

SEWELL-REEVES PROJECT

ASSAY RESULTS

RE:

WEST BLOCK DRILLING

PENHORWOOD TOWNSHIP

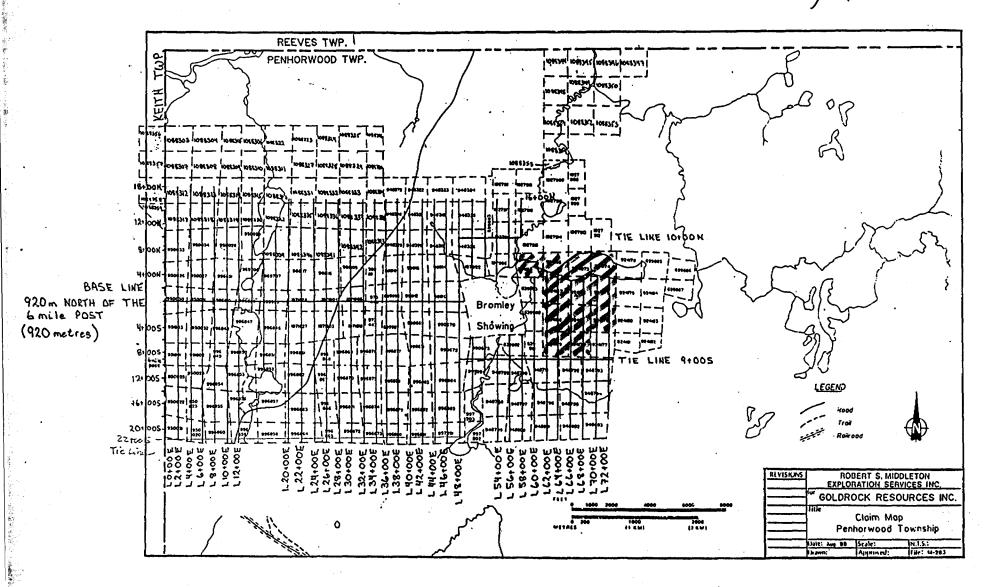
RECEIVED

APR 30 1990

MINING LANDS SECTION

CONTENTS:

- copy of Report of Work
- claim sketch showing where assays were taken
- summary of assay sheets
- representative invoices
- breakdown of assays in drillholes by claim
- Technical Data Statement
- logs of drillholes with assays entered


plus: photo-reduced claim map location sketch at 1:5000

- assay sheets in chronological order.

2.13263 Dauk Alvandu

Dale R. Alexander Senior Exploration Geologist

Re Assays Claims on which drilling was performed III Claims on which work is being applied

SEWELL-REEVES PROJECT

SUMMARY OF ASSAY SHEETS

WEST BLOCK DRILLING 1989

November	9	_	13 samples
	12	-	36
	14	-	31
	15	-	58
	17	-	38
	30	-	48
December	3	-	58
	3	-	64
	5	-	28
	8	_	78
	11	-	75
	11	-	80

607 samples

x \$7.50 cost per assay

\$4552.50 / \$15 = 303.5 days credit.

All assaying was completed at the Holt-McDermott assay lab at a charge of \$7.50 per sample -- a representative invoice signed by the Regional Exploration Manager is attached. The charge is all-inclusive of sample preparation and assaying. Since the assay rate is considerably less than a commercial lab, check samples and assays of additional elements are charged at the same \$7.50 rate. All samples are assayed for gold in grams (or ppm).

Dale R. Alexander Senior Exploration Geologist

American Barrick Resources Corporation HOLT-MCDERMOTT MINE

P.O. Box 278

Kirkland Lake, Ontario

P2N 3H7

Telephone: 1 (705) 567-9251

Fax: 1 (705) 567-6867

December 15, 1989

American Barrick Resources Corporation Exploration Division P. O. Box 1203 Kirkland Lake, Ont P2N 3H7

INVOICE #89-13

Assays November 1989

1630 at 7.50

= \$12,225.00

Advertisement at 50%

125.00

\$12,350.00

Less: U.P.S. collect charge

(172.88)

INVOICE TOTAL

D. Mitchell

Chief Accountant

\$12,177.12

Please make cheque payable to:

American Barrick Resources Corporation Holt-McDermott Mine P. O. Box 278 Kirkland Lake, Ont

P2N 3H7

P-177-64=351 = 2632.50

P-160 = 64 = 1017 = 7627.50

p= 162 - 64 = 256 - 1920.00

1-201-64: 6 -17750:00

12-200-86 > 1

125.00

2-172.88

12.127.1

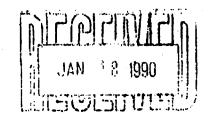
Day 3/40 8

DM:rb

02-01-90

American Barrick Resources Corporation HOLT-MCDERMOTT MINE

P.O. Box 278


Kirkland Lake, Ontario

P2N 3H7

Telephone: 1 (705) 567-9251

Fax: 1 (705) 567-6867

January 16, 1990

American Barrick Resources Corporation Exploration Division P. O. Box 1203 Kirkland Lake, Ont P2N 3H7

INVOICE 90-02

Assays December 1989

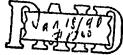
1648 at 7.50

= \$12,360.00

Advertisement at 50%

= 195.30

Invoice Total


= \$12,555.30

Please make cheque payable to:

American Barrick Resources Corporation Holt-McDermott Mine P. O. Box 278 Kirkland Lake, Ont P2N 3H7

Lila

D. Mitchell Chief Accountant

DM:rb

9 Many 190

Breakdown of Assays in drillholes, by claim

Claim	950022	-			upper lower			assays	
							90	assays	45.0 days
Claim	950021	-	DDH DDH		lower	part		assays assays	
							162	assays	81.0 days
Claim	950025	-	DDH	14	upper	part	5	assays	2.5 days
Claim	950027	-	DDH	15	upper	part	18	assays	9.0 days
Claim	950031	- -	DDH		lower	part		assays	
							99	assays	49.5 days
Claim	639978	-	DDH	17			100	assays	50.0 days
Claim	924167	_	DDH	18			88	assays	44.0 days
Claim	924168	-	DDH	19			45	assays	22.5 days
							607	assays	303.5 days

Dale R. Alexander Senior Exploration Geologist

Ministry of Northern Development and Mines

Geophysical-Geological-Geochemical Technical Data Statement

File		
------	--	--

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

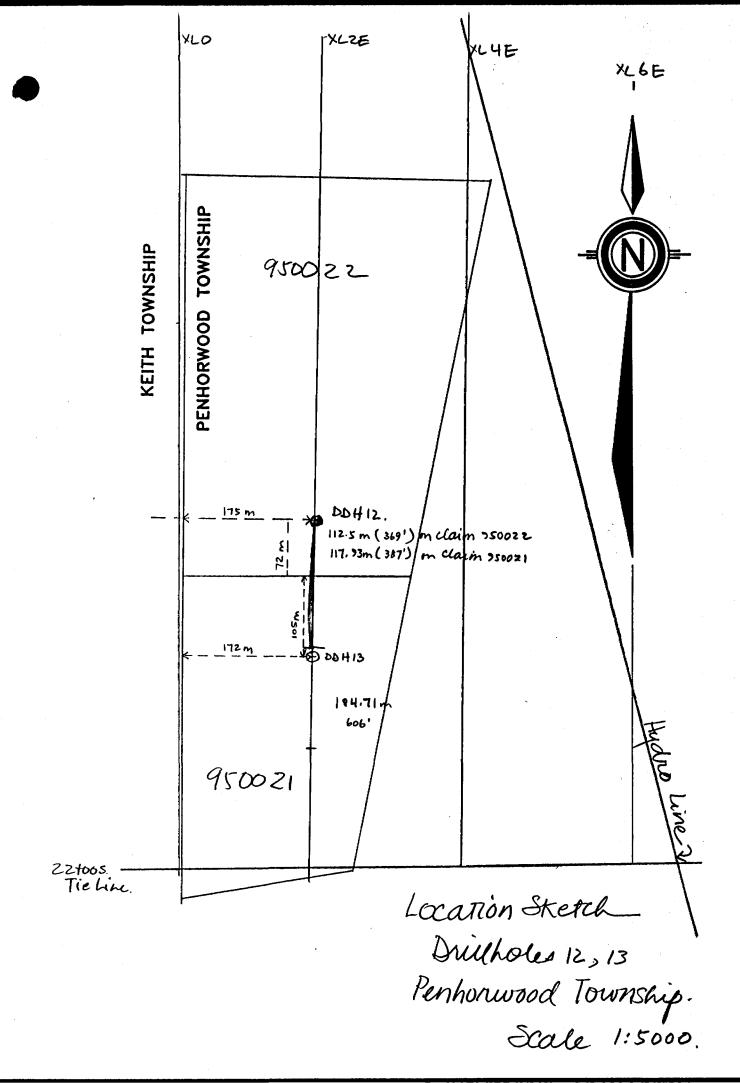
m 10	() A		*33. Garage ## 40			
•	* * ,		ill Core 77-19			
•		nhorwood '			IS TRAVERSED	
Claim Hold	, ,		ck Resources Corporation		List nur	nerically
	•	nee of Re				
Survey Con	npanyAmeri	can Barri	ck		P. (prefix)	950022 (number)
Author of I	Report <u>Da</u>	le R. Al	exander		(2)	950021
Address of	Author_c/	o America	n Barrick, Kirkland Lake,	Ont.		950025
Covering D	ates of Surv	vey Nov. 9	, 1989 to Dec. 11, 1989 (linecutting to office)		***************************************	950027
Total Miles	of Line Cu	t <u>N/A</u>			***************************************	
				7		950031
	L PROVISION REQUES		DAYS Geophysical per claim			639978
			-Electromagnetic			924167
	40 days (inc		-Magnetometer			o2h168
	ng) for first		-Radiometric			
survey.		. 1		1 1	***************************************	
	20 days for al survey usi		-Other Assaying	1		
same grid	-	**5	Geological			
			Geochemical		·····	
		- Electromagr	sion credits do not apply to airborne surveys neticRadiometric	·)		••••••
DATE: AL	mil 3/	enter d SIGNA	ays per claim) TURK: DAL RAUX	and	<u></u>	
		0.0	Author of Report or Agent			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					•••••••
Res. Geol	11	Qualif	ications		•••••••••••	
Previous Su	rveys					
File No.	Type	Date	Claim Holder			
	ļ	<u>,</u>	***************************************			
400400000000000000000000000000000000000					•••••	•••••
						•••••
****************				••••		
			•••••••••••••••••••••••••••••••••••••••	••••	. * * * * * * * * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••••••••••••••••••••••••••••••••••••			
•••••		·····			TOTAL CLAIMS	8

GEOPHYSICAL TECHNICAL DATA

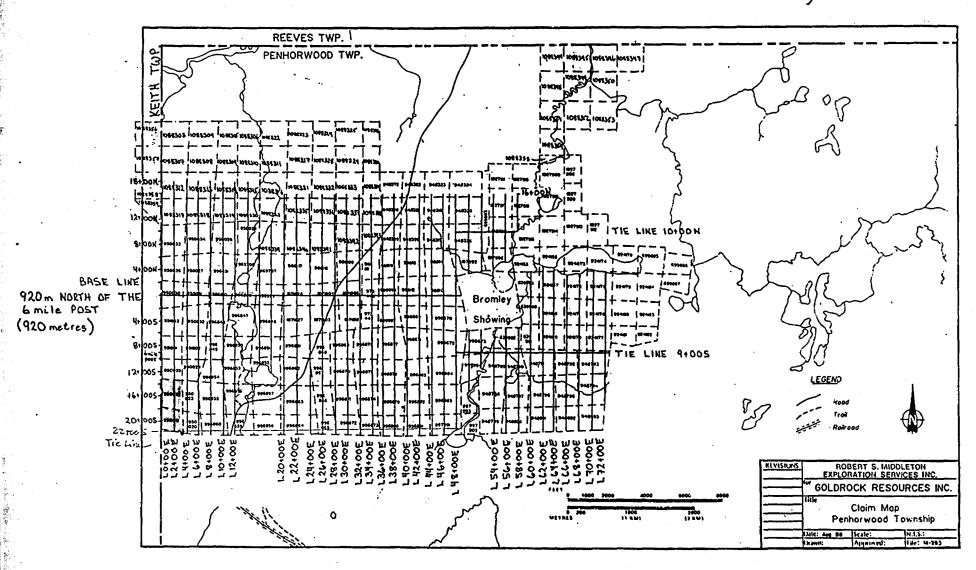
GROUND SURVEYS - If more than one survey, specify data for each type of survey

N	umber of Stations	Numb	er of Readings	
	tation interval			
	rofile scale			
	ontour interval			
· 1	Instrument			
#	Accuracy - Scale constant		War 11 71 71 71 71 71 71 71 71 71 71 71 71	
	Diurnal correction method			
Q N	Base Station check-in interval (hours)			
•	Base Station location and value			
			77 W 1 - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 -	
긔	Instrument			
길	Coil configuration			
	Coil separation			
	Accuracy			
	Method:	ter Shoot back	In line	Parallel line
3	Frequency	(specify V.L.F. station	1	
긔	Parameters measured	, - ,	•	
	Instrument			-
	Scale constant			
	Corrections made			
2	Base station value and location			
	Elevation accuracy			
	Instrument			
	Method		Frequency Domain	
	Parameters - On time		Frequency	
×	- Off time		Range	
VII	– Delay time			
SII	- Integration time			
RESISTIVITY	Power			
K	Electrode array			
	Electrode spacing			
	Type of electrode			

INDUCED POLARIZATION


SELF POTENTIAL	
Instrument	Range
Survey Method	
Corrections made	
RADIOMETRIC	
Instrument	
Values measured	
Energy windows (levels)	
Height of instrument	Background Count
Size of detector	
Overburden	
(type	e, depth — include outcrop map)
OTHERS (SEISMIC, DRILL WELL LOGGING	G ETC.)
Type of survey	·
Instrument	
Accuracy	
Parameters measured	
a manieters incasarea	
Additional information (for understanding resu	ılts)
Additional information (for understanding resu	1115)
AIDDODNE CUDYUVC	
AIRBORNE SURVEYS	
Type of survey(s)	
Instrument(s)(spec	cify for each type of survey)
Accuracy(spec	
Aircraft used	
Sensor altitude	
Aircraft altituda	
Miles flown over total area	Line Spacing
IVILLES LIOWN OVER TOTAL AFEA	Liver claims only

Ī


GEOCHEMICAL SURVEY - PROCEDURE RECORD

Numbers of claims from which samples taken <u>Drillhole</u>	s on claims P.950022, 950021, 950025, 950027
950031, 639978, 924167, 924168	
Total Number of Samples 607	ANALVTICAL METHODS
Type of Sample split drill core	ANALYTICAL METHODS
(Nature of Material)	Values expressed in: per cent □ p. p. m. 🔀
Average Sample Weight 1.5 kgs	p. p. b.
Method of Collection_diamond_drilling	Cu, Pb, Zn, Ni, Co, Ag, Mo, As,-(circle)
Soil Horizon Sampled n/a	Others Au
Horizon Developmentn/a	Field Analysis (tests)
Sample Depth variable	Extraction Method
Terrain	Analytical Method
	Reagents Used
Drainage Development	Field Laboratory Analysis
Estimated Range of Overburden Thickness 0 to 70m	No. (tests)
	Extraction Method
	Analytical Method
	Reagents Used
SAMPLE PREPARATION	Communiciation of Communication
(Includes drying, screening, crushing, ashing)	Commercial Laboratory (607tests)
Mesh size of fraction used for analysis -200 mesh	Name of Laboratory Holt-McDermott
	Extraction Method Aqua regia
	Analytical Method <u>fire and AA</u>
	Reagents Used flux, AgNO ₃ , HNO ₃ , HCl
	Mha nawala in Marana
General The sample is dried, crushed (jaw	General The sample is fluxed and fused
crusher and cone crusher) and is	to produce a gold bead which
pulverized (disc pulverizer) to	is subsequently dissolved in
-200 mesh.	Aqua regia and read with
	Atomic Absorption.

Claims on which work is being applied

AMERICAN BARRICK RESOURCES CORPORATION

Complete:	.0	.0	DIAMOND DRILL RECORD	HOLE NO. :	SR.89-12
Azimuth:	180.0		Section:	Property:	SEWELL - REEVES
Dip:	-50.0		Core Size: 80	Location:	L2+00E 17+50S
Elevation:	.0			Date Started:	October 31, 1989
Length:	230.4			Date Completed:	November 2, 1989
Measurement:	Metric			Logged by:	M. Bergeron

Comments:

Casing Pulled

Depth	Azimuth Di	p Depth	Azimuth I)ip Depth	Azimuth Dip
45.72 91.44	-43.0 -38.0	******	-34.0 -32.0		-31.0

.00 6.35 OVERBURDEN.

6.35 8.80 BASALT.

B.80 13.20 ULTRAMAFIC.

13.20 38.40 BASALT.

33.50 - 35.0 felsic intrusive.

38.40 42.25 BASALT, flow breccia.

42.25 56.75 ULTRAMAFIC.

50.10 - 52.45 BASALT.

56.75 84.30 BASALT.

56.75 - 57.55 BASALT weakly foliated.

-----Log Summary-----

57.55 - 58.05 mafic intrusive.

58.05 - 60.65 BASALT foliated.

60.65 - 61.55 felsic intrusive.

61.55 - 71.73 BASALT foliated intercalated

ULTRAMAFIC.

71.73 - 84.30 BASALT massive.

B4.30 103.65 ULTRAMAFIC.

85.50 - 85.70 BASALT.

91.45 - 92.05 BASALT.

96.45 - 99.15 BASALT.

103.65 110.30 Felsic intrusive.

110.30 142.65 ARGILLITE / GREYWACKE.

114.70 - 115.30 graphitic ARGILLITE.

116.35 - 116.95 felsic intrusive.

124.60 - 130.85 foliated.

130.85 - 135.85 felsic intrusive.

135.85 - 138.85 graphitic ARGILLITE.

141.40 - 142.65 graphitic ARGILLITE.

142.65 145.95 Felsic intrusive.

145.95 185.35 ULTRAMAFIC.

RESOURCES CORPORATION

Hole No.: SR.89-12 Page No.: 2

To

•

------ Sample From To Length % Sul

Au g/t

145.95 - 148.0 silicified zone.

148.0 - 153.5 chlorite talc carbonate schist.

153.5 - 165.4 sheared ULTRAMAFIC.

160.10 - 161.65 felsic intrusive.

165.40 - 185.35 talc chlorite carbonate

schist.

170.90 - 171.28 LAMPROPHYRE.

175.70 - 176.0 LAMPROPHYRE.

176.48 - 176.65 FAULT ZONE.

185.35 230.43 ULTRAMAFIC.

190.7 - 200.3 BASALT.

224.20 - 226.40 silicified brecciated zone.

230.43 END OF HDLE.

.00 6.35 DVERBURDEN

6.35 8.80 BASALT

97433 7.80 8.80 1.00 NIL .020 .02

Moderately hard, fine grained grey-green, nonmagnetic mafic volcanic. Strongly chloritic, moderately ankeritic. Poorly veined. Barren of mineralization. There is a weak to moderate foliation at 35 to 45 degrees to the core axis.

Lower contact is sharp at 40 degrees to the core axis. From 8.3 to 8.8, there are 1 to 3% ankerite - quartz veins, 1 to 3 mm wide, elongated along foliation.

8.80 13.20 ULTRAMAFIC

97434 8.80 9.80 1.00 N1L .040 .04 97435 12.20 13.20 1.00 N1L .070 .07

Moderately soft to soft, fine grained, medium grey blue, nonmagnetic, massive ultramafic flow. Strongly chloritic, moderately talcose, moderately ankeritic. There are 2 to 4% ankerite veins as fracture filling at random angles.

Barren of mineralization. Locally there is a weak foliation averaging 45 degrees to the core axis. Lower contact is sharp at 45 degrees to the core axis.

Hole No.: SR.89-12 Page No.: 3

		:					Leås vo'!	J
From	To	Description	Sample	From	To	Length % Sul	em ,	Au g/
3.20	38.40	BASALT						
			97436	13.20	14.20	1.00 NIL-TR	.110	.11
			97437	14.20	15.20	1.00 NIL-TR	.090	.09
-		Moderately hard, fine grained, medium grey-green, weakly		17.07			.051	. 07.
		magnetic from 29.45 to 38.4, massive to weakly foliated	97439	17.80	18.80	1.00 NIL-TR	.080	. 08
		mafic volcanic.				1.00 NIL-TR		.08
		Moderately to strongly chloritic, weakly ankeritic				1.00 NIL-TR		.06
		pervasively. There is a weak patchy biotitic alteration				1.50 NIL-TR		.04
		from 14 to 17 m. There are trace, 1 to 2 mm wide, white				1.50 NIL-TR		.06
		ankerite veins. Fracture fillings.	97444	37.40	38.40	1.00 NIL-TR	.050	. 05
		There is nil to rare trace of very fine pyrite						
		disseminated.						
		The weakly developed foliation averages 45 degrees to						
		the core axis. Foliation is strongly contorted from						
		18.10 to 18.50. Lower contact is sharp at 60 degrees to the core axis.						
		14.02 17.07: there are 0.85 m lost core. Mafic						
		volcanics are moderately fractured at 80 to						
		85 degrees to the core axis.						
		17.07 17.80: mafic volcanic are intercalated by a						
		moderately foliated talc - chlorite -						
		carbonate schist. Foliation and contacts are						
		45 degrees to the core axis. There are 5%,						
		2 to 5 mm wide ankerite quartz veins pinched						
		along foliation. Barren of mineralization.						
		32.50 32.70: strongly fractured core at 85 degrees to			,			
		the core axis intercalated minor talc along						
		fractures.						
		33.50 35.00 Felsic intrusive. Hard, fine grained, medium						
		grey, nonmagnetic feldspar porphyry dyke.						
		There are 5%, white - beige hypidiomorphic						
	,	feldspars, 2 to 5 mm wide. Unveined. Barren						
		of mineralization. Contacts are 45 to 70						
		degrees to the core axis.						
.40	42.25	RASAI T						

38.40 42.25 BASALT

Moderately hard, fine grained, grey brown, nonmagnetic, mafic flow breccia. There are 10 to 25%, 5 mm to 2 cm wide angular to subangular fragments.

Moderately chloritic, weakly biotitic. There are 1%, 1 to 2 mm, white calcite fracture fillings.

There is nil to rare trace very fine pyrite disseminated. Contacts are 60 and 50 degrees to the core axis.

97445	38.40	39.40	1.00 NIL-TR	.030	.03
97446	39.40	40.40	1.00 NIL-TR	.010	.01
97447	41.25	42.25	1.00 NIL-TR	.020	.02

Hole No.: SR.89-12

								•
Free	To	Description	Sample	From	To	Length % Sul	GM	Au g/t
42.25	56.75	ULTRAMAFIC			•			
			97448	42.25	43.25	1.00 NIL-TR	.040	.04
			97449	49.10	50.10	1.00 NIL-TR	.020	.02
		Moderately soft to soft, fine grained, medium grey-blue,	97450	50.10	51.10	1.00 NIL-TR	.010	.01
		'nonmagnetic, massive ultramafic flow. Strongly	97451	51.10	52.45	1.35 NIL-TR	.081	.06
		chloritic, moderately talcose, very weakly ankeritic.	97452	52.45	53.45	1.00 NIL-TR	.070	. 07
		There are 2 to 4% ankerite veins as fracture fillings.		•		1.00 NIL-TR	.010	.01
		There is nil to rare trace of pyrite disseminated. Lower						

hard, medium

greenish-grey, nonmagnetic massive mafic volcanic. Strongly chloritic, very meakly ankeritic. There are 1% ankerite veins fracture fillings. There is nil to trace pyrite. Contacts are 45 to 60 degrees to the core axis.

Moderately

contact is veined at 65 degrees to the core axis.

50.10 52.45 BASALT.

56.75 84.30 BASALT

56.75	57.55	BASALT weakly foliated. Moderately hard,
		very fine grained, nonmagnetic, weakly
		foliated at 50 degrees to the core axis
		mafic volcanic, nonmagnetic. Strongly
		chloritic, weakly ankeritic. Poorly veined.
		Barren of mineralization. Lower contact is
		50 degrees to the core axis.

57.55 58.05 Mafic intrusive. Moderately hard, fine grained, nonmagnetic, massive mafic intrusive. Moderately chloritic, weakly biotitic, strongly calcitic. Unveined, barren of mineralization. Lower contact is foliated at 50 degrees to the core axis.

58.05 60.65 BASALT foliated. Moderately soft, fine grained, moderately foliated, medium greenish-grey, nonmagnetic mafic volcanic. Strongly chloritic, weakly ankeritic. There are 1%, 1 to 2 mm ankerite veins pinched along the foliation averaging 50 degrees to the core axis - they are frequently contorted. There are a few odd decimetric talc - chlorite - carbonate - schist sections. Barren of mineralization. Lower contact is 65 degrees to the core axis.

60.65 61.55 Felsic intrusive. Feldspar porphyry dyke.

Same as 33.50 to 35.0. Lower contact is irregular at 70 to 80 degrees to the core axis.

97454	57.55	58.26	.71 NIL-TR	.142	. 20
97455	59.65	60.65	1.00 NIL-TR	.070	. 07
97456	60.65	61.55	.90 NIL-TR	.081	. 09
97457	61.55	62.55	1.00 NIL-TR	.020	.02
97458	62.55	63.55	1.00 NIL-TR	.030	.03
97459	63.55	64.55	1.00 NIL-TR	.050	. 05
97460	64.55	65.55	1.00 NIL-TR	.050	.05
97461	69.73	70.73	1.00 NIL-TR	.130	.13
97462	70.73	71.73	1.00 NIL-TR	.130	.13
97463	71.73	72.93	1.20 TR-1	.132	11
97464	B3.30	84.30	1.00 NIL-TR	.080	.08

Au g/t

de Te

ample From To Length X Sul GW

61.55 71.73 BASALT foliated. Intercalated ULTRAMAFIC. Moderately soft, medium greenish-grey, fine grained, moderately foliated nonmagnetic mafic volcanic. Strongly chloritic, weakly ankeritic and calcitic. There are 2 to 5%, ankerite — calcite veins pinched along foliation averaging 70 degrees to the core axis — frequently contorted. There is nil to

trace pyrite.
Foliated mafic volcanics are intercalated by 30% decimetric talc chlorite - carbonate schist sections. Lower contact is veined at 70 degrees to the core axis.

71.73 B4.30 BASALT eassive. Medius oreen fine grained, nonmagnetic greenish-grey, mafic volcanic. Strongly chloritic weakly carbonatized as ankeritic alteration with minor patchy calcitic alteration. Poorly veined. There is nil to trace pyrite. Lower contact is veined at 60 degrees to the core axis. From 71.73 to 72.93 mafic volcanics are weakly foliated at 70 degrees to the core axis. There is trace to locally 1% pyrite. From 74.20 to 77.70, mafic volcanics weakly foliated at 70 degrees to are very the core axis with rare micro-folding.

84.30 103.65 ULTRAMAFIC

Moderately soft to soft, fine grained, medium grey-blue, locally weakly magnetic ultramafic flow. Strongly chloritic, moderately talcose, weakly ankeritic.

There are 1%, i to 3 mm ankerite veins filling fractures. There are nil to trace very fine pyrite blebs disseminated. Lower contact is sharp at 75 degrees to the core axis. Locally ultramafics are intercalated by a moderately soft, fine grained, nonmagnetic, greenish-grey, massive mafic volcanic. Poorly veined, barren of mineralization.

85.50 85.70 BASALT.

91.45 92.05 BASALT.

96.45 99.15 BASALT.

99.70 103.65: ULTRAMAFIC intercalated minor decimetric weakly bleached and sericitic mafic volcanic bands. Lower contact is weakly biotitic from 103.55 to 103.65.

97465 84.30 85.30 1.00 NIL-TR .140 .14
97466 90.00 91.00 1.00 NIL-TR .150 .15
97467 95.00 96.00 1.00 NIL-TR .090 .09
97468 101.65 102.65 1.00 NIL-TR .050 .05
97469 102.65 103.65 1.00 NIL-TR .160 .16

Hole No.: SR.89-12 Page No.: 6

							P	age No.:	. 6
From	To	Description	Sample	From	To	Length	Z Sul	GW	Au g/t
103.65	110.30	FELSIC INTRUSIVE			-				
					104.65		TR	.030	.03
					105.65		TR	.020	.02
		Hard, medium grey beige, nonmagnetic feldspar porphry.			106.65		TR	.020	.02
		Unveined. There is trace pyrite as fine euhedral grains			107.65		TR	.040	.04
		disseminated. Lower contact is sharp at 30 degrees to			108.65		TR	.040	.04
		the core axis.			109.65		TR	.020	.02
			Y/4/6	109.65	110.30	.65	TR	.026	.04
110.30	142.65	ARGILLITE							
					111.30		1-2	.020	.02
					112.30		1-4	.060	.06
		GREYWACKE.			113.30		1-4	,040	.04
		W. J.			114.70		1-4	.084	.06
		Moderately hard to hard, thinly bedded alternating light			115.30		2-5	.042	.07
		grey and medium grey to grey-green argillite			116.35		TR-1	.063	.06
		intercalated minor greywacke. There is a weak to			116.95		NIL-TR	.030	. 05
		moderate patchy magnetism. Weakly silicified and			117.95		TR-1 TR-1	.070	.07
		ankeritic. There are 12, 1 to 3 mm graphitic beds along foliation. There is a weak sericitic alteration.			118.95		7R-1	.140	.14 .04
		Foliation subparallels the bedding at 60 to 70 degrees			120.95		TR-1	.040	.04
		to the core axis.		120.95		.90	TR-1	.054	.06
		There are 1%, 1 to 3 mm wide carbonate-quartz veins			122.85			.030	.03
		filling fractures.			123.85			.040	.04
		There is trace to 3% pyrite and pyrrhotite as fine blebs			124.60		NIL-TR	.030	.04
		or stringers disseminated along foliation.			125.60		TR-1	.050	. 05
		110.30 114.70 : ARGILLITE / GREYWACKE are intercalated			126.60		TR-1	.050	.05
		by 3 to 5%, 0.5 to 5 cm wide graphitic			127.60		TR-1	.040	.04
		argillite. Those graphitic beds contain 3	97495	127.60	128.60	1.00	TR-1	.040	.04
		to 4% pyrrhotite, trace to 1% pyrite.	97496	128.60	129.60	1.00	TR-1	.060	.06
		114.70 115.30 Graphitic ARGILLITE dark grey black,	97497	129.60	130.85	1.25	TR-1	.075	.06
		moderately magnetic. There is 2 to 5%	97498	130.85	131.85	1.00	TR	.040	.06
		pyrrhotite, 1% pyrite. Contacts are 66 and			132.85		TR	.070	.07
		70 degrees to the core axis.			133.85		TR	.060	.06
		116.35 116.95 Felsic intrusive. Hard, grey to grey brown			134.85		TR-1	.040	. 04
		coloured, feldspar porphyry. Weakly			135.85		TR	. 050	.05
		silicified and sericitic. There are 1%			136.85		5-25	.070	.07
		quartz-carbonate fracture fillings and			137.85		5-25	.060	.06
		trace very fine pyrite blebs			138.85		2-3	.060	.06
		disseminated. Contacts are 85 and 80			139.85		TR-1	.070	.07
		degrees to the core axis.			140.85	.55	TR-1 TR-1	.030	.03
		121.85 124.60: ARGILLITE / GREYMACKE are very thickly			141.40 142.65		1-3	.050	.04
		bedded. There are no graphitic beds. There is nil to trace disseminated pyrite.	7/340	171170	176,03	1.43	1-0	1 474	171
		124.60 130.85 Foliated. Foliation is contorted and							
		micro-folded. Foliation varies from 70 to							
		5 degrees to the core axis. There is trace							
		to 1% pyrite and pyrrhotite disseminated.							
		11							

To

------ Sample From

To Length % Sul

Au g/t

This section is locally weakly magnetic. There are a few odd decimetric sections brecciated along foliation planes.

- intrusive. Hard, fine grained, 130.85 135.85 Felsic nonmagnetic, medium grey to grey brown, feldspar porphyry. Weakly silicified. There are trace carbonate - quartz filled fractures. There is trace pyrite as fine euhedral grains disseminated or coating fractures. From 133.85 to 133.93 there is angular silicified, thinly bedded argillite/wacke fragment. Upper contact is irregular. Lower contact is veined at 50 degrees to the core axis.
- ARGILLITE. Hard, very fine 135.85 138.85 Graphitic grained, dark grey black, moderately magnetic graphitic argillite. Contacts are 45 and 60 degrees to the core axis. There are trace carbonate filled fracture.
- 135.85 137.85: there is 5 to 25% pyrrhotite, 1 to 3% pyrite, rare trace of chalcopyrite as recrystallized nodules or blebs. There are 1 to 3%, 1 to 5 cm wide dull grey layers intercalated with the graphitic argillite. Foliation averages 70 degrees to the core axis but is locally contorted.
- 137.85 138.85 : silicified cherty argillite intercalated with 50%, 1 to 10 cm wide graphitic argillite beds. There is 2 to 3% pyrrhotite, 1 to 2% pyrite. Foliation is 70 degrees to the core axis.
- 141.40 142.65 Graphitic ARGILLITE. Hard, dark grey black, very weakly to moderately magnetic. graphitic argillite. Foliation subparallels the bedding at 65 to 70 degrees to the core axis. There are 1 to 3%, 1 mm to 1 cm wide carbonate - quartz veins disseminated along foliation. There is 1 to 3% fine recrystallized pyrite along foliation disseminated with veining, and trace associated pyrrhotite. Contacts are sharp at 50 and 60 degrees to

the core axis.

Hole No.: SR.89-12 Page No.: B

Au a/t

2700

To

Hard, fine grained, medium grey to grey brown, nonmagnetic feldspar porphyry. Weakly silicified. There are trace carbonate filled fractures. There is trace of very fine pyrite disseminated. Lower contact is sheared and is marked by a 10 cm carbonate - quartz vein zone intercalated with minor graphitic beds at 45 degrees to

97543 144.65 145.95 1.30 TR .039 .03

Lenoth X Sul

To

145.95 185.35 ULTRAMAFIC

the core axis.

145.95 148.00 Silicified zone. Medium grey to grey brown, hard, fine grained, nonmagnetic, weakly foliated at 55 degrees to the core axis silicified zone. There is a weak talc alteration along foliation and a moderate pervasive calcitic alteration. Unveined. There is 1% fine pyrite disseminated. Lower contact is sheared at 60 degrees to the core axis.

148.00 153.50 ULTRAMAFIC. Moderately soft, dark grey to greenish grey, fine grained, magnetic, strongly foliated chloritic - talc - carbonate schist. chloritic, weakly talcose, Strongly moderately ankeritic. There are 8 to 10%, 2 to 10 mm wide, grey white, ankerite quartz veins elongated along the foliation at 50 degrees to the core axis. There are a few odd centimetric barren quartz veins at random angles. There is pyrite as fine euhedral grains disseminated. From 151.0 to 153.50 intercalated by minor is decimetric silicified chlorite - carbonate - schist sections with 1% disseminated

153.50 165.40 Sheared ULTRAMAFIC. Moderately soft, dark grey blue to greenish grey, fine grained, locally weakly magnetic, sheared talc-chlorite - carbonate schist. Strongly chloritic and talcose, moderately ankeritic. There are 10 to 3%, 1 to 4 mm wide, grey white ankerite quartz veins forming truncated lamellae pinched along the contorted foliation averaging 60 degrees to the core axis. There are 1 to 2%, white grey to white, 5 mm to 1.5 cm wide quartz - ankerite veins pinched along

97544 145.95 146.95 1.00 .020 .02 97545 146.95 148.00 1.05 .021 .02 1 97546 148.00 149.00 1.00 .020 .02 97547 149.00 150.00 1.00 TR .030 .03 97548 150.00 151.00 1.00 TR .050 .05 97549 151.00 152.00 1.00 TR-1 .050 .05 97550 152.00 153.50 1.50 .090 .06 97551 153.50 154.50 1.00 .060 .06 97552 154.50 155.50 1.00 .050 .05 97553 155.50 156.50 1.00 .070 .07 97554 156.50 157.50 1.00 .040 .04 97555 157.50 158.50 1.00 .030 .03 97556 158.50 159.50 1.00 TR .070 .07 97557 159.50 160.10 .60 .030 .05 97558 160.10 160.85 .75 TR .068 .09 97559 160.85 161.65 .80 .040 .05 97560 161.65 162.65 1.00 .050 .05 97561 162.65 163.65 1.00 .040 .04 97562 163.65 163.71 .06 .004 TR .06 65493 163.71 164.65 .94 .05 TR .047 .08 97563 164.65 165.40 .75 .040 97564 165.40 166.40 1.00 NIL-TR .080 .08 97565 166.40 167.40 1.00 NIL-TR .100 .10 97566 167.40 168.40 1.00 NIL-TR .150 .15 97567 168.40 169.40 1.00 TR-1 .100 .10 97568 169.40 170.04 .64 NIL-TR .051 .08 97569 170.04 170.90 .B6 NIL-TR .040 .07 97570 170.90 171.90 1.00 NIL-TR .190 .19 97571 171.90 172.90 1.00 NIL-TR .050 .05 97572 172.90 173.90 1.00 NIL-TR .050 .05 97573 175.48 176.48 1.00 NIL-TR .150 . 15 97574 176.48 177.48 1.00 NIL-TR .050 .05 97575 177.48 178.48 1.00 NIL-TR .140 .14 97576 183.35 184.35 1.00 NIL-TR .140 . 14 97577 184.35 185.35 1.00 NIL-TR .130 .13

Τo

-----Description-----

Sample From To Length % Sul

SM Au o/t

foliation. Veining decreases downhole. There is trace pyrite as fine blebs disseminated. Lower contact is gradational.

- 160.10 161.65 Felsic intrusive. Hard, light grey white to grey, fine grained, nonmagnetic feldspar porphyry. Nonmagnetic. Moderately silicified, very weakly calcitic along fractures. There is trace very fine pyrite disseminated. There are a few odd centimetric angular fragments noted. Contacts are irregular at 80 to 85 degrees to the core axis.
- 165.40 185.35 ULTRAMAFIC. Moderately soft, dark grey to greenish grey, fine grained, blue nonmagnetic talc - chlorite - carbonate Strongly chloritic and talcose, anderately to strongly carbonatized mostly as ankeritic alteration except from 183.65 to 185.35 where ULTRAMAFIC is strongly These are 2 to 5% carbonate calcitic. quartz veins pinched along the foliation averaging 50 degrees to the core axis. There are 1%, white grey, barren, 0.5 to 2 cm wide quartz - carbonate veins at random There is nil to trace pyrite as fine blebs disseminated. Lower contact is weakly sheared at 55 degrees to the core
- 168.50 168.72: quartz carbonate vein, white grey to grey brown coloured, weakly brecciated. There is 12 pyrite as fine blebs disseminated. Contacts are 50 and 80 degrees to the core axis.
- 168.72 169.20 : moderately silicified, talc chlorite carbonate schist.
- 170.90 171.28 LAMPROPHYRE. Mottled dark grey brown, medium to coarse grained, lamprophyre dyke. Very weakly magnetic, strongly calcitic, moderately biotitic. Poorly veined. Barren of mineralization. Contacts are 40 and 45 degrees to the core axis and are marked by 5 mm calcite veins.
- 175.70 176.00 LAMPROPHYRE. Same as 170.90 to 171.28 except moderately magnetic. Contacts are 30 and 45 degrees to the core axis.
- 176.40 176.46: LAMPROPHYRE, same as above, very weakly magnetic, contacts are irregular at 80 to 85 degrees to the core axis.
- 176.48 176.65 FAULT ZONE. Strongly sheared talc chlorite carbonate schist intercalated 5 cm of gouge. Contacts are 65 and 60 degrees to the core axis.

E

To Length % Sul

GW

Au q/t

185.35 230.45 ULTRAMAFIC

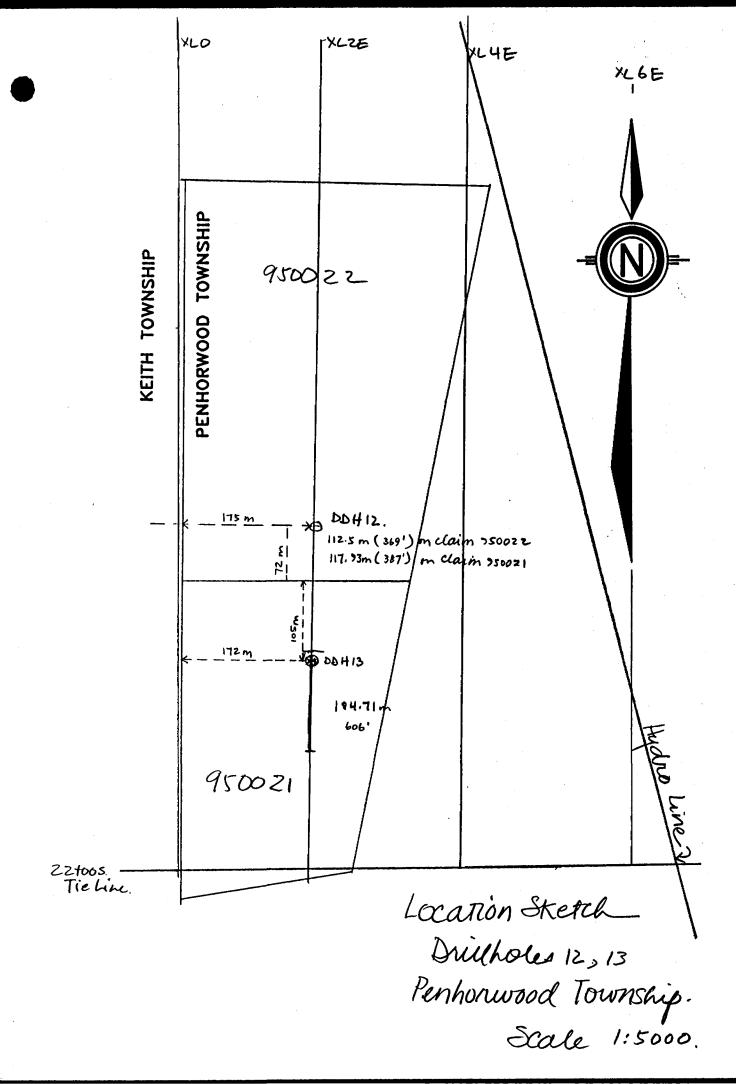
Moderately soft, dark grey to medium grey-green, fine to medium grained, nonmagnetic, granular textured ultramafic flows.

Strongly chloritic, weakly talcose, moderately carbonatized as patchy calcitic and ankeritic alteration. There are 1 to 3%, 1 to 5 mm wide ankerite - carbonate veins pinched along a very weakly developed foliation at 60 to 70 degrees to the core axis. There are a few odd millimetric to centimetric quartz - carbonate veins disseminated at random angles.

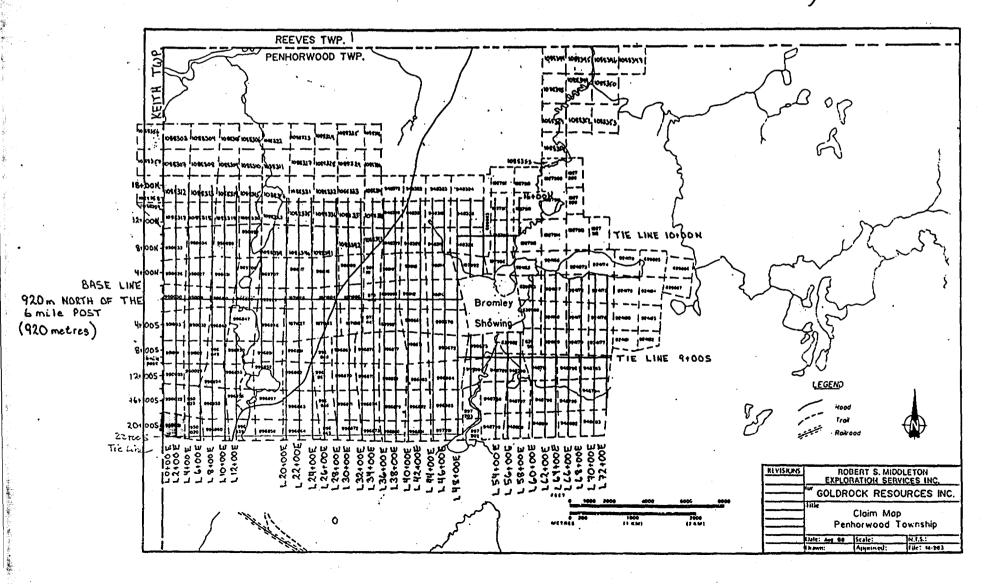
There is nil to trace very fine pyrite disseminated.

186.94 187.01: LAMPROPHYRE dyke, contacts are 50 and 55 degrees to the core axis.

190.70 200.30 BASALT. Moderately hard, dark greenish-grey, fine grained, nonmagnetic, massive mafic volcanic. Strongly chloritic, very weakly ankeritic. There are trace carbonate – quartz filled fractures. There is trace pyrite as fine euhedral grains disseminated. Contacts are diffuse.


202.40 203.00 : foliation is subparallel to core axis.

224.20 226.40 Silicified brecciated zone. Hard to moderately soft, dull beige - grey to dark grey black, brecciated quartz - carbonate vein and / or felsic intrusive intercalated minor ULTRAMAFIC. Contacts of the zone are irregular and weakly sheared at 50 degrees to the core axis. There is trace to 12 pyrite disseminated along fractures. There are 40 to 702 angular to subangular silicified fragments disseminated.


229.35 230.43: ULTRAMAFIC coarse grained, light grey beige coloured, moderately to strongly talcose. There are 10%, 1 to 2 mm chlorite clasts disseminated.

230.43 END OF HOLE.

97578 185.35 186.35	1.00 NIL-TR	. 050	. 05
97579 186.35 187.35	1.00 NIL-TR	.040	.04
97580 189.70 190.70	1.00 TR-NIL	.040	.04
97581 190.70 191.70	1.00 TR	.050	.05
97582 199.30 200.30	1.00 TR	.060	.06
97583 200.30 201.30	1.00 TR	.160	.16
97584 209.00 210.00	1.00 NIL-TR	.120	.12
97585 211.00 212.00	1.00 NIL-TR	.120	.12
97586 218.00 219.00	1.00 NIL-TR	.040	.04
97587 223.20 224.20	1.00 NIL-TR	.040	.06
97588 224.20 225.20	1.00 TR-1	.140	.14
97589 225.20 226.40	1.20 TR-1	.228	.19
97590 226.40 227.40	1.00 NIL-TR	.110	.11
97591 227.40 228.40	1.00 NIL-TR	. 140	. 14
97592 228.40 229.40	1.00 NIL-TR	.140	. 14
97593 229.40 230.43	1.03 NIL-TR	.051	. 05

Claims on which work is being applied

AMERICAN BARRICK RESOURCES CORPORATION

DIAMOND DRILL RECORD

HOLE NO.:

SR.89-13

Azimuth:

180.0

.0

.0

Section: L2+00E

Property:

SEWELL REEVES

Dip:

-50.0

Core Size: BQ

Location:

L2+00E 19+25S

Elevation:

184.7

Date Started:

October 25, 1989 Date Completed: October 31, 1989

Logged by:

M. Bergeron

Measurement: Metric

Consents:

Length:

Casing Pulled

Depth Azimuth Dip

Depth Azimuth Dip

Depth Azimuth

45.72

-50.0

91,44

-48.0

137.16

-----Log Summary-----

.00 2.65 CASING.

2.65 17.50 HIGH MAG BASALT.

17.50 34.30 BASALT.

34.30 73.10 HIGH MAG BASALT.

68.0 - 68.79 FAULT ZONE.

72.35 - 72.70 LAMPROPHYRE.

72.70 - 72.95 brecciated.

72.95 - 73.10 FAULT ZONE.

73.10 87.17 BASALT.

87.17 170.45 HIGH MAG BASALT.

122.75 - 125.5 CONSLONERATE.

125.50 - 126.60 LAMPROPHYRE.

127.20 - 127.50 brecciated.

127.50 - 128.10 LAMPROPHYRE.

135.10 - 137.95 LAMPROPHYRE.

137.95 - 138.61 brecciated.

142.95 - 144.45 LAMPROPHYRE.

170.45 184.71 BASALT.

170.45 - 174.10 mafic intrusive.

171.95 - 172.0 FAULT ZONE.

173.85 - 174.10 FAULT ZONE.

180.25 - 180.75 mafic intrusive.

184.71 END OF HOLE.

AMERICAN BARRICK RESOURCES CORPORATION

Hole No.: \$8.89-13 Page No.: 2

Length % Sul Au g/t 2.65 CASING 2.65 17.50 HIGH MAG BASALT 97372 10.00 11.00 1.00 NIL .070 .07 97373 16.50 17.50 1.00 NIL .040 .04 Moderately hard, fine grained, medium grey to grey-green, moderately to strongly magnetic massive mafic volcanic. Moderately chloritic, weakly calcitic as patchy alteration. There are trace, 1 to 2 am carbonate - quartz filled fractures. Barren of mineralization. Lower contact is veined at 40 degrees to the core axis. 17.50 34.30 BASALT .090 97374 17.50 18.50 1.00 NIL .09 97375 31.00 32.00 1.00 NIL .040 .04 NIL Moderately hard, fine grained, light to medium 97376 33.30 34.30 1.00 .140 .14 greenish-grey, nonmagnetic massive mafic volcanic. Moderately to strongly chloritic, weakly ankeritic pervasively. There are trace, 1 to 2 mm carbonate quartz filled fractures. Barren of mineralization. Lower contact is sharp at 45 degrees to the core axis.

34.30 73.10 HIGH MAG BASALT

Moderatel	y ha	ard,	dark	to	sedius.	grey,	fine	grained,
aoderate1	y to	str	ongly	magne	tic, a	assive m	afic v	olcanic.
Moderatel	y	chlo	oritic,	N KE	akly	ankeriti	c. Th	ere are
trace, 1	to	5	ne car	bonat	e ~ qu	artz fil	led fr	actures.

7/3//	37.30	23.20	T'AA MIC-IN	. 340	. 34
97378	38.00	39.00	1.00 NIL-TR	.040	.04
97379	39.00	40.50	1.50 NIL-TR	.060	.04
97380	42.00	43.00	1.00 NIL-TR	.090	.09
97381	53.00	54.00	1.00 NIL-TR	.090	.09
97797	VO 87	49.00	1.00 MI -TR	.030	.03

Hole No.: SR.89-13 Page No.: 3

Au q/t

.04

.05

.06

GW

.040

.050

.045

----Description-----Sample From To Length % Sul nil to trace pyrite as fine grained 97383 69.00 70.00 1.00 NIL-TR is disseminations or coating fractures. There is locally a 97384 71.35 72.35 1.00 NIL-TR very weak foliation at 45 to 50 degrees to the core 97385 72.35 73.10 .75 NIL-TR axis. Lower contact is faulted. 38.00 38.40: moderately fractured core at 50 to 60 decrees to the core axis. Moderate talc alteration along fracture planes. 39.80 40.30 : strongly fractured and ground core minor calcitic gouge along intercalated fracture planes. There is a moderate talc alteration. 42.10 42.60: strongly fractured and ground core. There is a weak talc alteration. 68.00 68.79 FAULT ZONE. Strongly fractured core intercalated ground sections. Weak talc alteration. 69.36 69.38: fracture plane filled with gouge and gravel at 40 degrees to the core axis. 72.35 72.70 LAMPROPHYRE. Moderately hard, mottled dark

72.35 72.70 LAMPROPHYRE. Moderately hard, mottled dark grey brown, medium grained, moderately aagnetic, massive lamprophye dyke. Strongly calcitic, moderately biotitic. There are 1% carbonate filled fractures, barren of mineralization. Upper and lower contacts are sheared at 60 and 40 degrees to the core axis 72.70 72.95 Brecciated. Dark grey, very fine grained,

72.70 72.95 Brecciated. Dark grey, very fine grained, nonmagnetic, brecciated in-situ mafic volcanic.

72.95 73.10 FAULT ZDNE. Mud and gouge intercalated minor gravel.

73.10 B7.17 BASALT

Moderately hard, fine grained, light to medium grey, nonmagnetic massive mafic volcanic. Moderately chloritic weakly ankeritic pervasively, unveined, barren of mineralization.

Numerous decimetric strongly fractured and ground sections intercalated with minor calcitic gouge noted at 73.80 - 74.30, 75.70 - 75.90, 77.07 - 77.35 and 77.6 - 78.0. From 78.0 to 83.25 mafic volcanics are weakly to moderately fractured.

Lower contact is meakly fractured at 45 degrees to the core axis, lower contact is sharp and marked by a 1 mm carbonate filled fracture at 35 degrees to the core axis.

97386 73.10 74.10 1.00 NIL .040 .04 97387 78.00 79.00 1.00 NIL .030 .03 97388 86.17 87.17 1.00 NIL .110 .11

Au g/t

.05

.09

.07

.04

.04

.06

.13

.21

.15

.13

.11

.14

.09

.12

.10

.07

.04

.05

.14

.10

.05

.11

.11

.07

.05

.04

.04

.12

.04

•		•					
TO B	To	Description	Sample	From	To	Length I Sul	GM
87.17	170.45	HIGH MAG BASALT					
			97389	87.17	88.17	1.00 NIL-TR	.050
				96.00			
		Moderately hard, dark to medium grey, fine grained,	97391	108.00	109.00		
		massive, moderately magnetic mafic volcanic.	97392	117.75	118.40		
		Moderately chloritic weakly ankeritic. There are trace,	97393	118.40	119.40	1.00 NIL-TR	.040
		1 to 2 mm carbonate - quartz filled fractures. There is	97394	119.40	120.40	1.00 NIL-TR	
		nil to trace very fine pyrite disseminated.	97395	120.40	121.65	1.25 NIL-TR	.162
		Lower contact is sharp at 40 degrees to the core axis.	97396	121.65	122.75	1.10 NIL-TR	.231
		Magnetism decreases from moderate to weak from 166.0 to	97397	122.75	123.75	1.00 TR	.150
		170.45.	97398	123.75	124.75	1.00 TR	.130
		117.75 118.40: weakly foliated at 50 degrees to the	97399	124.75	125.50	.75 TR	.082
		core axis, strongly calcitic.	97400	125.50	126.60	1.10 NIL	. 154
		120.90 121.65: light grey, weakly bleached nonmagnetic	97401	126.60	127.50	.90 NIL-TR	.081
		mafic volcanic.	97402	127.50	128.10	.60 NIL	.072
		121.65 122.75: light grey to medium grey , weakly	97403	128.10	129.10	1.00 NIL-TR	.100
		bleached medium grained, calcitic,	97404	132.10	133.30	1.20 NIL	.084
		nonmagnetic mafic volcanic intercalated	97405	133.30	134.10	.80 NIL	.032
		with a few odd millimetric to	97406	134.10	135.10	1.00 NIL	.050
		centimetric, dark brown biotitic mafic	97407	135.10	136.10	1.00 NIL	.140
		dykes. Lower contact is sharp at 45	97408	136.10	137.10	1.00 NIL	.100
		degrees to the core axis.	97409	137.10	137.95	.85 NIL	.042
		122.75 125.50 CONGLOMERATE. Moderately hard to hard,	97410	137.95	138.95	1.00 NIL-TR	.110
		mottled dark grey brown to beige, weakly	97411	141.95	142.95	1.00 NIL-TR	.110
		to moderately magnetic, polymictic	97412	142.95	143.95	1.00 NIL-TR	.070
		. conglomerate. There are 2 to 10%, 0.5 cm	97413	143.95	144.45	.50 NIL-TR	
		to 7 cm wide, subrounded fragments. Most				1.00 NIL-TR	
		of the fragments are ultramafic with		154.00			
		trace olivine, there are a few mafic, and		166.00			
		finally there are trace feldspathic				1.00 NIL-TR	
		fragments at lower contact. Matrix is					
		very fine to fine grained, strongly					
		biotitic, moderately calcitic.					
		CONGLOMERATE is poorly veined and there is					
		trace pyrite as very fine grains					
		disseminated. Lower contact is irregular					
		at a high angle with core axis.					
		125.50 126.60 LAMPROPHYRE. Same as 72.35 to 72.70. Lower					
		contact is subparallel to core axis from					
		126.10 to 126.60.					
		126.60 127.20: mafic volcanic, magnetic, weakly					
		calcitic along fractures. Lower contact is					
		60 degrees to the core axis.				•	
		127.20 127.50 Brecciated. Mafic volcanic, magnetic,					
		weakly brecciated in situ. Lower contact					
		is 40 degrees to the core axis.					
		127.50 128.10 LAMPROPHYRE. Same as 72.35 to 72.70. Lower					
		contact is subparallel to core axis from					
		127.90 to 128.10.					

132.89 133.30 : brecciated

calcite

intercalated subangular LAMPROPHYRE and

veins

with

na 'To

-------- Sample From

ample From To Length

Length % Sul

Au g/t

mafic fragments. Contacts are 70 / 10 degrees to the core axis.

- 133.75 134.38: there are 1 to 3%, 0.5 to 2 cm wide, brecciated carbonate veins with intercalated angular mafic fragments.
- 135.10 137.95 LAMPROPHYRE. Same as 72.35 to 72.70. Upper contact is 5 degrees to the core axis, lower contact is 65 degrees to the core axis marked by a 26 cm wide brecciated carbonate quartz vein intercalated with 5% angular LAMPROPHYRE fragments and with minor mafic fragments.
- 137.95 138.61 Brecciated. Weakly brecciated in situ mafic volcanic magnetic.
- 142.95 144.45 LAMPROPHYRE. Same as 72.35 to 72.70. Contacts are 45 and 40 degrees to the core axis.
- 166.10 167.20: dark green, moderately foliated at 45 degrees to the core axis, strongly chloritic HIGH MAG BASALT.

170.45 184.71 BASALT

Moderately soft, very fine grained, medium greenish-grey, nonmagnetic massive mafic volcanic. Strongly chloritic, moderately to strongly calcitic. There are trace to 2% carbonate filled fractures. There is nil to trace pyrite as fine euhedral grains disseminated.

170.45 174.10 Mafic intrusive. Moderately hard, medium grained, dark to medium grey-green to grey brown, nonmagnetic mafic intrusive. Strongly chloritic and calcitic, locally meakly biotitic. Poorly veined. There is trace disseminated pyrite. Lower contact is faulted at 30 degrees to the core axis.

171.95 172.00 FAULT ZONE. Mud gouge at 45 degrees to the core axis.

173.00 174.10: mafic intrusive is intercalated by a few odd decimetric talc - chlorite - carbonate schist sections.

173.85 174.10 FAULT ZONE. Lower contact is marked by a strongly sheared talc - chlorite - carbonate schist. Minor gouge.

175.05 176.00: weakly fractured mafic volcanic.
Intercalated minor talcose alteration along fractures.

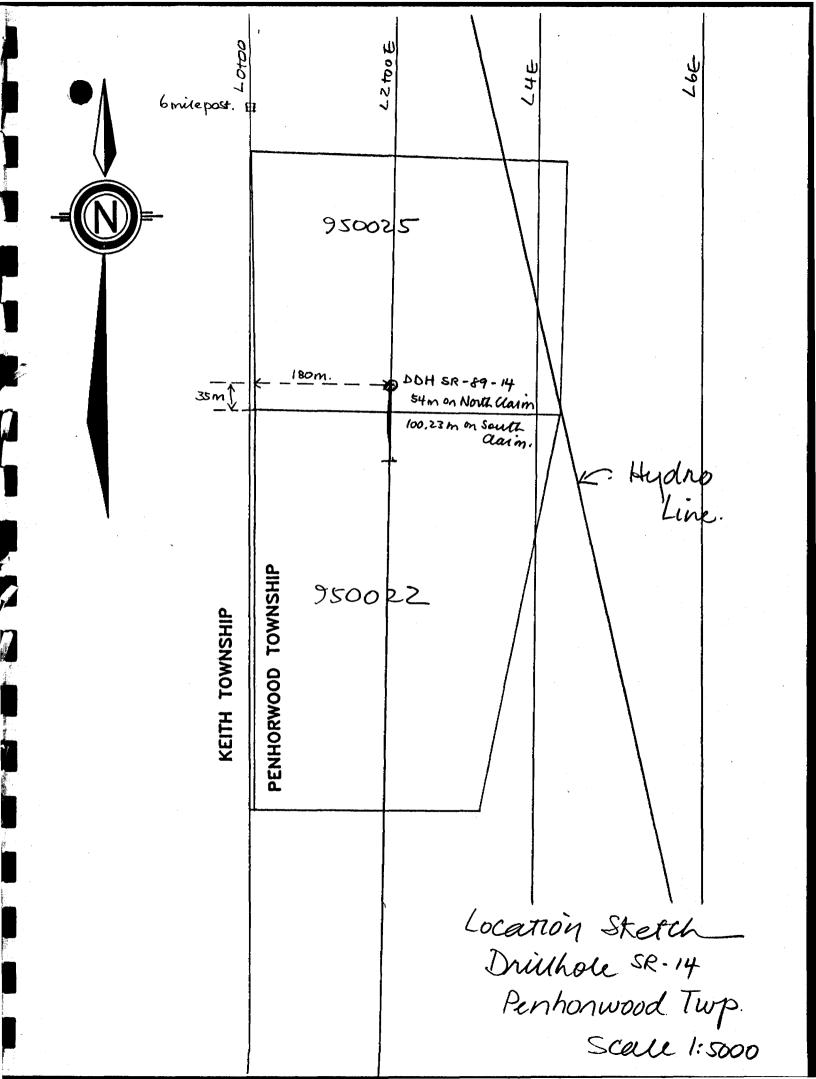
180.25 180.75 Mafic intrusive. Same as 170.45 to 174.10.

.04 97418 170.45 171.45 1.00 .040 TR 97419 171.45 172.45 1.00 TR .030 .03 97420 172.45 173.45 1.00 .030 .03 97421 173.45 174.10 . 65 .020 .03 97422 174.10 175.10 1.00 NIL-TR .010 .01 97423 175.10 176.10 1.00 NIL-TR .010 .01 97424 176.10 177.10 1.00 NIL-TR .020 .02 97425 177.10 178.10 1.00 NIL-TR .040 .04 .070 97426 178.10 179.10 1.00 NIL-TR .07 97427 179.10 180.10 1.00 NIL-TR .060 .06 .030 97428 180.10 181.10 1.00 NIL-TR .03 97429 181.10 182.10 1.00 NIL-TR .040 .04 97430 182.10 183.10 1.00 TR-1 .050 .05 97431 183.10 184.10 1.00 TR-1 .030 .03 97432 184.10 184.71 .61 TR-1 .012 .02

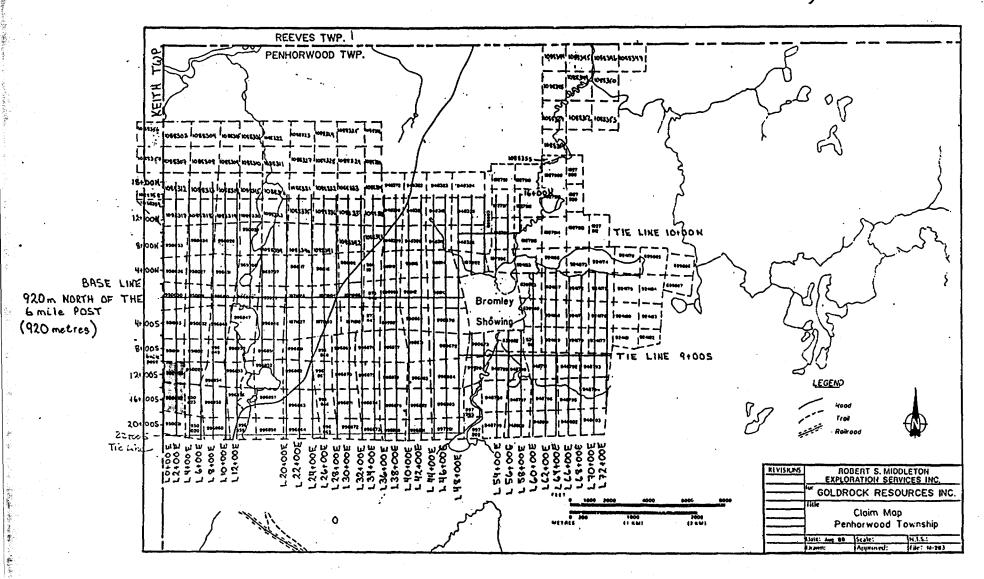
Hole Noi: SR.89-13 Page No.: 6

Īπ

------ Sample From To Length % Sul


Au g/t

Contacts are 40 and 30 degrees to the core axis.


182.00 184.71: there are trace to 1%, 1 to 3 mm wide, carbonate — quartz veins, white grey coloured. These veins contain 1% pyrite, trace chalcopyrite. Locally mafic volcanic is weakly folded and biotitic. Foliation is 45 to 50 degrees to the core

184.71 END OF HOLE.

axis.

Claims on which work is being applied

AMERICAN BARRICK RESOURCES CORPORATION

ords:	.0 .0	DIAMOND DRILL RECORD	HOLE NO.:	SR.89-14
Azimuth:	180.0	Section: L2+00E	Propertys	SEWELL REEVES
Dip:	-50.0	Core Size: BQ	Locations	L2+00E 12+75S
Elevation:	.0			
Length:	154.2	•	•	November 3, 1989 November 4, 1989 M. Bergeron
Mascuranati	Matric		rogged by:	ur nei dei nu

Comments:

Casing left in hole

Depth	Aziauth	Dip	Depth	Azimuth	Dip	Depth	Azimuth	Dip		
45.72	-	51.0	91.44	-51	.0	154.23	-52.	0		

.00 27.13 CASING.

27.13 134.45 TUFF.

134.45 138.25 FOLIATED BASALT.

138.25 154.23 BASALT.

154.23 END OF HOLE.

AMERICAN BARRICK RESOURCES CORPORATION

-----Description------- Sample From

Length X Sul

Au q/t

.00 27.13 CASING

Casing driven to 28.4 m.

27.13 134.45 TUFF

Moderately hard, light grey beige to beige tan, fine grained, poorly bedded to locally thinly laminated not magnetic mafic to intermediate tuff.

The tuff is weakly to moderately sericitic, moderately ankeritic, weakly chloritic.

There are trace carbonate - quartz filled fractures. There is trace pyrite as fine euhedral grains or blebs disseminated.

Foliation subparallels the bedding at 40 to 5 degrees to the core axis, averaging low angle with core axis.

are trace to 2%, lapilli-size fragments, subrounded, 2 am to 2 cm wide. Fragments and matrix same composition but fragments are strongly

Some sections contain up to 20% lapilli-size fragments, matrix supported. In those sections, fragments vary from 1 to 6 cm.

Lower contact is veined and contorted at 30 degrees to the core axis.

27.13 47.90: foliation varies from 40 to 10 degrees to the core axis. SORE sections are micro-folded from 36.8 to 47.9.

47.90 56.50 : foliation averages low angle with core axis 56.50 62.70: there are 5 to 20% lapilli-size fragments. Foliation averages 5 to 10 degrees to the core axis.

62.70 101.20 : foliation averages low angle with core axis. From 88 to 88.7 there is a 1 cm quartz - ankerite sericitized vein pinched

97594	35.B0	36.80	1.00	TR	.060	.06
97595	38.00	39.00	1.00	TR	.030	.03
97596	39.00	40.00	1.00	TR	.060	.06
97597	40.00	41.00	1.00	TR	.060	.06
97598	41.00	42.00	1.00	TR	.080	.08
97599	56.00	57.00	1.00	TR	.060	.06
97600	57.00	58.00	1.00	TR	.060	.06
97601	58.00	59.00	1.00	TR	.050	.05
97602	59.00	60.00	1.00	TR	.050	.05
97603	60.00	61.00	1.00	TR	.050	.05
97604	61.00	62.00	1.00	TR	.070	.07
97605	62.00	63.00	1.00	TR	.060	.06
97606	88.00	89.00	1.00	TR	.110	.11
97607	94.00	95.00	1.00	TR	.100	.10
97608	101.00	102.00	1.00	, TR	.130	.13
97609	111.00	112.00	1.00	TR	.100	.10
97610	117.00	118.00	1.00	TR	.120	.12
97611	125.00	126.00	1.00	TR	.090	.09
97612	131.45	132.45	1.00	TR	.090	.09
97613	132.45	133.45	1.00	TR	.050	.05
97614	133.45	134.45	1.00	TR	.110	.11

Hole No.: SR.B9-14
Page No.: 3

97615 134.45 135.45 1.00

97616 135.45 136.45 1.00

97617 136.45 137.45 1.00

97618 137.45 138.25 .80

TR

TR

TR

.160

.120

.070

TR .040

.16

.12

.07

.05

along foliation, barren of mineralization. From 94 to 94.35 quartz - ankerite sericitized veins, weakly brecciated, barren of mineralization.

101.20 101.80: there are 10%, lapilli-size fragments.
Foliation averages 30 degrees to the core axis.

101.80 134.45: foliation averages 30 degrees to the core axis. There are 1 to 10%, lapilli-size fragments, 2 am to 1 cm wide.

134.45 138.25 FOLIATED BASALT

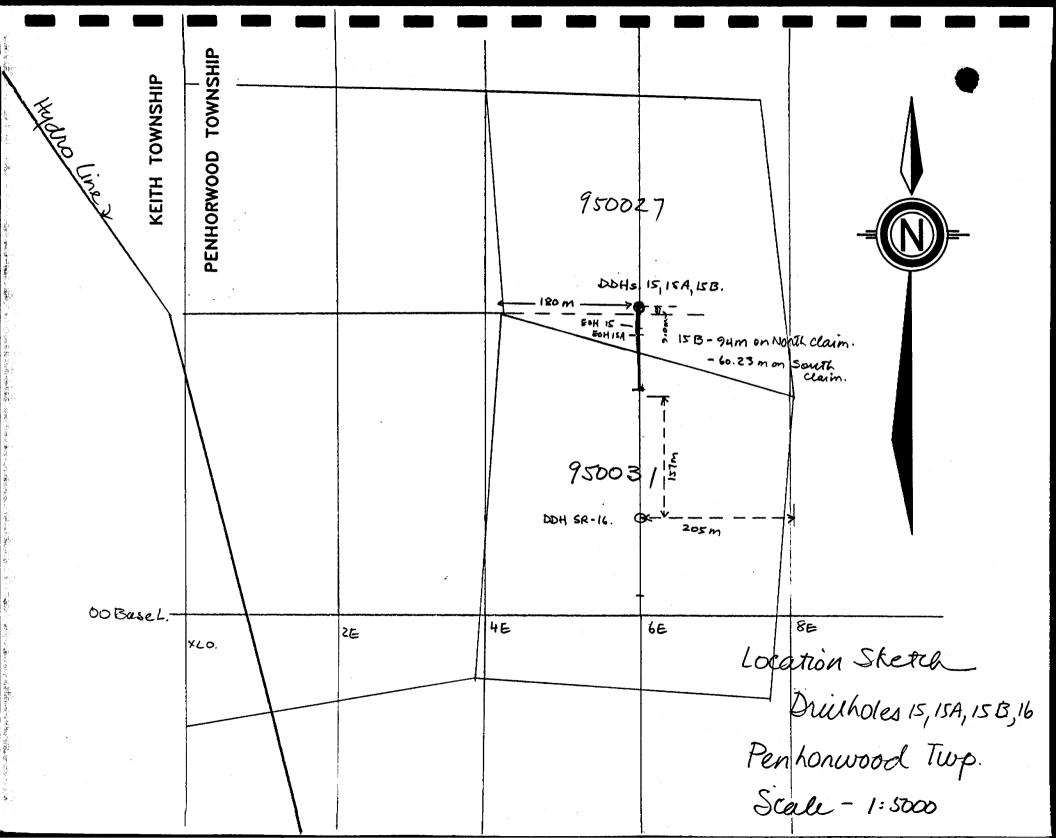
Moderately hard, very fine grained, light to medium green, strongly foliated mafic volcanic. Not magnetic. Moderately chloritic and ankeritic, weakly sericitic. There are 2 to 5%, 0.5 to 2 cm wide quartz ankerite sericitic veins weakly brecciated, subparallel to the contorted foliation. Foliation varies from 30 to 5 degrees to the core axis. There is trace pyrite as fine blebs disseminated. Lower contact is gradational.

138.25 154.23 BASALT

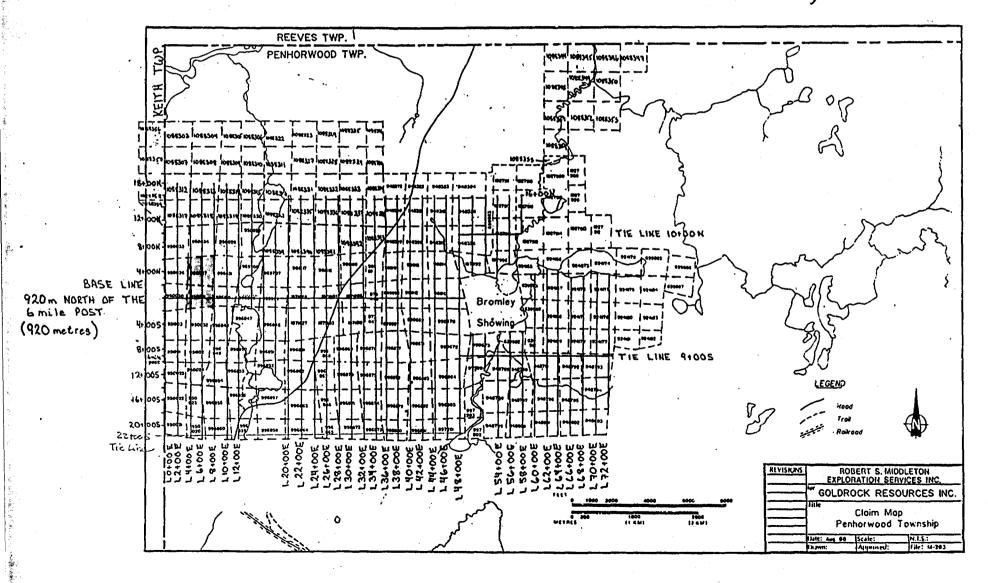
green, massive to weakly foliated mafic volcanic not magnetic.

Moderately chloritic, weakly calcitic and sericitic. There are trace, 0.2 to 1 cm wide quartz carbonate veins as fracture filling. There are trace pyrite as fine blebs disseminated.

138.25 147.85: mafic volcanics are weakly foliated at 30 to 10 degrees to the core axis. There are few odd decimetric pale buff yellow sericitic sections. There are trace to 1%, 0.5 to 1 cm, brecciated quartz veins noted.


147.85 150.85: massive BASALT.

150.85 153.45: altered BASALT, buff yellow colour, strongly sericitic, weakly ankeritic.


Moderately hard, very fine grained, light to medium

.070 97619 138.25 139.25 1.00 TR .07 .050 .05 97620 139.25 140.25 1.00 TR .030 97621 140.25 141.25 1.00 .03 97622 141.25 142.25 1.00 TR .080 .08 97623 142.25 143.25 1.00 TR .080 .08 97624 143.25 144.25 1.00 .040 .04 97625 144.25 145.25 1.00 .010 .01 97626 145.25 146.25 1.00 TR .010 .01 .02 97627 146.25 147.25 1.00 TR .020 97628 147.25 148.25 1.00 .050 .05 97629 148.25 149.25 1.00 .030 TR .03 97630 149.25 150.00 .75 TR .030 .04 .04 97631 150.00 150.85 .85 TR .034 97632 150.85 151.85 1.00 .150 .15 .090 97633 151.85 152.85 1.00 TR .09 97634 152.85 153.45 TR .006 .01 .60 .023 .03 97635 153.45 154.23 .78

154.23 END OF HOLE.

Claims on which work is being applied

AMERICAN BARRICK RESOURCES CORPORATION

.0 .0 DIAMOND DRILL RECORD HOLE NO. : SR.89-158 Aziauth: 180.0 Section: L6+00E Property: SEWELL REEVES Dip: -50.0 Core Size: BQ Location: L6+00E 4+00N Elevation: .0 Date Started: November 6, 1989 154.2 Length: Date Completed: November 15, 1989

Measurement: Metric

Comments: Casing Pulled

Depth Azimuth Dip Depth Azimuth Dip Depth Azimuth Dip 45.72 -51.0 91.44 -52.0 154.23 -54.0

.00 69.49 OVERBURDEN.

69.49 154.23 ULTRAMAFIC.

86.0 - 92.10 BASALT.

154.23 END OF HOLE.

AMERICAN BARRICK RESOURCES CORPORATION

Logged by:

M. Bergeron

Hole No.: SR.89-158

Page No.:

To Length % Sul

Au g/t

.00 69.49 DVERBURDEN

69.49 154.23 ULTRAMAFIC

Moderately soft, fine grained, dark green to black,
variably magnetic, ultramafic flow.
There is trace to 5%, 2 cm to 25 cm long ellipsoidal
fracturing (polysuturing). Some decimetric spinifex -
textured flows are noted.
Ultramafics are strongly chloritic, weakly to moderately
talcose and weakly carbonatized.
There is 1%, 0.2 to 1 cm wide, white barren carbonate - quartz filled fractures.
There is trace to mil very fine pyrite blebs disseminated
Magnetism is very weak from 69.49 to 97.20. From 97.20
to END OF HOLE magnetism is weak to moderate.
71.40 72.05: spinifex textured flows. Blebs are 0.5 to
i on thick, i on in length. There is a weak
biotitic alteration.
77.55 77.85: moderately fractured zone intercalated
minor millimetric gouge and gravel planes at
45 to 55 degrees to the core axis.
79.00 79.30: trace pyrite noted in carbonate - quartz filled fracture.
80.10 80.30 : same as 77.55 to 77.85.
83.50 83.90 : moderately fractured zone. Intercalated
minor millimetric gouge and gravel planes at
75 to 85 degrees to the core axis.
85.77 85.90 : DIABASE. Fine grained, medium grey brown,
very weakly magnetic. Trace very fine pyrite
disseminated. Unveined. Contacts are sharp
at 45 degrees to the core axis.
86.00 92.10 BASALT. Moderately hard, fine grained, dark
grey-green, not magnetic massive mafic volcanic. Strongly chloritic, weakly to
moderately calcitic. There are 2 to 5%, 2 mm
mountains to the second of the second second

97636	69.49	70.49	1.00	TR	.020	.02
97637	70.49	71.40	.91	TR	.055	.06
97638	71.40	72.05	. 65	TR	.052	.08
97639	72.05	73.05	1.00	TR	.030	.03
97640	77.00	78.00	1.00	TR	.020	.02
97641	78.96	79.96	1.00	TR	. 250	. 25
97642	79.96	80.96	1.00	TR	.100	.10
97643	83.00	84.00	1.00	TR	.120	.12
97644	85.00	-86.00	1.00	TR	.130	.13
97645	B6.00	B7.00	1.00	NIL-TR	.110	.11
97646	87.00	88.00	1.00	NIL-TR	.100	.10
97647	88.00	B9.00	1.00	NIL-TR	.100	.10
97648	89.00	90.00	1.00	NIL-TR	.110	.11
97649	90.00	91.00	1.00	NIL-TR	.160	. 16
97650	91.00	92.10	1.10	NIL-TR	.132	.12
97651	92.10	93.10	1.00	NIL-TR	.120	.12
97652	96.00	97.00	1.00	TR	.160	. 15
97653	98.00	99.00	1.00	NIL-TR	.110	.11
97654	104.00	105.00	1.00	NIL-TR	.120	.12
97655	109.00	110.00	1.00	NIL-TR	.120	.12
97656	115.00	116.00	1.00	NIL-TR	.160	. 16
97657	118.00	119.00	1.00	NIL-TR	.120	. 12
97658	120.00	121.00	1.00	NIL-TR	.190	. 19
97659	126.00	127.00	1.00	NIL-TR	.260	. 26
97660	132.00	133.00	1.00	NIL-TR	.130	.13
97661	138.00	139.00	1.00	NIL-TR	.120	. 12
97662	140.00	141.00	1.00	NIL-TR	.120	.12
97663	143.00	144.00	1.00	NIL-TR	.190	. 19
97664	151.00	152.00	1.00	NIL-TR	.290	. 29
97665	152.00	153.00	1.00	NIL-TR	.190	.19

Hole No.: SR.89-158

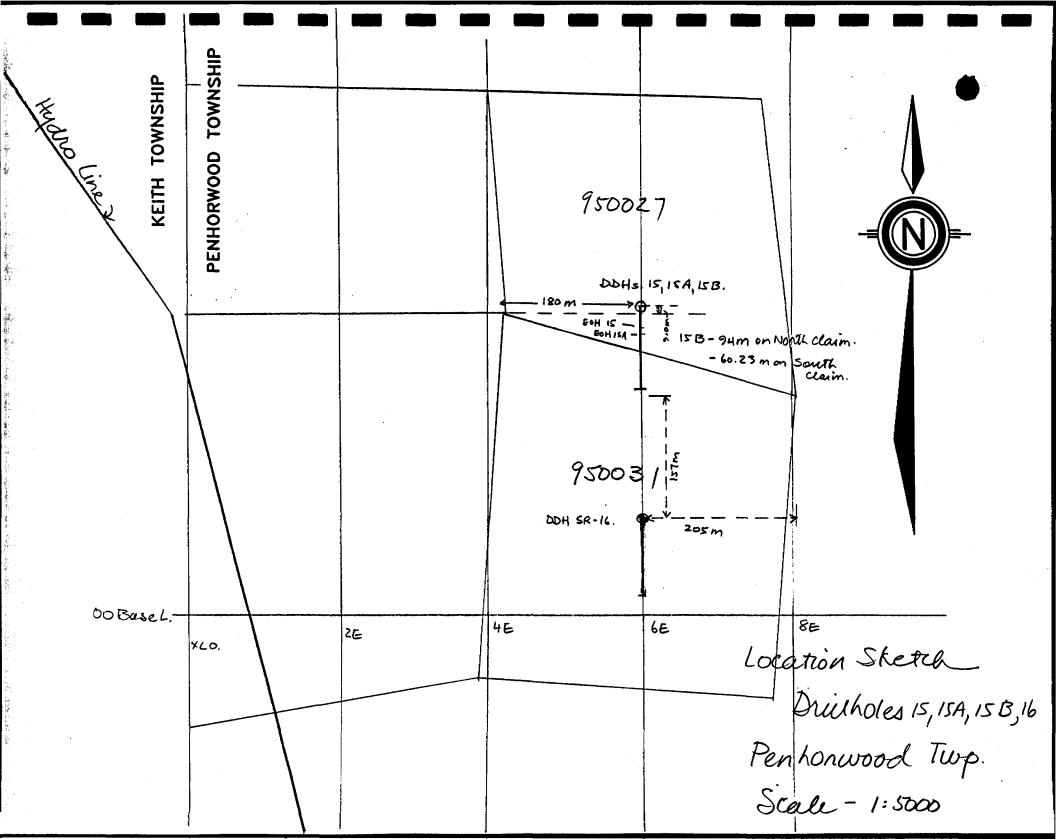
Page No.:

------ Sample From . To Length X Sul

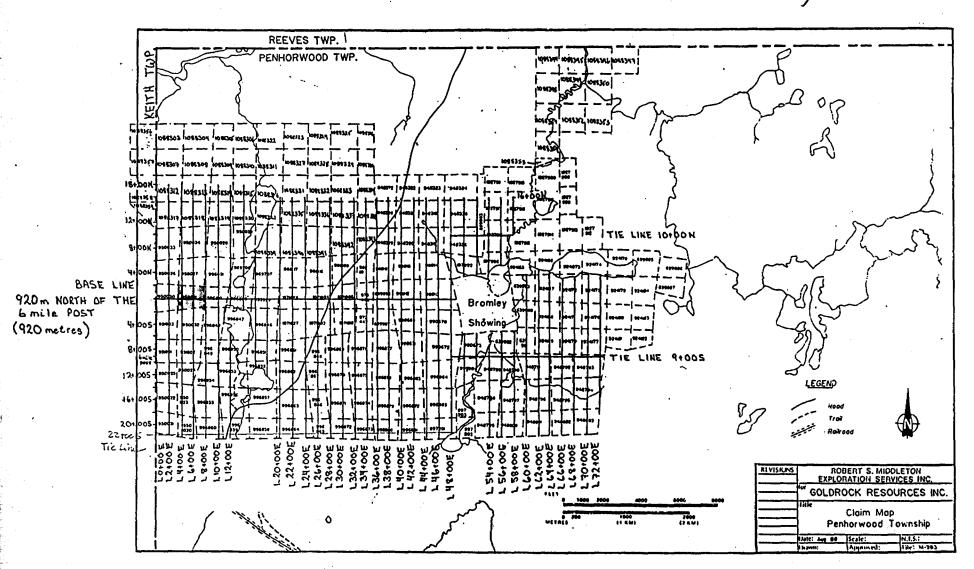
Au g/t

to 5 am wide, white barren, carbonate quartz filled fractures. There is nil to very fine pyrite disseminated. Contacts are weakly sheared at 60 to 70 degrees to the core axis.

86.75 87.00 88.20 88.60, 88.80 89.0 : strongly fractured core.


92.10 98.00: fine to medium grained ultramafic flow, intercalated few odd, 1 to 10 cm wide spinifex textured sections.

120.40 120.50: moderately fractured core. Intercalated minor gouge and gravel at 65 degrees to the core axis.


126.33 126.50 : strongly fractured core intercalated 40% gouge and gravel at 70 to 75 degrees to the core axis.

140.15 141.40 : spinifex textured flow.

154.23 END OF HOLE.

Claims on which drilling was performed Claims on which work is being applied

AMERICAN BARRICK RESOURCES CORPORATION

ds:	.0 .0	DIAMOND DRILL RECORD	HOLE NO.:	SR.89-16
Azimuth:	180.0	Section: L6+00E	Property:	SEWELL REEVES
Dip:	-50.0	Core Size: 89	Locations	L6+00E 1+25N
Elevation:	.0		Note: Observed.	N 17 (888
Length:	154.2		•	November 15, 1989 November 18, 1989
Measurement:	Metric		Logged by:	M. Bergeran

Comments: All casing lost in hole

> Depth Azimuth Dip Depth Azimuth Dip Depth Azimuth Dip 45.72 -50.0 91.44 -47.0 140.21 -45.0 -----Log Summary-----

.00 1B.29 CASING / DVERBURDEN.

18.29 54.10 BASALT.

28.65 - 38.15 ULTRAMAFIC.

54.10 154.23 UNDIFFERENTIATED IRON FORMATION.

54.10 - 54.90 brecciated chert / silicified ARGILLITE.

54.90 - 58.50 graphitic ARGILLITE, brecciated, mineralized.

58.50 - 60.70 brecciated chert, mineralized.

60.70 - 62.45 graphitic ARGILLITE brecciated,

62.45 - 65.7 brecciated chert / carbonate intercalated CONGLOMERATE.

65.7 - 66.5 silicified GREYWACKE.

66.5 - 152.8 .chert / carbonate intercalated minor magnetite.

152.8 - 154.23 graphitic ARGILLITE / chert.

154.23 END OF HOLE.

AMERICAN BARRICK RESOURCES CORPORATION

Hole No.: SR.89-16 Page No.:

97666 18.29 19.29 1.00

.170

TR

.17

To Length % Sul GM , Au g/t

.00 18.29 CASING

DVERBURDEN.

18.29 54.10 BASALT

	97667	19.29	20.29	1.00	TR	. 120	.12
Moderately hard, fine grained, medium grey to	97668	20.29	21.05	.76	TR	.084	.11
grey-green, nonmagnetic, massive mafic volcanic.	97669	25.65	26.65	1.00	TR	.660	.66
Strongly chloritic, weakly calcitic as patchy	97670	26.65	27.65	1.00	TR	.110	.11
alteration, weakly bleached, locally weakly talcose	97671	27.65	28.65	1.00	TR	.150	. 15
along fractures planes.	97672	28.65	29.65	1.00	TR	.060	.06
There are 1 to 3%, 2 to 4 am wide carbonate - quartz	97673	29.65	30.65	1.00	TR	.060	.06
filled fractures. There is trace very fine pyrite,	97674	30.65	31.65	1.00	TR	.060	.06
disseminated or coating fractures. Lower contact is	97675	31.65	32.65	1.00	TR	.060	.06
veined at 45 degrees to the core axis,	97676	32.65	33.65	1.00	TR	.040	. 04
18.29 21.05 : mafic volcanic is intercalated by a few	97677	33.65	34.65	1.00	TR	.100	.10
odd centimetric brecciated sericitic layers.	97678	34.65	35.65	1.00	TR	.090	.09
21.05 22.25 : dark green, very fine grained, massive	97679	35.65	36.65	1.00	TR	.150	. 15
section, strongly calcitic.	97680	36.65	37.65	1.00	TR	.040	.04
28.65 38.15 ULTRAMAFIC. Moderately hard, black with	97681	37.65	38.15	.50	TR	.020	. 04
medium grey mottling, locally very weakly	97682	38.15	39.15	1.00	TR	100	.10
magnetic, ultramafic. There are 50%, 2 to 5	97683	39.15	40.15	1.00	TR	.090	.09
mm in size, medium grey polygonal grains of	97684	40.15	41.15	1.00	TR	.160	.16
antigorite. Strongly chloritic, weakly	97685	41.15	42.15	1.00	TR	.090	.09
talcose along fractures. There are trace, 1	97686	42.15	43.15	1.00	TR	.140	.14
to 2 mm ankerite vein fracture fillings.	97687	43.15	44.15	1.00	TR	.080	.08
There are traces very fine pyrite and	97688	50.20	51.20	1.00	TR	.090	. 09
pyrrhotite blebs disseminated or coating	97689	51.20	52.20	1.00	TR	.100	.10
fractures. Contacts are 45 and 50 degrees	97690	52.20	53.20	1.00	TR	.080	.08

Hole No.: SR.89-16

				<i></i>	,				Page No.:	2 24.84-19
Tros	To		Description	Sample	Free	To	Length	% Sul	6M	Au g/t
		42.00 42.15	to the core axis. : sheared and brecciated section, strongly chloritic and talcose. Contacts are 50 degrees to the core axis.	97691	53.20	54.10	.90	TR	.081	.09
		42.80 44.15	: moderately fractured zone intercalated minor talc gouge and gravel. Fracture planes are 5 to 10 degrees to the core axis and 45 to 50 degrees to the core axis.							
		44.15 51.20	: mafic volcanic are weakly foliated at 45 to 50 degrees to the core axis.						٠.	
		51.20 54.10	: strongly bleached, weakly to moderately sericitic. Weakly foliated at 50 degrees to the core axis. There are a few odd yellow brown alteration stainings along fractures.							
			. • •							

54.10 154.23 UNDIFFERENTIATED IRON FORMATION

UNDIFFERENT.	TRIED TUDU LAVURITAN								
		97692	54.10	54.90	.80	2-5	.160	.20	
		97693	54.90	55.90	1.00	5-10	.100	.10	
54.10 54.90	Brecciated ARBILLITE to brecciated chert.	97694	55.90	56.85	. 95	5-10	.076	.08	
	Hard, very fine grained to aphanitic, medium	97695	56.85	57.85	1.00	50-80	.160	. 16	
	grey to dark grey, nonmagnetic. There are	97696	57.85	58.50	. 65	70-80	.104	.16	
	40%, 0.5 to 1.5 cm in size, subangular	97697	58.50	59.50	1.00	5-10	.050	.05	
	chert and quartz fragments in a silicified	97698	59.50	60.70	1.20	5-10	.072	.06	
	and cherty matrix. There is 2 to 5% pyrite	97699	60.70	61.70	1.00	2-5	.090	.09	
	as fine euhedral grains disseminated. Lower	97700	61.70	62.45	.75	2-5	.045	.06	
	contact is 45 degrees to the core axis,	97701	62.45	63.45	1.00	2-8	.050	.05	
	marked by a 15 cm wide silicified wacke.	97702	63.45	64.45	1.00	2-6	.070	. 07	
54.90 58.50	Brecciated graphitic ARGILLITE, mineralized.	97703	64.45	65.70	1.25	1-4	.037	.03	
	Hard, very fine grained to aphanitic, dark	97704	65.70	66.50	.80	1-2	.056	. 07	
	grey to black, nonmagnetic, brecciated	97705	86.50	67.50	1.00	TR-1	.020	.02	
	graphitic ARGILLITE. There are 5 to 7%, 0.5	97706	67.50	68.50	1.00	TR-1	.040	.04	
	to 3 cm in size angular chert fragments.	97707	68.50	69.50	1.00	1-3	. 050	.05	
	Bedding is poorly developed at 50 degrees to	97708	69.50	70.50	1.00	1-2	.030	.03	
	the core axis. There is 5 to 10% pyrite as	97709	73.00	74.00	1.00	TR-2	.050	.05	
	aggregated pyrite nodules elongated at 40 to	97710	7B.00	79.00	1.00	TR-1	.030	.03	
	50 degrees to the core axis. From 56.85 to	97711	B2.00	83.00	1.00	TR	.020	.02	
	58.5 there is 50 to 80% pyrite, also as	97712	86.00	B7.00	1.00	TR-1	.280	.28	
	aggregated nodules.	97713	91.00	92.00	1.00	TR-3	.220	.22	
58.50 60.70	Brecciated chert, mineralized. Hard,	97714	92.00	93.00	1.00	TR-3	. 120	.12	
	aphanitic, light beige grey brecciated	97715	97.00	98.00	1.00	TR-1	.110	.11	
	chert. Mineralized. Nonmagnetic. There are	97716	98.00	99.00	1.00	TR-1	.100	.10	
	90 to 95%, 0.5 to 5 cm in size, subangular	97717	99.00	100.00	1.00	1-3	.100	.10	
	chert fragments. There is 5 to 10% very fine	97718	100.00	101.00	1.00	TR-1	.060	.06	
	euhedral pyrite filling the interstices. 2	97719	101.00	102.00	1.00	TR-80	.100	.10	
	to 4%, 1 to 5 mm vugs are noted.	97720	102.00	103.00	1.00	TR-80	.120	.12	
60.70 62.45	Brecciated graphitic ARBILLITE. Same as 54.9	97721	103.00	104.00	1.00	TR	.070	.07	
	to 58.5. There is 2 to 5% pyrite as fine	97722	106.00	107.00	1.00	TR-1	.120	.12	
	euhedral grains disseminated or aggregated	97723	107.00	108.00	1.00	TR-80	.080	.08	
	in fine stringers.	97724	108.00	109.00	1.00	TR	.090	.09	

T -
10

62.45 65.70	Intercalated CONSLOMERATE. Hard, aphanitic to fine grained, light beige grey to grey,
•	poorly bedded at 45 degrees to the core axis, interbedded brecciated chert and
	carbonate, intercalated minor decimetric conglomerate sections. There is 2 to 8% pyrite as fine euhedral grains disseminated
	along bedding or fragments.

---Description-----

65.70 66.50 Silicified SREYWACKE. Hard, fine grained to medium grained, nonmagnetic, medium grey brown coloured, thickly bedded at 45 degrees to the core axis strongly silicified wacke.

Lower contact intercalated with minor cherty fragments. There is 1 to 2% pyrite as fine euhedral grains disseminated.

66.50 152.80 Chert / carbonate, local magnetite. Hard, very fine grained, to aphanitic, banded chert and carbonate, light grey to dark grey colour, variably magnetic. Bedding is well developed at 45 degrees to the core Interbedded layers of chert and axis. are from 0.5 to 5 cm wide. There are overall 1%, 0.5 to 1 cm wide magnetite beds. There are a few odd centimetric of silicified ARKOSE noted. Fragmentation of cherty layers is common. This unit is strongly silicified (cherty) and carbonatized. There are a few odd quartz carbonate fracture fillings. There is trace to 32 very fine pyrite aggregated along bedding with a few odd decimetric nodular pyrite sections. semi-massive There is nil to trace pyrrhotite associated with magnetite beds.

101.40 101.70 : semi-massive pyrite (nodular).

102.43 102.69 : semi-massive pyrite (nodular).

107.91 107.99 : semi-massive pyrite (nodular).

111.07 111.35 : semi-massive pyrite (nodular).

119.20 119.35 : semi-massive pyrite (nodular).

119.90 120.95 : brecciated carbonate intercalated semi

massive pyrite and 5% magnetite.

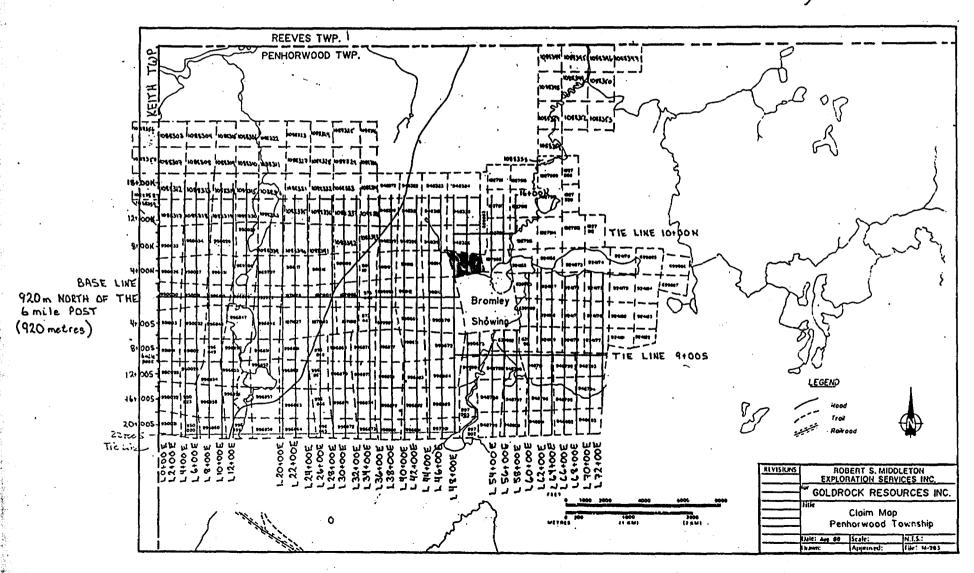
152.80 154.23 Graphitic ARGILLITE with intercalated chert. Hard, dark grey black, very fine aphanitic, nonmagnetic, grained to graphitic argillite intercalated minor cherty layers. Thinly bedded at 45 the core axis. Strongly degrees to silicified, weakly calcitic. There is 2 to pyrite as fine euhedral grains disseminated aggregated along or foliation. Foliation subparallels the bedding at 45 degrees to the core axis.

Sample	From	To	Length	% Sul	SW	Au g/t
97725	109.00	110.00	1.00	TR	.070	. 07
97726	111.00	112.00	1.00	TR-60	.110	.11
97727	117.75	119.00	1.25	TR-3	. 262	.21
97728	119.00	120.00	1.00	TR-40	.100	.10
97729	120.00	121.00	1.00	TR-40	.100	.10
97730	124.00	125.00	1.00	TR	.130	.13
97731	128.00	129.00	1.00	TR	.030	.03
97732	131.00	132.00	1.00	TR	.040	.04
97733	135.00	136.00	1.00	TR	.020	.02
97734	141.00	142.00	1.00	TR-3	.080	.08
97735	145.00	146.00	1.00	TR	.070	.07
97736	149.00	150.00	1.00	TR	.070	.07
97737	150.00	151.00	1.00	TR-1	.080	.08
97738	151.00	152.00	1.00	TR-1	.030	.03
97739	152.00	152.80	.80	TR-1	.096	.12
97740	152.80	153.80	1.00	2-5	.060	.06
97741	153.80	154.23	.43	2-5	. 047	.11

Hole No.: SR.89-16 Page No.: 5

------- Sample From

Length % Sul


Au g/t

154.23

END OF HOLE.

10+00N P. 639978 SR.17 Primer Lake Location Stetch Drillhole SR-17 Penhonwood Township. Scale 1:5000 Baselineoo

Claims on which work is being applied

AMERICAN BARRICK RESOURCES CORPORATION

ds:	.0 .0	DIAMOND DRILL RECORD	HOLE NO.: SR.89-17
Azimuth:	186.0	Section: L48+00E	Property: SEWELL REEVES
Dip:	-50.0	Core Size: 89	Location: L48+00E 6+25N
Elevation:	.0		B. L. 81 . 1 . 1 . 1 . 00 . 4000
Length:	184.7		Date Started: November 20, 1989 Date Completed: November 22, 1989
Measurement:	Metric		Logged by: M. Bergeron

Depth Azimuth Dip Depth Azimuth Dip Depth Azimuth Dip 45.72 -50.0 154.23 -48.0 91.44 -49.0 184.71 -48.0

.00 3.00 DVERBURDEN.

Casing Pulled

Comments:

3.00 57.40 GREYWACKE.

17.90 - 19.40 : ARGILLITE.

20.95 - 21.90 : ARGILLITE.

35.15 - 38.40 : CONGLOMERATE.

38.40 - 47.00 : quartzose wacke.

47.00 - 57.40 : ARGILLITE intercalated minor

-----Log Summary-----

GREYWACKE.

57.40 64.70 Felsic intrusive.

64.70 68.88 CONGLOMERATE.

68.88 72.90 FAULT ZONE.

72.90 111.56 Mafic to intermediate volcanics.

72.90 - 77.60 foliated, weakly brecciated.

111.56 123.86 TUFF.

123.86 132.55 ULTRAMAFIC.

132.55 162.60 BASALT.

162.60 167.30 HIGH MAG BASALT.

167.30 173.90 BASALT.

168.40 - 169.02 felsic intrusive.

171.70 - 172.40 brecciated quartz -

carbonate vein.

172.40 - 173.90 TUFF.

173.90 178.20 HIGH MAG BASALT.

176.75 - 177.65 TUFF.

178.20 184.71 AMPHIBOLITE.

184.71 END OF HOLE.

AMERICAN BARRICK RESOURCES CORPORATION

Hole No.: SR.89-17 Page No.:

------ Sample From To Length % Sul

GN Aug/t

.00 3.00 DVERBURDEN

Casing reamed to 3.66 m.

3.00 57.40 BREYWACKE

Intercalated minor CONGLOMERATE and ARGILLITE.
A sequence of moderately to strongly fractured
sediments. Greywackes are dominant and contain
intercalated argillite and conglowerate sections.
Breywackes are moderately hard, greenish-grey colour,
and are nonmagnetic.
•
Breywackes are poorly bedded at 50 to 55 degrees to the
core axis. They are granular textured with visible
rounded quartz and feldspar grains.
There is a weak to moderate chloritic alteration and a
weak carbonate alteration.
There are a few odd millimetric carbonate veins and
quartz carbonate veins as fracture filling.
Foliation is weakly developed subparallel to the bedding
at 50 to 55 degrees to the core axis.
There is trace pyrite coating fractures.
17.90 19.40 ARGILLITE. Moderately hard, dark grey black
to grey, very fine grained, nonmagnetic,
argillite. Very weakly chloritic and
carbonatized, poorly bedded at 55 degrees to
the core axis. Unveined, weakly foliated at
55 degrees to the core axis. There is trace
pyrite coating fractures.
20.95 21.90 ARGILLITE. Same as 17.90 to 19.40.
25.40 35.15: GREYWACKE is weakly sericitic as

millimetric bands

disseminated

97742	11.00	12.00	1.00	TR	.170	.17
97743	17.90	18.90	1.00	TR	.110	.11
97744	32.15	33.15	1.00	TR	.130	.13
97745	33.15	34.15	1.00	TR	.240	. 24
97746	34.15	35.15	1.00	TR	.090	. 09
97747	35.15	36.15	1.00	TR-1	.130	.13
9774B	36.15	37.15	1.00	TR-1	.080	.08
97749	37.15	38.40	1.25	TR-1	.550	.44
97750	38.40	39.40	1.00	TR-1	.070	.07
97751	40.60	41.60	1.00	TR-1	.070	. 07
97752	43.00	44.00	1.00	TR-1	.040	.04
97753	47.00	48.00	1.00	NIL-TR	.060	.06
97754	48.00	49.00	1.00	NIL-TR	.070	. 07
97755	49.00	50.00	1.00	NIL-TR	.240	. 24
97756	55.40	56.40	1.00	NIL-TR	.090	.09
97757	56.40	57.40	1.00	NIL-TR	.050	. 05

SN

on Ti

ample From To Length % Sul

Au q/t

foliation. Some decimetric sections are medium to light grey coloured and are weakly calcitic and sericitic.

35.15 38.40 CONGLOMERATE. Moderately hard, greenish-grey, nonmagnetic conglomerate. are polymictic Fragments and matrix supported. They are composed mainly of 2 to 4 mm sub-rounded quartz and mafic clasts. Matrix is moderately chloritic and very weakly calcitic. Foliation subparallels the bedding at 55 to 60 degrees to the core There are trace quartz carbonate veins, 2 to 5 mm wide, at random angles. is trace to 1% pyrite coating fractures or as fine grains disseminated.

38.40 47.00: quartzose wacke. Moderately hard, light grey to grey-green, nonmagnetic, poorly bedded at 60 degrees to the core axis quartzose wacke. There is a weak sericitic alteration along foliation. Sediments are unveined. There is trace to 1% pyrite as fine blebs disseminated. Foliation subparallels the bedding at 60 degrees to the core axis.

41.60 47.00 : quartzose wacke intercalated with a few odd decimetric wacke/argillite sections.

47.00 57.40 ARGILLITE intercalated minor SREYWACKE.

Moderately hard to moderately soft, light grey to dark grey argillite, nonmagnetic.

There is a meak patchy silicification and sericitic alteration. From 49.0 to 50.20 the argillite is strongly sericitic. Argillite is intercalated by a few odd decimetric wacke sections. There are nil to trace quartz carbonate veins as fracture filling. There is nil to trace pyrite as very fine blebs disseminated.

57.40 64.70 FELSIC INTRUSIVE

Hard, very fine grained to aphanitic, light grey to greenish grey, nonmagnetic felsic intrusive. There are trace to 2%, 1 to 4 mm quartz phenocrysts. There is a weak calcitic alteration along fractures. There are trace quartz — carbonate filled fractures and nil to trace very fine pyrite disseminated. There is locally a weak foliation developed at 55 degrees to the core axis. This unit is weakly fractured but is intercalated with

97758 57.40 58.40 1.00 NIL-TR .050 .05 97759 60.00 61.00 1.00 NIL-TR .020 .02 97760 63.00 64.00 1.00 NIL-TR .100 .10 97761 64.00 64.70 .70 NIL-TR .070 .10

.120

TR

OR I

o ------ Sample From

Gample From To Length % Sul

97762 64.70 65.70 1.00

N Aug/t

.12

5%, 10 cm to 20 cm wide zones of ground core.
Lower contact is sharp and weakly graphitic at 70 degrees to the core axis.

64.70 68.88 CONGLOMERATE

Moderately hard, greenish-grey to light grey, nonmagnetic conglomerate. Fragments are polymictic and matrix supported. They are composed mainly of 5 mm to 2 cm subangular fragments of felsic, quartz, and mafic volcanic composition.

Matrix is moderately chloritic, there is a weak pervasive calcitic alteration. Conglomerate is unveined. There is trace very fine pyrite disseminated. Foliation and bedding are poorly developed at 60 degrees to the core axis. Lower and upper contacts are irregular and brecciated. Conglomerate is intercalated by a few odd, 5 to 10 cm wide felsic intrusive dykes.

68.88 72.90 FAULT ZONE

Soft, medium greenish-grey, nonmagnetic, sheared and faulted zone. There are 75 to 85% polymictic fragments matrix supported. Fragments are composed of 2 mm to 8 mm rounded quartz and felsic material with minor 5 mm to 1.5 cm subangular mafic material and rare quartz carbonate clasts. Matrix is a calcitic gouge. Foliation is 60 to 70 degrees to the core axis. There are rare traces of fine pyrite disseminated. Contacts

are sharp at 70 degrees to the core axis.

72.90 111.56 MAFIC VOLCANICS

Moderately hard, medium grey-green to greenish grey, fine grained, nonmagnetic, massive mafic to intermediate volcanics.

Weakly to moderately chloritic, moderately ankeritic pervasively. There is a weak patchy sericitic alteration. There are trace to 1%, 2 to 5 mm wide, white quartz carbonate fracture fillings. There are traces of

97763	65.70	66.70	1.00	IR	120	.12
97764	66.70	67.70	1.00	TR	.210	.21
97765	67.70	68.88	1.18	TR	. 106	.09

97766 68.88 69.88 1.00 NIL-TR .040 .04 97767 69.88 70.88 1.00 NIL-TR .060 .06 97768 70.88 71.88 1.00 NIL-TR .050 .05 97769 71.88 72.90 1.02 NIL-TR .061 .06

97770 72.90 73.90 1.00 TR-1 .160 .16 97771 73.90 74.90 1.00 .060 TR-1 .06 .11 97772 74.90 75.90 1.00 TR-1 .110 97773 75.90 76.90 1.00 TR-1 .050 . 05 97774 76.90 77.60 .70 TR-1 .056 .08 97775 77.60 78.60 TR .080 .08 1.00 080. .08 97776 82.00 83.00 1.00 TR 97777 85.00 86.00 1.00 TR .080 .08 TR .050 97778 90.00 91.00 1.00 .05

B	
na	T

very	fine	pyrite blebs	disseminated. Lower contact is
sharp	at 70	degrees to the	core axis.
72.90	77.60	Foliated and	weakly brecciated. Greenish
		grev volcanic	s, moderately foliated at 5 to

O Foliated and weakly brecciated. Greenish grey volcanics, moderately foliated at 5 to 70 degrees to the core axis. There is a weak brecciation, with a moderate light green chlorite — sericite alteration along the 5 mm to 2 cm subangular fragments. There are 1%, grey white, 5 mm to 1 cm wide quartz veins, pinched along foliation. There are trace to 1% very fine pyrite blebs disseminated.

-----Description----

77.60 94.18: greenish grey sections. There are 2 to 4%,
2 cm to 15 cm wide, sericitic bands, dull
beige grey in colour. These sericitic bands
are commonly weakly brecciated in situ.

94.18 96.80: medium grey section. There are 5 to 10%, 0.5 to 1.5 mm carbonate specks disseminated. There are trace to 1% medium grained pyrite blebs disseminated.

96.80 97.70: dark green mafic volcanic, very fine grained, nonmagnetic, massive. Strongly chloritic, very weakly calcitic. There are 1%, quartz - carbonate filled fractures. There is trace to 1% pyrite as medium grains disseminated.

97.70 105.00: medium grey-green section. Upper contact is moderately to strongly calcitic until 99 m. There are a few odd, 2 mm to 1 cm wide sericitic bands at 70 to 80 degrees to the core axis. From 101.0 to 102.0 and 103.0 to 104.0 volcanics are very weakly brecciated, with sericitic alteration along the subangular fragments.

105.00 106.80: medium grey to grey-green section. There are 5 to 102, 0.5 to 1.5 mm carbonate specks disseminated.

106.80 109.35: brecciated. Medium grey to grey-green weakly brecciated in situ volcanics. There are trace to locally 2%, 0.5 to 3 cm subangular volcanic fragments within a strongly chloritic and moderately sericitic matrix.

109.35 111.56: medium grey-green section, very fine grained, weakly sericitic pervasively.

Sample	From	To	Length	X Sul	BM	Au g/t
97779	93.18	94.18	1.00	TR	.040	.06
97780	94.18	95.18	1.00	TR-1	.100	.10
97781	95.80	96.80	1.00	TR-1	.090	.09
97782	96.B0	97.70	.90	1	.117	.13
97783	97.70	98.70	1.00	TR	.050	.05
97784	101.00	102.00	1.00	TR	.050	.05
97785	103.00	104.00	1.00	TR	.050	. 05
97786	106.80	107.80	1.00	TR	.110	.11
97787	107.80	108.80	1.00	TR	.070	.07
97788	108.80	109.35	.55	TR	.022	.04
97789	109.35	110.35	1.00	TR	.040	.04
97790	110.35	111.56	1.21	TR	.097	.08

Hole No.: SR.89-17

						P	age No.:	6	
On To	Description	Sample	From	To	Length	Z Sul	6N	Au g/l	
	Moderately hard, light grey beige to greenish grey,	97793	113.56	114.56	1.00	TR	.090	.09	
	mafic to intermediate tuff-breccia.	97794	114.56	115.56	1.00	TR	.120	.12	
	There are 10 to 25% subrounded fragments, 2 mm to 2 cm	97795	115.56	116.56	1.00	TR	.080	.08	
	wide, composed of intermediate volcanics, quartz and		116.56			TR	.070	.07	
	minor chert. The matrix is fine grained.		117.56			TR	.060	.06	
	There is a moderate chloritic and sericitic alteration		118.56			TR	.110	.11	
	within the matrix. There is a weak calcitic alteration		119.56			TR	.150	.15	
	pervasively.		120.56			TR	.170	.17	
	There are trace, white grey coloured, 2 mm to 1 cm wide		121.56			TR	.050	.05	
	quartz carbonate vein fracture fillings. There is trace pyrite as fine blebs disseminated. Sericitic alteration decreases downhole. Lower contact is sheared and veined at 70 degrees to the core axis.		122.56			TR-3	.793	.61	
123.86 132.55	ULTRAMAFIC	07007	197.0/	121.57			050	AF	
			123.86				.050	. 05	
			127.00				.070	. 07	
	Moderately soft, fine grained, medium grey black, nonmannetic, massive ultramafir flow.	97805	131.55	132.55	1.00	IIL-TR	.030	.03	

nonmagnetic, massive ultramafic flow.

Strongly chloritic, weakly talcose, moderately ankeritic pervasively. There are 5%, 0.5 to 2 mm wide, ankerite veins filling fractures or pinched along the weakly developed foliation at 65 to 70 degrees to the core axis. There are a few odd 0.5 to 1 cm wide, white, quartz ankerite veins at random angles.

There are nil to rare traces of pyrite as fine blebs disseminated. From 127.40 to 127.45 and 127.80 to 127.83, ultramafics are intercalated with gouge and gravel planes at 60 to 75 degrees to the core axis. Lower contact is sheared and veined at 65 degrees to the core axis.

132.55 162.60 BASALT

Moderately hard, fine grained, dark green to green, nonmagnetic massive mafic volcanic. Strongly chloritic and calcitic pervasively.

There are 2 to 5% carbonate - quartz filled fractures. From 132.55 to 133.80 and 144.30 to 149.30 there are 10 to 15% carbonate - quartz filled fractures.

is. pyrite as fine euhedral grains There trace disseminated. From 149.10 to 149.20 and 151.60 to 151.80 there is 32 pyrite as fine blebs or euhedral grains associated with carbonate - quartz veins.

Lower contact is fractured at 65 degrees to the core axis

97806	132.55	133.55	1.00	TR	.060	.06
97807	138.00	139.00	1.00	TR	.040	.04
9780B	145.00	146.00	1.00	TR	.060	.06
97809	148.00	149.00	1.00	TR	.090	.09
97810	149.00	150.00	1.00	TR-3	.060	.06
97811	151.00	152.00	1.00	TR-3	.050	.05
97812	155.00	156.00	1.00	TR	.080	.08
97813	159.00	160.00	1.00	TR	.100	.10
97814	161.60	162.60	1.00	TR	.050	. 05

Hole No.: SR.89-17 Page No.:

-------Description------ Sample From

Length % Sul

Au g/t

162.60 167.30 HIGH MAG BASALT

97815 162.60 163.60 1.00 NIL-TR .060 .06 97816 166.30 167.30 1.00 NIL-TR .060 .06

Moderately hard, fine grained massive flow, weakly to strongly magnetic. There are trace to 5%, 1 mm to 1 cm wide, very fine magnetite beds filling fractures. There is a strong chloritic and calcitic alteration pervasively There are 2 to 5% carbonate - quartz filled fractures. There is nil to trace pyrite as fine euhedral grains disseminated. Lower contact is diffuse.

167.30 173.90 BASALT

Moderately hard, dark green to medium grey, nonmagnetic mafic volcanic. Strongly chloritic, moderately calcitic pervasively. There are 1 to 3% carbonate - quartz filled fractures.

There are 5 to 20%, 1 to 2 mm in size, carbonate specks disseminated.

Barren of mineralization. From 167.30 to 167.70, BASALT is weakly brecciated.

168.40 169.02 Felsic intrusive. Hard, very fine grained aphanitic, orange grey colour, nonmagnetic. There is a weak sericitic alteration along fractures. There are 2%, 1 to 6 cm wide ankeritic - quartz veins at 40 degrees to the core axis. There is trace pyrite as fine euhedral grains disseminated. Contacts are veined at 50 / 40 degrees to the core axis.

171.70 172.40 Brecciated quartz - carbonate vein. Hard, very fine grained to aphanitic, weakly magnetic. There are 60 to 70%, 5 mm to 2 cm in size, subangular grey blue colour, quartz - carbonate vein fragments in a chloritic - sericitic - calcitic matrix with intercalated minor magnetite. There 2% fine euhedral pyrite i to Contacts are sharp at 25 disseminated. and 55 degrees to the core axis.

172.40 173.90 TUFF. Hard, fine grained, light grey green to pinkish grey colour, nonmagnetic intermediate tuff. Poorly bedded at 50 degrees to the core axis. There is a weak

97817 167.30 168.40 1.10 NIL .055 . 05 97818 168.40 169.02 TR .043 .62 .07 NIL .040 97819 169.02 170.02 1.00 .04 97820 171.70 172.40 .70 1-2 .035 .05 97821 172.40 173.90 1.50 NIL .060 .04

Hole No.: SR.89-17 Page No.: 8

ga To

------ Sample From

Sample From To Length % Sul

3¥i Aua∕t

.04

.04

.08

.36

.04

.06

.01

TR

TR

TR-1

1-5

1-3

1

TR

.040

.080

.360

.040

.040

.005

silicification and hematisation pervasively. There are 1 to 2%, 0.5 to 5.0 cm wide, pinkish white coloured, quartz ankerite veins at 50 to 60 degrees to the core axis. TUFF is barren of mineralization. Lower contact is sharp at 50 degrees to the core axis.

173.90 178.20 HIGH MAG BASALT

Same as 162.6 to 167.3. Lower contact is veined at 70 degrees to the core axis.

176.75 177.65 TUFF. Same as 172.4 to 173.9 except there are 1%, 0.5 to 0.2 cm wide, quartz ankeritic veins. Contacts are 55 degrees to the core axis.

97822 173.90	174.90	1.00	NIL-TR	. 050	. 05
97823 175.75	176.75	1.00	NIL-TR	.040	.04
97824 176.75	177.65	.90	NIL	.036	.04
97825 177.65	178.20	.55	NIL-TR	.050	.09

97826 178.20 179.20 1.00

97827 179.20 180.20 1.00

97828 180.20 181.20 1.00

97829 181.20 182.20 1.00

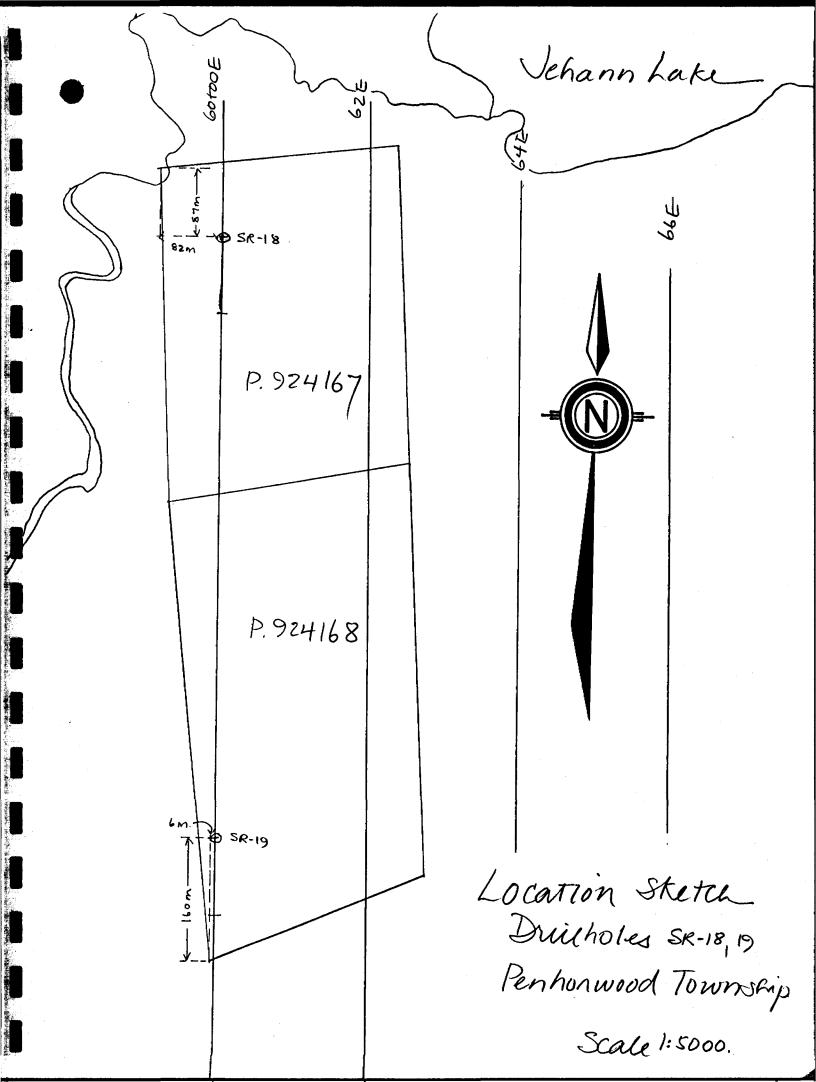
97830 182.20 183.20 1.00

97831 183.20 184.20 1.00

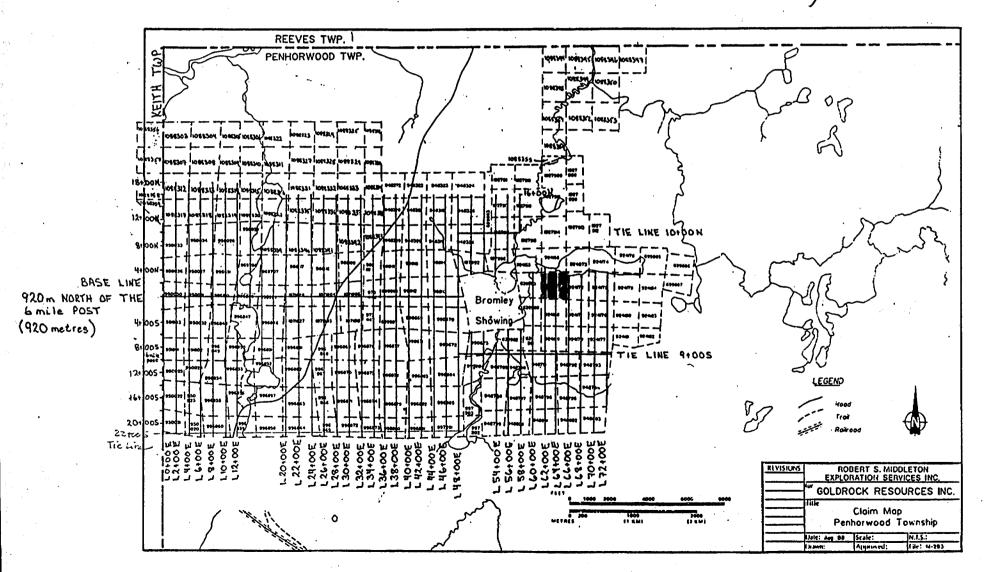
97832 184.20 184.71 .51

178.20 184.71 AMPHIBOLITE

Hard, fine grained to medium grained, dark brownish green, moderately to strongly magnetic hornblendic amphibolite.


There is a moderately to weakly calcitic alteration decreasing downhole. There is a weak patchy hematite alteration, and a moderate chlorite alteration pervasively. There is a weak sericitic alteration along fractures.

There are 3 to 5%, 1 to 5 mm wide, carbonate - quartz filled fractures and a few odd, 1 to 5 mm wide quartz - hematite veins at random angles.


There is trace to 5% pyrite as very fine points or blebs disseminated.

Upper contact is weakly foliated at 50 degrees to the core axis.

184.71 END OF HOLE.

Claims on which work is being applied

AMERICAN BARRICK RESOURCES CORPORATION

.0 .0 DIAMOND DRILL RECORD HOLE NO.: SR.89-18 Aziauth: 186.0 Section: L60+00E Property: SEWELL REEVES Dip: -50.0 Core Size: BQ Location: L60+00E 5+25N Elevation: Date Started: December 1, 1989 Length: 154.2 Date Completed: December 5, 1989 Logged by: M. Bergeron Measurement: Metric

Comments: Some casing lost in hole

Depth Azimuth Dip Depth Azimuth Dip Depth Azimuth Dip 45.72 -49.0 91.44 -49.0 154.23 -48.0

.00 31.39 OVERBURDEN.

31.39 42.85 Mafic to intermediate volcanic.

42.85 66.28 BASALT.

66.28 70.00 Graphitic FAULT ZONE.

70.00 74.85 GREYWACKE / ARGILLITE.

74.85 81.50 Graphite intercalated graphitic ARGILLITE - FAULT ZONE.

81.50 86.05 Volcanic breccia.

B6.05 BB.70 Altered BASALT.

88.70 91.75 Quartz - feldspar porphyry.

89.10 - 89.12 fault plane.

91.75 104.00 ULTRAMAFIC.

104.00 115.50 CONGLOMERATE.

115.50 127.06 CARBONATE ZONE.

125.75 - 127.06 CONTACT ZONE.

127.06 154.23 SYENITE.

154.23 END OF HOLE.

AMERICAN BARRICK RESOURCES CORPORATION

Hole No.: SR.89-18 Page No. 1 2

-Description------ Sample From

To

Length % Sul

Au g/t

.00 31.39 DVERBURDEN

31.39 42.85 MAFIC VOLCANICS

Moderately hard, fine grained, medium greenish grey, nonmagnetic. Volcanics are massive, intercalated by a few odd, 5 to 10 cm wide, brecciated zones. In those zones volcanic fragments are 0.5 to 2 cm wide, angular, and are supported by a dark green black chloritic matrix. Volcanics are strongly chloritic and moderately calcitic pervasively. There are 2 to 5%, 1 to 5 mm quartz carbonate filled fractures. There is nil to trace pyrite as fine blebs disseminated, and rare pyrrhotite traces within brecciated zones. Lower contact is sharp and veined at 45 degrees to the core axis.

97833	34.00	35.00	1.00 NIL-TR	.040	.04
97834	37.50	38.50	1.00 NIL-TR	.020	.02
97935	41.85	42.85	1.00 NII-TR	.010	. 61

42.85 66.28 BASALT

Moderately hard, fine grained, dark grey to medium grey nonmagnetic massive BASALT. Moderately to strongly chloritic, moderately carbonatized as calcitic alteration from 42.85 to 53.6 and downhole as ankeritic alteration.

There trace to 1%, quartz carbonate filled fractures. There are 1%, 0.5 to 2 cm, quartz - carbonate veins at 50 degrees to the core axis.

There is trace pyrite as fine blebs disseminated.

63.80 66.28: BASALT moderately foliated at 45 degrees to the core axis with intercalated minor graphitic alteration along foliation planes. Lower contact is marked by a 30 cm

97836	42.85	43.85	1.00	TR	.020	.02
97837	47.50	48.50	1.00	TR	.230	. 23
97838	51.00	52.00	1.00	TR	.080	.08
97839	54.00	55.00	1.00	. TR	.140	. 14
97840	59.00	60.00	1.00	TR	.120	.12
97841	62.80	63.80	1.00	TR	.110	.11
97842	63.80	64.80	1.00	7R	.080	.08
97843	64.80	66.28	1.48	TR	.104	. 07

TR .070

97851 74.85 75.85 1.00

.07

				•				ole No.: age No.:	SR.89-18 3
From	To	Description	Sample	From	To	Length	X Sal	GM	Au g/t
		brecciated QUARTZ VEIN ZONE. There are 60% white grey to pink, angular quartz carbonate veins. Matrix is moderately graphitic.							
		, , , , , , , , , , , , , , , , , , ,							
66.28	70.00	FAULT ZONE							
				68.28 69.28			TR-3 TR-3	.040	.06 .05
		Graphitic,	77010	07120	70100	1,72	111 V	1000	100
		Intercalation of ground graphite and medium grey							
·		strongly fractured intermediate volcanic. Intermediate volcanics are very fine grained, weakly							
		silicified, barren of mineralization and contain 10%,		•					•
		0.2 to 0.5 cm quartz filled fractures.							
		Graphite appears as gouge cementing 0.2 to 0.5 cm wide quartz vein fragments or as strongly fractured and							
		brecciated centimetric pieces intercalated with 10%							
		fragmented quartz veins. There is trace to 3% pyrite as fine blebs disseminated			,				
		along quartz veins.							
		There are 2 m lost core.							
70.00	74.R5	GREYWACKE							÷.
,,,,,	7 11 00	une i whone	97846	70.00	71.00	1.00	TR	. 090	.09
			97847		72.00		TR	.080	.08
		Intercalated ARGILLITE. Moderately hard, very fine grained to fine grained,	9784B 97849		73.00 74.00		TR Tr	.060 .270	.06 .27
		medium grey to dark grey, poorly bedded wacke		74.00		.85	TR	.059	.07
		intercalated with minor graphitic argillite.							
		Weakly chloritic, weakly calcitic as patchy alteration. There are trace to 3%, 1 to 3 mm carbonate specks							
		disseminated,							
		There is a weak graphitic alteration along fractures.							
		Sediments are poorly veined. Foliation subparallels the bedding at 45 degrees to the core axis. There is trace							
		pyrite as fine blebs or nodules disseminated.							
		Lower contact is fractured.							
								-	

74.85 81.50 FAULT ZONE

97852	75.85	76.85	1.00	TR	.050	.05
97853	76.85	77.85	1.00	TR-4	.060	.06
97854	77.85	78.85	1.00	TR-4	.060	.06
97855	78.85	79.85	1.00	TR	.040	.04
	97853 97854	97853 76.85 97854 77.85	97853 76.85 77.85 97854 77.85 78.85	97853 76.85 77.85 1.00	97853 76.85 77.85 1.00 TR-4 97854 77.85 78.85 1.00 TR-4	97853 76.85 77.85 1.00 TR-4 .060 97854 77.85 78.85 1.00 TR-4 .060

Hata No.1 SR.89-18

		••••
Page	No. t	

Fruit	To	Description	Sample	From	To	To Length X	% Sul	GN of	Au g/t	
		bedded at 50 degrees to the core axis and weakly	97856	79.85	B0.85	1.00	TR	.050	.05	
		fractured along foliation planes.	97857	B0.85	B1.50	.65	TR	.072	.11	
		There are 1 to 4%, 1 to 3 mm wide, quartz veins along								
		foliation. There is trace pyrite as fine euhedral grains								

disseminated. Graphite is strongly fractured, unveined, barren of eineralization.

From 74.85 to 78.5 graphitic ARGILLITE is intercalated with 30 to 40%, 10 to 30 cm wide sections of graphite. From 77.55 to 78.03, there is 1 to 4% pyrite as fine blebs associated with quartz veining.

From 78.50 to 81.50 graphitic ARGILLITE.

Lower contact is veined and graphitic at 5 degrees to the core axis.

81.50 86.05 VOLCANIC BRECCIA

Moderately hard, mottled medium green and dark grey green, nonmagnetic volcanic breccia.

There are 60 to 70%, 0.5 to 5 cm in size, dull beige green coloured, subangular, unstratified and unsorted fragments of intermediate volcanic. Weakly sericitic.

Matrix is composed of subrounded fragments 1 to 5 mm in

Those fragments are mainly quartz, mafic to intermediate volcanic and feldspar. Accessory graphitic ARGILLITE subangular fragments are noted. Matrix is strongly chloritic and very weakly graphitic.

The volcanic breccia is unveined. There is trace pyrite as fine blobs disseminated within the matrix. Lower contact is ground.

86.05 88.70 BASALT

86.05 B7.40 : moderately hard, very fine grained, dark grey to brownish grey weakly sericitic mafic volcanic. nonmagnetic. chloritic, weakly carbonatized. Unveined, weakly foliated at 60 degrees to the core axis. There is trace pyrite as fine blebs disseminated. Upper contact is weakly brecciated.

87.40 88.05 : hard, very fine grained, light to medium grey, weakly sericitic and silicified mafic

97858	81.50	82.50	1.00	TR	.040	. 04
97859	82.50	83.50	1.00	TR	.060	.06
97860	83.50	84.50	1.00	TR	.090	.09
97861	84.50	85.50	1.00	TR	.120	.12
97862	85.50	86.05	.55	TR	.017	.03

97863 86.05 87.40 1.35 TR .067 .05 .039 97864 87.40 88.05 .65 NIL .06 97865 88.05 88.70 .65 NIL .026 .04

Hole No.: SR.89-18 Page No.: 5

To ------ Sample From To Length % Sul GW Au g/t

volcanic, nonmagnetic. Poorly veined, barren of mineralization, weakly foliated at 60 degrees to the core axis.

88.05 88.70: moderately hard, dark grey to greenish grey, moderately chloritic, weakly carbonatized mafic volcanic. Nonmagnetic, massive. There are 3 to 52, 5 mm to 1 cm wide QUARTZ-CARBONATE VEINs at random angles. Barren of mineralization.

88.70 91.75 QUARTZ - FELDSPAR PORPHYRY

Moderately hard, fine grained, light to medium grey, nonmagnetic. There are 52, 1 to 2 mm quartz phenocrysts in a feldspathic groundmass.

There are 1 to 2%, 2 mm to 1 cm wide, QUARTZ-CARBONATE VEINs disseminated along foliation.

There is nil to trace pyrite as fine blebs disseminated. Felsic intrusive is weakly sheared and foliated at 50 to 60 degrees to the core axis.

Locally weakly brecciated with millimetric chloritic veinlets filling fractures.

89.10 89.12 Fault plane. Intercalated gouge and gravel.

Contacts are 40 / 70 degrees to the core axis.

Lower contact is sheared at 60 degrees to the core axis.

91.75 104.00 ULTRAMAFIC

Moderately soft, dark blue grey, fine grained, weakly magnetic talc - chlorite - carbonate - schist.

Strongly chloritic and carbonatized, weakly talcose.

There are 5 to 10%, 1 to 2 mm wide carbonate veins (ankeritic) pinched along foliation or as fine specks disseminated along foliation.

There are a few odd 2 mm to 1 cm wide QUARTZ-CARBONATE VEINs crosscutting the foliation at 70 to 50 degrees to the core axis.

Foliation is strongly developed at 65 degrees to the core axis. There is nil to trace pyrite as fine blebs disseminated. ULTRAMAFIC is intercalated with a few odd decimetric light beige green talc - carbonate schist sections.

From 100 m to 104 m : talc - carbonate - schist.

Lower contact is marked by a 22 cm, dull white - beige,

97869 91.75 92.75 1.00 NIL-TR .030 .03 97870 92.75 93.75 1.00 NIL-TR .040 .04 97871 93.75 94.75 1.00 NIL-TR .040 .04 97872 94.75 95.75 1.00 NIL-TR .040 .04 97873 95.75 96.75 1.00 NIL-TR .060 .06 .070 97874 96.75 97.75 1.00 NIL-TR .07 .060 97875 97.75 98.75 1.00 NIL-TR .06 .010 .01 97876 98.75 99.75 1.00 NIL-TR 97877 99.75 100.75 1.00 NIL-TR .020 .02 97878 100.75 101.75 1.00 NIL-TR .050 . 05 97879 101.75 102.75 1.00 NIL-TR .130 .13 97880 102.75 104.00 1.25 NIL-TR .050 .04

97866 B8.70 89.70 1.00 NIL-TR

97867 89.70 90.70 1.00 NIL-TR

97868 90.70 91.75 1.05 NIL-TR

.

.05

.040 .04 .063 .06

I

Hole No.: SR.89-18 Page No.:

-Description----- Sample From

To Length % Sul

Au g/t

sugary textured, quartz ankerite vein.

104.00 115.50 CONGLOMERATE

Moderately hard to hard, mottled grey-green, greenish yellow and beige grey, polymictic conglomerate, fragment

CONGLOMERATE is poorly sorted and poorly bedded at 45 to 50 degrees to the core axis.

There are two average sizes of fragments. Dne is composed of 1 to 5 cm, subrounded to subangular, mafic to intermediate sericitic volcanics, and rare quartz. Those represent 20 to 25% of the conglomerate.

The second is composed of 2 am to 2 cm, subrounded, quartz, mafic to intermediate sericitic volcanics, and lithic fragments.

There is a strong sericitic alteration and a moderate ankeritic alteration with rare fuchsite alteration.

There are nil to trace quartz carbonate filled fracture. There are rare traces of fine to medium orained euhedral pyrite disseminated.

104.00 105.08: medium grey to dark grey conglomerate. The fragments are 2 mm to 5 mm in size.

115.35 115.50: lower contact is marked by a graphitic ARGILLITE thinly bedded at 60 degrees to the core axis.

97881	104.00	105.0B	1.0B	NIL-TR	. 054	. 05
97882	105.08	106.08	1.00	NIL-TR	.050	.05
97883	108.00	109.00	1.00	NIL-TR	.050	.05
97884	112.00	113.00	1.00	NIL-TR	.070	. 07
97885	114.50	115.50	1.00	NIL-TR	.060	.06

115.50 127.06 CARBONATE ZONE

Moderately hard, mottled light green to medium green and greenish beige. Strongly carbonatized zone of possibly ultramafic composition. Nonmagnetic.

There is a strong ankeritic and sericitic alteration pervasively. There is a weak patchy fuchsite alteration. There are 5% ankeritic quartz vein stringers.

There is trace pyrite as very fine points or euhedral grains disseminated.

125.75 127.06 CONTACT ZONE. Moderately hard, very fine grained, nonmagnetic, dark green black coloured ultramafic. Strongly ankeritic, weakly sericitic pervasively. There are trace ankerite quartz vein fracture fillings. There is nil to trace pyrite as fine blebs disseminated.

97886 115.50 116.50	1.00	TR	.060	.06
97887 116.50 117.50	1.00	TR	.100	.10
97888 117.50 118.50	1.00	TR	.050	.05
97889 118.50 119.50	1.00	TR	.090	. 09
97890 119.50 120.50	1.00	TR	.120	.12
97891 120.50 121.50	1.00	TR	.100	.10
97892 121.50 122.05	.55	TR	.039	.07
97893 122.05 123.05	1.00	TR	.050	. 05
97894 123.05 124.05	1.00	TR	.060	.06
97895 124.05 125.05	1.00	TR	.140	.14
97896 125.05 125.75	.70	TR	.105	.15
97897 125.75 127.06	1.31	TR	. 157	.12

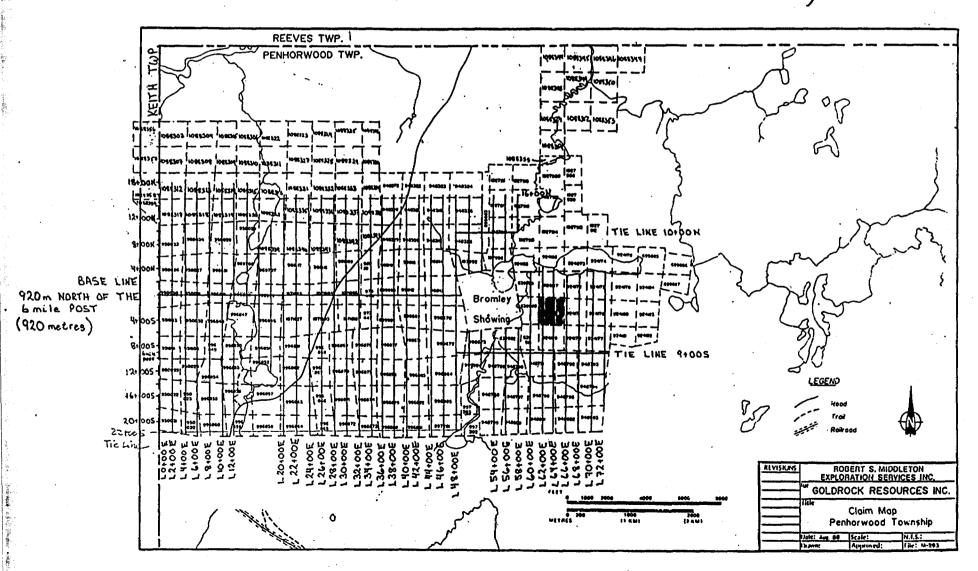
Hole No.: SR.89-18 Page No.: 7

.07

TR .070

		·						
-JA	To	Description	Sample	From	To	Length % Sul	GW	Au g/t

127.06 154.23 SYENITE


	11010 151140 150140	***	111	10/0	147	
	97899 128.06 129.06	1.00	TR	.140	.14	
Hard, fine grained, medium pinkish tan to greenish pink	97900 129.06 130.06	1.00	TR	.150	.15	
tan colour, nonmagnetic syenite.	97901 132.00 133.00	1.00	TR	.060	.06	
There is a strong and pervasive ankeritic alteration and	97902 135.00 136.00	1.00	TR	.110	.11	
a moderate patchy sericitic alteration.	97903 139.00 140.00	1.00	TR	.090	.09	
There are 1 to 3%, white grey coloured, 2 to 5 am wide,	97904 141.00 142.00	1.00	TR	.120	.12	
ankerite quartz veins elongated along foliation or	97905 144.00 145.00	1.00	TR	.050	.05	
filling fractures.	97906 147.00 148.00	1.00	TR	.080	.08	
There is trace pyrite as very fine euhedral grains	97907 148.70 149.70	1.00	TR	.090	. 09	
disseminated.	97908 149.70 150.70	1.00	TR	.060	.06	
There is a weak foliation developed at 50 to 55 degrees	97909 150.70 151.70	1.00	TR	.060	. 06	
to the core axis.	97910 151.70 152.70	1.00	TR	.100	.10	
150.70 154.23: SYENITE is weakly brecciated.	97911 152.70 153.70	1.00	TR-2	.060	.06	
Interstices between fragments are filled	97912 153.70 154.23	.53	TR	.026	. 05	
with chloritic - hematitic, weakly						
magnetic material.						

97898 127.06 128.06 1.00

154.23 END OF HOLE.

Jehann Lake 5 - SR-18 P. 924167 P. 924168 5R-19 Location Sketch Druholes SK-18, 19 Penhonwood Township Scale 1:5000.

Claims on which drilling was performed Claims on which work is being applied

AMERICAN BARRICK RESDURCES CORPORATION

Cogrds:	.0 .0	DIAMOND DRILL RECORD	HOLE NO.: SR.89-19
Aziauth:	186.0	Section: L60+00E	Property: SEMELL REEVES
Dip:	-50.0	Core Size: BQ	Location: L60+DDE 2+50S
Elevation:	.0		
Length:	154.2	· ,	Date Started: December 5, 1989 Date Completed: December 7, 1989
Measurement:	Metric		Logged by: M. Bergeron

Casing lost in hole Conments:

Depth	Azimuth Dip	Depth	Azimuth Di	p Depth	Azimuth Dip					
45.72	-49.0	91.44	-49.0	152.40	-48,0					
no Superv										

.00 20.42 OVERBURDEN.

20.42 154.23 BASALT.

20.42 - 125.50 fine to medium grained massive flow.

92.13 - 93.17 felsic intrusive.

104.5 - 105.73 very fine grained massive flow.

105.73 - 109.76 felsic intrusive.

125.50 - 154.23 very fine grained to aphanitic massive flow.

154.23 END OF HOLE.

AMERICAN BARRICK RESOURCES CORPORATION

------ Sample From

To Length % Sul

Au g/t

.00 20.42 DVERBURDEN

CASING reamed to 21.95.

20.42 154.23 BASALT

•	SUPUL I									
			97913	23.50	24.50	1.00	TR	.070	.07	
	•		97914	30.50	31.50	1.00	TR	.070	.07	
	20.42 125.50	Fine to medium grained massive flow. A	97915	40.50	41.50	1.00	TR	.090	.09	
		sequence of moderately hard, fine grained	97916	43.10	44.10	1.00	TR	.050	. 05	
		to medium grained, dark greenish-grey to	97917	48.00	49.00	1.00	TR	.050	. 05	
		green coloured massive mafic volcanic. The	97918	52.00	53.00	1.00	TR	.140	.14	
		sequence is in general nonmagnetic. From 37	97919	61.00	62.00	1.00	TR	.080	.08	
		to 64.5 there are a few odd weakly to	97920			1.00	TR	.050	. 05	
		moderately magnetic centimetric sections	97921	71.50	72.50	1.00	TR	.200	.20	
		containing trace very fine magnetite	97922	72.50	73.50	1.00	TR	.130	.13	
		stringers or grains disseminated. Mafic	97923	73.50	74.50	1.00	TR	.110	.11	
		volcanics are strongly chloritic,	97924	74.50	75.50	1.00	TR	.120	.12	
		moderately to strongly calcitic, and there	97925	75.50	76.50	1.00	TR	.280	.28	
		are trace to 5% fine leucoxene grains	97926	81.00	B2.00	1.00	TR	. 250	. 25	
		disseminated. There are 1 to 52, white to	97927	88.00	B9.00	1.00	TR	.170	.17	
		white grey coloured, 2 am to 1 cm wide	97928	91.13	92.13	1.00	TR	.150	.15	
		quartz - carbonate vein fracture fillings.	97929	92.13	93.17	1.04	TR	.697	.67	
		There are a few odd, white to white grey	97930	93.17	94.17	1.00	TR	.210	.21	
		coloured, 1 mm to 5 cm wide sugar textured	97931	94.17	95.17	1.00	TR	.110	.11	
		quartz - carbonate veins at 45 to 80 degrees	97932	97.00	98.00	1.00	TR	.100	.10	
		to the core axis. There is trace pyrite as	97933	101.00	102.00	1.00	TR	.130	.13	
		fine blebs or euhedral grains disseminated.	97934	104.50	105.73	1.23	TR	. 381	.31	
	23.03 23.10		97935	105.73	106.73	1.00	NIL-TR	.150	. 15	
		alteration staining.	97936	106.73	107.73	1.00	NIL-TR	.110	.11	
	71.80 72.23	: dull grey to beige grey sericitic section.	97937	107.73	108.73	1.00	NIL-TR	.090	.09	
	73.15 75.80	: dark green to beige grey section. There is	97938	108.73	109.76	1.03	NIL-TR	.175	.17	
		a moderate patchy sericitic alteration along	97939	109.76	110.76	1.00	TR	.130	.13	
		veining and fractures.	97940	110.76	111.76	1.00	TR	.160	.16	
	92.13 93.17	Felsic intrusive. Hard, mottled medium beige	97941	111.76	112.76	1.00	TR	.430	.43	
	1	grey and green, nonmagnetic. There are 10 to	97942	115.00	116.00	1.00	TR	.100	.10	
		15%, 2 se to 5 em in size, chlorite	97943	120.00	121.00	1.00	TR	.100	.10	
		porphryroblasts in a fine grained quartz	97944	124.50	125.50	1.00		.040	.04	
		feldspar groundmass. There is a strong	97945	125.50	126.50	1.00	TR	.080	.08	

•	
וחו	

calcitic alteration. There is trace pyrite as fine euhedral grains disseminated. This section is unveined and there is a weak foliation developed at 50 degrees to the core axis. Contacts are sharp at 55 degrees to the core axis.

-Description-----

104.50 105.73 Very fine grained massive flow. Moderately hard, medium green, very fine grained massive flow. Strongly chloritic and calcitic pervasively. Unveined except for the upper contact marked by 10%, 5 mm to 1 cm wide, white coloured quartz - carbonate veins at 45 degrees to the core axis. There is trace pyrite as fine blebs disseminated. Lower contact is sharp at 85 degrees to the core axis.

105.73 109.76 Felsic intrusive. Hard, mottled beige-pink and green at the contacts and mottled beige grey and green toward the center of intrusion. This section is nonmagnetic. There are 5 to 10%, 2 am to 5 mm in size chlorite porphyroblasts in a fine grained quartz feldspar groundmass. There is no reaction with HCl. There are trace, 5 mm to 2 cm wide, sugary textured quartz - carbonate - chlorite veins at random angles. There is nil to trace pyrite as fine blebs disseminated. Lower contact is sharp at 60 degrees to the core axis.

125.50 154.23 Very fine grained to aphanitic. Massive flow. A sequence of moderately hard, medium greenish grey coloured. nonmagnetic, massive mafic volcanic. Mafic volcanics are strongly chloritic and to strongly calcitic moderately pervasively. There are trace to 2%, 2 to 5 mm quartz - carbonate filled fractures and a few odd, white grey coloured, 5 mm to 2 cm in size quartz veins at random angles. Those veinlets locally contain trace to 2% pyrite and magnetite as fine euhedral grains. In this section, there is trace pyrite as fine blebs, or euhedral grains disseminated. The sequence is uniform and massive. From 146 m to end of hole mafic volcanic intercalated with rare 5 cm to 10 cm wide, brecciated sections.

Sample	From	To	Length	% Sul	BW	Au g/t
97946	126.50	127.50	1.00	TR	.080	.08
97947	128.50	129.50	1.00	TR	110	.11
97948	134.00	135.00	1.00	TR	.070	.07
97949	136.00	137.00	1.00	TR-2	.070	. 07
97950	140.00	141.00	1.00	TR	.060	. 06
97951	142.50	143.50	1.00	TR-2	.060	.06
97952	147.00	148.00	1.00	TR-2	.060	.06
97953	151.50	152.50	1.00	TR-2	.100	.10

AMERICAN BARRICK RESOURCES CORPORATION

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 37

Lab ID: 89N09-2x

Date: Nov. 09, 1989

Acct. No.: Exploration

SAMPLE	g/t Au	SAMPLE	g/t Au	SAMPLE	g/t Au
				97372	0.07
				97393	0.04
				94	0.05
				95	0.13
				96	0.21
				97397	0.15
				98	0.13
				99	0.11
	•			987400	0.14/0.13
•				0 1	0.09
		•		02	0.12
		•		03	0.10

SR-13

MR

Signed

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 36

Lab ID: 89N12-1x

Date: Nov. 12, 1989 Acct. No.: Exploration

SAMPL	E g/t	Au	SAMPLE	g/t Au	SAMPLE	g/t Au
9737	3	0.04	97404	0.07		
7	4	0.09	05	0.04		
7	5	0.04	0 6	0.05		
7	6	0.14	07	0.14		
7	7	0.34	08	0.10		
7	8	0.04	09	0.05		
7	9	0.04	10	0.09/0.13		
8	0.08	/0.10	11	0.11		
8	1	0.09	12	0.07		
8	2	0.03	13	0.05		
8	3	0.04	14	0.04		
8	4	0.05	15	0.04		
	5	0.06	16	0.12		
	6	0.04				
8	7	0.03				
8	8	0.11				
	9	0.05				
		/0.10				
	1	0.07				
	2	0.04				

all sR-13

ATIR

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 69

Lab ID: 89N14-1x

Date: Nov. 14, 1989 Acct. No.: Exploration

SAMPLE	g/t	Au	SAMPL	E g/t Au	SAMPLI	i g/t Au
			97433	0.02	2	
			34			
			35			
			36	0.11		
			37			
			38	0.07	7	
			39	0.08	3	
			40	0.09/0.07	7	
			41	0.08	3	
•			42		ļ	
			43			
			44			
			45			
			√ 4E			
			7 47			
			2 45 45 45 45			
			49			
			× 50			
			5			
			52			
			53			
			54			
			55			
			56			
			57			
			58			
			59			
			60	0.05/0.09	5	

AM

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 58 Lab ID: 89N15-1x Date: Nov. 15, 1989 Acct. No.: Exploration

		SAMPLE	g/t Au	SAMPLE o/t Au	SAMPLE p/t Au
		97461	0.13	97493 0.05	
		62	0.13	94 0.04	
		63	0.11	95 0.04	
		64	0.08	96 0.06	
		65	0.14	97 0.06	
		66	0.15	98 0.06	
		67	0.09	99 0.07	
		68	0.05	97500 0.05/0.06	
		69	0.16	97532 0.04	
		70	0.03/0.03	33 0.05	
		71	0.02	34 0.07	
		72	0.02	35 0.06	
		73	0.04	36 0.06	
		74	0.04	37 0.07	
		75	0.02	38 0.03	
	_	76	0.04	39 0.06	
Claim	750022	77	0.02	40 0.04/0.03	
	750021	78	0.06	41 0.02	
		79	0.04	42 0.02	
		80	0.06/0.06	43 0.03	
		81	0.07	44 0.02	
		82	0.06		
		83	0.05		
		84	0.07		
		85	0.14	SR-89-12	
		86	0.04		
		87	0.04		
		88	0.06		
		89	0.03		
		90	0.04/0.04		
		91	0.04		
		92	0.05		

AMples

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 79

g∕t Au

Lab ID: 89N17-1x

SAMPLE

Date: Nov. 17, 1989

Acct. No.: Exploration

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 50 48

Lab ID: 89N30-1x

Date: Nov. 30, 1989

Acct. No.: Exploration

SAMPL	g/t Au		SAMPLE	g/t Au	SAMPLE	g∕t Au
97563	9.08	1	97595	0.03		
6,			96	0.06		
69			97	0.06		
61			98	0.08	2007	
61		-	99	0.06	Claim 250025	as hole iz)
68		<i>\$</i> 1-	97600	0.07/0.05	730022	whole ic)
69		6	01	0.05		
70		20	02	0.05		
7		SR-89	03	0.05		
7:		٧,	04	0.07		
73			05	0.06		
74			65493	0.05	- - SR-89-12	
75						
78						
77						
78						
79	0.04					
y 80	0.05/0.03					
21-68 81-81	0.05					
S 82	0.06					
3 83	0.16					
χ 83 83						
85						
88				•		
87						
88						
89						
90						
91						
92						
1 93		•				
1. 84	0.06	- SR-	89-14			

47/2

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 84

Lab ID: 89D03-2x

Date: Dec. 03, 1989 Acct. No.: Exploration

SA	MPLE	g/t Au	SA	MPLE	g/t Au		SAMPLE	g/t	Au
9	7606	0.11	97	638	0.08				
	07	0.10		39	0.03				
	08	0.13		40	0.01/0.03				
	09	0.10		41	0.25				
	10	0.10/0.14		42	0.10	1			
	11	0.09		43	0.12	!			
	12	0.09		44	0.13		•		
	13	0.05		45	0.11				
	14	0.11		46	0.10				
	15	0.16	4	47	0.10		•		
	16	0.12	ī	48	0.11				
	17	0.07	Ø An	49	0.16				
	18	0.05	\$1-64-95	50	0.11/0.12		•		
	19	° 0.07	· 为	51	0.12	Clair	950027		
	20	0.04/0.05		52	0.16	cutt.	950031(ash	sce 16)
	21	0.03		53	0.11				
	22	0.08		54	0.12				
+	23	0.08		55	0.12				
- 14	24	0.04		56	0.16				
8	25	0.01		57	0.12		•		
~	26	0.01		58	0.19				
SR	27	0.02							
n	28	0.05							
	29	0.03							
	30	0.05/0.03							v
	31	0.04							
	32	0.15							
	33	0.09							
	34	0.01							
1	35	0.03							
. 1	36	0.02	SR-89-15						
	37	0.06	3		•				

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 64

Lab ID: 89D03-1x

Date: Dec. 03, 1989 Acct. No.: Exploration

Š	SAMPLE	g/t Au	SAMPLE	g/t Au	SAMPLE	g/t Au
	97659	0.26	97691	0.09		•
h	60	0.14/0.12	92	0.20		
7:	61	0.12	93	0.10		
0	62	0.12	94	0.08		
SR-89	63	0.19	95	0.16		
SK	64	0.29	96	0.16		
l	65	0.19	97	0.05		
	66	0.17	98	0.05	•	
	67	0.12	99	0.09		
	68	0.11	× 97700	0.04/0.08		
	69	0.66	<u>.</u> 01	0.05		
	70	0.10/0.12	\$ 02	0.07		
	71	0.15	ý 03	0.03		
	72	0.06	V) Ø4	0.07		
_0		0.06	05	0.02		
Ξ	74	0.06	0 6	0.04		
SR-89-16	75	0.06	07	0.05		
80	76	0.04	08	0.03		
فا	. 77	0.10	09	0.05		
(X)	78	0.09	10	0.02/0.04		
	79	0.15	11	0.02		
	80	0.04/0.03	12	0.28		
	81	0.04	13	0.22		
	82	0.10	14	0.12		
	83	0.09	15	0.11		
	84	0.16	16	0.10		
	85	0.09				
	86	0.14				
	87	0.08				
	88	0.09				•
	89	0.10				
	90	0.08/0.08				

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 96 Lab ID: 89D05-1x Date: Dec. 05, 1989 Acct. No.: Exploration

SAMPLE	g/t Au	SAMPLE	g/t Au	SAMP	LE g/t Au
			• .	97714	no sample
		• •		15	no sample
				16	no sample
				17	0.10
				18	0.06
				19	0.10
				20	0.12/0.11
				21	0.07
				22	0.12
				23	0.08
				24	0.09
			,	25	0.07
				26	0.11
				2 27	0.21
				97-68-29 28 30	0.10
				29 مة	0.10
				30 يغ	0.12/0.14
				21	0.03
				32	0.04
	•			33	0.02
				34	0.08
				35	0.07
				. 36	0.07
				37	0.08
				38	0.03
				39	0.12
				40	0.08/0.04

 Diri	

0.11

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 81

Lab ID: 89008-2×

Date: Dec. 08, 1989 Acct. No.: Exploration

SAMPL	E o	/t Au	•	SAMPLE	g/t Au		SAMPLE	g/t Au
				97771 72 73	0.06 0.11 0.05		97X03 04 05	0.09 0.12 0.05
9774	12	0.17	•	74	0.08		0 6	0.08
	13	0.11		75	0.08	* *	. 07	0.09
	14	0.13		76	0.08		08	0.06
	15	0.13	_		0.08	80	09	0.05
	16	0.09)	78	0.05	. 8	10	0.12/0.08
	17	0.03	[]- }-	79	0.05	J	11	0.05
	18	0.08	V	80	0.08/0.12		12	0.05
	19	0.44	ı	81	0.09			0.00
		0.06	<u> </u>	97882	0.05	-		
	51	0.07	:	83	0.05			
	2	0.04		84	0.07			
	53	0.06		85	0.06			
E	54	0.07		86	0.06			
_	55	0.24		87	0.10			
E	56	0.09	Po		0.05		•	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	57	0.05	I	89	0.09	•		
V) 5	58	0.05	8-X	90	0.10/0.14			
	59	0.02	••	91	0.10			•
		12/0.08		92	0.07			
-	31	0.10		93	0.05			
D. (77)	2	0.12		94	0.06			٠.
\. B	3	0.12		95	0.14			
α 6	4	0.21		96	0.15			
6	55	0.09		97	0.12			
	66	0.04		98	0.07			
	7	0.06		99	0.14			
	8	0.05		97900	0.13/0.16			
	9	0.06		01	0.06			
7	0 0.1	13/0.19		02	0.11			

A'	m	
Stoned		

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 88

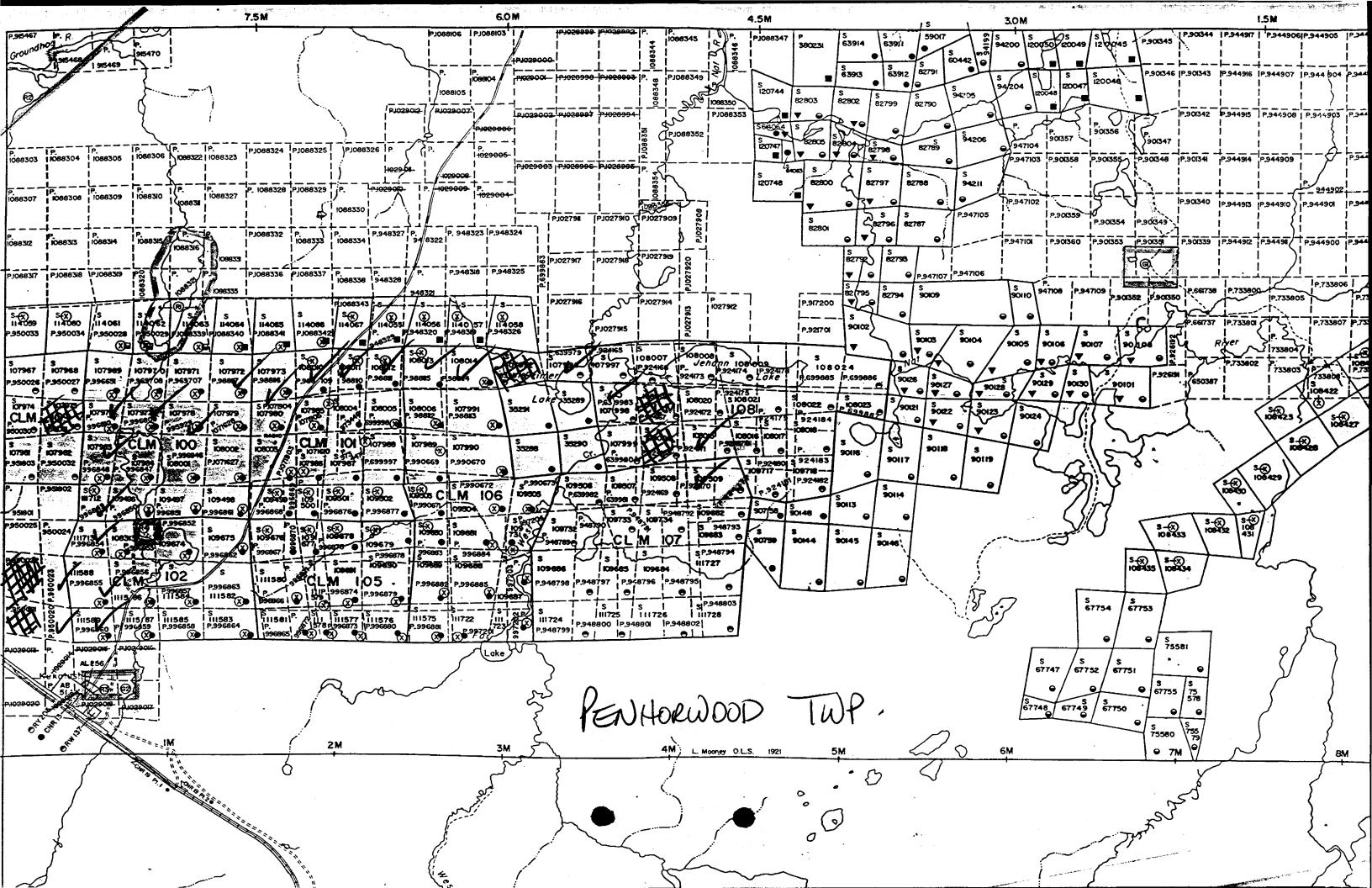
Lab ID: 89D11-2x

Date: Dec. 11, 1989 Acct. No.: Exploration

SAMPL	g/t Au	SAMPL	E g/t Au	SAMPL	E g/t Au
97913	3 0.07	97945	0.08	97782	0.13
14	and the second s	46	0.08	83	0.05
15		47	0.11	84	0.05
11		48	0.07	85	0.05
1.		<u>9</u> 49	0.07	86	0.11
11		9)-49 50 50	0.05/0.06	87	0.07
1 1		· 51	0.05	88	0.04
20	0.05/0.05	, 52	0.06	89	0.04
2	0.20	53	0.10	90	0.06/0.09
2				91	0.12
23	3 0.11		•	92	0.06
2	4 0.12			93	0.09
25				94	0.12
21				95	0.08
2					0.07
21		,		96 97 71 98	0.08
29		* •		₹ 98	0.11
6)-30 31 31 31				99	0.15
& 31				97800	0.22/0.12
W 32				. 01	0.05
33				02	0.61
34				03	0.05
39				04	0.07
36				05	0.03
37				06	0.06
38				07	0.04
39				08	0.05
4(09	0.09
41				10	0.05/0.06
42				11	0.05
43				12	0.08
44				13	0.10
• •					

6.7%

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

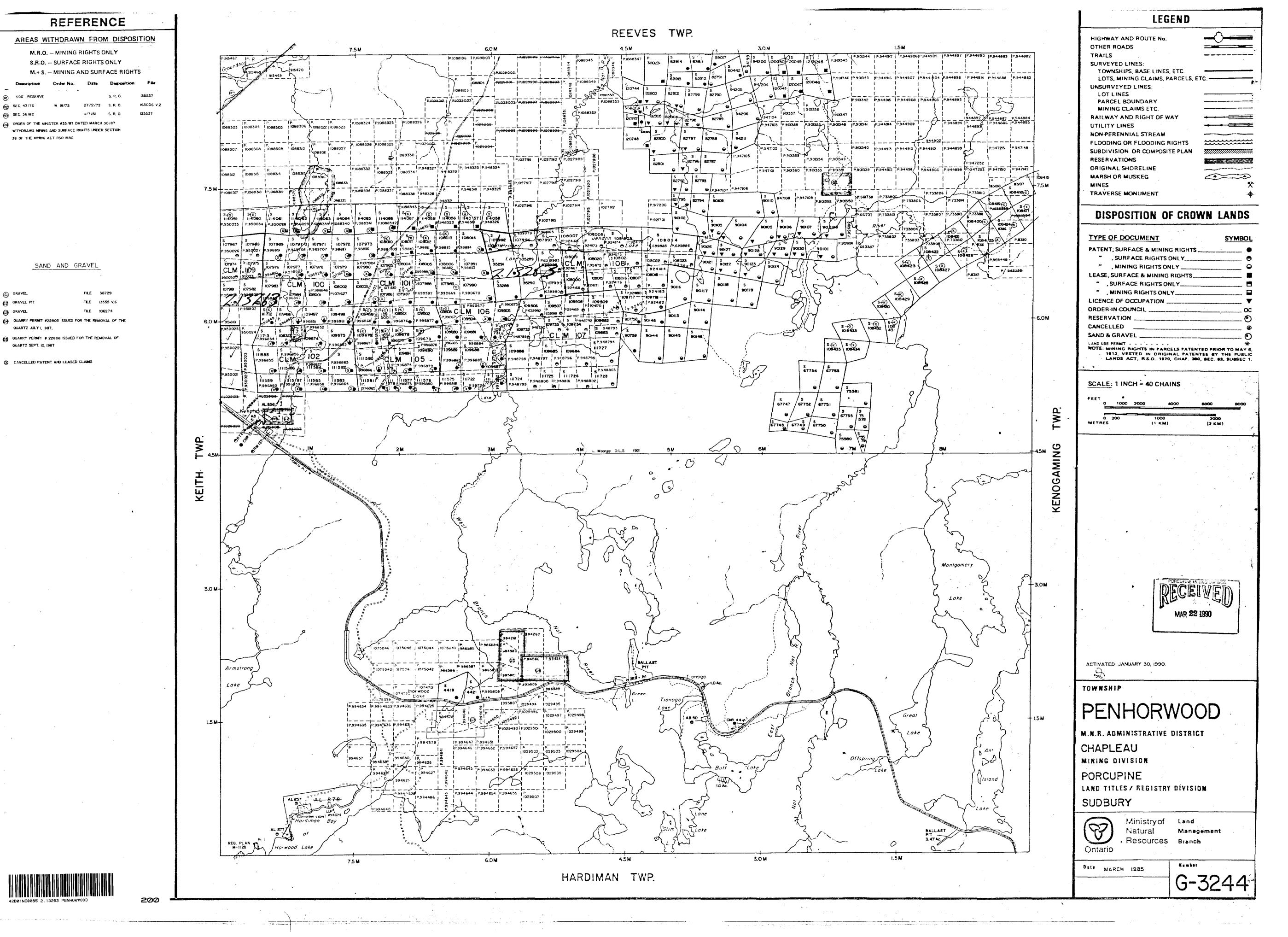

Assay Certificate

No. of Determinations: 75

Lab ID: 89D11-1x

Date: Dec. 11, 1989 Acct. No.: Exploration

<u>s</u>	AMPLE	g/t Au	SAMPLE	g/t Au		SAMPL	E g/t Au
	97814	0.05	97846	0.09		97878	0.05
	15	0.06	47	0.08		79	0.13
	16	0.06	48	0.05	D ₀	80	0.04/0.03
	17	0.05	49	0.27	SR-18	81	0.05
	18	0.07	50	0.07/0.07	क्ष		
	19	0.04	51	0.07			
	20	0.05/0.05	52	0.05			
	21	0.04	53	0.06			
	22	0.05	54	0.06			
	23	0.04	55	0.04			
	24	0.04	56	0.05			•
	25	0.09	57	0.11			
Ĭ	26	0.04	58	0.04			
SR-17	27	0.04	59	0.06			
Ŋ	28	0.08	∞ 60	0.07/0.10			
	29	0.36	1 61	0.12			
	30	0.02/0.05	% 60 1 61 8 62	0.03			
	31	0.06	63	0.05			
1,	32	0.01	64	0.05			
V	33	0.04	65	0.04			
	34	0.02	66	0.05			
	35	0.01	67	0.04			
	36	0.02	68	0.06		*	
Do	37	0.23	69	0.03			
SR-18	38	0.08		0.05/0.03			
ίχ	39	0.14	71	0.04			
,	40	0.11/0.12	72	0.04			
	41	0.11	73	0.05			
	42	0.08	74	0.07			
	43	0.07	75 76	0.06			
	44 45	0.06 0.05	76 77	0.01 0.02			
	43	v.va	**	0.02			



900

31 May 9

Report of Work

	Mining Act	(Expen	iditures,	Subsection 77	7(19))						
	ork Performed Assaying I	rill Co	ore			ning Division		Township of Penhorw		nship	PT
Recorded	• •									s Licence No.	
American Barrick Resources Corporation, Exploration Division						T-834					
Address P.O.	Box 1203, k	Kirkland	l Lake,	Ontario	P2N 3M7	0p	tionee o	f Record	Telephone # (705)5	%. 67-4941	
-	ormed By							· · · · · · · · · · · · · · · · · · ·	L	63	
	ican Barrick			ssay Lab Ho	olt-McD	ermott	Mine	9	Date When	De la Constantina	rmed
	R. Alexande			an Barrick	, Kirkl	and Lal	ce	~ <u>, ,</u>	Point:	89 111	1,2 89
Indicate r	ork was performed one of days performed to No. 1 on reverse	ed on each (laim(s): claim.	Mining Claim P. 950022	No. of Days M	lining Claim • 95002:		Mining Claim P. 950025	1 '	Mining Claim P.950027	No. of Day
Mining Clain	No. of Days Mir	ning Claim	1 .	1 - 1	No. of Days M	•		Mining Claim	No. of Days	Mining Claim	No. of Day
P.9500	- 1 - 1		50	P.924167		.92416	1 -				<u> </u>
Mining Clain	No. of Days Mir	ning Claim	No. of Days	Mining Claim	No. of Days M	lining Claim	No. of Days	Mining Claim	No. of Days	Mining Claim	No. of Day:
Instruct	tions ays credits may be	distributed	1 at claim	Calculation of Exp		ys Credits		Total	Total Num	nber of Mining Cla	ims Covered
holder's claim in	choice. Enter number the expenditure	ber of days o	credits per	\$ 4552.		÷	15 =	Days Credits		12	
(below). Minina C	laims (List in nu	merical se	quence).			tach sche	edules with		rmation		
	Aining Claim	Expend.	Mi	ning Claim	Expend.	N	ining Claim	Expend	. М	ining Claim	Expend.
Prefix	Number	Days Cr.	Prefix	Number	Days Cr.	Prefix	Number	Days C	Prefix	Number	Days Cr.
Р.	924165	40		924173	40					<u> </u>	
	924166	40		924174	40			REC	EIVE	D	
	924167	20		924175	20						
	924168	20		924176	3.5			APR :	26 1990		
	924169	20									_
	924170	20			ļ		<u>/</u>	MINING LA	NDS SEC	TION	
	924171	20									
	924172	20									
Total Num	ber of Days Performe	ed	Τ.	Total Number of Da	ys Claimed		7	Total Number	of Days to be	Claimed at a Fut	ure Date
	303.5		:	303.	•5						
	ion of Beneficial										
of work w	certify that, at the tim ere recorded in the cui irrent recorded holder	rrent recorded	as performed I holder' s nan	d, the claims covere ne or held under a be	d in this representation	ort Date)	W. 27	/ 10 A	orded Holder	or Agent (Signa	iture)
Certificat	ion Verifying Rej	port of Wo	rk					//		~~~~~~	
I hereby c during and	ertify that I have a pe	ersonal and in on and the ar	ntimate know nnexed repor	rledge of the facts s	et forth in th	e Report of	Work annexed	hereto, having p	performed the	work or witnesse	d same
Name and	Address of Person C	Certifying			·		·				
	Dale R. Ale	xande	NTARIO A	mer Lean, Hav	Kick R	esource	s, Explo	ration D			
	Kirkland La	ke, Ont	ar Ais se:	SSME(1705)	9-4941	7	1/11/23	2.190	Corlified By	K CYLX	ande
	3 H O-1		11	IIN 1 1000		R	eceived Stamp	/ /		7	
ror Utt	ice Use Only		JI	UN 1 1990]	REC	OBUE	n	
Total Day Cr. Record		22/9	ا م د	RICOIDE C B LA CHA	龙			- 100			
. 5	, MHK.	0017	M	ining Record				MR	23 199		
	Date Approved	as necorded	Provinc	ial Manager-Mining	Lands	I	1 1	1 -11/	~~ 177	J I	

QUARTZ JULY I, 1987.

QUARTZ SEPT. 10, 1987