REPORT OA GROFHY8ICAL TMYETTCATIOM8
IN
MCCART TOWASHIP, PORCUPIEE NDNTE DIVISIOA, CHRARIO

Introduction

The ground surveyed consisted of nine mining claim numbered P. 64643 to P. 64645 and P. 64650 to P.64655, Eituated in the south Hale of Concession V and the northern part of Concession IV, Lote 7 and 6 in McGart Township. The claime are recorded in the names of S. Chevalier, 211 MacDougall street, South Porcupine, Ontario, and C. Watson, 83-4th Street, Kirkland Lake, Ontario. The claim have been optioned by O'Brien Gold Mines, Limited, 140 Wellington 8treet, Ottava 4, Ontario, and the investigations described in this raport ware carried out on bohaif of this organization.

The line cutting on the property was itarted in November 1964 and the surveys were comploted in Dacember.

The property is directly accessible by arevel-gurfaced conceseion road between Concession 4 and Conceasion 5, Which leaves the Irans Canade Highway (Highway 11) at Nellie Lake and passes through the centre of the property.

Preyious Work

Except for a short distance at the western end of the clain block, where picket line grid covering the adjoining property overlapped our survey area, no evidence of previous work was encountered on the property.

General Geplogy

Outario Department of Mines Preliminary Map P. 16, publiched in 1956, shows an anticlinal axis in pillowed andesite extending in an eastwest direction acrose the northern portion of the proparty. To the north and southeast the lava formations are bordered by intrusive paridotite. M. B. Baker, in Ontario Bureau of Mines 26th Annual Report, 1917, page 271, describes massive suiphide occurrences along a sharp serpentine andesite contact in the southeastern quarter of Lot 7, Concension 5 in MeCart Township.

Geophyatcal Suryeys

The objectives of the geophystical surveys ware to locate on the ground conductive zones, the presence of which in the area had been revealed by a preceding airborne B.M. and magnetic survey. The ground surveys consisted of magnetic and electromagnetic surveys. The actual area survoyed extended eastwards beyond the limits of the ground under option to O'Brien cold Mines, Limited. This was done to include in the surveyed area the masive sulphides mentioned by M. B. Saker in his report of 1917 , and thus be able to compare any conductors of unknown sources against one caused by a known sulphide mass. A picket line grid was cut to cover the nine claims. The Iines were cut at 400 foot intervale, which were decreased to 200 foot intervala once the conductive zones had been located. stations on the picket lines were marked every 100 feet. The northern east-west claim boundary in Concession 5 was used for a base line, and the road between Concessions 4 and 5 served as a tie line.

(a) Magnetic Survey

The instrument used in the urvay we a Bharpe Model As magetometer. The readings were taken in scale divisions and had to be converted to gammas later. For the magaetic intensity of this particular area the magnetometer had a sensitivity of 26 to 29 gammas per cale division. Although the manufacturer's instructions advise that diurmal corrections are not critical for this instrument, base etation vere established along the southern tie line, with readings there being taken at one to two hour intervals.

The results of this survey are presented in the form of magnetic profiles, which are plotted to a cale of $1^{1 \mathrm{~m}} 2,000$ gammas. The reading: of 56,500 gamme was selected for the background value, and this paraitted most of the magnetic values to be presented as positive, i.e. to be plotted on the geophysical plans to the left of the plcket lines. The radinge were taken first at 100 foot intervals, and in the magnetically anomilous areas at 50 and 25 foot intervals.

(b) Electromgenetic suryey

A McPhar dual frequency 1,000/5,000 c.p.s. vertical loop Z.M. syatem was used in the survey. The power for the tranmitter mas supplied by a gasoline engine powered 500 watt generator. For the duration of the survey the transmitter did not operate at $5,000 \mathrm{c} \cdot \mathrm{p} . \mathrm{s}^{\text {. and }}$ consequently the results obtained are for 1,000 c.p.s. only. The transmitting coil locatlone are terned "etups" each one being marked on the maps with triangle and bearing a code letter. Several picket lines ware traversed with the receiving coil when the transmitting coil was at any one location. Readinge on these ilnes were taken at 100
foot intervals and on the geophysical plens they are related to the correaponding setups by the code letters at the and of each series of readinge.

The measurements are termed "dip angles" and are recorded in degrees. These angles measure the amount of distortion of the primary (applied) electromagnetic field by secondary fields associated with currents induced in sub-surface electrical conductors. The recorded values have been profiled in the E.M. profile plans to a cale of $\mathbf{1 月 n}^{\boldsymbol{m}} \mathbf{2 0 ^ { \circ }}$. The northerly dips have been considered negative and are plotted below the picket lines. A total of 16 different setups were made and all picket lines except for the last few lines at either end of the grid were read from several transmitter locations.

Discussion of Resulte

The western half of the property between L-0 and L268 is flat and low-laying, with no outcrops. There is also no magnetic relief over this area. Eastwards from L268 are peridotite outcrops and the magnetic relief is very high and very erratic. Four definite conductors and one probable conductor were outlined by the electromagetic aurvay. silght shifting in the cross-over positions occurred with changes in the traminter locations. The strong magnetism of the underiying ultrabasic rocks maks any magnetic highs that might be asociated with these conductive zones.

Conductor A: Line 228 to Line 268, $5+008$ to $5+308$ Pair reaponse. Vo magnetic relief. The conductor occurs in avampy area away from outcrops.

Conductor $\mathrm{B}:$ Line 282 to Line $32 \mathrm{z}, 5+008$ to $5+508$. strong response. The conductor is situated in a "magnetic low" on the south flank of a moderate magnetic anomily.

> Conductor C: Line 368 to Line 408, $9+008$ to $10+008$. Strong to fair reaponse. The conductor coineides with a magnetic anomaly of about 2,000 gamat.

> Conductor D: Line 448 to Line 528, $11+258$ to $7+508$. Very atrong reaponse. Hishly erratic magnetic profiles. The conductor probably outlines the sulphide body described by Baker.

> Conductor E: Line 30 B to Line $36 \mathrm{R}, 19+008$ to $25+008$, Good response on Line 308. Because of the poor response on the more easterly lines this has been classified as a probable conductor only. The conductive sone form an angle of 45° with the north-south picket lines, and the poor results may be caused by this improper coupling.

The lack of dip angle values for the 5,000 c.p.s. frequency make: it difficult to speculate about the exact source of the subisurface conductivity. However, since all but Conductor A occur in outcrop areas, geological investigations, once the ground is free of snow, wight shed some light on possible causes of the conductivity.

Abstract

Sumpary Magnetic and electromagnetic ground surveye were carried out over nine mining claims in McCart Township, situated in Concessions 4 and 5. Four definite and one probable electromagnetic conductore ware located in the eastern half of the surveyed area. No magmetic rellef was encountered

over the western half of the nine claim block. In the eastern half, where there are outcropping ultrabasic rocks, the magnetic relief is very high and very erratic. To determine the possible causes of the conductivity, geological investigations would be in order.

Roland A, Benkle, B. Bc., Geologist

Ottawa, Ontario,
20th May 1965.

LOCATION PLAN

m

