DIAMOND DRILLING

TOWNSHIP:
MCcart TWP.

WORK PERFORMED FOR: PLACER DOME INC.

RECORDED HOLDER: SAME AS ABOVE [${ }_{\mathrm{X}}$]
: OTHER [I

CLAIM NO.	HOLE NO.	FOOTAGE	DATE	NOTE
P 1038159	$356-001$	165.0 M	SEPT./SEPT./89 (1)	
P 1008700	$356-001$			

NOTES:
(1) W 9006.60425 (FILED OCT. 18 TH .1990
placer dome inc.

angles. Trace pyrite.
53.0053 .95 similar to 52.00 to 53.00 .
$53.9554 .615 \%$ quartz stringers, to 2 cm , at various angles. 2% pyrite.
$54.6155 .585 \%$ quartz stringers, to 2 cm , at various angles. Trace pyrite.
55.6856 .00 similar to 54.61 to 55.58
56.4857 .183 to 5% quartz stringers, to 1 cm , at various angles. 5% pyrite.
$57.1858 .18 \quad 3$ to 5% quartz veins, to 5 cm , at various angles. Trace pyrite.
58.1859 .15 similer to 57.18 to 58.18 .
59.1560 .17 similar to 57.18 to 58.18 .
60.1761 .17 Similar to 57.18 to 58.18 .
61.1761 .61 similar to 57.18 to 58.18 .
$66.8267 .2010 \%$ quartz veins, to 2 cm , at various angles. Trace pyrite.
$68.0069 .045 \%$ quartz stringers, to 1 cm , at various angles. 1\% pyrite.
69.0470 .04 Similar to 68.00 to 69.04 .
70.0471 .00 similar to 68.00 to 69.04 .
71.0072 .02 similar to 68.00 to 69.04 .
72.0273 .04 similar to 68.00 to 69.04 .
$73.04 \quad 74.00 \quad 3$ to 5% quartz stringers, to 1 cm , at various angles. 3% pyrite.
74.0075 .00 similar to 73.04 to 74.00 .
75.0076 .003 to 5% thin quartz stringers at various angles. Trace pyrite.
76.0077 .00 similar to 75.00 to 76.00
77.0078 .02 similar to 75.00 to 76.00
78.0278 .50 similar to 75.00 to 76.00 .
78.5079 .10 Local flow breccia. 3% thin quartz stringers at various angles. 3% pyrite.
79.1080 .10 Local flow breccia. 5% quartz, mainly as matrix. 5\% pyrite.
80.10 81.15 Flow breccia. 5% quartz veins, to 3.5 cm , mainly at 75 degrees. Trace pyrite.
81.1581 .94 Similar to 80.10 to 81.15
81.9483 .00 Flow breccia. 5% quartz veins, to 3.5 cm ,

E25141	53.00	53.95	. 95
E25142	53.95	54.61	. 66
E25143	54.61	55.58	. 97
E25144	55.68	56.00	. 32
E25145	56.48	57.18	. 70
E25146	57.18	58.18	1.00
E25147	58.18	59.15	. 97
E25148	59.15	60.17	1.02
E25149	60.17	61.17	1.00
E25150	61.17	61.61	. 44
E25151	66.82	67.20	. 38
E25152	68.00	69.04	1.04
E25153	69.04	70.04	1.00
E25154	70.04	71.00	. 96
E25155	71.00	72.02	1.02
E25156	72.02	73.04	1.02
E25157	73.04	74.00	. 96
E25158	74.00	75.00	1.00
E25159	75.00	76.00	1.00
E25160	76.00	77.00	1.00
E25161	77.00	78.02	1.02
E25162	78.02	78.50	. 48
E25163	78.50	79.10	. 60
E25164	79.10	80.10	1.00
E25165	80.10	81.15	1.05
E25166	81.15	81.94	. 79
E25167	81.94	83.00	1.06

mainly at 75 degrees. 5 to 10% pyrite.
83.0083 .40 similar to 81.94 to 83.00 .
83.4084 .06 flow breccia. 5% quartz veins, to 3.5 cm , mainly at 75 degrees. 2% pyrite.
84.0685 .03 Flow breccia. 1% thin quartz stringers mainly at 75 degrees. Trace to 3% pyrite.
85.0386 .00 Flow breccia. Locally very weakly conductive. Locally graphitic matrix. 1% thin quartz stringers mainly at 75 degrees. Trace to 3% pyrite.
86.92 87.91 Fractured. 1 to 3% pyrite.
87.9188 .26 similar to 86.92 to 87.91
88.2689 .22 Local flow breccia. 3 to 5% pyrite
$89.4390 .265 \%$ thin quartz stringers at various angles. 1% pyrite.
91.7192 .08 Carbonate quartz vein.
92.0893 .095 to 10% quartz stringers, to 1 cm , at various angles. 1% pyrite.
93.0994 .05 similar to 92.08 to 93.09 .
94.0595 .00 Similar to 92.08 to 93.09.
95.0095 .54 Similar to 92.08 to 93.09 .
95.5496 .58 10\% quartz-calcite, as thin stringers and fracture-filling. Trace to 3% pyrite.
96.5897 .24 Similar to 95.54 to 96.58 .
97.24 97.59 Flow breccia. 10\% quartz-calcite, as thin stringers and matrix. 5% pyrite.
97.59 98.59 Local flow breccia. 10\% quartz-calcite, as thin stringers and fracture-filling. 1% pyrite.
98.5999 .59 similar to 97.59 to 98.59.
99.59100 .59 similar to 97.59 to 98.59. Mafic dyke, at 75 to 85 degrees, from 100.12 to 100.25 .
100.59 101.57 similar to 97.59 to 98.59.
101.57102 .57 similar to 97.59 to 98.59.
102.57103 .60 similar to 97.59 to 98.59.
103.60104 .12 Similar to 97.59 to 98.59.
104.12 105.13 Locally fractured. 10\% quartz-calcite as thin stringers and fracture-filling. 3% pyrite.
105.13106 .07 simitar to 104.12 to 105.13 .
106.07107 .10 similar to 104.12 to 105.13.
107.10107 .79 similar to 104.12 to 105.13.

E25168	83.00	83.40	. 40
E25169	83.40	84.06	. 66
E25170	84.06	85.03	. 97
E25171	85.03	86.00	. 97
E25172	86.92	87.91	. 99
E25173	87.91	88.26	. 35
E25174	88.26	89.22	. 96
E25175	89.43	90.26	. 83
E25176	91.71	92.08	. 37
E25177	92.08	93.09	1.01
E25178	93.09	94.05	. 96
E25179	94.05	95.00	. 95
E25180	95.00	95.54	. 54
E25181	95.54	96.58	1.04
E25182	96.58	97.24	. 66
E25183	97.24	97.59	. 35
E25184	97.59	98.59	1.00
E25185	98.59	99.59	1.00
E25186	99.59	100.59	1.00
E25187	100.59	101.57	. 98
E25188	101.57	102.57	1.00
E25189	102.57	103.60	1.03
E25190	103.60	104.12	. 52
E25191	104.12	105.13	1.01
E25192	105.13	106.07	. 94
E25193	106.07	107.10	1.03
E25194	107.10	107.79	. 69

\qquad SAMPLE FROM TO LENGTH Au g/t RERUN REJECT AVERAGE

107.79108 .39 Locally fractured. 15\% quartz-calcite, mainly as thin stringers and fracture-filling. 3% pyrite.	E25195	107.79	108.39	. 60
$108.39 \quad 109.365 \%$ thin quartz-calcite stringers at various angles. 2% pyrite.	E25196	108.39	109.36	. 97
109.36110 .38 Similar to 108.39 to 109.36.	E25197	109.36	110.38	1.02
110.38111 .41 Similar to 108.39 to 109.36.	E25198	110.38	111.41	1.03
111.41 112.20 Similar to 108.39 to 109.36.	E25199	111.41	112.20	. 79
$113.56 \quad 114.565 \%$ thin quartz-calcite stringers at various angles. 2% pyrite.	E25200	113.56	114.56	1.00
114.56115 .54 Similar to 113.56 to 114.56.	E25201	114.56	115.54	. 98
115.54116 .55 similar to 113.56 to 114.56 .	E25202	115.54	116.55	1.01
116.55117 .51 Similar to 113.56 to 114.56.	E25203	116.55	117.51	. 96
117.51118 .53 similar to 113.56 to 114.56 .	E25204	117.51	118.53	1.02
118.53119 .53 Similar to 113.56 to 114.56.	E25205	118.53	119.53	1.00
$119.53120 .585 \%$ thin quartz-calcite stringers at various angles. 3 to 5% pyrite.	E25206	119.53	120.58	1.05
120.58121 .58 Similar to 119.53 to 120.58.	E25207	120.58	121.58	1.00
121.58122 .58 similar to 119.53 to 120.58.	E25208	121.58	122.58	1.00
122.58123 .55 Similar to 119.53 to 120.58.	E25209	122.58	123.55	. 97
123.55124 .54 Similar to 119.53 to 120.58.	E25210	123.55	124.54	.99
124.54 124.95 Similar to 119.53 to 120.58.	E25211	124.54	124.95	. 41
125.37 126.40 Local green carbonate alteration. 5\%	E25212	125.37	126.40	1.03
quartz-calcite stringers, to 1.5 cm , at various angles. Trace pyrite.				
126.40127 .70 similar to 125.37 to 126.40.	E25213	126.40	127.70	1.30
$128.39 \quad 129.325 \%$ thin quartz-calcite stringers at various angles.	E25214	128.39	129.32	. 93
$129.32130 .1420 \%$ quartz-calcite stringers, to 1 cm , at various angles.	E25215	129.32	130.14	. 82
130.57 131.59 Local green carbonate alteration. 10\% quartz veins, to 5 cm , at various angles. 2% pyrite.	E25216	130.57	131.59	1.02
131.59 132.55 Similar to 130.57 to 131.59.	E25217	131.59	132.55	. 96
132.55133 .19 Similar to 130.57 to 131.59.	E25218	132.55	133.19	. 64
134.93135 .92 Local flow breccia. 5\% quartz-carbonate stringers, to 10 cm , at various angles. 3\% pyrite.	E25219	134.93	135.92	. 99
135.92136 .66 Similar to 134.92 to 135.92.	E25220	135.92	136.66	. 74
136.66137 .84 to 8% thin quartz-calcite stringers at various angles. 2% pyrite.	E25221	136.66	137.84	1.18
137.84 139.06 Local green carbonate alteration. 10\% quartz	E25222	137.84	139.06	1.22

SAMPLE FROM TO LENGTH Au g/t RERUN REJECT AVERAGE
veins, to 5.5 cm , mainly at 65 degrees. 1% pyrite.
$139.06 \quad 140.07$ Locally brecciated. 5\% quartz-calcite stringers, to 2 cm , at various angles. 2% pyrite.
140.07141 .09 similar to 139.06 to 140.07 .
141.09142 .09 similar to 139.06 to 140.07.
142.09142 .45 similar to 139.06 to 140.07 .
$143.40 \quad 143.688 \%$ quartz-calcite stringers, to 1.5 cm , at 25 degrees.
$144.77145 .815 \%$ quartz-calcite stringers, to 1 cm , at various angles. Irace to 10% pyrite.
145.81146 .82 similar to 144.77 to 145.81.
146.82147 .52 similar to 144.77 to 145.81 .
148.20 148.62 15% thin quartz-calcite stringers at various angles. 5% pyrite.
$149.69 \quad 150.51$ Locally brecciated. 8% thin quartz-calcite stringers at various angles.
151.05152 .08 Locally brecciated. 5 to 10% quartz-calcite stringers, to 1 cm , at various angles. 1% pyrite.
152.08153 .11 similar to 151.05 to 152.08 .
153.11153 .89 similar to 151.05 to 152.08 .
$154.54 \quad 155.765$ to 10% quartz-calcite stringers, to 9 cm , at various angles. 3% pyrite.
$157.12 \quad 157.6515 \%$ quartz-calcite stringers, to 5.5 cm , at various angles. 3% pyrite.
$159.34160 .3410 \%$ quartz-calcite stringers, to 3.5 cm , mainly parallel to foliation. 2% pyrite.
160.34160 .72 similar to 159.34 to 160.34 .
$161.47161 .9820 \%$ quartz-calcite stringers, to 5 cm , at various angles. 3% pyrite.
$163.90 \quad 165.00 \quad 5 \%$ thin quartz-calcite stringers at various angles.

END Of hole
A weakly conductive zone was encountered from 85.03-
86.00 M .
casing left in hole.
\qquad
drillimg by bradley bros. ltd., timmins, ontario.
core stored at dome mines, south porcupine, ontario.

Required Information eg. type of equipment, Names, Addresses, etc. (See Table on reverse side)
If space below is insufficient, attach schedules with required information and location sketches

Drilled by: Bradley Bros. Ltd.
Timmins, Ontario

Core Size: B. Q .
DDH No. 356-001

Certification of Beneficial Interest * (See Note No. 2 on reverse side)

Thereby certify that, at the time the work was performed, the claims covered in this report of work were recorded in the current recorded holder's name or held under a beneficial interest by the current recorded holder.	Date April	27,1990	Recorded Holder pr Agent (Signature)

Certification Verifying Report of Work
I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.
Name and Address of Person Certifying
John M. Morganti, Manager, Exploration

