REPORT
 ON
 GEOLOGICAL MAPPING
 SOUTHEAST MURPHY PROJECT
 MURPHY TOWNSHIP

Summary and Recommendations
Introduction
Previous Work
Todography
Regional Geology
Prowerty Geology
Geochemistry
Structural Geology
Alteration and Mineralization

Figures 1 to 7 included

Table 1: Sample Locations and Descriptions
Appendix A: Geochemical Results

Two maps enclosed in back pocket.
Map A - Property Geology
Map B - Location and Geology of Backhoed area.

Summary and Recommendations

The southern part of the property is underlain by an eastwest striking, steeply south dipping and south facing sequence of tholeiitic and lesser komatiitic metavolcanics. North of Baseline 0, a very marked and abrupt change in strike occurs; ground magnetic and HLEM survey data indicate that the northwest portion of the claim group, north of Baseline 0 , is underlain by northeast striking metavolcanics to the south, and metagreywackes to the north.

A very prominent and pervasive secondary foliation at $65-75^{\circ} / 60-75^{\circ}$ south dip was observed in outcrops throughout the southern property area, being particularly pronounced within localized zones of sheared to fissile pillowed mafic volcanics, occurring in correspondence with zones of magnetic low, similarly trending at 70-75 ${ }^{\circ}$. The most noteable of these zones occur at 1100 to 1200 south between lines 0 and 7 E , and at approximately 800 south between LO and LIOE. Two untested IP chargeability anomalies located at L400E, 850 S and LOE, 920 S occur along the southern margin of the latter mentioned 75° trending zone of low magnetics. and warrant further prospecting and/or drill testing.

A small, previously unknown showing was found in a small outcrop at $20 \mathrm{E}, \mathrm{l} 560 \mathrm{~S}$. A $5^{\prime \prime}$ wide quartz-carbonate vein with tourmaline-bearing wallrock margins returned anomalous arsenic and boron values from sampling in 1990 and a fairly extensive area surrounding this carbonatized showing was mechanically
stripped during the fall of 1991. The stripped area, occurring anọroximately at 1560 S between Lines 0 and 1 , exhibits a very high intensity of thin (4 cm . to 12 cm . wide) quartz-iron carbonate veins situated within east-northeasterly trending shears and also commonly occurring as shallowly dipping, northwest striking features. Intense carbonate alteration occurs within 4 cm . to one metre of the vein margins in most cases and is accompanied by up to 5% fine to coarse grained disseminated euhedral pyrite cubes. Fine, fracture filling quartz-carbonate-tourmaline veins occur locally, but are not generally associated with areas of stronger carbonate alteration. Gold assays obtained from this area were uniformly very low; however further exploration to the south of the this zone is recommended to explore a possible east-west striking fault zone that is interoreted to trend roughly along the Murohy-Tisdale Township boundary. Gold mineralization at the Beaumont prospect to the east may occur associated with this structure.

An area of strong carbonate alteration and quartz carbonate veining was delineated between Lines 5 and 7 East at approximately 940 south. Veining and up to $5-7 \%$ pyrite mineralization occured in an east-striking sheared zone of carbonaceous flow breccia and in the massive basalts south of the breccia. Gold values from samples here were uniformly low.

In 1990 a 0.5 meter width of pyritized mafic volcanic drill core samoled from what is believed to be victoria Algoma drill hole VA-24-2 returned a gold value of 100 ppb .

As the hole is thought to be drilled through the major sedimentary-volcanic contact trending across the northwest portion of the property, follow up geophysical work and diamond drilling of this contact zone is certainly warranted.

Introduction

Geological mapping and prospecting on the Southeast Murphy Township Property was completed during the summer of 1991. In addition, a fairly substantial stripping operation was carried out in the vicinity of 1560 South, between Lines OE and 1 E .

The property is located approximately six miles northeast of the city of Timmins in the Porcupine Mining Division (Figure 1). It consists of 27 contiguous claims in the southeast corner of Murphy Township (Figure 2); the claims are numbered as follows:

```
P1114814 - 1114819
P1114973 - 1114976
P1115238 - 1115240
Pl115242
P1115248 - 1115255
P1115291 - 1115294
P1132586
```

The mroperty was accessed from an all weather road which was accessed from Highway 655.

Mapping was carried out by K.M. Cunnison and in part by Dr. D.R. Pyke, the former being a co-owner of the property. Bruce Raine, also a co-owner, assisted in the survey by tieing in grid lines, re-erecting and relabelling winter cut pickets and through general outcrop stripping and prospecting. A grid sketch of the property is presented in figure 3.

Figure E Leceftion Map

Figure 3 : Grid Skełch

In 1991, a total of 68 gold assays, five arsenic assays, one boron assay and 39 whole rock geochemical samples were analyzed from the property. In 1991, 58 gold assays, 5 arsenic assays and 26 whole rock analyses were obtained (see Table l and Aopendix A for a summary of 1990 and 1991 samnling)

Drevious Work

The four claims in the $S \frac{1}{2}$ Concession II, Lot 4 were jatented before June 1, 1989 and have no previous work filed on them. Four companies have carried out work on part or all of the rest of the property.

In 1953 Coniaurum Mines Limited held eight claims in the $\mathrm{N} \frac{1}{2}$ Lots 1 and 2, Concession I. One hole was drilled on what is now claim 1115248 (assessment file T-532).

In 1964, Glencona Exploration Mining Ltd. carried out magnetic and vertical loop electromagnetic surveys (VLEM) over six claims in Concession I, Lot 3. In 1967, they drilled seven holes, to test an east-west striking EM anomaly and coincident magnetic anomaly on claims 1114819 and 1114818. The source of the anomalies was explained by intersections of pyrite-pyrrhotite mineralization (File $T-1058$).

In 1965 Inco drilled one hole to test an EM anomaly on claim 1114815: it intersected bands of graphite (File T-915).

In 1978, Rosario Resources Canada Ltd. optioned the property from R. Allerston. Over the next three years they carried out an exploration program which included an airborne magnetic survey, overburden drill holes, ground magnetic, HLEM and induced polarization (I.P.) surveys. Two very good conductors were detected in the EM survey. One of the conductors,
which strikes east-west through the $N \frac{1}{2}$ Concession I, was the target of the holes drilled by Glencona in 1967; two holes drilled by Rosario in 1978 tested the same horizon. The other good conductor strikes northeast-southwest through claim 1114815: this was the zone tested by Inco in 1967 File T-1928).

During the winter of 1989/1990, a geophysics program was carried out on the current claim group by Timmins Geophysics Ltd, funded by an O.P.A.P. grant awarded to the five property owners. The program consisted of magnetic, very low frequency (VLF) and horizontal loop electromagnetic (HLEM) surveys, the results of which are currently on file. The survey once again defined the two main conductive horizons outlined by Rosario Resources. It was recommended that an I.P. survey be carried out along at least three lines to test several weaker anomalies occurring on the property: these lines included Lines 650 West and 1700 East in Concession I and Line 550 West in Concession II.

Induced Polarization surveys along selected lines were carried out during the summer of 1990 by Timmins Geophysics Ltd., funded by a recent O.P.A.P. grant awarded to Mr. Doug Londry.

An additional contiguous claim adjoining the southwest corner of the property (P1132586) was staked in the spring of 1990. A certain portion $(\$ 1,600.00)$ of the current O.P.A.P. funding for geological mapping of the property was therefore used to carry out linecutting and magnetic, VLF and HLEM surveys over the claim in the summer of 1990.

Topography

The northwestern and western portions of the property are largely covered by black spruce muskeg and localized areas of very wet cedar swamp. A north trending high sandy esker occurs centered on Lines 0 to 2 West, extending north to approximately 600 South.

The south central and southeastern portion of the property south of 400 South are generally dry and forrested with poplar, spruce and alders. A large expanse of wet to dry black spruce, tamarack and alder muskeg extends across the northern portion of the property from Line 0 to Line 24 East. The extreme southern portion of the property has recently been logged over.

Regional Geology

The property is located within an east-west striking, south facing sequence of tholeiitic and lesser komatiitic metavolcanics trending across portions of German. Matheson, Hoyle, Whitney and Murphy Townships (Fig. 1).

As presently understood, the property appears to be underlain by the same volcanic stratigraphy hosting the Bell Creek. Owl Creek and Hoyle Pond gold deposits, situated to the east in Hoyle Township.

A major volcanic-sedimentary contact, trending southwesterly across the northwest corner of the property, delineates
metagreywacke sediments to the north and presumed mafic metavolcanic rocks to the south of the contact.

Pronerty Geology

The property area is largely underlain by a sequence of pillowed to massive tholeiitic metabasalts, with lesser volumes of high iron tholeiites and komatiitic volcanics. The stratigraphy generally strikes at $85-90^{\circ}$ and dips at $65-80^{\circ}$ to the south, although local variations in strike from 75° to 100° occur. Brecciated, amygdaloidal flow tops, pillow shapes and the observed progression from massive to pillowed zones within individual flows consistently indicate a southerly facing direction.

Although no outcrop occurs in the most northwestern six claims. ground magnetics indicate a marked change in the stratigranhic trend to approximately 45°, beginning abruytly to the north of Baseline 0. The northeast trending HLEM conductor occurring on these claims has been intersected in previous drilling, and represents a major contact between tholeiitic mafic metavolcanics to the south and greywacke metasediments to the north.

Magnesium tholeiitic basalts to "standard" tholeiitic basalts (as defined geochemically) comprise approximately $\mathbf{7 0 \%}$ of the outcrop examined on the property. Selected geochemical plots of whole rock data are given in Figures 4 to $7 a$ and a complete listing of sample descriptions and locations is כresented in Table 1.

Magnesium tholeiitic basalts are commonly pillowed and amygdaloidal with thin nillow selvages. Pillow dimensions
are highly variable, pillows ranging in length from less than two feet in some flows to in excess of seven feet in length elsewhere. Pillowed magnesium tholeiites are generally pale to medium green in color and are very fine grained. Outcrops weather to a pale buff color. Occassional zones of well developed hyaloclastite-bearing flow top breccia occur (eg. L8E, 1480S). Flow tops are commonly strongly foliated to locally sheared in contact with overlying massive flows. Massive basalts plotting geochemically as "standard" tholeiites are fine to medium grained, medium green in color and massive to weakly amygdaloidal, with a hacklly. "gritty" weathered surface. Occassional outcrops display a pronounced chlorite spotting on the fresh surface.

Several high iron tholeiite flows/sequences occur intercolated with the magnesium tholeiites on the property. The four major units outlined, varying in width from 40 to 80 metres, occur at approximately 500S, 700S. 1100S and 1400S. The flows? are very massive to locally finely amygdaloidal, fine to medium grained, very dark green on the fresh surface and weather orange brown in colour. one to three percent disseminated leucoxene is common, and in one outcrop, 5% fine disseminated magnetite tetrahedra were observed (L20E, 660S). The most northerly two iron tholeiite units commonly coincide with east-west trending magnetic high zones: however their magnetic signature is commonly lost along strike, particularly when the above units are intersected by cross-cutting shear/fault zones (see structural geology section).

Mapping during 1991 indicated that the massive, high iron unit striking east-west between 600 and 800 South may in fact be an intrusive sill. The margins of this unit are highly chloritized and sheared, and the massive portion immediately south of the north contact is very commonly quartz ?hyric bearing l-4\%, l-3 mm. size quartz eyes of unknown origin. The unit becomes quite leucocratic (colour index of less than 30) as one progresses to the south, and presumably towards the top of the unit. Within the southerly 5 to 10 metres, feldspar grains to 3 mm . in size comprise approximately 75% of the rock, giving it a very much paler green colour. Geochemical analyses of samples from the more leucocratic zones characteristically are more aluminous and plot as "standard" tholeiites or in some instances have a calc-alkalic affinity (see Figures 5 and 5A).

This unit is traceable through mapping across the entire mronerty from Line 300 East eastwards: however, it terminates or "oinches out" very abruptly between Lines 2 East and 3 East. Contacts of the unit in this vicinity do not appear to be faulted, and are interpretted as being an intrusive termination of a sill. The massive "standard tholeiite" unit occurring between Lines 600E and 900E at 1200 S pinches out abruptly to the west in a very similar fashion and may also be intrusive in origin. Komatiitic volcanics occurring adjacent to the south margin of this unit are quite intensely serpentinized and commonly display fine, irregular asbestos veinlets. Several intensely sheared bands of komatiite and tholeiite occur as "intercalations". The rock itself is very massive with a coarse hackly weathering. The fresh surface
exhibits a very felty, tremolitic texture .
Komatiitic metavolcanic rocks form a relatively minor volume within the stratigraphic package. Komatiitic units are generally thin, rangingfrom less than 10 to 40 metres in width. Generally east-west trending komatiite flows outcrov at the following locations: 540 South from Lines 200 to 1950E; 1100 South from Line 700E to l000E; 1150 South at Line 9 E . and along the south property boundary at 550East, 1625 south. A rather close spatial relationship exists between the occurrence of komatiitic and high iron tholeiitic flows, perhaps reflectirg a petrogenetic link between the two lithologies.

The komatiitic unit outcropping at 540 South is quite thin (less than 7 meters wide) and consists largely of pale green tremolite, minor green weakly pleochroic chlorite, quartz, minor sphene, chromite and carbonate. The remaining southerly komatiitic units are, in contrast very dark green, finer grained foliated serpentine-chlorite-lesser tremolite rocks. It is interesting to note that both the high iron tholeiites and komatiitic units occurring south of approximately 800 South have only very weak to non-existent magnetic expression, which may be a function of the depth of overburden and/or generally more intense deformation and hydrothermal alteration.

An intensely sheared and chloritized zone occurs along the northwest corner of the steep north face of the large outcrop located at L900E, 450S. This rock (eg. Sm-90-78) was originally mapped, an intensely chloritized tholeiite;
geochemical analyses, however, indicated that it is of komatiitic affinity. The major HLEM graphitic conductor striking at $85-90^{\circ}$ across the property at approximately 400 South has been drilled on several occassions, and minor units of komatiitic material were recognized immediately south of the conductor,

Although the outcrops north of the conductor were only cursorily examined, they appear to consist of massive and lesser nillowed magnesium tholeiitic basalts and minor more iron rich material.

A very unusual ultramafic dike/sill occurs at the north end of the large outcrop occurring between lines 17 East and 1850 East at approximately 400 South. The unit is 18-22 inches in width and strikes at 80°. being slightly discordant to the strike of the enveloping tholeiites at 85°. The rock in hand specimen is very massive to fractured, medium grained with a distinct felty texture. Tremoliteactinolite, serpentine, and minor chlorite and muscovite? are the major mineral constituents. The unit was originally maoped as a komatiite; however, its geochemistry was found to be very unusual and the dike may in fact have a lamnrophyric affinity. The occurrence of a $4^{\prime \prime}$ wide biotitechlorite lamprophyre dike observed at 950E, 625 south may susport this interpretation.

Geochemistry

Selected geochemical plots (Jensen Cation Plot, AFM Plot, and bivariate plots of Al203 Vs. TiO2 and Ti vs. Zr) for the south Murphy whole rock samples are presented
in Figures 4 to 7. Each of these plots clearly distinguishes iron rich tholeiitic rocks from the more common tholeiitic basalts and magnesium tholeiites. The high iron rocks are generally relatively enriched in TiO2, P205, Zr and iron comoared to normal tholeiites; , in addition, they form a distinctive suite with a markedly different geochemical trend for Al203/Ti02 ratios.

Komatiitic samples are readily identifiable on all of the four plots, falling clearly within the komatiite fields on both the Jensen Cation plot and the AFM diagram. TiO2/Al203 and $\mathrm{Ti} / \mathrm{Zr}$ ratios also distinguish the komatiites, as do elevated Cr203 values of 1000 ppm or greater.

The geochemistry of sample Sm-90-46, the tremolite dike, is very unusual. Although it plots in the komatiite field on both the Jenson and AFM diagrams, it is clearly not of komatiitic affinity. P2O5 in this sample is high at 0.85 weith percent, comjared to average komatiites containing .03 to .07 weight percent of the element. In addition, Sr, Zr and Ba are all highly elevated relative to the komatiitic samples. Elevated values of these elements, in addition to slightly enriched K20 ($0.76 \mathrm{wt} \%$) may suggest that the dike has a lamprophyric affinity.

Structural Geology

Primary foliations measured throughout the property vary from 80° to 1000 and generally dip to the south at 75 to 85°. The strike of pillows in less deformed areas is also from $85-95^{\circ}$.

-15-

Figure 6 Plot of Anhydrous TiO2 vs. Anhydrous Al2J3

EOZIV
-19-

qOU

A very prominent secondary foliation occurs throughout the entire oroperty area, and is best developed in the sheared to fissile tojs of pillowed flow units. This foliation strikes at $65-75^{\circ}$ and dips variably south at 60 to 75°. Folding, warping and displacement of quartz veinlets and earlier foliations along the $65-75^{\circ}$ shears and fractures consistently yield a sense of dextral motion on the structures. Quartz veins and veinlets occupy both primary and secondary structures, but are generally much more prevalent within the $65-75^{\circ}$ planes, where vein margins commonly display thin, chloritic shear envelopes and occasional quartz crystal elongation.

Cleavage intersection lineations and rodding/mineral elongation lineations measured on the secondary foliation flanes are consistently steeply plunging to the east-southeast.

It is interesting to note that several zones exhibiting extremely low magnetic intensity trend across the property south of Baseline 0 , also at approximately 70-75 ${ }^{\circ}$. The zones are up to 80 meters in width, the most prevalent two of which occur at 1200 South and 800 to 900 South. Pillowed tholeiites outcropping at Line 300 East. 800 to 840 South occur within the latter mentioned zone of low magnetics. Here, the rocks are intensely sheared and moderately carbonatized and sericitized, with a pronounced fissility at $76^{\circ} / 68^{\circ} \mathrm{S}$. The $70-75^{\circ}$ trending magnetic lows can be observed on magnetic majs to terminate large zones of mag high associated with east-west trending iron tholeiitic units

Two untested I.P. chargeability anomalies, located at Line 400 East, 850 South and Line 0 East, 920 South, occur along the southern margin of this zone of 70° low magnetics and may prove to be interesting drill targets.

A series of fault structures, striking at 40-45 occur at rather regularly spaced intervals of 300-350 meters across the property south of Baseline 0 , as defined by offsets in both ground magnetic and VLF anomaly trends. The most commonly observed structural expression of these faults is the occurrence of a very tightly spaced, locally intense fracture cleavage or jointing, striking at $40-60^{\circ}$ and generally dinping shallowly to the southeast at $19-45^{\circ}$. (eg at Line 8E, 580South). The 45° fractures are commonly occupied by quartz-carbonate veins from $1^{\prime \prime}$ to 1 foot in width (eg at L8E, 580S: L le, 1400S). The I.P. chargeability anomaly outlined at Line 400E, 850 South appears to be centered directly upon one of these 45° interpretted fault structures.

Alteration and Mineralization

Volcanic rocks underlying the property are, in general weakly carbonatized. Carbonatization and sericitization are more intense (but generally only moderate) within observed sheared Dillowed tholeiitic zones. Pyrite generally occurs in trace amounts within most areas and lithologies.

At line $400 \mathrm{E}, 1500$ South, a series of $4-6^{\prime \prime}$ wide quartz veins striking at $20-35^{\circ}$ and dipping to the west at 15-25 occur within moderately ankeritized massive leuco xene
basalt. Wallrock margins to the veins are chloritic, weakly sheared and sericitized and bear 1 - 1.5% coarse pyrite cubes and blebs. Two grab samples of the pyritized wallrock (SM-90-15 and SM-90-16) returned gold values of 34 and 12 ppb gold, respectively.

A small (5' $\mathrm{X} 4^{\circ}$) outcrop of moderately ankeritized massive mafic volcanic was located during mapping in 1990, occuring at approximately $20 \mathrm{E}, 1560$ South. A 8 cm . wide quartz-carbonate-tourmaline vein striking at $55-65^{\circ}$ and dipping steeply south was uncovered here. Hand specimens of the sheared, chloritic wallrock to the vein bore 5-10\% tourmaline and 1.5$2 \%$ disseminated nyrite. Samole Sm-90-49 of the vein and pyritized vein margin contained anomalous arsenic (46 ppm) and boron (5110) both important "indicator" minerals for lode gold deposits in the Timmins Camp.

Airborne geophysical maps indicate that a major east-west trending fault structure may trend roughly along the MurphyTisdale Township boundary, truncating the folded magnetic komatiitic flows of the North Tisdale Anticline at a very oblique angle ($5-15^{\circ}$). Gold mineralization at the Beaumont prospect immediately to the east may be associated with this structure. The small showing mentioned above occurs approximately 60 metres north of this proposed fault and therefore was of great interest as an exoloration target.

In October of 1991 an extensive area surrounding the vein was stripped using a Cat-235 backhoe contracted from Leo Allarie and Sons. Ltd. In addition, five 6-8 meter deep trenches were
dug to the north and south to determine how extensive the veining and alteration are in the area. The geology of the trenched area is outlined on Map B. The stripped area exhibits a very high intensityof thin (4 cm to 12 cm) wide quartz-iron carbonate veins situated within $55-65^{\circ}$ trending narrow shears. Veins also commonly occupied fractures striking northwest and dipping shallowly to the southeast at $5-15^{\circ}$.

Intense carbonate alteration occurs within 4 cms . to one metre of the vein margins in most instances and is accompanied by up to 5% fine to course grained disseminated eunedral pyrite cubes. Fine, fracture filling quartz-carbonate tourmaline veins occur locally in the vicinity of the originally "discovery vein". Tourmaline is generally restricted to the northeast trending, sheared veins, which also generally carry higher percentages of pyrite (see Table 1 for sample descriptions). Twenty-six samples from the stripped zone were assayed for gold; however, the values were uniformly low. Further exploration to the south of the stripped area is recommended, in closer nroximity to the nossible fault zone at the south township border

An area of strong carbonate alteration and quartz carbonate veining was delineated between Lines 5 and 7 East at approximately 940 south. Veining and up to $5-7 \%$ pyrite mineralization occur in an east-striking sheared zone of carbonaceous flow breccia and in the massive basalts south of the breccia. Gold values from samples here were uniformly low.

The east-west striking electromagnetic conductor at approximately 400 South is exposed in part between Lines 200E and 400 E at approximately 500 South. Several trenches were located in this area during mapping. Here the basalts are intensely sheared and sericitized and contain up to 15% very fine grained t) "nつd-like" 1 cm masses of pyrite and pyrrhotite. This jyrrhotized zone was intersected in hole MH-78-1, drilled 50 meters to the south, and was found to structurally underly sheared graphitic argillite, locally containing $1-6 \mathrm{~cm}$. bands of fine, massiv. pyrite.

A sixty foot long north-south trench occurs in bedrock at Line 2E. 1325 to 1340 South. Massive tholeiites within the trench are moderately carbonatized and silicified, and bear $2-5 \%$ fine disseminated pyrite and cubic pyrite to 1 mm Assay samnles SM-90-59 and 60, from the north end of the trench. were the most pyritized samples takens they returned negligible gold values and As values of 43 and 44 ppm, respectively.

Drill core located in the bush at 375 West, 350 North is believed to be from Victoria Algoma hole VA-24-2, put down in the $1960^{\circ} \mathrm{s}$, and tentatively located at 525 West, 490 North. Although the core is now very badly jumbled, several short sections of graphitic argillite were observed, indicating that the hole, drilled north, intersected the HLEM conductor
occurring at the volcanic-sedimentary contact. A 1.5 foot section of previously split mafic volcanic bearing silicified fractures and 5-15\% extremely fine fracture filling pyrite was resampled (SM-90-97) and returned a value of 100 Darts ner billion gold.

January, 1992

Kimberly M. Cunnison

TABLE 1

SAMPLE LOCATIONS AND DESCRIPTIONS

SM-91 and SM-90 Series Samples

```
ANALYSIS/METHOD CODE:
WR - whole rock analysis
Au - gold assay
As - arsenic assay
B - boron analysis
TS - thin section cut
HS - hand specimen
```

page 1 of 5
SOUTHEAST MURPHY PROJECT

 NNW N ${ }^{n}$

$$
0
$$

1991 SAMPLE_LOCATIONS_AND DESCRIPTIONS

1991 SAMPLE_LOCATIONS_AND DESCRIPTIONS

Sample Type

> Location
> $\begin{aligned} & \text { 590E, } 900 \mathrm{~S} \\ & 600 \mathrm{E}, 855 \mathrm{~S}\end{aligned}$ $600 \mathrm{E}, 865 \mathrm{~S}$ 555E, 930S 600 E , 796S 660E, 790S 700E, 765S 700E 747S 700E, 761S S00L 'G009 625 E 700 S 650E, 740S 600E, 637S 6l0E, 582S SSZS 'تSSL 750 540 S 750E, 540S 620E, 590S 690E, 683S
S08L 'जुञ
272E, 800S
1991 SAMPLE LOCATIONS AND DESCRIPTIONS
page 3 Of 5
SOUTHEAST MURPHY PROJECT

8
8
0
0
0
0
0

S

SOUTHEAST MURPHY PROJECT

1991 SAMPLE LOCATIONS AND DESCRIRTIONS Description
basalt，massive，lite grey，f－m grained
komatiite，tremolitic rock Description
basalt，massive，lite grey，f－m grained
komatiite，tremolitic rock Description
basalt，massive，lite grey，f－m grained
komatiite，tremolitic rock

＂

B for Location of samples Sample Type

S095T＇GT0－甘SW
S09ST＇GT0－VSN
S095T＇
S09ST＇G⿹\zh4灬－VSW
S09ST＇G0－VSW
S095T＇${ }^{\text {H0－VSW＊}}$
SOOS＇⿴囗十⺀⿺𠃊⿻丷木大亍
SOOS＇g⿹\zh26灬દT
SS62＇T991
SSLZ＇ت91
SOサE＇ت991
S 02St＇G］
SOOL＇GプSكT
S004＇G0S5T
eөue S009＇ヨ马દโT
вəコe S009＇G马\＆TT
еəコe S009＇GुદโT
вəコe S009＇ヨुદโT
еәлe S009＇鳥をTI

 \＃－16－WS

page 5 of 5

SOUTHEAST MURPHY PROJECT

1991 SAMPLE LOCATIONS AND_DESCRIPTIONS

SM-91-\#	Sample Type	Location	Description
97	Au	MSA-0E, 1560S	sheared quartz-carb vein, 5\% py at margins
98	Au	MSA-0E, 1560S	" " " " " " "
99	Au	MSA-OE, 1560S	vuggy quartz vein with 3% py at margins
100	Au	MSA-OE, 1560S	vuggy folded sygmoidal qtz-carb vein, 2% py
101	Au	MSA-0E, 1560S	sheared, sericitized, chloritized qtz-carb vein
102	HS	MSA-OE, 1560S	" " " " "
103	Au	MSA-0E, 1560 S	vuggy qtz-carb vein with 5% crse py cubes
104	Au	MSA-0E, 1560S	rusty, oxidized margin of sheared qtz-carb vein
105	Au	MSA-0E, 1560S	qtz. vein with 4% coarse py at margins
106	Au	MSA-OE, 1560 S	narrow qtz. vein, $1 \% \mathrm{py}$. in carb. wallrock
107	Au	MSA-OE, 1560 S	6" qtz-carb. vein, minor py cubes
108	Au	MSA-OE, 1560 S	quartz bleb, trace py, minor chlorite seams
109	Au	MSA-OE, 1560S	12 l qtz-carb vein 4% py in wallrock as crse cubes
110	HS	MSA-OE, 1560S	carbonatized basalt, trace fine pyrite
111	Au	MSA-0E, 1560S	flat qtz vein with chloritic fractures
112	Au	MSA-0E, 1560S	barren shallow-plunging qts vein
113	Au	MSA-0E, 1560S	pyritized wallrock- 5 to 7% crse py cubes to qtz ve
114	Au	MSA-0E, 1560S	qtz.-carb vein and pyritized wallrock (4\%)
115	${ }_{\text {Au }}$	MSA-OE, 1560S	$4^{\prime \prime} \mathrm{qtz}$.-carb vein, 8\% py in margins-fine cubes
1117	${ }_{\text {Au }}$	MSA-OE, 1560 S	pyritized wallrock to vein
117	${ }_{\text {Au }}$	MSA-OE, 1560 S	$3{ }^{3}$ dark grey qtz vein, minor py
118	Au	MSA-OE, 1560S	carb. rock with 50% fine quartz-tourmaline veinlets

S J0 T ө88d - T өโqe山
SOUTHEAST MURPHY PROJECT
SAMPLE LOCATIONS AND DESCRIPTIONS

Sample Type

SOUTHEAST MURPHY PROJECT
SAMPLE LOCATIONS AND DESCRIPTIONS

$$
\begin{aligned}
& \text { Description } \\
& \begin{array}{l}
\text { Dark green levoxene basalt; slo magectite } \\
\text { Ouartz-carbonate velu; trace pyrite } \\
\text { Pale green follcated basalt } \\
\text { Pillow baselt, pate green, sheared } \\
\text { Massive basalt, medivm green }
\end{array} \\
& \begin{array}{l}
\text { Massive bassult, medium green } \\
\text { Pale green vesicular basalt, }
\end{array} \\
& \begin{array}{l}
\text { Pate green vesicular baselt, foliated } \\
\text { Massive baselt, pale green }
\end{array} \\
& \text { Messive basalt, medium grey-green }
\end{aligned}
$$

$$
\begin{aligned}
& \text { sheared quartz cakite vere }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Massive basait, dark green, medium grained } \\
& \text { sheared pillow basalt } \\
& \text { Medium grey, fine grained basalt } \\
& \text { Sheared pillow basa } \\
& \text { Black chloritic basaH, } 2 \% \text { magnetite } \\
& \text { foliated pillow basaH, pate greer }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Vesicular pillow basatt, pale green, strongly follated }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Location } \\
& 2200 \text { E, } 670 \mathrm{~S} \\
& \begin{array}{l}
S 029=0006 \\
S 052, ~ \\
5006
\end{array} \\
& \begin{array}{l}
\text { Sobs } \\
5029
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
n \\
\text { o } \\
\text { ס }
\end{array} \\
& \begin{array}{llll}
n & n & n \\
0 & n \\
0 & N \\
\hline
\end{array} \\
& \begin{array}{ll}
\infty & n \\
0 & \infty \\
0 & \infty
\end{array} \\
& \text { SE89 } \\
& \begin{array}{l}
1870 E, 390 S \\
1850 E, 455 S \\
1800 E, 510 S \\
1725 E, 690 S \\
1720 E, 670 S \\
1700 E, 600 S \\
1700 E, 537 S \\
1800 E, 413 S \\
1725 E, 412 S
\end{array}
\end{aligned}
$$

Sample Type
WR, Au, TS
$\begin{aligned} & \text { WR, Au, } \\ & \text { Au. }\end{aligned}$
700 E,
775E,
' 30001
990 E,
$2170 E$
$\begin{aligned} & 2275 E, \\ & 2175 E,\end{aligned}$
$1825 E$
$\begin{aligned} & 1800 \text { E, } \\ & 1870 \text { E, }\end{aligned}$
1850 E,
$\begin{aligned} & \text { HS } \\ & \text { WR, Au, TS }\end{aligned}$
3
$\frac{\infty}{3} \sim \sim \sim 3$
$\begin{aligned} & \text { green levkoxene basalt; } \\ & \text { 2-carbonate velu; trae } \\ & \text { green folicated bascult } \\ & \text { baselt pate green, shear }\end{aligned}$
SM-90-\#
SOUTHEAST MURPHY PROJECT
SAMPLE LOCATIONS AND DESCRIPTIONS

Sample Type

SOUTHEAST MURPHY PROJECT
SAMPLE LOCATIONS AND DESCRIPTIONS

Table 1-page 5 of 5
SOUTHEAST MURPHY PROJECT
SAMPLE LOCATIONS AND DESCRIPTIONS

Sample Type
 SM-90-\#
977
98
99
100
101
102
103

APPENDIX A

GEOCHEMICAL RESULTS

SAMPLE \X	S102	AL203	CAO	MGO	MąO	K20	FE203	MNO	1102	P20	CR203	LO	Sum
SN-10-91	52.0	14.1	6.82	6.18	1.43	2.10	13.6	. 18	1.33	. 12	<. 01	2.39	100.3
SN-24-91	52.1	13.7	7.10	7.37	3.25	1.24	11.2	. 17	. 799	. 06	< 01	2.39	99.4
SN-32-91	47.5	14.5	11.0	8.01	1.35	. 06	13.7	. 19	. 828	. 06	$<.01$	3.16	100.4
SN-34-91	51.0	14.4	10.2	6.32	2.27	. 03	10.5	. 24	. 823	. 08	$<.01$	4.08	100.0
SN-35-91	46.9	13.2	10.2	6.09	1.65	. 05	12.1	. 19	. 786	. 07	<. 01	9.23	100.5
SN-37-91	52.9	14.3	9.22	5.62	2.52	. 16	11.9	. 21	1.04	. 10	<. 01	2.23	100.2
SN-38-91	53.1	13.6	6.87	3.95	3.01	. 26	14.2	. 21	1.56	. 14	$<.01$	3.08	100.0
SN-39-91	51.7	14.1	9.48	6.12	1.92	. 24	12.8	. 18	1.09	. 09	. 01	2.54	100.3
SN-40-91	54.8	13.5	7.57	5.91	3.47	. 16	10.9	. 18	1.03	. 09	. 02	2.93	100.6
SN-41-91	52.6	14.2	10.1	5.16	1.79	. 05	12.6	. 20	1.17	. 10	. 02	2.70	100.7
SN-47-91	52.5	13.7	6.94	6.16	2.73	. 74	13.2	. 19	1.23	. 10	<. 01	2.62	100.2
SN-50-91	45.5	6.84	8.46	19.5	. 11	$<.01$	12.3	. 23	. 433	. 04	. 38	4.54	98.3
SM-51-91	52.3	14.0	8.26	5.73	3.15	. 31	12.1	. 18	1.04	. 10	. 02	2.54	99.8
SN-52-91	44.8	7.47	9.48	18.2	. 16	. 02	13.0	. 26	. 464	. 04	. 40	4.85	99.2
SN-53-91	51.6	14.0	9.71	6.73	1.43	. 80	11.6	. 18	. 884	. 08	. 02	2.77	99.8
SN-61-91	46.3	15.4	9.13	6.85	2.08	. 96	14.7	. 22	1.43	. 14	. 02	2.85	100.1
SN-62-91	51.8	13.6	9.05	6.09	1.96	. 13	12.9	. 16	1.16	. 10	. 01	2.77	99.8
SN-63-91	51.2	15.0	6.64	4.89	4.40	. 21	13.5	. 18	1.40	. 11	$<.01$	2.62	100.2
SN-65-91	51.0	13.9	9.31	7.69	2.73	. 77	11.8	. 17	. 816	. 07	$<.01$	2.23	100.5
SN-66-91	50.7	14.6	8.10	7.10	2.07	. 91	12.0	. 19	. 958	. 08	<. 01	3.31	100.1
SN-68-91	40.6	18.1	6.07	7.90	2.40	. 44	16.0	. 21	2.17	. 10	. 03	4.62	98.7
SN-75-91	53.0	13.9	10.5	3.63	2.62	. 34	9.99	. 24	1.38	. 12	<. 01	4.39	100.2
SN-77-91	48.9	13.0	8.13	5.73	2.56	1.12	10.7	. 17	. 869	. 08	. 02	9.31	100.7
SN-80-91	52.3	13.4	7.32	5.06	3.08	1.03	13.3	. 17	1.26	. 12	<. 01	3.00	100.1
SN-82A-91	41.8	12.8	8.12	7.54	1.23	. 24	12.8	. 18	. 834	. 07	. 01	14.8	100.5
SN-83-91	55.5	13.3	5.75	4.86	2.98	. 08	12.9	. 16	1.52	. 11	< 01	3.00	100.2

SAMPLE \PPM	RB	SR	γ	2R	MB	BA
SM-10-91	41	154	32	110	30	393
SN-24-91	20	54	21	56	<10	214
SN-32-91	<10	135	<10	52	34	53
SN-34-91	<10	68	16	20	24	77
SN-35-91	25	112	11	53	10	95
SN-37-91	<10	72	23	57	18	87
SN-38-91	17	76	43	104	34	146
SN-39-91	<10	90	27	60	20	112
SN-40-91	12	32	17	79	17	107
SN-41-91	15	181	21	70	21	91
SN-47-91	32	76	31	73	13	205
SN-50-91	<10	<10	12	32	12	70
SN-51-91	24	64	13	80	23	: is
SN-52-91	12	<10	<10	24	22	79
SN-53-91	32	83	18	74	<10	150
SN-61-91	33	79	29	101	32	172
SN-62-91	13	123	12	57	<10	97
SM-63-91	<10	26	24	109	15	136
SN-65-91	41	56	<10	31	<10	241
SN-66-91	26	90	13	55	10	237
SM-68-91	25	99	57	142	<10	192
SN-75-91	17	134	45	88	16	201
SN-77-91	52	182	27	45	<10	549
SN-80-91	37	188	21	112	18	183
SN-82A-91	<10	82	19	67	<10	110
54-83-91	18	53	29	110	21	103

SAMPLE	AU PPB	AS PPM	PD PP8	PT PPB
SN-14-91	2	--	--	--
SN-15-91	2	--	--	**
SN-17-91	1	--	-	\cdots
SN-18-91	5	--	--	-
SN-20-91	3	--	--	-*
SN-21-91	<1	--	-*	-
SN-27-91	1	--	--	--
SN-28-91	<1	--	-	--
SN-29-91	<1	--	--	--
SH-31-91	<1	--	--	--
SN-36-91	12	25.9	--	--
SN-43-91	<1	--	--	-*
SN-48-91	4	--	--	--
SN-49-91	3	--	--	--
S*-54-91	4	47.1	--	--
SN-55-91	1	32.9	--	--
SM-56-91	<1	--	--	--
SM-57-91	<1	--	--	--
SM-58-91	2	58.8	--	--
SN-59-91	3	68.2	--	--
SN-67-91	2	- -	--	--
SM-69-91	3	--	--	--
SN-70-91	3	--	--	--
SM-71-91	<1	--	--	-*
SN-72-91	6	-	\cdots	--
SN-73-91	3	--	--	--
SN-74-91	3	**	--	--
SN-78-91	<1	--	4	10
SN-79-91	<1	--	4	10
SN-81-91	2	--	\cdots	\cdots
SM-86-91	3	--	--	--
SN-87-91	2	--	--	--
SN-88-91	2	--	--	-.
SN-90-91	1	--	--	-
SR4-71-91	1	--	--	--
SN-93-91	2	--	\cdots	--
SN-94-91	1	--	--	--
SN-96-91	1	--	\cdots	-*
SN-97-91	<1	--	--	-*
SN-98-91	<1	*-	--	--
SN-99-91	<1	-	--	--
SM-100-91	1	--	-*	--
SM-101-91	1	--	-	--
SN-103-91	<1	--	--	-
5n-104-91	2	*-	--	--
SN-105-91	<1	**	--	--
SN-106-91	1	-	--	\cdots
SN-107-91	1	--	-	--
SN-108-91	<1	--	-	-
SN-109-91	11	--	--	--

```
SNUPLE AU PPB AS PPM PD PPB PT PPB
```

SN-111-91	<1	.-	--	--
SN-112-91	1	--	--	-
SN-113-91	<1	-.	--	--
SN-114-91	<1	--	--	--
SN-115-91	<1	--	--	-.
SN-116-91	1	--	--	\cdots
SN-117-91	<1	--	--	--
SN-118-91	4	--	--	-.

					Cb－riuly		
					bikdich	1	
Sinktr	Srabil	Uutit	Heltis	Mid		－EEUSHA	＋110
53－10－91	1	81	44．6＇3		30，6i		
54－24－91	2	θ	44．43	54．36	Ľ．${ }^{\text {in }} 7$		
5\％－3\％－41	j	41	4\％30	c＇s． 16	－1．6．		
33－34－y1	4	81	48．35	26.85	24． 34		
$57-35-41$	d	HI	44． 10	K0．3c			
53－37－91	6	8i	4／．95	23．03	4． 31		
54－38－91	1	－T	4\％．cl	1\％．34	30．45		
50－39－91	8	81	45.2	－3．10	くり． 18		
5r－41－41	9	61	$4 \% .01$	ch．ote	26．9\％		
51－41－91	10	81	41.31	－ 60	30， 12		
Sil－4i－41	11	61	44.42	\％	50．		
5\％－56－91	12	LK	11.19	61.91	$\mathrm{ClO}_{4} 84$		
5\％－51－41	13	81	47.05	24．35	24．6i		
S7－5ix－91	14	B	19．62	58．61	－5． 37		
5\％－53－91	1＇s	bi	4．3． 14	cil． 60	E\％．40		
53－61－91	16	Br	44.61	Ej． 10	$3{ }^{3}$		
5M－62－41	11	B1	44.15	Cisum	CY． 41		
5月－6j－41	18	H	48.66	20．0	د1．88		
Sy－6i－41	14	BI	43.11	30.30	Cu．11		
3－66－91	C	81	43.64		－${ }^{\text {¢\％}}$		
5x－68－41	c1	（b）	4.45	c．uct	¢¢．44		
50－75－41	r	M1	35.60	11.11	＜3．67		
5\％－11－41	\％	b）	45.84	Eb． 11	\％1． 6		
53－63－4］	24	－1		21．$\%$	503		
Sirecill	H	HI	41.67	30．39	［8．39		

Lubt hereitelut－JEMEN CAI ICN HLOI

FI－Ihion kich bishlil
HK－HastarIL KumarIITE

AT－matillic ancejlit

Of－fhatellfil vaclic
RI－ihotilill kayclite
bi－IMKtIIIIC Bisithi

oft－Gill－ikkilift Dhelle
＊－MUS itrifel

 ：Japerily Of miNes，misti fityk 16io．

4 - MUS BEFINED
 subrlualil volawil kiaks iwiakio

 if RIMES, MISLO HHEK 160.

SAMPE \ 2	5102	A1203	CR	neo	Mn20	1200	FE203	10	1102	P20S	02003	101	37
EN-90-1	49.7	14.3	10.4	6.75	1.86	0.62	12.0	0.19	0.83	0.06	0.02	3.76	100.5
9\%-90-3	51.0	13.5	12.1	6.82	1.10	0.12	11.3	0.19	0.71	0.05	0.01	3.39	100.3
50-90-5	53.2	13.1	10.2	7.19	1.46	0.29	11.4	0.17	0.73	0.05	0.01	2.62	100.4
\%-90-18	36.9	17.6	6.30	7.71	2.71	0.88	16.2	0.17	0.95	0.09	0.01	12.7	100.2
90-90-19	47.5	12.9	9.61	6.45	1.91	0.07	11.1	0.20	0.72	0.05	4.01	9.70	100.2
90-90-20	52.5	13.7	9.56	6.73	2.04	0.12	10.8	0.27	0.69	0.05	0.02	3.93	100.4
8.00-21	53.2	13.6	10.3	5.65	2.50	0.09	10.1	0.28	0.83	0.07	0.01	3.16	99.8
9-90-22	53.4	13.8	10.7	6.62	1.98	0.12	10.2	0.20	0.70	0.05	0.02	2.77	100.6
51-90-25	54.0	13.2	6.44	3.65	3.37	0.13	13.7	0.20	1.39	0.10	0.01	3.85	100.1
90-90-25	52.4	14.2	9.66	6.11	2.99	0.11	10.1	0.24	0.71	0.05	0.02	3.39	190.0
5N-90-27	52.4	13.5	7.50	5.10	2.57	0.53	13.7	0.20	1.31	0.10	4.01	3.70	100.6
50-90-23	51.2	14.5	9.58	5.73	2.25	0.33	11.1	0.27	0.95	0.07	0.02	4.31	100.3
8N-90-55	51.2	14.0	11.2	5.77	1.25	0.39	11.5	0.29	0.89	0.06	0.02	3.39	100.0
5\%-90-41	52.4	13.5	8.42	4.89	2.78	0.29	13.5	0.17	1.35	0.09	0.01	3.16	100.6
80-90-42	46.4	13.2	10.9	4.54	1.96	0.25	12.1	0.39	1.13	0.09	4.01	9.31	100.3
80-90-43	52.2	13.3	6.52	4.45	3.08	0.40	15.0	0.20	1.46	0.11	0.01	3.39	100.1
50-90-44	53.7	13.6	10.1	5.42	2.12	0.11	10.4	0.23	0.82	0.07	0.02	3.62	100.2
5n-90-45	45.5	8.16	8.93	17.6	0.17	0.37	12.8	0.23	0.50	0.03	0.29	5.70	100.3
50-90-46	43.3	8.23	13.7	14.6	0.15	0.76	10.9	0.27	0.76	0.85	0.09	7.00	100.6
SN-90-47	49.7	14.2	9.53	5.90	2.46	1.83	9.72	0.30	0.87	0.07	0.02	5.39	100.2
52-90-48	44.5	12.5	7.49	7.48	1.63	0.40	11.6	0.16	0.76	0.05	0.02	13.9	100.5
SN-90-51	50.8	14.1	8.41	7.58	1.18	1.68	11.1	0.13	0.87	0.06	0.02	3.93	99.9
sn-90-63	45.8	12.4	8.93	5.21	1.19	1.08	11.0	0.22	0.79	0.05	4.01	13.8	100.5
5N-90-65	53.3	14.7	7.36	5.97	3.72	0.36	10.5	0.18	1.02	0.07	40.01	3.08	100.3
5-90-66	37.6	6.02	10.9	20.6	0.07	0.05	12.7	0.21	0.44	0.06	0.42	10.5	99.6
sn-90-69	48.2	13.5	11.1	5.76	2.12	0.42	10.8	0.24	0.84	0.07	0.02	7.08	100.2
50.90-70	41.5	8.63	14.6	10.9	0.08	0.28	13.8	0.33	0.67	0.04	0.38	9.23	100.3
$5 \times 500 \cdot 73$	50.9	13.3	9.11	7.56	1.59	0.16	12.7	0.18	0.88	0.06	0.02	3.77	100.2
sen-90-74	49.7	14.0	6.58	7.75	1.46	3.37	12.8	0.22	0.79	0.05	0.01	3.16	100.0
$5 \mathrm{~N}-90-75$	47.1	12.7	16.2	5.23	1.12	0.12	10.4	0.24	0.70	0.05	4.01	8.70	100.6
5N-90-76	57.7	14.2	4.75	5.26	3.13	0.09	9.58	0.17	0.91	0.07	0.02	4.31	100.2
5n-90-78	44.7	4.69	2.19	26.8	0.04	0.04	10.2	0.11	0.22	0.02	0.69	9.85	99.6
51-90-82	51.5	13.6	10.3	7.02	1.87	0.31	12.0	0.18	0.73	0.06	0.01	2.62	100.2
5n-90-83	50.7	12.9	7.35	4.32	3.49	0.30	11.3	0.22	1.29	0.07	4.01	8.23	100.2
5n-90-84	46.0	6.67	7.19	23.9	0.05	0.04	9.79	0.19	0.26	0.01	0.31	6.00	100.4
5n-90-87	49.4	13.8	5.76	6.26	2.43	0.59	13.2	0.19	1.21	0.09	0.01	7.23	100.3
SN-90-91	52.4	13.8	9.97	5.95	2.32	0.15	11.0	0.26	0.84	0.07	0.01	3.16	100.0
sw-90-95	51.8	14.3	8.49	6.95	1.92	0.87	11.6	0.18	0.86	0.07	0.03	3.47	100.6
SN-90-96	49.4	14.2	-. 15	6.28	$1 . \%$	0.06	9.55	0.20	0.79	0.06	4.01	7.93	99.6

KR - mane Mocx AMAYSIS

SMMPLE	AU PPB	MU-1at PPP	BE PPM	B PPM	SC PPM	11 PPM	V PPW	CR PPW	CO PPW
SN-90-1	--	-.	--	--	-.	--	--	.	--
SN-90-3	--	-.	--	-.	-	--	--	\cdots	--
5N-90-5	--	--	--	--	-.	-	--	--	--
SN-90-6	--	<1	--	-.	-	--	--	--	--
SN-90-9	-	<1	--	--	..	--	--	--	--
SN-90-10	-	<1	--	--	-	--	--	--	-
SN-90-11	--	$\leqslant 1$	-	--	--	--	--	--	--
$5 \times 190-12$	--	2	-.	-.	..	-.	--	--	-.
5n-90-13	--	$\leqslant 1$	--	--	-•	--	--	--	--
50-90-14	-.	<1	-.	-.	-.	--	-.	-.	-.
5n-90-15	--	36	--	\cdots	--	--	-	\cdots	-
5n-90-16	--	12	--	--	--	-	--	--	--
SN-90-17	-.	1	--	--	--	--	--	--	--
Sn-90-18	*-	<1	--	--	-	-	--	--	--
5n-90-18a	--	--	--	-.	--	-*	-	--	--
SN-90-19	--	2	--	--	--	--	--	--	--
5n-90-20	--	<1	--	--	--	--	--	--	--
SN-90-21	--	--	--	--	--	--	-	-	--
SN-90-22	--	--	-.	--	-.	--	-	--	--
SN-90-23	--	3	-.	--	--	--	--	--	--
Sn-90-26	-*	4	-.	--	--	--	--	--	--
5N-90-25	--	--	--	--	--	--	--	--	--
SN-90-27	--	1	-	-.	-.	-	--	--	-
SN-90-28	-	--	--	-.	--	--	--	-*	--
SN-90-35	-.	--	--	--	--	-.	--	--	--
5n-90.36	--	3	-*	--	--	-	--	--	--
Sn-90-37	--	8	-.	--	--	--	--	--	\cdots
SN-90-38	--	7	--	--	--	--	--	-.	-
SN-90-39	--	<1	--	--	--	--	--	--	--
SN-90-60	--	<1	-	-.	-.	..	-	-.	--
Sn-90-41	\cdots	3	--	--	--	--	--	--	--
SN-90-42	--	-	--	-.	--	--	--	--	--
Sn-90-42A	-.	$\leqslant 1$	-•	-.	-.	-	..	-.	-.
SN-90-63	--	<1	--	*-	-.	*-	--	--	--
SN-90-44	-.	--	--	--	--	--	--	--	--
SN-90-45	--	$\leqslant 1$	--	\cdots	-	-	-	\cdots	--
SN-90-46	--	≤ 1	*-	-	--	--	--	-*	-
SN-90-47	-	--	-	-	--	-	-.	-	-
SN-90-48	--	<1	--	..-	--	-.	--	--	--
SN-90-49	-	<1	-	5110	-	--	-	--	-
SN-90-50	--	<1	--	--	--	--	-*	-	\cdots
SN-90-51	-.	--	-.	.-	.-	-.	-.	-.	.-
5N-90-52	--	1	-.	--	-	-	-:	-.	-
5N-90-53	--	<1	--	-.	-	--	-.	--	--
SN-90-55	--	3	--	--	--	--	--	--	--
SN-90-56	--	3	\cdots	\cdots	\cdots	--	-	\cdots	--
Sn-90-58	--	1	-.	--	--	--	--	--	-
5n-90-59		<1	-	-.	--	..	--	-	--
SN-90-60	--	1	**	-	-	--	-*	-	-
SN-90-61	--	4	--	--	--	--	--	--	--

AU-1at PPB - ASSAY PERFORNED ON 30 GRMM ALIOLOT

SN-90-1	--	--			--				
SN-90-3	--	-	-		--				
5n-90-5	-	--	--		-				-
Sn-90-6	--	-*	--						.-
5N-90-9	-*	-*	--	-	-				
SN-90-10	--	-	-	--	--	-*	-*	-	-
5x-90-11	--	-	-	-	.-			--	-
58-90-12	--	-	--	-	.-		--	.-	-
5N-90-13	-*	--	-*	-	-			--	--
5N-90-14	-	-	-	--	-*				
5x-90-15	17	-•	--	-	-	--	-	--	--
50-90-16	-	.		.				-*	-
50-90-17	-	--					-	--	-
sw-90-18	--	-	--				-	-	--
5n-90-181	--	.-	-	-	-				
50-90-19	-	--	-	-	-			--	-
5N-90-20	-	-	-					-	--
SN-90-21	-	-					-		--
SN-90-22	--	--	-				-	-*	-
50-90-23	--	-	-	-	-				
501-90-24	\cdots	--	--		--	-.	--		--
5n-90-25	--	-				-	-	--	.
SN-90-27	--	-.					..	-*	--
SN-90-28	-	-*	.	0	-			--	--
SN-90-35	--	*-	--	-	-	-	-		
50-90-36	--	--	-*	--	-.	.	--	-	--
50-90-57	--	--	.				-	--	-
5n-90-38	**	.	.				-	--	-*
5n-90-39	--	-	-	-				--	--
SN-90-40	**	-	-*	-	-	.			
5N-90-41	-	-*	--	-	-	--	-	-	--
SN-90-42	-	--	-	.		--			-
S4-90-42A	-	--	-					.-	--
SN-90-43	--	--	-	-				--	-
5N-90-46	-	-	--	-	--	.-			
5x-90-45	--	-	-	-		-	-	--	.-
SN-90-46	--	-	--	.					-
50-90-67	-	-	-*	-				--	-
5n-90-48	-	-.	-	-				--	--
Sn-90-49	46	-	-	-	-				
S3-90-50	3	-	--	--	-	-		-	-
SN-90-51	--	-	-					-	-
50-90-52	--	-*	--	-				-	--
54-90-53	-	-	-	-			--	--	-
5N-90-55	--	-	--	**	--	-	-		
510-90-56	\cdots	--	-	-	--	-.	.-	--	--
SN-90-58	--	-	--	-					.-
5N-90-59	43	--	--	-	-				
50-90-60	44	--	-	-				--	--
50-90-61	--	--		-					

Geologicol Report
McCart Township Property N1/2, Lot 5, Concession 5
McCart Tamaship
Porcupine Mining Division, Ontario

020C

CONTENTS

Introduction
Previous Work
Present Survey
Regional Geology
Property Geology
Geochemistry
Mineralization
Results and Recommendations
Map - Geology Map
Figure 1 - Locotion Mop
Figure 2 - Cotion P!ct
Table 1 - Whole Rock Chemical Analyses
Table 2 - Assays
Photos - 4 ircluded

Geological Report
 McCart Township Property

Introduction

The property, located approximately 35 miles northeast of the City of Timmins (Figure :) and 8 miles west of Iroquois Falls, consists of the following four claims in the north half of Lot 6, Concession 5, McCart Township:

P1131548	SWI/4	N1/2	Lot 6, Concession 5
P1131549	NW1/4	$51 / 2$	Lot 6, Concession 5
P1131550	NE1/4	$51 / 2$	Lot 6, Concession 5
P1131551	SE1/4	N1/2	Lot 6, Concession 5

Mr. Druce Raine is the recorded ticlder of the claims.
The claims are readily accessible. An all weather rcad extends west from Highway 11 along the rorth toundary of Concession 4, from which a bush road/trail in Lct 5 extends rorth to the claim group.

Previous Work

The geology of McCart Township has teen compiled by Satterly (1953) at a scale of 1 inch to $1 / 4$ mile.

In 1950, Arrow Timber Co. conducted a magnetic and geclogical survey over the claim group. The exploration was oriented towards finding commercial asbestos within the ultramaf ic intrusive rocks. Seven diamond drill holes were surk within the ultramafic recks in the southwest part of the current property to test for astestos fibre. The holes largely intersected serpentinzed dunite; only minicer astestos was encountered.
진

In 1988, a combined airborne electromagnetic and magnetic survey was flown by Geoterrex Limited for the Ontario Geologica! Survey (OGS, 1988), which covered much of the area immediately north and east of Timmins, inclusive of McCart Township.

Present Survey

The present survey was conducted ty D. R. Pyke cver a period of five days in Octcber 1991. North-scuth picket lines at 100 meter intervals and an airphicto biow -ip at ani apprcximate scale of 1:5000 provided mapping control. Pecause of the extensive cutcrop on the property a great deal more time could be spent documenting many of the primary volcanic features.

Regiona: Geology

The property is located near the scutheast end cf a large gabbroic-ultramafic complex that extends approximately 15 miles to the northwest (${ }^{\text {ryke }}$ el, 1973). The complex appears to te largely sill-like in nature, having teen emplaced within relatively flat lying komatiitic and tholeiitic lavas. To date, exploration work within the region has largeiy been confined to the northwest portion of the complex where some interesting, yet sub-eccnomic rickel-ccpper values and anomalous platinum and palladium values are reported from diamond drilling (Shklanka, 1959). Here, at the Zevely Prospect in Mann Township, nickel-copper assay's are reported from a 72 foot wide zone occurring at an intrusive peridotite-vclcanic contact. Locally, up to five foct sections contained 15\% suiphides (pyifhotite and chalcopyrite) that assayed as high as 6.6% copper and 5.5% nicke! with locally anomalcus platinum values (0.05 ources/ ton). The genera! area of the current property in McCart Township is considered to have gcod potential for Ni-Cu-Rt-nd
mineralizaton, even though the few samples assayed in the course of the present survey have not been enccuraging.

Property Gaology

The map as presented is at best preliminary, as both the quality and extent of bedrock exposure is unique for the north Timmins area and certainly warrants a more detailed examination, particulary as regards the primary volcanic features.

Two main rock types dominate the property:- 1) ultramafic intrusive rocks consisting largely of serpentinized dunite-peridctite and, 2) tholeiitic volcanics, some of which appear to have a basaltic komatiite affinty.

The ultramafic rocks occur as an envelope surrcunding the volcanics, with which they are interpreted to te partially fault bcurided. They appear to be largely of dunitic/peridotitic parentage, now altered to serpentine, and are commoniy massive, orange brcisn to orange grey weathering and dark blue-tlack or localiy medium green on fresh surfaces. Irregular fracturing and local development of astestos fibre is commor. One of the highest outcrcp areas in the general region is centered on the ultramafics in the southioest corner of the claim group where local relief would te in the order of 50-60 meters or more.

The tholeific volcanics form a large expanse of outcrep (Photo 1) across the central portion of the claim group. The flows dip shallow to the north, 20 to 30 degrees, and generaliy consist of a massive base with an overiying pillowed portion, commorily capped by a pillow breccia andfor a hyaloclastitic flow top. Individual flows, or portions of flows, commonily formin a steep solith facing scarp and a shallows rorth dipping dip slope (fficto 2), imparting a step-like quality to miuct, of the cliterop area. Flows variy in thickiess from approximately 10 to 20 meters. The tholeiites are typically massive, fine to- medium grained, medium grey
green weathering and dark green grey fresh. Some of the outcreps in the most southerri exposures display the characteristic polygonal jointing or polysuturing structure cn the weathered surface which is typical:y diagnostic of komatititic flows. However, chemicaliy (see telow) the flows have a normal tholeijitic composition. In thin section the thicleiites are largely composed of approximately equal proportiens of pale green actinolitic horrblende and weakly to strongly saussuritized sodic plagioclase. Minor accessories include cpaque minerals, leuccxene, chlorite, epidote and traces of quartz, biotite and rarely apatite. Grain size averages $0 . \varepsilon-1.0 \mathrm{~mm}$; one massive flow was cbserved to contain 10-15 percent actinolitic laths 5 to:0 mm in length.

A peculiar variclitic-type structure is common to maniy of the flews, occurring in both the pillowed and massive portions but generally best developed in the former. They consist of ball-like structures (Photos 3 and 4) varying from 0.5 to 30 cm and commomly averaging $2-3 \mathrm{~cm}$. The structures protrude from the cutcrop and can be very densely packed or form isclated 'balls' or strings of 'balis'. Mineralogically, the 'balls' are more leuccoratic than the surrcunding matrix, with a typical color index of 35 as comparest to 55 for the matrix. The 'balls' may cccur randomiy throughout a pillow or be preferentially concentrated at the rim or the central portion. In the massive part of a flow the 'balls' tend to occur near the top, at or near the transition to the cverlying piblowed portion of the flow. In thin section the "balls" are in sharp contact with the matrix and are seen to consist typically of actinolitic hornblende commoniy forming elongate laths up to $3-4 \mathrm{~mm}$, set a a matrix of plagioclase which is commonily twinned and shows oniy minor alteration to epidcte/saussurite, etc. Traces of leucoxene, quartz and opaque minerals are aiso present. In contrast, the matrix consists of actinclitized pyroxene, much of which shows a skeletal hobit (a sheaf-of-wheat type texture) and is set within a matrix of dull trown saussuritized plagioclase, some of which in the
pillowed portions is extremely fine, non-pleochroic, and appears in part to represent devitrified glass. As a pretiminary interpretation, it would appear that the 'balls' formed first, representing initial crystallization centres within the magma, pertiaps in part before extrusion. On extrusion, rapid crystallization of the magma (matrix) led to the formation of skeletal pyrcoxenes locally set in a somewhat glassy matrix.

Minor orange brown weathering, polysutured ultramafic komatiite, now altered largeiy to tremclite, outcrops in the northeast part of the claim group near LI2E-500N.

The volcanic rocks trend E-W, dip gently north at apprcximately 20 degrees and are right side up. Structurally the property is interpreted to be on the north limb of an east pluriging overturned anticline, the axial trace of which trends thrcugh the claims immediateliy to the scuth. (Assessment Files). Foliation is gererally weak and tends to be parallel to flow contacts. Twc fracture cleavages, striking NW and NE respectively, are localiy prominent, teing especially strongly developed in flow top and pillow breccias. Shearing cccurs at least locally along the ultramafic-volcanic contact tut it is not currently known if these are major zones of dislocation. It is suspected that the uitramafics form part of a single sill-like body that is repeated by faulting, however, more detailed mapping will te necessary to confirm this or not.

Geochemistry

Six samples from the volcanic rocks were submitited to X-Ray Assay Laboratories for whole rock chemical analyses. The results, listed in Table 1, confirm the petrographic observations that there is little variation in the compcsition. Oin a Cation Plot (Fe203-TiO2+MrO - Al203MgO; Jensen, 1975), all the samples lie within the fielu of magnesium tholeiite (Figure 2). Of interest is a polysutured pillow tasalt (P3-91), mapped $9 s$ basaltic komatiite which lies well within the field of

Table 1: Whole rock chemical analyses, Mc Cart Township property

Table 2: Assays, Mc Cart Township property

Mg-tholeiite. As polysuturing is such a diagnostic structure of komatiatic rocks, this suggests that some of the more southerly flows on the property are of komatiitic affinity.

Mineralization

Only traces of mineralization were observed on the property, yet time constraints were such that only a cursory examination was possible. Minor disseminated pyrrictite-pyrite occurs along a sheared and rusty weathered contact between the uitramafics and volcanics rear LSE-LEE in the southwest corner of the property. Samples, assayed for Au-Pt-Pd, returned no anomalous values (Table 2). In the volcanics a number of bull white quartz veins, varying in width from a few cm tc a meter, trend $\mathrm{E}-\mathrm{W}$ and are notably barren of mineralization; assays for gold were negligible.

Results and Recommendations

The property is underlain ty relatively flat lying Mg-tholeiitic basalts and ultramafic sill (s), interpreted to be on the north limb of an overturned anticline. Only minor pyrrhotite-pyrite mineralization was observed on the claims, but detailed prospecting, particularly along and rear the contact zone of the uitramafics with the volcanics for potential Ni-Cu and/or Pt-Pd mineralization is recommended. The prospecting would necessarily be extended into contiguous claims to the south, which are also held by the co-owiners, and are kricion to host minor nickel! mineralization along the sheared ultramafic-volcanic contact extending southwest near LIe.

'sat!以位 = .l aןose'91d

a coyuepixus

fiet.jnc iej!foloag o!aquo

$$
\begin{aligned}
& \text { - } 57 \text { 'uasuar }
\end{aligned}
$$

533 MJy

Photo 1 - Typical cutcrop area on the claim grour

nhoto 2 - nin zlane outorop ridge in zillouedMg-thole:ite

Photo z - Dall-like structure in pillowedMg-tholeiite

nhoto 4 - Dal!-1!te structure in jillowed My-thole:ite

Report on

ELECTROMAGNETIC (VLF)
 and
 MAGNETOMETER SURVEYS,

McCART TOWNSHIP PROPERTY

McCART TOWNSHIP

PORCUPINE MINING DIVISION, ONTARIO

Introduction
Previous Work
South Claim Group
North Claim Group
Present Survey
Property Geology
Results and Recommendations
References

Maps Included

South Claim Group
VLF Map and Profiles (Map 1)
Contoured Magnetic Map (Map 2)
North Claim Group
VLF Map and Profiles (Map 3)
Contoured Magnetic Map (Map 4)

Figure 1 - Regional Location
Figure 2 - Location - North and South Claim Groups
Figure 3 - Geological Sketch Map

INTRODUCTION

The property is located approximately 35 miles northeast of the City of Timmins in the Porcupine Mining Division (Figure 1). It consists of two groups of four contiguous claims located in Lot 4, Concession 6 and Lot 6, Concession 5, in McCart Township (Figures 2 and 3). The claim numbers and locations are as follows:

South Claim Group

| P-1131544 | $\mathrm{SW} \frac{1}{4}$ | $\mathrm{~N} \frac{1}{2}$ | Lot 6, Concession 5 |
| :--- | :--- | :--- | :--- | :--- |
| P-1131545 | $\mathrm{SE} \frac{1}{4}$ | $\mathrm{~N} \frac{1}{2}$ | Lot 6, Concession 5 |
| P-1131546 | $\mathrm{NE} \frac{1}{4}$ | $\mathrm{~N} \frac{1}{2}$ | Lot 6, Concession 5 |
| P-1131547 | $\mathrm{NW} \frac{1}{4}$ | $\mathrm{~N} \frac{1}{2}$ | Lot 6, Concession 5 |

North Claim Group

$$
\begin{array}{lllll}
P-1131548 & S W \frac{1}{4} & N \frac{1}{2} & \text { Lot 4, Concession } 6 \\
\text { P-1131549 } & N W \frac{1}{4} & S \frac{1}{4} & \text { Lot 4, Concession } 6 \\
\text { P-1131550 } & N E \frac{1}{4} & S \frac{1}{3} & \text { Lot 4, Concession } 6 \\
\text { P-1131551 } & S E \frac{1}{4} & N \frac{1}{2} & \text { Lot 4, Concession 6 }
\end{array}
$$

Mr. Bruce Raine is the recorded holder of all of the claims.

Both claim groups are readily accessible . An all weather road extends west from Highway ll along the north boundary of Concession 4. from which a bush road in Lot 5 extends north to both claim groups.

OF

PREVIOUS WORK

The geology of McCart Township has been compiled by Satterly (1953) at a scale of 1 inch to $\frac{1}{4}$ mile.

South Claim Group

In 1950, Arrow Timber Co. conducted a magnetic and geological survey over the claim group. The exploration was oriented towards finding commercial asbestos fibre within the ultramafic intrusive rocks. Two diamond drill holes were sunk within the peridotite in the southwest part of the current property.

North Claim Group

In 1950. Dominion Gulf Company conducted magnetic and geological surveys over a large part of the south half of Newmarket Township and a portion of north McCart Township, including the North Claim Group area (File 63.235). From geophysical data, a major shear zone up to 400 feet wide was interpreted to extend northeasterly across the central portion of the property, occurring roughly along the presumed contact between pillowed volcanic flows to the south and intrusive gabbro-peridotite to the north. A cross-fault trending North 40 degrees West was also interpreted from geophysics, occurring in the northeast portion of the claim group (Figure 3.). The recently released airborne survey of the Timmins area (O.G.S, 1988) indicates that there are at least two untested airborne conductors occurring in close proximity to the cross-fault.

In 1980, W. G. Wahl Ltd. conducted a magnetic and VLF-EM survey on a group of 23 claims straddling the NewmarketMcCart Township boundary. Part of the survey covered claims Pll31548 and Pll31551 (File 2.3570).

PRESENT SURVEY

The present surveys were conducted by K. M. Cunnison between September 4 and October 30, 1991. North-south picket lines at 100 meter intervals were utilized for control on the survey. Readings were taken at 20 meter intervals for the electromagnetic survey and 10 meter intervals for the magnetometer survey.

The VLF- EM coverage was conducted with a Phoenix VLF-2 receiver tuned to NAA transmitting at 24.0 Khz from Cutler, Maine. The VLF-2 receiver measures the in-phase component of the secondary vertical field to an accuracy of about 2% of the primary field. The data collected are presented in profile at a scale of 1 : 2500 (Maps 1 and 3). The location of the axis of conductors, as shown, was obtained from Frazer filtering the data.

The magnetometer readings were taken with a Barringer Proton magnetometer. This instument is a proton precession magnetometer which measures the earth's total magnetic field to an accuracy of 1.0 gamma. Diurnal variations were monitored every 200 seconds with a Scintrex MP-3 base stationmagnetometer.

Property Geology

Outcrop on the property is confined to the South Claim Group, where excellent exposures of relatively flat lying flows of tholeiite and basaltic komatiite are intruded by sills of ultramafic peridotite-dunite.

The ultramafic intrusive rocks occur as an envelope surrounding the volcanics, with which they are interpreted to be partially fault bounded. They appear to be largely of dunitic/peridotitic parentage, now altered to serpentine, and are commonly massive, orange brown to orange grey weathering and dark blue-black on fresh surfaces. Irregular fracturing and local development of asbestos fibre is common.

The tholeiitic - basaltic komatiite volcanics form a large expanse of outcrop across the central portion of the claim group. The flows dip shallowly to the north at 20-30 degrees and generally consist of a massive base with overlying pillowed to pillow brecciated zones.

The volcanic rocks trend east-west, dip gently north and are right side up. Structurally the property is interpreted to be on the north limb of an east plunging overturned anticline, the axial trace of which trends through the claims immediately to the south. Foliation is generally weak and tends to be parallel to flow contacts. Shearing occurs at least locally along the ultramafic intrusive-volcanic contact but it is not currently known if these are major zones of dislocation. It is suspected that the ultramafics form part of a single sill-like body that is repeated by faulting.

Only traces of mineralization were observed on the property. Minor disseminated pyrrhotite-pyrite occurs along a sheared and rusty weathered contact between the ultramafic intrusives and the volcanics near Line 5 E and 6 E in the southwest corner of the property.

The north Claim Group is devoid of outcrop, but regional airborne magnetic data (OGS, l988) suggest that ultramafic-mafic intrusions dominate this portion of the property.

Geophysical Results

There does not appear to be any definite bedrock VLF conductors on the properties. The axis of a strong to moderatly strong conductor trending east to northeast in the north part of the South Claim Group (Map l) is largely coincident with a steep slope, demarking the north limit of a large area of extensive outcrop. In part, this also represents a mafic volcanic-ultramafic intrusive contact and may in part reflect shearing along the interface. As nickel values are known to occur along this contact zone elsewhere in the area (Figure 3), detailed prospecting is recommended along and near the base of the peridotite.

Only one weak anomaly was detected in the North Claim Group even though strong Airborne INPUT conductors are reported in the east half of the property (OGS, 1988). The generally flat VLF response is interpreted to indicate a thick mantle of glacial overburden, probably in excess of 40-50 metres thick.

Results of the magnetic survey are displayed on Maps 2 and 4, for the South and North Claim Groups, respectively. East to northeast trending zones of magnetic high in the northern and southern portions of the South Claim Group serve to outline the distribution of ultramafic intrsive rocks underlying the property. The centrally located northeast trending tholeiitic to basaltic komatiitic flows have markedly lower magnetic intensities.

An unusual feature in the magnetics of the South Claim Group is the occurrence of a magnetically low "embayment" in the northern intrusive-volcanic contact, situated in the northeastern portion of the property. This embayment may result from intense hydrous alteration and breakdown of magnetite occurring along a possible northeast trending fault structure.

A major northeast trending break in the magnetics on the North Claim Group (Map 4) may indicate the presence of a 100 meter wide fault or shear zone, as suggested by geophysical work by Dominion gulf in 1950. This zone occurs roughly along the presumed contact between pillowed volcanic flows or minor intrusives to the south, which trend northeasterly, and a major gabbro-peridotite body to the north. A northwest trending cross-fault may also occur in the northeast portion of the property.

Reccomendations for Further Work

Both properties are considered favorable areas for nickel sulphide and possibly platinum palladium mineralization,
and warrant further work. On the South Claim Group, detailed prospecting, particularly along and near the contact zone of the ultramafic intrusives with the volcanics is recommended A Max- Min survey of the property is also recommended ts further investigate the VLF conductor outline

On the North Claim Group, Max-Min and more detailed magnetic surveys should be run to further delineate features of the northeast trending break indicated in this survey, particularly in the region of the northwest cross-fault.

REFERENCES

Ontario Geological Survey (OGS)
1988: Airborne Electromagnetic Survey and Total Intensity Survey, Timmins Area, McCart Township. Map 81058. Scale 1:20,000

Satterly, J.
1953: McCart Township. Preliminary Map P.16. Scale 1 inch to $\frac{1}{4}$ mile.

SYMBOLS
\therefore Outcrop area
.-. Geological boundary
A을 pillowlava iwith top direction and dip
10.4 Frocture cleovoge
${ }^{60} \mathrm{Z}$ Foliation

~~~ Shearf fault (interpreted in areas of no outcrop
xxxx Rarsed boulder beach
- P4 Sample location (assay-wholerock-thinsection)
- C- Clam post

\section*{LEGEND}

3a. Dunite-Peridotite (ultramotic intrusion)
\(2 a\) Mg-tholentic basolt

Peridotitic Komatirte (tremolitic)~~~

