

An Airborne Geophysical Survey

Performed On

MARATHON 1-82 and BOWYER 1-82

Marathon, Bowyer Twps.

Larder Lake Mining Division

August 25, 1982
Timmins, Ontario
L.A. Waddell

Noranda Exploration Co. Ltd.

Airborne Geophysical Survey

Marathon 1-82 and Bowyer 1-82

Introduction:

On October 31 and November 1 and 3, 1981 an airborne geophysical survey was flown by Questor Surveys Limited on behalf of Noranda Exploration Company Limited over portions or all of Stimson, Mortimer, Sweatman, Sherring, Edwards, Wesley, Findlay, Marathon, Moody, Bowyer, Galna, Purvis and Kerrs Townships all located in northeastern Ontario.

The survey mileage was 1079 line miles and the aircraft used was a Shorts Skyvan C-GDRG operating from a base at Timmins, Ontario.

This report is submitted to satisfy the requirements necessary to obtain an airborne geophysical certificate for all claims acquired after the survey was completed.

A total of 152 contiguous mining claims were staked in Bowyer and Marathon Township which are numbered as follows:
L-625056 to L-625076 inclusive, .

$$
\text { and } \mathrm{L}-641219 \text { to } \mathrm{L}-641328 \text { inclusive. } 7 \mathrm{~m}
$$

Mapsoutlining the survey and the boundary of the claim group are shown at the end of this report.

The technical information and survey specifications have been abstracted from information supplied by Questor Surveys limited, 6380 Viscount Road, Mississauga, Ontario.

Map Compilation:

The base maps are uncontrolled mosaics constructed from National Air Photo Library 1:50,797 photographs. These mosaics were used to produce maps at a scale of $1: 31,680$ on stable transparent film from which white prints can be made.

Flight path recovery was accomplished by comparison of the 35 mm film with the mosaic in order to locate the fiducial points. These points are approximately 4100 feet apart.

Procedure:

Terrain clearance was maintained as close to 400 feet as possible, with the E.M. Bird at approximately 150 feet above the ground. A normal S-pattern flight path using approximately one mile turns was used. The equipment operator logged the flight details and monitored the instruments.

A line spacing of 1320 feet was used for the survey.

Results:

There is a mixture of rock types throughout the area however, the exact distribution is not known because of the intensive cover of overlaying conductive to semi-conductive clays. The thickness of the layer varies and is thought to be anywhere from 25 feet to 300 feet. Mafic flows and pyroclastic rocks predominate the area (derived from drill holes and an aeromagnetic interpretation). However, metasediments underlie a substantial area and a great number of the INPUT conductors intercepted during the course of this survey correlate with this rock unit. There are mafic and ultramafic intrusives including gabbro, diorite, dunite, peridotite and serpentinite. These latter rock units are easily distinguishable by their very high magnetic susceptibility. A great number of north-south trending diabase dykes exist throughout the survey area and, in some areas, tend to distort the magnetic picture.

Bedrock conductors have been outlined on the groups with an axis having long dashed lines while areas that are considered due to weak structural affects, conductive overburden or lake bottom sediments have been indicated with short dashed lines.

Comments on each conductor by Robert J. de Carle, chief geophysicist for Questor Surveys, are reproduced below.

Conductor A-29
The indicated area displays a good electromagnetic response and also has magnetic association, in the order of 172 gammas. Pyrrhotite
may be the source. Mafic flows and pyroclastic rocks have benn cribed as being the rock types.

A dip to the south is interpreted, in the order of 50°. The slow amplitude decay along with the small responses suggests that the source is quite deep, perhaps in the order of 350 feet.

The conductor is recommended as a top priority target.

Conductor A-30
This long conductor displays a good electromagnetic response but has little or no magnetic association. The relationship of this zone with the flank of a magnetic feature suggest the association of the conductor with a geological contact. The one area which does have magnetic correlation is near the Marathon-Bowyer Twonship line. Here the magnetic intensity is roughly 212 gammas.

A dip to the north is interpreted for most of the trend, at approximately 50°. Note how the amplitides are stronger in the north direction. However, towards the east end of the long zone, the conductor appears to have been overturned and is dipping to the south (just inside Bowyer Township).

Referring to Geology Map 2205, note that a major fault zone is traversing in a northeast-southwest direction and is almost parallel to CONDUCTOR A-30 between lines 10690 and 10720 . The zone in this particular area is very weak.

It is not quite certain what happens towards the eastern most part of the conductor. I have interpreted two zones here (A-30 and A-32), just to the south of the railway tracks. In any event, this is an area which should be investigated. Another area which warrants a preliminary study is in the vicinity of intercepts 10430 C .

Conductor A-31
This lone intercept is thought to be an isolated zone displaying a weak electromagnetic response. There is also good magnetic association suggesting that pyrrhotite may be the source. At first, it was
felt that A-31 may, in fact, correlate with the anomaly on the next lne, intercept 10600 E . This would be based on the magnetics. However, the strong electromagnetic responses are consistent from line to line and thus the interpretation was changed.

However, the lone intercept does display a weak E.M. response and thus, the target is considered a low priority zone.

Conductor A-32
This zone displays good electromagnetic response and as such, is considered due to a bedrock source. One area along A-32 which could be investigated is between lines 10730 and 10770 . There is good magnetic correlation and, one suspects pyrrhotite. Economic sulphides may be present.

Referring to Geology Map 2205, it will be noted that the conductor is located quite close to a medisedimentary-mafic flow, pyroclastic rock contact.

Respectfully submitted,
Noranda Exploration Company, Limited

L.A. Waddell
lovell, H. L., and Frey, E.D., 1972, Galna Township, District of Cochrane; Ontario Division of Mines, Preliminary Map P. 774, Kirkland Lake Data Series, scale linch to 3, mile.

Lovell, H. L., 1972, Kerrs Township, District of Cochrane; Ontario Division of Mines, Preliminary Map P. 773, Kirkland Lake Data Series, scale 1 inch to $\frac{1}{2}$ mile.

Lovell, H. L., and Frey, E. D., 1972, Moody Township, District of Cochrane; Ontario Division of Mines, Preliminary Map P. 776, Kirkland Lake Data Series, scale 1 inch to 3/2 mile.

Lovell, H. L., Frey, E. D., and de Grijs, Jan, 1973, Mortimer Township, District of Cochrane; Ontario Division of Mines, Preliminary Map P. 851, Kirkland Lake Data Series, scale 1 inch to $\frac{1}{4}$ mile.

Lovell, H. L., and Frey, E. D., 1972, Sherring Township, District of Cochrane; Ontario Division of Mines, Preliminary Map P. 778, Kirkland Lake Data Series, scale 1 inch to $\frac{1}{1}$ mile.

Lovell, H. L., and Frey, E. D., 1972, Wesley Township, District of Cochrane; Ontario Division of Mines, Preliminary Map P. 777, Kirkland Lake Data Series, scale linch to $\frac{1}{4}$ mile.

Pyke, D. R., Ayres, L. D., and Innes, D. G., 1970, 1971, Geological Compilation Series, Districts of Cochrane, Sudbury and Timiskaming, Timmins - Kirkland Lake, Map 2205, scale 1 inch to 4 miles.

Simony, P. S., 1965, Geological Report No. 37, Rickard, Knox and Kerrs Townships, District of Cochrane, Map 2073, scale l inch to $\frac{1}{2}$ mile.

APPENDIX

Equipment:

The aircraft is equipped with a Mark VI INPUT (R) airborne E.M. system and Sonotek P.M.H. 5010 Proton Magnetometer. Radar altimeters are used for vertical control. The outputs of these instruments together with fiducial timing marks are recorded by means of galvanometer type recorders using light sensitive paper. Thirtyfive millimeter continuous strip cameras are used to record the actual flight path.

(I) Barringer/Questor Mark VI INPUT (R) System:

The Induced Pulse Transient (INPUT) system is particularly well suited to the problems of overburden penetration. Currents are induced into the ground by means of a pulsed primary electromagnetic field which is generated in a transmitting loop around the aircraft. By using half sine wave current pulses and a loop of large turns-area, the high output power needed for deep penetration is achieved.

The induced current in a conductor produces a secondary electromagnetic field which is detected and measured after the termination of each primary pulse. Detection is accomplished by means of a receiving coil towed behind the aircraft on four hundred feet of cable, and the received signal is processed and recorded by equipment in the aircraft. Since the measurements are in the time domain rather than the frequency domain common to continuous wave systems, interference effects of the primary transmitted field are eliminated. The secondary field is in the form of a decaying voltage transient originating in time at the termination of the transmitted pulse. The amplitude of the transient is, of course, proportional to the amount of current induced into the conductor and, in turn, this current is proportional to the dimensions, the conductivity and the depth beneath the aircraft.

The rate of decay of the transient is inversely proportional to conductivity. By sampling the decay curve at six different time intervals, and recording the amplitude of each sample, an
mate of the relative conductivity can be obtained. By this means, it is possible to discriminate between the effects due to conductive near-surface materials such as swamps and lake bottom silts, and those due to genuine bedrock sources. The transients due to strong conductors such as sulphides exhibit long decay curves and are therefore commonly recorded on all six channels. Sheet-like surface materials, on the other hand, have short decay curves and will normally only show a response in the first two or three channels.

The samples, or gates, are positioned at 334, 498, 744, 1072, 1482 and 1974 micro-seconds after the cessation of the pulse. The widths of the gates are $164,164,328,328,492$, and 492 microseconds respectively.

For homogeneous conditions, the transient decay will be exponential and the time constant of decay is equal to the time difference at two successive sampling points divided the log ratio of the amplitudes at these points.

(II) Sonotek P.M.H. 5010 Proton Magnetometer:

The magnetometers which measure the total magnetic field have a sensitivity of 1 gamma and a range from 20,000 gammas to 100,000 gammas.

Because of the high intensity field produced by the INPUT transmitter, the magnetometer results are recorded on a timesharing basis. The magnetometer head is energized while the transmitter is on, but the read-out is obtained during a short period when the transmitter is off. The precession frequency is being recorded and converted to gammas during the 0.2 second interval when there is no power in the transmitter loop.

For this survey, a lag factor has been applied to the data. Hagnetic data recorded on the analogue records at fiducial 9.95 on the mosaics.

Presentation:

The symbols used to designate the anomalies are shown in the legend on each map sheet, and the anomalies on each line are lettered in alphabetical order in the direction of flight. Their locations are plotted with reference to the fiducial numbers on the analog record.

A sample record is included to indicate the method used for correcting the position of the E.M. Bird and to identify the parameters that are recorded.

All the anomaly locations, magnetic correlations, conductivitythickness values and the amplitudes of channel number 2 are listed on the data sheets accompanying the final maps.

General Interpretation:

The INPUT system will respond to conductive overburden and nearsurface horizontal conducting layers in addition to bedrock conductors. Differentiation is based on the rate of transient decay, magnetic correlation and the anomaly shape together with the conductor pattern and topography.

Power lines sometimes produce spurious anomalies but these can be identified by reference to the monitor channel.

Railroad and pipeline responses are recognized by studying the film strips.

Graphite or carbonaceous material exhibits a wide range of conductivity. When long conductors without magnetic correlation are located on or parallel to known faults or photographic linears, graphite is most likely the cause.

Contact zones can often be predicted when anomaly trends coincide with the lines of maximum gradient along a flanking magnetic anomaly. It is unfortuante that graphite can also occur as relatively short conductors and produce attractive looking anomalies. With no other information than the airborne results, these must be exmined on the ground.

Serpentinized peridotites often produce anomalies with a character that is fairly easy to recognize. The conductivity which is probably caused in part by magnetite, is fairly low so that the anomalies often have fairly large response on channel \#1; they decay rapidly, and they have strong magnetic correlation. INPUT E.M. anomalies over massive magnetites show a relationship to the total Fe content. Below $25-30 \%$, very little or no response at all is obtained, but as the percentage increases the anomalies become quite strong with a characteristic rate of decay which is usually greater than that produced by massive sulphides.

Commercial sulphide ore bodies are rare, and those that respond to airborne survey methods usually have medium to high conductivity. Limited lateral dimensions are to be expected and many have magnetic correlation caused by magnetite or pyrrhotite. Provided that the ore bodies do not occur within formational conductive zones as mentioned above, the anomalies caused by them will usually re recognized on an E.M. map as priority targets.

Representolive INPUT ${ }^{(}$, Mognetometer ond Altimeter Recording

$\begin{aligned} & \text { FTML } \\ & \text { AI ALY } \end{aligned}$	FID	CHS	CH1. AMP	CH2.AMP	SIEMENS	MAG	VALUE
10420G	110.106	3		219	1	110.30	68
10430 C	94.768	6		542	2	94.70	153
10441A	82.160	5		525	2	-	
10450A	66.738	6		596	2	-	
10461E	53.378	3		223	1	-	
10470B	36.413	4		387	2	-	
10490B	725.567	6		285	22	725.55	172
10490 C	726.483	4		322	1	-	
10500H	710.446	5		242	5	-	
10510B	696.801	6		390	31	-	
10510C	697.027	4		456	8	-	
10510D	697.460	4		181	4	-	
10520E	682.549	6		417	16	-	
10520F	683.090	4		129	2	-	
10530A	670.280	6		283	22	670.10	176
105406	654.902	3		59	12	-	
10540 H	655.146	6		312	10	-	
10550B	641.409	5		195	28	-	
10560E	625.857	4		237	2	-	
10570B	613.244	3		128	2	-	
10580F	598.393	5		370	2	-	
10590A	584.856	4		87	1	584.85	191
10590B	585.424	6		418	4	-	
10600E	569.162	5		307	5	569.20	141
10610B	556.125	6		336	19	-	
10620C	540.574	6		727	8	540.70	176
10630B	527.164	3		307	1	-	

$\begin{aligned} & F^{T M A L} \\ & E^{\text {MALY }} \end{aligned}$	FID	CHS	CH1.AMP	CH2. AMP	SIEMENS	MAG	VALUE
10630C	527.520	6		266	30	527.35	127
10640C	511.548	6		1098	12	511.55	212
10650B	497.833	6		340	14	497.85	130
10660D	482.806	6		598	6	482.75	82
10670A	468.193	6		561	8	-	
10680C	453.988	6		331	8	-	
10690B	439.495	4		276	4	-	
10730A	378.324	3		146	1	378.30	108
10740C	363.686	3		204	1	-	
10750A	347.661	2		99	NC	347.70	64
10750B	347.815	3		186	1	-	
10760E	332.756	5		409	3	332.75	137
10770A	316.394	4		282	1	316.30	54
10390BN	151.70	3		360	1	-	
10390BP	151.90	3		360	1	151.90	60
10411T	123.95	3		480	1	124.10	60
10440K	78.43	3		420	1	-	
10440L	78.62	3		420	1	-	
10440M	80.00	5		480	10	79.95	250
10440N	80.55	3		180	1	-	
10470BX	35.50	3		120	1	35.50	110
10481B	22.00	3		180	1	21.95	4
10481C	22.90	3		120	\cdots	22.75	30
10500 J	710.80	2		60	NC	710.95	200
10500K	711.20	4		120	9	-	
10510AX	690.60	2		90	NC	690.70	8
10520 G	687.83	3		120	1	687.80	6

$\begin{gathered} \text { NAL } \\ \text { nOMALY } \end{gathered}$	FID	CHS	CHI. AMP	CH2. AMP	SIEMENS	MAG	VALUE
105204	687.95	3		120	1	-	
10520J	688.80	3		90	1	688.55	100
10540GX	653.78	3		90	1	-	
10550AX	640.90	2		150	NC	640.80	30
10550A	641.05	2		90	NC	641.20	20
10580G	601.25	3		360	1	-	
10580H	603.05	3		90	1	-	
10600F	574.95	3		150	1	575.00	4
10610A	548.70	2		210	NC	-	
10610BX	549.05	3		150	1	549.10	14
10610BY	550.10	3		180	1	-	
10620D	544.90	3		210	1	545.15	30
10630A	520.30	3		180	1	-	
10640CY	509.75	3		90	1	-	
10640 CZ	510.00	3		120	1	-	
10640D	518.05	3		120	1	-	
10650AX	491.50	3		240	1	491.55	170
10650A	494.90	3		90	1	-	
10650CX	499.90	3		210	1	-	
10650CY	500.45	3		150	1	-	
10650 CZ	502.10	3		90	1	-	
10660DX	480.40	3		180	1	-	
10660DY	482.60	4		240	9	482.75	60
10670B	469.50	3		150	1	-	
10680Cz	452.00	3		210	1	-	
10690A	439.10	3		150	1	-	
10700B	423.65	3		150	1	423.75	260
10700C	424.24	4		180	4	-	
10700 D	424.43	4		150	4	-	

10710 A	408.20	3	120	1	408.20	10
10720 E	394.60	3	120	1	-	
10740 D	363.80	3	180	1	-	
10760 F	332.90	4	300	1	-	
10780 F	302.25	4	600	20	-	
10780 G	302.35	4	660	6	302.25	56
10790 A	259.85	4	420	1	259.75	30
10800 E	245.00	3	240	1	-	
10800 F	246.15	3	240	1	-	
10800 G	246.30	4	270	1	-	

Ministry of Natural Resources
File \qquad

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) Airborne Geophysical (Electromagnetic		
Township or Area Marathon and Bowyer		
Claim Holder(s) Noranda Exploration Company Limited		
Suite 400, 55 Yonge Street Toronto, Ont.		
Survey Company Questor Suryey Itd.		
Author of Report _I.A. Wadell		
Address of Author P.O. Box 1205		
Covering Dates of Survey \qquad $\frac{\text { Oct } 31-\text { Nov } 3,1981}{\text { (inecutting to office) }}$		
Total Miles of Line Cut		
SPECIAL PROVISIONS CREDITS REQUESTED	Geophysical	DAYS per claim
ENTER 40 days (includes line cutting) for first survey.	-Electroma	
	-Magnetom	
	-Radiometr	
ENTER 20 days for each additional survey using same grid.	-Other	
	Geological	
	Geochemical	

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer___ Electromagnetic ___ Radiometric
(enter days per claim)

DATE: Al_ 25/82 SIGNATURE:

Magnetic)

I-625056	L-641226	L-641255
I-625057	L-641227	1-641256
I-625058	L-641228	L-641257
I-625059	L-641229	L-641258
L-625060	I-641230	I-641259
1-625061	I-641231	I-641260
I-625062	I-641232	L-641261
L-625063	1-641233	I-641262
I-625064	L-641234	L-641263
L-625065	L-641235	L-641264
L-625066	L-641236	I-641265
L-625067	L-641237	L-641266
L-625068	1-641238	I-641267
I-625069	L-641239	L-641268
L-625070	L-641240	I-641269
L-625071	L-641241	L-641270
L-625072	I-641242	1-641271
L-625073	I-641243	I-641272
L-625074	L-641244	I-641273
I-625075	L-641245	I-641274
L-625076	I-641246	L-641275
	士-641247	L-641276
I-641219	I-641248	士-641277
I-641220	I-641249	L-641278
L-641221	I-641250	L-641279
L-641222	I-641251	L-641280
L-641223	L-641252	L-641281
I-641224	L-641253	L-641282
I-641225	L-641254	L-641283

L-641284	L-641314
L-641285	L-641315
L-641286	L-641316
L-641287	L-641317
L-641288	L-641318
L-641289	L-641319
L-641290	L-641320
L-641291	L-641321
L-641292	L-641322
L-641293	L-641323
L-641294	L-641324
L-641295	L-641325
L-641296	L-641326
L-641297	L-641327
L-641298	L-641328
L-641299	
L-641300	
L-641301	
L-641302	
L-641303	
L-641304	
L-641305	
L-641306	
L-641307	
L-6413 $-641308 ~$	
L-641310	

SELF POTENTIAL

Instrument_____________________ Range
Survey Method \qquad

Corrections made \qquad

RADIOMETRIC

Instrument

\qquad
Values measured \qquad
Energy windows (levels) \qquad
Height of instrument \qquad Background Count \qquad
Size of detector
Overburden \qquad
(type, depth - include outcrop map)
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey \qquad
Instrument \qquad
Accuracy
Parameters measured \qquad

Additional information (for understanding results)
\qquad
\qquad

AIRBORNE SURVEYS

Type of survey(s)__ Magnetic and electromennetic

Sensor altitude_150'
Navigation and flight path recovery method _S-pattern flight path using approximately one mile turns. Navigator logged flight details and monitored instrments.

Aircraft altitude 400°	
Miles flown over total area_submitted -223	Line Spacing $\quad 1320^{\circ}$

Air'spne Electomagnetic and Magnetic

Credits Requested per Each Claim in Columns at right
Mining Claims Traversed (List in umerical sequence)

Special Provisions	Geophysical	Days per Claim
For first survey:	- Electromagnetic	
includes line cutting)	- Magnetometer	
For each additional survey:	Radiometric	
Enter 20 days (for each)	- Other	
	Geological	
	Geochemical	
Man Days	Geophysical	Days per Claim
Complete reverse side and enter total(s) here	flectromagnetic	
	Radiometric	
	Geochemical	
Airborne Credits		Davs per Claim
Note: Special provisions	Electromagnetic	10
credits do not apply to Airborne Surveys.	Magnetometer	10
	Radiometric	

Expenditures (excludes power stripping)

Total number of mining claims covered by this report of work.

152

Certification Verifying Repor \& Work
I hereby certify that I have apersonal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during ang/or after its completion and the annexed report is true.
Name and Postal Address of Person Certitying

Minine Claim

Pre

L

Mining Claim
Prefix Number $\begin{aligned} & \text { Days } \\ & \text { Cr. }\end{aligned}$

64126020

64126120
64126220
64126320
64126420
64126520
64126620
64126720
64126820
64126920
64127020
64127120
64127220
64127320
64127420
64127520
64127620
64127720
64127820
64127920
$641280 \quad 20$
64128120
64128220
64128320
64128420
64128520
64128620
64128720
64128820
64128920
64129020
64129120
64129220
64129320
64129420
64129520
64129620
64129720

Mr. E.F. Anderson, Director, Land Management Branch,
Room 6450,
Whitney Block, Queen's Park, TORONTO, Ontario
MFA 1W3
Dear Mr. Anderson:
Please find enclosed reports and maps in duplicate complying with the requirements necessary for an airborne geophysical certificate for 152 claims (L-625026 to L-625046 inclusive, L-625056 to L-625076 inclusive and L-641219 to L-641328 inclusive), staked in Marathon and Bowyer Townships after the survey was performed.

Yours truly,
L.A. Waddell.

LAW /11 encls.

21
21
10

Ming Lent comments CERTIFICATE

To: Geochemistry
Comments
\square : Mining Lan
o: Mining Lands Section, Room 6462, Whitney Block

Airborne
Geophysical Certificate

This is to certify that Noranda Exploration Company Limited has met the requirements of Section 87 of The Mining Act, with respect to the following mining claims in the Township (or Area) of Marathon and Bowyer

Mining Recorder Ministry of Natural Resources
60 Wilson Avenue
Timmins, Ontario
PAN 287

Dear Sir:

Enclosed is an Airborne Geophysical Certificate issued under Section 78 of the Mining act R.S.O. 1980.

Please indicate on your records that the time for performing the first and all subsequent periods of work for the claim listed shall fall due one year later than the times prescribilin subsection 1 of Section 76.

Yours very truly,
E.P. Anderson

Director
Land Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: 416/965-1380
A. Barr: sc

Enc le:
ce:Noranda Exploration Co Limited

Attn I.A. Weddell.
cesResident Geologist
Timpani, Ontario

```
Mining Recorder
Ministry of Natural Resources
4 Government Road East
P.O. BOx 984
Kirkland Lake, Ontario
P2N 1A2
```

Dear Sir:

We have received reports and mepe for an Airborne Geophysical Certificate submitted on Mining Cefime L 625026 et al in the Townships of Marathon and Bowyer.

This material will be examined and eseseed and a Certificate will be issued.

Youre very truly
E.F. Anderson

Diractor
Land Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: 416/965-1316
J. Skuraise
ce: Noranda Exploration Company Limited Timmins, Ontario Attn: L.A. Waddell.

Findlay Twp.

THE TOWNSHIP
OF
MARATHON
DISTRICT OF COCHRANE
LARDER LAKE MINING DIVISION
SCALE:I-INCH=40 CHAINS
LEGEND
PATENTED LAND
CROWN LAND SALE
LEASES
LOcATED LAND
LICENSE OF OCCUPATION
LICENSE
ROADS
ROADS
IMPROVED ROAD
IMPROVED ROA
KING'S HIGHWAY
KING'S HIG
RAILWAYS
POWER
POWER LINES
MARSH OR MUSKEG
MINES

400' Surface Rights Reservation around
all Lakes und Rivers.

DATE OF ISSUE
OCT 27 7.E32
Minisiry of Natural Resources
TORQNTO

2.5034.

PLAN NO - M. 542

MTHS: OF VATL:ALR-NURCES

Henley Twp.

210

THE TOWNSHIP
OF

BOWYER

DISTRICT OF
COCHRANE
LARDER LAKE
MINING DIVISION
SCALE:-INCH=40 CHAINS
LEGEND
PATENTED LAND
CROWN LAND
CROWn LaND sale
LEASES
LOCATED LAND
LICENSE OF OCC
LICENSE OF OCGUPATION
ROADS
ROADS
IMPROVED ROADS
RAILWAYS
RAILWAYS
POWER LINES
KING'S HIGHWAY
MARSH OR MUSKEG
MINES
GEODETIC STATION
NOTES

400^{\prime} Surface rights reservation around all lakes and
rivers
Lots. 1,2 and 3 , concessions: II and ill, not
offected by the onnulment.

DATE OF ISSU
OCT 27.1982

Minisity of Natural Resourcos
TORONTO

2.503^{4}
PLAN NO - M. 422
πK^{\prime}.
$\begin{array}{ll}\text { HSTRY゙ OF } 1: \text { TUR: } \\ \text { SIF.YSA: } & \text { RESOURCES } \\ \text { BRANCH }\end{array}$

