

Ontario Prospector's Assistance Program
OP 98-346
OP 98-347

GEOPHYSICAL REPORT (Assessment)

Ground HLEM and Ground Magnetometer Surveys Mining Claims P 1203216, P1200098, P 1200099, P 1200100, P 1200101, P 1217457, P 1217458, P 1217459

Property LD 23
Township of McCart
District of Cochrane
Porcupine Mining Division
2.19476

Sue Gamble
Dave Gamble
70 First Street
Kirkland Lake, Ontario
P2N 1N3
December 11, 1998

TABLE OF CONTENTS

Page Number

INTRODUCTION 3
PROPERTY OWNERSHIP 3
PROPERTY LOCATION 3
ACCESS 4
GEOLOGY 4
TARGETS FOR EXPLORATION 5
PROPERTY HISTORY AND CURRENT ACTIVITY 5
1998 EXPLORATION PROGRAM:
LINECUTTING 6
HLEM GEOPHYSICAL SURVEY 6
discussion of hlem survey results 7
MAG SURVEY 7
DISCUSSION OF MAG SURVEY RESULTS 8
CONCLUSIONS AND RECOMMENDATIONS 8
QUALIFICATIONS OF AUTHORS 9APPENDIX A. GEOMETRICS PROTON PRECESSION MAGNETOMETERAPPENDIX B. APEX MAX-MIN II HLEM UNIT
MAPS
FIGURE 1 - LOCATION MAP 1: 100000
FIGURE 2 - CLAIM MAP 1 inch - $1 / 2$ mileFIGURE 3 - AEM/ AMAG MAP 1 inch - $1 / 2$ mileFIGURE 4 - COMPILATION MAP MAG AND HLEM RESULTS
FIGURES HLEM 1 to 6 - SURVEYS 888, 1777, 3555 Hz., 200 \& 250 m coilseparations, 1: 5000, in back pocketFIGURE MAG 1 - MAG SURVEY, Total Field, 1: 5000, in back pocket

INTRODUCTION:

During September and October, 1998, an exploration program consisting of line cutting, horizontal loop EM, and Mag surveys were carried out over the expanded LD 23 property in McCart Township. The purpose of the geophysical surveys was to locate airborne geophysical targets on the ground and to develop new geophysical targets for potential drill testing. This report contains the results of the HLEM and Mag surveys carried out over the LD 23 property. Several moderate strength anomalous HLEM conductors were recovered in the survey.

PROPERTY OWNERSHIP:

The mining claims P 1203216, and P 1200098, P 1200099, P 1200100, P 1200101, P 1217457, P 1217458, and $P 1217459$ which make up the expanded LD 23 property, are jointly held by Sue Gamble (50\%) and Dave Gamble (50\%) of 70 First Street, Kirkland Lake, Ontario. P2N 1N3, see Location Map, Figure 1.

PROPERTY LOCATION:

```
Property Name: LD 23, NTS Map Sheet 42A N/E
Porcupine Mining Division
McCart Township Claim Map Sheet G-3541, 8 claims contiguous, 40 units.
Claim Numbers: P 1203216 (8 units); P 1200098 (4 units); P 1200099 (4units);
P 1200100 (4 units); P 1200101 (4 units); P 1217457 (6 units);
P 1217458 (6 units); P 1217459 (4 units), see Claim Map, Figure 2.
S1/2 of Lots 4 and 5, Con IV
S1/2 of Lot 6, Con IV
S 1/2 of Lot 7, Con IV
E1/2 of S 1/2 of Lot 8, Con IV
N 1/2 of Lot 4, Con III,
N1/2 of Lot 5, Con III,
S 1/2 of Lot 5, Con III,
N 1/2 of Lot 6, Con III,
N1/2 of Lot 7, Con III,
E1/2 of N1/2 of Lot 8, Con III,
```

Latitude and Longitude: (northeast corner of property) UTM Coordinates:

2

Claim Location Map

LD 23

Sote Ded $41993 /$	NTS. 42A
	Drawn/Reference Fry

ACCESS:

The LD 23 claim group is located approximately 48 kms northeast of downtown Timmins, Ontario in McCart Township, and approximately 12 kms east of the Town of Iroquois Falls, Ontario. Take Hwy. 11 towards Cochrane from where Hwy. 101 meets Hwy. 11 east of Timmins. Proceed along Hwy. 11 into Calvert Township past the Iroquois Falls airport for approximately 2.4 kms to where a concession road leads westerly. This road is opposite Hwy. 578 leading east into Iroquois Falls. This concession road extends into McCart Township between Cons IV and V. Proceed along this concession road for approximately 5.2 kms to where a 400 m bush trail leads south to the property.

The south boundary of the property is also accessible via the Wilson Lake Con II - Con III road that leads westerly from Hwy 11 some 2.6 kms south of the north entrance to Iroquois Falls and immediately north of the Iroquois Falls airport. Proceed along the Wilson Lake road for 7 kms to the south limits of the property along the concession road. An all terrain vehicle trail leads north from the concession road near the Lot 5/6 boundary and cuts through the central and western parts of the property.

GEOLOGY:

The regional geological setting of the LD 23 property is within the Western portion of the Archean Abitibi Greenstone Belt. A major calc-alkaline belt of felsic volcanics lying to the north of the Porcupine-Destor fault are known as the Kidd-Munro and Duff-Coulson-Rand rhyolite assemblages. These felsic volcanic assemblages have been complexly folded into regional syn and anticlinal structures. In addition several regional north-northwest trending faults transect the area. Mineralization within or proximal to the Kidd Creek rhyolite assemblage, and along regional north - northwest rending fault structures, is well known at the Kidd Creek Mine some 22 miles to the west. Flanking these felsic assemblages to the north and south are mafic and ultramafic rocks. Sediments are also found to the south. Deep overburden has presented a challenge to exploration in the region as a whole.
O.G.S. maps 2484 and 2205 are the best available compilations of regional geology.

Bedrock exposures in the immediate area of the property are unknown. Overburden cover appears to be substantial. Geological interpretation relies on drill hole and geophysical information. Based on only sparse knowledge the property is likely to be underlain by mafic and/or felsic volcanics, and/or sediments.

A one hole drill program was carried out by the current property holders in late 1996, which shed light on the geology. The hole was collared in very altered ankeritic rock originally described as rhyolite in the 1996 report, because of its colour, hardness, and texture. Upon conducting whole rock analysis and using staining techniques it was found that the original rock was low in silica, and probably a mafic rock which showed extreme ankeritic alteration and buff tan bleaching. The conductor was found to be a graphitic rich intercalated sedimentary horizon in and along a major graphitic fault structure.

TARGETS FOR EXPLORATION:

The commodities and type of deposits sought on the LD 23 property are volcanogenic polymetallic massive sulphides ($\mathrm{Cu}-\mathrm{Zn}-\mathrm{Au}-\mathrm{Ag}$), and structurally related gold mineralization.

The lack of bedrock exposure due to the heavy overburden in this entire belt, has provided the potential for deposit hideability. It therefore requires the use of deep penetrating geophysical techniques to help make deposit discoveries.

PROPERTY HISTORY AND CURRENT EXPLORATION ACTIVITY:

A search of the Porcupine Mining Division assessment files shows work on the LD 23 property has been nil. The location of LD 23 with old patented land adjacent to the east north, and west has probably proved a hindrance to exploration in the past. In 1966 INCO held a large tract of land in McCart Township which may have included the LD 23 property.

Work has been carried out near the property by the following: INCO File T- 1324 (1966) ddh, D. R. Pyke File T- 3383 (1993) geology, B. Raine T- 3375 (1991) AEM, Placer Dome T - 3252 (1989) ddh.

Reference to the only known compilation of data in McCart was done by J. Satterly in 1953 for the Ontario Department of Mines and the Porcupine Mining Division assessment files can be made for greater detail on the above.

The current property holders acquired the LD 23 ground in November 1993, and June, 1995. The property hosts several AEM targets, which are the current targets of exploration by the property holders, see AEM Map, Figure 3.

In October - December, 1996 a one hole drill program was conducted on the LD 23 property (See filed assessment report on the drill hole and results by the current property holders). The property was expanded in 1997 as a result of the 1996 drill hole.

1998 EXPLORATION PROGRAM

LINECUTTING:

Linecutting on the LD 23 property consisted of expanding the 1995 grid to cover the newly acquired claim units. On the new grid 1.2 km of new baseline, 3.46 km of new tie lines were cut on an azimuth of 090 deg., and 25.785 km of new grid lines on an azimuth of 000-180 degrees were established. A total of 30.445 km of linecutting was carried out. The lines were cut, chained, and picketed with stations established every 25 meters. Spacing and orientation of the grid lines were determined to fit the interpreted geological/ geophysical setting and to remain consistent with the grid established in 1995. All base and tie lines were established east-west and grid lines north-south. The work was carried out from September 16th to September 25, 1998 out under contract to Native Exploration Services of Ouje Bougoumou, P. Q.

See the plans accompanying this report in back pocket for grid layout.

HLEM GEOPHYSICAL SURVEY:

An Apex Max-Min II electromagnetic horizontal loop unit, with a coil separation of 200 meters was used to survey the new grid. Upon completion of the survey using the 200 m cable coil spacing it was decided to survey and verify certain line sections over the anomalous responses using a 250 m cable coil spacing. (See appendix for instrument specifications.) Survey data was recorded as the in-phase and out-of-phase (quadrature) percentage of primary field and plotted as profiles at a scale of $1 \mathrm{~cm}=50 \%$. The HLEM readings were taken at 25 meter station intervals on the grid lines for both the 200 meter and 250 meter coil separation surveys. A total of 848 stations were utilized in the 200 m coil separation HLEM survey, and 300 stations utilized in the 250 metre coil separation HLEM survey. The three frequencies, $888 \mathrm{~Hz}, 1777 \mathrm{~Hz}$, and 3555 Hz were read for both the 200 meter and the 250 meter coil separation surveys. Separate plans are produced for each frequency using both the 200 meter and 250 meter coil separation at a scale of 1: 5000. A total of 24.3 km of HLEM surveying was completed using the 200 m coil spacing, and a total of 9.3 km of HLEM surveying was completed using the 250 m coil spacing.

The field surveys were carried out from September 23 to October 5, 1998, and from October 22 to October 27, 1998 under contract to Native Exploration Services. The receiver operator was Mr. Robbie McCormick of 503 First Street, Chibougamau, P. Q. G8P 1K8, and the transmitter operator was Mr. Claude Grenier of 346, 2nd Street, Chibougamau, P. Q. G8P 1M3.

The results of linecutting and HLEM geophysical surveys are plotted on the accompanying 6 plans, numbered Figures HLEM 1-6 at a scale of 1:5000, see back pocket.

DISCUSSION OF HLEM SURVEY RESULTS:

The HLEM survey of the property resulted in the recovery of a strong anomalous HLEM conductive response flanked to the south by a parallel weak HLEM conductive response.

On the claim group, a well defined, strong 1.8 km conductor axis is located from grid west to grid east starting approximately from L $10+00 \mathrm{~mW} / 4+00 \mathrm{~m} \mathrm{~S}$ and extending to $\mathrm{L} 8+00 \mathrm{mE} / 11+25 \mathrm{~m} \mathrm{~S}$. A weaker flanking conductor immediately south of the strong conductor extends from L $8+00 \mathrm{~mW} / 8+50 \mathrm{~m}$ S to $\mathrm{L} 6+00 \mathrm{mE} / 14+25 \mathrm{~m} \mathrm{~S}$. The strong conductor is well defined on all three frequencies, on 888 Hz , on 1777 Hz , and on 3555 Hz and on both the 200 m coil separation and 250 m coil separation surveys, see Figures HLEM 1 - 6 , in back.

The strong conductor axis trends on an azimuth of approximately 115 degrees and from the in-phase profiles apparently dips steeply south to near vertical. The conductor is characterized by moderate out-of phase readings on the 888 Hz , 1777 Hz , and 3555 Hz surveys, resulting in moderate to good in-phase to out of phase ratios, suggesting a bedrock conductive source with little conductive overburden influence. The 250 m coil separation surveys confirm the presence of the strong HLEM anomaly at a slightly deeper depth and also shows a strengthening in the response. The south flanking parallel conductor is weak and probably represents either a parallel structure or lithology to the stronger main HLEM conductive trend. This weaker HLEM trend is of secondary importance pending the results of future drill testing of the stronger main conductive target.

This HLEM conductor is located in an area of relatively flat magnetics on the west and central parts of the grid. On the east end of the grid the conductor axis flanks the south side of $200-300 \mathrm{nT}$ small magnetic high feature that may be open to the southeast.

MAG SURVEY:

A Geometrics G-816 total field proton precession magnetometer was used to survey each grid line. (See appendix for instrument specifications.) Check in base station were established on the grid and remained constant ($+/-5 \mathrm{nT}$) throughout the survey. It was not necessary to correct the grid line data for diurnal variations. Magnetometer readings were taken at 12.5 meter station

 Including 1998 Grid and 1995 Grid, Previous Drill Holes by lacer Dome, Amoco, and OPAP and

intervals on the 200 meter spaced grid lines. A total of 1892 survey readings were recorded over 23.65 km of completed mag survey.

All mag data points are posted at each station and plotted at 1:5000, and as well the mag results are also contoured at a contour interval of 100 nT to show any anomalous features, see Figure Mag 1, in back pocket.

The mag field surveys were carried out from September 23 to 28,1998 under contract to Native Exploration Services. The mag operator was Mr. Robbie McCormick, 503 First Street, Chibougamau, P. Q. G8P 1K8, with assistant, Mr. Claude Grenier, 346 2nd Street, Chibougamau, P. Q. G8P 1 M3.

DISCUSSION OF MAG SURVEY RESULTS:

The magnetometer survey of this property was carried out during September of 1998. The mag survey results show a magnetic signature variations ranging from a low of 57496 nT to a high of 58077 nT . The property shows relatively flat magnetic response in the west and central part of the grid. On the south east end of the grid a mag high feature 57903 nT is centered on $\mathrm{L} 12+00 \mathrm{mE} / 12+$ 00 m S and trends to the west for 200 m and to the east off the grid area. Immediately adjacent to the south of the mag high feature on the grid is the start of a magnetic low 57496 nT . The location of the HLEM conductor axis lies to the south of this small magnetic feature and shows no direct correlation.

CONCLUSIONS AND RECOMMENDATIONS:

A moderate to strong HLEM conductive trend was recovered on Property LD 23. The conductor axis trends on an azimuth of 115 degrees extending from $\mathrm{L} 10+00 \mathrm{~m} \mathrm{~W} / 4+00 \mathrm{~m} \mathrm{~S}$ to $\mathrm{L} 8+00 \mathrm{mE} / 11+25 \mathrm{~m}$ S covering a strike length of 1.8 km., see Compilation Map Figure 4, and Figures HLEM $1-6$ for Detail Survey Plans. A weak HLEM conductor flanks and parallels the main conductor to the south.

Further geophysical surveying on several grid lines over the conductor such as Pulse EM, or Time Domaine EM or I.P. may help to further define the limits of this HLEM bedrock source, but of course does not explain the source. At this time, it is recommended that a one hole diamond drill test of this HLEM conductor is warranted to determine the source of the conductivity. The drill testing the HLEM conductor axis centered on LO+00 mE/8+50 m S is recommended.

Dave Gamble Sue Gamble

December 11, 1998

CERTIFICATE OF THE AUTHOR

I, Dave Gamble, of 70 First Street, Kirkland Lake, Ontario, P2N 1N3, hereby certify that:

1. I am a geologist residing at the above address.
2. I am a graduate of the University of Ottawa with an Honours B.Sc. degree in geology (1973), and have completed two years graduate studies leading towards a M.Sc. degree (geology) at Laurentian University (1974-1976).
3. I have practiced my profession for more than 25 years.
4. I have, in conjunction with Sue Gamble, planned, and directed, the geophysical surveys represented in this report; and have, compiled and interpreted the results of this survey.
5. I hold a 50\% interest in this property.

Respectfully submitted,

Dave Gamble, B. Sc. (Hon. Geol.)
December 11, 1998

CERTIFICATE OF THE AUTHOR

I, Sue Gamble, of 70 First Street, Kirkland Lake, Ontario, P2N 1N3, certify that:

1. I am a prospector residing at the above address and have held an Ontario Prospector's License since 1979.
2. I am a graduate of the University of Ottawa and Simon Fraser University, and have studied earth science for two years at the University of Ottawa, and for one year at Laurentian University.
3. I have more than 20 years relevant practical experience relating to prospecting and mineral exploration.
4. I have, in conjunction with Dave Gamble, planned, and directed the geophysical surveys represented in this report; and have compiled and interpreted the results of this survey.
5. I hold a 50% interest in this property.

Respectfully Submitted,

Sue Gamble, B. A., P.D.P.
December 11, 1998

APPENDIX A - Geometrics Portable Proton Magnetometer

1.0 GENERAL INFORMATION

1.1 INTRODUCTION

The Model G-816 Portable Proton Magnetometer is a complete system designed for all man-carry field applications requiring simple operation and stable measurements of the total intensity of the earth's magnetic field. The G-816 is accurate and stable to within ± 1 gamma over a range from 20,000 to 90,000 gammas. Since the instrument measures total field intensity, the accuracy of each measurement is independent of sensor leveling. Furthermore, the measurement is based upon on atomic constant * and is independent of temperature, humidity, and sensor orientation. The inherent simplicity of the G-816 proton magnetometer allows rapid, accurate measurements to be obtained from a rugged, compact field instrument. This is a precision instrument and reasonable attention must be given to handling, battery condition, and magnetic environment.

1.2 MAGNETIC ENVIRONMENT

It is important that the earth's magnetic field is not obscured by allowing unnanted magnetic objects to come close to the sensor, Such objects include rings, keys, watches, belt buckles, pocket knives, metal pencils, zippers, some hats, etc. When the sensor is used on the staff, 1 gamma surveys are easily performed provided the sensor is kept at a distance of 3 feet from the operator. When the sensor is used in the backpack, certain articles of clothing and some types of batteries within the console will cause a 5 to 10 gamma shift in readings. The G-816, however, still provides 1 gamma sensitivity and repeatability despite the presence of such a base line shift. The backpack feature is recommended for use in difficult terrain where "hands free" operation is required.

Prior to survey use, objects that are suspected to be magnetic may be checked in the following manner:

1. Attach sensor to staff and connect coiled signal cable to console. Sensor should not be moved or turned during the test, and the suspected ande stould be fa a a m mandy.
*Proton Gyromagnetic Ratio: $(2.67513 \pm 0.00002) \times 10^{4}$ Radians/Gauss second.
```
APPENDIX A. ( Page 2 of 3)
```

Operating Manual
Model G-816
Portable Proton Magnetometer
2. Cycle the magnetometer a few times by depressing the READ button--releasing--and waiting for a reading each cycle.
3. Observe measurement readings. Each reading should repeat to ± 1 gamma. (A slow shift may occur over several minutes due to a diurnal change in the earth's field.)
4. Place the suspected article at the distance from the sensor expected during actual survey operation.
5. Cycle magnetometer several times and note the readings.
6. Remove the article and repeat steps 2 and 3 to check for diurnal shifts in the earth's field. If a diurnal shift is present. repeat entire test.
7. If the readings obtained in step 5 differ by more than ≤ 1 gamma (=one count) from those obtained in steps 3 and 6 . then the article is magnetic.

IF THE ARTICLE IS HIGHLY MAGNETIC, OR IF THE SENSOR IS INSIDE OR NEAR A BUILDING OR VEHICLE, THE PROTON PRECESSION SIGNAL WILL BE LOST. GIVTNG COMPLETELY ERRATIC READLVGS AND LOSS OF -1 COLNT REPEATABILITY.

The magnetometer should not be operated in areas that are known sources of radio frequency energy. power line noise (transformers). in buildings or near highly magnetic objects. The sensor should always be placed on the staff above the ground, or in the "bachpack". The sensor will NOT operate properly when placed directly on the ground.

1.3 SPECIFICATIONS

Sensitivity:	$=1$ gamma throughout range
Range:	20.000 to 90.000 gammas (worldwide)
Tuning:	Multi-position switch with signal ampli- Gradient Tolerance: Sampling Rate:
	Exceeds 800 gammas/ft
	Manual pushbutton, one reading each

Output: $\quad 5$ digit numeric display with readout directly in gammas

Power Requirements:	Twelve self-contained 1.5 volt " D " cell universally available flashlight-type batteries. Charge state or replacement signified by flashing indicator light on display.
Temperature Range:	Console and sensor: -40° to $+85^{\circ} \mathrm{C}$
	Battery pack: \varnothing^{∞} to $+50^{\circ} \mathrm{C}$ (limited use to $-15^{\circ} \mathrm{C}$; lower temperature battery belt operation optional)

Accuracy (Total Field): ± 1 gamma through 0° to $+50^{\circ} \mathrm{C}$ temperature range

Sensor:	High signal, noise cancelling, interchangeably mounted on separate staff or attached to back pack
Size:	Console: $3.5 \times 7 \times 11$ inches ($9 \times 18 \times 28 \mathrm{~cm}$) Sensor: 3.5×5 inches ($9 \times 13 \mathrm{~cm}$) Staff: 1 inch diameter $\times 8 \mathrm{ft}$. length ($3 \mathrm{~cm} \times 2.5 \mathrm{~m}$)

Weight:
Console (w/batteries): $\quad \frac{\mathrm{Lbs}}{5} \mathrm{~K}$.
Sensor and signal cable: 41.8
Aluminum staff: $\quad \frac{2}{11.5} \quad \frac{.9}{5.2}$

CONTROLS AND INDICA TORS

APPENDIX B. APEX - Max-Min II

坏 Five frequencies: 222, 444, 888,7777 and 3555 Hz .
E Maximum coupled (horizontal-loop) operation with reference cable.

辰 Minimum coupled operation with reference cable.
E Vertical-loop operatiqp withgut reference cable. [with cable] or T00, 2a0,300, 400, 500 and 800 ft.

푸 Reliable data from depths of up to 180 m [EODft].
E: Built-in vaice communication circuitry with cable.
f Tilt meters to control coil orientation.

SpsEqF:DATimiss:

\therefore :alc صanges

VOW R1S =A\% \therefore 减MRATUFF:

3: Ai:

222.444. 888.1777 and 3555 Hz

MAX: Transmitter coil plane and receiver coil plane horizonsat (Max-coupled: Horizontal..cos model Used with refe: carve
MIN: Transmitter coilplane trizizon. tal and receiver coil plane ver. Lical (Min-coupled mone) Used with reference :zite
V.L. : Transmitter coilplane vertical and receiver coil plane horizoncal (Vertical-loop mode). Used without reference cable, in parallel :res
25.50. 100. 150.200 \& 250m (Mivis) or 100.200 .300 .400 .600 and BOO ti. (MMIIF).
Coilseparations in VL.mode not restricced to fixed values
: mineters Fead

DADAKMETHES A M以

Declaration of Assessment Work Performed on Mining Land

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990
=
W9960.00225
Assessment Files Research Imaging

subsection 65(2) and 66(3) of the Mining Act. Under section 8 of the Mining Act. issesmenl work and correspond with the mining land holder. Questions about this orthern Development and Mines, 3rd Floor, 933 Ramsey Lake Road. Sudbury
42A15sw2008 $2.19476 \quad 900$

Instructions: - For work performed on Crown Lands before recording a claim, use form 0240.

- Please type or print in ink.

2. Type of work performed: Check (\checkmark) and report on only ONE of the following groups for this declaration.

Geotechnical: prospecting, surveys,
assays and work under section 18 (regis)
Work Type

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required;

- provide proper notice to surface rights holders before starting work;
- complete and attach a Statement of Costs, form 0212;
- provide a map showing contiguous mining lands that are linked for assigning work;
- include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a list if necessary)

4. Certification by Recorded Holder or Agent

I, A. P. DAUCD GArBLE, , do hereby certify that I have personal knowledge of the facts set forth in this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

1. A. P. DAVID $\underset{\text { (Print full Name) }}{\operatorname{GA}}$ \qquad , do hereby certify that the above work credits are eligible under subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

6. Instruction for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\checkmark) in the boxes below to show how you wish to prioritize the deletion of credits:

1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.

- 2. Credits are to be cut back starting with the claims listed last, working backwards; or
- 3. Credits are to be cut back equally over all claims listed in this declaration; or

4 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe): BANK FIKST, THEN P 1217457 ,

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first followed by option number 2 if necessary.

For Office Use Only

Received Stamp

Deemed Approved Date	Date Notification Sent
Date Approved	Total Value of Credit Approved
Approved for Recording by Mining Recorder (Signature)	

Approved for Recording by Mining Recorder (Signature)

RECEIVED
MA:
GEOSIIECEASASESSMENT
OFFICE

Statement of Costs for Assessment Credit

Transaction Number (office use)

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation $6 / 96$. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Norther Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Calculations of Filing Discounts:

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.
2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

Note:

- Work older than 5 years is not eligible for credit.
- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

1. A.P. David Gamble
(please print full name) be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying Declaration of Work form as \qquad A.P. David Fainble I am authorized to make this certification.

Ministry of
Northern Development and Mines

Ministère du

 Développement du Nord et des MinesGeoscience Assessment Office 933 Ramsey Lake Road
6th Floor
Sudbury, Ontario
P3E 6B5
Telephone: (888) 415-9846
Fax: (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mlsmnnge.htm

Submission Number: 2.19476
Status
W9960.00225 Deemed Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section \#6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact Steve Beneteau by e-mail at steve.beneteau@ndm.gov.on.ca or by telephone at (705) 670-5855.

Yours sincerely,

ORIGINAL SIGNED BY
Blair Kite
Supervisor, Geoscience Assessment Office Mining Lands Section

Work Report Assessment Results

Submission Number: 2.19476

Date Correspondence Sent: June 01, 1999

General Comment:

