

42801NE0141 53 KEITH

DIAMONL

TOWNSHIP: KEITH TWP.

REPORT NO: 53

WORK PERFORMED FOR: Marshall Minerals Corp.

RECORDED HOLDER: SAME AS ABOVE (xx)

: OTHER ()

CLAIM NO.	HOLE NO.	FOOTAGE	DATE	NOTE
P 752139	S135-5	497.0'	Aug/89	(1)

NOTES: (1) W9006.60316, filed May/90

REPORT

ON

THE JULY TO SEPTEMBER, 1989 DIAMOND DRILL PROGRAM (CONDENSED TO INCLUDE ONLY HOLE \$135-5)

ON

THE SANGOLD PROPERTY

OF

MARSHALL MINERALS CORP.

NTS 42B/SE PORCUPINE MINING DIVISION KEITH TOWNSHIP ONTARIO

MIARIO GEOLOGICAL SURVEY

BECEIVED

TORONTO, ONTARIO FEBRUARY 28, 1990

į

STEPHEN B. MEDD CONSULTING GEOLOGIST

42801NE0141 53 KEITH

Ø10C

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	LOCATION AND ACCESS	1
3.0	PROPERTY DESCRIPTION	3
4.0	PREVIOUS WORK	5
5.0	REGIONAL GEOLOGY	5
6.0	PROPERTY GEOLOGY	7
7.0	DRILLING, AND ASSAYING PROCEDURES	9
8.0	RESULTS AND INTERPRETATION	14
9.0	CONCLUSIONS AND RECOMMENDATIONS	15
	REFERENCES CERTIFICATE OF QUALIFICATION	

LIST OF FIGURES

Figure No.

1	PROPERTY LOCATION MAP (1"=24mi)	2
2	SANGOLD PROPERTY (CLAIM MAP) $(1^{+}=1/2mi)$	4
3	REGIONAL GEOLOGY (1cm=16.67km)	6
4	PROPERTY GEOLOGY (SHOWING TRAVERSE GRID)	8
	(1"=1/2mi)	

LIST OF TABLES

Table No.

1A	SUMMARY OF DIAMOND DRILL HOLE PARAMETERS	10
	FROM THE JULY TO SEPTEMBER, 1989 PROGRAM	
	(PATRICIA ZONE)	
1 B	SUMMARY OF DÍAMOND DRILL HOLE PARAMETERS	11
	FROM THE JULY TO SEPTEMBER, 1989 PROGRAM	
	(S135 ZONE)	
2A	SAMPLE NÚMBERS FROM THE JULY TO SEPTEMBER,	12
	1989 DIAMOND DRILL PROGRAM (PATRICIA ZONE)	
2B	SAMPLE NUMBERS FROM THE JULY TO SEPTEMBÉR.	13
	1989 DIAMOND DRILL PROGRAM (S135 ZONE)	

LIST OF APPENDICES

Appendix No.

- 1 LIST OF CLAIMS FOR THE SANGOLD PROPERTY
- 2 DETAILED LIST OF DIAMOND DRILL HOLE PARAMETERS FROM THE JULY TO SEPTEMBER, 1989 PROGRAM(S-89-35 TO 61 AND S135-1 TO 8)
- 3 SIGNIFICANT GOLD DDH INTERSECTIONS FROM THE JULY TO SEPTEMBER,1989 PROGRAM(SG-89-35 TO 61 AND S135-1 TO 8)
- 4 DIAMOND DRILL HOLE LOGS FROM THE JULY TO SEPTEMBER, 1989 PROGRAM (S135-5 ONLY)
- 5 ASSAY CERTIFICATES FROM THE JULY TO SEPTEMBER, 1989 DDH PROGRAM (S135-5 ONLY)
- 6 GEOLOGICAL COMPILATION AND DRILL REPORT (1988) OF THE SANGOLD PROPERTY, KEITH TOWNSHIP, ONTARIO by GEORGE H. WAHL

ii

LIST OF DRAWINGS

DDH SECTION 200E (HOLE \$135-5) - (1"=20')

VERTICAL PROJECTION OF DIAMOND DRILL HOLE TRACES - EAST GRID (SHOWING HOLE \$135-5)

1.0 Introduction

During the period of July 21 to September 15, 1989 diamond drilling and geological trench mapping were undertaken on the Sangold property located withing the Foleyet area of norther Ontario. Thirty-six holes, totalling 17,257 feet, were drilled; 28 holes (14,837 feet) in and around the Patricia gold zone and 8 holes (2420 feet) in the S135 gold Drilling of the Patricia zone was aimed at extending the quartz zone. hosted gold mineralization, encountered by previous drilling, vein along strike and down dip below a vertical depth of 250 feet. The \$135 zone was drilled in response to several high grade gold chip and grab samples taken from quartz veins at surface. Geologists, John Lill of Toronto and Frank Toews of Sudbury, were responsible for logging the drill core and on-site supervision

Several other interesting showings on the property were blasted and subsequently mapped and sampled to identify additional zones of anomalous gold and/or base metal mineralization. This trench mapping and sampling program was carried out by geologist Frank Toews.

Senior Vice President of Explorations for Marshall Minerals, Joe Hinzer undertook overall project preparation and supervision. The author was subsequently commissioned to organize the data, interpret results and make conclusions and recommendations based upon the outcome of this interpretation. This report includes only the data from hole S135-5 for the purpose of assessment work filing.

2.0 Location and access

The Sangold property is located in the northwestern corner of Keith Township, approximately 60 miles west of Timmins, Ontario and 10 miles east southeast of Foleyet (Figure 1). The property completely surrounds the former Joburke Gold Mine now held by Noranda.

Gravel access roads leading south from highway 101 traverse the eastern portion of the property. These roads include highway 616 (11 miles east of Foleyet), the Joburke Mine road and the Horwood Lake road.

The campsite and centre of operations are located approximately 4 miles south of highway 101 via these roads. Similar access is provided to the western property boundary by the Keith lumber road. Also, the Canadian National Railway line crosses the northeastern portion of the property.

The property is located within a favorable distance from an experienced labour force and well established mining infrastructure at Timmins. Rail and road access are in place. Water is readily available. Hydro-

electric power lines are not presently available to the property, however, on-site power generation may be more cost effective for small scale mining operation.

3.0 Property Description

The Sangold property consists of 251 contiguous unpatented mining claims covering approximately 10,000 acres (Figure 2). A list of these claims and their recording dates, and ownership are presented in Appendix 1. The author has not conducted an independent search on the status of these claims. The address for the exploration office of Marshall Minerals Corp. is P.O. Box 356, Niagara Falls, Ontario, L2E 6T8. Phone (416) 356-9112.

MARSHALL MINERALS CORP.

Figure z

4.0 Previous Work

Since 1947, several companies have explored for a variety of minerals including gold, silver, copper, zinc, nickel, asbestos and iron on or adjacent to the Sangold property. The exploration history of the Sangold property is provided in detail by Wahl (1988).

To summarize, in 1947 Joburke Gold Mines Limited completed a vertical, two compartment shaft to 425 feet with stations at the 125, 250 and 375 foot levels. The Joburke Gold Mine, as it is known, is located on the Joburke property which presently comprises 20 patented claims enclosed by the Sangold property. The Joburke property was subsequently worked by McIntyre Porcupine Mines Limited (1945-50) Denison Mines Limited (1964) and finally by Noranda (1973-76 and 1979-81). Total production from the mine by Noranda was 533,084 tons at a grade of 0.09 oz Au/ton. Since 1981, the mine has remained idle under Noranda's ownership.

parts of the Since 1947, various Sangold property itself, have been prospected, trenched and drilled by the following companies: Hoodoo Lake Mines (Dunvegan Mines) (1947), Palomar Gold Mines (1947), Alladin-Groundhog Mines Limited (1947), Nib-Yellowknife (1947), Weiack Mines Mining Corp. Mines (1947), Mining Oriented Investments (1969), Gold (1978-1980) and Marshall Minerals Corp. (1988-present).

Under the current ownership of Marshall Minerals Corp., a majority of work has concentrated on the area which hosts the Hoodoo East and West gold showings first discovered in 1947 by Hoodoo Lake Mines. These showings probably represent the southeastern extension of the auriferous quartz - carbonate vein system encountered at the Joburke Mine.

5.0 Regional Geological Setting

"The Sangold claim group lies within the northern part of the Precambrian Swayze-Deloro metavolcanic-metasedementary belt (Figure 3). This major zone is truncated to the west by the Kapuskasing structural zone, beyond which it continues as the Wawa greenstone belt. To the east the Swayze belt is split into northeasterly and southeasterly branches by the Kenogamissi batholith, continuing to the east as the Abitibi belt. The belt comprises a marginal zone of felsic to intermediate metavolcanics overlain by iron formation, graphitic sediments with intercalated ultramafic komatiitic and tholeitic flows and pyroclastics. These are succeeded by basaltic komatiitic and high-magnesium tholeitic flows which grade into iron-rich tholeites. The upper part of the sequence comprises calc-alkaline dacites to rhyolites, pyroclastics and volcanoclastics, agglomerates and flows interbedded with andesitic flows.

Regional geological setting of the Sangold property within the Abitibi subprovince (after Percival and Cord, in press).

5. mehl

Figure 3

The volcanics are succeeded by epiclastic sediments comprising conglomerate, greywacke with minor arkose, argillite and iron formations. (Ireland, 1987)

quartz lodes. Gold mineralization in the Swayze occurs primarily in hosted by a variety of rock types but usually associated with shearing, fracturing, silicification and carbonatization, typical of other major greenstone belt deposits. Host rocks of known occurences include diorite, carbonate, silicified felsic porphyry, sheared metasediments, Iron formations of both the carbonatized basic volcanics, and granite. and oxide types and massive sulphide stratiform massive pyrite in volcanoclastic sequences also host gold in the Swayze. Representatives of all these rock types occur on the Sangold property in a variety of structural settings. (D. Patrick, 1987)" (Wahl, 1988)

6.0 Property Geology

"ODM 1950 Geology Map of Keith and Muskego Townships is the only comprehensive property geology map available to date.

The most prolific rocks are mafic to ultramafic volcanics, primarily flows. The subparallel bands of oxide facies iron formation and a narrow sulphide facies band cross the south-central portion of the property.

Felsic volcanics are present as two eastwest trending bands up to 3000 feet wide traversing the southern third of the property. And a 2000 foot wide band of epiclastic sediments is centred on the northern property boundary.

A granite batholith occupies the southeast boundary area and several gabbroic intrusives are located in the northeastern portion.

These geological units are described in greater detail in the report by Wahl (1988)." (Hinzer, 1989)

× Hole S135-5 (CLAIM 752139)

LEGEND

- I MAFIC VOLCANICS
- 2-FELSIC VOLCANICS
- 3 SEDIMENTS
- 4 DIORITE, GABBRO INTRUSIVES
- 5- GRANITE, GRANODIORITE
- IF- IRON FORMATION
- AU SHOWING
- AREA MAPPED IN DETAIL (SHOWING MAP NO-)

MARSHALL MINERALS CORP

SANGOLD PROPERTY PROPERTY GEOLOGY 5. presd

DRAWN BY: S MEDD	<u>.</u>
PORCUPINE M.D. KEITH	TWP
NTS: 42B/SE	
DATE: 10_FEB: 90	
SCALE: 1 = 1/2 MILE	

FIG· 4

7.0 Drilling and Assaying Procedures

During the periods of July 21 to August 31 and September 6 to September 15, 1989, Longyear Canada Inc. of North Bay was commissioned to drill 28 holes for 14,837 feet of BQ core in and around the Patricia gold zone and 8 holes for 2420 feet in the S135 gold zone. Drill hole parameters and coordinates are provided in Tables 1A and 1B. Drill hole collar locations and elevations were surveyed by T.E. Rody Limited of Timmins.

A total of 1345 drill core samples were taken from the area of the and analyzed for gold by Patricia gold zone atomic absorption by Significant assays (> 0.025 oz Au/ton) from the Swastika Laboratories. gold Those samples that initially yielded Patricia zone totalled 133. 1000 ppb (Au 0.029 oz Au/ton) were reanalyzed by a fire assay method. A total of 291 drill core samples were taken from the S135 gold zone of which 25 were significant (>0.025 oz Au/ton). The S135 samples were assayed in the same fashion as the Patricia zone samples. Drill core sample numbers for the Patricia and S135 zones are presented in Tables 2A and 2B, respectively.

All core is stored on the west Patricia grid east of MacKeith Lake.

Significant gold DDH intersections in hole S135-5 are listed in Appendix 3. Hole S135-5 yielded two significant assays from a total of 71 samples taken. A DDH log for hole S135-5 is found in Appendix 4 and a crosssection and location map for hole S135-5 are found in the back pockets.

TABLE 1A

Summary of Diamond Drill Hole Parameters from the July to September, 1989 program (Patricia zone - west mining grid) SANGOLD PROPERTY

Hole No.	Collar Location	Dip	Azimuth	Length(ft)
SG-89-35	1+71.3N, 2+36.8W	-67.0	090.0	497.0
36	1+18.7N, 2+41.5W	-67.0	090.0	527.0
37	1+21.5N, 1+82.1W	-66.0	090.0	427.0
38A	0+60.7N, 3+71.2W	-66.0	090.0	837.0
38B	0+60.7N, 3+71.2W	-72.0	090.0	917.0
39	0+20.8N, 2+65.7W	-57.5	090.0	777.0
40	0+27.3N, 2+12.9W	-55.5	090.0	485.0
41	0+74.7S, 1+97.4W	-56.5	090.0	577.0
42	1+22.3S, 1+07.7W	-68.0	090.0	557.0
43	0+24.6S, 3+01.1W	-68.0	090.0	857.0
44	1+72.5S, 0+96.2W	-45.0	090.0	267.0
45	0+50.0N, 2+66.5W	-57.5	090.0	627.0
46	4+32.7N, 1+04.1W	-44.5	270.0	537.0
47	10+24.3N, 0+64.4W	-46.0	225.0	507.0
48	8+90.4N, 2+11.0W	-45.0	225.0	447.0
49	9+77.5N, 0+19.6W	-45.0	225.0	597.0
50	0+74.7S, 1+97.4W	-49.0	088.0	457.0
51	0+78.2S, 2+49.0W	-65.0	088.0	707.0
52	0+24.6S, 3+01.1W	-62.0	083.0	657.0
53	0+61.7N, 3+01.2W	-66.0	083.0	697.0
54	1+71.7N, 2+34.8W	-63.0	085.0	307.0
55	2+15.3N, 2+04.1W	-65.0	088.0	307.0
56	2+64.8N, 2+01.1W	-60.0	088.0	247.0
57	0+27.3S, 2+12.9W	-56.0	085.0	467.0
58	0+74.8N, 2+00.9W	-70.0	084.0	607.0
59	0+20.3N, 2+69.6W	-56.0	084.0	70.0
60	0+20.1N, 2+96.0W	-60.0	084.0	477.0
61	3+15.5N, 2+58.4W	-55.0	084.0	397.0
			Total	14,837.0

10

TABLE 1BSummary of Diamond Drill Hole ParametersFrom the July to September, 1989 program(S135 zone - east traverse grid)SANGOLD PROPERTY

Hole No.	Collar Location	Dip	Azimuth	Length (ft)
S135-01	0+61N, 2+34E	-44.5	160.0	207.0
S135-02	0+61N, 2+34E	-61.0	160.0	207.0
S135-03	0+68N, 2+54.5E	-46.5	160.0	207.0
S135-04	0+68N, 2+54.5E	-61.0	160.0	207.0
S135-05	0+32S, 2+00E	-46.0 🖑	008.0 🕴	497.0
S135-06	0+65S, 3+00E	-47.0	008.0	397.0
S135-07	0+65S, 3+00E	-60.0	008.0	421.0
S135-08	0+65S, 3+50E	-45.0	008.0	277.0
			Total	2420.0

TABLE 2ASample numbers from the July to September, 1989 drill programSANGOLD PROPERTY
(Patricia zone - west grid)

Hole No.	Sample Number	Hole No.	Sample Number
SG-89-35	28051-28095 (45)	SG-89-50	43206-43225 (20)
	43051-43503 (03)		43538-43542 (05)
SG-89-36	28096-28132 (37)		43876-43900 (25)
SG-89-37	28133-28167 (35)	SG-89-51	43482-43491 (10)
SG-89-38A	28168-28214 (47)	SG-89-52	43268-43281 (14)
	43504-43506 (03)		43543-43546 (04)
SG-89-38B	28215-28275 (61)		43901-43903 (03)
	43507-43508 (02)		44886-44900 (15)
SG-89-39	28276-28339 (64)	SG-89-53	43282-43304 (23)
	43509-43512 (04)		43367-43374 (08)
SG-89-40	29340-28359 (20)		43398-43419 (22)
	43513-43514 (02)		43547-43558 (12)
SG-89-41	28360-28377 (18)	SG-89-54	43343-43362 (20)
SG-89-42	28378-28400 (23)		43363(missing)(1)
	43515-43516 (02)		43364-43366 (03)
SG-89-43	28401-28443 (43)		43559-43560 (02)
	30932-30937 (06)	SG-89-55	43375-43379 (05)
	43517-43525 (09)		43420-43442 (23)
	43978-44000 (23)		43561-43564 (04)
SG-89-44	28444-28457 (14)	SG-89-56	43380-43397 (18)
	43526-43529 (04)		43443-43449 (07)
SG-89-45	28458-28464 (07)		43565-43571 (07)
	28465(missing)(l)	SG-89-57	43450-43481 (32)
	28466-28500 (34)		43572-43585 (14)
	28552-28632 (81)	SG-89-58	43586-43596 (11)
SG-89-46	28633-28679 (47)		43904-43965 (62)
	30828-30835 (08)		43966(missing)(1)
SG-89-47	28680-28700 (21)		43967-43977 (11)
	30837-30857 (21)	SG-89-59	no samples taken
	43001-43054 (54)	SG-89-60	6380-6392 (13)
SG-89-48	43055-43118 (64)		6393(missing)(1)
	43530-43534 (05)		6394-6400 (07)
SG-89-49	43801-43875 (75)		30938-30940 (03)
	43535-43537 (03)		43597-43600 (04)
		SG-89-61	17936-17940 (05)
			43492-43500 (09)
			<u>44851-44885 (35)</u>

missing samples: 4

Total: 1,345

	(S135 zone - east grid)
Hole no.	Sample no.
S135-01	30858-30870 (13)
	30871(missing)(1)
	30872-30900 (29)
	39901-39927 (27)
S135-02	39928-39949 (22)
	39950(missing)(1)
	43119-43124 (06)
S135-03	39951-39963 (13)
	43125-43132 (08)
S135-04	39964-39971 (08)
	43133-43135 (03)
	43136(missing)(1)
	43137-43144 (08)
S135-05	39979-39984 (06)
	43226-43267 (42)
	43305-43327 (23)
S135-06	39972-39978 (07)
	39985-40000 (16)
	43145-43150 (06)
	43201-43205 (05)
\$135-07	6178-6191 (14)
	6192(missing)(1)
	6193-6199 (07)
	30941(missing)(1)
6465 00	30942-30950 (09)
\$135-08	17922-17924 (03)
	1/925(missing)(1)
	1/920-1/934 (09)
	1/935(missing)(1)
missing samples: 7	Total: 291

TABLE 2BSample numbers from the July to September, 1989 drill programSANGOLD PROPERTY(S135 zone - east grid)

8.0 Results and Interpretation

Two significant gold assays (> 0.025 oz/ton) were encountered in the upper part of DDH S135-5: 0.150 oz/ton over 1.2 feet (sample #39981) and .110 oz/ton over 1.0 feet (sample #39983). They are separated by 1.9 feet of 190 ppb Au (0.006 oz/ton) to yield an average grade of 0.07 oz/ton over 4.1 feet.

This gold zone is marked by 50-80% quartz-carbonate veining and pyrite concentrated up to 20% locally and averaging 5-10%. The zone is also strongly sericitized and is hosted by foliated felsic volcanics intruded by intermediate dykes. When vertically projected to surface, the zone lines up with a surface trench sample assaying 0.424 oz/ton over 1.0 feet hosted by quartz-carbonate veining in oxidized felsic schist. On surface, shearing within the felsic volcanics strikes east-west and dips subvertically.

Down hole or north of the gold zone, felsic volcanics are the dominant rock type with intercalations of graphitic argillite. No other significant assays were found in this part of DDH S135-5.

9.0 Conclusions and Recommendations

1) DDH S135-5 was successful at intersecting a gold zone, trenched and sampled on surface, at a vertical depth of 60 feet.

2) The gold zone (S135 zone) consists of quartz-carbonate veining in foliated, pyritized, sericitic felsic volcanics contained within an east-west trending shear system.

3) The gold content is generally low grade (0.07 oz/ton over 4.1 feet) and erratic in nature in DDH S135-5.

4) Further drilling at depth and along strike is needed to determine the economic potential of the S135 zone. This can be better decided by undertaking a full compilation of all the available drilling and trenching information for the S135 zone.

Respectfully Submitted

pred

Stephen Medd

REFERENCES

- HINZER, J.B.; 1989. Second Diamond Drill Report on the Sangold Property, Keith Township, Ontario of Marshall Minerals Corporation.
- HINZER, J.B.; 1988. Diamond Drill Report on the Sandgold Property, Keith Township, Ontario of Marshall Minerals Corporation and Gold Vessel Resources Inc.
- IRELAND, J.; 1987. Summary Property Examination Report; O.G.S.
- WAHL, G.H.; 1988. Geological Compilation and Drill Report (1988) of the Sangold Property, Keith Township, Ontario - Marshall Minerals Corp., Gail Resources Inc., Gold Vessel Resources Inc.

Certificate of Qualification

THIS IS TO CERTIFY THAT:

I, Stephen B. Medd, am a consulting geologist and reside at 1117 - 7 Crescent Place, Toronto, Ontario, M4C 5L7.

I have been actively engaged in Canadian and Foreign mining and exploration since 1979.

I am a graduate of the University of Waterloo, Waterloo, Ontario, with an Honours B.Sc. (1983) in the Co-op Program of Earth Sciences.

I am a member, in good standing, of the Geological Association of Canada.

I have never visited the property.

Conclusions and recommendations are based on field data gathered and provided by Marshall Minerals Corp. and on reports and historical assessment records found in Government of Ontario files.

I have not directly nor indirectly received nor expect to receive any interest direct or indirect in the property of the company or any affiliate.

S. M.

 \mathbf{v}^{\perp}

Stephen B. Medd

APPENDIX 1

CLAIMS OWNED 100% BY MARSHALL MINERALS

Claim Nos.

Date Recorded

7	
P-930905	Apr $02/8/$
D 020006	A == 02/07
r-930900	Apr 02/8/
P_030007	Anr 00/87
1-550507	Apr 02/07
P-930908	Apr 02/87
D 000000	
P-930909	Apr $02/8/$
D 020010	A == 02/107
r-920910	Apr $\frac{02}{0}$
P-030011	Apr 02/87
1-950911	Apr 02/01
P-958074	Mar 17/87
D 050075	17/07
P-9380/3	Mar 1//8/
D-058076	Mar 17/87
1-330070	Wiai 17/07
P-958077	Mar 17/87
D 0(0000	
P-908202	ADT U2/8/
P-068203	Am 00'/97
1-900205	Apr 02/07
P-968204	Anr 02/87
D 0(0005	
P-908205	ADT $02/8/$
P-068206	Apr 02/97
1-900200	Apr 02/07
P-968207	Apr 02/87
D 0/0000	1 pr 02/07
P-968208	Apr $(02/87)$
D 060100	A 02/197
F-908209	Apr 02/8/
P-006022	Lun 10/97
1-330322	Juli 19/07
P-996923	Jun 19/87
D 000004	1 10/07
r-990924	Jun 19/8/
P-996925	Jun 10'/87
D 004004	Juli 19/07
P-996926	Jun 19/87
D 006027	Tum 10/07
1-330327	Juli 19/0/
P-996928	Jun 19/87
P 006020	Tem 20/00
r-990929	Jan 20/88
P-996930	Ian 20/88
D 00000	Jan 20/00
P-996931	Jan 20/88
D 1020006	Tem 20/199
F-1029000	Jan 20/00
P-1029807	Ian 20788
D 100000	Jan 20/00
P-1029809	Jan 20/88
P-1020810	Inn 201/00
1-1023010	Jan 20/00
P-1029811	Ian 20788
D 1000010	V uii 20/00
P-1029812	Jan 20/88
P-1020812	Ton 20/100
1-1029015	Jan 20/00
P-1029814	Ian 20788
D 1000015	
P-1029815	Jan 20/88
P-1020816	Inn 20//98
1-1029010	Jan 20/00
P-1029817	Ian 20/88
D 1000000	
r-1029938	Jan 20/88
P-1020050	Inn 20/100
1 - 10677JJ	Jan 20/00
P-1029960	Jan 20788
P 1020075	Tam 00/00
r-1029973	Jan 20/88
P-1020076	Ian 20/22
A 4047770	Jan 20/00
P-1029977	Jan 20/88

. . .

CLAIMS HELD 55% BY MARSHALL MINERALS - 45% BY GAIL RESOURCES

<u>Claim Nos.</u>	Date Recorded
P-654248	Sep 13/82
P-654249	Sep 13/82
P-654250	Sep 13/82
P-654251	Sep 13/82
P-654252	Sep 13/82
P-654253	Sep 13/82
P-660601	Sep 13/82
P-660602	Sep 13/82
P-661517	Sep 13/82
P-661518	Sep 13/82
P-683689	Dec 06/82
P-683689	Dec 06/82
P-683690	Oct 04/83
P-688519	Dec 16/82
P-688520	Dec 16/82
P-688521	Dec 16/82
P-688522	Dec 16/82
P-688523	Dec 16/82
P-723987	May 16/83
P-723988	May 16/83
P-723989	May 16/83
P-723990	May 16/83
P-724931	Jun 24/83
P-724932	Jun 24/83
P-724933	Jun 24/83
P-724934	Jun 24/83
P-742762	Jul 19/83
P-751878	Oct 17/83
P-751880	Oct 04/83
P-751881	Oct 04/83
P-/51882	Oct 04/83
P-751883	Oct 04/83
P-752139	Sep 30/83
P-752141	Sep 30/83
P-752142	Sep 30/83
r-152143	Apr 10/83
r-132144	Apr 10/83
r-/32143	Apr 10/83
r-132140	Apr 10/83
r-/J214/ D 752149	Jan 23/84
r-/J2148	Jan 23/84
F=/J2149	Jan 25/84

....

-	Claim Nos.	Date Recorded
	P-752150	Jan 23/84
	P-752185	Oct 17/83
	P-752186	Oct 04/83
	P-752600	Oct 04/83
	P-752601	Oct 04/83
	P-752602	Oct 04/83
	P-752603	Oct 04/83
	P-753418	Nov 07/83
	P-753420	Nov 07/83
	P-753421	Nov 07/83
	P-753422	Nov 07/83
	P-758049	Apr 11/83
	P-758050	Apr 11/83
	P-758051	Apr 11/83
	P-758052	Apr 11/83
	P-780865	Nov 15/83
	P-806963	Jul 05/84
	P-806964	Jul 05/84
	P-806965	Jul 05/84
	P-806966	Jul 05/84
	P-806967	Jul 05/84
	P-806968	Jul 05/84
	P-80/1/5	UCL U5/85
	P-80/300	JUI 05/84
	P-03319/	Oct 05/84
	r-00//4/	Sep 06/85
	P-00//40	Sep 00/85
	r-00//49	Mar $27/86$
	F-00//JU D 971607	Nov $07/95$
	D-871608	NOV 07/05
	P-871600	Nov 07/85
	P-871700	Nov 07/85
	P-871701	Nov 07/85
	P-871702	Nov 07/85
	P-871703	Nov 07/85
	P-871704	Nov 07/85
	P-871705	Nov 07/85
	P-871706	Nov 07/85
	P-871707	Nov 07/85
	P-871708	Nov 07/85
	P-871709	Nov 07/85
	P-871710	Nov 07/85
	P-871711	Nov 07/85
	P-872146	Nov 07/85
	·	

<u>Claim Nos.</u>	Date Recorded
P-872147	Nov 07/85
P-872148	Nov 07/85
P-872149	Nov 07/85
P-872150	Nov 07/85
P-872151	Nov 07/85
P-872152	Nov 07/85
P-872153	Nov 07/85
P-872154	Nov 07/85
P-872155	Nov 07/85
P-8/2156	Nov 07/85
P-8/2157	Nov 07/85
P-8/2158	Nov 07/85
P 872160	Nov 07/85
P-872161	Mar 27/86
P-872162	Mar 27/86
P-872163	Mar 27/86
P-872164	Mar 27/86
P-872165	Mar 27/86
P-872306	Nov 25/85
P-872307	Nov 25/85
P-872308	Nov 25/85
P-872309	Nov 25/85
P-872310	Nov 25/85
P-872311	Nov 25/85
P-872312	Mar 27/86
P-872313	Mar 27/86
P-8/2314	Mar 27/86
P-8/2315	Mar 27/86
P-8/2310	Mar 27/86
P-000/17	Mar 27/86
P-900418	Mar $27/80$
P-900419	Mar $27/86$
P-900420	Mar 27/86
P-900421	Mar 27/86
P-900422	Mar 27/86
P-900423	Mar 27/86
P-900424	Mar 27/86
P-900425	Mar 27/86
P-900426	Mar 27/86
P-900427	Mar 27/86
P-900428	Mar 27/86
P-900429	Mar 27/86
r-900430	Mar 27/86

Claim Nos.	Date Recorded
P-900431	Mar 27/86
P-900432	Mar 27/86
P-900433	Mar 27/86
P-900434	Mar 27/86
P-900435	Mar 27/86
P-900436	Mar 27/86
P-900437	Mar 27/86
P-900438	Mar 27/86
P-900439	Mar 27/86
P-900440	Mar 27/86
P-900441	Mar 27/86
P-900442	Mar 27/86
P-900443	Mar 27/86
P-900444	Mar 27/86
P-900445	Mar 27/86
P-916887	May 14/86
P-916888	May 14/86
P-916889	May 29/86
P-916890	May 29/86
P-921784	May 29/86
P-921785	May 29/86
P-921786	May 29/86
P-921787	May 29/86
P-921788	May 29/86
P-921789	May 29/86
P-921790	May 29/86
p-921791	May 29/86
p-921792	May 29/86
p-921793	May 29/86
p-921795	May 29/86
p-921795	May 29/86
p-921796	May 29/86
p-921797	May 29/86
p-921798	May 29/86
p-921799	May 29/86
p-921800	May 29/86
p-923401	May 29/86
p-923402	May 29/86
p-923403	May 29/86
p-923404	May 29/80
p-923403	May 29/80
p-920003	JUN 06/80
r-920004	Jun 06/86
r-920003	Jun 06/86
P-926006	Jun 06/86

Claim Nos. Date Recorded P-926007 Jun 16/86 Jun 06/86 P-926008 Jun 06/86 P-926009 Jun 06/86 P-926010 Jun 16/86 P-926011 Jun 16/86 P-926012 Jun 16/86 P-926013 P-926014 Jun 16/86 Jun 16/86 P-926015 P-926016 Jun 16/86 P-926017 Jun 16/86 Jun 16/86 P-926018 Jun 16/86 P-926019 P-926020 Jun 16/86 P-926021 Jun 16/86 P-926022 Jun 16/86 Jun 16/86 P-926023 P-926024 Jun 16/86 Jun 16/86 P-926025 Jun 16/86 P-926026 Jun 16/86 P-926027 Jul 24/86 P-926029 Jul 24/86

May 29/86

May 29/86

May 29/86

APPENDIX 2

Hale Na	Collar I mation	Floriation	Entra	Dio 4	zim.H	Lenoth
* 5135-01	0+61 N. 2+34 F	O (DATUM)	0.0	~44.5	160.0	207.0
······································			50.0	-44.0	159.7	
			100.0	43.4	159.1	
			150.0	-42.0	158.9	
			190.0	- 42.5	158.5	
<u>* 5135-02</u>	0+61N, 2+34E	0	0.0	-61.0	160.0	207.0
	/	***	50.0	-61.2	159.5	
Nadarlan Minandala & J. anno e cas caractago la falago jurcemo			100.0	-60.4	159.4	
-			150,0	-58.6	158.5	No. Martinia da 1112 a di Mandalamia Angerany di 19
and a submitted as a submitted of the submitted statement of the		المريح والمريح المريح المريح ليريح والمريح والمريح المريح	180.0	-57:5	158.2	namena ingeneration and in a sec
5135-03	a+68 N, 2+54.5E	<u> </u>	0.0	-46.5	160.0	207.0
an an ssenari e sean se e s		antenne an	5010	-45,1	151.5	han an angarangan ana si siya .
ar an ann chun chan an a	ante e mar en una para como e a succeso e a succeso e a que en ante en ante e que en ante e a succeso a succeso]00.0	- 43:7	159.0	
an 1			150.0	-42.6	158.5	1
anna an Indone (an Indone an I			180.0	-42.0	158.3	
* 5135-04	0+68N, 2+54.5E	0	0.0	-61·0	160.0	207.0
			50.0	-59.9	160.0	ann 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
1999 ya 1999 û der yezhoù en fer 1 bet er 1 waard e en fer skriver i ser de skriver e ser ser ser ser ser ser s			100.0	-58.8	159.5	
			150.0	-57.7	159.0	1971 (1-1 17-17 ar 196 - 1972 (19 - 19 - 1992)) e 1993 (1971)
			100.0	-56.9	158.6	
					1	

• • •

Dimond Dr	eill Hole Parame San	TERS FROM GOLD PROPER	THE JULY 2TY (EAST	TO SEP - TRAVE	TEMBER, 19. TRSE GRID)	89 PROGRAM
Hole No.	Collar Location	Elevation	Footage	Dip	Azimuth	Length
** \$135-05	0+325,2+00E	+ 14.5	0.0	-46.0	008-0	417.0
· · · · · · · · · · · · · · · · · · ·			50.0	-44.5	007,8	
			100.0	- 42.0	008,1	
:			150.0	-40.)	007.6	
			200.0	- 36.3	006.7	
			250.0	-34.0	005·7	
			300.0	-32.0	004.7	
			350.0	-30.8	004.3	
•			400.0	-29.3	004.3	
: • •			430.0	-29.0	004.3	
* \$135-06	0+655, 3+00E	+12.0	0.0	-47.0	008.0	397.0
、 	~		50.0	-45.6	007.7	
1.			100.0	-43,1	007.8	
2 2			150.0	-40.2	008.00	
	:		200.0	-39,2	007.7	
			250.0	- 38.8	007.6	
			300,0	-38.6	007.1	
- - - -			350,0	-37.5	006.6	
- 			370.0	-37.0	006.8	
\$135-07	0+655, 3+00E	+ 12.0	0.0	-60.0	008	421.0
j 1			100.0	-60.0		
i			250.0	-62.0		
t			421.0	-44.0		
5135-08	0+655, 3+50E	+ 12.0	0.0	- 45.0	008	277.0
	· · ·		100.0	-45.0		
•			277.0	-35.0		
ingeneration of the second sec	and the second	a na a terra a para nya manana ara ya	ан с аними р адская над са,	, na tiy na ganaananaata		

•

DTAMOND DRILL HOLE PARAMETERS FROM THE JULY TO SEPTEMBER, 1989 PROGRAM SANGOLD PROPERTY (EAST TRAVERSE GRID)

- COLLAR LOCATIONS REFER TO COORDINATES ON THE EAST TRAVERSE GRID
- COLLAR ELEVATIONS ARE IN RELATION TO SI35-01 (DATUM =)

NO ASTERISK: DIP MEASUREMENTS ARE FROM ACID TESTS AND COLLAR AZIMUTHS ARE FROM SURFACE COMPASS BEARINGS. *** DIP MEASUREMENTS AND AZIMUTH MEASUREMENTS ARE SURVEYED BY A LIGHT-LOG BORE-HOLE INSTRUMENT DIAMOND DRILL HOLE PARAMETERS FROM THE JULY TO SEPTEMBER, 1989 PROGRAM. SANGOLD PROPERTY (WEST MINING GRID)

Hole No.	Collar Location	Elevation	Footage	Dip	Azimuth	Length
**SG-89-35	1+71.3N,2+36.8W	9995.2	0,0	-67.0	090.0	. 497.0
			50.0	-67.2	089.8	
			100.0	-65.8	091.7	
			150.0	-62.4	096.0	
			200.0	-59.3	099.1	
			250.0	-56.0	102.3	
			300.0	- 52.4	105.3	
			350.0	-46.0	107.5	
			400.0	-42.8	107.7	
\bullet			450.0	-39.9	108.2	
-			470.0	-39.5	108-1	
** 5G-89-36	1+ 18.7N, 2+41.5w	9996.5	0.0	-67.0	0.90.0	527.0
			50.0	-67.8	089.7	
			100.0	-66.8	090.2	
			150.0	-66.1	091.0	
			200.0	-65.2	091.8	
			250.0	-64.1	092.0	
			300.0	-63.0	092.7	
			350.0	-62.2	093.4	
			400.0	-60.1	095.2	
			450.0	-58.1	097.0	
			500.0	-54.7	099.2	
			520,0	-53.7	099.9	

DIAMOND DALL HOLE PARAMETERS FROM THE JULY TO SEPTEMBER, 1989 PROGRAM SANGOLD PROPERTY (WEST MINING GRID)

Hole No.	Collar Location	Elevation	Footage	Dip,	Azimuth	Longth
** 56-89-37	1+21.5N, 1+82.1W	4998.2	0.0	-66.0	090.0	427.0
			50.0	-64.9	0 1 1, 5	
			100.0	-62.4	093.9	
			150.0	-57,4	097.3	
			200.0	-50.3	101.6	
			250.0	- 42,2	106.5	
			300.0	-39.4	107,3	
			350.0	-382	107.2	
			400.0	- 37.6	107.6	
			420.0	- 37,5	107.7	
* * 56-89-38A	0+60.7N, 3+71.2W	9990.6	0.0	-66.0	090.0	837.0
	·		50.0	-66.0	040.3	
			100.0	-63.3	092.2	
			150.0	-57.8	096.4	
			200.0	-53,3	099.0	
			250.0	-50.4	100.3	
• · ·			300.0	-46.5	101.4	
			350.0	-43.4	102.9	
			400.0	-41.9	103.1	
t.			450.0	-40.4	103.5	
			500.0	- 39.5	104.2	
			550.0	-38.2	104.8	
			600.0	-36.0	106.9	
•			650.0	-34.6	108.6	
			700.0	-33.6	109.8	
			750.0	-32.7	110.7	

- 32,5

110.7

770.0

	SAN GOLD	PROPERT	Y (W	EST MININI	GRID)	
Hole No. Collar Location 1	Elevation	Footage	Dip	Azimuth	Longth	
*56-89-38B 0+60.7N, 3+71.2W	9990.6	0.0	-72.0	010.0	977.0	
-		50.0	-71.5	089.9		
		100.0	-71.7	0.90.5		
		150.0	-69.9	<u>093.4</u>		
	الارونى بىرىكى بىرى يىرىكى بىرىكى	200.0	-67.6	095.9		
		250.0	-65.4	098.4		
		300.0	-62.4	101.0	1991	
		350.0	-60.5	<u>103,0</u>	· · · · · · · · · · · · · · · · · · ·	
		400.0	-57.6	105,4		
		450.0	-54.5	107.3		
	·····	500.0	-51.0	109.1	· · · · · · · · · · · ·	
a an		550.0	-45.4	111.5		
• • • · · · · · · · · · · · · · · · · ·		600.0	-31.5	113.3		
د ۱ <u>۱۹۹۹ - اور به میشور به در میش</u> ارد میشود در میشود از میشو ۱۹۹۰ - م	•• · · • • • • • •	650.0	-35.6	<u>114-1</u>		
	Anna ann an	700.0	-32.6	115.6	·····	
	•··•• •• • • • • • • • • • • • • • • •	750.0	-21.3	. 117:5		
		800.0	-27.7	117.8		
	-	850.0	-26.4	118.6		
		900.0	-25.3	119.2		
		910.0	- 25.0	119.5	******	
		<u></u>	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997			
			Name and the same of the same of the			
		1				
-						
DIAMOND	DRILL HOLE PARAME	TERS FROM T SANGOLD	HE JULY PROFERT	To SEPT Y (WE	EMBER, 1989 ST MINING	GRID)
--	---	---	--------------------	------------------	--------------------------	--
Hole No.	Collar Location	Elevation	Fostage	Dip	Azimuth	Length
KX 5G-89-39	0+208N,2+65.7W	10000.4	<u>0.</u> 0_	-57.5	090.0	777.0
		, 	50.0	-57.1	090.3	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		100.0	-56.0	091.9	
			150.0	-54.0	094.3	
			20010	-52.3	016.5	
د والعالم الله الله الم المحاصر المحاصر المحاصر المحاصر المحاصر المحاصر المحاصر المحاصر المحاص المحاص المحاص ا			250.0	-50,9	018.3	
			300.0	- 48.9	100.4	
······································			350,0	-47.9	101.8	
	••••••••••••••••••••••••••••••••••••••			-46.1	103.5	
· · · ·			450.0	- 44.6	105.1	•·•· •·•
• • • • • •	••••••••••••••••••••••••••••••••••••••		500.0	-43.5	106.2	······································
		· · · ·	550.6	-42.5	107.3	-
	· · · · · · · · · · · · · · · · · · ·	an a mar a suit The State and suit is it as	600.0	-40.7	108.8	
· · · · ·	· · , · · · • · · •		650.0	- 38.8	109.4	
··· ···	···		700.0	- 37:5	109.9	-raan - raan oo ahaa ah kaa
	·····	ne national ar ann a tha anns a s	750.0	- 36.2	110.6	
······			760.0	0	110.8	an ang ang Prising ang Lang, pangangan kanang
+* 56-89-40 0+27.3:	0+27.35,2+12.9w	10004.0	0:0	-5 <u>5</u> .5	090,0	485.0
	-	مرد و مراجع و مربع	50.0	-55.9	090.0	- Area - Sana - Madding agamaga agad sigar at sa
			100.0	-53.7	091.4	
			150.0	-50.7	. 094.1	
		<u></u>	200.0	-47.1	096.7	
۱۰۰۰ - ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰			250:0	-44.7	099.6	
			300.0	-41.6	102.9	
			400.0	- 38.4 -36.9	105.7	
			450.0	-35.3	108.9	
				A -		

	······································	SAN:GOLD	PROSERT	Y (WE	ST MINING	GRID)
Hole No.	Collar Location	Elevation	Fostage	Dip	Azimuth	Longth
\$\$\$G-89-41	0+74.75, 1+97.4W	10012.9	Q,Q	-56.5	090.0	577.0
			50.0	-56.4	089.4	
****	i		100.0	-55.4	088.6	
			150.0	-53,8	090.6	
			200.0	-52.8	091.8	و به الله المحكمة والمحق عن المحك الله الله عن ال
			250.0	-52.0	092.4	181 - 1 - 8 - 8 100 - 10 - 10 - 10 - 10
		8- - 2010, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 19 77, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997	300.0	-49.8	094.6	
	1		350.0	-46:7	097.0	17.1 · •. · • •. ••••••••
all 11 m Thullin Same lands dhadidh Tur II. ar è mhan su na c		ann a nath aig seal rabhairte agu an teo an se sea an an Seanna amha na ma	400.0	- 42.0	100.1	
anna anna anna 1 an Anna 1 an Anna 1 an Anna an Anna an Anna	and a company the second of some many to the second second second second second second second second second sec	n vana ayan aharah ay ya aya ya ya ta ya ya ta ya	450.0	- 35.5	104.	an page and a
a manan baka ba manan karing ya di mar dan kari an jang dan	a a shaanin an issaa a aha sha sha ahaa ahaan taa a ahaa ahaa ahaa ahaa	hendana a angalanta ang ang ang ang ang ang ang ang ang an	500.0	-30.4	108.3	• • • • • • • • • • •
₩. ••• •••••	• • • • • • • • • • • • • • • • • • • •		550.0	- 27.3	110.9	
<u>* 56-89-42</u>	1+22.35, 1+07.7W	10003.5	0.0	-68.0	090.0	557.0
ing day a mane and an in the state and any strate of the state of the state of the state of the state of the st			50.0	-68.0	091.0	
an a	······································	n	100.0	-67.2	092.0	
aller mit die sit alle fan it in die onder kannen aller is met te were aller		ar bi u a sibir di termini dan bi yakilah yakar baga i u u	150.0	-16.5	092.6	, and the second second
a a constant a constant an an anna an an an an anna an anna an an		1994 waa in a s	200.0	-65.8	093,4	
الروان میکند این مرکز میکند و در این میکند این با این این میکند این میکند.	nann a Martin a' a anainn amhainn bhairt an chuir an ann an Annair ann ann ann ann ann ann ann ann ann an		250.0	-65.3	094.3	
	a a fan de fan an werke an de skriver a de skriver af d		300:0	-64.8	095.3	11 1) · · · · · · · · · · · · · · · · ·
			350.0	-64.3	095.7	
		na de a comune de applicante de la comunicación de la comunicación de la comunicación de la comunicación de la	400.0	-63.8	096.6	
		~~~~~	450.0	-63.0	097.5	
			500.0	-62.7	098.8	
			540.0	-62.0	099.8	

Hole No. C	ollar Location	Elevation	Fastage	Dip /	zimeth	Longth
(#SG-89-43 o	+24.65, 3+01.1W	9994.8	ر 0.0	-68.0	090.0	857.0
			50.0	-67.7	090.1	
			100.0	-65.6	090.9	للمراجع والمحاور والمحاولة والمحاورة والمحاورة والمحاور
			150.0	-63.4	092.5	
		و د الارتخاب کرد. کرد	200.0	-62.6	093.5	
		-	250.0	-61.1	<u></u>	ور مارو میکور و بیکو کر کر بر میکور بر بیکور و بر میکور
	۵. ۵۰۰ ۵۰۰ ۱۹۹۹ (۱۹۹۹) (۱۹۹۹) (۱۹۹۹) (۱۹۹۹) (۱۹۹۹) (۱۹۹۹) (۱۹۹۹) (۱۹۹۹)	de mis a an ferdit i de martet situres a sectoration and	<u> 300 · 0</u>	-60.1	094.3	
		- and an and a trademontal at the state	350.0	-59.8	094.6	nga a aga aga aga a a sa sa sa sa sa sa sa
		- 43 - maga gin 4-1- gings a gintaninis - a maintikini sura .	400.0	-60.1	095.5	
			450.0	-59.7_	015.9	
	n n		500.0	-59.1	096.2	
			550.0	-57.7	096.8	<b>.</b>
···· ··· · · · · · · · · · · · · · · ·			600.0	-57.5	097.4	
KSG-89-44 1+7:	2.55, 0+96.2W	100 03.1	0.0	-45.0	090.0	267.0
•	-	21	50.0	-45,3	090.0	
		Millin ana mba i a siya minana na manana.	100.0	-44.6	010.1	an anti-an e cuanz
			50.0	-44.4	090.4	
	a a chuir an stàine ann an stàine ann ann ann an stàine ann an stàine an s- ann an stàinean a s		200,0	-43.8	090.9	·····
			240.0	- 43.0	091.4	analise di per l'ante ante instany 100 fani frances
			And the first sector and the sector sector		-	
		₩ • ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ • 1 • ₩ ₩₩ ₩ • ₩ •	at a constant and a const		) 	

•

	DRILL HOLE PARAME	TERS FROM T	HE JULY 7	To SEPTE	MBER, 1989	1_PRoGR
		SANGOLD.	PROPERT	Y (WES	T MINING	GRID)
Hole No.	Collar Location	Elevation	Footage	Dip	Azimuth	Longth
<u>* 5G-89-45</u>	0+50.0N, 2+66.5W	9999.2	0.0	-57.5	090.0	627,0
	/	, 	50.0	-57.5	089.7	
	وسوار و المحمد		100.0	-55.4	091.2	
	antina da su da	يوسون معرفة المراجع والمراجع و	150.0	-54.2	092.8	به الطويف و دواردين حكي وسلون في 1 مكتر
··			200:0	-52.8	094.2	
, 			250.0	-51.6	015.6	
		1	300.0	-50.5	096.b	9 887 94 UD41 MM 1 87 1 1 100
ar b distances qualité descubie que é Minatoire en se e un transmission		aan minimu waxaya waxa katira kuna katira kuna kuna fi sama	350.0	-48.9	097.7	
uning an		- ar franski de se denistik dese - fra dar at a sudar das s	400.0	-47.5	098.6	1
الم	5 		450.0	-46.9	099.0	· · · · · · · · · · · · · · · · · · ·
N an dalam titu ay ana ay ay ay ay ay ay ay			500.0	- 46.4	099.5	
· · · · · · · · · · · · · · · · · · ·	n na saga wasa sama sa sa	an ann a an an an an an an	550.0	-45.6	100.1	
		an sa ana ana ang sa	600.0	-44,8	100.9	<b>.</b>
-		- inder a state of the state of	610.0	-44.5	0].	11 - 1 <b>1 - 4 - 11</b> - 1
*SG-89-46	4+32.7N, 1+04.1W	9997.0	0:0	-44.5	270.0	
	·· · ·	• · ·	50.0	-45.7	271.4	<b>ا</b> مەربە م
			100.0	-45.0	271.4	and the second to the second
affe första a gjöldafe Millinkasponiska soma för 8- attensighalstater open		د و به می مود و می مود و می و و و و و و و و و و و و و و و و و	150.0	- 42.9	27.0.7	nang kangang kana kanggang
		nga birði saður í saðagarinna þá í 18 saðagar ý gang - j í 180 fil ser ogar afil eftir á föra	200.0	-39.2	26 8.1	
			250.0	- 35-0	26.5.7	ورهار والإقار ، من ور كردي.
	·····		300.0	- 32.6	. 26.4.2	1. Prility of a second of the C Stationary of
			350.0	- 30.0	26.2.6	
			400.0	-27.0	262.6	
			450.0	- 24.3	262.4	
			500.0	- 22.0	2620	

•

	DRILL HOLE PARAME	TERS FROM-	THE JULY PROPERT	Te SEPTE Y (WE	MBER, 198 ST. MINING	Rogran GRID)
Hole No.	Collar Location	Elexiation	Fontane	Dio	Azimuth	Length
15G-89-47	10+24.3N 0+64.4u	1 9990.4	0.0	-46.0	225.0	507.0
	······································	· · · · · · · · · · · · · · · · · · ·	50.0	-46.0	224.5	
			100.0	-45.2	223.8	
			150.0	-44.0	223.2	
****			200.0	-42.8	222.3	
			250.0	-41.5	221.1	
en an an an ann an Anna an Ann		n) daman ja dama a sugar sadandar dar uguya dir ida dara	300.0	-40.4	219.9	1 september (1) in Sam ing 1 and in Sambian
		a a a <b>na se de participa de la ca</b> nta da canta da	350,0	-39.7	218.0	· · · · · · · · · · · · · · · · · · ·
40.47 m.c.a		un anu a canada a sense a se sense a se	400.0	-38.3	215.7	
<b>.</b>			450.0	- 38.1	214.7	
tet a anti-transmission anna	• • • • • · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,	470.0	-37.5	214.1	
*56-89-48	8+90.4N, 2+11.0W	9990.3	0.0	- 45.0	225.0	447.0
•		ration i transformation and	50.0	-44.6	224.9	
· · · ·			100.0	-43.9	223.6	
• ••••	• • • • • • • • • • • • • • • • • • •	·· · · · · · · · · · · · · · · · · · ·	150.0	-43.6	222.1	. <b>.</b> .
	er er roman sæm og som af som		200.0	-42.9	221.1	
. 18 - 1944 - 19 de la de taken door ge	and a second		250:0	-42.3	220.1	1000 p
erre contre accador as as a	- - 	, , , , , , , , , , , , , , , , , , ,	300.0	-42.0	219.1	
••••••••••••••••••••••••••••••••••••••	i ••••••••••••••••••••••••••••••••••••		350.0	- 41.7	218.4	n dina Pingan Transmina na
			400.0		217.8	
	an a		420.0	-41.5	217.3	
9 arritel family and the state of the strangential and strangential	: :				a a 1999 - 1 - 1997 (a 1995 - 1997) a 1996 - 1998 - 1998 - 1997	
- and where in the state of the	an a	rean and god to 100 digns gave the anti-metagon in days	926 979-9-094		12 - 1 - 1 <b>1</b> 11 11 12 12 12 12 12 12 12 12 12 12 12	
- Millelin national and a state of the second se		ه الله به اليه الله الله الله الله الله الله الل		<u></u>		
		-	•			

	-	 	SAN GOLD	PROPERT	Y (WES	T MINING	GRID)
							·····
Hole No.	Collar La	cation	Elevation	Fostage	_Dip_	Azimuth	Length
56-89-49	9+77.5N	, 0+19.6 W	9991.5	0.0	-45.0	_225	597.0
				50.0	-45.0		
				100.0	-45.0		
				150.0	-44.0		
				200.0	-42.5		
		A	*****	250.0	-41.5		
1999 - 1996 - 1996 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1999 - Stymmynallish - ay ay a - y ar - y			300.0	-41.0		
nambal Maaya Lanagad Sangaran - Ling anggan Jian Anan - Ang angka Ngarang		an dalam yang yang dalam a tu ma gang ya kumang		350.0	-39.5		
			المحاجز والمحاجز والم	400.0	-39.5	and the state of the	n a mar da ago alfandir undago ganta
anfalta i bas kino, i yapat kira matu dalay kata menang di kirana i wakada an	الله وي علي ولي الله الله من الله و الله و الله المتحد المتحد عن الله الله الله الله الله الله الله الل	• j•	مالوک در اندو اور اور اور اور اور اور اور اور اور او	450.0	-39.5	4	
		-		500.0	-39.5		** *****
56-89-50	<u>0+74.75, l</u>	+17.4W	100/2.9	0,0	-49.0	088	457:0
and and the second state of the		anda ka 1 - ang a ngarata shamba akin giya da da		50.0	-49.0		a in the state area a
a nama da a la aga na da nama da ana ana ana ana ana ana ana ana ana				100.0	-48.5	a alfan a' in far a fan y a fan te fan fan y ar a s	
			. A MARINE & MARINE & MARINE AND A MARINE AND	150.0	-46.5		anaka ( . J 14, 14, 14, 17, 10, 17, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
-	nde slave blev franceska og fordelse skrateringen av de seriese sjogerskeling						
			** ** *****	200.0	~46.0		
	· · · · · · · · · · · · · · · · · · ·			200:0 250:0	-46.0 -44.0		
			· · · · · · · · · · · · · · · · · · ·	200:0 250.0 300.0	-46.0 -44.0 -40.0		
			· · · · · · · · · · · · · · · · · · ·	200.0 250.0 300.0 350.0	-46.0 -44.0 -40.0 -38.0		
				200:0 250:0 300:0 350:0 400:0	~46.0 -44.0 -40.0 -38.0 -37.0		
				200.0 250.0 300.0 350.0 400.0 450.0	-46.0 -44.0 -40.0 -38.0 -37.0 -36.5		
				200.0 250.0 300.0 350.0 400.0 450.0	-46.0 -44.0 -40.0 -38.0 -37.0 -36.5	3	
				200.0 250.0 300.0 350.0 400.0 450.0	-46.0 -44.0 -40.0 -38.0 -37.0 -36.5		
				200:0 250.0 300.0 350.0 400.0 450.0	-46.0 -44.0 -40.0 -38.0 -37.0 -36.5		
				200:0 250.0 300.0 350.0 400.0 450.0	-46.0 -44.0 -40.0 -38.0 -37.0 -36.5		

· ·

· · · ·

	Den Har - PADALA	ETEDC FLAM T	HE MIN.	Ta con	EMRED 19	29 PRACO
	пыт цол 🛱 Мурам	CANPAL N	PRADEDT	Y (1	JEST MININ	NG GRIN
Hale No.	Collar 1 mation	Eleviation	Fortage	Dio	Azimuth	Longth
* 56-89-51	0+78.25, 2+4 <b>4</b> .0	W 10004.1	0.0	-65.0	0.88	707.0
			50.0	-65.0		
			100.0	-65.0		
· · · · · · · · · · · · · · · · · · ·			150.0	-64.0		
			200,0	-63.0		
			250.0	-54.0		
		· · · · · · · · · · · · · · · · · · ·	400.0	-52.0		بو باسانیا « «بر سایت می می می بیونیدی .
randad Thabladagan Madrix dir analaharin kas padapaten yang		1	550.0	-45.0		
			700.0	-38.0	····	
56-89-52	0+24.65, 3+01.1W	9994.8	0:0	-62.0	083	657.0
			50.0	-61.0		
			100.0	-60.0		· · · · · · · · · · · · · · · · · · ·
			150.0	-58.0	ան արհաջնությունը՝ գրությու եննու	1. j. 1
			200.0	-55.0		s a la ana ann an tao an ta
			250.0	-54.0	·	0-4-1
	1914 - 4975-1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1		300.0	-53.0		
			350.0	-51.5		الم
			400.0	-49.0		u g. mir i valoriginisti kalentii valoriya
			450.0	-47.0		
			500.0	-45.0		مى بىن بىن بىر
			55010	- 41.5	·····	
			600.0	-36.0	) 	
		*****	650.0	-32.0		
		***				مىرى ئىرىكى بىرى بىرى بىرى بىرى بىرى بىرى بىرى
		·				

•		· · · · · · · · · · · · · · · · · · ·		•			
AMONI	DRILL HOLE	- РАКАМЕТ	TERS FROMT	HE JULY	To SEPT	EMBER, 198	9 PROGRA
			SANGOLD	PROPER	TY (WE	ST MINING	<u>GRID</u> )
11 10 AT	Callert	+:	This ti	E+	Nia	1++	1
4 SC-09-52	$\sim 1/1.7$	24 10h	Elexiantion	Toologe	 	AZIMULL	187.0
	<u> </u>	<u> </u>	<u> </u>		-15.0	082	641,0
		· · · · · · · · · · · · · · · · · · ·		100.0	<u> </u>		
			******	100.0	- 13.0		
	ین همین میرد و در می ورون میکند ایران بر بر میکند ایران این و میکند. ایران این و میکند ایران و م			200.0	-62.0		
*****				250.0	- 55.0		
				300.0	-53.0		<u></u>
				350,0	-49.5		
· · · · · · · · · · · · · · · · · · ·	a de service anno cantos a con e da con e da con especial y que	anna anna anna an taon an tao an ann a tao	amen angengggggaffikke konte prinsipuller nær for for i verspyller	400.0	-45.0	*****	
				450.0	-40.0		
				500.0	- 35.0		
			•	55.0.0	-33.0		Ne
). 		·····	19 11	600.a	-31.0	- 180- 4,40-14-17-14-15-15-15-15-15-15-15-15-15-15-15-15-15-	al 1997 (Sangalances against Sangal 1995) - 1995) - 1997 (Sangal 1997) - 1997
w water beite and a state of the	• • • • • • • • • • • • • • • • • • •		ւ. այց գրում ցողու գեղանություն պատգետան հայրեւլ, ցեռառ, որոց տար	650.0	-30.0	87-9 a gar-sag 11, 21 a - 21 a gar bage sag gart photos (1 − 31 − 14)	e um deine 1. gingt av diet sitten in 1. 1.
<u> 56-89-54</u>	1+71.7N, 2+	34.8W	9995.0	<u>o: 0</u>	-63.0	085	307.0
			e y - Franse - Spris, Sagers - Handrig & gay als als Sager-Plant generating as a surface	50.0	-63.0		
		1 		100.0	-62.0		الإنداري بيده المداناة الزروي ورور والم
·		n na sa sayan na ang at ng agan sa na ang ang ag		150.0	-60.0	، مەربىلىك ئىلىكى بىلىرى بىل	. <del></del>
· · · · · · · · · · · · · · · · · · ·				200.0	-58.0		
				250.0	-56.0		
				300.0	-56.0		
·····							
		: } <del>}</del>					
			~~- <u></u>	•			

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hale No.	Collar I mation	Eleviation	Fontane	Dio	Azimuth	Longth
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56-89-55	2+15,3N, 2+04.1W	9995.9	0.0	-65.0	088	307.
307.0 -62.0 $S.G-89-56 2464.8N, 2+01.1W 9995.2 0.0 -60.0 088 2472.$ $100.0 -62.0$ $247.0 -58.0$ $247.0 -58.0$ $56-89-57 0+27.35, 2+12.9W 10004.0 0.0 -56.0 085.0 467.$ $100.0 -56.1 085.1$ $100.0 -54.1 085.6$ $150.0 -52.9 086.8$ $200.0 -50.9 087.7$ $250.0 -48.7 088.8$ $300.0 -46.6 089.7$ $350.0 -46.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -44.6 089.7$ $350.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -56.0 -$			· · · · ·	100.0	-67.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				307.0	-62.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SG-89-56	2+64,8N,2+01.1W	9995,2	0.0	-60.0	088	247.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	وروب والمحافظة فالمحافظة والمحافظة والمحافظة والمحافظة والمحافظة والمحافظة والمحافظة والمحافظة والمحافظة والمح	·		100.0	-62.0		ويتحدد والمراجع والم
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				247.0	-58.0		
	SG-89-57	0+27.35, 2+12.9W	10004.0	0:0	-56.0	085.0	467.0
	-			50.0	-56.	085.1	
		بية الا بالموسوقات المركبة ومروسه والموسوقات المركبة المركبة والمحاوية والمحاوية والمحاوية والمحاوية و		100.0	-54.6	0.85.6	a magana a sa a sa a magana ang katangganan kata sa sa
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			ga ga dhabh tha i a' gi tha hanga ta thata dhabhana ( a' a' a h ta	150.0	- 52.9	086.8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	aith Sanailteanaile is a gus suith sann sann sann sann sann bailt francainn an Sanailtean san san s sann s san	n na ge staan aan daag jataa de te te an te te in t	200:0	-50.9	087.7	
300.046.6 089.7 $350.0 - 45.9 090.3$ $400.0 - 43.5 091.3$ $56-89-58 0+74.8N, 2+00.9W 9998.5 0.0 - 70.0 084 607$ $100.0 - 72.0$ $250.0 - 66.0$ $400.0 - 66.0$ $607.0 - 50.0$ $56-89-59 0+20.3N, 7+69.6W 9999.6 0.0 -56.0 084 70.$	e te terrer y te de terrer		••••••••••••••••••••••••••••••••••••••	250.0	-48.7	088.8	· · · .
350.0 - 45.9 0.90.3 $400.0 - 44.6 090.9$ $440.0 - 43.5 0.91.3$ $56-89-58 0+74.8N, 2+00.9W 9998.5 0.0 - 70.0 0.84 607$ $100.0 - 72.0$ $250.0 - 66.0$ $400.0 - 66.0$ $607.0 - 50.0$ $56-89-59 0+20.3N, 7+69.6W 9999.6 0.0 -56.0 0.84 70.$			na sign fille ( 1919 - 1919 - 1919) an	300.0	-46.6	089.7	waa oo waxaa w
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.1			350.0	- 45, 9	090.3	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		an and the second s	a geraditete - albat bri gera - 4 bri e geraditetetar a	400.0	-44.6	090.9	an a
$\frac{56-89-58}{56-89-59} \xrightarrow{0+74.8N}, 2+00.9W}{2+00.9W} \xrightarrow{9998.5} x_{0} - 70.0} x_{0} - 72.0} \\ x_{0} - 72.0} \\ x_{0} - 66.0} \\ x_{0} - 60.0} \\ x_{0} - 50.0} \\ x_{0} - 50.0} \\ x_{0} - 56.0} \\ x_{0} - 56.0} \\ x_{0} - 56.0} \\ x_{0} - 72.0} \\ $	an al - 1 - <b>10,000 - 10,0</b> Far ang ananon - 1000 - 110 - 10 - 10, ang ang ang ang a	ومعارضه والمعرفين والمعرفين والمعرفة والمعرفين والمعرفين والمعرفين والمعرفين والمعرفين والمعرفين	-	440.0	- 43.5	<u>091·3</u>	
$   \begin{array}{rcrcrcrcrcrcrcrcrcl}                                     $	SG-89-58	0+74.8N, 2+00.9W	9998.5	0.0	- 70.0	084	607.
250.0 -66.0      400.0 -60.0 $607.0 -50.05G-89-59 + 20.3N, 2+69.6W 9999.6 0.0 -56.0 0.84 70. $		الله مربوع المربوع الم		100.0	- 72.0	، «محد اعلم ۵۰۰ می در در ۱۹۹۰ و سرد معطول و وجب	14 ( 1997 - 17 - 1992) alas filikini (1977 - 1977 - 1
400.0 -60.0 607.0 -50.0 5G-89-59 0+20.3N, I+69.6W 9999.6 0.0 -56.0 084 70.		والجرين ورحوا والمرابع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع		250.0	-66.0	annadar 1974 u Thair I gu nanadr 4 u dain e u dain	a de 1999 - alticular de Car da construction
<u>607.0 -50.0</u> SG-89-59 0+20.3N, I+69.6W 9999.6 0.0 -56.0 084 70.	and the second			400:0	-60.0		
5G-89-59 0+20.3N, I+69.6W 9999.6 0.0 -56.0 084 70.				607.0	-50.0		
	<u>56-89-59</u>	0+20.3N, 2+69.6W	9999.6	0.0	-56.0	084	70.
							<u>┙┥╜</u> , ╒ _╋ ╝╹╌┉╶┙┍ [╋] ┿┺╴╾┍╺┿┸╾┻

•

•

~

	DRILL HOLE	JAKAMETE	KS TROM T	DO DOT	La SEPTE	MBER, 198	Y TKOGK
			- SANGOLD	-IKOJEKI	I (WES	<u></u>	GRID
Hole No.	Collar Lor	tion 1	Jesistion	Fontage	Dio	Azimeth	Length
-* 5G-89-60	0+20.1N	2+96.0W	1994.7	0.0	-60.0	084.0	477.0
	,	·		50.0	-61.2	084.6	
				100.0	-61.3	087.3	
				150.0	-59.4	088.2	
				200.0	- 58.2	089.1	
				220.0	-58.0	089.3	
				400.9	-56.0		
56-89-61	3+15.5N,2-	158.4W	9993.7	0.0	-55.0	084	397.
				100.0	-57.0		
	1994 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ik a tanan tanan karang ang kang tang tang ang karang karang tang tang tang karang karang karang karang karang	250.0	-52.0	ways - nathe a states companyons to	an barry gifte - water to a c did to range to be right
				347.0	-51.0		
- COLLAR NO ASTERIS * DIP TN: CON	LOCATIONS K: DIP COLLAN MEASUREME STRUMENT 1PASS BEARIN MEASUREMEN A JICHT-	AND E MEASURE AZIMO NTS AR AND C VGS TS AND	LEVATIONS MENTS AR ITHS ARE E SURVEY OLLAR AZ AZIMUTH	ARE E FROM FROM S ED BY A IMUTHS MEASURE	SURVEYE ACID WRFACE LIGHT ARE' FI MENTS	TESTS COMPAS LOG BO ROM SURE ARE SU	MINING G AND S BEARIN RE-HOLE ACE RVEYED
BY		,	•				

## **APPENDIX 3**

GNACANT GOLD DDH INTERSECTIONS FROM THE JULY TO SEPTEMBER, 1989 PROGRAM SANGOLD PROPERTY (S135 ZONE - EAST GRID)

ί.

Hele No.	Sample No.	Footage	Length (feet)	Grade Coz/to
5135-01	30866	44.1 - 45.4	1.3	0.046
-	30872	145.5-147.5	2.0	0.063
	39912	159.0-160.6	1.6	0.036
5135-02	39930	49.0-50.2	1.2	0.362
	39934	75.0-77.0	2.0	0.037
	39940	84.7-86.6	1.9	0.043
	39941	86.6-87.5	0.9	0.345
	39942	87.5-89.4	).9	0.112
	39944	119.5-121.0	1.5	0.088
	39945	121.0-122.0	1.0	0.096
	43122	195.0-197.0	2.0	0.026
5135-03	39952	25.5-27.4	1.9	0.056
	39961	123.0-124.7	1.7	0.027 *
	39962	124.7-126.2	1.5	0.049
5135-04	39965	65.4-67.8	2.4	0.025*-
	39966	67.8-68.8	1.0	0.064
	39970	84.5-87.0	2.5	0,230
	43137	88,4-90.4	2.0	0.186
	43143	197.0-198.5	1.5	0.030
5135-05	39.981	81.4-82.5	1.2	0.150
	39983	84.5-85.5	1.0	0.110
5135-06	39973	168.3-170.1	1.8	0,321
	39977	175.0-176.2	1.2	0.066
	39978	176.2-177.7		0.030 *
5135-07	NONE			
5135-08	17931	147.0 - 148.0	1.0	0.110

total significant assays (20.025 02 Au/ton): 25

GNIFICANT GOLD DDH INTERSECTIONS FROM THE JULY TO SEPTEMBER, 1989 PROGRA SANGOLD PROPERTY (WEST GRID)

Hole No.	Sample No.	Footage	Length (Feet)	Grade (oz/ton
56-89-35	28057	261.5-262.7	1.2	0.074
	28066	317.8-319.2	1.4	0.030 *
	28067	319.2 - 322.3	3.1	0.154
	28069	325.3 - 327.0	1.7	0.066
	28072	331.5-332.5	1.0	0.035
·	28075	340.7 - 341.7	1.0	0.076
	28082	369.0-371.5	2,5	0.028 **
	28091	404.0-406.0	2.0	0.045
SG-89-36	28110	329.0 - 332.0	3.0	0.046
	28113	335.5-337.0	1.5	0.041
	28114	337.0-340.7	3.7	0.117
56-89-37	28134	176.0-177.5	1.5	0.032
	28151	277.6-280.6	3.0	0.199
	28152	280.6-282.3	1.7	0.094
	28153	282.3-285.3	3.0	0.030 3
	28154	285.3 - 288.3	3.0	0.036
56 <b>-</b> 89-38A	28178	197.0 - 198.0	1.0	0.040
	28180	210.6-213.6	3.0	0.088
	28181	213.6 - 215.5	1.9	0.034
	28186	224.5-226.0	1.5	0.030
	28193	707.9-710.5	2.6	0.031
	28194	710.5-711.5	1.0	0.044
· • • • ·	28197	717.0-720.0	3.0	0.049
	28198	720.0-721.5	1.5	0.080
SG-89-38B	28223	228.7-231.7	3.0	0.116
	28224	231.7-234.7	3.0	0.027
	28249	531.0 - 533.5	2.5	0.515
	28261	657.0-660.0	3.0	0.048
56-89-39	28296	419.0-420.8	1.8	0.025
	28304	438.3-440.2	1.9	0.043
• ·	28315	493.7 - 495.3	1.6	0.070
	28318	500.9-502.5	1.6	0.040
	28319	502.5 - 505.0 505.0 - 506.2	2.5	0·042 0:038
	28321	506.2 - 508.0	1.8	0.110

SIGNIFICANT GOLD DOH INTERSECTIONS FROM THE JULY TO SEPTEMBER, 1989 PROGRAM SANGOLD PROPERTY (WEST GRID)

Hole No.	Sample No.	Footage	Lingth (Feet)	Grade (cz/to,
56-89-40	28354	406.7-409.2	2.5	0.354
5G-89-41	28355 43514 28367	409.2 - 411.5 415.5 - 417.0 406.3 - 4.8.9	7:56	0.030
56-89-42	28388	449.9-450.9	1.0	0.042
	28393	486.5-488.0	1.5	0.031 ×
SG-89-43	284c4	69.3-70.9	1.6	0.025 **
	28431	537.0-538.4	1.4	0.030
	43995	787.0-790.0	3.0	0.026 **
	43996	790.0-793.0	310	C.028 **
	43999	810.4-811.4	1.4	0,150
	30933	815.6-817.7	2.1	0.039
SG-89-44	28455	221.3-223.8	2.5	0.044
56-89-45	28472	257.9-259.8	1.9	0.012
	28477	288.0-290.5	2.5	0.036 ¥
,	28561	425.0 - 427.5	2.5	0.032 *
	28567	468.5-469.5	1.0	0.026
	28568	469.5-470.6	1.1	0.356
	28569	470.6-471.9	1.3	0.031
	28587	514,5-517,0	2.5	0.029
	28594	529.0-530.0	1.9	0.064
	28607	553.0-554.5	1.5	0.028 **
	28611	561.8-564.0	2.2	0.050
56-89-46	30834	474.7-475.7	1.0	0.031
SG-89-47	3.840	432.1-433.6	1.5	0.049
	30845	440.0-441.5	1.5	0.331
	30851	451.1-453.1	2.0	0.027
	43046	477.0-479.5	2.5	0.028
5G-89-48	43)15	394.0-396.8	2.8	0.028
	43117	408.2-409.2	1.0	0.031
56-89-49	NONE			

SUFFICANT GOLD DDH INTERSECTIONS FROM THE JULY TO SEPTEMBER, 1989 PROGRAM SANGOLD PROPERTY (WEST GRID)

Hole No.	Sample No.	Foctage	Length (Feet)	Grade Coz/Tor
56-89-50	43889	295.0-298.0	3.0	0.038
	43890	298.0-300.0	2.0	0.028 **
	43 891	303.0-305.0	2.0	0.034
	43 212	326.3-327.3	1.0	0.040
	43214	328.8- 331.3	2.5	0.027 **
	⁴ 3216	332,5-333,5	1.0	0.078
	43217	333.5-335.0	1.5	0.044
	43222	346.0 - 347.0	1.0	0.506
	43223	347.0 - 350.0	3.0	0.550
SG-89-51	NONE			····
56-89-52	43269	552.9-554.7	1.8	0·030 *
	43270	554.7 - 555.6	0.9	0.104
	43271	555.6 - 557.3	1.7	0.066
	43272	557.3-558.3	1.0	1.972
	43274	560.8-562.9	2.1	0.044
	#3277	567.3 - 568.4	1.1	0.230
	43279	569.6-571.9	2.3	0.084
	4310	642.5-645.5	3.0	0.044
56-89-53	43372	128.6 -129.6	1.0	0.286
	43285	204,1-206.2	2.1	0.029 ×*
	43296	397.2-399.2	2.0	0.048
	43297	399.2-401.2	210	9.175
	43300	403.4-405.2	1.8	0.043
	43303	441.6-442.6	1.0	0.740
	43554	468.0-471.0	3.0	0:055
	43412	494.0-495.5	1.5	0.028 ×
SG-89-54	43347	156.0-159.0	3.0	0.070
·	43357	279.0-281.0	2,0	0.026*
56-89-55	NONE			

SI FICANT GOLD DDH INTERSECTIONS FROM THE JULY TO SEPTEMBER, 1989 PROGRAM SANGOLD PROPERTY (WEST GRID)

Hole No.	Sample No.	Footage	Length (feet)	Grade (oz/ton)
SG-89-56	43381	117.9-119.0	× 1.1	0.152
	43383	120.0 - 121.0	). 0	0.162
	43384	121.0-122.5	1.5	0.104
	43385	122.5-124.0	1.5	0.066
	43387	126.5-127.5	1.0	0.158
	43388	190.1-191.7	1.6	0.062
	43389	191.7 - 193.0	1.3	0.032
	43390	193.0-196.0	3.0	0.050
	43391	196.0 - 199.0	3.0	0.110
	43392	199.0-200.5	1.5	0.096
	43393	200.5-201.5	1.0	0.066
	43 <b>39 4</b>	201.5-204.5	3.0	0.048
	43 396	205.5-207.0	1.5	0.046
56-89-57	43461	343.9-346.4	2.5	0.026 **
	43463	349.5 - 351.5	2.0	0.057
	43465	353.3 - 356.0	2.7	0.025 ***
	43466	389.5-391.5	2.0	0.028 **
	43471	413.8-415.8	2.0	0.121
	43478	427.9-429.6	1.7	0.352
	43479	429.6 - 432.6	3.0	0.084
56-89-58	43955	529.6-532.0	2.4	0.032
	43 959	546.5-548.8	2.3	0.042
3	43961	550.3-552.4	2.1	0.338
	43963	553.5 - 556.1	2.6	0.039
	43 92 . 3.	577.0-578.0	1.0	0.266
	43 973	578.0 - 579.3	1.3	0.130
	43976	582.8- 584.1	1.3	0.031 **
	43977	584.1 - 585.1	1.0	0.150
56-89-59	NO SAMPLES -	TAKEN - HOLE AM	BANDONED IN OVE	RBURDEN.
56-89-60	6381	77.9-80.0	2.1	0.033 **
	6392	166.7-167.7	1.0	0.040
_				

SI FICANT GOLD DDH INTERSECTIONS FROM THE JULY TO SEPTEMBER, 1989 PROGRAM GANGOLD PROPERTY (WEST GRID)

Length (feet) Hole No. Sample No. Fectage Grade (oz/ton) 43495 148.0 - 149.0 56-89-61 1.0 0.026 43496 149.0-151.0 2.0 0.252 191.3 - 193.1 44855 1.8 0.048 44857 194.8 -196.1 1.3 0.030 * 44 866 219.7-220.8 1.1 0.440 44 868 223.8-226.8 3.0 0.025 ** 44873 267.2-269.7 2.5 0.142 44874 269.7-272.2 2.5 0.126 44876 274,4-277.4 3.0 0.068 44878 280.8-283.5 2.7 0.160 44879 283.5-286.0 2.5 0.096 44882 310.2-311.5 1.3 0.086

Total significant assays (20.025 or Au/ton): 133

& Grade represents conversion of ppb Au (From Atomic Absorption method) to box Au/Ton. Corresponding Fire Assay values are below 2.025 or Au/Ton.
 &* Grede represents conversion of ppb Au (from Atomic Absorption method) to oz Au/Ton. No corresponding Fire Assay values exist for these samples.
 All other assays represent Fire Assays values in oz Au/Ton.

# **APPENDIX 4**

• • • • • • • • • • •	ONTARIO GEOLOGICAL SUR ASSESSMENT FILES OFFICE MAY 11 1990	RVEY S	Fre	uk ¢	4.70	- Kes	B,Sc.	, F.G
arshall Min operty name le No. : cation : evation:+ 4. arted : Au ootace	Prais Corp DIAMOND DRILL RECORD       RECEIVEC         : SANGOLD       Acid dip         \$135-5       Footage         0+918       2+00E (GAST TRAVENSE GRID) Length: 497.0'         (REL TS \$135-1) Azimuth: 349 008       Dip: -45.0         3. 19, 1989       Finished: Aug. 20, 1989	D tests Dip  Foo: 5.0  417' 8.0  8.0	tage Dip  + -29   	Hole Remarks Logged 1	No.: S) : BQ cc split by: F.H	135-5 ore. Pa t prior 4. Toews	Sheet art of con to loggir	1 of 9.
olage To and To	Description	No.	Sam X Sulphides	apre s Erom I	Io	Total	ppb Dz/	יtn Re
0.01 112.5	<pre>/ FELSIC VOLCANIC / FELSIC VOLCANIC / Medium to light grey, fine grained, often sericitic, mod / erately soft to moderately hard. / / Locally reacts to HCl in oxidized zones (water seams) who are more prevalent down to about 39.0'.</pre>	ich						

Hole No.: \$135-5 Sheet 2 of 10

Foota	9e					Sample				Assays (Au)		
From	To	Description		No.	% Sulphides	From	To	Total	ppb	02/tn	Re	
	1	10.0' - 17.0'	Approximately 2.0' lost core, minor veining.							 	1	
I	!   	17.01 - 18.61	10-15% veins at 30-15 deg. to C. A. Veins 1.0-1/8" wide. locally oxidized. mainly sub-	43226	Trace Py	17.0	18.7	1.71	10	;   		
			parallel to foliation at 35 deg. to C. A.	43227		18.7	19.7	1.0′	1 IN			
		19.77 - 20.87	<pre>15% veins at 5-35 deg. to C. A. Veins 1/8- 1.0' wide, locally oxidized, foliation at 35-15 deg. to C. A.</pre>	43228	Тгэсе Ру	19.7	20.8	1.1′	Nil			
	) 	   21.31 - 23.31 	Strongly to moderately oxidized Felsic Vol- canic (water seams), broken core, 1.0' lost	43229		20.8	24.0	3.21	Nil.			
	1		core, foliation at 25-30 deg. to C. A.	43230		32.0	33.6	1.61	10	i f	Ì	
		33.67 - 35.37	15% veins at 10-20 deg. to C. A. Veins 1/4 to 1.0° wide, foliation at 25-35 deg. to C. A., possible minor galena.	43231   	Tr Gn ?	33.6	35.3	1.7'	40	     		
	;   	35.3' - 37.0'	Broken oxidized core. Less than 1.07 lost core, 1/4" quartz-carbonate vein.	43232		35.3	37.0	1.7/	30	   		
	1	37.01 - 47.21	10-15% veins at 15-35 deg. to C. A. 1/8-1.0*	43233	Trace Py	37.0	39.0	2.01	10	1		
	1	1	wide. Locally minor by and up to 1% galena	143234	<1/2% Gn	39.01	40.6	1.6	20		1	
	1	1	visible, foliation at 25-30 deg. to C. A.	43235	Trace Py	40.6	42.6	2.01	10	1	1	
	1			43236	Trace Py	42.6	45.0	2.4	120	1	1	
	1	49.81 - 50.61	Oxidized water seam at 10 deg. to C. A.	43237	<1/2% Gn,	45.0	47.2	2.21	50	<b>i</b> 1	!	
	l	1	1		Ру				ł	1	1	
	]	51.6' - 52.0'	40% veins at 20-30 deg. to C. A., 2.0-3.0*	43238	1	47.2	49.4	2.21	Nil	1	1	
	Į –	1	wide, subparallel foliation.	43239		49.4	51.6	2.2	Nil Nil	1	1	
	1	1		43240	Trace Py	51.6	53.0	1.4	10	1	1	
	ļ	55.01 - 57.01	10% contorted veins, 1/8-1/2° wide, subpar-	43241		53.0	55.0	2.0	10	1	1	
			allel to cross cutting foliation at 30-35 deg. to C. A.	43242	Trace Py   	55.0	57.0	2.01	t 40	1		
	1 	   57.0' - 79.9'	Felsic Volcanic with 1-2% veins, 1/8-1/2*	1		 		i 	1	 	}	

Hole No.: S135.5 Sheet 3 of 163

Footag	)e	ł		1	Samp	ole		1	Ass	says (A	λu)
Erom	To	Description		No.	% Sulphides	From	Τo	Total	ppb	0z/tn	¦ Re∘
			wide, at subparallel to 35 deg. to C. A. Foliation at 30-35 deg. to C. A. Nil to locally 1/2% Py. Occasional water seam with local oxidization. (Note: core previously split from 78.44 - 86.94)	39979	Тгасе Ру	78.4	79.9	1.5/	90		
, 1   		79.91 - 81.41	20% veins up to 2.0° wide(?) with locally 5-10% Py and minor galena, local strong sericitization.	39980	2% Py,Gn	79.9	81.4	1.54	480		
		81.4' - 82.6'	80% veins with locally 20% Py.	39981	5-10% Py	81.4	82.6	1.21	5140	0.150	
I		82.6' - 84.5'	50% veins with locally possible tourmaline veinlet, less than 1% Py.	39982	< 1%Py	82.6	84.5	1.94	190		
1		84.57 - 85.57	70% veins with locally 20% Py, local strong sericitization.	39983	5-10% Py	84.5	85.5	1.01	3980	0.110	
ļ		85.5' - 86.9'	2% veins, trace to 1% Py.	39984	1/2% Py	85.5	86.9	1.4'	20	1	
	 	87.21 - 88.41	10% veins at 15-25 deg. to C. A. Veins 1/4 to 1 0, wide foliation about 25 deg. to	43243	1/2% Py	86.9	88.4	1.54	Ni]	   	1
	1   		C. A., rocks hard, silicified.	43244	Nil	88.4	90.8	2.41	80	1	
		90.9′ - 91.8′	l.0° vein at 10 deg. to C. A. with minor Py and galena?, foliation at 25-45 deg. to C. A.	43245	Up to 1/2% Py,Gn	90.8	91.9	1.1'   	100		
:	₽ ≹ ₽	92.07 - 93.97	5% veins.	  43246  43247	<1/22 Pv	91.9	93.9	   2.04   1.54	   Nil ! Nil		1 1 1
	   	96.5' - 98.5'	15% veins, 1/8-1/2° wide, contorted at 0-15 deg. to C. A. Local oxidization, foliation at 35-10 deg. to C. A.	43248	Up to 1% Py	96.4	98.5	2.1	30		
	1			1		1	1	1	1	1	1

.....

1

***

• .

,

•

Cotage		1			Samp	le			A 5 5	iays (A	10)
from	Τo	Description		No.	% Sulphides	From	To	Total	ρρԵ	Oz/tn	Re
		98.5' - 101.5'	2-3% veins at 10-20 deg. to C. A., minor Py, foliation at 35-40 deg. to C. A.	43249	<1/2% Py	98.5	101.5	3.01	Nil		
		   104.91 - 105.51   	ALTERU DYKE - Pale greenish, fine grained, epidotized (and sericitized?) groundmass with 2-3% chlorite spots (up to 1/8° size)								     
			Contacts sharp at 25-30 deg. to C. A. with up to 1/4° wide dyke gashes 0.1′ away from contacts.								     
			Host rocks bleached, sericitized.								1
}			Dyke has weak foliation parallel to cont- acts. Minor Py in dyke and host rocks.								   
		106.07 - 112.57	OXIDIZED ZONE and FAULT in Felsic Volcan- ics foliated at mainly 40-50 deg.								     
			Chlorite (+/- vuggy quartz) seams often parallel foliation and are locally anast- amosing brecciated host rock which appears cataclastic in part.								1
l			Occasional 1/8° quartz vein.								1
			107.5' - 109.7' Broken core, vuggy parts, brecciated around 108.0', soft, sericitic and partly talcose(?).							 	
1 ) 			110.0' - 111.5' Up to 1% Py cubes, up to 1/8' size.	43250	Up to 1% Py	110.0	112.5	2.51	Nil	 	   
		1	111.5' - 112.5' Bleached, silicified,	1			t 	t †	1	l 	1 

,

Hole No.: S135-5 Sheet 4 of 16

.....

/ ·

.

.

......

Hole No.: S135-5 Sheet 5 of 16

Footag	)e				Sam	ple			As	says (A	iu)
From	Το	Description		No.	% Sulphides	From	To	Total	ppt	Oz/tn	Кe
			brecciated and well foliated par- allel to dyke contact at 15 deg. near the dyke. Rocks probably sericitic as well.							1 1 1	
112.54	117.54	INTERMEDIATE DYK	E	1	1		 				
1		Medium to darker   locally carbonat   massive,	grey, fine to medium grained, chloritic, ized where oxidized, weakly foliated to								
1		   15-20% quartz-ca   brecciated. Vei   deg. to C. A.	rbonate +/- chlorite veins locally appear ns l/4-3/4" wide mainly, oriented at 15-75								
1		1/2-1% Py in vei	ns and host rocks.	1		1		1			
		Contact at 117.5	' at 45 deg. to C. A.	1			1				
1		112.5' - 113.3'	Oxidized, carbonatized, (water seams), vuggy, chlorite spotting.	43251	Up to 1% Fy	112.5	115.6	3.11	Nil		
1		)14.2' - 114.8'	Brecciated vein with wall rock inclusions. Vein contacts at 75 and 20-25 deg. to C. A.								
		5.0' -   5.6' Oxidized, carbonatized, (water seams),   vuggy.		43252	< 12 Py	115.6	1 117.6	1.91	   Nil		
	1	) [				1	1	1	1 Į		1

Hole No.: S135-5 Sheet 6 of 16

Footaq	e			[	Səm	le		1	Ase	ays (A	нu)
From	To	Description		No.	% Sulphides 	From	To	Total	ppb (	Os/tn	Re
117.5	138.01	ARGILLITE		   	1		1			1	
1		Medium to dark g laminated to thi ite rich beds in	rey to black, very fine to fine grained, n bedded (less than 0.57) with black chlor- terbedded with grey more siliceous beds.		     						]
		Redding oriented alleled by less and lenses which	at 50-25 deg. to C. A., occasionally par- than 1/8° wide quartz-carbonate veinlets alse cross cut bedding obliquely.	     	     			1	1 . 3		-   
		Rocks are genera carbonatization	lly moderately hard to soft with patchy of the grey beds.		3 1 1						
		Scattered dissem alligned paralle	 	r 9 1 2 8 8			1				
		Lower contact is on slips (severa ing.	gradational. Black beds locally graphitic I down to about 134.07). Local microfault-	1							
		117.51 - 118.51	Sericitic, pale greenish beds, sheared near dyke parallel to bedding at 45-50 days to 5 A	43253      42254	1-2% Py	117.5     120.5	120.5	3.01	Nil  		{   
			beg. 00 C. H.	143234		1 120.0	1 120.01	0.0	, ((±±) 	1	1
		134.01 - 138.01	More massive with 5%(+/-) laminated beds at 20-25 deg. to C. A. Rocks medium to light grey, more siliceous. Moderately hard to soft.	,     							
			Contact placed at laminated, moderately soft beds at 20 deg. to C. A.	4 ]   	\$   					\$ ] ]	
	İ	}		i	İ	i -	i i		Ì	İ	İ

Footage Sample Assays (Au) Total) ppb Oz/tn Re From | To No. % Sulphides From Τo Description 138.0'( 141.8') FELSIC VOLCANIC (Cherty? or Silicified?) Medium to light grey, very fine grained, cherty looking, siliceous, sometimes very hard (silicified?) with somewhat softer parts (carbonatized). 2-3% darker beds (up to 1/8'), occasionally chloritic, which are partly deformed at 15-25 deg. and some at 35 deg. to C. A. Parts cut by darker, subparallel to anastamosing fracture fillings. Eight late milky quartz-carbonate veinlets (up to 1/8") and gashes at 30-40 deg. to C. A. oblique to subparallel to bedding. Rocks locally carbonatized, trace to locally 1% cubic Py. [43255] <1% Py 139.7 141.7 2.04 Nil Contact in broken core. 141.81 200.3'| ALTERED FELSIC VOLCANIC and INTERMEDIATE DYKES Volcanics: Generally fine grained, light to medium grey often with a greenish cast (due to sericite). 5-20% pale greenish to yellowish sericite seams (1/32-1/2" wide) at 35-50 deq. to C. A. imparting a foliation to the host rocks (locally beige) to light grey silicification follows the seams). Rocks are generally hard, siliceous to moderate-

Hole No.: \$135-5

Sheet 7 of 16

.

.....

Hole No.: S135-5 Sheet 8 of 16

.

.

Footag	8			Sam	ple		••••••••••••••••••	As	says (A	Au)
From	To	Description	No.	% Sulphides	From	To	Total	ppb	0z∕tn	Re
		ly hard with patchy silification and carbor ization throughout. Sericitization locally strong.	nat~   Y		     	     	.	I       	/	     
		2% quartz-carbonate veins (1/8-1/2°) scatte throughout parallel to and oblique to folia	ered ation.		[   	1	   	   		1
1		Trace to locally 1% cubic Py disseminated.				1	1	1	1	
		Tykes: Between 145.4' - 174.1', 0.1-3.5' widths.	1		1			↓ ∦		1
		Intermediate, medium grey to greenish grey to medium grained, locally <b>foliated, local</b> reacts to HCl but often speckled with iron onate(?), chlorite spotting.	, fine ly carb-1	1						
		Contacts sharp, oriented at parallel to sub - allel to foliation in host rocks.	bpar-   			   	1	   	[   	
		Occasionally dykes contain host rock inclus ions(?) of host rock showing transgressive act relations.	s-   cont-		r 1 1	8 [ 		•   		
		Trace to 1% disseminated Py in dykes.	1		) {		1	3	1	1
:   		Occasionally dykes cut by quartz-carbonate Py) veins, 1/16 to 1/2° wide.	(+/-		   	l   	 	     .	   	
		141.7′ - 144.0′ Mainly medium to dark grey, foliated   40-45 deg. to C. A., moderately hard   sericitized, carbonatized Felsic Vol   Possibly locally fragmental. 1% dis   ated Py. Gradational contact.	at  4325 , canic.  semin-	6 17 Py	141.7   	144.0   	2.3'			

.....

-

1

Hole No.: \$135-5 Sheet 9 of 16

Footag	e	1			Samp	ple			Ass	ays (A	Au)
From	To	Description		No.	% Sulphides	Erom	To	Total	ppb ,	Oz/tn	Re
		144.0' - 145.4'	Foliated at 45-50 deg. to C. A., hard, silicified, sericitic (+ epidote?) Felsic Volcanic with several grey bands. Up to 1% Py.	43257     	< 12 Py	144.0	145.4	1.4	10		         
		1   145.4' - 147.5'   	Dyke - Contacts at about 50 deg. to C. A. Lower contact ragged with fragments of host rock. Trace to 1/2% Py.	  43258   	<1/2% Py	145.4	147.5	2.1'	Nil  		-
1		347.51 - 149.01	Similar to 144.0' - 145.4'. 1% Py.	43259	1% Py	147.5	149.0	1.5′	10		
	-	149.0' - 151.6'	Light grey to bleached, silicified, partly cherty looking Felsic Volcanic with seri- citic (+/- silicification) seams at 45-50 deg. to C. A. with 1.0° dyke (quartz mar- gins) and 0.2′ dyke at about 45-50 deg. to C. A. 1% Py.	43260	1% Py	149.0	151.6	1.6	Nil		
		151.6′ - 155.1′     	Dyke with cherty (bedded), silicified, bleached inclusions (up to 0.6') at 45 deg. to C. A. from 152.5' to 153.6'. Less than 1% Py in all rocks. Contacts at 45-50 deg. to C. A.								
		155.1' - 158.0'	Silicified, plus bleaching, sericite seams at 50 deg. to C. A., trace to 1/2% Py, gradational.	     							
		161.6' - 162.5'	Three 1/4-1/2° wide quartz-carbonate +/- chlorite veins at 60-70 deg. to C. A.	1							     
		165.7' - 166.8'   	Beige silification veins parallel to and cross cutting sericite seams at 50 deg. to C. A. Host rocks silicified near dyke.	43261   	Up to 1% Py	165.8   	167.0	1.2'	Nil	 	

Hole No.: \$135-5 Sheet 10 of 16

Footag	e.	1		1	Samp	ole		1	Ass	says (A	iu)
From	То	Description		No.	% Sulphides	From	To	Total	թթԵ	Oz/tn	Re
)			Less than 1% Py.	}							i i
		166.8′ - 168.2′	Dyke - moderately foliated at 35-40 deg. to C. A., subparallel to contacts at 30 and 40 deg. to C. A. Upper contact cut by beige silification veinlet, lower contact ragged with inclusions.	43262	Trace Py	167.0	168.2	1.2′	Nil		
		168.2' - 171.9'	Similar to 165.7' - 166.8', more brecciat- ion near 168.4'.	43263	Up to 1% Py	168.2	169.9	1.7′	Nil		-   
			169.5′ Quartz-carbonate veinlet cuts beige silification.	43264	1% Py	169.9	171.9	2.01	Ni1		
I	1 		Up to 1% disseminated Py.				-				l
	4 	171.9' - 174.0'	Dyke - contacts at 55 and 40 deg. to C. A. Weak foliation at about 50 deg. to C. A.	43265	1% Py	171.9	174.0	2.1'	Nil	] ] ] ]	   
			1% Py.	• • • • •	1 1 1			1		l   	l 
	   		172.4' - 173.6' 15% quartz-carbonate veins cross cutting and subparallel to foliation. Veins partly patchy.	l 1				     			
I	l l	174.0' - 174.3'	Silification, 1% Py.	43266	Up to 1% Py	174.0	175.0	1.01	Nil		]   
i		179.5' - 184.5'	Sections with shearing, brecciation and quartz-carbonate veining (1/8~1/2°) at 30-60 deg. to C. A. 5% veins.	43267	Trace Py	182.0	184.0	2.0'	Nil		
	: { {	197.0′ - 198.6′	3% quartz-carbonate veinlets (oblique to foliation) at 35 deg. to C. A.	43305	< 1% Ру	197.0	199.1	2.14	'Nil		
		198.6' - 199.1'	Broken core. Lost core.	1	1	1		ł   ,			1

.....

Hole No.: \$135-5 Sheet 11 of 16

÷

Footage				San	l Assays (Au)					
From	To	Description	No.	% Sulphides	From	Τo	Total	ppb	Oz∕tn	Re
		199.1′ Quartz-carbonate vein, 2.0° wide, partly vuggy at 35 deg. to C. A. Contact with broken core oxidized (water seam). 2% Py in vein.	43306	< 1% Py	199.1	200.1	1.0'	Nil		
1   		199.9' Deformed quartz-carbonate, shearing par- allel to foliation at 45-50 deg. to C. A.								   
300.31	278.7′	INTERCALATED FELSIC VOLCANICS and ARGILLITE with FAULTS		]						   1
		Volcanics: Light to medium grey to slightly greenish, fine grained, moderately to weakly foliated at 35-55 deg. to C. A., minor Py.								   
		Rocks siliceous and with patchy carbonatization and sericitization, parts with thin chloritic argillaceous partings.	   	1 1 1 1			     		1   	] ] ]
1		Generally less than 2% quartz-carbonate veins and gashes up to 1/4° wide.	1				 	: [ ]	   	   
		   Argillite: Black to medium grey, laminated to thin bedded   at 35-60 deg. to C. A., very fine to fine grain~   ed, chloritic, locally graphitic, parts deformed	1       							     
		   Less than 2% quartz-carbonate veins and gashes,   locally 2% cubic Py, patchy carbonatization. 	   			   	(     	1 1 1	   	
		200.3' - 210.5' Argillaceous, partings and beds at 40-60 deg. to C. A., mainly medium grey.						   \$		
	! {	   210.5' - 211.1' Predominantly black, chloritic and GRAPH-	   43307	   < 2% Py	210.1	   211 <b>.1</b>	1.01	1   10	1	1

.

Hole No.: S135-5 Sheet 12 of 16

1

Footage				Sample						Assavs (Au)		
From   To	Description		No.	X Sulphides	From	To	Total	ρρԵ	Oz/tn	R		
         		ITIC. Bedding deformed in upper part at 60-65 deg. to C. A., brecciation in lower 0.2', partly vuggy. Lower contact at about 55 deg. to C. A. 2% Py.	48I						5 5 6 1 1 1			
}		Possible fault zone (compet <b>e</b> nt core).	433.8	≤ 1% PY	2//./	213.0	1.9'	ML	)   	1		
	211.1' - 215.6'	Felsic Volcanic. Medium grey to greenish, carbonatized. Mainly oxidized patches due to water seams.	43309	17 Py	213.0	215.6	2.6'	Nil				
		Microbrecciated near uper contact and often cut by irregular to more uniform anastamosing fractures filled with chlorite.			i     		     					
ļ		Locally weakly foliated at about 25 deg. to C. A. Up to 1% cubic Py disseminated.							   	(   		
4		215.6'- Contact in broken core, but may be about 55 deg. to C. A.					1 1 1					
	215.6' - 219.9'	Black argillite with thin disrupted to contorted beds and laminations, GRAPHITIC.	43310		215.6	217.0	1.4'	Nil	1 1 1	1		
		Redding at about 50-55 deg. to C. A. 1% carbonate veins less than 1/4° wide, often parallel to bedding, some deformed and contain up to 15% Py.	43311		217.0	219.9	2.91	Nil	1 1 1 1			
		Rocks partly brecciated, much broken core. POSSIBLE FAULT ZONE. Lost core.		f } {	1 			   	 			
     		Rocks partly brecciated, much broken core. POSSIBLE FAULT ZONE. Lost core.			     	 	     					

ć

Hole No.: S135-5 Sheet 13 of 16

footage					Sample						Assays (Au)			
Erom	To	Description		No.	% Sulphides	From	οI	Total	ppb	Oz/tri	Re			
		219.91 - 228.61	Felsic Volcanics. Greenish, siliceous, sericitic, weakly to moderately foliated at 25-45 deg. to C. A.	- J 	1       				•••••		     			
			Up to 1% Py. Occa <mark>sional quartz-carbonat</mark> e vein less than 1/ <mark>4°. Grey, brecciate</mark> d in last foot.	*     							     			
			228.6'- Contact at 50 deg. to C. A.		 					   	   1			
		228.6' - 229.5'	Deformed to brecci <mark>ated black argillite.</mark> Up to 1% Py, 5% d <mark>eformed quartz-carbo</mark> nate veins.	1     						     	   			
		229.5′ - 278.7′	Mainly grey to black, locally graphitic, argillite. Partings and bedding at 45-60 deg. to C. A., locally deformed. Locally carbonatized, scattered Py.								       			
			241.4' - 243.5' Oxidized, water seam.	1		1	1				1			
	1		245.0' - 247.0' No core recovery.	ļ			   			1 [				
			248.3' - 248.8' 10% deformed quartz-carb- onate veins up to 1/4' at 35-45 deg. to C. A. 1% Py	43312	1% Py	247.5	249.0	1.5′   	Nil	1     				
	3         		264.6' - 265.6' Intermediate Dyke. Bleached, partly silicified host rocks. Contacts at 40 and 55 deg. to C. A.	     		: : : :	       			     				
	-   		267.5' - 270.5' <b>2% clusters of Py, occas</b> - ional quartz-carbonate vein up to	43313	2% Py	267.5	270.5	3.01	10		1   			

Hole No.: 5135-5

Footage Sample Assays (Au) From | To Description No. % Sulphides From Τo Total| ppb Oz/tn Re 3/8', locally deformed argillite. 273.0'- 1.0' calcite vein at 55-60 deg. to: C. A. 376.6' - 278.7' Foliated to brecciated 43314 1-2% Py 276.6| 278.7| 2.14 101 and crenulated argillite. Beddingfoliation at about 40-55 deg. to C. A., some graphitic slips parallel to foliation. 1-2% Py clusters and cubes. Several guartz-carbonate veins and gashes subparallel to foliation. 278.7'- Contact at 55 deg. to C. A. 278.7'| 497.0'| FELSIC VOLCANICS Pale yellowish to greenish grey, fine grained, well foliated at 45-50 deg. to C. A., moderately soft to soft, sericitic, locally silicified and carbonatized, tuffs and Japilli tuffs (fragments 1/4-3.0'), possibly brecciated. 10-50% yellowish sericite seams and threads mainly parallel! to the foliation, locally cross cutting the foliation. 5% Py cubes, clusters and disseminations. Nil to locally 10-20% quartz-carbonate veins, patches, both parallel to and cross cutting the foliation orientation (some veins cut and deformed by the filiation). Veins 1/8-2.0' wide. | Some parts appear cataclastic, medium to coarse grained

Marshall Minerals Corp. - DIAMOND DRILL RECORD

12



Sheet 14 of 16

7

.

......

Å

Hole No.: \$135-5 Sheet 15 of 16

r

۴

1

Footag	e	1		1		Sam	ple			As	says (#	4u)
From   To	Τo	Description	ription		No. % Sulphides From To			То	Total	ppb	0z/tn	Re
	•••••	grey matrix.		1	 		} 					
		278.71 - 279.61	Darker greenish grey, brecciated to shear- ed. with chloritic matrix and foliation	43315	17	۴y	278.7	279.7	2.01	Nil		   
			planes at 55 deg. to C. A.	43316	Up t	o 1% Py	279.7	282.7	3.01	10		ĺ
			Less than 1-2% Py. Sharp colour change at 279.6′ parallel to foliation.		1						ו 1 1	
		284.71	2.0-3.0° quartz-carbonate vein (oblique to foliation) at about 45 deg. to C. A. Some chlorite patches.						3			
		297.0' - 300.0'	5% quartz-carbonate veins, patches paral- lel to foliation. Up to 2% Py in and near veins. One vein vuggy and folded at 299.5′.	43317	Up t   	o 2% Py	297.0	300.0	3.01	Ni1	8 8 8 8	 
1		307.01 - 308.51	3% Py clusters and cubes, some aligned parallel to foliation.	43318	1 3X	۴y	307.0	308.5	1.5'	Nil	1   	1
Į				43319	$i \in I$	7 Py	308.5	310.7	1.21	Nil	ĺ	į
1		310.7' - <b>311.</b> 7'	20% quartz-carbonate veins 1/8-2.0" wide.	43320 1	2%	Ру	310.7	311.7	1.0'	Nil	1	[
l		364.0' - 366.2'	10-15% quartz-carbonate veins 1/8-1.5° wide. Up to 1% disseminated Py in host host rocks.	43321	Up t   	o 1% Py	364.0	367.0	3.0'	Nil	   	   
		373.01	Water seam 0.6' wide, oxidation.	1							\$   	   
		376.71 - 377.71	Water seam, vuggy, oxidation.	1 ] 4							3   	
ļ		394.81 - 467.01	Generally more siliceous, hard, medium to	ł	i						ļ	
			massive to cataclastic(?) in appearance.				1	1	1 1		, { 1	1

....

Hole No.: \$135-5 Sheet 16 of 16

Footag	e	_			Samp	le			As:	says (
From	To	Description		No.	% Sulphides	From	Το	Totali	թթե	Oz∕tn ∣
   			Sericitic threads and seams at 50~60 deg. to C. A. Trace to 1% Py.		[		     		     	     
			399.2' - 402.0' Three 1.0-2.0' wide quartz-carbonate veins at 45-60 deg. to C. A. subparallel to foli- ation. Up to 2% Py in veins.	43322	Up to 1% Py	399.0	402.0	3.01	Nil	
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			442.9' - 443.5' 3/8' wide irregular quartz-carbonate(?) vein at 0-35 deg. to C. A. with minor Py dissem- ination.	43323	< 1% Py	442.8	443.8   	1.0'	Ni]     	
1			443.8′ - 487.0′ Somewhat softer matrix.	1			 	: { !	1   	   
			462.0' - 463.3' Water seams, oxidized. Seams at 25-30 deg. to C. A. Minor Py in host rocks.	43324	< 1% Py	461.0	464.0	3 <b>.0</b> ′   	Nil   	1 1 1 1
		   467.0' - 497.0'	Somewhat similar to 443.8′ - 467.0′ but more fine grained material present.		-		   }	1	 	
   			479.67 - 480.47 Water seam, oxidized. Seam at about 15 deg. to C. A.	   			1     	1	1 1 1	1
			486.5' - 487.2' Water seam, oxidized. Seam at 25 deg. to C. A.	)   		s   	к 	   	• • •	1
			488.2' - 488.8' Water seam, oxidized. Seam at 30 deg. to C. A.	43325	< 1/2% Py	490.0	493.0	3.0'	   Nil 	
			493.1' - 494.0' 3/8-1.0' quartz-carbonate veins at 30-60 deg. to C. A.	43326	< 1/2% Py	493.0	494.0	1.0'	Nil	1
- 4. L. L. L.		1	Trace Py, wall rocks silicified.	43327	< 1/2% Py	494.0	497.0	3.0'	Nil 	 
ļ	497.0'	END OF HOLE		i I		ł		i N	Î N	Í 1

# **APPENDIX 5**



Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

# Certificate of Analysis

Certificate No	75979		Date Aug.	25, 1989
Received Aug. 23, 1	989	6	Core Sample	<u>S</u>
Submitted by Marsha	all Minerals	Inc., Niagara	Falls, Ontario.	
Proj.	#Sangold	File_#92-0733	ATTENTION:	J. Hinzer
	SAMPLE NO.	GOLD PPB	GOLD Oz/ton	GOLD g/t
	39979	90		•••
6	39980	480		
<b>رو</b> ر . راج ر	39981	5140	0.150	5.14
$\zeta$	39982	190		
	39983	3980	0.110	3.77
	39984	70		

Per. G. Lebel - Manager //ns

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244, FAX (705) 642-3300

ŧ




٠

# Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

# Certificate of Analysis

Certificate No.	DateSept. 5, 1989					
Received Sep	ot. 1, 1989	54		Core Sam	ples	
Submitted by_	Marshall Mineral	<u>s Inc., Niagar</u>	ra Falls,	Ontario	•	
	Proj. #Sangold	File #92-0762				
SAMPLE NO.	GOLD PPB	SAMPLE NO.	GOLD PPB		SAMPLE NO.	GOLD PPB
43226	10	43247	Nil		43305	Nil
43227	Nil	43248	30		43306	Nil
43228	Nil	43249	Nil		43307	Ni1/10
43229	Nil	43250	Nil		43308	Nil
43230	10/Nil	43251	Nil		43309	Nil
43231	40	43252	Nil	35-5	43310	Nil
43232	30	43253	Nil	9.	43311	NiI
43233	10	43254	Nil		43312	Ni l
43234	20	43255	Nil/Nil	L	43313	10
43235	10 15	43256	10		43314	10
43236	120 5 ¹²	43257	10		43315	Nil
43237	50	43258	Nil	ł	43316	10
43238	Nil	43259	10			
43239	Nil	43260	Nil			
43240	10	43261	Nil			
43241	10	43262	Nil			
43242	40	43263	Nil			
43243	Nil	43264	Nil			
43244	80	43265	Nil			
43245	100/60	43266	Nil			
43246	Nil	43267	Nil			

Per.

G. Lebel - Manager /rs

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

Established 1928

ĥ

# Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Certificate of Analysis RECEIVED SEP 1 3 1989

Certificate No76094		DateSept. 6, 1989
Received Sept. 5, 1989	22	Core Samples
Submitted by Marshall Minerals I	nc Nianara	Falls, Ontario, ATTENTION: J. Hinzer
Proj. #Sangold	File #92-	
		PPB
4	3317	Ni 1
4	3318	Ni 1
4	3319	Ni 1
4	3320	Nil
4	3321	Nil/Nil
15 4	3322	Nil
ζ \ 5 4	3323	Nil
4	3324	Nil
4	3325	Nil
4	3326	Nil
4	3327	Nil
	3865	Nil
. 4	3866	Nil
4	3867	Nil
4	3868	Nil/Nil
~ 4	3869	Nil
<u>v</u> 4	3870	Nil
8 4	3871	Nil
4	3872	Nil
4	3873	Nil
\4	3874	Nil
4	3875	NII
· · · · · · · · · · · · · · · · · · ·		9
		Per Wu
		G. Lebel – Manager /ns
P.O. Bo	ox 10, Swastika	, Ontario P0K 1T0
Telephone (	705) 642-3244	FAX (705)642-3300

# **APPENDIX 6**



42801NE0141 53 KEITH

020

### GEOLOGICAL COMPILATION AND DRILL REPORT (1988)

OF THE SANGOLD PROPERTY

**KEITH TOWNSHIP, ONTARIO** 

Marshall Minerals Corp. ,Gail Resources Inc. Gold Vessel Resources Inc.



ic.

George H. Wahl.



TABLE OF CONTENTS

1

1

l

ł

列

ļ

1

020C

			Page
Table of con	tents	3	
Certificates			
Summary			
Introduction			1
Property			1
Location and	d acc	Cess	. 1
Regional ge	ologi	ical setting	4
Local geolog	gy ·		6
Previous wo	rk		10
Work under	curre	ent ownership	14
- S - A - I. - D	howi irbori P. su iamc	ngs ne geophysics urvey ond drilling	14 16 18 18
Conclusion			19
Recommend	datio	ns	20
Budget prop	osal		22
Figures:	1- 2- 3- 4-	Property map Property location map Regional geological setting Airborne magnetic survey	2 3 5 17
Tables:	1- 2-	List of claim numbers List of drill hole intersections	24 25
Appendix A.	:	Drill logs	
Maps:	1-	Sangold geological compilation map (1" = 10,000')	back pocket
	2-	Geology and sample location map of the Vein Zone's (1" to 10')	back pocket
	3-	I.P. anomaly and diamond drill hole location map (1" = 200')	back pocket

### CERTIFICATE

I, George H. Wahl, of 366 Toke St., in the city of Timmins, Province of Ontario, certify as follows, concerning my geological report of the Sangold property, Keith Township, Ontario, Porcupine Mining Division, dated April, 1988:

- 1. I am a graduate of the University of Western Ontario, with an Honors Bachelor of Science degree in Geological Sciences, obtained in May 1985.
- 2. I have been practicing in Canada since 1981, as a geological assistant and professional geologist.
- 3. This report is based on the author's experience in exploration, on a comprehensive study of all the assessment work records and on geological maps and reports published for the area of interest.
- 4. The attached report is the product of this writer's research, and, visit to the property in the fall of 1987.
- 5. I have no direct or indirect interest in the properties, leases or securities of Gail Resources Inc., Marshall Minerals Corp. or Gold Vessel Resources Inc., and/or their affiliates, nor do I expect to receive or obtain any.

Dated this April the 7th, 1988, in Timmins, Ontario.

C. Avall.

NN.

199

100

Ż

N

George H. Wahl Geologist

#### SUMMARY

Two well mineralized Vein Zones were discovered in 1987, both of which strongly resemble the mineralization characteristic of the Joburke deposit. Detailed channel sampling on the Anastamosing Vein Zone and Vein Zone returned values up to 0.78 oz/ton Au over 15 ft. An examination of previous work indicates that gold mineralization is widespread not only in the vicinity of the Vein Zones, but also along the entire Joburke–Sangold mineralized trend.

Over 4 miles of potentially auriferous stratigraphy stretch, east-west across the Sangold property. Several other target areas associated with north-northeasterly trending structures occur, both north and south, of this stratigraphy.

An exploration program, consisting of stripping, geophysics, mapping and diamond drilling is recommended to confirm and/or extend the best mineralized zones.

## INTRODUCTION

The Sangold property is held jointly by Gail Resources Inc. (45%) and Marshall Minerals Corp. (55%). An agreement was reached whereby Gold Vessel Resources Inc. can earn a 25% interest in the Sangold property by spending 3.6 million dollars on exploration.

This report provides a summary of the previous exploration history of the Sangold property, it's geology, as well as a summary of recent work, completed under the direction of Marshall Minerals Corp. and Minroc Management Ltd. This work, consisting of surface and airborne geophysics, channel sampling, mapping and a recently completed 4,521 foot drill program resulted in the definition of several target areas for future exploration.

### PROPERTY

The Sangold property consists of 205 unpatented claims (Table 1), located in the northeast corner of Keith Township, Ontario (Figure 1). The property is approximately square covering roughly 8,200 acres. The Sangold property entirely surrounds 20 patented claims belonging to the former producing Joburke Mine, held by Noranda Exploration Ltd. Enough assessment work has been completed to bring 30% of the Sangold claims to lease in the upcoming year. An additional 46 claims have been staked and are available to Marshall Minerals Corp. for option.

#### LOCATION AND ACCESS

The property lies roughly 60 miles west of Timmins, Ontario (Fig. 2). Highway No. 101, which extends west of Timmins, crosses the extreme northeast claim of the Sangold property and continues to Foleyet a distance of another 11 miles. From the northeast corner of the property, a secondary gravelled highway, No. 616, extends 1.5 mile southwest to the Palomar, Canadian National Railway siding. From this point, the railway extends northwest and southeast diagonally across the property. The Horwood Lake Road branches off of highway No. 616 approximately 1/2 mile south of Highway No. 101 and extends south along the eastern margin of the property towards Horwood Lake. At the point where this road



#### LEGEND



# GAIL RESOURCES INC. MARSHALL MINERALS CORP. GOLD VESSEL INC.

#### SANGOLD PROPERTY

KEITH TOWNSHIP, ONTARIO

MINROC MANAGEMENT LIMITED

SCALE I"= 1/2 mile

Figure į



crosses the railway tracks, the Joburke road heads due west through the Joburke property to the western Sangold property boundary. The extreme western property boundary is accessible via the Keith lumber road.

The vein zones are accessible via a 1/2 mile gravel drill road extending south of the Joburke road.

#### **REGIONAL GEOLOGICAL SETTING**

The Sangold claim group lies within the northern part of the Precambrian Swayze–Deloro metavolcanic-metasedimentary belt (Figure 3). This major zone is truncated to the west by the Kapuskasing structural zone, beyond which it continues as the Wawa greenstone belt. To the east the Swayze belt is split into northeasterly and southeasterly branches by the Kenogamissi batholith, continuing to the east as the Abitibi belt. The belt comprises a marginal zone of felsic to intermediate metavolcanics overlain by iron formation, graphitic sediments with intercalated ultramafic komatiitic and tholeitic flows and pyroclastics. These are succeeded by basaltic komatiites and high–magnesium tholeitic flows which grade into iron–rich tholeites. The upper part of the sequence comprises calc–alkaline dacites to rhyolites, pyroclastics and volcanoclastics, agglomerates and flows interbedded with andesitic flows. The volcanics are succeeded by epiclastic sediments comprising conglomerate, greywacke with minor arkose, argillite and iron formations. (Ireland, 1987)

Gold mineralization in the Swayze occurs primarily in quartz lodes, hosted by a variety of rock types but usually associated with shearing, fracturing, silicification and carbonatization, typical of other major greenstone belt deposits. Host rocks of known occurrences include diorite, carbonate, silicified felsic porphyry, sheared metasediments, carbonatised basic volcanics, and granite. Iron formations of both the massive sulphide and oxide types and stratiform massive pyrite in volcanoclastic sequences also host gold in the Swayze. Representatives of all these rock types occur on the Sangold property in a variety of structural settings. (D. Patrick, 1987)



Regional geological setting of the Sangold property within the Abitibi subprovince (after Percival and Cord, in press).

LOCAL GEOLOGY

7

ş

2

The geology of the Sangold property is represented on Map 1 taken from the O.D.M. 1950 Geology Map of Keith and Muskego Townships. The geology of the Sangold property comprises an interbedded suite of mafic and felsic volcanics and associated intrusives, sediments and iron formation. The following rock type descriptions are in part taken from Prest (1950).

#### Mafic to Ultramafic Volcanics

Mafic to ultramafic volcanics extend across the entire Sangold property. Generally, they are medium to fine grained, dark green massive flows. Pillowed flows, amygdules, spherulites and flow top breccias are seldom exposed. Ultramafic flows, with spinifex textures were located in the vicinty of the Groundhog River.

#### **Felsic Volcanics**

The felsic volcanics on the claim group largely consist of felsic flows, breccias, tuffs, intrusives, and interbedded sediments. Together they form a large belt trending easterly across the south central portion of the Sangold claims. The thickness of this felsic unit varies between 1,000 and 3,000 feet. Generally, the felsic belt comprises porphyritic tuffs having either quartz or feldspar or both as the phenocrysts. Crystal tuffs as well as porphyritic flows and intrusives commonly occur within this belt.

Close to the Joburke Road between the Hoodoo and Joburke camps, a quartz-feldspar porphyry, was noted to contain quartz eyes almost a quarter inch in diameter. Thin section work by Prest (1950) determined the unit was of tuffaceous origin due to the banded appearance of the mica.

Adjacent to this area diamond drill hole P 6. intersected a porphyry flow or intrusive in which feldspar crystals were elongate and alligned in a matrix of fine grained mica.

Within the main belt of felsics, a pyroclastic unit occurs which consists of fragments varying from one inch to more than a foot across. These occur both southwest of the Joburke property and in recent drilling in the vicinity of the Vein Zone's.

Several felsic quartz feldspar porphyries were also mapped as dykes and plugs in the mafic volcanics of the Vein Zone's and Hoodoo showing areas.

Near the southern property boundary in the vicinty of Hoodoo Lake, there is a small area mapped as acidic tuffs and breccias. Their appearance is dissimilar to those of the main felsic band. This may be the result of alteration and recrystallization from nearby granitic intrusives.

#### Sediments

Sediments occur in several areas of the Sangold property. Four separte easterly trending horizons have been identified.

To the south of the property, a large sedimentary horizon has been mapped on the west shore of Keith Lake. This unit has been interpreted to extend eastward across the northern flank of the Sangold property to Groundhog River. No outcrops of this unit have as yet been mapped on the Sangold property, however outcrops to the east and west indicate that the units comprise a similar interbedded sequence of conglomerate, arkose, greywacke, quartzite and argiillite. Pebbles of the conglomerate units are made up of quartz-eye granite, porphyries and sediments. Quartz pebbles are rare.

Approximately one mile south of Keith Lake, a narrow band of sediments were mapped, consisting of fine grained pearl-grey weathered quartzites. This unit may be equivalent to the fuchsite bearing sediments encountered in drilling beneath Palomar Lake.

Near the Lot 18, 19 boundary, sediments lie conformably on the north side of the main felsic volcanic belt and are also interbedded with the mafic volcanics. From the western Joburke boundary eastward these sediments largely comprising argillites appear to be in fault contact with the felsic volcanics. These argillaceous sediments terminate to the northwest of the Joburke shaft, however reappear along the northern contact of the main felsic belt, northeast of the Joburke shaft.

7

At a point 1,500 feet north of the junction of the Hoodoo Lake Road and the Joburke Road, sheared carbonated quartzites occur along the southern edge of iron formation. This unit is truncated by east-northeasterly trending faults.

#### Iron formation

Several horizons of oxide iron formation extend both east and west of Mackeith Lake. These consist of alternating magnetite rich and quartz rich bands. Occasionally jasper beds and green amphibolite rich bands occur.

Near the east end of Mackeith Lake, where shearing and fracturing is more intense, the iron formation is hematized, rendering it non-magnetic. This feature is prominently exposed in the airborne magnetic survey as a point of magnetic weakness along the length of the iron formation.

One other band of iron formation occurs roughly 1,500 ft. south of the southern boundary of the felsic belt. This iron formation was intersected in D.D.H. J29 south of the Joburke shaft, in the Dome 53B series of holes, along the south west border of the Sangold property and in the Dome 48 series of holes drilled to the south of the Hoodoo showings. This iron formation, up to 15 feet in width is described as a siliceous tuff carrying 5–20% pyrrhotite, pyrite and chalcopyrite. Airborne magnetic data indicates that this iron formation also extends over the entire width of the property.

#### **Diorites and Serpentinites**

Diorites preferentially occur as dikes injected within the iron formations and occasionally split the iron formations in two or more parts. They are commonly dark in color and are rich in hornblende. Increasing alteration results in the formation of biotite, giving the rock a reddish-brown weathered surface.

Serpentinites occur as dikes and plugs throughout the property. Their precurser ranges from dunites to peridotites to olivine gabbros.

Several dikes of easterly trending lamprophyres and north-north westerly trending Matachewan diabases occur on the Sangold claims.

8

#### Structure

Several structural interpretations have been made possible due to the large amount of mapping, geophysics and stratigraphic drilling completed since the 1940's.

Prest (1950) indicated that the exposure of several horizons of iron formation lying to the east and west of Mackeith Lake may be due to folding. Many of the top indicators used to prove this were implied to be questionable. A second explanation for the multiple iron formation horizons would include the effect of low angle cross faulting which is quite prevalent in the area northeast of Mackeith Lake. Both cross faults and strikes faults are common. The strike faults occur along the northern edge of the main felsic belt and within the adjoining sediments and interbedded iron formations. Actual displacement along these faults is unknown.

Cross faults occurring as northeast to east-northeast trending faults are quite common in the Mackeith Lake area. The east-northeasterly trending fractures at the western end of Mackeith Lake, displace the main felsic belt over 3,000 feet to the southwest.

A third period of faulting probably occurring much earlier than the previously mentioned faults is that of a north-northeast trending fracture system. These faults parallel the general strike of the Kapuskasing structural zone a few miles to the west of the property and are interpreted to be associated with it. Well to the south of the property, on Horwood Lake several gold showings have been interpreted to have been associated with east-west splays branching off of a similar trending fault. Noranda has been acquiring much ground in the area with this theory in mind (personnal communication J. Ireland.)

On the Sangold property, two of these faults have been interpreted. The first occurs along the eastern shore of Keith Lake and extends southward parallel to Keith Creek. A second fault, just east of Mackeith Lake extends southward to Horwood Lake. Several zones of alteration and quartz carbonate veining have been associated with these faults on the Sangold property. Carbonatized mafic volcanics and sediments are present both east and west of the Keith Lake fault and the Mackeith Lake fault. Iron formation on either side of the Mackeith Lake fault is

strongly hematized. Several quartz carbonate veins have also been mapped in close proximity to these faults. Quartz Carbonate veining, on the southern property boundary and within the Joburke–Sangold mineralization trend occur on either side of the Mackeith Lake fault. Quartz carbonate veining on the south shore of Keith Lake is interpreted as being related to the Keith Lake fault.

Recent preliminary mapping of the Vein Zone's revealed a possible associated fracture which parallels the north-northeast trending zone. Instead of a fault zone, this lineation may more aptly be called a deformation zone in which the rocks have undergone a larger degree of ductile deformation, rather than brrittle deformation. The amount of intense isoclinal folding of mafic volcanics and increased number of porphyry intrusives all indicate a very early, zone of deep seated structural weakness.

Future exploration will need to address the role these deformation zones play in mineralizing horizons such as the Joburke–Sangold mineralized trend.

#### **PREVIOUS WORK**

ÿ

Due to the large size of the Sangold property, and diverse number of rock types, a large number of companies have explored for a variety of minerals including gold, silver, copper, zinc, nickel, asbestos and iron. Listed below is a short summary of those companies whose previous exploration work has contributed to the development of gold exploration targets on the Sangold property.

#### **Joburke Gold Mines**

The following account is quoted from reports by J. Ireland (1986) and D. Patrick (1987).

The property was quickly evaluated on surface by extensive stripping, trenching and channel sampling which exposed 9 separate zones containing gold mineralization. It was determined that gold was associated with quartz, quartz-carbonate and albite-carbonate vein systems occurring within a wide zone of extensively sheared, chloritized and carbonatized mafic pillowed lavas and associated fragmental units and interflow tuffs. The vein systems are extensively regional foliation associated with the major sheared zone, which trends from east-west near the main showing, to northwest-southeast at the east end of the property. There appears to be a proportional relationship between sulphide content, primarily pyrite and chalcopyrite, and gold content. Visible gold is very rare, but where it was observed, the gold occupied cubic cavities where pyrite had weathered out.

In 1947, a vertical, two compartment shaft was completed to 425 feet with stations established at the 125, 250 and 375 foot levels. During the shaft work, 24,600 feet in 60 surface holes and 774 feet of underground drilling was completed. This initial drilling was concentrated on the number one zone. Approximately 3,590 feet of lateral work on the 250 and 375 foot levels were completed by Joburke Gold Mines Limited, and another 2,500 feet of underground diamond drilling completed before operations stopped in August 1948. By this time, a considerable amount of development ore had been stockpiled on surface.

3

**N** 

100

100

×,

The property was optioned to McIntyre Porcupine Mines Limited, who, during the period 1949–1950, dewatered the shaft and carried out underground sampling on the 250 and 375 foot levels. The option was subsequently dropped. In 1964, five surface diamond drill holes totalling 5,000 feet were completed under an agreement with Denison Mines Limited.

The property remained idle until 1973 when Noranda acquired an 80% interest and put the property into production which continued through to 1976. Total production, including development ore on surface, was 16,487 ounces of gold from 182,292 tons of ore milled. The recovered grade was 0.09 oz/ton Au.

Noranda reopened the mine in 1979 and continued production until 1981. A total of 168,500 tons of ore was milled at a recovered grade of 0.094 oz/ton Au. The mine buildings have been removed and the property has remained idle since 1981. Total production from the Joburke Mine was reportedly 350,792 tons at a grade of 0.09 oz/ton Au.

11

## Hoodoo Lake Mines, 1947 (Dunvegan Mines)

The following account by D. Patrick (1987) describes the original work on the Hoodoo property:

The most significant previous work on the Sangold property was carried out by Hoodoo Gold Mines Ltd., in 1946–1947. This consisted of prospecting, blasting and sampling on two zones, an "east" showing and a "west" showing followed by a 19 hole drill program totalling 7,500 ft. Both showings are described as quartzcarbonate veins in sheared (east) or massive (west) lavas. The East showing is described as being 8–12 inches in width and occupying a N 10 E cross-fracture. The west vein is from 30 to 50 inches wide but is indicated to pinch out over a length of 20 feet or so.

Subsequently, the Hoodoo showings have formed the main focus for exploration under the current ownerships.

#### Palomar Gold Mines, 1947

The Palomar property consisted of 26 claims and adjoined the Joburke and Hoodoo properties on the east and north respectively. Nine diamond drill holes totalling 5,093 feet were drilled. Minor quartz-carbonate stringers were noted in hole No. P8, which lies on strike with of the Joburke deposit, however no significant assays are reported from this hole. Carbonated mafic volcanics and sediments as well as quartz stringers and minor sulfides were reported by Palomar Gold Mines to occur, both east and west of the north-south portion of the Canadian National railway.

#### Alladin - Groundhog Mines Limited, 1947

Alladin-Groundhog was located immediately north of the Palomar property. Three diamond drill holes comprising 2,339 feet provide a cross section of the stratigraphy underlying Palomar Lake. Hole No. AG-4 intersected a band of sediments which hosted pyrite bearing fuchsite as well as a few pyritized quartz stringers. No significant assay values were reported.

#### Nib-Yellowknife Mines, 1947

2

10

-

1

1.00

i i i

B

H

5

5

-

Nib-Yellowknife was located immediately south of the Hoodoo property. Two veins of interest were noted. One vein is a 10' X 30' quartz body while the other is a quartz vein stockwork system within a zone of highly sheared, pyritized and crenulated volcanics. Gold values were reported to be rather low.

#### Wejack Gold Mines, 1947

This property, 1 mile west of the Joburke claims, had 9 holes drilled, comprising 6,781 feet. The southernmost hole, No. W4, which was collared in the mafic volcanics south of the felsic volcanic pile, intersects a horizon which is stratigraphically equivalent to the mafic host of the Joburke and Sangold mineralization. Numerous quartz-carbonate veins and stringers carrying varying amounts of pyrite were noted. Two 10-foot sludge samples were also noted, carrying 0.03 oz/ton Au. This is the only hole to date which tests the 2.5 mile strike extent of the interpreted western equivalent of the Joburke–Sangold mineralized stratigraphy.

#### Mining Oriented Investments, 1969

This property consisting of 3 claims is located roughly 1,000 feet SSE of the present Vein Zones. Two X-Ray holes were drilled in order to intersect an E.M. anomaly. Both holes intersected over 100 feet of siliceous tuff intruded by numerous quartz veins and veinlets which carried minor sulfides. Several bands of massive sulfide occured within the bedded tuffs. No assays were taken for gold.

#### Mining Corp., 1978–1980

Mining Corp. drilled 2 holes along the eastern Joburke property boundary. Numerous quartz veins and stringers were intersected carrying up to 40% pyrite. It is interesting to note all assay data was deleted from the drill logs. Descriptions of core strongly resemble that of recent drilling on the Vein Zones.

# WORK UNDER CURRENT OWNERSHIP

#### Showings

Ş.

N.

3

14

.

÷

10%

-

A majority of the recent work has concentrated on the area which hosts the Hoodoo "East" and "West" showings and their stratigraphic extensions (Map 1).

Stripping in the Hoodoo area has revealed a succession of massive chloritized mafic flows intercalated with pillowed flows and breccias. These units are crosscut by numerous porphyry dykes up to 3 feet wide as well as lamprophyre dykes.

Generally, the units have a northwesterly strike and dip vertically. However, on a detailed scale, they have been affected by several episodes of faulting, drag-folding and shearing, whose intensity appears to increase towards the northwest.

The most dominant form of alteration is carbonatisation, whose intensity increases with the amount of shearing. Silicification, pyritization and chloritization occur in varying degrees throughout the exposed outcrops.

Quartz and quartz-carbonate veins occur throughout the exposed area. Sampling indicates that a direct relationship exists between the percentage of sulfides and the grade of Au mineralization. Several episodes of veining occur, occasionally containing pyrite with minor chalcopyrite. Generally, these veins are narrow (4") and have limited strike extent.

A description of those areas which returned values are as follows:

Hoodoo East showing is a quartz-carbonate-pyrite vein hosted in a northnortheasterly trending cross fracture. This vein returned values of 0.072 oz/ton Au over 2.5 ft., 0.152 oz/ton Au over 1.5 ft. and up to 4.03 oz/ton Au in grab sample. The Hoodoo drilling in this area only intersected low grade material (0.03 oz/ton Au over 23 ft., 0.04 oz/ton Au over 2 ft., and 0.18 oz/ton Au over 2 ft.). The area is characterized by gash veins and sheared cross-fracture hosted veins of limited width and strike extent. (D. Patrick, 1987) Approximately 300 feet northwest of the Hoodoo vein, a grab sample taken across a 16-inch quartz carbonate-pyrite pod returned 0.376 oz/ton Au. Two other grab samples in the same area returned 0.087 oz/ton Au and 0.05 oz/ton Au. Again veining is of limited width and length and occurs as shear-hosted gash veins and veinlets.

変現

4

ě.

No.

Three hundred feet west of the above vein, a silicified, carbonatized and pyritized porphyry returned 0.05 oz/ton Au and 0.094 oz/ton Au in grab samples.

Almost 400 feet north-northwest of the porphyry is the Hoodoo West showing, which also represents the southeastern most extension of the recently exposed Vein Zone (Map 2). From the rubble covered, blasted area of the old Hoodoo West showing, extends a strong 6 inch to 5 foot wide vein, for a distance of approximately 200 feet to the northwest. This vein bifurcates and is offset to the north-south by several cross fractures. The vein is occasionally boudinaged and drag-folded. At a point, 200 feet northwest of the Hoodoo West showing, the vein crosses a fault and reappears as a heavily folded stringer zone. At this point, the zone becomes difficult to follow due to the severe intensity of folding and faulting in several directions, as well as numerous porphyry intrusives. This vein system has been sampled approximately every 15 feet and carries an average grade of 0.15 oz/ton Au over a width of 4 feet and a length of 200 feet.

A fifth zone, called the Anastamosing Vein Zone occurs 15 feet to the northeast of the northern end of the Vein Zone (Map 2). This zone measuring roughly 33' X 114' consists of a swarm of complexly folded veins and veinlets hosted by highly altered mafic volcanics and irregular shaped porphyries. The veins range in size from 1/4" to 1'. In some localities, these veins are intensely deformed with isoclinal and recumbent drag-folded sections. Gold values are concentrated in the noses of the folds. Channel sampling consisted of 2–3 foot long samples. Every attempt was made to take samples normal to the vein direction. This became difficult due to the complex nature of folding. The following include some of the intersections from surface sampling 0.17 oz/ton Au over 10 ft., 0.20 oz/ton Au over 15 ft., 0.19 oz/ton Au over 10 ft., 0.10 oz/ton Au over 9 ft. and 0.78 oz/ton Au over 15 ft.

A final zone is located 3,000 feet northeast of the Anastamosing Vein Zone. The area surrounding this showing was mapped by J. Ireland and covered with magnetic VLF-EM, and more recently I.P. surveys. The zone is a quartz vein hosted within a heavily sheared, altered porphyry body. A grab sample returned 0.05 oz/ton Au. The vein is podiform and has limited strike extent. (D. Patrick, 1987).

#### **Airborne geophysics**

湖

いの

Ň

(i)

In May 1987, a magnetic and electromagnetic survey was flown over the entire Sangold property.

The eastern and western extensions of the Joburke and Hoodoo showings are identified by a magnetic low, which may be the result of alteration within the mafic volcanics (Figure 4).

A second linear magnetic anomaly trends north-northeasterly between the Joburke and Hoodoo showings. This anomaly is expressed by a disruption in an east-west trending iron formation to the south of Joburke and a warping in the iron formation to the northeast of Mackeith Lake. Several well--carbonatized outcrops have been mapped near the apex of the warped iron formation. Near the southern property boundary, quartz carbonate veining has been mapped on both sides of the north--northeasterly trending magnetic anomaly. This north--northeasterly trending anomaly is also subparallel to several shear zones which appear to be related to the Hoodoo mineralization.

Many of the electromagnetic anomalies are attributed to sulfide and/or graphitic horizons due to their common occurrence in the area. Dome Exploration drilled several of these anomalies, with similar results.

BHP Utah which holds contiguous claims to the north of Sangold, drilled a set of weaker E.M. anomalies. Substantial widths of arsenopyrite with anomalous gold values were intersected. (Personal communication, J. Ireland)



#### I.P. survey

In the fall of 1987, an I.P. survey was conducted over an area extending west of the Hoodoo showings to the Joburke boundary (Map 3). The results were fraser filtered and contoured. The resulting anomaly is coincident with the airborne magnetic low, and extends from the Hoodoo West showing northwest towards the Joburke property.

A second stronger anomaly extends roughly east-west adjacent to Joburke road. The source of this anomaly is interpreted as a graphitic horizon.

A third anomaly trending northeast crosscuts both of the above-mentioned anomalies near the Joburke boundary. This trend appears to be almost coincident with the previously mentioned north-northeasterly trending airborne magnetic expression. The anomaly may be the result of a water-filled fault zone.

#### **Diamond drilling**

Seven diamond holes totalling 4,521 feet were drilled in February of 1988 (Map 3). These holes were drilled to test the extension of the Anastamosing Vein Zone at depth and it's inferred extension to the north, as delineated by the previously mentioned I.P. anomaly. A summary of the anomalous drill intersections in each hole is included in Table 2. Figure 3 contains a plan of the vein zones and drill hole locations. The drill logs with assays are in Appendix A.

Holes SG-88-01, 02 and 04 were collared to intersect the Anastamosing Vein Zone at depth. The rock types consisted dominantly of moderately to intensely sheared massive mafic volcanics intruded by narrow quartz feldspar porphyry dykes. Numerous quartz-carbonate-pyrite veins and veinlets were intersected, however very few carried significant values and those which did carry, were only anomalous over short widths.

In holes SG-88-01 and 04, which were drilled at -55° towards one another, 2 zones were intersected in each hole roughly 200 feet apart, at roughly the same depth. A correlation between these intersections would be premature, however they do indicate widespread mineralization at depth.

Hole SG-88-03, collared at the same location as SG-88-01 and 02, and striking north at -55° intersected the felsic volcanic pile at 124 feet depth. At 405 feet and 419 feet, two graphitic horizons were encountered. Similar graphitic horizons, although much larger (20 feet) were encountered in SG-88-05 and Hoodoo Lake Mines Ltd. hole No. 17. This graphitic horizon which follows the felsic/mafic contact is interpreted to be the source of the I.P. anomaly which extends from the Hoodoo showings to the Joburke property.

The mafic-felsic contact was also intersected by SG-88-07 and 08. However, only SG-88-07 intersected a small zone carrying 0.095 oz/ton Au over 5 ft., at a depth of 600 feet, well within the mafic volcanic sequence. No gold values of any significance were returned from the felsic volcanics.

#### CONCLUSION

Mapping of the Hoodoo West showing and it's associated Vein Zones has shown the necessity of large scale structural deformation in localizing and concentrating gold mineralization.

The occurrence of gold mineralization within 9 zones on the Joburke property, as well as the Hoodoo and Vein Zone showings and several drill holes on strike indicate the widespread nature of mineralization along the Joburke - Sangold trend.

Geophysical data and previous mapping indicate the importance of the north-northeast trending fault zones in providing sufficient deformation and alteration within the local geology to form additional exploration targets. The first phase of drilling has shown that a problem exists in correlating geology and assay data within a deformation zone. Future drilling programs will need to be more closely spaced in order to confidently trace zone extensions.

In general, the Sangold property hosts a large number of targets, which would represent a good exploration potential for a Joburke style deposit.

19

# RECOMMENDATIONS

The large amount of previous work on the Sangold property has resulted in the definition of several target areas (Refer to Map 1).

- Hoodoo Mines intersected 0.08 oz/ton Au over 3 ft. in hole No. 15 located 400 feet east of the Hoodoo East showing. This area remains largely untested to the Groundhog River, representing a strike length of one mile. This area requires further stripping and diamond drilling.
- 2. The entire stripped area between the Hoodoo East and West showings requires a greater density of sampling. Further stripping should be completed on the sheared pyritized porphyry which ran 0.094 oz/ton Au on the southern flank of the stripped area.
- 3. Additional samples should be taken along the Vein Zone. Within the Anastamosing Vein Zone, all of the water and mud filled pits should be cleaned out. A second program of sampling should be completed in order to increase the density of sampling and also to test the repeatability of assays with adjacent channel samples. This should be followed by a bulk sampling program to test the compatibility of assays between channel samples and bulk samples. Further stripping should commence to the north and northeast of the Vein Zones provided overburden depth does not increase significantly.
- 4. A phase II drill program should concentrate on shallower holes intersecting the vein zones at 50–250 foot depths, at 50 foot intervals. This would greatly aid the understanding of the nature and consistency of mineralization at depth. This drilling program should also test the entire strike length from the Vein Zone showings to the Joburke property. Additional sampling of the previous drilling program should also be completed.
- 5. Noranda Mines, which owns the Joburke property, is compiling a report covering all previous work on the Joburke Mine. Every attempt should be made to acquire this data in order to understand the grade of mineralized drill intersections required to distinguish ore grade material at depth. This

type of data would be invaluable in assessing the potential significance of lower grade intersections in the Sangold drilling program.

- 6. The north-northeasterly trending magnetic lineament, just east of Mackeith Lake, requires a large degree of further exploration. The areas representing carbonatized lavas on both sides of the lineament, east of Mackeith Lake, should be stripped and channel sampled. A similar program of stripping should be carried out in the vicinity of the Nib-Yellowknife area, where quartz-carbonate veining has been mapped on both sides of the lineament. A third area along this lineament which requires attention would be it's intersection point with the Joburke-Sangold mineralized mafic stratigraphy.
- 7. Two thousand feet south-southeast of the vein zones, drilling by Mining Oriented Investments, intersected numerous quartz veins and veinlets carrying pyrite and chalcopyrite within a siliceous tuff. These zones were drilled in an area where overburden depths were limited to a few feet and could be easily stripped and evaluated.
- 8. Quartz carbonate veining within the felsic volcanics well to the northeast of the Vein Zone showings, should be further explored. Large areas of intensely altered felsic volcanics in this region were stripped in the summer of 1987, and still need to be mapped and channel samplec.
- A band of sediments on strike of the section drilled by Alladin Groundhog Gold Mines in 1946–1947, on Palomar Lake, should be stripped and sampled. Drilling intersected fuchsite with disseminated and massive pyrite. No values were reported.
- 10. The area west of Joburke, which represents the same st atigraphy hosting the Joburke and Vein Zones mineralization, remains virtually untested. In 1947, Wejack Gold Mines drilled one hole No. W4 into this stratigraphy. A zone of quartz-carbonate veining was intersected which returned 0.03 oz/ton Au over 10 ft. of sludge. This stratigraphy covers 2.5 miles of strike length on the Sangold property. An attempt should be made to define the felsic-mafic contact with an I.P. survey followed by a program of stratigraphic trenching and diamond drilling.

21

- 11. Immediately south of Keith Lake on the west side of another north-northeast trending fault, there exists a zone of pervasive carbonatization containing quartz-carbonate veining. A road has been pushed north, in order to access this area. Several stratigraphic trenches are recommended in this area as well as detailed channel sampling. BP Selco has recently completed a 7,000-foot drill program to the west of this stratigraphy.
- 12. Electromagnetic conductors along the northern Sangold property boundary which are on strike with auriferous mineralization currently under evaluation by Utah and Unigold represent further targets. However, it is recommended that exploration in this area be limited to an initial phase of prospecting, while work by both Utah and Unigold be monitored.
- 13. Present grids should be extended to cover all of the above-mentioned areas of interest. These grids should then be covered with Mag., VLF and geological mapping. All anomalies should then be followed up with I.P. over selected areas, and mechanical trenching. Assaying should not be limited to gold only, but should occasionally include assays for nickel, copper, zinc, silver, platinum and palladium where they are deemed to be warranted.

## **BUDGET PROPOSAL**

A program of line cutting, geophysics, mapping, stripping, channel sampling, bulk sampling and drilling has been planned in order to identify new zones of mineralization as well as extend the strike extent of those zones already exposed. Details of the proposed program are as follows:

Line cutting	- 185 km @ 215 \$/km	39 775
Geophysics	- Mag 328 km @ 100 \$/km - VLF - 328 km @ 100 \$/km - I.P. (over selected areas) 100 days @ 1 400 \$/d	32 800 32 800 140 000
Airtrack drilling (to test	overburden thickness)	50 000
Stripping and trenchi	ng - 2 crews, 90 days @ 2 600 \$/day	468 000
Surface mapping (all grid lines and stripped	- 2 crews of 2 geologists areas)	175 000

Diamond Drilling - 50000 ft. @ 30 \$/ft. all inclusive (to test stratigraphy on strike of the Joburke and Vein zones as well as any additional zones)	1 500 000
Bulk sampling testwork - 10000 tons @ 37 \$/ton all included (to test the consistency of channel and drill sampling with bulk sampling)	370 000
Drill and access roads	50 000
Core logging, drill supervision and assaying	140 000
Geological supervision and management	100 000
Drafting and report writing	40 000
Truck rental and accomodations	70 000
Contingencies	391 625

TOTAL:

ľ.

Į

•

3 600 000 \$

6 Wahl

George H. Wahl. Geologist

April, 1988

TABLE 1

# List of unpatented claims (205 claims)

# List of unpatented claims available for option from G. Sanford. (46 claims)

958074 to 958077 930905 to 930911 968202 to 968209

1029958 to 1029960 1029975 to 1029977 1029806 - 1029807 1029809 to 1029817 996922 to 996931 TABLE 2

# Sangold drilling intersections, 1988

Hole No.	Length	Host	Depth	Intersection oz/ton Au	Veln type
SG-01	607'	Mafic volcanics	@ 224.7' @ 457,0'	2.8' of 0.16 3.0' of 0.067	qz cb vein qz cb vein
SG-02	557'	Mafic volcanics	@ 412.5' @ 410.0'	2.5' of 0.029 1.5' of 0.144	qz cb vein qz cb vein
SG-03	757'			Nil results	
SG-04	557'	Mafic volcanics Mafic volcanics Mafic volcanics Mafic volcanics	@ 296.0' @ 497.0' @ 500.0' @ 509.0'	5.0' of 0.041 3.0' of 0.321 4.0' of 0.009 3.0' of 0.149	qz cb vein qz cb vein qz cb vein qz cb vei
SG-05	607'			Nil results	
SG-06				Not drilled	
SG-07	647'	Interbanded tuff	@ 600.0'	5.0' of 0.095	qz cb vein
SG-08	687'			Nil results	



(E00680) 1-000ee01 \$00690 7285501 8285501 5365 1 1423852⁸ 1033833 1 1033835 3630 1033841 1033840 +66101 Seetol Ø 1 10336330 Stares 1 0432601 Stares 1 0282501 8 1033870 1033852 1033849 1038550 6292201 4159680 1033635 1033634 14 + 508 14 × 6 308 1 1023824 1023823 1 1023848 1032842 102282 1/1034171 + 7414501 - 5414501-1 9712501 TOIZEOI SPIREOI SEIREOI ATIREOI I ETIREOI I STIREOI OPIREOI 9015601 12114201 1214201 1864286 105286 205286 1414E01 100000 099621 eesees 1 1055 09 1 200569 # d 66+286 26+286 0052861 6414501 365569 850565 LS8565 050565 9014 1 159684 1 10264954 10264931 10 1005555 -265565 450565 | 050 569 | +50565 +86 vEt 166 vEt 866 086 ses breeze -- sesse's - sesses -- t+oses too BLEOCO CSLOCO HELOED



**Mining Act** 

Porcupine

Keith Township Total Assessment Credits Claimed

497

Shaft Sinking Drifting or other

Mechanical equipment

Type of Work Performed (Check one only) Manual Work

**Mining Division** 

Township or Area

Name and Address of Recorded Holder

Marshall Minerals Corporation

¢





(G Ē٦ requirements and the reverse side of this form for table of information. **Report of Work** Prospector's Licence No. A-38077 Telephone No. (416) 356-9112 12E 6T8 4776 Bridge Street, P.O. Box 356, Niagara Falls, Ontario Summary of Distribution of Credits and Work Performance Mining Claim Mining Claim Work Work Work Days Cr. Days Cr. Days Cr. Number Prefix Number Prefix Number 165 968207 968208 166 968209 166

Power Stripping other than Manual (maximum credit allowed - 100 days per claim)									
Diamond or other Core drilling									
Core Specimens									
Dates when work was performed			Total No. of Day	s Performed	Total No. of Day	s Claimed	Total No.	of Days to be Claim	ed at a
From: August 19,1989 To: Au	ugust 20,	1989	497		497		FUILITE DA		

All the work was	perform	ned on Mining (	Claim(s):	Mining Claim	No. of Days	Mining Claim	No. of Days	Mining Claim	No. of Days	Mining Claim	No. of Days
Indicate no. of da	ays per	ormed on each	i claim.	760470	607						
* (See note No.	1 on rev	verse side)		<u> </u>	497						
Mining Claim No	o. of Days	Mining Claim	No. of Days	Mining Claim	No. of Days	Mining Claim	No. of Days	Mining Claim	No. of Days	Mining Claim	No. of Days

Required Information eg. type of equipment, Names, Addresses, etc. (See Table on reverse side) If space below is insufficient, attach schedules with required information and location sketches

Mining Claim

Prefix

Hole S135-5 (497 feet of BQ core) was drilled using a Longyear model 38 wireline diamond drill by:

> Longyear Canada Inc. 1111 Main Street West P.O. Box 330 North Bay, Ontario P1B 8H6

ONTARIO GEOLOGICAL SURVEY ASSESSMENT FILES OFFICE MAY 11 1990

RECEIVED

Certification of Beneficial Interest * (See Note No. 2 on reverse side) I hereby certify that, at the time the work was performed, the claims covered in this report of work were recorded in the current recorded holder's name or held under a beneficial interest by the current recorded holder. Date Recorded Holder or Agent (Signature)

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true. Name and Address of Person Certifying Ontario Crescent Timmins 190 James Burns Grage Telephone No. Centified By (Signature) Date / Qual alla

I YN SIC S	705-265-4660	May	<u> </u>	194	yamn,	Jun
For Office Use Only		0	,			
Work Assignments			Rece	Varia Stanis	PINE MINING DIVISION	
	RECORDED					)
				Jus I	MAY 9 1990	
	MAY 0 9 1990			2:20	pm BD	
	Ref.	5.				المعون



.

3S	2S	15
100EL		
99EL		
98EL		
97EL		
۲.		
96EL		
3S	2S	15

42BOINE0141 53 KEITH 42B01NE0141 53 KEITH

210



,

-