 6 8 11 6 10 14 6 5 4 8</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	M PP 25 30 15 20 10 20 15 20 15 15 15 15 5 5 5	4, L, 4, 1, 4, m, 4, m, 4, m, 4, f, 4, f, 4, f, 4, f, 4, f, 4, f, 3, D, 3, C, 3, C,	$\begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	B 15/ B 16/ B 15/ B 12/ B 16/ B 17/ ! 13/ ! 13/ ! 12/ vB 14/	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PP PP <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.33 <0.13	5 5 10 5 5 10	* PF 555555555555555555555555555555555555	R S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	IO FPP 10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10		0, 05 0, 04 0, 08 0, 14 0, 19 0, 12 0, 19 0, 40 0, 19 0, 22 0, 55 0, 52 0, 52 0, 54 1 0, 58	33 42 6 19 12 5 5 11 12 9 7 7 7 5 2 2 2 2 2 2 2 2 2 2 2 2	96 62	24 31 8 13 12 54 8 6 8 11 6 10 14 6 5 4 8							
AU01323 AU01324 AU01325	FROM (M) 158.00 159.50 201.50 203.00 204.50	K I D [10 (N) 159.50 161.00 203.00 204.50 206.00)/HB lat (M) 1.5 1 1.5 7 1.5 2 1.5 1 1.5 2	Си рфя 3 : 1 8	Za ppm 207 113 137 101 105	UV Pt ppr 13 7 2 1 8	b 1	41	Au	Y TA Ag Est		t.Po Est		13- t. up E %	I	*	ROCK T 4, f, th 4, f, th 5, a, g 5, a, g 5, a, g																F A ation			IBI		GE	[]		I TE	RID	Ę	
																																	D	RIL	L Az)OI)H GF	SE (IN) M RID	G 1F1	WE: 3- 12	ST	001	Ξ	
1SW200	82.	2023	1	MA.	HAFI	7Y				2	80																						et F ect				J	V33	SC.		1:2,50 28	metre 3	s) 84	

					P865378		
TL122+00mN	L23+00mE	L24+00mE	L25+00mE	L26+00mE	L27+00mE	L28+00mE	
				MF13-04			
				4,I,*e 4,m,f		-	
				4,q,n - 4,f,*h			
290				2.5	P865379		
60 F67 P865380				4,q,n 4,f,*h 3,D,*a 3,C,f			


Target Property AQ26 SectrEM Target 553

Comments:


	 													KI)D/H	IBED,	ÆAL	J٧		GE	OCHE	ΜT	ABLE	-	MF	15-(01											}
SAMPL No	 FROM (M)	70 (M)	∎t (M)	\$10)	2 AL 2	203	CAC %	MGO X	NA2C X	K2	10 FE: X	203 %	1102 %	P205 %	MNO X	CR203	L01	SUN X	PPN	ZR PPW	CU PPN	ZN PPN		1	111660	CHEN ID		CO PPN	s PPN	V PPM	BE PPM	SC PPN	NB PPN	NCON	ca/al	№1/МСФ	ISHIKW	ZN/NA2
AU04707 AU04708	65.00 22.00	68.00 125.00		48.24 47.09	13.2 15.3				2.88 3.03	0.08	14, 12.			0. 12 0. 07	0.22 0.20		2.43 3.54	99.49 99.58		70 40	125 80		55 125	190 385		7h∨ 2hu	106 129			285 225	-	40 30	10 10	0,54	0.72		36 42	38 28

		_K I DI)/H	BED,	Æ AL	J٧		AS:	SAY	TABL	.E	N	AF 15	-01		
SAMPL. No.	FROM (N)	TO (M)	Int (W)	Cu pp#	Zn ppm	Pb pp#		1 · · ·		Est.Ni %		- i		Est.Sp	Est.Ge X	ROCK T
AU04512	104.00	105.30	1.3	315	3980	44	75	24	1.1				f—–	†	<u>+</u>	2+0
AU04513	105.30	106.00	Ø.7	97	227	1	65	38	0.1	1						2+0
AU04514	106.00	107.00	1.0	234	1440	34	36	17	0.5	í		l	ł	l	ļ .	2*0
AU04515	107.00	108.00	1.0	422	1770	43	45	34	1.3						1	2+0
AU04518	108.00	109.00	1.0	246	2720	39	42	27	0.8	1	Į	l		l .	ļ	2+0
AU04517	109.00	110.00	1.0		108	1	54	3	0.1							2•0

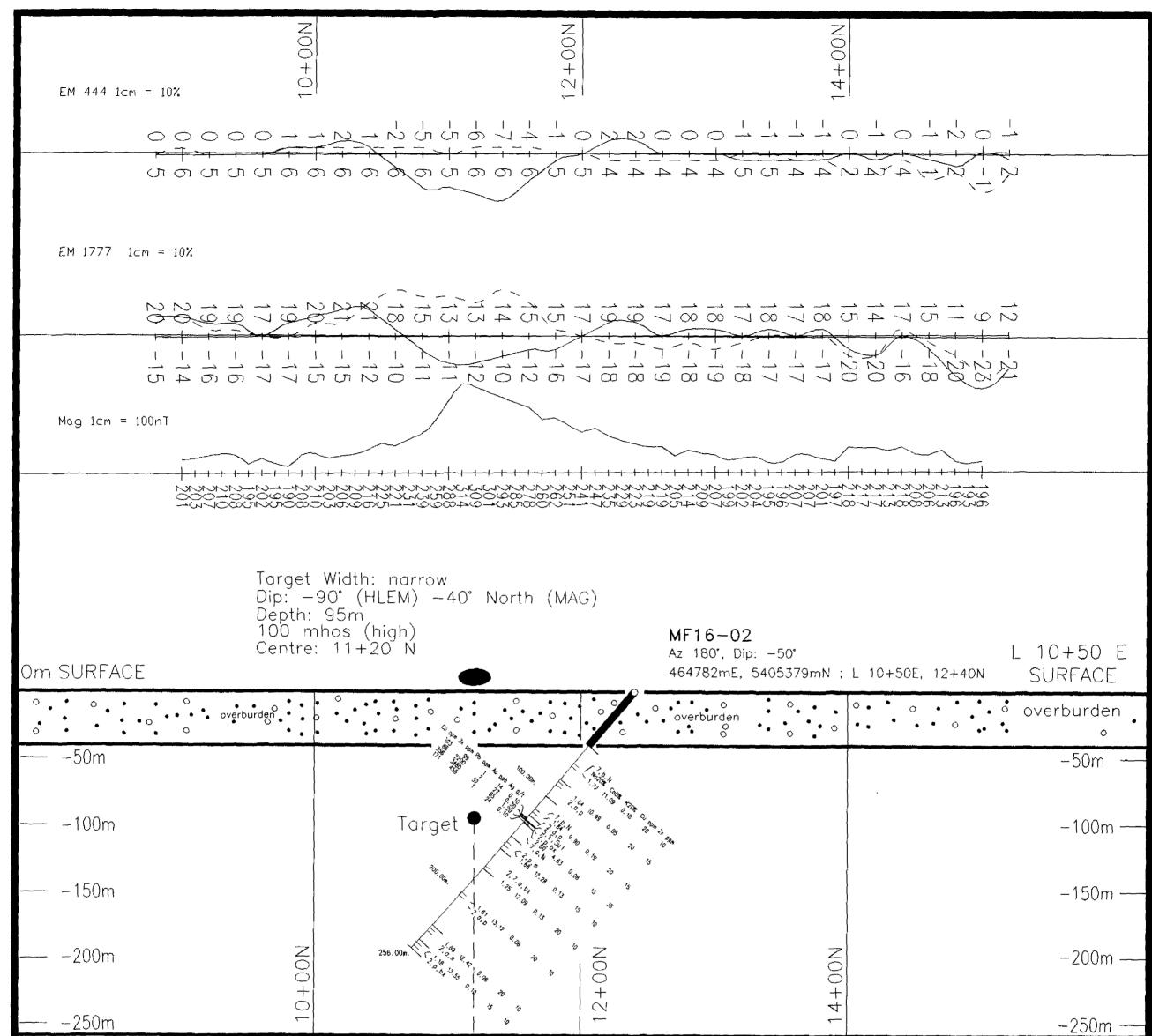
	FALCONBRI	DGE LIMITED	え
	Exploration Division	Timmins ONTARIO	쐭
	LOO: DDH	E SECTION 1+50E KING WEST MF15-01 RID MF52	
42A145W2008 2.20231 MAHAFFY 300	Az 180'	MahaffyTwp. AQ26 SCALE 1:2,500 (metres) 0 28 56 84	112

3+50E 3+00E _____ 2 20231 \bigcirc FALCONBRIDGE LIMITED ASTRONOMIC Timmins, ONTARIO Exploration Division HOLE M15-01 DIAMOND DRILL PLAN MAHAFFY TOWNSHIP DISTRICT OF PORCUPINE DATE :04/99 TRACED : A.D.T. PROJECT : 034/36 NTS : FILE: DATE : 04/99 RAWN : D.R. MAP No: SUPERVISED : G.C. DATE : 04/99 Salo = 1 . 1000 DATE:

Target Property #27 SpectrEM target #: 328

Comments :

												KI	DD/H	IBED,	/EAL	J٧		GEC)CHE	ΜŤ,	ABLE		MF	160)1											
SAMPL. No.	FROM (M)	то (м)	in t (M)	S102 %	AL203	CAO X	MCC X	NA20	×20	FE203	T 102	P205	MNO X	CR203	101 X	SUM X	y PPM	2R PPM	CU PPM	žn PPM		-	FIELD NAME	CHEM ID	ALUM	CO PPM	s PPN	V PPM	BC PPM		NB PPM	MGOJ	ca/al	NT /M CO) SHTKW	ZN/NA2
AU04625	68.00				13.45					13.23		0.10	0.20	<u> </u>		99.86 99.56		70 90	10	10	5	30 15		2,7hv 2,7hv	99 5 116 5		. 13 . 15	305 305	3	5	<10 <10	0.55	0.84	1	33 31	5
AU04626 AU04627	107.00		3.0	45,89	13.67 14.13	11.01	6.76	1.82		14.03 15.22			0.26		2.97	99.65	30	90 90	15	10	5 10	25		2.7hv	110 5	· 10	. 16	315	4	5	<10	0.51	0.78	i	35	5
AU04628 AU04629	167.00				13.82 14.18					10.45 9.70			0.15			99.62 99.50		40 40	10 10	15 35	10 15	35 40		2,7hu! 2,7hw!	117 5), 09), 12	230 225	ব ব	-	<10 <10	0.64	0.68i 0.81	1	40 30	41
AU04631	227.00	230.00	3.0	47.88	15.32	11.99	4.79		0.05		0.78		0.19		6.29	99.54 99.54	15	40		45	15	40		2.7hw 2.7hw	105 5 112 5	· d	, 14 , 10		6		<10 <10	0.54 0.58		3	25	18


		KID	D/H	BED/	ΈAL	J۷		ASS	δAY	1	I ABL	E	N	/F 16	-01		
SAMPL. No.	FROM (M)	10 (M)	int (M)	Cu ppe	Z: ppm	Pb pp∎	N1 ppm	Au ppb) PP	1	Est.Ni %	Est.Po X	Est.Py %	Est.Cp %	*	Est.Ca X	rock t
AU04570	87.35	87.70	0.4	511	106	1	65	4	0, 1	1						·	7.a.m
AU04571	150,40	151.35	0.9	96	139	1	67	<2	0, 1								7, 5, +t
AU04572	151.35	152.20	0.8	108	994	17	52	10	0,2				1				3, *t, *
AU04573	152.20	153.50	1.3	80	286	8	14	<2	0.1				1				3. +t. +
AU04574	177.00	177.80	0.8	85	58	1	93	17	0.1				[2. p. Cb

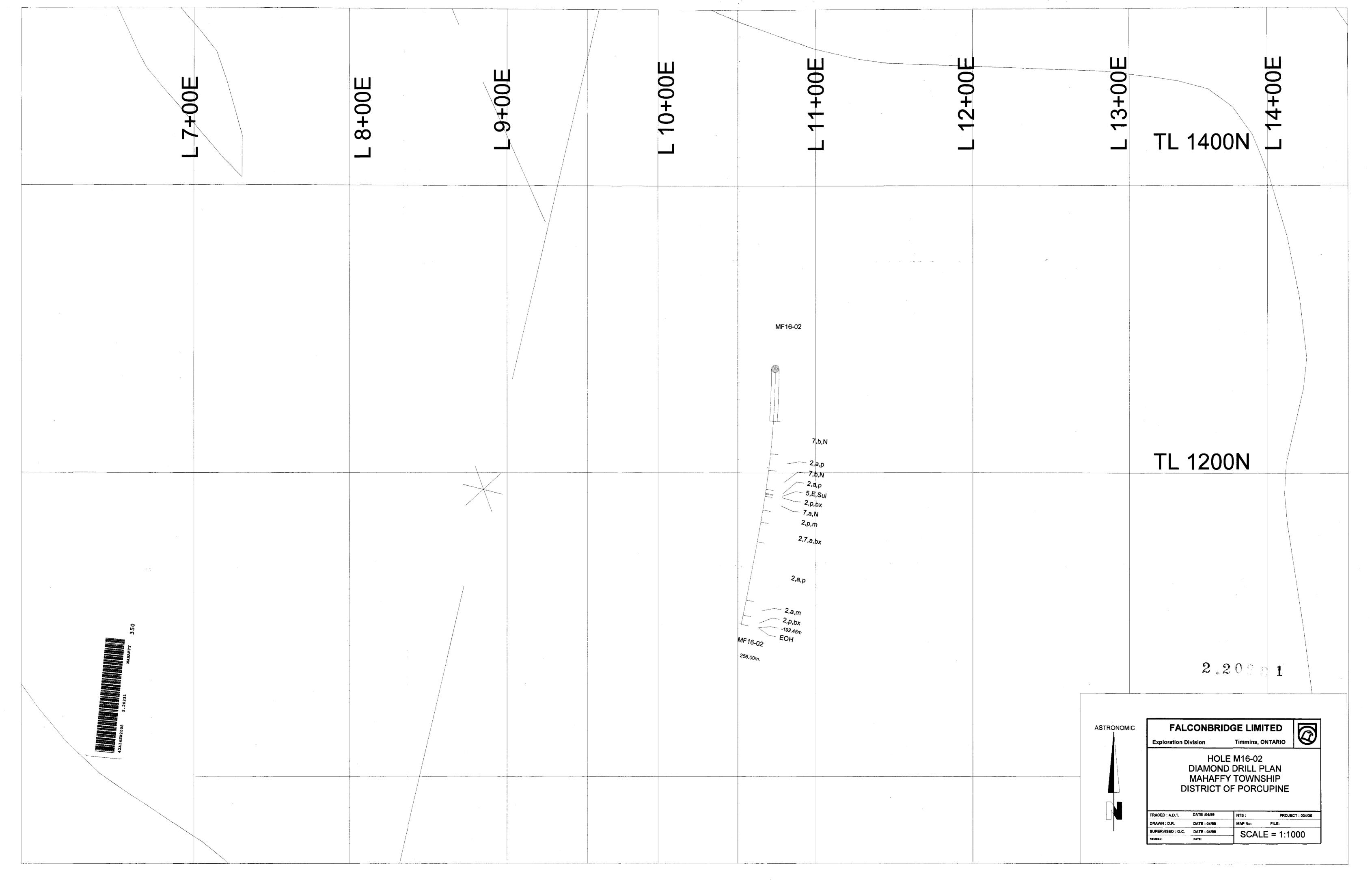
FALCONBRID	GE LIMITED	A
Exploration Division	Timmins ONTARIO	W
		_
	SECTION 19+50	θE
LOOK	ING WEST	
DDH	MF16-01	
GRIE	CARN 61	
Az 180°	MAHAFFY Twp.	

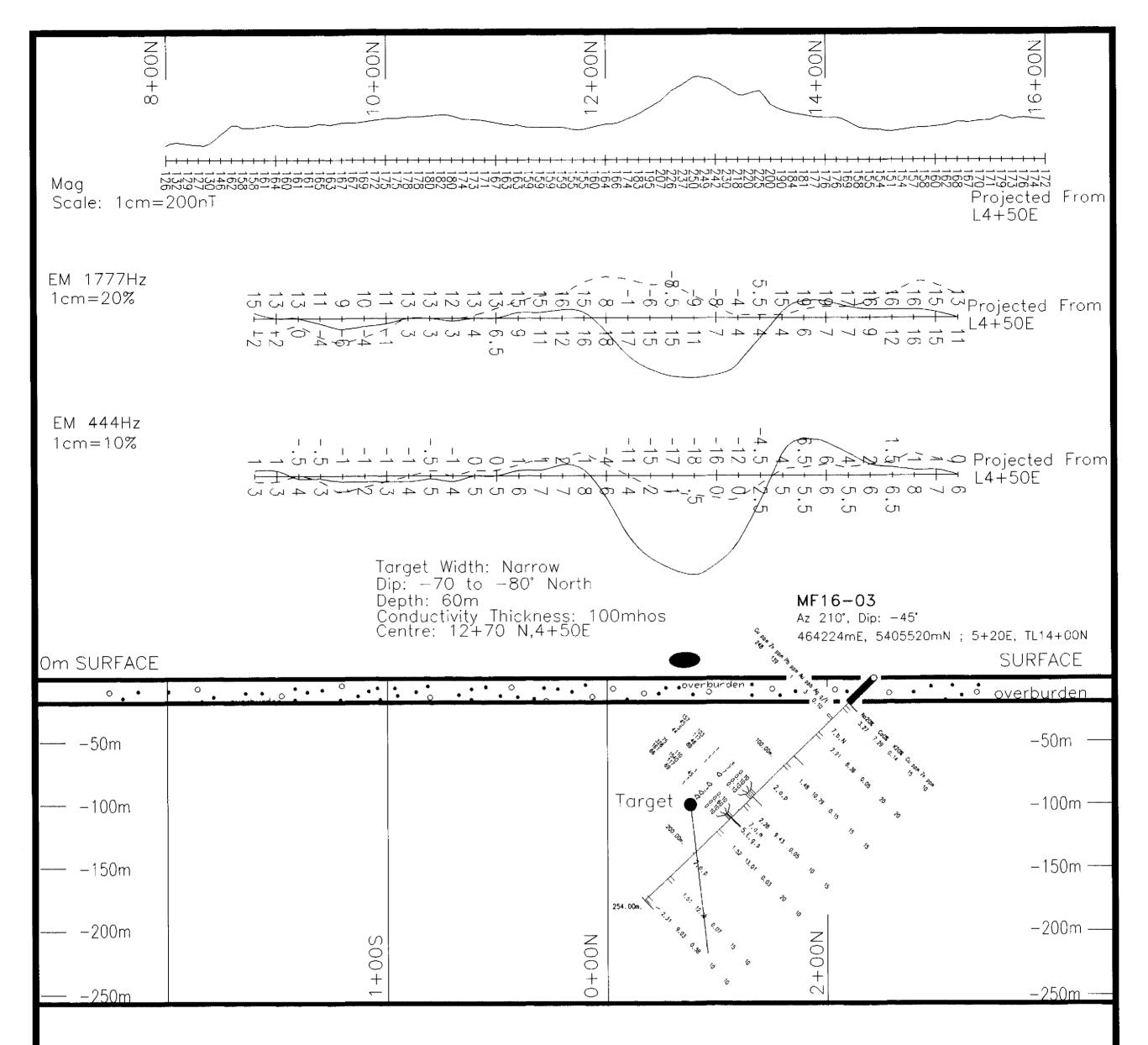
	L 1800 H	L 1900 E	L 2000 E
		MF16-01	
	P1228724	7,a 2,a,p	a,m
		7,a,m 3,*t,*a 2,a,p	
		-183.29m EOH MF16-01 263.00m.	
42A145W2008 2.20231 MARAFFY 330	P1169735		

1900 E	2000 E		
		L 18200 N	
	MF16-01		
		L 18100 N	
	7,a,m		
	2,a,p	P1224042	
	7,a,m 3,*t,*a	L 18000 N	
	∠,a,p		
MF1	-183.29m EOH 16-01	L 17900 N	
263.	3.00m.		
			2000201
i		ASTRONOMIC L 17800 N	FALCONBRIDGE LIMITED Exploration Division Timmins, ONTARIO
			HOLE M16-01 DIAMOND DRILL PLAN
		P1224041	MAHAFFY/REID TWPS DISTRICT OF PORCUPINE
			TRACED : A.D.T. DATE : 04/99 NTS : PROJECT : 034/36 DRAWN : D.R. DATE : 04/99 MAP No: FILE: SUPERVISED : G.C. DATE : 04/99 SCALE = 1:1000 REVISED: DATE: DATE:

|--|

Target Property # : AQ27 SectrEM Target


Comments


												KI	DD/I	HBED	/E Al	_ JV		GE	OCHE	MT	ABL	Ξ	M	- 16 -	02					~						
SAMPL. No.	FROM (N)	07 (M)	5#1 (N)		AL203	CA	o wo	0 NA2 *	а к2 х	0 FE 203	110	P205	MNO	CR203	L01 %	SUM X	Y PPN	ZR	-	ZN PPN	I NY PPW		FIELD		ALUM	CO PPN	2 MPM	V PPM	ge PPM	SC PPN		NGO	CA/AL	N1 /MC0	15 1 1 KW	ZN/NA2
AU04718	70.00									12.28					2.43	99.56	25	80	20	10	5	40	7. 5. N	7hv	108	5 10	. 10	280	6	5	10	0.54	D.79	1	32	6
AUD4719	88.0 0	91.00	3.0	49.14	12.70	10.99	4.81	1.64	0.05	12.82	1.28	0. 12	0.20	}	5.77	99.52	30	80	20	15	10	25	2.0.p		100			300	<u>م</u>	5	10	0.47		2	28	9
AU04720	115.00	118,00	3,0	49.21	13.19	9,90	7,13	1.84	3. 19	\$3.93	1.25	0, 12	10,21	}	2.83	99.60	25	80	20	15	10	25	7. 6. N		111/2	5 0	15	300	6	5	10	0.55			38	ě.
AU04721	128.00	128.70	0,7	51.63	13.70	4.63	5.18	2.60	0.08	15.27	1.72	0.18	0.20	ļ	4.48	99.87		120	15	35	15	5		2(h)v	187			315	6	5	<10	0.45			12	13
AU04722	148.00	151.00	3.0	50.80	14.43	12.28	5.11	1.68	0.13	9.41	0.78	0.06	0. 19	J	4.86	89.73		40	15	10	15	150	2.0.4	1.1.1	102			240	~		<10	0.56		1 I	271	
AU04723												1 .	0.17	1	3. 19	99.44	1 -	50	20	10	15	45	2,7.0.		102			215	*		<10	0.65		L - Z	19	s i
AU03738											ι .	0.05	1 ··· ·)	5.46	99.84	1 -	40	20	10	15	45	2.0.0		95			225	3	5	200		0.94		25	6
		238.00											0.20	1	5.50	99.49		40	20	10	115	45	2.0.0		97			225	ž		<10	0.551			20	
AU03740												0.86	0, 18	}	6.83	99.82		40	15	10	15	45	2.p.bx	1	95		15	230	ð	5	210	0.54		i i	24	a

		KID	D/H	BED,	/E AL	J٧		AS	SAY	TABI	Ē		WF 16	-02		
SAMPL. No.	FROM (N)	TO (M)	int (M)	Cu ppm	Ze ppe	Pb pp≋	1	Au ≱pb		Est.Ni X	Est.Po X	Est. Py X	Est.Cp %	Est. Sp X	Est.Ge	ROCK T
AUD4547 AUD4548 AUD4549	124.25 125.00 126.25	128.25	1,2	86	99 2200 3480	1 7 52			0.1 0.3 1.2							2, 0, p 5. E, Su
AU04550	126.50				456	1			0.1							5, E, Su 2, p, ba

FALCONBRIDGE	E LIMITED	
Exploration Division	Timmins ONTARIO	
LOOKIN DDH M	ECTION 10+50 G WEST AF16-02	Ξ
Az 180'	MF 16 Mahafy Twp.	
Target Property #: AQ27 Project #: 424	SCALE 1:2,500 (metre	s) 84 112

Comments: Section centered at 0+00N on L4+50E, 12+00N

												KII	DD/H	BED/E	EAL	J٧		GE	OCHE	M T,	ABLE		MF	16-0)3											
SAMPL. No.	FROM (M)	10 (₩)	(N)	\$102 %	AL 203	CAO X	MC0	NA20	К20 Х	FE203	1102	P205	MNO X	CR203	LOI *	SUM X) PPN	ZR I PPN	CU PPM		NI PPN		FIELD		ALUM	CO PPM		V PPN	BE PPW			MCON	CA/AL	NI /MGO	ESHEKW	ZN/NA2
AU04741	31.00	34.00	3.0	49, 13	13.53	7.29	6.29	3.27	0.14	14.25	1.50	0.13	0.18	1 4.	.07	99.78	30	90	15	10	5	15	7. b. N	7hv	126			315	<5	5	<10	0.51	0.54	1	38	3
AU04742	61,00	64.00	3.0	49.92	12.53	8.36	5.83	2.21	0.05	16.18	1.62	0. 15	0.23	2.	.79	99.87	35	100	20	20	5	10	7, b. N	7h v	1 18			350	<5	5	<10	0.46		1	36	9
AU04743	97,00	100.00	3.0	49.36	13.02	10.79	4.52	1.48	0.15	13.37	1.32	0.12	0.21	5.	. 12	99.46	30	80	15	15	10	25	2. a. p	2h v	105			305	15	5	10	0.44			28	10
AU04744	142.00	145.00	3.0	49.05	13.51	9,43	6.44	2.28	0.05	14.12	1.51	0.15	0.21	3.	.04	99.79	35	100	10	15	10	25	7, a, m	7hν	115			295	<5	5	<10	0.52			36	7
AU04745	172.00	175.00	3.0	49.36	14,24	13.01	4,87	1.52	0.03	9.37	0.75	0.05	0.19	6.	.25	99.64	15	40	20	10	15	45	2, a, p		98	-		230	10	5	<10	0.55		-	25	7
AU04746				48.02	13.38	12.38	5, 17	1.51	0.07	10.25	0.87	0.07	Q. 20	7.	.81	99.73	15	50	15	10	15	40	2,0,p	2(h)v	96			225	<5	5	<10	0.55	Q. 93	3	27	7
AU04747	250.00	253.00	3.0	48, 49	12.85	9.03	4,97	2.31	0.38	10.79	0.89	0.13	0.20	9.	.48	99.52	25	80	10	10	10	30	2,0,P	2(h)v!	110	5	0.13	170	<5	15	<10	0.52	0.70	2	32	4

		KID)/H	BED/	Æ AL	J٧		ASS	SAY	TABL	E	N	/ F 16	-03		
SAMPL. No.	FRÓM (N)	TO (N)	Let (M)	Cu ppm	Zn pp#	Pb pom	Ni ppn	AU ppb	Ag pp#	Est.Ni X	Es1.Po		Est.Cp %	Est.Sp %	Est. Ga	ROCK
AU01327	45.30	46.80	1.5	248	139	1	4	3	0.1							7. 6, N
AU01328	131,40	133.00	1.6	157	103	1	63	3	0.1						i	2.0.0
AU01329	133.00	134.50	1,5	45	117	1	82	7	0.1							2,0,0
AU01330	134,50	136.00	1.5	5	46	1	30	7	0.1				!			7,0,#
AU01331	136.00	137.50	1.5	44	89	1	66	2	0.1				1			7.0,0
AU01332	157.00	158.40	1,4	75	110	1	82	<	0.1							7.0.
AU01333	158.40	159.00	0.6	328	1540	45	119	3	0.6							5, E,
AU01334	159.00	160,00	1.0	161	517	1	210	<2	0.1			1				2, 0, 1
AU01335	160,00	161,00	1.0	66	69	1	107	<2	0.1							2.0.0

FALCONBRIDG	E LIMITED
Exploration Division	Timmins ONTARIO
DOTATED SECTION LOOKING	
ROTATED SECTIION LOOKING NORTHWEST	
DDH MF16-03	
GRI	D MF52
Az 300*	MahaffyTwp
Target Property #:	SCALE 1:2,500 (metres) 0 28 56 84 112
Project #: 424,422	

7+00E MF16-03 7.6,N 220231 0 FALCONBRIDGE LIMITED ASTRONOMIC Timmins, ONTARIO Exploration Division HOLE M16-03 DIAMOND DRILL PLAN MAHAFFY TOWNSHIP DISTRICT OF PORCUPINE DATE :04/99 PROJECT : 034/36 TRACED : A.D.T. NTS : DATE : 04/99 MAP No: FILE: DRAWN : D.R. SUPERVISED : G.C. DATE : 04/99 SCALE = 1:1000 DATE: